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ABSTRACT

We present constraints on the flat Λ cold dark matter cosmological model through a joint analysis of galaxy abundance, galaxy
clustering, and galaxy-galaxy lensing observables with the Kilo-Degree Survey. Our theoretical model combines a flexible conditional
stellar mass function, which describes the galaxy-halo connection, with a cosmological N-body simulation-calibrated halo model,
which describes the non-linear matter field. Our magnitude-limited bright galaxy sample combines nine-band optical-to-near-infrared
photometry with an extensive and complete spectroscopic training sample to provide accurate redshift and stellar mass estimates.
Our faint galaxy sample provides a background of accurately calibrated lensing measurements. We constrain the structure growth
parameter to S 8 = σ8

√
Ωm/0.3 = 0.773+0.028

−0.030 and the matter density parameter to Ωm = 0.290+0.021
−0.017. The galaxy-halo connection model

adopted in the work is shown to be in agreement with previous studies. Our constraints on cosmological parameters are comparable
to, and consistent with, joint ‘3 × 2pt’ clustering-lensing analyses that additionally include a cosmic shear observable. This analysis
therefore brings attention to the significant constraining power in the often excluded non-linear scales for galaxy clustering and galaxy-
galaxy lensing observables. By adopting a theoretical model that accounts for non-linear halo bias, halo exclusion, scale-dependent
galaxy bias, and the impact of baryon feedback, this work demonstrates the potential for, and a way towards, including non-linear
scales in cosmological analyses. Varying the width of the satellite galaxy distribution with an additional parameter yields a strong
preference for sub-Poissonian variance, improving the goodness of fit by 0.18 in terms of the reduced χ2 value (and increasing the
p-value by 0.25) compared to a fixed Poisson distribution.

Key words. gravitational lensing: weak – methods: statistical – cosmological parameters – galaxies: halos – dark matter –
large-scale structure of Universe

1. Introduction

In the last quarter of a century, we have seen the rise and
establishment of the concordance cosmological model, which
describes the formation and subsequent evolution of the cosmic
structure. In this concordance model the Universe at the present
time is modelled as a flat, cold dark matter (CDM) and cos-
mological constant (Λ) dominated Universe, with a negligible
contribution from neutrinos, and gravity described by the law of
General Relativity. Furthermore, the initial power spectrum of

density fluctuations is assumed to be a single power law. Such
ΛCDM models are described using only six free parameters,
which govern the energy densities of baryons, Ωb, and the CDM,
Ωdm; the spectral index, ns, and normalisation, σ8, of the density
perturbations’ power spectrum; the Hubble parameter, H0; and
the optical depth of re-ionisation. The flat geometry, implying
that ΩΛ = 1−Ωb −Ωdm, is strongly supported by high precision
early-Universe measurements of the cosmic microwave back-
ground (CMB) temperature fluctuations combined with super-
nova and/or baryon acoustic oscillation distance measurements
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(Planck Collaboration VI 2020; Scolnic et al. 2018; Alam et al.
2021). Formally, the models also include the total neutrino mass,
but the value of the parameter is too small for the current preci-
sion of observations (Gerbino & Lattanzi 2018).

A powerful probe of late-time cosmology is the large-scale
distribution of galaxies. Even though stars contribute negligi-
bly to the overall energy density of the Universe, the light
from stars in galaxies can be used to trace the evolution of the
underlying distribution of dark matter in two complementary
ways. Firstly, the light path from distant galaxies is impacted
by the distribution of foreground mass. This ‘gravitational lens-
ing’ effect leads to a correlation between the observed shapes of
galaxies, commonly referred to as cosmic shear. This observ-
able can be used to probe the statistical properties of the
total matter distribution in the Universe, typically quantified
through the shape and amplitude of the matter power spec-
trum (Heymans et al. 2013; Hikage et al. 2019; Hamana et al.
2019; Asgari et al. 2021b; Secco et al. 2022; Amon et al. 2022a;
van den Busch et al. 2022). Secondly, galaxies are expected to
reside within dark matter haloes that form from the highest
density peaks in the initial Gaussian random density field (e.g.
Mo et al. 2010, and the references therein). Galaxies are there-
fore tracers of the underlying dark matter distribution, and
with an accurate understanding of how biased these tracers are,
the measurement of galaxy clustering as a function of red-
shift and scale places strong constraints on the properties of
the ΛCDM model (see for example Alam et al. 2021). It is
becoming increasingly common to combine these two different
‘two-point’ (2pt) statistics, along with a third measurement of
the gravitational lensing of background galaxies by foreground
galaxies, otherwise known as galaxy-galaxy lensing. These joint
‘3× 2pt’ large-scale structure cosmological studies already have
the precision to directly constrain some cosmological parame-
ters independently of CMB measurements (Heymans et al. 2021;
DES Collaboration 2022).

In this analysis we focus on exploiting the significant preci-
sion recovered with small-scale measurements of galaxy clus-
tering and galaxy-galaxy lensing. These non-linear scales are
typically excluded from cosmological analyses owing to insuf-
ficient or uncertain modelling of the complex relationship
between galaxies and the underlying matter distribution on these
scales (Davis et al. 1985; Dekel & Rees 1987). Galaxy bias is
scale dependent, stochastic, and changes as a function of galaxy
luminosity, colour, and morphological type (Dekel & Lahav
1999; Zehavi et al. 2011; Cacciato et al. 2012; Dvornik et al.
2018). Based on these facts, it is not surprising that galaxy bias
is generally considered a nuisance to be marginalised over in the
recovery of cosmological constraints. Many studies limit their
analyses to scales where the galaxy bias is considered to be
linear and scale independent (see for example van Uitert et al.
2018; Yoon et al. 2019; DES Collaboration 2022). An alter-
native approach uses perturbation theory (Desjacques et al.
2018) to expand galaxy bias modelling into the mildly non-
linear regime (e.g. Mandelbaum et al. 2013; Sánchez et al. 2017;
Heymans et al. 2021; Pandey et al. 2022). However, as a mea-
surement of small-scale galaxy bias also contains a wealth of
information regarding galaxy formation, we argue that it is pref-
erential to utilise all the data, along with an appropriate galaxy
bias model, to facilitate joint constraints on both cosmology and
galaxy bias.

Given our previous attempts to shine a light on the galaxy
bias and its properties (Dvornik et al. 2018), in this analysis
we adopt a realistic and physically motivated halo model for
galaxy bias. Under the assumption that all galaxies reside in dark

matter haloes, we adopt a halo occupation distribution (HOD)
model, a statistical description for how galaxies are distributed
between and within the dark matter haloes (Peacock & Smith
2000; Scoccimarro et al. 2001; Mo et al. 2010; Yang et al. 2009;
Cacciato et al. 2013, 2014; van den Bosch et al. 2013). When
combined with the halo model, which describes the non-linear
matter distribution as a sum of spherical dark matter haloes
(Seljak 2000; Cooray & Sheth 2002), these models provide
a fairly complete, broadly accurate1, and easy to understand
description of galaxy bias, halo masses, and galaxy clustering
(Cacciato et al. 2013).

Our approach builds on the cosmological analysis presented
in Cacciato et al. (2013) and More et al. (2015), in which the
halo model is used to coherently analyse the clustering of galax-
ies, the galaxy-galaxy lensing signal (Guzik & Seljak 2002;
Yoo et al. 2006; Cacciato et al. 2009), and galaxy abundances
as a function of luminosity or stellar mass (van den Bosch et al.
2013; Cacciato et al. 2013). Furthermore, the same approach
was used to study the galaxy-halo connection exclusively, with
a fixed cosmology, by Leauthaud et al. (2011) and Coupon et al.
(2015). This combination of probes is hereafter referred to as
‘2 × 2 pt+SMF’, representing the combination of the two two-
point statistics galaxy-galaxy lensing and galaxy clustering with
the one-point stellar mass function (SMF). Analysis showing
how much more information is in the 2×2 pt+SMF compared to
the 2 × 2pt is nicely presented in More et al. (2013). The degen-
eracy breaking of model parameters arising from the inclusion
of a SMF is shown in Mahony et al. (2022).

Since early applications, there has been significant inter-
est in using the halo model to interpret large-scale structure
probes (Seljak et al. 2005; Cacciato et al. 2009; Li et al. 2009).
The analysis of 2 × 2pt statistics, down to non-linear scales,
has been shown to lead to tight constraints for both Ωm and
σ8 (Cacciato et al. 2013; Mandelbaum et al. 2013; More et al.
2015; Wibking et al. 2019). The halo model can also constrain
extensions to the standard ΛCDM cosmologies, such as the
equation of state of dark energy and neutrino mass (More et al.
2013; Krause & Eifler 2017). The choice of observables is moti-
vated by the focus on a feasibility study on smaller scales that
achieves similar precision, thus allowing for a direct and/or
independent comparison to cosmic shear studies. In the era
of high-precision cosmology, however, Miyatake et al. (2022a)
show that the use of only a ‘broadly accurate’ standard halo
model leads to significant offsets in the recovered cosmological
parameters from a 2×2 pt analysis of HOD-populated numerical
simulations. Consistency studies between the observed small-
scale clustering and galaxy-galaxy lensing signals cast similar
doubts on the accuracy of any standard halo model analysis
(Leauthaud et al. 2017; Lange et al. 2021; Amon et al. 2022b).

Arguably the two most flawed approximations in the stan-
dard halo model formalism are (i) that haloes, and therefore
galaxies, can overlap, and (ii) that haloes trace the matter dis-
tribution with a linear and scale-independent halo bias. Previ-
ous attempts to improve these approximations used halo exclu-
sion formulations (Giocoli et al. 2010) to solve the first problem,
combined with radial bias functions that add a scale dependence
to the halo bias model (Tinker et al. 2005; van den Bosch et al.
2013; Cacciato et al. 2013).

In this analysis we instead follow the method proposed
by Mead & Verde (2021), accounting for both scale-dependent

1 The standard halo model of dark matter haloes estimates the
true power spectrum to within 20% accuracy on non-linear scales
(Mead et al. 2015).
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non-linear halo bias and halo exclusion by incorporating the
halo bias measured directly from the DarkEmulator suite
of cosmological simulations (Nishimichi et al. 2019). As shown
by Mahony et al. (2022), this necessary upgrade to the standard
halo model leads to sufficient accuracy in the recovered cosmo-
logical parameters from a 2× 2 pt+SMF analysis for the statisti-
cal power of current imaging surveys.

Other approximations in a halo model analysis include that
the halo mass is the sole variable that determines the proper-
ties of the haloes and their occupying galaxies. Galaxy prop-
erties and the clustering of haloes are, however, expected to
have a secondary dependence, on their local environment and
assembly history (see Wechsler & Tinker 2018, and references
therein). Furthermore, the adopted halo density profile is mod-
elled from dark-matter-only numerical simulations, even though
hydrodynamical simulations show that these profiles are mod-
ified by the presence of active galactic nuclei (Schaller et al.
2015; Wang et al. 2020). Debackere et al. (2021) show that, to
account for baryon physics, it is sufficient to leave the concen-
tration of dark matter haloes as a free parameter. Amon et al.
(2022b) review the literature studies on the impact of these two
approximations on 2 × 2 pt halo model studies with luminous
red galaxies. Motivated by their conclusions, we chose to adopt
nuisance parameters in our halo model to encapsulate the uncer-
tainty of the impact of assembly bias and baryon feedback within
our error budget.

In this paper we analyse the most recent data release from the
Kilo-Degree Survey (KiDS), KiDS-1000 (Kuijken et al. 2019;
Giblin et al. 2021; Hildebrandt et al. 2021), which spans over
1000 square degrees of imaging in nine bands from the opti-
cal through to the near-infrared. Our main ‘KiDS-Bright’ galaxy
sample (Bilicki et al. 2021) benefits from the 180 square degree
overlap between KiDS and the spectroscopic Galaxy And Mass
Assembly (GAMA) survey (Driver et al. 2011). As an essen-
tially complete spectroscopic survey to r < 19.8, GAMA serves
as an extensive training set for machine learning and the calibra-
tion of different sample selections. The resulting GAMA-trained
photometric redshifts and stellar mass estimates for the KiDS-
Bright sample have an enhanced accuracy and precision that ben-
efits this galaxy-galaxy lensing and galaxy clustering study. In
order to simultaneously constrain cosmology and galaxy bias,
we used the 2× 2 pt+SMF combination of galaxy clustering and
galaxy-galaxy lensing, as well as constraints on galaxy abun-
dances in the form of the SMF.

We improve upon previous related 2 × 2 pt+SMF studies
by (i) using a more accurate analytical model with the addition
of non-linear halo bias (Mead & Verde 2021), taking the halo
exclusion and scale dependence into account, (ii) taking the lat-
est lensing and clustering data from a single survey, and (iii)
using the full analytical covariance matrix, including the cross-
variance between all observables. Our analysis is highly comple-
mentary to the emulator based 2×2 pt halo model analysis of the
Hyper Suprime Camera (HSC) survey (Miyatake et al. 2022b).

Throughout this paper, all radii and densities are given in
comoving units, ‘log’ is used to refer to the 10-based loga-
rithm, and ‘ln’ for the natural logarithm. All the quantities that
depend on the Hubble parameter adopt units of h, where h =
H0/100 km s−1Mpc−1. We also use ρm as the present-day mean
matter density of the Universe, ρm = Ωm,0 ρcrit, where ρcrit =
3H2

0/(8πG) and the halo masses are defined as M = 4πr3
∆
∆ ρm/3

enclosed by the radius r∆, within which the mean density of the
halo is ∆ times ρm, with ∆ = 200.

This paper is organised as follows. In Sect. 2 we review our
analytical model for computing the galaxy SMF, the galaxy-

galaxy correlation function, and the galaxy-galaxy lensing sig-
nal using the halo model combined with a model that describes
halo occupation statistics as a function of galaxy stellar mass.
In Sect. 3 we introduce the 2 × 2 pt+SMF KiDS measurements,
specifics of the covariance calculation, and our Bayesian analy-
sis methodology. Our main results are presented in Sect. 4, and
we conclude in Sect. 5.

2. The halo model

The halo model is an analytic framework that can be used to
describe the clustering of matter and its evolution in the Universe
(Seljak 2000; Peacock & Smith 2000; Cooray & Sheth 2002;
van den Bosch et al. 2013; Mead et al. 2015). It is built upon
the statistical description of the properties of dark matter haloes
(namely the average density profile, large-scale bias, and abun-
dance) as well as on the statistical description of the galaxies
residing in them, using HOD. The model is sufficiently flexible
to consistently describe the statistical weak lensing signal around
a selection of galaxies, their clustering, abundances and cosmic
shear signal.

