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Abstract: A deeper understanding of HIV-1 transmission and drug resistance mechanisms can lead
to improvements in current treatment policies. However, the rates at which HIV-1 drug resistance
mutations (DRMs) are acquired and which transmitted DRMs persist are multi-factorial and vary
considerably between different mutations. We develop a method for the estimation of drug resistance
acquisition and transmission patterns. The method uses maximum likelihood ancestral character
reconstruction informed by treatment roll-out dates and allows for the analysis of very large datasets.
We apply our method to transmission trees reconstructed on the data obtained from the UK HIV Drug
Resistance Database to make predictions for known DRMs. Our results show important differences
between DRMs, in particular between polymorphic and non-polymorphic DRMs and between the B
and C subtypes. Our estimates of reversion times, based on a very large number of sequences, are
compatible but more accurate than those already available in the literature, with narrower confidence
intervals. We consistently find that large resistance clusters are associated with polymorphic DRMs
and DRMs with long loss times, which require special surveillance. As in other high-income countries
(e.g., Switzerland), the prevalence of sequences with DRMs is decreasing, but among these, the
fraction of transmitted resistance is clearly increasing compared to the fraction of acquired resistance
mutations. All this indicates that efforts to monitor these mutations and the emergence of resistance
clusters in the population must be maintained in the long term.

Keywords: HIV-1; drug resistance mutations; ancestral character reconstruction

1. Introduction

Drug resistance is an increasing health problem. Drug resistance mutations (DRMs)
emerge in HIV viruses through selective pressure during antiretroviral therapy (ART) and
make the current ART drug combination ineffective for both sustaining the patient’s well-
being and for the prevention of virus transmission [1,2]. Drug-resistant viruses can therefore
be transmitted to treatment-naive patients, who in turn can transmit them further [3,4],
endangering the efficacy of treatment for the whole population. The rates at which DRMs
are acquired and transmitted drug resistance (TDR) mutations persist are likely to be multi-
factorial and have been shown to vary considerably depending on duration and type of
treatment and the presence of mutations [5]. Hence, having a deeper understanding of HIV
transmission and drug resistance mechanisms is important as it can lead to improvements
in current treatment policies [6].

Phylodynamics uses phylogenetic trees (i.e., genealogies of the pathogen population)
inferred from the pathogen sequence data to estimate the epidemiological parameters.
Several phylodynamic models of pathogen transmission have been developed [7–10].

An important trade-off in phylodynamic modelling is between the complexity of
the biological questions that a model can address and its computational speed. On one
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side of the spectrum, there are computationally light statistical approaches, such as the
study by Mourad et al. [4] of persistence times of drug-resistance in the untreated HIV-
1-infected population in the UK. The analysis used a parsimony-based approach [11] to
extract “phylotypes” of sequences, the most recent common ancestor of which bore a
resistant mutation that is still shared by the majority of the sequences in the phylotype.
Once dated and combined with the treatment-naive/experienced status, these phylotypes
were used to zoom in on the most readable parts of the phylogeny and compute simple
statistics which are immediately accessible from the annotated tree. The simplicity of the
method makes it computationally very efficient. It was applied to a large set of ≈25,000
HIV-1 subtype B sequences from the UK, where it showed that around 70% of transmitted
drug resistance had a treatment-naive source.

However, to address more refined questions such as estimation of rates of different
events (transmission, drug resistance acquisition, etc.), more complex methods are needed,
such as modeling of the viral dynamics with ordinary differential equations (ODEs). Kühn-
ert et al. [9] proposed a piecewise-constant two-type (resistant and sensitive) birth–death
model to estimate the fitness cost of DRMs. The fitness was measured as a ratio between
transmission rates of hosts infected by drug-resistant strains and transmission rates of hosts
infected by sensitive strains. They applied this model to the data from the Swiss HIV cohort
study. They reconstructed a maximum likelihood tree for 5638 pol-gene sequences from
the Swiss HIV cohort study and 4284 closely related sequences from the Los Alamos HIV
database. On this tree, for each of the 15 major DRMs present in the Swiss cohort sequences,
they identified transmission clusters of up to 250 sequences each, containing > 80% of
Swiss sequences and at least one sequence with the mutation. Kühnert et al. [9] estimated
the model parameters on all the clusters for each mutation separately in a Bayesian setting.
To account for the fact that DRMs appear under antiretroviral (ARV) selective pressure,
they put the rates of state change (from sensitive to resistant and vice versa) to zero before
significant usage of the related drug(s) in Switzerland. The study showed that some of the
mutations (RT:D67N, RT:K70R, RT:M184V, RT:K219Q) decreased the fitness, one (PR:L90M)
seemed to increase the fitness, while the others did not have a significant effect.

The models above, and more generally, the family of multi-type birth–death models [7]
with a Bayesian birth–death skyline plot (allowing the parameters to change in a piecewise
constant manner) [12] they belong to, define ODEs for fine-tuned parameter estimation.
However, their complexity prevents resolving them analytically. Numerical solutions of the
ODEs, on the other hand, have long computational times, which prevents the application
of these models to larger datasets (dozens of thousands of sequences), while larger datasets
are desirable for more accurate parameter estimation.

A compromise between the model complexity and computational speed when applied
to large datasets needs to be found. In this study, we propose such a compromise that
improves the approach by Mourad et al. [4] by using maximum likelihood and combining
it with the skyline ideas of Stadler et al. [8] to analyze DRM transmission patterns.

Our approach uses ancestral character reconstruction (ACR) on a partially sampled
transmission tree. Using the ancestral scenario reconstruction tool PastML [13], we study
ancestral states for presence/absence of common surveillance DRMs. In a tree annotated
with PastML, we can discriminate between two types of resistant nodes: (1) those whose
parent node does not have the DRM, which correspond to acquired drug resistance (ADR),
and (2) those whose parent node is also resistant, such nodes form TDR clusters. We also
identify the scenarios of DRM loss (when the parent node has the mutation, while the child
does not). Moreover, we account for the changes in treatment policies by allowing for
separate ACRs for different time intervals (e.g., before and after the first DRM-provoking
ARV introduction). Once the reconstruction is performed, we visualize the results with
PastML and calculate various statistics for transmission patterns.

We apply our approach to analyze the patterns of DRM emergence, transmission, and
loss in HIV-1-infected individuals in the UK, using sequences and metadata from the UK
HIV Drug Resistance Database [14].



Viruses 2023, 15, 1244 3 of 21

2. Materials and Methods

The UK HIV Drug Resistance Database provides HIV protease (PR) and reverse
transcriptase (RT) sequences extracted during resistance tests and their corresponding
metadata (e.g., treatment status of the patient before the test: treatment-experienced, -naive,
or unknown; date of the test). These sequences were obtained by Sanger sequencing, which
provides the consensus sequence of the predominant virus variants in a patient at the time
of sampling. These sequences are subject to sampling uncertainty and potential sequencing
errors, but the most discordant sequences were detected as outliers and removed from
our analyses (see Transmission tree reconstruction). Furthermore, our dataset is so large
(∼80,000 sequences) that the few remaining errors, which are unavoidable, most likely
have a small impact on the overall results.

In response to our request for data from the database, we received 88,009 sequences
for 60,846 different patients, sampled between 1996 and 2016.

2.1. Sequence Subtyping and Alignment

We subtyped (pure subtypes and recombination positions) and aligned the sequences
against the Los Alamos 2010 subtype reference pol-gene alignment [15] using jpHMM [16]
(for detailed options, see Appendix A).

