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Abstract
Multi-agent evaluation aims at the assessment of
an agent’s strategy on the basis of interaction with
others. Typically, existing methods such as ↵-rank
and its approximation still require to exhaustively
compare all pairs of joint strategies for an accu-
rate ranking, which in practice is computationally
expensive. In this paper, we aim to reduce the
number of pairwise comparisons in recovering a
satisfying ranking for n strategies in two-player
meta-games, by exploring the fact that agents with
similar skills may achieve similar payoffs against
others. Two situations are considered: the first
one is when we can obtain the true payoffs; the
other one is when we can only access noisy pay-
off. Based on these formulations, we leverage
low-rank matrix completion and design two novel
algorithms for noise-free and noisy evaluations
respectively. For both of these settings, we theo-
rize that O(nr log n) (n is the number of agents
and r is the rank of the payoff matrix) payoff en-
tries are required to achieve sufficiently well strat-
egy evaluation performance. Empirical results on
evaluating the strategies in three synthetic games
and twelve real world games demonstrate that
strategy evaluation from a few entries can lead to
comparable performance to algorithms with full
knowledge of the payoff matrix.

1. Introduction
Evaluation of multi-agent strategies is of vital importance
to drive the progress of learning strategies in combating
various tasks. In the multi-agent reinforcement learning
community, renowned evaluations include Elo, TrueSkill,
mElo2k, ↵-rank, (Elo, 1978; Herbrich et al., 2006; Balduzzi

*Equal contribution 1 University College London, UK
2 Institute of Automation, Chinese Academy of Sciences
3Beijing Key Laboratory of Big Data Management and Analy-
sis Methods, GSAI, Renmin University of China. Correspon-
dence to: Yali Du <yali.dux@gmail.com>, Haifeng Zhang
<haifeng.zhang@ia.ac.cn>.

Proceedings of the 38 th
International Conference on Machine

Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

et al., 2018; Omidshafiei et al., 2019). The Elo and TrueSkill
both deal with ratings of agents in the pairwise competitions.
Though it is simple to implement and widely used, it is only
limited to transitive scenarios and is not suitable for games
like rock-paper-scissors of which consistent winners do
not exist. Baking in Hodge decomposition theory (Jiang
et al., 2011), Balduzzi et al. introduces multi-dimensional
elo (mElo2k) that decomposes a game into transitive and
cyclic components to tackle intransitive evaluations and
computes nash-averaging to evaluate different strategies.
↵-rank (Omidshafiei et al., 2019) is the most advanced al-
gorithm which can both tackle intransitive evaluations and
be tractably computed in general games with more than
two players, such as Mahjong, Poker. It constructs Markov
transition matrix based on payoffs of joint strategies and
the invariant distribution of the constructed Markov chain
yields the strategy profile rankings.

Despite these advances, existing evaluating algorithms, how-
ever, need to evaluate all joint strategy profiles to obtain the
raw payoffs, before computing nash-averaging or ↵-rank.
Exhaustively comparing any pair of agents is neither fea-
sible for real-world matches such as football matches, nor
computation-efficient for computerized agents evaluation
such as in game AI. A single Go match for two players can
take one hour to finish. It is even longer for some team-based
matches, such as football and basketball. On one hand, each
agent requires many interactions against agents (or tasks)
to obtain a confident estimate of expected winning rate (or
performance). On the other hand, exhaustive evaluation of
any joint strategy profiles further increases the burden of
computation. Rowland et al. (2019) approximates ↵-rank
from incomplete data and examines how many games are
needed for each agent pair, in order to achieve accurate eval-
uation of ↵-rank. Rashid et al. (2021) selects the agent pairs
whose payoff has highest expected information gain to a
belief over ↵-ranks. However, computationally this is still
expensive as all the agent pairs have to be enumerated and
compared.

