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Spinal cord vascular degeneration
impairs duloxetine penetration
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Introduction: Chronic pain is a prevalent physically debilitating health-related
morbidity. Frontline analgesics are inadequate, providing only partial pain relief
in only a proportion of the patient cohort. Here, we explore whether alterations
in spinal cord vascular perfusion are a factor in reducing the analgesic capability
of the noradrenaline reuptake inhibitor, duloxetine.
Method: An established rodent model of spinal cord vascular degeneration was
used. Endothelial-specific vascular endothelial growth factor receptor 2
knockout mouse was induced via hydroxytamoxifen administered via intrathecal
injection. Duloxetine was administered via intraperitoneal injection, and
nociceptive behavioural testing was performed in both WT and VEGFR2KO mice.
LC-MS/MS was performed to explore the accumulation of duloxetine in the
spinal cord in WT and VEGFR2KO mice.
Results: Spinal cord vascular degeneration leads to heat hypersensitivity and a
decline in capillary perfusion. The integrity of noradrenergic projections (dopa -
hydroxylase labelled) in the dorsal horn remained unaltered in WT and
VEGFR2KO mice. There was an association between dorsal horn blood flow with
the abundance of accumulated duloxetine in the spinal cord and analgesic
capacity. In VEGFR2KO mice, the abundance of duloxetine in the lumbar spinal
cord was reduced and was correlated with reduced anti-nociceptive capability
of duloxetine.
Discussion: Here, we show that an impaired vascular network in the spinal cord
impairs the anti-nociceptive action of duloxetine. This highlights that the spinal
cord vascular network is crucial to maintaining the efficacy of analgesics to
provide pain relief.
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Introduction

Pain is inherently associated by all organisms as an uncomfortable but fundamentally

integral physiological mechanism that protects tissues from damage or lasting harm.

However, chronic pain is one of the leading causes of morbidity globally, represented by

26 million people in the United Kingdom (1) and 1.9 billion people worldwide (2) who

are affected by this condition. Furthermore, a number of distinctly diverse causative

factors [such as age (3), familial/genetic (4), disease (5), or treatment (6)] cause this

physical affliction. Chronic pain is depicted as long-lasting inescapable pain that can be

presented in a number of physical forms with exacerbated sensory perception highlighted

by heightened sensations to evoked stimuli as well as ongoing pain. Furthermore, chronic
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pain is a significant psychophysical burden, which greatly impacts

upon an individual’s quality of life (7). Current pain management

regimens used clinically encompass the utilisation of wide-ranging

groupings of differing pharmacological agents. Primary analgesics

typically prescribed to diabetic neuropathic pain patients are

non-steroidal anti-inflammatory drugs (8) and serotonin (5HT)/

noradrenaline (NA) reuptake inhibitors (SNRIs) (9). Pregabalin

and duloxetine (9) are widely recognised SNRIs and used in the

treatment of diabetic neuropathic pain (NICE approved primary

analgesics) (10). These act by dampening down the aspects of the

central nervous system (CNS) deemed to be hyperexcitable

during pathological pain states (11). As an SNRI, duloxetine

enhances endogenous pain control through increasing 5HT and/

or NA availability in the spinal cord to drive endogenous

analgesic actions (12, 13). Despite this recommendation, current

use of these analgesics only provides partial relief from

symptoms in the majority of cases, e.g., diabetic neuropathy

patients get little to no pain relief (up to ∼61% of patients) (9,

14–16). Furthermore, increasing proportions of diabetic

neuropathic pain patients discontinue the use of the prescribed

analgesic (duloxetine or pregabalin) due to poor treatment

efficacy or adverse health-related side effects (15, 17). This is

increasingly apparent for duloxetine use (17), with 86% of

patients discontinuing treatment use 4 weeks following initial use

(9, 15).