Altogether, we obtained a large nucleotide alignment of 88,009 sequences, from which
we extracted the alignments for the B and C subtypes. We filtered them to contain only
the first sequence (in terms of sampling date) when several sequences were present for the
same patient. We hence obtained a 40,055-sequence alignment for the B subtype, and a
19,139-sequence alignment for the C subtype. To each of them, we added five randomly
selected HIV-1 group M sequences of other pure subtypes to be used as an outgroup for
tree rooting.

2.2. Transmission Tree Reconstruction

We reconstructed phylogenetic trees for B and C sequences separately using RAxML-
NG (v0.9.0, evolutionary model GTR+G4+FO+IO; for detailed options, see Appendix A) [17]
and rooted them with the outgroup sequences, which we then removed. For tree reconstruc-
tion, the positions of surveillance DRMs [18] were removed from the nucleotide alignment,
as they are influenced by treatment-selection forces, unlike the other positions, and could
bias the reconstruction by grouping together the sequences that share the same DRMs [19].
We kept the non-surveillance (e.g., accessory, polymorphic) DRM positions in order to
keep a sufficient phylogenetic signal. While accessory mutations are also influenced by
treatment-selection forces (to compensate for the deleterious effects of major drug resistance
mutations [20]), they are not frequent enough to bias tree reconstructions. Polymorphic
mutations can appear spontaneously in treatment-naive individuals and hence are an
important source of phylogenetic signal and were kept. It should also be noted that our
trees were reconstructed from DNA sequences, not proteins, which reduces the impact of
convergent mutations at the amino acid level.

We then dated each tree with LSD2 [21] (v2.3: github.com/tothuhien/lsd2/tree/v1.4.2.2
accessed on 1 April 2023) using tip sampling dates, under strict molecular clock with outlier
removal (see Appendix A for detailed settings). Sequences whose mutation rates were
different from the mean rate for more than three standard deviations were considered
as outliers.

2.3. Ancestral Character Reconstruction

For each DRM (surveillance, polymorphic or accessory) listed in the Stanford HIV
Drug Resistance Database [22] (hivdb.stanford.edu/pages/surveillance.html accessed on
10 May 2023), we extracted its presence/absence in the (unaligned) sequences of our
datasets and the ARVs that can provoke it with Sierra, the Stanford Algorithm [23] web
service. We then analyzed the DRMs that were found in at least 0.5% of sequences

https://github.com/tothuhien/lsd2/tree/v2.3
https://hivdb.stanford.edu/pages/surveillance.html
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(after filtering by patient and temporal outlier removal) of our dataset (either B or C,
analyzed separately).

Each DRM name (e.g., RT:T215D) contains 2 pieces of information: the DRM position
(e.g., RT:T215) and its mutated amino acid, associated with resistance (e.g., D). The DRM
position contains the protein name: RT (reverse transcriptase) or PR (protease), the reference
position of the amino acid (e.g., 215), and its wild-type amino acid (e.g., T).

We analyzed DRMs with prevalence > 0.5% for each dataset. Each DRM position (e.g.,
RT:V179 in the C dataset) was analyzed independently by reconstructing its states in the
ancestral nodes, based on the tip states. The DRMs with prevalence > 0.5% found in this
position (e.g., RT:V179D and RT:V179E in C) were analyzed together. For the majority of
the DRM positions, only one DRM (i.e., mutated amino acid, associated with resistance)
with prevalence > 0.5% was found (e.g., PR:L90M for the position PR:L90). In the B dataset
two positions contained several DRMs (> 0.5%): RT:T215 (RT:T215D, RT:T215F, RT:T215S,
and RT:T215Y) and RT:K219 (RT:K219E, RT:K219N, and RT:K219Q). In the C dataset, one
position contained several DRMs: RT:V179 (RT:V179D and RT:V179E).

Possible states for ancestral character reconstruction (ACR) corresponded to DRM
presence (i.e., the resistant state) or absence (sensitive state) for DRM positions with only
one DRM. For instance, for PR:L90M, the resistant state corresponds to the amino acid M,
and the sensitive state to any other amino acid; in practice, the sensitive state is almost
uniquely L. In the B dataset, 97.79% of sequences have L at the position PR:90; 1.93% have
M; less than 0.01% have W or F, and 0.23% have an ambiguity at this position (so their initial
state for ACR is unresolved between sensitive and resistant). For positions with several
DRMs, the resistant state was split into all the possibilities (e.g., D, F, S, or Y for RT:T215).

For polymorphic mutations (e.g., RT:S68G), ACR was performed on the corresponding
(B or C) time-scaled tree with PastML (v1.9.40, MAP (maximum a posteriori) decision rule),
without taking into account the year of ARV acceptance, as the these mutations could be
present independently of ARVs.

To reconstruct the ancestral character states for non-polymorphic DRMs, we used
the procedure visualized in Figure 1a (which we first proposed and applied to study HIV
resistance patterns in Cuba in [24]). For each ARV, we extracted the dates of their acceptance
with the Wikipedia python package (https://github.com/goldsmith/Wikipedia accessed
on 1 April 2023). We cut the time-scaled tree at the earliest of the dates of acceptance of
ARVs that can provoke the DRM (e.g., for PR:L90M, saquinavir (SQV) was accepted in
1995). We hence obtained the pre-treatment-introduction tree and a forest of post-treatment-
introduction subtrees. For the trees in the forest, we added additional one-child root nodes
(as parents of the corresponding tree roots, at distances that corresponded to the differences
between the root dates and the ARV acceptance date), which we marked as sensitive in
the PastML input annotation file. We performed ACR with PastML on the forest, and then
combined it with the all-sensitive annotation for the pre-treatment-introduction tree nodes.

For two of the multiple-DRM positions (RT:T215 and RT:K219), all the corresponding
DRMs were non-polymorphic and provoked by the same ARVs (the earliest accepted being
zidovudine (AZT, accepted in 1987) for all of them). We therefore cut the tree as explained
above, and reconstructed the ACR for D, F, S, Y, or sensitive (for RT:T215) and for E, N, Q,
or sensitive (for RT:K219) on the after-1987 forest.

Finally, for RT:V179, the mutation RT:V179D was polymorphic, while RT:V179E was
non-polymorphic (provoked by nevirapine, NVP, accepted in 1996). To reconstruct ancestral
characters for RT:V179, we followed the procedure visualized in Figure 1b: First, we cut
the tree at 1996, and reconstructed the ancestral characters (E, D, or sensitive) on the after-
1996 forest (the input states for the forest roots were sensitive or D). We then extended
this reconstruction on the before-1996 tree only for RT:V179D (i.e., possible states: D
or sensitive).

Once ACR was performed for all the DRM positions, we combined the predictions into
a common table mapping node names to their states. A node state was sensitive if no DRM
was reconstructed for this node at any position; otherwise, the state was a combination of

https://github.com/goldsmith/Wikipedia
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DRMs reconstructed for this node in separate DRM analyses (e.g., RT:K103N+RT:V106I if
those DRMs were reconstructed as present for the node of interest while the others were
reconstructed as absent). We visualized this combined result using the COPY method
of PastML.