2.1. Halo model ingredients

We assume that dark matter haloes are spherically symmetric
on average, and have density profiles, ρ(r|M) = M uh(r|M), that
depend only on their mass M, and uh(r|M) is the normalised
density profile of a dark matter halo. Similarly, we assume that
satellite galaxies in haloes of mass M follow a spherical number
density distribution ns(r|M) = Ns us(r|M), where us(r|M) is the
normalised density profile of satellite galaxies. All central galax-
ies are positioned at the centre of their halo: r = 0. We assume
that the density profile of dark matter haloes follows a Navarro-
Frenk-White (NFW) profile (Navarro et al. 1997). Since centrals
and satellites are distributed differently, we write the galaxy-
galaxy power spectrum, Pgg(k), as a combination of the central
‘c’, satellite ‘s’, and cross power spectrum, with

Pgg(k) = A2
c Pcc(k) + 2AcAsPcs(k) + A2

s Pss(k) , (1)

and the galaxy-matter power spectrum, Pgm(k),

Pgm(k) = AcPcm(k) + AsPsm(k) . (2)

Here Ac = nc/ng and As = ns/ng = 1 − Ac are the central and
satellite fractions, respectively, and the average number densities
ng, nc and ns follow from

nx =

∫ ∞

0
〈Nx|M〉 n(M) dM , (3)

where ‘x’ stands for ‘g’ (for galaxies), ‘c’ (for centrals), or ‘s’
(for satellites), 〈Nx|M〉 is the average number of galaxies given
halo mass M, and n(M) is the halo mass function in the following
form:

n(M) =
ρm

M2 ν f (ν)
d ln ν
d ln M

, (4)

with ν = δc/σ(M) being the peak height. Here δc is the criti-
cal overdensity required for spherical collapse at redshift z, and
σ(M) is the mass variance. For f (ν) we used the fitting function
to the numerical simulations presented in Tinker et al. (2010). In
addition, it is common practice to split two-point statistics into
a one-halo term (both points are located in the same halo) and

A189, page 3 of 25



Dvornik, A., et al.: A&A 675, A189 (2023)

a two-halo term (the two points are located in different haloes).
The one-halo terms are

P1h
cc (k) =

1
nc
, (5)

P1h
ss (k) = P

∫ ∞

0
H2

s (k,M) n(M) dM , (6)

and all other terms are given by

P1h
xy(k) =

∫ ∞

0
Hx(k,M)Hy(k,M) n(M) dM. (7)

Here ‘x’ and ‘y’ are ‘c’ (central), ‘s’ (satellite), or ‘m’ (matter),P
is a Poisson parameter that captures the scatter in the number of
satellite galaxies at fixed halo mass (in this case a free parameter
– we define the P in detail using Eqs. (24) and (25)), and we
have defined the mass, central and satellite profiles as

Hm(k,M) =
M
ρm

ũh(k|M) , (8)

Hc(k,M) =
〈Nc|M〉

nc
, (9)

and

Hs(k,M) =
〈Ns|M〉

ns
ũs(k|M), (10)

with ũh(k|M) and ũs(k|M) the Fourier transforms of the halo den-
sity profile and the satellite number density profile, respectively,
both normalised to unity [ũ(k=0|M)=1]. The various two-halo
terms are given by

P2h
xy(k) = Plin(k)

∫ ∞

0
dM1Hx(k,M1) bh(M1) n(M1)

×

∫ ∞

0
dM2Hy(k,M2) bh(M2) n(M2)

+ Plin(k) INL
xy (k), (11)

where Plin(k) is the linear power spectrum, obtained using the
Eisenstein & Hu (1998) matter transfer function, and bh(M, z) is
the halo bias function. We adopted the Tinker et al. (2010) halo
bias function, which, together with their halo mass function, pro-
vides a consistent normalisation of the halo model integrals. The
second term in Eq. (11) encompasses the beyond-linear halo bias
correction βNL proposed by Mead & Verde (2021), where

INL
xy (k) =

∫ ∞

0

∫ ∞

0
dM1dM2 β

NL(k,M1,M2)

×Hx(k,M1)Hy(k,M2) (12)
× n(M1) n(M2) bh(M1) bh(M2).

Here, βNL is measured using the DarkQuest emulator
(Nishimichi et al. 2019; Miyatake et al. 2022a; Mahony et al.
2022), by measuring the non-linear halo-halo power spectrum
and then dividing it by the linear matter power spectrum mul-
tiplied with the product of linear bias factors (Mead & Verde
2021, Eq. (23)). Due to the definition of βNL, this measure-
ment also holds true for galaxy-galaxy and galaxy-matter cor-
relations. As shown in Mahony et al. (2022), this function is
cosmology dependent, but does not account for assembly bias
effects. In this paper, owing to the volume-limited mix of all

types of galaxies used in our analysis, we consider any assem-
bly bias to be a subdominant effect as the secondary properties
are unlikely to manifest for a non-specific galaxy type selec-
tion (Wechsler & Tinker 2018). Numerically, the integrals in the
halo model are not integrated from zero to infinity, but rather
between a wide range of halo masses. Special care has to be
taken to account for the masses outside of the integration lim-
its, for which an appropriate correction is applied (as derived in
Cacciato et al. 2009, Eqs. (24) and (25), and in Mead et al. 2020;
Mead & Verde 2021, Appendices A in both papers). The two-
point correlation functions corresponding to these power spectra
are obtained via Fourier transformation:

ξxy(r) =
1

2π2

∫ ∞

0
Pxy(k)

sin kr
kr

k2 dk. (13)

For the halo bias function, bh, we used the fitting func-
tion from Tinker et al. (2010), as it was obtained using the
same numerical simulation from which the halo mass func-
tion was obtained. We have adopted the parametrisation of the
concentration-mass relation given by Duffy et al. (2008):

c(M, z) = 10.14
[

M
(2 × 1012M�/h)

]−0.081

(1 + z)−1.01. (14)

We allow for an additional normalisation, fh,s, such that

ch,s(M, z) = fh,s c(M, z), (15)

where fh is the normalisation of the concentration-mass rela-
tion for dark matter haloes ũh(k|M), and fs is the normalisa-
tion of the concentration-mass relation for the distribution of
satellite galaxies ũs(k|M). The profiles ũh(k|M) and ũs(k|M) are
both assumed to be non-truncated NFW profiles, with the same
virial mass. Our adoption here of separate concentration-mass
relations for dark matter haloes and satellite galaxies provides
enough flexibility in the model to capture the uncertain impact
of baryon feedback (for the scales adopted, Debackere et al.
2020, 2021; Amon et al. 2022b), and it has been used in the lit-
erature (Cacciato et al. 2013; Viola et al. 2015; van Uitert et al.
2016; Dvornik et al. 2018) to account for such effects. This addi-
tional flexibility is motivated by the fact that in the simulations,
the active galactic nucleus (AGN) feedback pushes the baryons
and dark matter from halo centres towards outskirts, and by
that effectively changing the concentration of the matter distri-
bution (Debackere et al. 2020; Mead et al. 2020). This is also
supported by observations (Viola et al. 2015), which showed
that the preferred value for the concentration normalisation is
lower than 1. Using the halo model with these extra param-
eters is a benefit over the emulators that are based on dark-
matter-only simulations (as for instance the DarkQuest emula-
tor Nishimichi et al. 2019; Miyatake et al. 2022a; Mahony et al.
2022), since they do not offer a simple way to accommodate for
such flexibility, nor require simulations (Schneider & Teyssier
2015).

In the halo model we do not consider the mis-centred central
term, as for a selection of galaxies the signature is accounted for
through the terms for satellite galaxies, which do not reside in
the centres of haloes by definition. What is more, the satellite
galaxies populate haloes regardless of the existence of a central
galaxy, which further removes the need for a mis-centred term
(no central condition is enforced).
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2.2. Conditional stellar mass function

We modelled the galaxy SMF and halo occupation statistics
using the conditional stellar mass function (CSMF; motivated by
Yang et al. 2008; Cacciato et al. 2009, 2013; Wang et al. 2013;
van Uitert et al. 2016). The CSMF, Φ(M?|M), specifies the aver-
age number of galaxies of stellar mass, M?, that reside in a halo
of mass, M. In this formalism, the halo occupation statistics of
central galaxies are defined via the function

Φ(M?|M) = Φc(M?|M) + Φs(M?|M). (16)

In particular, the CSMF of central galaxies is modelled as a log-
normal,

Φc(M?|M) =
1

√
2π ln(10)σcM?

exp
[
−

log(M?/M∗c )2

2σ2
c

]
, (17)

and the satellite term as a modified Schechter function,

Φs(M?|M) =
φ∗s
M∗s

(
M?

M∗s

)αs

exp

− (
M?

M∗s

)2 , (18)

where σc is the scatter between stellar mass and halo mass and
αs governs the power law behaviour of satellite galaxies. We note
that M∗c , σc, φ∗s , αs, and M∗s are, in principle, all functions of the
halo mass, M, but here we assume thatσc and αs are independent
of the halo mass, M. Inspired by Yang et al. (2008), who studied
the halo occupation properties of galaxies in the Sloan Digital
Sky Survey (SDSS), we parametrise M∗c , M∗s , and φ∗s as

M∗c (M) = M0
(M/M1)γ1

[1 + (M/M1)]γ1−γ2
, (19)

M∗s (M) = 0.56 M∗c (M), (20)

and

log[φ∗s (M)] = b0 + b1(log m13), (21)

where m13 = M/(1013M� h−1). In their analysis of the stellar-to-
halo mass relation of GAMA galaxies, van Uitert et al. (2016)
find that varying the pre-factor of 0.56 in Eq. (20) does not sig-
nificantly affect the results; therefore, we retained this normali-
sation in our analysis. We can see that the stellar to halo mass
relation for M � M1 behaves as M∗c ∝ Mγ1 and for M � M1,
M∗c ∝ Mγ2 , where M1 is a characteristic mass scale and M0 is a
normalisation. Here γ1, γ2, b0 and b1 are all free parameters that
govern the two slopes of the stellar-to-halo mass relation and
the normalisation of the Schechter function. The choice of func-
tional form of the CSMF is motivated by the good performance
as seen in previous lensing and combined lensing and cluster-
ing studies. In Eq. (19), we adopt an effective stellar-to-halo
mass relation for our mixed-population of red and blue galaxies.
Bilicki et al. (2021) demonstrate a strong colour-dependence to
this relationship, and future studies will investigate including a
red/blue galaxy split in our analysis, which can also help improve
the modelling of intrinsic galaxy alignments (e.g. Li et al. 2021).

From the CSMF it is straightforward to compute the galaxy
SMF and the halo occupation numbers. The galaxy SMF is in
this case given by

Φx(M?) =

∫ ∞

0
Φx(M?|M) n(M) dM, (22)

and the average number of galaxies with stellar masses in the
range M?,1 ≤ M? ≤ M?,2 is given by

〈Nx|M〉 =

∫ M?,2

M?,1

Φx(M?|M) dM?, (23)

where ‘x’ is ‘c’ (central), ‘s’ (satellite), or the total contribution
from all galaxies. In order to predict the satellite-satellite term
for the galaxy clustering power spectra (Eq. (6)), we used

〈N2
s |M〉 = P(M)〈Ns|M〉2 + 〈Ns|M〉, (24)

where P(M) is the mass-dependent Poisson parameter defined
as

P(M) ≡
〈Ns(Ns − 1)|M〉
〈Ns|M〉2

, (25)

which is unity if 〈Ns|M〉 is given by a Poisson distribution, larger
than unity if the distribution is wider than a Poisson distribu-
tion (also called super-Poissonian distribution) or smaller than
unity if the distribution is narrower than a Poisson distribution
(also called sub-Poissonian distribution). In our fiducial analy-
sis we limit ourselves to cases in which P(M) is independent of
halo mass (P(M) = P), and we treat P as a free parameter. In
Sect. 4.4 we present an extension to our fiducial analysis, allow-
ing for mass dependence in the Poisson parameter, based on the
observed distribution of satellite galaxies in the GAMA group
catalogue (Robotham et al. 2011). Our findings are sensitive to
the selection criteria chosen for the GAMA group catalogue.
We are nevertheless able to conclude that assuming the Pois-
son parameter is independent of halo mass impacts our primary
cosmological parameter constraints (mostly S 8) at an acceptable
∼1σ level.

Overall, all the free parameters used to describe the HODs
and the connection with the dark matter are

λHOD = [ fh,M0,M1, γ1, γ2, σc, fs, αs, b0, b1,P]. (26)

Priors on these parameters are broad, assuming wide uniform
distributions, similar to the priors used in two studies of the
galaxy-halo connection that both used GAMA and KiDS data
(van Uitert et al. 2016; Dvornik et al. 2018). The HOD param-
eters could in principle also depend on redshift and halo mass,
but furthering the complexity of the model, by increasing the
number of parameters, would not be justified by the data. Our
parameters describe an effective model over the redshift range in
the analysis.

2.3. Projected lensing and clustering functions

Once Pgg(k) and Pgm(k) have been determined, it is fairly
straightforward to compute the projected galaxy-galaxy corre-
lation function, wp(rp), and the excess surface density (ESD)
profile, ∆Σ(rp). The projected galaxy-galaxy correlation func-
tion, wp(rp), is related to the real-space galaxy-galaxy correlation
function, ξgg(r), according to

wp(rp) = 2
∫ rπ,max

0
ξgg(rp, rπ, z) drπ

= 2
2∑

l=0

∫ rπ,max

0
ξ2l(s, z)L2l(rπ/s) drπ. (27)

Here ξgg(rp, rπ, z) is the redshift-space galaxy-galaxy correlation
function, rπ is the redshift-space separation perpendicular to the
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line-of-sight and rπ,max is the maximum integration range used

for the data (here we use rπ,max = 233h−1Mpc), s =

√
r2

p + r2
π

is the separation between the galaxies, Ll(x) is the lth Legendre
polynomial, and ξ0, ξ2, and ξ4 are given by

ξ0(r, z) =

(
1 +

2
3
βk +

1
5
β2

k

)
ξgg(r, z), (28)

ξ2(r, z) =

(
4
3
βk +

4
7
β2

k

) [
ξgg(r, z) − 3J3(r, z)

]
, (29)

ξ4(r, z) =
8

35
β2

k

[
ξgg(r, z) +

15
2

J3(r, z) −
35
2

J5(r, z)
]
, (30)

where

Jn(r, z) =
1
rn

∫ r

0
ξgg(y, z) yn−1 dy (31)

and

βk = βk(z) =
1

b̄(z)

(
dlnD(z)

dlna

)
z
, (32)

with a = 1/(1 + z) the scale factor, D(z) the linear growth factor,
and

b̄(z) =
1

n̄g(z)

∫ ∞

0
〈Ng|M〉 bh(M, z) n(M, z) dM (33)

the mean bias of the galaxies in consideration. Equation (27)
accounts for the large-scale redshift-space distortions due to
infall (the ‘Kaiser’ effect), which is necessary because the mea-
surements for wp(rp) are obtained for a finite rmax. We note that
whilst this Kaiser (1987) formalism is only strictly valid in the
linear regime, we adopt the non-linear galaxy-galaxy correla-
tion function, ξgg(r), in Eqs. (28)–(30), with the non-linearities
captured through the halo model power spectra in Eq. (13).
van den Bosch et al. (2013) show that this modification provides
a more accurate correction for the residual redshift space distor-
tions, and that ignoring the presence of residual redshift space
distortions leads to systematic errors that can easily exceed
20 percent on scales with rp > 10h−1 Mpc (Cacciato et al. 2013).