Despite extensive investigations into the underlying cellular

and molecular mechanisms of diabetic neuropathic pain,

availability of disease-tailored analgesics, in particular, for

diabetic sensory neuropathy remains elusive (5). Recent evidence

has implicated the blood–spinal cord barrier (BSCB) as a

fundamental mediator of chronic pain with enhanced vascular

permeability underlying chronic inflammatory pain (18–20). This

is depicted by the infiltration of inflammatory cell types and

consequent upregulation of inflammatory mediators locally in the

somatosensory nervous system (21). However, further evidence

has highlighted opposing actions in relation to the blood–spinal

cord barrier, with curtailed blood flow and degeneration of the

spinal cord microvasculature initiating neuropathic pain states

(19, 22). This study aims to elucidate whether a reduction in the

spinal cord microvasculature will lead to reduced accumulation

of duloxetine in the spinal cord. We demonstrate that in a

previous described rodent model of vascular degeneration (19,

22), there are decreased levels of duloxetine penetrating the

spinal cord and consequently a reduction in duloxetine induced

alleviation of pain hypersensitivity.
Ethical approval and animals used

Animal studies were performed in accordance with the

ARRIVE guidelines, with experimental protocols reviewed by the

local Animal Welfare and Ethics Review Board (University of

Nottingham). All studies were performed under UK Home Office

animals (Scientific procedures) Act 1986 and EU Directive 2010/

63/EU. Animals had ad libitum access to standard chow and
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were housed in groups under 12:12 h light:dark conditions.

Experimental timeline are outlined in Figure 1A.
Transgenic mouse model

An endothelial-specific promoter-driven Cre recombinase

mouse line was used [Tie2CreERT2 mice; European Mutant

Mouse Archive Tg(Tek-cre/ERT2)1Arnd] and crossed with

homozygous vegfr2fl/fl mice (19, 22). The induction of the

transgenic model is previously described and does not impact

upon the surrounding tissues, i.e., dorsal root ganglia (19, 22).

Mice were 8 weeks old and of both genders. All the mice (total

39) were vegfr2fl/fl positive and either Tie2CreERT2 negative (n =

24, termed WT) or positive (n = 25, termed VEGFR2KO). All

mice were briefly anaesthetised using isoflurane (∼2% O2) to

allow a single 10 μl intrathecal injection of 1 µM

4-hydroxytamoxifen (OHT; 10% ethanol in sunflower oil)

between lumbar vertebra 5 and 6 (19). Studies were performed 8

days post OHT injection, a time point in which overt pain

behaviours were presented.
Nociceptive behaviour assays

All animals were habituated to the experimental environment

and handling. Nociceptive behavioural assays were performed pre

and post OHT administration, followed by before and after

duloxetine injection. Thermal hyperalgesia is measured using a

radiant heat source directed against the plantar surface of the

hind paws through a Perspex floor (23), and the latency to

withdrawal is measured. The stimulus intensity is determined at

the beginning of each experimental series to give a control

withdrawal latency of ∼10 s. This intensity is subsequently used

for the rest of the nociceptive behavioural study. A maximum

latency duration of 20 s is used to prevent tissue damage/

sensitization due prolonged exposure to intense sustained

stimulation. The mean withdrawal latency is determined from

three repeated stimulations at an interstimulus interval of at least

3 min.
Immunohistochemistry

Rodents were terminally anaesthetised (i.p., 60 mg/kg sodium

pentobarbital) and tetramethylrhodamine isothiocyanate (TRITC;

1 mg/20 g rodent) dextran (76 Mw; Sigma-Aldrich) was

intravenously administered. Mice were subsequently

transcardially perfused with phosphate buffered saline (PBS)

followed by 4% paraformaldehyde (PFA; in PBS pH7.4). The

vertebral column was excised and the lumbar region of the spinal

cord was extracted. The lumbar spinal cord was submerged in

4% PFA overnight (4°C). Samples were subsequently submerged

in a 30% sucrose solution overnight (4°C). Prepared spinal cords

were embedded and frozen in OCT. These samples were stored

at −80°C until required for cryosection processing. Spinal cords
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were cryosectioned (40 µm thickness) and mounted on Superfrost

plus slides (VWR). Slides were washed with PBS and incubated in

blocking solution (5% bovine serum albumin and 10% fetal bovine

serum in PBS 0.2% Triton X-100) for 1 h at room temperature.