Figure 1. ACR for DRMs. (a) To reconstruct the ancestral character states, resistant (violet, e.g., M)
or sensitive (gray), for a non-polymorphic DRM (e.g., PR:L90M), we cut the time-scaled tree at the
date of acceptance of the first ARV that can provoke this DRM (for PR:L90M, SQV accepted in 1995),
as shown in the left panel. We hence obtain the pre-treatment-introduction tree (upper part of the
tree) and a forest of post-treatment-introduction subtrees (bottom part). For the trees in the forest,
we then mark their roots as sensitive (middle left panel). We perform the ACR with PastML on
the forest (middle right panel) and combine the results with the the all-sensitive annotation for the
pre-treatment-introduction tree nodes (right panel). (b) To reconstruct the ancestral character states
for the DRM position RT:V179, corresponding to a polymorphic DRM RT:V179D (violet), but also to a
non-polymorphic DRM RT:V179E (orange), we cut the time-scaled tree at the date of acceptance of the
first ARV that can provoke RT:V179E (NVP, accepted in 1996), as shown in the left panel. For the trees
in the after-1996 forest, we then mark their roots as either sensitive (gray) or D (violet, middle left
panel) and perform the ACR with PastML (middle right panel). We then extended this reconstruction
to the before-1996 tree only for RT:V179D (right panel).

2.4. Transmitted versus Acquired Drug Resistance

On a tree whose nodes are annotated with their DRM status, present (resistant) or
absent (sensitive), we defined three configurations: transmitted drug resistance (TDR),
acquired drug resistance (ADR), and DRM loss (see Figure 2).

We defined ADR cases as parent–child node pairs, where the parent DRM status is
sensitive and the child DRM status is resistant.

We defined TDR cases inferred from the tree as either:

1. An internal node whose state was estimated as resistant (i.e., containing the DRM
of interest, see Figure 2c,d). As the internal nodes of the tree roughly correspond to
transmissions, such a node indicates a transmission of a resistant virus.

2. (For non-polymorphic mutations only) A hidden internal node between a node whose
DRM status is resistant and its parent node whose DRM status is sensitive, if all the
tips in the node’s subtree are treatment-naive. According to the treatment status
and the fact that the mutation is non-polymorphic, the initial resistance could not be
acquired through treatment pressure, and hence must have been transmitted from a
patient who was not sampled (and does not appear in the tree, see Figure 2b,d).
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Connected parts of the tree corresponding to TDR cases form TDR clusters (see
Figure 2). We calculated their sizes as the numbers of resistant tips connected to each
cluster. Note that if a TDR cluster subtree contains only treatment-naive patients, it implies
that its root ADR event corresponds to an unsampled treated patient (see Figure 2b,d).

We define DRM loss cases as parent–child node pairs, where the parent DRM status is
resistant, while the child DRM status is sensitive.

Using these configurations, we calculate the source of the DRM status of each tip in
the tree as follows.

2.4.1. For Non-Polymorphic DRMs

1. For treatment-naive tips, the source of their DRM status is:

• TDR if the tip is resistant (see Figure 2a,d);
• TDR+DRM loss if the tip is sensitive and is involved in a DRM loss configuration

(see Figure 2c,d);
• Transmission of a virus without the DRM if the above two cases do not apply.

2. For treatment-experienced tips, the source of their DRM status is:

• ADR (+DRM loss if the tip is sensitive) for one of the treatment-experienced tips
connected to a TDR cluster (see Figure 2c). The patient corresponding to this tip
is assumed to be the source of the TDR cluster. The later DRM loss is possible if
the treatment was changed to drugs that do not provoke the DRM in question.
For other treated tips connected to this cluster, we assume that they received
a resistant virus via TDR. Assuming their treatment was such that it could not
provoke the DRM in question, they could later lose it (hence, +DRM loss if they
are sensitive);

• ADR for a resistant tip not connected to a TDR cluster (Figure 2a);
• Transmission of a virus without the DRM if the above cases do not apply.

3. For the tips whose treatment status is unknown, we consider both cases (naive or
resistant) with equal probabilities (0.5).

2.4.2. For Polymorphic DRMs

We do not consider the treatment status (as such DRMs could appear independently
of treatment) and calculate the source of each tip’s DRM status as follows:

• ADR for a resistant tip not connected to a TDR cluster (as in Figure 2a, independently
of the treatment status);

• ADR (+DRM loss if the tip is sensitive) for one of the tips connected to a TDR cluster
(as in Figure 2c, independently of the treatment status). The individual corresponding
to this tip is assumed to be the source of the TDR cluster. For other tips connected to
this cluster, we assume that they received a resistant virus via TDR. They could later
lose it (hence, +DRM loss if they are sensitive);

• Transmission of a virus without the DRM if the above cases do not apply.

We count the numbers of tip DRM status sources of each type (ADR: NADR, TDR: NTDR,
or loss: Nloss (see Algorithm A1, Appendix B for details)) and report the results in Tables 1 and 2.
We count all the identified DRM loss events, all the identified (observed and hidden) TDR
events, and only those ADR events that are not at the root of naive-only TDR clusters, as the
latter happened in unsampled treatment-experienced patients (see Figure 2b,d).

Note that Nresistant tips = NADR + NTDR−Nloss. For example, in Figure 2c, all the events
correspond to observed tips, so we count one ADR, three TDR, and one DRM loss events:
Nresistant tips = 3 = 1 + 3− 1. Figure 2d represents a more complex case: we count one
hidden TDR event (as it led to the resistance status of one of the observed tips) and three
observed TDR events (leading to resistance statuses of other observed tips). We do not
count the ADR event (as it corresponds to an unobserved patient, whose virus is not in
our dataset). We also count one DRM loss event, which led to one of the tips regaining its
sensitive state. Hence, Nresistant tips = 3; NADR = 0; NTDR = 4; Nloss = 1; 3 = 0 + 4− 1.
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Table 1. DRMs in B datasetwith prevalence > 0.5%. Polym. stands for polymorphic DRMs. For
non-polymorphic DRMs, the first ARV that could provoke it and its acceptance date are shown.
Nresistant cases = NTDR + NADR − Nloss.

DRM Class 1st ARV Resistant Cases TDR ADR Loss
and (% of All) Treatment- Cases Cluster Cases Cases

Its Date Experienced Naive (% of Num. Sizes (% of (% of
(% of Resistant) Resistant) Resistant) Resistant)