The ESD profile, ∆Σ(rp), is defined as

∆Σ(rp) =
2
r2

p

∫ rp

0
Σ(R′) R′ dR′ − Σ(rp). (34)

Here Σ(rp) is the projected surface mass density, which is related
to the galaxy-dark matter cross correlation, ξgm(r), according to

Σ(rp) = 2ρ̄m

∫ ∞

rp

ξgm(r)
r dr√
r2 − r2

p

. (35)

The final model predictions and the covariance matrix are bin-
averaged to the bin widths of the data vectors.

2.4. Cosmological parameters

The cosmological parameters in our model are described by the
vector:

λcosmo = [Ωm, σ8, h, ns,Ωb]. (36)

As mentioned in Sect. 1, the goal of this paper is to use the ESD,
wp and SMF data to constrain σ8 and Ωm. Because of that, we

set the priors for those two parameters to be uninformative and
set their ranges following the latest KiDS cosmic shear analy-
sis (Asgari et al. 2021b). The last three cosmological parameters
are shown to be poorly constrained using the ESD, wp, and SMF
data (Cacciato et al. 2013; Mandelbaum et al. 2013); thus, they
form a set of secondary cosmological parameters with informa-
tive priors. Priors and their ranges can be found in Table 22. In
Appendix B we verify that our choice of priors do not inform the
main cosmological parameters.

3. Data and sample selection

In this analysis we combine three observables from the KiDS:
galaxy abundances in the form of the galaxy SMF, galaxy clus-
tering in the form of the projected galaxy correlation func-
tion, and galaxy-galaxy lensing in the form of ESD profiles.
Our KiDS observations were taken with OmegaCAM (Kuijken
2011), a 268-million pixel CCD mosaic camera mounted on the
VLT Survey Telescope (VST). These instruments were designed
to perform weak lensing measurements, with the camera and
telescope combination providing a fairly uniform point spread
function across the field-of-view (de Jong et al. 2013).

We analysed the latest data release of the KiDS survey
(KiDS-1000, Kuijken et al. 2019), containing observations from
1006 square-degree survey tiles. Specifics of the survey, the
calibration of the source shapes and photometric redshifts are
described in Kuijken et al. (2019), Giblin et al. (2021), and
Hildebrandt et al. (2021), respectively. The companion VISTA-
VIKING (Edge et al. 2013) survey has provided complementary
imaging in near-infrared bands (ZYJHKs), resulting in a unique
deep, wide, nine-band imaging dataset (Wright et al. 2019). The
default photo-z estimates provided as part of the KiDS sur-
vey were derived with the Bayesian photometric redshift (BPZ)
approach (Benitez 2000).

We used shape measurements based on the r-band images,
which have an average seeing of 0.66 arcsec. The galaxy
shapes were measured using lensfit (Miller et al. 2013), which
has been calibrated using image simulations described in
Kannawadi et al. (2019). This provides galaxy ellipticities (ε1,
ε2) with respect to an equatorial coordinate system, and an opti-
mal weight.

The galaxies used for our lens and clustering sample were
taken from the ‘KiDS-Bright’ sample (Bilicki et al. 2021). This
sample mimics the selection of GAMA galaxies (Driver et al.
2011), by applying the condition mr < 20.0. For these galaxies
a different method of determining the photometric redshifts was
employed using the ANNz2 (artificial neural network) machine
learning method (Sadeh et al. 2016), with the spectroscopic
GAMA survey, which is 98.5% complete to r < 19.8, as a train-
ing set (Bilicki et al. 2018, 2021). Comparing the obtained red-
shifts with the spectroscopic redshifts from the matched galax-
ies between KiDS-Bright and GAMA, Bilicki et al. (2021) con-
cluded that the ANNz2 photo-z are highly accurate with a mean
offset of δz = 5 × 10−4, and a scaled mean absolute deviation
scatter of σz = 0.018(1 + z).

Stellar mass estimates for the KiDS-Bright sample are
obtained using the LePhare template fitting code (Arnouts et al.
1999; Ilbert et al. 2006). In these fits, ANNz2 photo-z estimates
are used as input redshifts for each source, treating them as if

2 Our prior range is larger than the range of available nodes in the
DarkQuest emulator. Due to the iterative updates to the βNL estima-
tion and the quick convergence we find towards parameters within the
emulator’s range, this does not pose an issue.
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they were exact, neglecting the percent error associated with
the ANNz2 redshift. In practice, this error has little impact on
the fidelity of the stellar mass estimates (Taylor et al. 2011).
The estimates assume a Chabrier (2003) initial mass function,
the Calzetti et al. (1994) dust-extinction law, Bruzual & Charlot
(2003) stellar population synthesis models, and exponentially
declining star formation histories. The input photometry to
LePhare is extinction corrected using the Schlegel et al. (1998)
maps with the Schlafly & Finkbeiner (2011) coefficients, as
described in Kuijken et al. (2019).

Bilicki et al. (2021) found that the KiDS-Bright stellar mass
estimates are in excellent agreement with independent stellar
mass estimates from Wright et al. (2016) that combine GAMA
spectroscopic redshifts with multi-wavelength imaging from 21
broadband filters from the far-UV to the far-IR. The median
offset is MKiDS

? /MGAMA
? = −0.09 ± 0.18 dex. Brouwer et al.

(2021) estimated the overall systematic uncertainty on the stel-
lar mass estimates of the KiDS-Bright sample, combining the
uncertainty arising from the LePharemodel fit, the photometric
redshift scatter, and the difference found when exchanging ellip-
tical aperture magnitudes for Sérsic model magnitudes. They
estimated an overall uncertainty ofσM∗ = 0.12 dex for the KiDS-
Bright sample. This systematic uncertainty also includes the esti-
mated Eddington systematic bias of ∼0.027 dex (Brouwer et al.
2021), which is estimated from the population of red and blue
galaxies and it is considered a worst-case scenario. We chose
to account for both statistical and systematic uncertainty in the
stellar mass estimates through the nuisance parameter σc, in
Eq. (17), which provides the freedom to model both the intrinsic
and measurement noise scatter in the stellar-to-halo mass rela-
tion (Leauthaud et al. 2012; Bilicki et al. 2021). Furthermore,
as the systematic and statistical uncertainties are comparable in
power, the entries in the SMF and cross-covariances are inflated
by a factor of 2 to account for the uncertainty arising from
Eddington bias and the systematic shift in stellar masses, and
not only through the σc parameter. Due to the weak cosmology
dependence of the SMF, this primarily increases only the uncer-
tainty of our HOD parameters, as the SMF is in the first place
used to break degeneracies in our HOD part of the halo model.

3.1. Stellar mass function measurements and sample
selection: SMF

Our SMF measurements are performed using the maximum-
volume weighting method (Schmidt 1968; Saunders et al. 1990;
Cole 2011; Baldry et al. 2012; Wright et al. 2017). We weight
each galaxy i by the inverse of the comoving volume over which
the galaxy would be visible, given the magnitude limit of the
whole sample, 1/Vmax,i. To estimate the number density Φ(M?),
we have to derive M?,lim(z), the completeness in stellar mass
as a function of redshift for our flux-limited sample. For the
1/Vmax technique, we need to know zmax,i, the maximum red-
shift beyond which galaxy i with stellar mass M?,i would no
longer be part of the subsample (Weigel et al. 2016). This is
done by determining the point at which the sample begins to
become incomplete. Usually this process contains a potentially
biased visual inspection. To avoid any bias, we instead adopt the
automated method presented by Wright et al. (2017), using the
MassFuncFitR package. The algorithm estimates the turnover
point of the number density distribution in bins of comoving dis-
tance and stellar mass independently. In each fine bin of comov-
ing distance, we take the mass at the peak density as the mass
turnover point. In each fine bin of stellar mass, we take the largest
comoving distance at median stellar mass density as the distance
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zANNz
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Fig. 1. Galaxy stellar mass as a function of ANNz2 photometric red-
shift for the KiDS-Bright sample. The full sample is shown with a log-
arithmic hexagonal density plot. The blue line shows the stellar mass
limit determined using the automated method presented by Wright et al.
(2017). Red boxes show the six stellar mass bins used in the analysis,
with individual galaxies plotted as black dots. The bin ranges were cho-
sen in such a way as to achieve a good signal-to-noise ratio in all bins
for our galaxy-galaxy lensing and galaxy clustering measurements.

turnover point. The obtained turnover points are then fit with a
high-degree polynomial resulting in a smooth form for the stellar
mass limit as a function of redshift. This limit can be compared
to the M∗ − zANNz2 distribution of the full KiDS-Bright galaxies
in Fig. 1.

In Fig. 2 we present the SMF of the volume-limited KiDS-
Bright sample from the galaxies in the 6 stellar mass bins,
Φ(M?), which has a median redshift of z = 0.25. This is deter-
mined from the galaxy counts within the stellar mass limit,
with errors derived analytically in Appendix A. We find good
agreement between the KiDS measurement and the SMF from
Wright et al. (2018), evaluated at the median redshift of our sam-
ple. Wright et al. (2018) is based on from an analysis using spec-
troscopic data from GAMA, Cosmic Evolution Survey (COS-
MOS), and the Hubble Space Telescope (HST). This compari-
son therefore demonstrates the agreement in the SMF between
spectroscopic data and our photometric KiDS-Bright sample of
galaxies, demonstrating that our stellar mass estimates are robust
to the uncertainty in the photometric redshifts (Taylor et al.
2011; Bilicki et al. 2021; Brouwer et al. 2021).

As galaxy bias is inherently dependent on the stellar mass
of the galaxy (Dvornik et al. 2018), we analyse the weak lensing
and galaxy clustering of the KiDS-Bright galaxies grouped into
6 stellar mass bins. We chose to limit our analysis to galaxies
within the stellar mass range of 9.1 < log(M?/h−2 M�) ≤ 11.3,
with the number of bins, and bin limits chosen in such a way
as to achieve a similar and significant signal-to-noise ratio in all
bins. Using the redshift-dependent stellar mass limit, we define
upper redshift bounds to ensure each stellar mass bin is volume-
limited, as indicated with red boxes in Fig. 1. The lower redshift
bound is set to contain 95 percent of the volume-limited sample.
The number of galaxies, median stellar mass and redshift of each
bin is reported in Table 1.
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Fig. 2. KiDS-Bright galaxy SMF and the fractional errors. Upper
panel: KiDS-Bright galaxy SMF (crosses) compared to the model from
Wright et al. (2018), evaluated at the median redshift of our sample
(black dashed line). The blue line and shaded region indicates the
best-fit model and 68% confidence levels of our best-fit halo model
(Eq. (22)). We caution that the quality of the fit cannot be judged by
eye, because of the covariance in the data, between the data points and
between the other observables. The reduced χ2 value for this observable
is 1.05 (d.o.f. = 14.58, p-value = 0.39), estimated using the method pre-
sented in Appendix C. Lower panel: Fractional errors on the data and
the model, ∆Φ/δΦ.

3.2. Galaxy-galaxy lensing measurement: ESD

As shown in Bilicki et al. (2021), the excellent ANNz2 photo-
metric redshift estimates for the galaxies in the KiDS-Bright
sample allow for robust estimates of their physical characteris-
tics, in particular the stellar mass. In this section we combine this
information with accurate shape measurements for more distant
KiDS sources from Giblin et al. (2021) to measure the galaxy-
galaxy lensing signal. To quantify the weak gravitational lensing
signal, we used source galaxies from KiDS DR4 with a BPZ
photo-z in the range 0.1 < zB < 1.2.

The lensing signal of an individual lens is too small to be
detected, and hence we computed a weighted average of the tan-
gential ellipticity εt as a function of projected distance rp using
a large number of lens-source pairs. In the weak lensing regime
this provides an unbiased estimate of the tangential shear, γt,
which in turn can be related to the ESD, ∆Σ(rp), defined as
the difference between the mean projected surface mass density
inside a projected radius rp and the mean surface density at rp (as
in Eq. (34); for more details, see Appendix C in Dvornik et al.
2018).

Table 1. KiDS-Bright stellar mass samples: overview of the number of
lens galaxies, median stellar masses, M?,med, and median redshifts, zmed.

Bin Range Ngal M?,med zmed

1 (9.1, 9.6] 32 846 9.33 0.12
2 (9.6, 9.95] 35 559 9.77 0.15
3 (9.95, 10.25] 39 487 10.09 0.18
4 (10.25, 10.5] 38 544 10.36 0.22
5 (10.5, 10.7] 28 814 10.58 0.27
6 (10.7, 11.3] 22 560 10.79 0.32

Notes. Stellar masses are given in units of log(M?/h−2 M�). The final
sample of galaxies used is a small subsample of all KiDS-Bright galax-
ies (∼1 million).

We computed a weighted average to account for the varia-
tion in the precision of the shear estimate, captured by the lensfit
weight, ws (see Fenech Conti et al. 2017; Kannawadi et al. 2019,
for details), and the fact that the amplitude of the lensing sig-
nal depends on the source redshift. The weight assigned to each
lens-source pair is

w̃ls = ws

(
Σ̃−1

cr,ls

)2
, (37)

the product of the lensfit weight, ws, and the square of Σ̃−1
cr,ls – the

effective inverse critical surface mass density, which is a geo-
metric term that down-weights lens-source pairs that are close in
redshift (e.g. Bartelmann & Schneider 2001).