Slides were further incubated in a primary antibody [rabbit anti-

collagen IV, 1 in 200 Abcam; goat anti-CGRP, 1 in 500 Abcam;

or rabbit anti-DβH (dopamine β-hydroxylase), 1 in 500;

Millipore, AB1538] in a blocking solution (overnight 4°C). Slides

were washed with PBS and secondary antibodies were applied

(PBS, 0.2% Triton X-100; 1 in 500 Alexa Fluor 488-conjugated

donkey anti-mouse or Alexa Fluor 405-conjugated donkey anti-

rabbit or goat, Thermofisher, United Kingdom). Slides were

incubated in secondary antibody solutions at room temperature

for 2 h. Vectashield mounting media (Vectorlabs) were used to

mount the coverslips. Spinal cord sections were imaged using a

confocal microscope (Leica, SP5). Immunohistochemistry of

dorsal horn (DH) neuronal projections in the lumbar spinal cord

were quantified from random nonsequential sections, with

integrated density (i.e., the fluorescence intensity of DH

immunoreactivity) and % area of DβH fluorescent staining across

the dorsal horn determined. Blood vessel perfusion was

determined as the ratio between collagen IV and TRITC dextran.
LC-MS/MS sample preparation

Eight days post OHT administration, a time point in which

pain and vascular degeneration manifest, duloxetine (DLX;

20 mg/kg) was administered via a single intraperitoneal injection.

Nociceptive behavioural testing was performed 30 min after

administration of duloxetine, and consequent to this, the lumbar

spinal cord was extracted, frozen, and stored at −80°C until

tissue processing. Lumbar spinal cord tissues were weighed prior

to processing and homogenised in ultrapure water using a

microtube homogeniser (Bead Bug; Benchmark Scientific);

methanol was added to the homogenate and spiked with the

internal standard to achieve a final concentration of 3 pg/µl. The

precipitated solution was stored at −20°C before LC-MS/MS.
LC-MS/MS

The quantity of duloxetine in the spinal cord samples was

determined using liquid chromatography-mass spectrometry (24).

Duloxetine (100 pg/µl) and the internal standard (30 pg/µl) were

prepared in methanol and a calibration curve for duloxetine was

generated to determine a signal intensity response ratio between

duloxetine and internal standard (IS). Duloxetine calibration

curve was prepared in 150 µl of methanol, with 5 µl of 30 pg/µl

IS, and 145 µl methanol added. These points were then added to

450 µl of methanol within a precipitation filter plate. Quality

control (QC) samples were prepared at concentrations of 6.25 pg/

μl (High), 0.390625 pg/μl (middle), and 0.02441406 pg/μl (lower

limit of quantitation). The calibration and QC samples were

stored at −20°C until analysis and performed in duplicate.

A Nexera X2 HPLC system (Shimadzu) fitted with a Kinetex
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EVO C18 100 Å LC column (50 mm × 2.1 mm, 5 µm;

Phenomenex), a binary LC-30AD prominence pump, an

autosampler (SIL-30AC), and a solvent degasser (DGU-20A3R/5R)

were used for this study. An LCMS-8050 liquid chromatography-

mass spectrometer (Shimadzu) equipped with electrospray

ionisation (ESI) interface at 300°C was employed for the analyte

and IS detection. MRM mode was employed for ion detection

through monitoring the transitions of duloxetine and the IS. (S)-

Duloxetine hydrochloride (Sigma Aldrich) was utilised, with

Duloxetine D3-HCl (Sigma Aldrich) as an internal standard.

Five-microliter aliquots of samples were injected into the column

and maintained at 40°C. Two isocratic mobile phases consisting

of either 30% (Mobile phase A) or 90% (Mobile phase B)

methanol (Fisher Scientific) and 20 mM ammonium formate (pH

8.5; Honeywell Research Chemicals) were employed to separate

the analyte from the endogenous components through a flow

rate of 0.6 ml/min and a retention time of 0.79 min into the

electrospray ionisation chamber of the mass spectrometer. The

precursor ion for duloxetine had an m/z of 298.10 with

transition ions (products/fragments) of m/z 44.20 and 154.25.