RT:S68G NRTI polym. 3178 (8.1%) 436 (13.7%) 2482 (78.1%) 2436.00 (76.7%) 249 1–759 803.00 (25.3%) 61 (1.9%)
RT:K103N NNRTI NVP’96 2025 (5.2%) 1104 (54.5%) 745 (36.8%) 1071.51 (52.9%) 516.5 1–78 1088.49 (53.8%) 135 (6.7%)
RT:M184V NRTI AZT’87 1899 (4.8%) 1642 (86.5%) 110 (5.8%) 343.62 (18.1%) 278.5 1–4 1667.38 (87.8%) 112 (5.9%)
RT:M41L NRTI AZT’87 1513 (3.9%) 982 (64.9%) 428 (28.3%) 618.50 (40.9%) 305.5 1–55 968.50 (64.0%) 74 (4.9%)
RT:V106I NNRTI polym. 1051 (2.7%) 217 (20.6%) 715 (68.0%) 540.00 (51.4%) 150 1–74 647.00 (61.6%) 136 (12.9%)
RT:D67N NRTI AZT’87 1035 (2.6%) 806 (77.9%) 150 (14.5%) 273.00 (26.4%) 170.5 1–21 794.00 (76.7%) 32 (3.1%)
RT:T215Y NRTI AZT’87 883 (2.3%) 790 (89.5%) 37 (4.2%) 119.50 (13.5%) 102.5 1–5 785.50 (89.0%) 22 (2.5%)
RT:E138A NNRTI polym. 862 (2.2%) 163 (18.9%) 637 (73.9%) 523.00 (60.7%) 117 1–158 393.00 (45.6%) 54 (6.3%)
PR:L90M PI SQV’95 849 (2.2%) 480 (56.5%) 289 (34.0%) 460.77 (54.3%) 128 1–114 450.23 (53.0%) 62 (7.3%)
RT:V179D NNRTI polym. 790 (2.0%) 151 (19.1%) 559 (70.8%) 415.00 (52.5%) 93 1–45 438.00 (55.4%) 63 (8.0%)
RT:K70R NRTI AZT’87 711 (1.8%) 610 (85.8%) 54 (7.6%) 143.75 (20.2%) 98.5 1–7 615.25 (86.5%) 48 (6.8%)
RT:L210W NRTI AZT’87 705 (1.8%) 520 (73.8%) 140 (19.9%) 205.00 (29.1%) 147 1–9 524.00 (74.3%) 24 (3.4%)
RT:Y181C NNRTI NVP’96 694 (1.8%) 495 (71.3%) 115 (16.6%) 208.00 (30.0%) 148 1–12 509.00 (73.3%) 23 (3.3%)
RT:K219Q NRTI AZT’87 563 (1.4%) 322 (57.2%) 194 (34.5%) 307.25 (54.6%) 99 1–92 303.75 (54.0%) 48 (8.5%)
RT:H221Y NNRTI NVP’96 475 (1.2%) 269 (56.6%) 162 (34.1%) 220.00 (46.3%) 87 1–64 267.00 (56.2%) 12 (2.5%)
RT:T215D NRTI AZT’87 462 (1.2%) 86 (18.6%) 334 (72.3%) 459.25 (99.4%) 103 1–99 71.75 (15.5%) 69 (14.9%)
RT:G190A NNRTI NVP’96 447 (1.1%) 342 (76.5%) 68 (15.2%) 117.25 (26.2%) 97 1–6 350.75 (78.5%) 21 (4.7%)
RT:V108I NNRTI NVP’96 429 (1.1%) 219 (51.0%) 167 (38.9%) 230.00 (53.6%) 166 1–8 232.00 (54.1%) 33 (7.7%)
PR:M46I PI SQV’95 378 (1.0%) 246 (65.1%) 97 (25.7%) 140.39 (37.1%) 108.5 1–6 250.61 (66.3%) 13 (3.4%)
RT:T215S NRTI AZT’87 378 (1.0%) 59 (15.6%) 293 (77.5%) 364.25 (96.4%) 115 1–45 51.75 (13.7%) 38 (10.1%)
PR:V82A PI SQV’95 295 (0.8%) 216 (73.2%) 51 (17.3%) 88.02 (29.8%) 53 1–11 218.98 (74.2%) 12 (4.1%)
RT:E44D NRTI AZT’87 294 (0.8%) 180 (61.2%) 93 (31.6%) 129.62 (44.1%) 77 1–29 183.38 (62.4%) 19 (6.5%)
RT:K101E NNRTI NVP’96 276 (0.7%) 189 (68.5%) 64 (23.2%) 94.50 (34.2%) 71.5 1–9 190.50 (69.0%) 9 (3.3%)
RT:K219E NRTI AZT’87 262 (0.7%) 192 (73.3%) 43 (16.4%) 74.75 (28.5%) 51.5 1–9 192.25 (73.4%) 5 (1.9%)
RT:T215F NRTI AZT’87 257 (0.7%) 215 (83.7%) 19 (7.4%) 41.25 (16.1%) 37 1–4 222.75 (86.7%) 7 (2.7%)
RT:A62V NRTI AZT’87 251 (0.6%) 147 (58.6%) 81 (32.3%) 114.50 (45.6%) 58.5 1–27 147.50 (58.8%) 11 (4.4%)
PR:I54V PI SQV’95 243 (0.6%) 182 (74.9%) 33 (13.6%) 62.52 (25.7%) 43 1–6 191.48 (78.8%) 11 (4.5%)
RT:L74V NRTI DDI’91 242 (0.6%) 200 (82.6%) 17 (7.0%) 38.25 (15.8%) 36 1–3 207.75 (85.8%) 4 (1.7%)
RT:K219N NRTI AZT’87 238 (0.6%) 92 (38.7%) 127 (53.4%) 161.00 (67.6%) 23 1–113 81.00 (34.0%) 4 (1.7%)
PR:L33F PI SQV’95 230 (0.6%) 117 (50.9%) 92 (40.0%) 126.12 (54.8%) 70 1–10 114.88 (49.9%) 11 (4.8%)
RT:K65R NRTI AZT’87 225 (0.6%) 170 (75.6%) 19 (8.4%) 50.88 (22.6%) 42 1–2 187.12 (83.2%) 13 (5.8%)

Table 2. DRMs in C datasetwith prevalence > 0.5%. Polym. stands for polymorphic DRMs. For
non-polymorphic DRMs, the first ARV that could provoke it and its acceptance date are shown.
Nresistant cases = NTDR + NADR − Nloss.

DRM Class 1st ARV Resistant Cases TDR ADR Loss
and (% of All) Treatment- Cases Cluster Cases Cases

Its Date Experienced Naive (% of Num. Sizes (% of (% of
(% of Resistant) Resistant) Resistant) Resistant)