We computed the effective inverse critical surface mass den-
sity for each lens using the photo-z of the lens zl and the full
normalised redshift probability density of the sources, n(zs). The
latter is calculated employing the self-organising map calibra-
tion method (Wright et al. 2020) as applied to KiDS DR4 in
Hildebrandt et al. (2021). The resulting effective inverse critical
surface density can be written as

Σ̃−1
cr,ls =

4πG
c2

∫ ∞

0
(1 + zl)2D(zl)

(∫ ∞

zl

D(zl, zs)
D(zs)

n(zs) dzs

)
p(zl) dzl ,

(38)

where D(zl), D(zs), and D(zl, zs) are the angular diameter dis-
tances to the lens, to the source, and between the lens and
the source, respectively. For the lens redshifts, zl, we used the
ANNz2 photo-z of the KiDS-Bright foreground galaxy sample.
We implement the contribution of zl by integrating over the red-
shift probability distributions p(zl) of each lens. The lensing
kernel is wide and therefore the resulting ESD signals are not
sensitive to the small wings of the lens redshift probability dis-
tributions. We can thus safely approximate p(zl) as a normal
distribution centred at the lenses photo-z, with a standard devi-
ation σz/(1 + zl) = 0.018 (Bilicki et al. 2021). From previous
KiDS galaxy-galaxy lensing studies we know that the error on
the mean and width of source n(zs) are not biasing the galaxy-
galaxy lensing signal (as shown in Dvornik et al. 2017).

For the source redshifts zs we follow the method used in
Dvornik et al. (2018), by integrating over the part of the redshift
probability distribution n(zs) where zs > zl. The galaxy source
sample is specific to each lens redshift zl, with a minimum pho-
tometric redshift zs = zl +δz, with δz = 0.2 that is used to remove
sources that are physically associated with the lenses. Thus, the
ESD can be directly computed in bins of projected distance rp to
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the lenses as

∆Σgm(rp) =

∑ls w̃lsεt,sΣ
′
cr,ls∑

ls w̃ls

 1
1 + m

, (39)

where Σ′cr,ls ≡ 1/Σ̃−1
cr,ls, the sum is over all source-lens pairs in the

distance bin, and

m =

∑
i w′imi∑

i w′i
(40)

is an average correction to the ESD profile that has to be applied
to account for the multiplicative bias m in the lensfit shear esti-
mates. The sum goes over thin redshift slices for which mi
is obtained using image simulations (Kannawadi et al. 2019),
weighted by w′ = ws D(zl, zs)/D(zs) for a given lens-source sam-
ple. The value of m is −0.003 for the six stellar mass bins, inde-
pendent of the scale at which it is computed. The uncertainty in
m is not marginalised over, as the contribution of the central m
value is at most a percent of the total error budget of the galaxy-
galaxy lensing signal.

We note that the measurements presented here are not cor-
rected for the contamination of the source sample by galax-
ies that are physically associated with the lenses (the so-called
boost correction). The impact on ∆Σ is minimal, because of the
weighting with the inverse square of the critical surface den-
sity in Eq. (38), (see for instance the bottom panel of Fig. A.4
in Dvornik et al. 2017) and the removal of the sources physi-
cally associated with the lens from our signal measurements.
The effect of using photometric lenses in the ESD measure-
ments is directly accounted for in our estimator and the covari-
ance matrix. We subtract the signal around random points,
which suppresses any large-scale systematics and sample vari-
ance (Singh et al. 2017). This empirical ‘random’ correction for
large-scale sample variance has been shown to improve robust-
ness on the measurement scales that are particularly relevant
for constraining linear bias (Dvornik et al. 2018). We find the
random correction for the KiDS-Bright sample becomes signif-
icant at scales R & 3h−1 Mpc, rising to more than 100% of the
ESD signal in the three lowest stellar mass bins, and it thus dic-
tates the range of measurement scales we use in the analysis.
On these large scales the random correction is more than four
times larger than the statistical uncertainty (see Appendix D for
details). The resulting random-corrected galaxy-galaxy lensing
ESD measurements for the six stellar mass bins are shown in
Fig. 3.

3.3. Projected galaxy clustering measurements: wp

We measured the clustering of the KiDS-Bright galaxy sample
using the Landy-Szalay (Landy & Szalay 1993) estimator for the
galaxy correlation function:

ξ̂gg(rp, rπ) =
DD − 2DR + RR

RR

∣∣∣∣∣∣
rp,rπ

. (41)

Here we count the number of galaxy-galaxy (DD), random-
random (RR), and galaxy-random (DR) pairs, as a function of
the pair’s transverse rp and radial rπ comoving separation. The
accuracy of galaxy clustering measurements with this estimator
depends critically on the quality of the random, R, catalogues.
We used the Johnston et al. (2021a) organised random method-
ology that has been shown to recover unbiased clustering mea-
surements in a series of mock galaxy catalogue analyses for the
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Fig. 3. Galaxy-galaxy lensing: the stacked ESD profiles of the six stel-
lar mass bins in the KiDS-Bright galaxy sample defined in Table 1. The
solid lines represent the best fitting fiducial ESD halo model (Sect. 2.3,
Eq. (34)) as obtained using an MCMC fit, with the 68 percent confi-
dence interval indicated with a shaded region. We caution that the qual-
ity of the fit cannot be judged by eye, because of the covariance in the
data between the observed bins and also between the observables. The
reduced χ2 value for this observable is 1.28 (d.o.f. = 73.18, p-value =
0.05), estimated using the method presented in Appendix C.

KiDS-Bright sample. Using machine learning, we infer the high-
dimensional mapping between the observed on-sky galaxy num-
ber density and three systematic-tracer variables; atmospheric
seeing, point spread function ellipticity and limiting magnitude.
Systematically induced density variations across the survey foot-
print can then be defined. We randomly distribute clones of the
real galaxies across the survey footprint, preserving the on-sky
systematic density patterns, and matching the on-sky systematic-
tracer properties to that of the clone’s parent galaxy. By retaining
the photometric properties of the parent for each clone, selection
effects are accurately mirrored in the organised randoms for any
galaxy sub-sample, for example the 6 different stellar mass bins
in our analysis. We used 20 times more randoms than data points,
as presented by Johnston et al. (2021a).

The projected clustering correlation function is estimated
through an integral over the line-of-sight separation, limited by
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a maximum defined distance, rπ,max,

ŵp(rp) =

∫ rπ,max

−rπ,max

ξ̂gg(rp, rπ) drπ. (42)

When analysing spectroscopic data, this continuous integral is
estimated using a discrete sum, typically adopting uniform bins
in rπ, with rπ,max ranging from 40 h−1 Mpc to 100 h−1 Mpc (as in
for instance Mandelbaum et al. 2010; Farrow et al. 2015). Here
the rπ,max limits are chosen to maximise the number of correlated
galaxy pairs along the line-of-sight in the presence of redshift
space distortions, whilst minimising the noise arising from the
inclusion of uncorrelated objects. With our KiDS-Bright photo-
metric sample we have an additional uncertainty in the true red-
shift, σz = 0.018(1 + z), which translates into an uncertainty on
the radial distance of the order ∼100 h−1 Mpc, This renders the
approach taken for spectroscopic samples sub-optimal in terms
of signal-to-noise. We therefore chose to follow the approach
of Johnston et al. (2021b) who optimised the projected galaxy
clustering analysis of the photometric Physics of the Acceler-
ating Universe Survey (PAUS), using dynamic binning in rπ
out to a maximum rπ = 233 h−1 Mpc. This is motivated by
the fact that PAUS photometric redshifts show a similar uncer-
tainty as the KiDS-Bright sample. Using a mock galaxy cat-
alogue, Johnston et al. (2021b) demonstrated that by allowing
for an increase in the bin size from small to large values of
rπ, their approach maximises the count of physically associated
objects, whilst minimising noise at large-rπ with the broader bin
size. Given the similar photometric redshift properties of KiDS-
Bright and PAUS, we adopted their 12-rπ-bin adapted Fibonacci
sequence in our estimator.

Johnston et al. (2021b) analysed mock GAMA galaxy cata-
logues with PAUS-like photometric redshifts to compare the pro-
jected clustering correlation function estimator ŵp(rp) with the
measurements using spectroscopic redshifts. Adopting dynamic
binning and random galaxy catalogues that mimic both the posi-
tion and photometric redshift uncertainty of the real galaxy sam-
ple, they found a roughly scale-independent bias with ŵp/wpspec '

0.8. As such, the dynamic binning and organised randoms only
partially correct the correlation functions for the dilution intro-
duced by photometric redshift uncertainty. Future work will
focus on accounting for this dilution effect accurately in the the-
oretical prediction. For the purposes of this analysis, however,
we chose to include a free dilution parameter D, which is used
to correct the galaxy clustering measurements in the following
way:

ŵp,corr(rp) = [1 +D] ŵp(rp). (43)

We adopted a uniform prior for D with the range between 0
and 0.3 and used a single parameter to scale all six stellar mass
bins. This prior was motivated by a series of mock KiDS-Bright
galaxy clustering analysis using MICE2 (Fosalba et al. 2015a,b;
Crocce et al. 2015; Carretero et al. 2015; Hoffmann et al. 2015),
where we confirmed the findings of Johnston et al. (2021b) and
found no strong dependence of the dilution effect on stellar
mass. We note that a similar correction was applied to the
Dark Energy Survey (DES) photometric clustering measure-
ments (Pandey et al. 2022; DES Collaboration 2022, referred
therein as Xlens). The prior and motivation behind the introduc-
tion of their systematic nuisance parameter differs, however. The
resulting projected clustering measurements for the six stellar
mass bins are shown in Fig. 4.
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Fig. 4. Galaxy clustering: the projected galaxy clustering signal of
the six stellar mass bins in the KiDS-Bright galaxy sample defined in
Table 1. The solid lines represent the best fitting fiducial halo model
(Sect. 2.3, Eq. (27)) as obtained using an MCMC fit, with the 68 per-
cent confidence interval indicated with a shaded region. We caution that
the quality of the fit cannot be judged by eye, because of the covariance
in the data, between the observed bins and between the observables. The
reduced χ2 value for this observable is 1.42 (d.o.f. = 71.62, p-value =
0.01), estimated using the method presented in Appendix C.

3.4. Accounting for the cosmology dependence of distance
measures

To obtain estimates of the SMF (Sect. 3.1, Fig. 2), the galaxy-
galaxy lensing (ESD; Sect. 3.2, Fig. 3), and the projected galaxy
clustering (wp, Sect. 3.3, Fig. 4), we adopted a fiducial flat
ΛCDM cosmology with Ωm = 0.3 to compute distances. As
such, our 2 × 2 pt+SMF data vector is cosmology dependent,
with changes in the fiducial cosmology changing the distance-
redshift relation, which in turn shifts galaxies between the stel-
lar mass bins and lens-source pairs between the radial separation
bins.

At the mean redshift of the KiDS-Bright sample, the effect
of changing Ωm within our prior limits introduces changes in
distance estimates at the level of a few percent. The approx-
imation that the measurements are effectively independent of

A189, page 10 of 25



Dvornik, A., et al.: A&A 675, A189 (2023)

cosmological parameters within their observational uncertainties
(Mandelbaum et al. 2013; Cacciato et al. 2013) no longer holds
for surveys with a statistical power that is similar or better than
KiDS.

In this analysis we account for the cosmology dependence
of our data vector following the correction procedure presented
in More (2013) and More et al. (2015), which modifies the
model prediction for each cosmology targeted by the likelihood
sampler. First we defined a cosmology-dependent comoving sep-
aration rmodel

p for our target model, relative to the comoving sep-
aration, rp, that was used to calculate our data vectors at a fixed
fiducial cosmological model,

rmodel
p = rfid

p

[
χ(zmed,C

model)
χ(zmed,Cfid)

]
. (44)

Here χ is the comoving distance to the median lens redshift zmed
in our target cosmological model Cmodel, or in our fiducial cos-
mological model Cfid. The galaxy clustering prediction for our
target model is then given by

w̃p(rp) = wp(rmodel
p )

[
Emodel(zmed)

Efid(zmed)

]
, (45)

where E(z) is the Hubble parameter. The galaxy-galaxy lensing
prediction for our target model is given by

∆̃Σ(rp) = ∆Σ(rmodel
p )

[
Σmodel

cr (zmed, zs)
Σfid

cr (zmed, zs)

]
, (46)

where Σcr is the critical surface density calculated for the median
redshift of the lenses zmed and a fixed source redshift zs = 0.6.
We note that calculating the more precise estimate for Σcr using
Eq. (38) is not necessary in this instance, as Σcr only has a weak
cosmology dependence. Finally, the predictions of abundances
of galaxies in the target cosmology is given by

ñg = nmodel
g

[
χ3(zu,C

model) − χ3(zl,C
model)

χ3(zu,Cfid) − χ3(zl,Cfid)

]
, (47)

which is implicitly correcting the surveyed volume in the SMF
calculation. Here the zl and zu are the lower and upper redshift
limits in our samples.

3.5. Covariance matrix

The covariance matrix used in this analysis is based on
the analytical approach detailed in Dvornik et al. (2018) and
Joachimi et al. (2021), with the addition of the analytical covari-
ance matrix for the SMF and the cross terms between the SMF
and two-point correlation functions. The new terms for the
SMF covariance and the cross covariance between the SMF and
two-point functions are presented in Appendix A. Our imple-
mentation of the analytical covariance derivation was validated
against theory (Pielorz et al. 2010; Takada & Hu 2013; Li et al.
2014; Marian et al. 2015; Krause & Eifler 2017), independent
software by Joachimi et al. (2021) and simulations (MICE2
Fosalba et al. 2015a,b; Carretero et al. 2015; Crocce et al. 2015;
Hoffmann et al. 2015), following the validation approach of
Blake et al. (2020) and Joachimi et al. (2021). Survey area
effects on the variance were calculated using the accurate,
survey-dependent and data-based Healpix method presented in
Joachimi et al. (2021, Eq. (E.10)).