In this paper, we consider the evaluation of meta-strategies
in two-player games, and we extend the approximation of
↵-rank in (Rowland et al., 2019) by removing the neces-
sity of exhaustively comparing all agent pairs. Our study is
based on the observation that an agent’s performance is not
independent. Agents who have similar skills might perform
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Figure 1. Illustrations of ranks and singular values for 28 real-
world games from Czarnecki et al. (2020). (a) Histograms of
top 15% of singular values’ percentage. We take top-k (k =
b15%⇥ nc ) singular values then compute their percentage in the
sum of all singular values. (b) Percentage of top-k singular values
growing with k. x-axis is k normalized by n.

similarly. This is evidenced by the low rank nature of com-
petition payoff matrix between agents, as shown in Figure 1,
for multiple multi-agent competition performance data sets.
This allows us to build our framework based on the theory of
low-rank matrix completion to reduce the computation bur-
den (Candes & Plan, 2010). Specifically, given the payoff
of a set of randomly chosen pairs, we build an incomplete
pairwise rating matrix M⌦ that contains these observed
entries. Then we apply a (low-rank) matrix completion al-
gorithm to recover a completed rating matrix M , and then
apply ↵-rank to obtain the final ranking of all strategies (see
Figure 2). When the noise-free payoff is not accessible, we
sample pairwise comparisons to obtain empirical evaluation.
We theoretically justify that O(nr log n) (n is number of
agents and r is the rank of the payoff matrix) pairs of com-
parisons are required to achieve sufficiently well evaluation
performance in both noise-free and noisy settings.

We have tested our evaluation solutions in three synthetic
games and twelve real-world games. Our empirical contri-
butions are three-fold. Firstly, we demonstrate that in the
noise-free case, a much lower number of pairwise evalua-
tions (compared to n

2) can lead to accurate ↵-rank perfor-
mance in terms of ranking error and convergence measure.
Secondly, in the noisy setting, we observe that OptEval
can achieve comparable performance compared to base-
lines that require the complete payoff matrix. Lastly, in
real world games, we show that a lower rank approximation
of payoff matrices can achieve satisfactory performance.
The demo and code for this project are released under
https://github.com/yalidu/optEval.git.

2. Related work
Evaluation has wide applications in machine learning in
ranking of agents (Silver et al., 2017; Lai, 2015; Arneson
et al., 2010; Gruslys et al., 2018) and in improving the
searching for stronger strategies (Muller et al., 2020; Czar-

necki et al., 2020). Below we review the famous evaluation
algorithms.

Evaluation algorithms Elo and ↵-rank and two
renowned evaluation algorithms. The Elo (Elo, 1978) is
widely used in scenarios where two players are competing,
which assigns a rating score to each player (Silver et al.,
2017; Lai, 2015; Arneson et al., 2010; Gruslys et al.,
2018). The score is updated based on the result of both
players losing or winning. Ratings can be used not only
to rank players, but also to quantify their abilities, further
predicting the probability of winning a match, and so can
be used for opponent matching. TrueSkill (Herbrich et al.,
2006) generalized Elo by handling player skill uncertainties
under Bayesian framework. While it can only be applied
to transitive scenarios, Multidimensional Elo (mElo2k)
improves Elo to handle intransitive strategies in two-player,
zero-sum settings (Balduzzi et al., 2018; Tuyls et al., 2018),
which proposed to use Combinatorial Hodge to decompose
a game into the sum of the transitive component and the
cyclic component. Then it adopts Nash Averaging for
evaluation, but it is not generally applicable due to the
intractability of computation and selection of the Nash
equilibrium (Harsanyi et al., 1988; Daskalakis et al., 2009).
↵-rank (Omidshafiei et al., 2019; Yang et al., 2020) is
inspired from evolutionary theories and is more general
than Elo in ranking of n-player (n � 2) and handling
intransitive abilities. ↵-rank constructs a Markov transition
matrix based on the payoffs of the joint strategy profiles,
called response graph (Lanctot et al., 2017), and solves the
ranking by computing the unique invariant distributions.

Noisy payoffs Both Elo-based systems and ↵-rank as-
sume the noise-free payoff table is available. However,
it is seldom available in empirical games, and we have to
let agents pit against each other for a sufficient number of
times to obtain confident statistics about the meta-payoffs.
Rowland et al. (2019) theorized that at least how many sim-
ulations are needed to get a confident evaluation for each
strategy profile. ↵-IG (Rashid et al., 2021) improves ↵-rank
by choosing pairs that have the largest information gain to
ranking results.

However, they all do not consider the repeated strategies in
the empirical games. Our work aims to reduce the number
of evaluations from a different perspective: we focus on
the number of pairwise evaluations required for accurate
ranking of n strategies. We consider both noise-free and
noisy payoffs. In the later case, we build our algorithm and
theory based on ResponseGraphUCB (RG-UCB) (Rowland
et al., 2019).