RT:E138A NNRTI polym. 2176 (11.6%) 512 (23.5%) 1381 (63.5%) 1802.00 (82.8%) 136 2–1178 531.00 (24.4%) 157 (7.2%)
RT:M184V NRTI AZT’87 1009 (5.4%) 789 (78.2%) 79 (7.8%) 213.88 (21.2%) 197 1–4 833.12 (82.6%) 38 (3.8%)
RT:K103N NNRTI NVP’96 882 (4.7%) 605 (68.6%) 182 (20.6%) 317.12 (36.0%) 267 1–5 615.88 (69.8%) 51 (5.8%)
RT:Y181C NNRTI NVP’96 419 (2.2%) 299 (71.4%) 56 (13.4%) 108.38 (25.9%) 98 1–4 321.62 (76.8%) 11 (2.6%)
RT:V106M NNRTI NVP’96 381 (2.0%) 301 (79.0%) 36 (9.4%) 71.25 (18.7%) 66 1–4 319.75 (83.9%) 10 (2.6%)
RT:V179D NNRTI polym. 294 (1.6%) 99 (33.7%) 159 (54.1%) 105.00 (35.7%) 39 1–19 212.00 (72.1%) 23 (7.8%)
RT:D67N NRTI AZT’87 289 (1.5%) 215 (74.4%) 25 (8.7%) 65.25 (22.6%) 56.5 1–4 228.75 (79.2%) 5 (1.7%)
RT:G190A NNRTI NVP’96 287 (1.5%) 213 (74.2%) 34 (11.8%) 71.25 (24.8%) 65.5 1–4 224.75 (78.3%) 9 (3.1%)
RT:K65R NRTI AZT’87 244 (1.3%) 199 (81.6%) 15 (6.1%) 38.50 (15.8%) 36.5 1–2 211.50 (86.7%) 6 (2.5%)
RT:K101E NNRTI NVP’96 244 (1.3%) 164 (67.2%) 54 (22.1%) 82.75 (33.9%) 73.5 1–4 168.25 (69.0%) 7 (2.9%)
RT:A98G NNRTI NVP’96 239 (1.3%) 115 (48.1%) 78 (32.6%) 112.12 (46.9%) 99 1–4 126.88 (53.1%)
RT:K70R NRTI AZT’87 196 (1.0%) 152 (77.6%) 19 (9.7%) 38.62 (19.7%) 35.5 1–4 161.38 (82.3%) 4 (2.0%)
RT:V108I NNRTI NVP’96 194 (1.0%) 114 (58.8%) 55 (28.4%) 77.75 (40.1%) 72 1–3 123.25 (63.5%) 7 (3.6%)
RT:H221Y NNRTI NVP’96 173 (0.9%) 123 (71.1%) 27 (15.6%) 45.75 (26.4%) 42.5 1–2 133.25 (77.0%) 6 (3.5%)
RT:M41L NRTI AZT’87 171 (0.9%) 117 (68.4%) 25 (14.6%) 51.72 (30.2%) 43.5 1–5 120.28 (70.3%) 1 (0.6%)
RT:S68G NRTI polym. 160 (0.9%) 51 (31.9%) 87 (54.4%) 37.00 (23.1%) 18 2–12 124.00 (77.5%) 1 (0.6%)
PR:Q58E PI polym. 153 (0.8%) 31 (20.3%) 97 (63.4%) 49.00 (32.0%) 24 2–12 106.00 (69.3%) 2 (1.3%)
RT:T215Y NRTI AZT’87 137 (0.7%) 97 (70.8%) 13 (9.5%) 37.97 (27.7%) 31.5 1–5 105.03 (76.7%) 6 (4.4%)
RT:V179E NNRTI NVP’96 120 (0.6%) 11 (9.2%) 34 (28.3%) 108.25 (90.2%) 24 1–80 12.75 (10.6%) 1 (0.8%)
RT:K219E NRTI AZT’87 109 (0.6%) 80 (73.4%) 15 (13.8%) 25.50 (23.4%) 24.5 1–3 83.50 (76.6%)
PR:L90M PI SQV’95 108 (0.6%) 62 (57.4%) 22 (20.4%) 43.00 (39.8%) 35.5 1–4 67.00 (62.0%) 2 (1.9%)
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Figure 2. ADR and TDR scenarios. Each panel represents (left) a configuration observed in a
tree whose nodes are annotated with their non-polymorphic DRM status (resistant nodes are violet,
sensitive are gray) and (right) the most parsimonious transmission scenario (i.e., with the least number
of events) leading to this configuration. The TDR clusters corresponding to the inferred scenarios are
shown with a violet background. (a) The observed tree (left) contains a tip, corresponding to a sample
of a resistant virus from a treatment-experienced individual, while its parent node (corresponding to
a transmission) is sensitive. In the simplest scenario (right), the treatment-experienced individual’s
virus acquired the DRM after the last observed transmission. (b) The observed tree (left) contains a
tip, corresponding to a sample of a resistant virus from a treatment-naive individual, while its parent
node (corresponding to a transmission) is sensitive. The simplest scenario (right) includes a hidden
transmission of a resistant virus from an unsampled treatment-experienced individual (dashed node
and branch), whose virus previously acquired the DRM. (c) The observed tree (left) contains one or
several (here, three) connected internal resistant nodes (corresponding to transmissions), leading to
some treatment-naive tips (here, three) and at least one treatment-experienced tip. Some of the tips
might be sensitive (here, one), while the others (here, three) are resistant. In the simplest scenario
(right), the treatment-experienced individual’s virus first acquired the DRM, then transmitted it
to one (or several; here, two) treatment-naive individuals, who might have further transmitted
the resistant virus between them (here, the transmission on the right). Some of the viruses might
have eventually lost the DRM in the absence of drug-selective pressure (here, the treatment-naive
sensitive tip in the bottom). (d) The observed tree (left) contains one or several (here, three) connected
internal resistant nodes (corresponding to transmissions), leading to only treatment-naive tips (here,
four). In the simplest scenario (right,) an unsampled (and hence unobserved) treatment-experienced
individual’s virus first acquired the DRM (before the oldest resistant internal node); then, its host
(dashed line) transmitted it (dashed node) to one (or several; here, one) treatment-naive individuals
of the observed cluster, who might have further transmitted the resistant virus between them (here,
all three transmissions). Some of the viruses might have eventually lost the DRM in the absence of
drug-selective pressure (here, the treatment-naive sensitive tip at the bottom).

2.5. Times of DRM Loss

To estimate the DRM loss times, we used survival analysis with an exponential
(constant hazard) model (Weibull model with β = 1), implemented in Python3 package
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SurPyval (github.com/derrynknife/SurPyval accessed on 1 April 2023, v0.10.10). This
model takes as input observations about event durations and estimates the rate at which the
event occurs. The input data might be left-, right-, or interval-censored. Left-censored data
represent times that are longer than the event occurrences, e.g., if the DRM loss occurred
in exactly 2 years, but the observation was only made after 3 years, the 3-year duration
represents a left-censored data point. Right-censored data represent times that are shorter
than the event occurrences, e.g., if for the same DRM loss the only observation was made
after 1 year (and observed no DRM loss), the 1-year duration represents a right-censored
data point. Interval-censored data represent cases when both a left- and a right-censored
data point are available, e.g., for the same DRM loss an interval-censored datum might
state that it occurred sometime between 1 and 3 years.

For each individual represented in our dataset, we extracted at most one data point
for the loss survival analysis, as described below. We estimated the loss times for non-
polymorphic DRMs, assuming each DRM can be acquired only in the presence of selective
pressure of the ARVs that could provoke it and lost in the absence of such ARVs. However,
the treatment composition of individuals was not recorded in our datasets; we only had
information on whether they were on treatment or were treatment-naive. Therefore, if
a DRM loss did happen (i.e., a sample with a DRM followed by a subsequent sample
without the DRM) and the corresponding individual’s state was treatment-experienced, we
assumed the treatment was such that it could not provoke this DRM and counted this as a
DRM loss, just as in the case of an ARV interruption.

A right-censored data point represents the maximal observed duration during which a
mutation loss did not occur. We extracted such points for the individuals who had several
consecutive treatment-naive samples with the DRM of interest (and of the subtype of
interest) in our metadata: we took the difference in sampling times of the last such sample
and the first one.

A left-censored data point represents a duration that is longer than the mutation loss
time. To estimate such a duration, we needed to know not only (1) the time by which
the individual’s virus lost the DRM, but also (2) the earliest time by which it could have
acquired it (the difference making an upper limit on the loss duration). For (1), we used
the time of the earliest sample without the DRM, provided it was preceded by samples
with the DRM. For (2), we used either (2a) the time of the latest sample without the DRM
preceding the aforementioned samples (where the DRM was present and then lost), if such
sample existed in the metadata, or (2b) if the earliest metadata sample already had the
DRM (which implies it corresponded to a resistant tip in the tree), the time of the tip’s most
recent ancestral node whose status was sensitive (with marginal probability > 0.95).

For individuals for whom both a left- and a right-censored data point was present, we
converted them to an interval-censored one.

We reported the resulting DRM loss time estimates (i.e., inverse of the loss rates) for
non-polymorphic DRMs with at least 5 left-censored and 5 right-censored data points
(interval-censored data points counted as both). We estimated confidence intervals (CIs) as
the 2.5 and 97.5 percentiles of the loss times estimated on bootstrapped data points of the
same size (with 1000 repetitions).