3.6. Likelihood and iterative updates

We used Bayesian inference to determine the posterior probabil-
ity distribution P(θ |d) of the model parameters θ, given the data
d. According to Bayes’ theorem, P(θ |d) is

P(θ |d) =
P(d | θ)P(θ)

P(d)
, (48)

where P(d | θ) is the likelihood of the data given the model
parameters, P(θ) is the prior probability of these parameters,
and

P(d) =

∫
P(d| θ) P(θ) dθ (49)

is the evidence for the model. Since we do not perform model
selection in this analysis, the evidence just acts as a normalisa-
tion constant that we do not need to calculate. Given this, the
likelihood distribution P(d | θ) is assumed to be Gaussian:

P(d | θ) =
1

√
(2π)n|C|

exp
[
−

1
2

[
(m(θ) − d)T C−1 (m(θ) − d)

]]
,

(50)

where C is the full covariance matrix for all the observables,
containing their auto- and cross-correlations, |C| its determinant,
m(θ) the model given the parameters θ, and n the number of
observable bins. Priors can be found in Table 2. For the Bayesian
inference, we used the Markov chain Monte Carlo (MCMC)
sampler emcee (Foreman-Mackey et al. 2013).

The posterior distribution in such highly multi-dimensional
parameter spaces has numerous degeneracies and can be very
difficult to sample from. Thus, the choice of proposal distri-
butions is very important in order to achieve fast convergence
and reasonable acceptance fractions for the proposed walker
positions. To do so, we combine the default stretch move in
the emcee with the proposal function based on the kernel
density estimator of the complementary ensemble of walkers
(Foreman-Mackey et al. 2013)3 in such a way that at every step
of the sampler run, there is a 50% chance of using one of the
proposal methods. This setup has one downside, and that is that
it uses many walkers, and thus computing power. On the other
hand, the convergence is faster and the resulting auto-correlation
times are shorter, giving us shorter MCMC chains overall.

During the MCMC runs we iteratively update the βNL mea-
surement (as it is cosmology dependent), as running the emulator
at each step of the chain is computationally not feasible. Thus,
the βNL measurement is evaluated using the median of the cur-
rent position of the walkers in the parameter space. This returns
an effective value for the non-linear halo bias correction that is,
over the run of the MCMC, representative of the median of cor-
rections that would be applied to every single model iteration
in the chain. In our pipeline, the number of steps between iter-
ations can be set by the user and we find that updating the βNL

values every 20 steps allows for a reasonable run time while pro-
viding enough updates to the βNL correction. On the other hand,
the covariance matrix is only re-evaluated with the new param-
eters at the end of the MCMC run and checked. We find that
the updated covariance matrix and halo model parameters do not
affect the results of our fit as our initial cosmological and HOD
parameters were set to the ones from Heymans et al. (2021) and
van Uitert et al. (2016), and our final results are close to theirs.

3 The moves are further defined in the documentation of the emcee
package at https://emcee.readthedocs.io.
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The covariance matrix is dominated by the shot and/or shape
noise on the majority of scales.

To report our result, we used two methods to estimate our
constraints and parameter values. One method uses the maxi-
mum statistics of the marginal posterior distributions for each
parameter (MMAX). Here the asymmetric errors are estimated
around the maximum point in iso-distribution levels to cover
68% of the marginal distribution. For the second method, we
used the full posterior distribution to find the best fitting param-
eters – the maximum a posteriori (MAP) point – and used the
methodology presented in Joachimi et al. (2021) to associate an
error with this measurement with the projected highest posterior
density (PJ-HPD) approach. While the former method produces
more stable parameter errors, especially when the likelihood sur-
face is sparsely sampled, its point estimates, in general, do not
correspond to the best fitting parameter values. In contrast, the
latter method will in general produce noisier error estimates with
unbiased parameter values.

4. Results

Now we turn the focus to our results, presenting cosmologi-
cal parameter constraints in Sect. 4.1, large-scale analysis in
Sect. 4.2, constraints on the galaxy-halo connection in Sect. 4.3,
and effect of modelling of satellite galaxies in Sect. 4.4. Further
details are presented in Appendix E. To recap, our theoretical
2×2 pt+SMF model consists of 17 free parameters, two of which
are our main cosmology parameters, with 3 more secondary
cosmology parameters that are harder to constrain given the
combination of observables, and 11 parameters describing the
galaxy-halo connection in the form of the CSMF. With six stel-
lar mass bins, and three observables, our combined data vector
consists of 156 data points. In Appendix C we use mock data
realisations to estimate the effective number of degrees of free-
dom for our analysis finding νeff = 147.55. Following the like-
lihood analysis described in Sect. 3.6 we are able to constrain
12 parameters, listed in Table 2 along with their prior ranges.
We find the MAP provides a good fit4 to the data, with a reduced
χ2 value of 1.07 and p(χ2|νeff) = 0.27.

We compare the prediction from our fiducial model, and
its 68% confidence regions, to the measured galaxy abundance
SMF in Fig. 2, the galaxy-galaxy lensing ESD in Fig. 3, and the
galaxy clustering wp in Fig. 4, for all of the six stellar mass bins.
We find that the model reproduces the overall trends in the data,
such as the presence of the bump at ∼1 h−1 Mpc in ESD due to
satellite galaxies, and the fact that the stronger signal is present
where galaxies have higher stellar mass, showing that massive
galaxies reside in more massive haloes. We note that some cau-
tion is needed when interpreting the results, as the quality of the
fit cannot be judged by eye due to highly correlated data points.
We find acceptable fits to each component of our 2 × 2 pt+SMF
data vector (for details, see Appendix C). We note that the poor-
est fit is found for the wp section of our joint data vector with
p[χ2(wp)|νwp

eff
] = 0.01. Whilst a formally acceptable fit, this may

indicate that our model is lacking the ability to correctly describe
the photometric redshift dilution effect discussed in Sect. 3.3.

4 We define an acceptable fit when p(χ2|νeff) ≥ 0.003, corresponding
to less than a 3σ event, (see the discussion in Heymans et al. 2021).
We note that DES Collaboration (2022) define a more stringent require-
ment where p(χ2|νeff) ≥ 0.01. We find the goodness of fit for our 2 × 2
pt+SMF analysis, and each individual component of the data vector, to
be acceptable given both these definitions.

Table 2. Marginal constraints on all model parameters, listed together
with their priors.

Parameter Prior Fiducial
MMAX MAP+PJ-HPD

Ωm [0.1, 0.6] 0.290+0.021
−0.017 0.307+0.002

−0.031
σ8 [0.4, 1.2] 0.781+0.033

−0.029 0.801+0.013
−0.041

h [0.64, 0.82] <0.726 <0.711
Ωb [0.01, 0.06] >0.01 >0.01
ns [0.92, 1.1] <1.004 <0.978

S 8 – 0.773+0.028
−0.030 0.809+0.001

−0.055

fh [0.0, 1.0] >0.645 >0.939
M0 [7.0, 13.0] 10.519+0.039

−0.062 10.521+0.062
−0.044

M1 [9.0, 14.0] 11.138+0.099
−0.132 11.145+0.136

−0.098
γ1 [2.5, 15.0] 7.096+2.144

−1.406 7.385+1.441
−1.824

γ2 [0.0, 10.0] 0.201±0.010 0.201±0.009
σc [0.0, 2.0] 0.108+0.067

−0.011 0.159+0.007
−0.070

fs [0.0, 1.0] >0.377 >0.84
αs [−5.0, 5.0] −0.858+0.048

−0.052 −0.847+0.013
−0.097

b0 [−5.0, 5.0] −0.024+0.108
−0.117 −0.120+0.199

−0.001
b1 [−5.0, 5.0] 1.149+0.091

−0.081 1.177+0.058
−0.096

P [0.0, 2.0] 0.403±0.029 0.417+0.024
−0.013

D [0.0, 0.3] 0.144+0.091
−0.085 0.051+0.172

−0.006

χ2
red – 1.07

p-value – 0.27

Notes. This table lists all the free parameters in our model: the energy
density of cold matter Ωm, the normalisation of power spectrum σ8,
the dimensionless Hubble parameter h, the spectral index ns, the energy
density of baryonic matter Ωb, the derived parameter S 8, the normal-
isation of the concentration-mass relation for dark matter haloes fh,
the normalisation of stellar-to-halo mass relation M0, the characteristic
scale of the stellar-to-halo mass relation M1, the slope parameters of the
stellar-to-halo mass relation γ1 and γ2, the scatter between stellar mass
and halo mass σc, the normalisation of the concentration-mass relation
for distribution of satellite galaxies fs, the power law behaviour of satel-
lites αs, the normalisation constants of the Schechter function b0 and
b1, and the Poisson parameter P. Parameters are deemed unconstrained
when the marginal probability at 2σ level exceeds 13% of the peak
probability (see Appendix A of Asgari et al. 2021b). In cases where
one side is constrained we report the 1σ lower/upper limit. The MMAX
estimate is the marginal maximum statistic, reporting the point of max-
imum marginal posterior distribution to the iso-posterior levels above
and below the maximal point. The MAP+PJ-HPD (maximum posterior
with projected joint highest posterior density) estimates are calculated
following Joachimi et al. (2021).

4.1. Cosmology constraints

We find the following cosmological parameter constraints from
our simultaneous 2 × 2 pt+SMF analysis of the ESD, wp and
SMF signals of galaxies in the KiDS-Bright sample,

Ωm = 0.290+0.021
−0.017

σ8 = 0.781+0.033
−0.029

S 8 = 0.773+0.028
−0.030 ,

where S 8 = σ8
√

Ωm/0.3, and we quote the maximum statistics
of the marginal posterior distributions (MMAX). The remain-
ing cosmological parameters are unconstrained by our analysis,
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Fig. 5. Marginalised constraints for the joint distributions of S 8 and Ωm. The 68% and 95% credible regions for the 2× 2 pt+SMF fiducial analysis
(blue) can be compared with constraints from KiDS cosmic shear (Asgari et al. 2021b, pink), KiDS with BOSS 3 × 2 pt (Heymans et al. 2021,
purple), and the CMB Planck Collaboration VI (2020, black).

and informed by our choice of prior (see Fig. E.2). In Fig. 5
we present the 68% and 95% confidence levels of the joint
two-dimensional, marginalised posterior distribution in the S 8 −

Ωm plane. The 2 × 2 pt+SMF constraints are shown to be
in good agreement with constraints from KiDS cosmic shear
and KiDS with BOSS 3 × 2pt constraints (Asgari et al. 2021b;
Heymans et al. 2021). They are formally consistent, but in
some mild tension with the Planck Collaboration VI (2020)
TT,TE,EE+lowE CMB results. Using the Hellinger distance as
a tension measure (see Heymans et al. 2021), the mild tension
between our fiducial results and Planck is 1.9σ in S 8.

In Fig. 6 we compare our constraints to a broader range of
joint-probe large-scale structure analyses, finding consistency
with all. Cacciato et al. (2013) and More et al. (2015) adopt a
similar methodology, using a halo model formalism to jointly
analyse galaxy-galaxy lensing, galaxy clustering, and galaxy
abundance observables. Cacciato et al. (2013) analysed the sev-
enth data release (DR7) of the SDSS. More et al. (2015) com-
bined data from the Baryon Oscillation Spectroscopic Survey
(BOSS) and the Canada France Hawaii Telescope Lensing Sur-
vey (CFHTLenS). The improved constraining power in this
KiDS analysis reflects the significant increase in depth for the
lensing sample relative to SDSS-DR7, and the ten-fold increase
in area relative to CFHTLenS. We can also compare to 2 × 2 pt

analyses that combine galaxy-galaxy lensing and galaxy clus-
tering that introduce conservative scale cuts to reflect known
limitations their adopted galaxy bias models. These include the
fiducial analyses from DES, which adopt a linear galaxy bias
model5 (Porredon et al. 2022; Pandey et al. 2022), and from the
HSC survey (Miyatake et al. 2022b). The HSC analysis is highly
complementary to our study as both analyses used a form of halo
model with a HOD. Miyatake et al. (2022b) use the Zheng et al.
(2005) HOD built into the dark-matter N-body DarkQuest
emulator to predict the 2 × 2 pt observables (Nishimichi et al.
2019; Miyatake et al. 2022a). We used the same emulator to cal-
ibrate the non-linear halo bias in our model (see Sect. 2.1). Com-
pared to this analysis, the HSC survey adopts more conservative
scale cuts arising from concern over un-modelled baryon feed-
back on small scales, which our methodology can account for
through the free normalisation of the mass-concentration rela-
tion (see Sect. 4.3). Miyatake et al. (2022b) also chose scale cuts
to mitigate small-scale assembly bias for the relatively rare lumi-
nous red galaxies in their sample, which cannot be modelled
using an HOD. Owing to the volume-limited mix of all galax-

5 Porredon et al. (2022), Pandey et al. (2022) also explore small-scale
2×2pt analyses using non-linear galaxy bias models, finding a 20–30%
gain in cosmological constraining power.

A189, page 13 of 25



Dvornik, A., et al.: A&A 675, A189 (2023)

KiDS 2× 2 pt + SMF

S8 Ωm

SDSS, Cacciato et al. 2013

CFHTLenS + BOSS, More et al. 2015

DESy3, redMaGiC, Xlens, Pandey et al. 2021

DESy3, MagLim, Porredon et al. 2021

HSC + BOSS, Miyatake et al. 2021

KiDS + BOSS, Heymans et al. 2021

DESy3, DES Collaboration et al. 2022

Planck

0.7 0.8 0.25 0.30 0.35 0.40

Fig. 6. Joint-probe comparison of S 8 and Ωm constraints. Our fiducial results (KiDS 2 × 2 pt +SMF) can be compared to: a similar 2 × 2 pt
+SMF analysis from the SDSS (Cacciato et al. 2013); a series of 2 × 2 pt studies that includes the latest results from DES (Porredon et al. 2022;
Pandey et al. 2022) and the HSC survey (Miyatake et al. 2022b); and 3 × 2 pt analyses from KiDS with BOSS (Heymans et al. 2021) and DES
(DES Collaboration 2022). The last entry shows the Planck Collaboration VI (2020, TT,TE,EE+lowE) constraints. Our results are consistent with
all studies, including Planck Collaboration VI (2020), although we find a mild tension between our S 8 constraints and those from Planck, at the
level of 1.9σ.

ies used in our KiDS-Bright analysis, we consider any assembly
bias to be a subdominant effect in our theoretical model.