Ranking and low-rank In many game scenarios, there
may exist repeated or similar agents in multi-agent systems.

https://github.com/yalidu/optEval.git
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Figure 2. Illustrations of OptEval. The blue box shows the process of OptEval-1 which performs ↵-rank based on noise-free payoff table.
The red box shows the process of OptEval-2 based on noisy payoff table, of which cM⌦ represents an empirical estimation of true payoffs
in M⌦ .

So low rank properties can be used for evaluation in these
scenarios. For a matrix with low-rank attributes, a rich litera-
ture studies the exact recovery guarantees (Candes & Recht,
2012; Candès & Tao, 2010; Recht, 2011). Keshavan & Oh
(2009) uses a small number of randomly selected entries
with noise to reconstruct the matrix. Rajkumar & Agarwal
(2016) adapts low-rank property in solving classic ranking
problems. It is claimed that some special stochastic tran-
sitive models such as the Bradley-Terry-Luce model have
low rank properties, thus Rajkumar & Agarwal (2016) used
the low rank matrix completion algorithm to estimate the
winning probability matrix. Our work leverages OptSpace
algorithm (Keshavan & Oh, 2009) to perform matrix com-
pletion on the incomplete payoff matrices.

3. Methodolody
3.1. Preliminaries

Games and ↵-rank We consider two-player meta-games,
each of whom can play S strategies, indicating that they are
sharing the same population of strategies. Let M(i, j), or
Mij for short, denote the payoff when the first player plays
Si and the second player plays Sj . At a higher meta-level,
a strategy s 2 S corresponds to a machine learning agent
and the matrix M captures expected payoffs when agents
play against one another in some given tasks. From this
perspective, the “agents” and “strategies” are synonyms in
this paper.

We consider the ↵-rank r 2 R|S| (Omidshafiei et al., 2019).
According to the setting of ↵, for the finite-↵ case, we can
calculated the Markov transition matrix C as below:

Ci,j =

(
⌘

1�exp(�↵(Mji�Mij))
1�exp(�↵p(Mji�Mij))

if Mji 6= Mij ,

⌘
p otherwise ,

(1)

where the coefficient ⌘ is defined as ⌘ = 1
|S|�1 . ↵ � 0, p 2

N are hyperparameters to be chosen. And 8i 2 [n], Cii =
1�

P
j 6=i Cij ensures that transition probabilities are valid.

The invariant distribution of this Markov chain ⇡ yields the
score of strategy profiles. We denote cM as the empirical
payoff matrix, where cMij is the empirical payoff measured
by agent i pitting against agent j for a plausible number of
times. Full details of ↵-rank can be found in Appendix A.

3.2. Algorithms

We consider the evaluation under two scenarios: games with
noise-free and noisy payoffs and propose two algorithms,
named OptEval-1 and OptEval-2 respectively. The main
idea is to leverage low rank matrix completion algorithms to
recover the complete payoff matrix based on a few observa-
tions, and then apply ↵-rank to generate the rankings of all
strategies. The main difference between the two algorithms
is that, entries are evaluated exactly (yellow square in Figure
2) in OptEval-1 and are estimated empirically (green square
in Figure 2) in OptEval-2. We present the details of the two
algorithms below.

OptEval-1 Suppose we can get exact payoff, we propose
an algorithm OptEval-1 to precisely evaluate n strategies
only through evaluation of a small portion of pairs. We
define a sampling operator ⌦ 2 [n]⇥ [n] which randomly
samples m pairs. For each pair (i, j) 2 ⌦, we can get the
true payoff Mij and the true payoff on ⌦ is M⌦. Thus we
conduct rank r̂ approximate matrix completion on M⌦. The
recovered payoff matrix is denoted as M , then we perform
↵-rank on M and get the invariant distribution of n strate-
gies. This framework is compatible with many low-rank
matrix completion algorithms with exact recovery guaran-
tee (Candes & Recht, 2012; Recht, 2011). Here we choose
OptSpace (Keshavan & Oh, 2009), which takes as input a
parameter rank r̂ and randomly sampled M⌦. OptSpace



Estimating ↵-Rank from A Few Entries with Low Rank Matrix Completion

Algorithm 1 OptEval-1: estimating ↵-rank with noise-free
payoff.
Input: n strategies, a chosen rank r̂, sampling operator

⌦ 2 [n]⇥ [n].
Output: The invariant distribution ⇡̄ of n strategies.