3. Results
3.1. HIV in the UK

Antiretroviral therapy (ART) was introduced in the UK more than 30 years ago and
transformed HIV from a fatal infection into a chronic, manageable condition [25–27]. It is
accepted that successful ART results in an “undetectable” viral load, which is protective
from passing on the virus to others [28,29].

In the UK, a patient’s viral load is regularly monitored by clinicians: patients attend bi-
annual or quarterly clinical visits, depending on how well they do on treatment. Moreover,
the increase in viral load comes with symptoms (generally, opportunistic infections that

https://github.com/derrynknife/SurPyval
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persist longer than they should). A suspicious increase from undetectable to detectable
viral load (i.e., viral rebound) is the first sign of treatment failure.

In case of a viral rebound, the virus is sequenced to discriminate between resistance
(presence of a known DRM) and poor adherence (failure without DRM, if a patient does
not take the drugs regularly according to prescription). If resistance is the reason for a
treatment failure, the treatment is changed.

Therefore, in the case of treatment failure, there is a window of opportunity for the
virus to be transmitted: between the time the viral load increases to transmittable levels and
the time when the clinician realizes it has increased and changes treatment. The probability
of transmission varies across patients and depends on various factors [5].

The information collected from the HIV drug resistance tests carried out in the UK since
1996 is available in the UK HIV Drug Resistance Database. The database stores protease
(PR) and reverse transcriptase (RT) sequences for about 50% of infected individuals in
the UK.

3.2. UK HIV Dataset

We used the data from the UK HIV Drug Resistance Database containing samples
from 1996 to 2016 to estimate transmission mechanisms for different common DRMs.

Out of 88,009 initial sequences obtained from the database, the majority were of
subtypes B (58,569 sequences, 66.5%) and C (27,151 sequences, 30.1%); we also detected
8 D, 1 F, 2 G, and 3 K (<0.0001%) sequences and 2276 potentially recombinant sequences
(2.6%; in particular 494 A, B, G and 446 B, K recombinants (0.5%)). We report these and
other dataset statistics in Table 3.

Table 3. Statistics on the B and C datasets. The “with DRM(s)” statistics count samples with at
least one unambiguous resistant amino acid at any DRM position. Samples that contained either
non-resistant or ambiguous amino acids at all DRM positions were considered as “without DRMs”.
“p DRM(s)” stands for polymorphic DRMs, while “np DRMs” stands for non-polymorphic ones. Note
that the same sequence might contain both p and np DRMs (at different positions).

B C

total 58,569 27,151
filtered by patient (first only, % of total) 40,055 (68%) 19,139 (70%)

– without temporal outliers (% of filtered) 39,159 (99%) 18,809 (98%)
– with DRM(s) (% of w/o outliers) 12,300 (31%) 5148 (27%)

– w. 1 DRM (% of w/o outliers) 7257 (19%) 3174 (17%)
– w. ≥ 2 DRMs (% of w/o outliers) 5043 (13%) 1974 (10%)

– with np DRM(s) (% of w/o outliers) 7641 (20%) 3014 (16%)
– w. 1 np DRM (% of w/o outliers) 3852 (10%) 1496 (8%)
– w. ≥ 2 np DRMs (% of w/o outliers) 3789 (10%) 1518 (8%)

– with p DRM(s) (% of w/o outliers) 5740 (15%) 2673 (14%)
– w. 1 p DRM(s) (% of w/o outliers) 5416 (14%) 2538 (13%)
– w. ≥ 2 p DRM(s) (% of w/o outliers) 324 (1%) 135 (1%)

Number treatment-naive (% of w/o outliers) 28,175 (72%) 12,286 (65%)
of – with DRM(s) (% of tr.-naive) 7091 (25%) 2361 (19%)
sequences – with np DRM(s) (% of tr.-naive) 3364 (12%) 829 (7%)

– with p DRM(s) (% of tr.-naive) 4260 (15%) 1656 (13%)
treatment-experienced (% of w/o outliers) 7732 (20%) 4503 (24%)

– with DRM(s) (% of tr.-experienced) 4141 (54%) 2112 (47%)
– with np DRM(s) (% of tr.-experienced) 3618 (47%) 1730 (38%)
– with p DRM(s) (% of tr.-experienced) 971 (13%) 665 (15%)

treatment-unknown (% of w/o outliers) 3252 (8%) 2020 (11%)

Root date (95% CI) 1965 (’59–’65) 1944 (’29–’49)
Mutation rate (95% CI) × 10−3[ mutations

site·year ] 1.9 (1.8–1.9) 1.4 (1.3–1.4)

Phylogenetic diversity = tree length
number of branches [ mutations

site·branch ] 0.014 0.019

We focused on subtypes B and C. In our phylogenetic analyses, we kept one sequence
per patient (the first sampled) in order to (i) have a homogeneous transmission tree where
each patient is represented by a single tip (i.e., between-host rather than between- and
within-host) and (ii) reduce the computational complexity of tree reconstructions (which
took several months on a computing cluster even with a single sequence per patient). The
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remaining sequences of the multiply sampled patients (26,526 out of 85,720 sequences) were
used to estimate reversion times but were not integrated into phylogeny-based analyses to
avoid biasing the results (DRM loss and ADR can be extracted from such serial data, but
not TDR).

We hence obtained a 40,055-sequence dataset for B and a 19,139-sequence dataset for
C. We further filtered these datasets by removing temporal outliers (<2% of sequences), as
they could correspond to erroneous dates or poorly sequenced samples (e.g., due to viral
load-mediated stochasticity, base-calling software errors, or issues with sample transport
and receipt). The final datasets contained 39,159 sequences for B and 18,809 for C.

We detected 161 DRMs found in at least one sequence of the B dataset, and 146 DRMs
for C. 31.4% of B and 27.4% of C sequences had at least one of these DRMs present, 18.5%
of B and 16.9% of C sequences had only one mutation, while the others had multiple DRMs
present. While the subtypes B and C are different, as are the locations where these subtypes
are most prevalent (African countries for C versus the UK and other European countries
for B), we did not detect major differences in DRM distribution in the B and C datasets.
Hence, while more C than B sequences correspond to imported cases, the UK health policies
must play an important role on their DRM patterns, independently of the subtype. In
a recent study Blassel et al. [30] compared DRMs in a UK and an African datasets and
reported that the median number of DRMs in resistant sequences differed between the
two datasets (three in the African sequences versus one in the UK sequences). In our case,
there was no difference between B and C datasets if all DRMs were considered (median
number of one DRM for both B and C datasets in resistant sequences); if we considered only
non-polymorphic DRMs, a slight difference appeared (one for B vs. two for C). Detailed
statistics on DRM number distributions are shown in Table A1. There was, however, a
significant difference in the TDR distribution: more TDR could be suspected among the B
samples (12% of treatment-naive sequences had non-polymorphic DRMs present, while in
the C samples, there were only 7% of such sequences).

3.3. Drug Resistance Analyses

We reconstructed time-scaled phylogenetic trees for B and C datasets and performed
ancestral character reconstruction for each of the selected DRMs and positions to look at
their transmission patterns. Consistently with what was previously reported in HIV-1
group M studies (of the pol gene [31] and of the full-genome [32]), we estimated a faster
mutation rate (1.9 × 10−3 (mutations per site per year)) and a more recent root date (1965)
for subtype B than for subtype C (1.4 × 10−3; 1944). More details on B and C datasets can
be found in Table 3.