The constraining power of the KiDS 2 × 2 pt+SMF
analysis in the S 8 − Ωm plane is the same as that of
the 3 × 2pt studies from DES Collaboration (2022), with
σS 8σΩm

[DES 3×2pt]/σ
S 8σΩm

[KiDS 2×2 pt+SMF] = 0.97. This may be sur-
prising given the five-fold increase in area for DES relative to
KiDS, and the addition of the cosmic shear probe in the 3 × 2pt
analysis. This comparison therefore highlights the significant
constraining power from the inclusion of non-linear scales in
the 2 × 2 pt+SMF analysis that are excluded from the DES
3 × 2pt analysis. Comparing KiDS 2 × 2 pt+SMF constraints to
the KiDS with the BOSS 3×2pt analysis (Heymans et al. 2021),
we first review the BOSS spectroscopic clustering constraints
where σS 8σΩm

[BOSS 1×2pt]/σ
S 8σΩm

[KiDS 2×2 pt+SMF] = 1.03. Finding the
same constraining power between these analyses may again be
surprising, given the nine-fold increase in area for BOSS rel-
ative to KiDS. As such, it demonstrates the significant con-
straining power from non-linear scales when the galaxy bias
can be constrained using galaxy-galaxy lensing and galaxy
abundance. Comparing to the full 3 × 2 pt analysis we find
σS 8σΩm

[KiDS+BOSS 3×2 pt]/σ
S 8σΩm

[KiDS 2×2 pt+SMF] = 0.39, where the
extra constraining power in the 3 × 2 pt analysis is driven
by the cosmic shear. Future studies with KiDS will combine
2 × 2 pt+SMF with cosmic shear data, including further devel-
opment and validation of our adopted halo model methodology.

In Appendix E we explore a number of extensions to our
fiducial analysis. In Appendix E.1 we quantify the expected con-
tamination to our observables from intrinsic galaxy alignments
and magnification. The contamination levels are found to be
negligible relative to our statistical errors, justifying our choice
to not account for these astrophysical effects in our model. In
Appendix E.2 we demonstrate that our S 8 and Ωm constraints
are insensitive to our choice of prior on ns. In Appendix E.3
we quantify the bias in Ωm without the inclusion of our nui-
sance parameterD to model photometric redshift dilution in our

galaxy clustering measurement. In Appendix 4.4 we quantify
the impact of assumptions governing the behaviour of satellite
galaxies.

4.2. Large-scale analysis

Amon et al. (2022b) present a detailed analysis of the uncer-
tainty on the amplitude of the small-scale galaxy-galaxy lens-
ing and galaxy clustering signal for BOSS galaxies that arises
from our imperfect knowledge of baryon feedback and assem-
bly bias. They conclude that the introduction of scale cuts with
rp > 5h−1 Mpc fully isolates these effects. Following the method-
ology in Appendix C we determine νrp>5

eff
= 60.31 for a large-

scale only 2 × 2 pt+SMF data vector analysis, calculating the
large-scale goodness of fit of our fiducial best-fit model (see
Table 2) to be p[χ2(rp > 5)|νrp>5

eff
] = 0.19. As such, we find

no sign of tension between our fiducial all-scale analysis and
a restricted large-scale analysis.

The majority of the information in our (rp > 5) data vec-
tor comes from the SMF as there are only 4 highly correlated
data points remaining in the ESD and wp measurements, per
stellar mass bin. We found that a full likelihood analysis of the
(rp > 5) data vector was unable to converge in our highly flex-
ible 17-parameter model space. Where larger scales are used
exclusively, either more precise data or the use of a less flexi-
ble model is necessary (such as in More 2013; Miyatake et al.
2022b; Amon et al. 2022b, amongst others). The extra flexibil-
ity afforded in our model is, however, essential when analysing
small scales in order to capture baryonic effects (Debackere et al.
2020, 2021).

4.3. Galaxy-halo connection

The powerful aspect of the method used in this work is that it
is able to simultaneously constrain both cosmological parame-
ters as well as the halo occupation statistics. The full results are
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Fig. 7. Stellar-to-halo mass relation, as defined by Eq. (19), using
the best-fit HOD parameters from our 2 × 2 pt+SMF analysis (blue).
The result can be compared to results from Leauthaud et al. (2012,
green), Moster et al. (2013, black), Coupon et al. (2015, orange), and
van Uitert et al. (2016, purple). The grey area shows the range in stellar
masses where the obtained stellar-to-halo mass relation is extrapolated
beyond the range of median stellar masses used in this analysis.

listed in Table 2 and the marginalised posterior distributions of
all the parameters are shown in Fig. E.2. The HOD parameters
are tightly constrained, with some strong degeneracies between
the parameters M0, M1 and γ1 that govern the characteristic mass
of the stellar-to-halo mass relation knee and the high mass slope
of centrals, and between the b0 and b1 parameters, which gov-
ern the normalisation of the satellite CSMF. The first degener-
acy is somewhat expected given the data, as the SMF at the high
mass end is highly uncertain and dominated by the Eddington
bias. The second degeneracy also arises from the fact that both
parameters compete for the overall normalisation of the satellite
CSMF.

We find the parameters of our HOD model to be in good
agreement with the previous studies using GAMA-like galaxies
(van Uitert et al. 2016; Dvornik et al. 2018; Bilicki et al. 2021).
In order to show the agreement in a more intuitive way, we take
the parameters of the stellar-to-halo mass relation and combine
them using the same functional form (Eq. (19)), which results in
the relation shown in Fig. 7. In the same figure we show good
agreement with the results from van Uitert et al. (2016), where
the HOD parameters were constrained using galaxy-galaxy
lensing combined with a SMF for KiDS and GAMA data, adopt-
ing a fixed Planck cosmology. We also find qualitative agree-
ment with constraints from abundance matching to numerical
simulations (Moster et al. 2013) and constraints from a 2 × 2
pt+SMF analysis of COSMOS with a fixed WMAP5 cosmol-
ogy (Leauthaud et al. 2012, note here we compare to constraints
from the most similar 0.22 < z < 0.48 COSMOS sample)
as well as the CFHTLenS/VIPERS analysis by Coupon et al.
(2015). We find our constraints on the scatter of the central
CSMF, σc, and the low mass end slope of the satellites, αs, to
be in agreement with Yang et al. (2009), Cacciato et al. (2013),

van Uitert et al. (2016), Dvornik et al. (2018), and Bilicki et al.
(2021). The Eddington bias at the high mass end is captured
by the σc parameter, leaving the other parameters mostly unaf-
fected.

We account for the impact of baryon feedback in our model
by allowing for freedom in the normalisation of the mass-
concentration relation for both the haloes, fh, and the satellite
galaxy distribution, fs (Eq. (15)). With these independent free
parameters we can capture the expected small-scale baryon feed-
back power suppression shown in hydrodynamical simulations
(Debackere et al. 2021; Amon et al. 2022b). We find fh and fs
to be consistent with 1, with a preference for lower values, with
1σ lower limits fh > 0.65 and fs > 0.38. Our results are con-
sistent with Viola et al. (2015), indicating that the concentra-
tions of real haloes and satellite distributions are smaller than the
haloes in dark-matter-only simulations (see also Debackere et al.
2020, 2021). Future work will compare direct measurements
from hydrodynamical simulations (e.g. McCarthy et al. 2017)
with our halo model approach to account for the mass depen-
dence of baryonic effects on the radial profiles of dark matter
haloes.

4.4. Modelling satellite galaxies

In our fiducial model we used the findings of Dvornik et al.
(2018) that showed that the occupation distribution of satellite
galaxies does not follow a Poisson distribution, and that gener-
ally the parameter P (Eq. (25)) is not unity, with our fiducial run
preferring a sub-Poissonian behaviour. Following Cacciato et al.
(2013), we quantify the impact of removing this flexibility in the
model, by fixing the parameter P to unity,

P(M) ≡
〈Ns(Ns − 1)|M〉
〈Ns|M〉2

≡ 1 , (51)

thus assuming that the satellite galaxies obey the Poisson dis-
tribution. We run another set of MCMC chains using the same
setup as in the fiducial case, but with one fewer parameter
to constrain. The resulting constraints are shown in Fig. E.2,
with marginalised constraints quoted in Table E.1. We find sig-
nificant shifts for the two main cosmological parameters with
Ωm = 0.330±0.019 and S 8 = 0.951+0.037

−0.036 and a formally accept-
able fit with p(χ2|νeff) = 0.02 for the whole data vector. In this
case we find that the fixed Poisson parameter non-trivially affects
the other parameters governing the satellites in the halo model.
Specifically the normalisation of the satellite conditional stel-
lar mass function, b0 and b1, shifts, and these parameters are in
turn non-trivially correlated with the main cosmological param-
eters. Cacciato et al. (2013) argues that flexibility in the form of
the satellite galaxy model is critically important in order to both
constrain the galaxy bias (Cacciato et al. 2012; Dvornik et al.
2018; Asgari et al. 2021a), and to obtain unbiased cosmological
parameters.

There are several reasons to reject the results of our Poisso-
nian satellite distribution model analysis. First, whilst we find an
acceptable fit of the P = 1 model to our full 2 × 2 pt+SMF data
vector, there is an unacceptable fit to the wp part of the data vec-
tor, with p[χ2(wp)|νwp

eff
] ∼ 10−4. Secondly, there is observational

evidence from the GAMA group catalogue (Robotham et al.
2011) that for haloes with masses below 1013 h−1 M�, the num-
ber of satellites exhibit sub-Poisson behaviour, where in Fig. 8
we measure P(M) as a function of the dynamical mass Mdyn
(Driver et al. 2022). We relate the parameterPwith the observed
mean and variance of the number of GAMA group members in
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Fig. 8. Poissonian parameter, P (Eq. (52)), as a function of dynami-
cal group mass, Mdyn, for GAMA galaxy groups with three or more
members (blue), and groups with five or more members (white). The
orange and green lines show the best-fit power law (Eq. (53)) to the
GAMA/2 × 2 pt+SMF data, with the green-shaded region showing the
uncertainty on the 2×2 pt+SMF fit. The fiducial, single value model for
P is shown with the grey horizontal band. With the wiggly grey-shaded
areas, we show the approximate range of dynamical group masses that
are outside the halo mass range of our analysis.

narrow bins of dynamical mass, Mdyn, as

P(Mdyn) =

(
Var[Ns|Mdyn]
〈Ns|Mdyn〉

− 1
)

1
〈Ns|Mdyn〉

+ 1. (52)

Here the mean 〈Ns|Mdyn〉 and variance Var[Ns|Mdyn] are directly
obtained from the GAMA groups catalogue, where we select
groups with the number of members that is equal to or larger
than 3 (Robotham et al. 2011). We find the satellite distribution
to be sub-Poissonian for Mdyn < 1013 h−1 M�, ranging from
P(Mdyn) = 0.15 at Mdyn = 1011 h−1 M�, to P(Mdyn) = 0.76
at Mdyn = 1013 h−1 M�, (shown blue in Fig. 8). Assuming the
GAMA dynamical mass is a reasonable estimate of the halo
mass Mh, using Fig. 7 to define our stellar mass range, we
expect the satellite distribution to be sub-Poissonian across the
full stellar mass range of our 2 × 2 pt+SMF analysis. This
sub-Poissonian behaviour is recovered in our fiducial analy-
sis where P = 0.403±0.029. In Dvornik et al. (2018) analy-
sis the behaviour of satellite galaxies is recovered to be super-
Poissonian, which is consistent with the trend seen in Fig. 8, as
the halo masses of GAMA galaxies in that sample were above
1013 h−1 M�.

Finally, hydrodynamical simulations show that for haloes
with masses above ∼5 × 1012 h−1 M�, the number of satellites
exhibit super-Poisson behaviour (Hadzhiyska et al. 2022) and
for haloes with masses below ∼5 × 1012 h−1 M�, the number of
satellites exhibit sub-Poisson behaviour (Kravtsov et al. 2004;
Jiang & van den Bosch 2017; Bhowmick et al. 2018; Beltz-
Mohrmann et al. 2020). The studies from Beltz-Mohrmann et al.
(2020) and Hadzhiyska et al. (2022) show a large uncertainty on
the Poisson number and can be to an extent also well described

by a model that assumes a Poisson distribution, while the results
from Kravtsov et al. (2004), Jiang & van den Bosch (2017) and
Bhowmick et al. (2018) show a clear sub-Poisson behaviour for
low mass haloes, with the analysis of Jiang & van den Bosch
(2017) also showing super-Poisson behaviour for high mass
haloes with a transition period where satellite galaxies behave
completely Poissonian. What is more, a recent analysis
(Linke et al. 2022) of a semi-analytic simulation (Henriques et al.
2015) using galaxy-matter bispectrum shows that parameter
P indeed varies from sub-Poisson behaviour to super-Poisson
behaviour as halo mass increases, and it seems to be furthermore
dependant on the stellar mass as well (Appendix B therein).

Given the significant impact of the form of the satellite
galaxy model on our cosmology constraints, we explore the
satellite distribution further, noting that Fig. 8 reveals a strong
mass dependence that is missing from our fiducial model. We
determined the impact of neglecting this mass dependence in
our analysis by including an explicit halo mass dependence on
the Poisson parameter, P. We fitted a power law function to the
GAMA data as

P(M) = A
(

M
Mpiv

)B

, (53)

finding A = 0.43, B = 0.39 and Mpiv = 12.54 when M = Mdyn
(shown in orange in Fig. 8). In our extended 2× 2 pt+SMF anal-
ysis, we modelled P(M) using Eq. (53), fixing the normalisation
A and slope B of the power law to the GAMA best-fit values. We
treat Mpiv as a free parameter, however, to account for the uncer-
tainty in the relationship between the GAMA dynamical mass,
Mdyn, and the true lensing halo mass used in the halo model. The
best-fit Mpiv from the 2×2 pt+SMF is nevertheless found to be in
good agreement with the GAMA fit (shown in green in Fig. 8).

Using the P(M) model, we obtained the parameter con-
straints listed in Table 2 and shown in Fig. E.2. We find a good
fit of the model to the data with p(χ2|νeff) = 0.19. All the param-
eters are consistent with the constraints from our fiducial analy-
sis that assumes no mass dependence. We find a preference for
lower values for the two primary cosmological parameters, with
S 8 = 0.718+0.045

−0.040 and Ωm = 0.276+0.024
−0.021 corresponding to a 1.3σ

and 0.7σ difference from the fiducial result (see also Fig. E.1).
This extension analysis shows that our results are sensitive to

how we modelled the mass dependence of the satellite group dis-
tribution, at an acceptable level of ∼1σ in our primary cosmolog-
ical parameters. We chose not to use this extended P(M) model
in our fiducial analysis, as in Fig. 8, we show how sensitive the
GAMA-measured P(Mdyn) relationship is to the group selec-
tion criteria. We find that the behaviour changes when groups
are defined with a number of members that is equal or larger
than five (white data points, compared to the blue data points for
our original selection criteria). In future higher signal-to-noise
studies we will explore keeping the parameters A and B free
in the P(M) model, and implement a more complex model that
uses the non-Poisson behaviour directly in the definition of the
HOD (for instance a negative binomial distribution as shown in
Boylan-Kolchin et al. 2010). Further considerations need to be
taken into account for possible stellar mass dependence of the
Poisson parameter P (Linke et al. 2022).