1: Randomly sample m pairs from the entire sample space
[n]⇥ [n] by the sampling operator ⌦.

2: Get pairwise comparison results M⌦

3: Calculate the reconstructing payoff matrix M accord-
ing to OptSpace with rank r̂.

4: Construct the Markov chain C through Eq. (1)
5: Solve the invariant distribution ⇡̄ of C
6: Return ⇡̄

recovers a matrix similar to the original matrix with a guar-
anteed sampling complexity of (O(nr log n)). Algorithm
1 gives the details of OptEval-1. Details of OptSpace algo-
rithm are in Appendix A.

OptEval-2 OptEval-2 solves ↵-rank based on noisy (em-
pirical) payoffs of a selected set of agent pairs in ⌦. To
obtain empirical payoffs cMij , 8(i, j) 2 ⌦, agent i and j

need to compete against each other for a sufficient number
of times. We employ RG-UCB (Rowland et al., 2019) as the
sampling algorithm on estimating cMij , which is composed
by sampling scheme S and a stopping condition C(�). In our
implementation, we adopt Uniform-exhaustive (UE) which
randomly samples a pair from ⌦ at each time, and Hoeffding
(UCB) as confidence-bound for stopping the evaluation of
Mij . We run RG-UCB to evaluate pairs in ⌦ to obtain cM⌦,
then with a chosen rank r̂, we apply OptSpace algorithm to
get the recovered matrix cM . At last, we perform ↵-rank on
cM and get the invariant distribution of n strategies. Algo-
rithm 2 gives the details of OptEval-2. Details of RG-UCB
algorithm are deferred in Appendix A.

Discussions Compared to the original RG-UCB, which
evaluates the empirical payoffs of all pairs in [n]⇥ [n], we
only need to evaluate agent pairs in ⌦, thus reducing the
cost for evaluations by a large margin. Details of RG-UCB
can be found in Appendix A.

Our algorithms compute ↵-rank based on m(⌧ n
2) entries

from payoff table. Theories suggest m can be selected by
a line search on C with m = C · nr log n, or more gener-
ally, with m = C · n log n, since the true rank r is usually
unknowable. Formal results about sampling complexity on
the payoff matrix are presented in Section 4.

4. Theoretical Analysis
The low-rank hypothesis of the payoff matrix implies that
when repeated strategies exist, one can expect a lower num-

Algorithm 2 OptEval-2: estimating ↵-rank with noisy pay-
off.
Input: n strategies, a chosen rank r̂, a sampling operator

⌦ 2 [n]⇥ [n]
Output: The invariant distribution ⇡̄ of n strategies.

1: Randomly sample m pairs from the entire sample space
[n]⇥ [n] by ⌦.

2: Call RG-UCB on ⌦ to get noisy pairwise comparison
results cM⌦

3: Perform OptSpace on cM⌦ with rank r̂ and calculate
the reconstructing payoff matrix cM

4: Construct the Markov chain bC through Eq. (1)
5: Solve the invariant distribution ¯̂⇡ of bC
6: Return ¯̂⇡

ber of competitions between agents. We now prove that, in
the noise-free setting, one can obtain the accurate ↵-rank
distribution with O(nr log n) payoff entries. Our results
are based on the low-rank matrix completion theorem. The
(µ0, µ1)-Incoherence is required for low-rank matrix com-
pletion theory which characterizes the spread of singular
values in different coordinates. We leave these details to Ap-
pendix B. The following proposition provides a theoretical
justification of Algorithm 1.

Proposition 1 (Noise-free payoff). Let M 2 Rn⇥n
denote

the payoff matrix of n agents with rank r and it meets the

(µ0, µ1)-Incoherence. Let µ = max{µ0, µ1}. Define  =
(⌃max/⌃min) as the ratio between maximal and minimal

singular value. Let ⌦ ✓ [n] ⇥ [n] be a randomly selected

set of pairs to be evaluated, then there exists a constant C

such that if ⌦ satisfies

|⌦| � Cnr
2 max

�
µ0 log n, µ

2
r

4
 
,

then we can obtain the invariant distribution ⇡̄, that is

exactly the same as ⇡ obtained from complete comparisons

of all strategies with high probability.