On the time-scaled trees we analyzed the transmission patterns of the DRMs found in
at least 0.5% of sequences: 31 DRMs (on 26 different positions) for B and 21 (on 20 different
positions) for C. The threshold of 0.5% permitted us to analyze all the major DRMs while
having enough sequences representing these DRMs in the dataset. The major drug resis-
tance patterns found in the B and C datasets are visualized in Figures 3 and 4. The statistics
on these DRMs and their loss times are shown in Tables 1–4.

While some of the DRMs (e.g., RT:M184V) are comparably prevalent in B and C
(4.8% of resistant cases vs. 5.4%), others are very subtype-specific. For instance, the non-
polymorphic mutation PR:L90M is present in 2.2% of B resistant cases and only in 0.6% of
C. Another example is the mutations in position RT:106. In the B dataset, the polymorphic
DRM RT:V106I is present in 3.9% of resistant cases and is 30 times more prevalent than the
non-polymorphic DRM RT:V106M, which was not selected for our analysis due to its low
prevalence; for the C dataset, we have the opposite distribution: RT:V106M is present in 2%
of resistant cases and is 16 times more prevalent than RT:V106I, which was not selected for
our analyses. More examples are given in Tables 1 and 2.
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Figure 3. Major resistance patterns found in B dataset. States of tree nodes are shown as labels,
e.g.,“PR_L90M” corresponds to the presence of DRM PR:L90M and absence of the other DRMs.
The nodes are colored by DRM found in them (if several DRMs are present, the color of the (lex-
icographically) first DRM is used). The nodes with no DRM are colored gray and labeled “sensi-
tive”. The parts of the tree where no state change happens are clustered together into metanodes,
and their size corresponds to the number of samples (tips) they contain (shown in labels), e.g.,
“RT_K103N+RT_S68G+RT_T215S 36” (violet, on the bottom) corresponds to a transmitted resistance
cluster containing 36 samples in the B dataset, having three mutations. Configurations present several
times are shown once and the number of occurrences is shown on the corresponding branch, e.g., a
branch of size 247 leading to the metanode “RT_V179D 1-8” (salad green, on the top right) represents
247 cases of acquiring the mutation RT:V179D leading to small transmission clusters of sizes between
1 and 8. Configurations representing less than 34 samples are not shown to increase readability.

Using the metadata only, we can already see that there is a clear difference between
polymorphic and non-polymorphic mutations. While the presence of most of the latter ones
correlated with the treatment status (e.g., 86.5% of B sequences with the non-polymorphic
mutation RT:M184V are from treatment-experienced patients), it is the opposite for the
former, which are more prevalent in treatment-naive sequences (e.g., 78.1% of B sequences
with RT:S68G are treatment-naive, see Table 1). Indeed, while the polymorphic DRMs can
appear spontaneously, the non-polymorphic ones are selected by treatment, and carrying
them often implies a fitness cost [9]. However, a few non-polymorphic DRM do not follow
this pattern and are more prevalent in treatment-naive individuals: RT:T215D, RT:T215S,
and RT:K219N in B and RT:V179E in C. The RT:T215D/S are reversions often developed
in patients primarily infected with strains with RT:T215Y/F and hence have a higher
fitness [33]. This is further confirmed by our estimation of the loss times: the loss times of
RT:T215D/S are long (9.3 and 6.8 years versus 1.1 and 1.8 years for RT:T215Y/F, see Table 4),
which may explain their prevalence in treatment-naive patients. Similarly, we estimated a
rather long loss time for RT:K219N (3.7 years). We did not have enough data to estimate the
loss time of RT:V179E. While this mutation is generally considered as non-polymorphic [34],
its natural presence in treatment-naive patients has been reported for the HIV-1 common
recombinant form CRF55_01B [35].
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Figure 4. Major resistance patterns found in C dataset. States of tree nodes are shown as labels, e.g.,
“RT_E138A” (salad green nodes in the middle) corresponds to the presence of DRM RT:E138A and
absence of the other DRMs. The nodes are colored according to the DRM found in them (if several
DRMs are present, the color of the (lexicographically) first DRM is used). The nodes with no DRM
found are colored gray and labeled “sensitive”. The parts of the tree where no state change happens
are clustered together into metanodes, and their size corresponds to the number of samples (tips)
they contain (shown in labels). Configurations present several times are shown once and the number
of occurrences is shown on the corresponding branch, e.g., a branch of size 23 leading to the blue
metanode “PR_L90M 1-3” (top left) represents 23 cases of acquiring the mutation PR:L90M, leading
to small resistance clusters of sizes 1–3. Configurations representing less than 11 samples are not
shown to increase readability.

Using the information from the tree, we refined the mutation statistics further, classi-
fying resistant mutations sources into TDR vs. ADR and detecting DRM loss events (see
Tables 1 and 2). The C dataset featured smaller TDR clusters (apart from the polymorphic
mutation RT:E138A) than B. This could be explained by multiple introductions of subtype
C into different regions of the UK and different risk groups, particularly from Africa via
immigration, which is consistent with the higher diversity of the C strains observed in our
data (C: 0.019 vs. B: 0.014 (mutations per site per branch), Table 3) and with the dates of
origin of the two UK sub-epidemics (C: 1944 vs. B: 1965, Table 3).

A large size (e.g., 78 individuals in the B dataset for RT:K103N) of some of the TDR clus-
ters and a rather high proportion of TDR cases among the resistant ones (see Tables 1 and 2)
is clinically problematic, as it means a high level of resistant strain transmission, leading to
a decrease in treatment choice at the population level.

We further analyzed each mutation position over time (see Supplementary Tables S1–S46)
and found a common pattern: the proportion of resistant cases with respect to all cases de-
creases over time; however, the proportion of resistant cases in treatment-naive individuals
and, consistently, the proportion of TDR with respect to ADR increases. This pattern is
illustrated well by the mutations in position RT:215 (see Figure 5 and Table A2).

However, there are exceptions with respect to the decrease in the proportion of resistant
cases over time, especially among the polymorphic DRMs, consistent with the fact that they
have little or no fitness cost associated with them. For the polymorphic mutation RT:E138A,
this proportions has been increasing from 2001 to mid-March 2016 (the last sampling time
in our data): from 1.9% to 2.2% in the B dataset and from 8.3% to 11.6% in the C dataset
(Tables S8 and S31). Similarly, the proportion of resistant cases with polymorphic RT:S68G
has been increasing from 4.6% in 2001 to 8.1% in 2016 in B and from 0.3% to 0.9% in C
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(Tables S21 and S41). The proportion of resistant cases with polymorphic RT:V106I has been
increasing in B from 2% in 2001 to 2.7% in 2016, while the proportion of non-polymorphic
RT:V106M (similar to RT:V106I) in C seems to have stabilized at 2% over the last five
sampling years (2011–2016, Tables S23 and S43). The proportion of resistant cases with
polymorphic RT:V179D has been increasing in B from 1.3% in 2001 to 2% in 2016, as did the
proportion of non-polymorphic RT:V179E (similar to RT:V179D) in C, from 0.1% in 2006 to
0.6% in 2016. Meanwhile, the proportion of RT:V179D has remained stable (∼1.5%) over the
last 10 sampling years (2006–2016, Tables S25 and S45). Finally, the proportion of resistant
cases with polymorphic PR:Q58E has been increasing in subtype C: from 0.6% in 2006 to
0.8% in 2016 (Table S28; we did not analyze this for B due to its low prevalence). These
results clearly indicate that the spread of polymorphic DRMs should become a subject of
particular surveillance.