5. Discussion and conclusions

In this paper we have combined measurements of galaxy cluster-
ing, galaxy-galaxy lensing, and galaxy abundances in the form
of the SMF in order to simultaneously set constraints on cosmo-
logical parameters and galaxy bias. Using a flexible halo model,
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we analysed the fourth data release of the KiDS (KiDS-1000;
Kuijken et al. 2019), where the source sample, used to mea-
sure the galaxy-galaxy lensing signal, has undergone a rigorous
study to assess its robustness and accuracy (Asgari et al. 2021b;
Giblin et al. 2021; Hildebrandt et al. 2021). For our lens sam-
ple we used the KiDS-Bright sample (Bilicki et al. 2021), whose
selection was calibrated against a complete and representa-
tive spectroscopic sample from the GAMA survey (Driver et al.
2011), with the photometric redshifts calibrated using a neural
network (ANNz2; Sadeh et al. 2016). The resulting accuracy of
the estimated redshifts for the KiDS-Bright sample is sufficient
for galaxy-galaxy lensing and galaxy clustering studies.

We used the halo model to analyse our data, building upon
the cosmological analyses presented in Cacciato et al. (2013)
and More et al. (2015). We used a single halo occupation model
to compute the clustering of galaxies, the galaxy-galaxy lens-
ing signal (Guzik & Seljak 2002; Yoo et al. 2006; Cacciato et al.
2009), and the galaxy abundances (van den Bosch et al. 2013;
Cacciato et al. 2013). This model is shown to be able to simul-
taneously constrain cosmology and halo occupation statistics, as
well as constrain extensions to the standard ΛCDM cosmologies,
such as the equation of state of dark energy and neutrino mass
(More et al. 2013; Krause & Eifler 2017).

We have improved upon previous studies by (i) using a more
accurate N-body simulation calibrated analytical model, tak-
ing halo exclusion, scale dependence, and the non-linear nature
of halo bias into account (Mead & Verde 2021; Mahony et al.
2022), (ii) using the latest lensing and clustering data from
a single survey (KiDS-1000), and (iii) using a full analytical
covariance matrix that accounts for cross-covariance between all
observables and in particular the cross-covariance between the
SMF and two-point statistics.

We adopted a Bayesian approach to constrain our model
parameters, using the MCMC to probe the posterior distribu-
tions. For a flat ΛCDM cosmology, we find Ωm = 0.290+0.021

−0.017
and S 8 = 0.773+0.028

−0.030, which is consistent with and comparable to
constraints from 3× 2 pt studies that also include a cosmic shear
observable (Heymans et al. 2021; DES Collaboration 2022). Our
results follow the trend seen in other lensing studies of a tension
in S 8 when compared to Planck Collaboration VI (2020). Using
the Hellinger distance as a tension metric, this difference is at the
1.9σ level for our 2 × 2 pt+SMF analysis. We find that our con-
straints are sensitive, at the ∼1σ level (in S 8), to how we choose
to model the mass dependence of the satellite distribution within
the halo model. This aspect of our analysis will require further
development in future higher signal-to-noise studies.

Combining galaxy clustering and galaxy-galaxy lens-
ing with cosmic shear measurements has been a standard
approach for large-scale structure analyses in recent years
(van Uitert et al. 2018; Joudaki et al. 2017; Abbott et al. 2018;
DES Collaboration 2022; Heymans et al. 2021). We anticipate
that combining our halo model approach with cosmic shear
data will allow for additional constraints on astrophysical sys-
tematics arising from the intrinsic alignment (IA) of galax-
ies and baryon feedback. So far, IAs in cosmic shear analysis
have been included using either a non-linear modification of the
linear alignment model (NLA; Bridle & King 2007) or a pertur-
bation theory approach (TATT; Blazek et al. 2019). For a con-
sistent halo model approach, this effect could also be modelled
within the framework adopted in this analysis (e.g. Fortuna et al.
2021). In this analysis we have varied the halo concentration
parameter to account for baryon feedback. With additional data,
a more complex halo model that would allow for the inclusion
of gas observables could be adopted to constrain baryon feed-

back through the Sunyaev-Zeldovich effect (Mead et al. 2020;
Tröster et al. 2022). The flexibility of the halo model also allows
for extensions to the underlying cosmological model without
having to employ a myriad of costly simulations to cover a large
range of parameters (Cataneo et al. 2019). We therefore see a
significant role for our adopted methodology in future cosmo-
logical analyses of upcoming large-scale structure surveys.
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Appendix A: Stellar mass function covariance matrix

We derive the covariance of the SMF in direct analogy to the flux-limited case considered in Smith (2012), but neglect the halo
occupation variance contribution because it was demonstrated to be always subdominant (Smith 2012). To simplify the expression
we neglect the mapping from true stellar mass to observed stellar mass, where the corresponding integrations would appear explicitly
as this relation is expected to be fairly tight. The SMF covariance is composed of a shot noise and super-sample covariance (SSC)
contribution,

Cov
[
Φi
µ,Φ

j
ν

]
= CovSN

[
Φi
µ,Φ

j
ν

]
+ CovSSC

[
Φi
µ,Φ

j
ν

]
, (A.1)

with

CovSN
[
Φi
µ,Φ

j
ν

]
= δi, j δµ,ν

Φi
µ

∆M?V i
max,µ

, (A.2)

where Φi
µ = Φi(M?,µ) and V i

max,µ = V i
max(M?,µ) are the shorthands for the SMF and Vmax of stellar mass bin µ and generally a

tomographic bin i. We define

Φ̃µ =

∫ ∞

0
Φ(M?,µ|M, [z]) n(M, z) bh(M, z) dM . (A.3)

Using this, the SSC terms are given by

CovSSC
[
Φi
µ,Φ

j
ν

]
=

A2
survey f i f j

V i
max,µ V j

max,ν

∫
dχ

pi(χ)
ptot(χ)

p j(χ)
ptot(χ)

f 2
K(χ)σ2

s (χ) Φ̃µ[z(χ)] Φ̃µ[z(χ)] , (A.4)

where σ2
s is the variance of density fluctuations within the angular survey window (see Appendix E of Joachimi et al. (2021) for

definition), pi are the tomographic bin-wise redshift distributions, ptot the overall redshift distribution for all galaxies in the sample
and/or survey, fK the comoving angular diameter distance, χ the comoving radial distance and f i the fraction of galaxies in bin i
relative to all galaxies. Asurvey is the survey area.

The cross-variance is derived in close analogy to Takada & Bridle (2007), with the consistency checks by Schaan et al. (2014).
The cross-variance receives contributions from two terms,

Cov
[
Φi
µ,O

jl(rp)
]

= CovCV
[
Φi
µ,O

jl(rp)
]

+ CovSSC
[
Φi
µ,O

jl(rp)
]
, (A.5)

a cosmic variance (CV) and a SSC term, respectively. Here we determine the cross-variance with a projected two-point function,
O jl(rp), of either WP (wp(r)) or ESD (∆Σ(r)) in bins j and l, respectively. The CV contribution is a three-point correlation given by

CovCV
[
Φi
µ,O

jl(rp)
]

= ρx f i
∫

dχ
pi(χ)

ptot(χ)

∫
dk k
2π

Jx(krp) (nBcmm) jl
µ

[
k, z(χ)

]
, (A.6)

where ρx = 1 and Jx = J0 in the case when observable is wp, and ρx = ρm and Jx = J2 in the case when observable is ∆Σ. Jn
are Bessel functions of the nth kind. Here we have defined the count-matter cross-bispectrum (evaluated for a collapsed triangle) in
close analogy to Takada & Bridle (2007). It can be expressed in the halo model formalism as

(nBcmm)µ (k, z) =

∫
dM n(M, z) Φ(M?,µ|M, [z])

(
M
ρm

)2

ũ2
h(k|M) (A.7)

+ 2Plin(k, z)
∫

dM n(M, z) Φ(M?,µ|M, [z]) bh(M, z)
M
ρm

ũh(k|M)
∫

dM′ n(M′, z) bh(M′, z)
M′

ρm
ũh(k|M′) .

Finally, the SSC term reads

CovSSC
[
Φi
µ,O

jl(rp)
]

= ρxAsurvey f i
∫

dχ
pi(χ)

ptot(χ)

∫
dk k
2π

Jx(krp)
∂P jl

xy(k, z(χ))
∂δb

σ2
s (χ) Φ̃µ[z(χ)] , (A.8)

where Pxy(k, z) is either Pgg(k, z) for wp or Pgm(k, z) for ∆Σ, and the derivative is with respect to a super-survey density fluctuation δb
(Takada & Hu 2013; Dvornik et al. 2018). As the systematic and statistical uncertainties on stellar masses are comparable in power
(Brouwer et al. 2021), the entries in the SMF and cross-covariances are inflated by a factor of 2 to account for uncertainty arising
from Eddington bias and the systematic shift in stellar masses.
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Appendix B: Prior space
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Fig. B.1. Prior range for the Ωm and S 8 parameters compared to the 2σ
contour from our fiducial cosmological analysis.

We adopted informative priors for three cosmological parame-
ters; ns, Ωb, and h. Our priors are also informative on the param-
eters that scale the mass-concentration relation for haloes and
satellite galaxies; fh and fs. In Fig. B.1 we verify that our choice
of priors does not inform the Ωm and S 8 parameters, noting
that our prior combination does not result in trivial square prior
coverage.

Appendix C: Estimating the goodness of fit

To assess the goodness-of-fit of our model to the data it is nec-
essary to determine the effective number of degrees of freedom,
νeff , (see the discussion in Sect. 6.3 of Joachimi et al. 2021, on
why νeff , Ndata − Nθ, for a typical cosmology analysis with
Ndata data points and Nθ cosmological parameters). We follow a
simulation approach to determine νeff following Joachimi et al.
(2021), Miyatake et al. (2022b).

We generate 200 noisy mock data vectors, drawing samples
from the multivariate distribution defined by the mean, which
is our best-fit signal, and the full covariance matrix. We find
the maximum posterior point using a Nelder-Mead minimisa-
tion and its corresponding χ2 value for the fit. From the resulting
distribution of χ2 values, shown in Fig. C.1, we fitted a χ2 dis-
tribution to find the effective degrees of freedom6, νeff = 147.55,
finding that our model provides a good fit to the data with
p(χ2|νeff) = 0.27.

We can use our simulation approach to also determine the
goodness of fit for each of the three sections of the data vector:
ESD (galaxy-galaxy lensing), wp (galaxy clustering), and SMF.
To estimate the degrees of freedom for each observable we find
the χ2 value for that section of the data vector corresponding to
the maximum posterior point that is found using the full data

6 We note that our simulation approach finds a slightly larger νeff com-
pared to the estimation using the Raveri & Hu (2019) approach, for
which we find νeff = 138.5,

100 125 150 175 200
χ2(θMAP)

Fr
eq

ue
nc

y

200 noisy mocks

Fit to mocks P (χ2
ν=147.55)

χ2
real data = 157.84

Fig. C.1. Estimation of the goodness of fit of the fiducial best-fit model
at the MAP values. The histogram shows the distribution of the χ2 val-
ues from 200 noisy mock data vectors (see the main text for the detailed
procedure). The orange line shows the fit of the χ2 distribution to the his-
togram, from which we obtain the effective number of degrees of free-
dom in the data. The vertical black line shows the χ2 value as obtained
from the best-fit model to the real data.

0 50 100 150 200
χ2(θMAP)

Fr
eq

ue
nc

y

Mocks− ESD

Mocks−WP

Mocks− SMF

Fit to ESD P (χ2
ν=73.18)

Fit to WP P (χ2
ν=71.62)

Fit to SMF P (χ2
ν=14.58)

Fig. C.2. Same as Fig. C.1, but for the three different observables in our
analysis. The fits to the distributions are used to determine the number
of degrees of freedom for each observable, which are in turn are used
to determine the reduced χ2 values for each of them. Note that the χ2

distributions are not a result of maximising the posterior for that section
of the mocks. The vertical lines show the χ2 values from the real data,
matching in colours with the histograms.

vector. In other words the partial χ2 values are not separately
minimised. Fig. C.2 presents the resulting χ2 distributions and
fit. We note that some alternative methods for defining νeff , such
as that presented in Raveri & Hu (2019), would be ill defined for
these sub-data vectors owing to the number of free parameters
in the model, resulting in negative effective degree of freedom or
negative effective number of parameters. We find νESD

eff
= 73.18

with p[χ2(ESD)|νESD
eff

] = 0.05, νwp

eff
= 72.62 with p[χ2(wp)|νwp

eff
] =

0.01, and νSMF
eff

= 14.58 with p[χ2(SMF)|νSMF
eff

] = 0.39. We con-
clude that the goodness of fit of the full data vector and each of
the individual sections is acceptable. This procedure is repeated
for the remaining modelling cases considered in this paper.
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Appendix D: Galaxy-galaxy lensing random signal

−2

−1

0

∆
Σ

ra
n

d
/∆

Σ
fi

d

9.1 < log(M?/h
−2M�) ≤ 9.6 9.6 < log(M?/h

−2M�) ≤ 9.95

−2

−1

0

∆
Σ

ra
n

d
/∆

Σ
fi

d

9.95 < log(M?/h
−2M�) ≤ 10.25 10.25 < log(M?/h

−2M�) ≤ 10.5

10−1 100 101

rp (h−1 Mpc)

−2

−1

0

∆
Σ

ra
n

d
/∆

Σ
fi

d

10.5 < log(M?/h
−2M�) ≤ 10.7

10−1 100 101

rp (h−1 Mpc)

10.7 < log(M?/h
−2M�) ≤ 11.3

Fig. D.1. Ratio between the lensing signal measured around random
galaxies from the organised randoms catalogue and the fiducial model
prediction in our six stellar mass bins. For comparison, we show the
uncertainty of the data as a purple band.