The proof is straightforward by applying low rank matrix
completion theorem (see Theorem 3 Appendix B), since we
can obtain an exact payoff matrix M based on M⌦.

Though we observe that many real world games have a low-
rank payoff matrix, it is still possible that some games have
a high or even full-rank payoff matrix. But as long as it
is not too distant from a low-rank matrix, Algorithm 1 can
still work. Based on matrix completion theory from noisy
entries (Theorem 4 in Appendix B), we give our results in
Theorem 1.

Theorem 1 (Approximate low-rank matrix). Let cM =
M + Z be the exact payoff matrix bounded in

the interval [�Mmax,Mmax]. Define L(↵,Mmax) =

2↵ exp(2↵Mmax), g(↵, ⌘, p,Mmax) = ⌘
exp(2↵Mmax)�1
exp(2↵pMmax)�1 .
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Assume that M 2 Rn⇥n
is a (µ0, µ1)-incoherent matrix

of rank r, and Z is noise that satisfies kZkmax < ⌧ . De-

fine µ = max{µ0, µ1},  = ⌃max/⌃min as the ratio be-

tween maximal and minimal singular value of M . Define

⌦ ✓ [n]⇥ [n] as the sampling operator in which m payoffs

are randomly selected for observation from all n
2

entries.

Therefore, the observed payoff matrix by the sampling op-

erator ⌦ is cM⌦ = M⌦ + Z⌦
. By performing matrix

completion algorithm OptSpace on cM⌦
to obtain cM , there

exist constants C such that if the number of sampled entries

satisfies

|⌦| � C
2
nmax

�
µ0r log n, µ

2
r
2

4
 
,

then maxi2[n] | ¯̂⇡(i)� ⇡̂(i)|  ✏ is satisfied with probabil-

ity at least 1 � 1
n3 , with ✏ 2 (0, 18 ⇥ 2�n

Pn�1
i=1

�n
i

�
i
n),

⌧ = ✏g(↵,⌘,p,Mmax)

18L(↵,Mmax)
n�1P
i=1

(ni)in(2C02
p
r+1)n

.

Remark. This result suggests that if a payoff matrix is not

low-rank, we can still apply low-rank matrix completion

algorithms to obtain satisfactory results, as long as the

maximal entry of Z is bounded.

In practice, it is difficult for us to get the exact payoff value
of the selected pair. Therefore, when reconstructing the
payoff matrix, we want to not only select as few pairs as
possible, but also do as little competitive simulation as pos-
sible for the selected pairs. Let cMij denote the empirical
payoff, and the empirical risk Zij = |Mij � cMij | can be
minimized by simulating more interactions between i and j.
The following theorem provides a theoretical justification
of Algorithm 2.

Theorem 2 (Noisy payoff). Suppose the payoff ma-

trix M 2 Rn⇥n
be a (µ0, µ1)-incoherent matrix

of rank r, and payoffs are bounded in the interval

[�Mmax,Mmax]. Define µ = max{µ0, µ1}. Define

L(↵,Mmax) = 2↵ exp(2↵Mmax) and g(↵, ⌘, p,Mmax) =

⌘
exp(2↵Mmax)�1
exp(2↵pMmax)�1 . Let ✏ 2 (0, 18⇥ 2�n

Pn�1
i=1

�n
i

�
i
n). Let

⌦ ✓ [n]⇥[n] be the sampling operator by which m pairs are

randomly sampled for evaluation. For each pair (i, j) 2 ⌦,

let cMij be an empirical payoff constructed by taking K

i.i.d. interactions of strategy i and j. ¯̂⇡ is the invariant

distribution obtained by computing the ↵-rank on cM , that

is obtained by running OptSpace on cM⌦
. There exist con-

stants C and C
0
such that if the number of randomly selected

pairs satisfies

|⌦| � C
2
nmax

�
µ0r log n, µ

2
r
2

4
 

and K satisfies

K �
2592M2

max log 2mn
3
L(↵,Mmax)2(

Pn�1
i=1

�n
i

�
i
n)2C 02


4
rn

2

✏2g(↵, ⌘, p,Mmax)2

then maxi2[n] | ¯̂⇡(i)� ⇡(i)|  ✏ is satisfied with probabil-

ity at least 1� 2
n3 .