The precursor ion for the IS had an m/z of 301.10 with

transition ions of m/z 47.25 and 157.15. Quadrupoles Q1 and Q3

were set to unit resolution. The collected analysis data were

processed using Lab Solutions (Shimadzu).
Statistical analysis

All data are represented as mean ± SEM unless stated, with WT

control animals compared to VEGFR2KO animals. Samples sizes

were performed using G power using historical nociceptive

behavioural datasets utilised (18, 19, 22). Data were analysed

using Microsoft Excel and Graphpad Prism 8. A Two-way

ANOVA with post-Sidak test was used for statistical analysis of

nociceptive behavioural data. Statistical analysis was performed

using a Mann–Whitney test. Immunohistological analysis was

performed on nonsequential sections of the lumbar dorsal horn

with a minimum of five sections per animal analysed and an

average acquired per animal. The ratio of signal response for

duloxetine against IS was compared against the calibration curve

to determine the unknown concentration of duloxetine within

the tissue. These values from each experimental group were

compared using a Mann–Whitney test, with comparison to

nociceptive withdrawal latency determined using a linear

regression analysis against WT and VEGFR2KO values. No

animals were withdrawn or data points were removed from this

study. Diagrammatic figure was created in Biorender.com.
Results

Vascular degeneration in the spinal cord
causes diminished duloxetine accumulation

An established spatiotemporal model of vascular degeneration

that leads to a pronounced heat hyperalgesia was used in this study.
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FIGURE 1

A transgenic rodent model of vasculopathy. (A) Experimental timeline is outlined in the diagrammatic figure. Both VEGFR2KO (Tie2CreERT2 positive x
vegfr2fl/fl) mice and WT (Tie2CreERT2 negative x vegfr2fl/fl) mice were administered with hydroxytamoxifen (1 µM) via intrathecal injection. (B) 8 days
post hydroxytamoxifen injection, a pronounced heat hypersensitivity in VEGFR2KO mice developed. This was demonstrated through a decrease in
withdrawal latency when compared to WT mice (***P < 0.001, two-way ANOVA with post-Sidak multiple comparison test, N= 8 WT, N= 10
VEGFR2KO; WT mean ± SEM: 13.14 ± 0.37 s vs. VEGFR2KO mean ± SEM: 4.61 ± 0.30 s). (C) Representative images of capillary network in the mouse
lumbar dorsal horn. (C, upper panel) Collagen IV (basement membrane marker) and superficial dorsal horn marker (CGRP) demonstrates the
extensive vascular network throughout the dorsal horn. (C, Lower Panel) TRITC (Red) perfused lumbar spinal cord cryosections stained with
basement membrane marker (collagen IV; Blue). (D) There is diminished capillary perfusion in VEGFR2KO mice vs. controls, presented as a reduction
in the percentage of (E) TRITC dextran perfused vessels in VEGFR2KO mice vs. controls (*P < 0.05, Paired T test, N= 5 WT, N= 5 VEGFR2KO).
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The model was induced via an intrathecal delivery of OHT to

induce an endothelial-specific vascular endothelial growth factor

receptor 2 (VEGFR2) knockout mouse model (19, 22). Eight

days post-intrathecal administration of hydroxytamoxifen in

Tie2CreERT2-positive-vegfr2fl/fl mice (VEGFR2KO) results in heat

hypersensitivity (Figure 1B, P < 0.001), when compared to

Tie2CreERT2-negative −vegfr2fl/fl mice (WT). TRITC dextran is a

fluorescent tracer and when delivered intravenously enables the

identification of a perfused capillary. Dorsal horn (Figure 1C

representative image of lumbar dorsal horn–capillary network

and nociceptive inputs) vessels labelled with collagen IV and

positive for tritc dextran were deemed to be a perfused spinal

cord capillary (representative images in Figures 1C,D), with

vessels presenting less TRITC dextran are non-perfused. Eight

days post OHT intrathecal administration, there was a reduction

in lumbar spinal cord capillary perfusion in the lumbar region of

the spinal cord in VEGFR2KO vs. control rodents (Figure 1E,

P < 0.05).