The ratio between the lensing signal measured around random
galaxies from the organised randoms catalogue and the fiducial
model prediction in our six stellar mass bins is presented in Fig.
D.1. A non-zero random signal indicates systematic effects in the
ESD signal measured from the KiDS survey. The strong depen-
dence of the random signal on the stellar mass of the lens bin
indicates that this systematic is unlikely to be caused by resid-
ual uncorrected distortions in the source lensing catalogue, for
example those associated with the point spread function of the
camera. Such a data-related systematic would impact the ESD
signal of each lens bin similarly given the similar source samples
(see also Giblin et al. 2021, which presents a series of diagnostic
tests). Instead we conclude that this signal arises from large-scale
structure sample variance that differs as the volume of the sample
grows with the increasing stellar mass (Singh et al. 2017). We
calculate the error on the mean random signal, measured using
1000 samples of the random catalogue, finding it to be indistin-
guishable from the thickness of the blue curve, and sufficiently
small that we do not include it in our overall error budget. We

find that the random correction applied to the data exceeds 100%
in the first three stellar mass bins on large scales, and can be up
to 4 times larger than the statistical uncertainty.

Appendix E: Extensions to the fiducial
cosmological analysis

KiDS 2× 2 pt + SMF

S8 Ωm

Planck ns prior

Poissonian satellite dist.

Mass dependent P
No photo-z dilution

0.7 0.8 0.9 1.0.25 0.30 0.35

Fig. E.1. Comparison between S 8 and Ωm values for our fiducial results
and the tests for different modelling choices. All results are shown for
maximum statistics of the marginal posterior distributions (MMAX)
and corresponding credible interval.

In this appendix we review the impact of modelling choices on
our fiducial cosmological parameter constraints (Sect. 4) to a
series of extensions to our fiducial theoretical model. The results,
in terms of S 8 and Ωm are summarised in Fig. E.1 with the full
parameter space quantified in Table E.1 and Fig. E.2.

E.1. Modelling intrinsic galaxy alignments and magnification

We quantified the contribution of lens galaxy magnification and
intrinsic galaxy alignments to our data, which we do not account
for in our fiducial model. We estimated the contribution of IAs
using the NLA model (Bridle & King 2007) as

PgI(k, z) = −AIAC1ρcrit
Ωm

D(z)
Pgm(k, z) , (E.1)

where AIA is the amplitude of the IA signal, C1 is a normalisation
constant, D(z) the linear growth factor. We set C1ρcrit = 0.0134,
motivated by Brown et al. (2002). In order to estimate the con-
tribution of IAs to the galaxy-galaxy lensing signal, we set
AIA = 1, which is a good ‘worst-case’ scenario for our com-
plete magnitude-limited KiDS-Bright sample. We project the PgI
power spectrum to the galaxy-galaxy lensing signal. We sub-
tract the additional contribution from the intrinsic alignments
from the measured lensing signal and compare the relative dif-
ference between the corrected and uncorrected data to quantify
the impact of neglecting intrinsic galaxy alignments in our theo-
retical model. Such a model only describes the IA well on large
scales and becomes increasingly ad hoc on small scales, but it
nevertheless provides a sensible amplitude estimation. Future
studies will use the halo model based approach as presented in
Fortuna et al. (2021) and Georgiou et al. (2019), which links the
IA signal to the properties of the galaxies an their parent dark
matter haloes.

The magnification contribution to the total lensing and clus-
tering signal is modelled as

∆Σmag(rp) = 2(αd − 1) ∆Σmm(rp) (E.2)

and

wp,mag(rp) = 4(αd − 1)wgm(rp) + 4(αd − 1)2 wmm(rp) , (E.3)
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Table E.1. Marginal constraints on all model parameters listed together with their priors, for the fiducial and extension setups considered.

Parameter Prior Fiducial Planck ns prior Poissonian satellite dist. Mass dependent P
MMAX MAP+PJ-HPD MMAX MAP+PJ-HPD MMAX MAP+PJ-HPD MMAX MAP+PJ-HPD

Ωm [0.1, 0.6] 0.290+0.021
−0.017 0.307+0.002

−0.031 0.285+0.024
−0.017 0.289+0.010

−0.026 0.330 ± 0.019 0.323+0.019
−0.011 0.276+0.024

−0.021 0.291+0.004
−0.038

σ8 [0.4, 1.2] 0.781+0.033
−0.029 0.801+0.013

−0.041 0.792+0.035
−0.031 0.791+0.038

−0.020 0.902+0.044
−0.034 0.953+0.009

−0.067 0.750+0.033
−0.031 0.731+0.054

−0.002
h [0.64, 0.82] < 0.726 < 0.711 < 0.716 < 0.715 < 0.720 < 0.712 < 0.720 < 0.720

Ωb [0.01, 0.06] > 0.01 > 0.01 > 0.01 > 0.01 > 0.01 > 0.01 > 0.01 > 0.01
ns [0.92, 1.1] < 1.004 < 0.978 0.964+0.005

−0.004 0.965+0.003
−0.005 < 0.988 < 0.979 < 0.996 < 0.998

S 8 – 0.773+0.028
−0.030 0.809+0.001

−0.055 0.777+0.031
−0.029 0.776+0.030

−0.023 0.951+0.037
−0.036 0.989+0.020

−0.057 0.718+0.045
−0.040 0.720+0.048

−0.030
fh [0.0, 1.0] > 0.645 > 0.939 > 0.665 > 0.948 > 0.652 > 0.938 > 0.581 > 0.928

M0 [7.0, 13.0] 10.519+0.039
−0.062 10.521+0.062

−0.044 10.520+0.042
−0.060 10.537+0.051

−0.054 10.446+0.053
−0.044 10.511+0.010

−0.088 10.556+0.044
−0.090 10.595+0.051

−0.102
M1 [9.0, 14.0] 11.138+0.099

−0.132 11.145+0.136
−0.098 11.129+0.115

−0.126 11.168+0.080
−0.141 11.039+0.153

−0.123 11.197+0.033
−0.238 11.205+0.083

−0.211 11.240+0.120
−0.193

γ1 [2.5, 15.0] 7.096+2.144
−1.406 7.385+1.441

−1.824 7.026+2.157
−1.454 6.774+2.174

−1.014 8.364+2.831
−2.028 6.334+4.370

−0.343 6.565+3.298
−1.494 6.148+3.397

−1.104
γ2 [0.0, 10.0] 0.201±0.010 0.201±0.009 0.201±0.011 0.211±0.010 0.201±0.010 0.207±0.007 0.201±0.007 0.203±0.004
σc [0.0, 2.0] 0.108+0.067

−0.011 0.159+0.007
−0.070 0.105+0.062

−0.015 0.098+0.063
−0.014 0.178+0.021

−0.023 0.123+0.062
−0.008 0.184+0.011

−0.088 0.095+0.087
−0.014

fs [0.0, 1.0] > 0.377 > 0.84 > 0.394 > 0.858 > 0.223 > 0.808 > 0.288 > 0.757
αs [−5.0, 5.0] −0.858+0.048

−0.052 −0.847+0.013
−0.097 −0.874+0.059

−0.042 −0.898+0.062
−0.043 −0.844+0.042

−0.043 −0.916+0.092
−0.002 −0.879+0.041

−0.067 −0.962+0.096
−0.035

b0 [−5.0, 5.0] −0.024+0.108
−0.117 −0.120+0.199

−0.001 −0.016+0.098
−0.118 −0.077+0.163

−0.028 −0.239±0.092 −0.267+0.104
−0.058 0.093+0.107

−0.121 0.029+0.141
−0.069

b1 [−5.0, 5.0] 1.149+0.091
−0.081 1.177+0.058

−0.096 1.139+0.091
−0.078 1.181+0.037

−0.111 1.045+0.076
−0.060 1.019+0.092

−0.029 1.147+0.048
−0.057 1.152+0.026

−0.073
P [0.0, 2.0] 0.403±0.029 0.417+0.024

−0.013 0.403±0.030 0.411+0.014
−0.011 1.0 fixed 1.0 fixed – –

Mpiv [8.0, 15.0] – – – – – – 12.681+0.351
−0.361 12.512+0.383

−0.290
D [0.0, 0.3] 0.144+0.091

−0.085 0.051+0.172
−0.006 0.150+0.090

−0.082 0.195+0.029
−0.147 0.067+0.082

−0.064 0.140+0.016
−0.132 0.103+0.145

−0.073 0.100+0.119
−0.058

χ2
red – 1.07 1.07 1.25 1.1

p-value – 0.27 0.27 0.02 0.19

Notes: This table lists all the free parameters in our model: the energy density of cold matter Ωm, the normalisation of power spectrum σ8, the
dimensionless Hubble parameter h, the spectral index ns, the energy density of baryonic matter Ωb, the derived parameter S 8, the normalisation
of the concentration-mass relation for dark matter haloes fh, the normalisation of stellar-to-halo mass relation M0, the characteristic scale of the
stellar-to-halo mass relation M1, the slope parameters of the stellar-to-halo mass relation γ1 and γ2, the scatter between stellar mass and halo
mass σc, the normalisation of the concentration-mass relation for distribution of satellite galaxies fs, the power law behaviour of satellites αs, the
normalisation constants of the Schechter function b0 and b1, and the Poisson parameter P. Parameter Mpiv is the location of the power law used
to describe the mass dependence of the Poisson parameter P. Parameters are deemed unconstrained when the marginal probability at 2σ level
exceeds 13% of the peak probability (see Appendix A of Asgari et al. 2021b). In cases where one side is constrained we report the 1σ lower/upper
limit. The MMAX estimate is the marginal maximum statistic, reporting the point of maximum marginal posterior distribution to the iso-posterior
levels above and below the maximal point. The MAP+PJ-HPD (maximum posterior with projected joint highest posterior density) estimates are
calculated following Joachimi et al. (2021).

where ∆Σmm(rp) and wmm(rp) are the lensing signal and projected
clustering contributions from the convergence power spectrum,
respectively (Joachimi & Bridle 2010; Simon & Hilbert 2018;
Unruh et al. 2020). The wgm(rp) is the same quantity as the Σ(rp),
but without the mean density ρm (see Eq. 35). We estimate
the contribution from lens magnification using the values for a
KiDS and GAMA like survey, given by Unruh et al. (2020). We
adopted αd = 0.85, which corresponds to a lens redshift of 0.21,
and αd = 2.11 corresponding to a lens redshift of 0.36. These
values are representative of the magnification effect we would
expect for the two highest stellar mass bins in our analysis, with
other bins predicted to have a somewhat smaller contribution,
due to their redshifts (Unruh et al. 2020). We subtract the mag-
nification contribution from our data to quantify the impact of
neglecting magnification in our theoretical model.

The relative contributions of IAs and magnification to the
ESD and wp observables are presented in Fig. E.3. We present
the contribution for the largest stellar mass bin only, as the con-
tribution to magnification and IAs is of the same order for all of
them. In the same figure we also show the changes to the galaxy-
galaxy lensing and galaxy clustering signals if we change the
two main cosmological parameters. The contributions of both
IAs and magnification are well below 1%, as also found in
Unruh et al. (2020) and are well within the error budget of the
data. Moreover, they are also subdominant to the changes due
to the cosmological parameters of interest. Such contributions
have negligible effects on the overall signal, and are unlikely to
be a significant source of bias. To some extent the effects cancel
each other out, as for the redshifts of our lens galaxies the mag-

nification effect dilutes the signal, while the IAs add a similar
contribution.

E.2. Changing the ns prior

Inspecting Fig. E.2, we note that the marginalised posteriors of
our prior-informed cosmological parameter set, ns, Ωb and h,
have a tendency to push up against one side of the prior. As the
KiDS 2 × 2 pt+SMF data vector is expected to be insensitive to
changes in this parameter set, we conclude that this effect arises
from projection effects or the MCMC not fully sampling this part
of parameter space. Given that there are no strong degeneracies
between this set and the rest of the parameters, and that the set is
already well constrained from other studies (see the discussion
in Appendix B of Heymans et al. 2021) we find no motivation to
investigate the impact of widening the priors. Instead we investi-
gated reducing the prior range by adopting a Gaussian prior with
the mean and uncertainty fixed to the Planck Collaboration VI
(2020) constraint for ns. This parameter is the most interesting to
investigate of the three, as any tension between small and large
scales may be expected to manifest in a biased spectral index
constraint (Tröster et al. 2021).

The results are presented in Table E.1 and Fig. E.2. We find
that the marginal contours for the parameters do not change
significantly with the addition of a restrictive prior on ns. For
example, the MMAX estimate of S 8, shifts by 0.13σ, which
is consistent with the expected MCMC run-to-run variance
(Joachimi et al. 2021). In future studies, we will explore the
impact of using more restrictive priors on all the externally con-
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Fig. E.2. Full posterior distributions of the model parameters (the priors are listed in Table 2). The contours indicate 1σ and 2σ confidence regions.

strained parameters that we are insensitive to, noting that this
may also help reduce projection bias for posteriors with many
parameters.

E.3. The effect of un-modelled photometric redshift errors on
the projected galaxy clustering measurements

In Sect. 3.3 we introduce a free nuisance parameter,D (Eq. 43),
to account for our uncertainty on the amplitude of the true pro-
jected galaxy clustering signal. The expected dilution is a result
of unaccounted photometric redshift errors in our theoretical

model for wp(rp). In Fig. E.4 we compare our fiducial constraints
in S 8 and Ωm with the constraints from an analysis where the
photometric redshift dilution effect is neglected and D = 1. We
find that while the omittance of the photometric redshift dilution
effect does not impact the S 8 constraints, Ωm becomes biased
and more constrained. This is expected as the galaxy cluster-
ing is more sensitive to Ωm compared to σ8 (cf. Fig. E.3). This
motivates future work to improve the estimator for, or theoretical
modelling of, the projected galaxy clustering signal in the pres-
ence of photometric redshift errors, following Joachimi et al.
(2011), Chisari et al. (2014).
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Fig. E.3. Relative difference between the lensing signal with and with-
out the contribution of IAs and lens magnification. The IA contribution
is modelled with AIA = 1, which is a reasonable ‘worst-case’ scenario
for the KiDS-Bright sample, and the magnification is modelled with
αd = 0.85 and αd = 2.11, typical for GAMA-like lenses at a redshift
of 0.21 and 0.36. Grey areas show the error on the data. We also show
the changes to the galaxy-galaxy lensing and galaxy clustering signals
if we change the two main cosmological parameters. The behaviour is
only shown for the largest stellar mass bin, as the contribution to mag-
nification and IAs is of the same order for all of them.
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Fig. E.4. Marginalised constraints for the joint distributions of S 8 and
Ωm, showing the 68% and 95% credible regions. We compare our fidu-
cial analysis (blue) with an analysis that neglects the impact of pho-
tometric redshift uncertainties, which dilute the estimated projected
galaxy clustering signal (grey).
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