Remark. This result suggests that by sampling at most

O(nr log n) pairs and simulating K interactions for each

pair, we can approximate each entry of the ⇡ in ↵-rank

with a discrepancy at most ✏. This result provides guidance

in performing evaluations. Note that g(↵, ⌘, p,Mmax) is

inversely proportional to ↵, indicating that larger ↵ will

require higher number of interactions to obtain an accurate

estimate of ⇡.

5. Experiments
We consider the following three batteries of experiments
with increasing complexity to evaluate the performance of
OptEval in the scenarios of noise-free, noisy payoff and real
world meta-games. Ablation studies of parameters �,↵, and
additional results on real world games with more metrics
can be found in Appendix C.

Gaussian games (Rashid et al., 2021). We randomly
generate a two-player general-sum Gaussian game with
payoff matrix M , in which the payoff value Mij means the
expected reward of i compete with j. And we suppose sim-
ulation results of pairs (i, j) are samples from �(Mij , 1).
Due to the extraordinary computation complexity of ↵-IG,
we only generate a small size game called Gaussian(15):
15⇥ 15 with rank r = 2.

Bernoulli games (Rowland et al., 2019). We randomly
generate a two-player zero-sum Bernoulli game, in which
the payoff value Mij means i beating j with probability
Mij . In addition, Mij = 1�Mji for it is a zero-sum game.
We generate a game called Bern(100): 100⇥ 100 with rank
r = 11. We can convert the winning probability matrix into
an anti-symmetric matrix with rank 10 which is helpful for
matrix completion.

Soccer meta-game (Liu et al., 2018). The payoffs of
meta-game are taken from (Liu et al., 2018), where 10 agents
learn to play soccer in Mujoco environments (Todorov et al.,
2012). This also corresponds to a two-player zero-sum game
with empirical payoffs that is evaluated by letting agents
pitting against each other. We reproduce the 10⇥ 10 payoff
matrix to a 200⇥ 200 matrix with each agent repeated 20
times. We intend to show the performance of OptEval in
the repeated agent settings.

Real world games (Czarnecki et al., 2020) We select 12
real-world games from the OpenSpiel Library (Lanctot et al.,
2019), which are also evaluated by Czarnecki et al.. The pay-
off matrices are baked in empirical game-theoretic analysis
that construct abstract counterparts and simulate interactions
to obtain the payoffs. Most of the meta-game payoffs have
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a rank that is much smaller than the size of the strategy set
while some games, such as AlphaStar, tic tac toe, Kuhn-
poker have full rank payoff matrices. We aim to show the
effectiveness of OptEval in the complex meta-game evalua-
tions. Table 1 summarizes the statistics of consisdered real
world games.

For real-world games, the meta-payoffs are normalized such
that Mij 2 [�1, 1] by Czarnecki et al. (2020). For the
consistent presentation of results, meta-payoffs M for the
Bernoulli and Soccer games are normalized to [-1, 1], con-
verting from the winning rate matrix by M = 2P � 1.
The Gaussian game is not normalized for representing the
general asymmetric payoffs.

Table 1. Statistics of twelve real world games from (Czarnecki
et al., 2020). k denote the number of dominant singular values that
such that

Pk
i ⌃i/

Pn
i ⌃i � 80%

Game # policies rank k

3-move parity game 2 160 14 9
Blotto 1001 50 16

hex(board size=3) 766 764 232
Disc game 1000 2 2

Normal Bernoulli game 1000 1000 499
Elo game 1000 38 2

Random game of skill 1000 1000 515
Transitive game 1000 2 2
Triangular game 1000 1000 137

AlphaStar 888 888 238
tic tac toe 880 880 285

Kuhn-poker 64 64 24

5.1. Baselines

We consider the following methods for comparisons.

• RG-UCB (Rowland et al., 2019) adopts a sampling
scheme responsible for selecting the simulation pairs,
and a stopping condition C(�) controling the number
of observations for each pair. � is the confidence level
on the estimation of payoffs and is set to 0.01. Details
are in Appendix A.

• ↵-IG (Rashid et al., 2021) is an active sampling strategy
for estimating the ↵-rank through as few samples as
possible. It selects pairs whose payoff leads to the
largest reduction on the entropy over a belief of ↵-rank.
Due to the high cost at each step of interaction (i.e.,
8000 times computation of ↵-rank in a 4⇥ 4 Gaussian
game), we only report its performance on Gaussian(15)
with noisy payoffs.