Duloxetine is used in frontline treatment for neuropathic pain,

in particular diabetic neuropathic pain. However, the efficacy is

poor with few patients having benefit. Due to the cessated

perfusion of the spinal cord vasculature in this model of vascular

degeneration, we explored whether an impaired spinal cord
Frontiers in Pain Research 04
capillary network impacts upon duloxetine penetration and

accumulation in the CNS, in particular, the spinal cord.

Duloxetine is a serotonin noradrenaline reuptake inhibitor, and

previously it has been documented that noradrenergic (DβH-

positive) projections in the spinal cord and noradrenergic

dependent anti-nociceptive endogenous tone can be disturbed in

models of chronic pain (13). Therefore, it was determined whether

spinal cord DβH immunoreactivity was compromised in this

transgenic mouse model. DβH immunoreactivity in the lumbar

dorsal horn of VEGFR2KO mice was unchanged compared to WT

littermates [high power representative dorsal horn images from

WT (Figure 2A) and VEGFR2KO (Figure 2B) mice] as depicted

by no change in DβH immunoreactivity in the dorsal horn

(Figure 2C—DβH area; Figure 2D—DβH integrated density) of

either WT or VEGFR2KO mice.

To determine the impact of spinal cord vascular degeneration

upon duloxetine accumulation in the spinal cord, quantitative

analysis of duloxetine penetration and accumulation into the

lumbar spinal cord was determined in WT and VEGFR2KO

mice. The abundance of duloxetine that accumulated in the

spinal cord of VEGFR2KO mice was significantly reduced

compared to WT mice (Figure 3A, P < 0.05). In addition, there

was a significant correlation between the concentration of
frontiersin.org

https://doi.org/10.3389/fpain.2023.1190440
https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org/


FIGURE 2

In a transgenic rodent model of vasculopathy-induced pain, noradrenergic fibre innervation into the dorsal is unchanged. Representative image examples
of noradrenergic DβH-positive processes in the lumbar dorsal horn of (A) WT and (B) VEGFR2KO mice (scale bar = 10 µm). There was no change in DβH
immunoreactivity within the dorsal horn [(C) area, WT mean ± SEM: 22.74 ± 0.99 A.U. vs VEGFR2KO mean ± SEM: 21.26 ± 1.410 A.U.; (D) integrated
density, N= 5 per group].

FIGURE 3

Duloxetine accumulation in the spinal cord is diminished in VEGFR2KO mice and impairs analgesia. 8 days following hydroxytamoxifen treatment in WT
and VEGFR2KO mice, all mice received a single intraperitoneal injection of duloxetine (20 mg/kg). (A) The lumbar region of the spinal cord was excised
and abundance of duloxetine was determined using LC-MS/MS. There was a decrease in duloxetine concentration in the spinal cord of VEGFR2KO mice
when compared to WT mice [*P < 0.05, Mann–Whitney Test, N= 4 WT (mean ± SEM: 519.7 ± 98.63), N= 5 VEGFR2KO (mean ± SEM: 215.7 ± 56.64)]. (B)
Correlation analysis of duloxetine abundance vs. heat withdrawal latency demonstrates a strong correlation (R2= 0.702, P < 0.01, single linear regression
analysis) between duloxetine abundance and heat withdrawal latency. This demonstrates that those rodents with lowest abundance of duloxetine in the
lumbar region of the spinal cord presented a lower withdrawal latency following administration (*P < 0.05, Paired T test, N= 4 WT, N= 5 VEGFR2KO).
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duloxetine in the spinal cord vs. the heat withdrawal latency of the

rodent (Figure 3B, R = 0.7). These data depict that those rodents

with lower heat withdrawal latencies following DLX

administration also were found to have lower accumulated

duloxetine in the spinal cord depicting reduced DLX analgesia.