• OptEval (ours): comes up with two algorithms.
OptEval-1 estimates ↵-rank based on a set of noise-

free payoffs. OptEval-2 computes ↵-rank based on
noisy empirical payoffs.

We evaluate all methods on the finite-↵ regime with ↵ =
0.001. Four metrics are considered to evaluate both the cor-
rectness of the recovered matrix and the task performance.
Details are given below:

• M error indicates the correctness of the recovered
payoff matrix cM , which is defined as 1

n2 kM � cMk2F .

• ⇡ error indicates the max value in |⇡ � ⇡̂|.

• ↵-rank ranking error is computed by Kendall’s tau-
b correlation coefficient (Signorino & Ritter, 1999):
K(⇡, ⇡̂) = 1

F

P
(i,j)2[|S|],i 6=j K̄i,j(⇡, ⇡̂), where:

K̄i,j(⇡, ⇡̂) = sign(⇡i � ⇡j) ⇤ sign(⇡̂i � ⇡̂j),

F =

sX

i 6=j

sign2(⇡i � ⇡j) ⇤
X

i 6=j

sign2(⇡̂i � ⇡̂j),

and K(⇡, ⇡̂) 2 [�1, 1]. The larger value indicates the
better consistency between ⇡ and ⇡̂.

• ↵-Conv (Muller et al., 2020) measures the
convergence of ⇡̂. Define PBR-Score as
q(i;⇡;S) =

P
j ⇡j [Mij > Mji], then

↵-Conv = |maxi q(i,⇡, S)�maxj q(j, ⇡̂, S)| .
↵-Conv being closer to 0 indicates that the estimated
⇡̂ is converging to groundtruth ⇡.

Figure 3. Noisy evaluations on Gaussian(15) with r = 2,↵ =
0.001, � = 0.01.

5.2. Results

Results on Gaussian(15). Figure 3 examine the results in
scenarios with noisy payoffs. Note that RG-UCB and ↵-IG
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(a) Noise-free evaluations on Bernoulli games (b) Noise-free evaluations on Soccer meta-game

Figure 4. Results in the Noise-free setting on Bernoulli and Soccer meta-game. Dashed lines indicating the performance of OptEval under
true rank for reference. (a) Bern(100) game with n = 100, r = 10,↵ = 0.001. (b) Soccer meta-game with n = 200, r = 10,↵ = 0.001.

(a) Noisy evaluations on Bernoulli games (b) Noisy evaluations on Soccer meta-game

Figure 5. Results in the Noisy setting on Bernoulli and Soccer meta-game. Dashed lines indicating the performance of OptEval under
true rank for reference. (a) Bern(100) with n = 100, r = 10,↵ = 0.001, � = 0.01; (b) Soccer meta-game with n = 200, r = 10,↵ =
0.001, � = 0.01.

require the sampling over all pairs on the metagame, thus
are horizontal lines here. On the contrary, OptEval-2 with
r = 2 achieves the similar ⇡ error to RG-UCB and ↵-IG
by around 100 sampled pairs, thus reducing the number of
interactions by 60%. And OptEval-2 with r = 2 has lower
ranking error and convergence error than both RG-UGB
and ↵-IG. OptEval-2 with r = 1 can not fit the underlying
payoff matrix of rank r = 2. OptEval-2 with r = 4 achieves
satisfactory results around 150 sampled pairs reducing by
33%. It is noted that the convergence of OptEval-2 under
r = 4 is slower than that under r = 2. One reason is that the
model complexity for low rank matrix completion is higher,
thus requiring larger samples for training.

Results on Bern(100) and Soccer Meta-game. Figure
4 shows the results on Bern(100) and Soccer meta-game
the noise-free setting. In Bern(100), OptEval-1 learns to
produce ranking and ⇡ with as few as about 3200 sam-
pled pairs. In Soccer meta-game, OptEval-1 converges with
around 6000 pairwise evaluations. Although both games
have a groundtruth rank r = 10, Bern(100) can get small
enough ⇡ and ↵-Conv error with a rank at 2. And in Soccer
Meta-game, we can get a reliable ↵-rank when r � 4 and
m > 9000. In Figure 4 (b) r = 4, even if the recovered
matrix has difference from the original matrix, we can get
an accurate ↵-rank ranking with ranking and ↵-Conv error
close to 0.
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Table 2. Results on 12 real world games with noise free evaluations. (Left of plot) Recovery error on the payoff matrices. (Right of the
plot) ↵-rank ranking error. The error on M indicates the performance of predicting the payoffs of unpitted pairs. The first three rows
show the ranking results of low-rank payoff geometry, thus have lower error in predicting the payoffs of unobserved pairs. The last row
shows the results of games that are not low-rank, and the ranking error is relatively larger than those games that are low-rank.

Figure 5 examine the results in scenarios with noisy payoffs.
On Bern(100), the four error metrics show a similar trend
with the change of number of samples and chosen rank.
The matrix recovery error and ranking errors saturate at
r = 2, indicating that a lower rank matrix can perform a
satisfactory approximation to a higher rank payoff matrix.
Besides, the sampled pairs are reduced to 6⇥ 103, leading
to a 40% reduction compared to RG-UCB. On Soccer meta-
game, the performance of OptEval-2 saturates at rank r = 4.
Besides, the number of sampled pairs is reduced to 1e4,
leading to a 75% reduction compared to RG-UCB. Not
only can we reduce the sample complexity of pairs m, we
can also achieve a more accurate ↵-rank ranking compared
to RG-UCB. Compared to RG-UCB, OptEval-2 achieves
better performance in terms of the ↵-Conv measure on both
Bern(100) (with r � 2) and Soccer meta-game ( with (r �
4)).

Results on real world meta games Table 2 shows the
results on real world meta games. For preserving the com-
pleteness, we show games that are both low-rank and high-
rank, i.e. AlphaStar, Tick tac toe, which has a full rank
meta payoffs. Though AlphaStar has a high rank at 888,
we can approximate it with rank r = 30. One interesting
observation is that, through cross reference to Table 1 in
(Czarnecki et al., 2020), the games that show clear Game of
Skill geometry have higher rank, such as AlphaStar, Quori-
dor, Go, etc. By contrast, the games that do not follow Game
of Skill, have lower rank, Disc Game, Elo Game, Blotto
etc. This indicates that strategies that are non-transitive
contribute the most to the rank of the payoff geometry.

5.3. Empirical sampling complexity

To demonstrate that the empirical sampling complexity on
agents pairs meets the theoretical results, we create one
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example as below. We create twenty Gaussian games with
n = 10, 20, ..., 200 and r = 5 for all matrices. In both
noise-free and noisy setting, we run OptEval with a chosen
rank r = 5 and plot the number of samples and compare
it to m = c · nr log n, c = 0.4, 0.5, 0.6, 0.8, 1.0. Figure
6 visualizes the number of payoff entries needed for each
game. OptEval achieves a sampling complexity at around
0.5nr log n in the noise-free setting, and 0.8nr log n in the
noisy setting, which are consistent with the theories.

(a) Noise-free evaluations on n-
strategy games

(b) Noisy evaluations on n-
strategy games

Figure 6. Comparisons of empirical sampling complexity and the-
oretical results on twenty games with n = 10, 20, ..., 200, r = 5.
(a) the empirical sampling complexity of OptEval-1 when ✏ 
10�4/n at a chosen rank r = 5. (b) the empirical sampling com-
plexity when OptEval-2 outperforms RG-UCB.

6. Discussions
This work investigates the question of how many pairwise
comparisons we need to produce a satisfied ranking for n
agents based on ↵-rank. We bake our theory and algorithms
based on the facts that strategies with similar skills may
have similar payoff against the competitions with others,
and repeated strategies may exist in multi-agent systems.
We provide the theories and algorithms for scenarios with
both noise-free and noisy evaluation of two-player meta-
games. Experiment results show that with a much fewer
number of comparisons, our method OptEval can reach
comparable performance to ground truth results in noise-
free case, and to RG-UCB which uses full payoff table in
noisy case.

We are especially the first to perform experiments on large
scale competitive games with more than 1000 strategies. For
the future works, one line of research is to consider more
complicated games such as Poker, Mahjong that require
triple-wise or quadruplet-wise comparisons. Another direc-
tion is to consider active sampling of pairwise evaluations
to further reduce the cost of evaluation.
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