These were found to be VEGFR2KO mice. However, conversely

those WT rodents with higher withdrawal latencies post DLX

treatment were found to have the highest accumulate duloxetine

concentration.
Frontiers in Pain Research 05
Discussion

Current technological advances and drug discovery programs

are identifying novel analgesics that could curtail neuropathic pain

(25), in a disease-specific manner (10). However, to date, there are

few effective analgesics currently available due to limited measures

of efficacy and tolerability in patients. This includes the frontline

analgesic duloxetine that only benefits a proportion of neuropathic

pain patients, in particular, diabetic neuropathic pain patients.
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This study presents an underlying pathophysiological process that

contributes to the minimal impact that duloxetine has on a cohort

of diabetic neuropathic pain patients. Here, we utilise a previously

established model of vascular degeneration-induced heat

hypersensitivity. Our previous work has demonstrated in a rodent

model of chronic pain that nociceptive behavioural

hypersensitivity is accompanied by a reduced structural and

functional presence in the dorsal horn microvessel network. The

data presented here highlight that this diminished microvascular

network in the spinal cord impedes analgesic efficacy through

reduced penetration of duloxetine into the spinal cord.
Role of noradrenergic descending control
of neuropathic pain

Monoamine reuptake inhibitors are primary frontline analgesics,

as this classification of drugs has been proven to be effective in

treating neuropathic pain (10). In particular, duloxetine along with

pregabalin are recommended for the treatment of diabetic

neuropathic pain (26, 27). The premise for the efficacy of

monoamine reuptake inhibitors develops from the understanding

that serotoninergic and noradrenergic descending processes

mediate inhibitory modulation upon spinal cord neuronal activity

(28). Pharmacological intervention through noradrenergic targeted

reuptake inhibition results in the potentiation of these

predominating inhibitory descending control actions derived from

noradrenaline enriched neurons in the ponto-spinal circuitry (e.g.,

locus coereuleus) (29, 30). The utilisation of reuptake inhibitors

(such as duloxetine) in naive situations demonstrates minimal

effectiveness with no change typically presented in nociceptive

behavioural paradigms (13, 31, 32). A lack of duloxetine activity is

presented here in a vasculopathy-induced chronic pain model that

induces only heat hyperalgesia (19, 22), where duloxetine does not

alter nociceptive withdrawal thresholds in the control rodents. To

note, it has previously been explored that naive transgenic

VEGFR2KO mice do not present mechanical hypersensitivity (18).

Vascular endothelial growth factor A (VEGF) signalling is pro-

angiogenic, driving blood vessel maintenance, growth, and

permeability. These actions are dependent upon VEGFR2

signalling and as previously presented, the loss of VEGFR2

signalling results in a decline in endothelial health and diminished

capillary integrity. Previously, systemic and intrathecal induction

of an endothelial-specific VEGFR2KO has only presented heat

hyperalgesia (19, 22). However, in chronic pain rodent models,

mechanical hypersensitivity was influenced in VEGFR2KO mice

(18). Therefore, in states of chronic pain, duloxetine may present

alternative nociceptive behavioural outcomes due to the perceived

involvement of VEGFR2 in chronic pain manifestation.

Importantly, in neuropathic pain cohorts, an increase in

noradrenergic inhibitory tone through the utilisation of reuptake

inhibitors alleviates neuropathic pain phenotypes (13, 32). However,

there is conjecture around the role and effectiveness of

noradrenergic reuptake as a possible target for analgesia

development, as only one patient in five gains therapeutic benefit

(26). In contrast to the perceived dogma of the monoamine
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hypothesis, in some studies, there is an increase in the prevalence

of dorsal horn DβH-positive fibres, which is accompanied by an

equivalent increase in noradrenaline in the spinal cord in

neuropathic pain states (13). Furthermore, in some investigations,

there is no change in expression profiles of noradrenergic processes

(33), similarly as shown in this study. Here, we present a lack of

duloxetine activity due to reduced penetrance into the spinal cord

and not due to a decline of noradrenergic processes. However, it is

worth considering that other factors may be in play. A decline in

the dorsal horn vascular network and subsequent reduction in

oxygenation of the tissue, as a consequence, could influence the

activity of the noradrenergic system. Considering that alternative

rodent models of chronic pain demonstrate alterations in the

actions of noradrenaline, it could be that a hypoxic environment

could promote alterations in the synaptic handling of noradrenaline

rather than the structural aspects of the noradrenergic projections.

However, the overriding consensus is that studies exploring

reuptake inhibitor treatment demonstrate pronounced analgesia

following treatment, and accompanying increase in the expression

of the noradrenergic signalling cascades (33, 34).
Vasculopathy impairs analgesic delivery

In relation to the utilisation of reuptake inhibitors in the clinic,

there is an inherent reliance upon these agents due to the partial

alleviation of neuropathic pain, in particular, diabetic

neuropathic pain. However, wider use and long-term utilisation

are limited due to the inconsistent nature of effectiveness in pain

relief. Determination of the processes that underlie this clinical

problem is crucial to enable effective treatment to provide pain

relief. One aspect of effective drug delivery is appreciation of the

distribution system widely utilised in the body, the capillary

network. The microvascular network provides an enormous

delivery network through the expansive luminal surface area to

supply tissues throughout the body with essential nutrients, to

support efficient and integral physiological performance.

However, drug distribution is also a key consideration. The

blood–brain barrier (BBB) or, in this instance, the BSCB is a

highly fundamental system that protects our bodies and, in

particular, the CNS. It is widely appreciated the BBB or BSCB is

highly impenetrable due to the reduced interjunctional proteins

and fenestrations (35). This is accompanied by an extensive array

of mural cells that surround the endothelial lumen to further

modulate the integrity of the endothelium, while also

contributing to the functional role (36). The BSCB also expresses

channels and carrier proteins that control key processes that

control the movement of specific agents and nutrients to pass

across this barrier (37, 38). As a consequence, only a small

proportion of agents are able to pass across this membrane into

the neural tissues (39) and prevent foreign bodies such as

pathogens from entering. This highly controlled accessibility also

impacts upon pharmacological agents. This is a significant

obstacle when developing novel treatments that target CNS-based

diseases (40). However, during ageing and disease, these

microvessel structures are damaged, such as in multiple sclerosis
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(36, 41, 42). These vessels typically develop increased permeability,

a process that enables foreign entities to access the central nervous

system (43). This leads to the initiation of inflammatory processes

in the CNS due to the penetration of inflammatory cell types that

cause harm to these previously protected neural structures (20, 21,

39). Our previous work has identified an opposing neuropathology

that the microvessel network within the spinal cord can be

damaged, in particular, with relation to diabetic neuropathic pain.

A reduction in the dorsal horn endothelium is a factor in the

onset of diabetic neuropathic pain in rodent models (19, 22). This

deterioration of the blood vessel lumen leads to a reduction in

spinal cord blood perfusion, demonstrated by decreased delivery

of varying experimental solutes (19, 22). In this study, duloxetine

alleviates heat hypersensitivity solely in the VEGFR2KO rodents.

However, as stated in this model, there is a lack of vascular

perfusion of the spinal cord, and also as stated here, in

neuropathic pain patients there is a prominent lack of analgesic

efficacy. We have explored the association of these factors here,

with the total quantity of duloxetine reaching the spinal cord

reduced in the VEGFR2KO rodents. Furthermore, a lower

quantity of duloxetine present in the spinal cord is accompanied

by a highly prevalent and persistent pain phenotype. This is of

significant importance. These data demonstrate that a damaged

BSCB endothelium leads to a reduced delivery of a

pharmacological agent. Fundamentally, this impaired

microvascular delivery system prevents analgesics reaching the

required site of action, the central nervous system, and here the

spinal cord, therefore negating the effect of providing analgesics

to treat pain. However, it must be noted that duloxetine acts as a

molecular tracer to allow the measurement of tissue perfusion in

these studies. As a consequence in the unaffected, duloxetine

responding animals, the spinal cord capillary network is expected

to be maintained as duloxetine abundance is at higher levels and

provides an analgesic action.

Here, we provide an understanding of why pain relief for

neuropathic pain patients is in part ineffective in a proportion of

pain patients. However, to note, analgesics would still be

expected to engage with the peripheral sensory nervous system as

well as supraspinal regions. The delivery of a gold standard

analgesic, duloxetine, is impaired in a rodent with chronic pain

that develops due to vasculopathy of the spinal cord. As a result,

drug discovery programmes should consider disease-tailored

factors when designing analgesia. Additionally, the analgesia

delivery regimen needs to be considered when treating pain

patients to allow these agents to be delivered effectively to the

required site of action required.
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