Figure 5. DRMs with prevalence > 0.5% in position RT:215 in the B dataset (wild-type amino acid is T;
non-polymorphic AZT-resistant mutations are D, F, S, and Y). ACR was performed for the RT position
215 with five possible states: D (lilac), F (salad green), S (light blue), Y (violet), and other (sensitive,
gray). The parts of the tree where no state change happens are clustered together into metanodes, and
their size corresponds to the number of samples (tips) they contain (shown in labels), e.g., “RT_T215D
99” (lilac, top left) corresponds to a transmitted RT:T215D resistance cluster containing 99 samples in
the B dataset. Configurations present several times are shown once, and the number of occurrences is
shown on the corresponding branch, e.g., the branch of size 804 leading to the metanode “RT_T215Y
1-5” (violet, right) represents 804 cases of acquired RT:T215Y mutation leading to small transmission
clusters of sizes between 1 and 5. Configurations representing less than 2 samples are not shown to
increase readability.

3.4. DRM Loss Times

We estimated the times of DRM loss for non-polymorphic DRMs in our datasets and
compared them to the estimates previously reported by Castro et al. [5]. Castro et al.
analyzed 313 patients from the UK Drug Resistance database who were treatment-naive
and had a DRM present in their first resistance test (performed between 1997 and 2009),
mixing all the subtypes and using survival analysis. We also used survival analysis, but we
had a larger dataset that included information not only from the metadata, but also from
the tree, and thus analyzed the subtypes separately. Our results and the comparison are
shown in Table 4. Overall, out estimates are compatible with those by Castro et al. [5]: the
CIs of the two studies intersect for all the DRMs except for RT:K103N in the C dataset. The
difference for RT:K103N could be explained by the fact that Castro et al. analyzed different
subtypes together (though the majority of samples used were from B), while we performed
a subtype-specific analysis: our estimate for RT:K103N on the B dataset (2.0–2.6 years) is
compatible with the one by Castro et al. [5] (2.0–6.8 years). Our CIs are systematically
narrower than those of Castro et al. While the CIs estimated in our study and the ones by
Castro et al. intersect, our point estimates are systematically lower than those of Castro
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et al. This could be explained by the fact that Castro et al. used only left-censored intervals
(i.e., longer than the event time) in their analyses, while we used both left- (longer) and
right-censored (shorter than the event time) intervals (see Section 2 for more details).

Table 4. Loss times (with 95% CIs) for non-polymorphic DRMs found in B and C datasets with
prevalence > 0.5% and at least 5 left- and 5 right-censored data points (the exact numbers of data
points are shown in Table A3).

DRM Class Loss Duration + CI (Years)
Our Estimate B Our Estimate C Castro et al.’13 [5]

PR:L33F PI 3.1 (2.2–4.8)
PR:M46I PI 1.1 (0.7–1.9)
PR:I54V PI 2.2 (1.6–3.6) 3.3 (1.4–7.8)
PR:V82A PI 3.3 (2.4–4.9) 5.1 (1.8–14.8)
PR:L90M PI 2.7 (2.1–3.7) 5.8 (2.2–15.3)
RT:M41L NRTI 4.3 (3.6–5.2) 8.6 (4.6–16.0)
RT:E44D NRTI 3.0 (2.0–5.6)
RT:A62V NRTI 2.4 (1.8–3.6)
RT:D67N NRTI 2.1 (1.7–2.8) 6.0 (2.1–16.9)
RT:K70R NRTI 1.3 (1.1–2.1) 1.8 (0.8–4.0)

RT:K103N NNRTI 2.2 (2.0–2.6) 1.1 (0.9–1.6) 3.7 (2.0–6.8)
RT:V108I NNRTI 1.3 (1.0–1.9)
RT:Y181C NNRTI 1.3 (1.0–2.1) 3.7 (2.0–6.8)
RT:M184V NRTI 0.6 (0.5–0.8) 0.6 (0.5–0.8) 1.0 (0.5–2.0)
RT:G190A NNRTI 1.8 (1.5–2.5) 3.6 (1.2–15.5)
RT:L210W NRTI 2.9 (2.3–4.1) 4.8 (2.1–11.2)
RT:T215D NRTI 9.3 (6.4–12.2)
RT:T215F NRTI 1.8 (1.6–3.1) 1.2 (0.3–4.6)
RT:T215S NRTI 6.8 (4.7–9.6)
RT:T215Y NRTI 1.1 (1.0–1.8) 1.7 (0.8–3.4)
RT:K219Q NRTI 4.9 (3.8–6.4) 15.8 (3.6–70.0)
RT:K219N NRTI 3.7 (2.6–5.7) 4.6 (1.0–22.4)
RT:K219E NRTI 1.7 (1.3–3.0)
RT:H221Y NNRTI 1.7 (1.4–2.5)

The visualization using ACR for the DRMs at the position RT:T215 (Figure 5) is
consistent with the estimated loss patterns. For two of the mutations found in this position
(RT:T215D and RT:T215S) the loss times are long (9.3 and 6.8 years, respectively), which
allows them to form large TDR clusters (up to 99 and 45 samples, respectively, left and
bottom part of Figure 5). For the other two mutations found in this position (RT:T215F and
RT:T215Y), the loss times (including potential reversions to D or S) are rather short (1.8 and
1.1 years), which prevents them from forming significant TDR clusters.

4. Discussion

We proposed fast maximum-likelihood ACR methods for the investigation of drug
resistance patterns in large sequence datasets. Their application to ∼40,000 subtype B and
∼20,000 subtype C sequences from the UK HIV Drug Resistance Database allowed us to
investigate the trends in drug resistance patterns between 1996 and 2016 and to estimate
the loss times for 25 common non-polymorphic DRMs.

An important advantage of our methods is their applicability to very large datasets
(dozens of thousands of sequences). Previous studies had to face an uncomfortable choice
between using more complex models on filtered data [9] or using less accurate (e.g., parsimony)
approaches on full datasets [4]. Our approach uses a robust maximum likelihood framework
and permits the extraction of global drug-resistant patterns from all the available data.

While the proportion of resistant cases in the UK seems to decrease with time, the
proportion of resistant cases in treatment-naive individuals (hence, acquired via TDR)
is increasing. In addition, our results show that polymorphic DRMs obey a different
scheme, with an increase in both the proportion of resistant cases and TDR and large
resistance clusters. The TDR cases form resistance clusters, which are clearly identifiable
on phylogenetic trees. Locating these clusters within the UK’s regions and cities and
among risk groups would be an important step in stopping the spread of drug resistance.
The global trend that we observe in the UK is visible in other high-income countries
(e.g., Switzerland [36], Italy [37], and Portugal [38]) but differs from, for example, West
Africa, where the prevalence of multiple resistance in the population is a major concern [39].
Furthermore, detailed analyses in high-income countries indicate that a high level of ADR is
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more frequently observed in certain risk groups (e.g., people of African origin, unemployed
people, and people with mental illness, among others, in Switzerland [40]) that require
special surveillance to prevent treatment failure and HIV-1 transmission.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v15061244/s1. Supplementary Tables S1–S46 describing each
position containing DRMs with prevalence > 0.5% in B and C data sets, and the evolution of their
resistance statistics over time: TDR, ADR, and loss counts as well as the proportions of resistant cases
among treatment-naive and -experienced individuals.
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SQV saquinavir
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Appendix A. Analysis Pipelines

Snakemake [41] pipelines and ad hoc Python3 scripts used for the analyses described
above are available on github.com/evolbioinfo/HIV1-UK. Along with the subtyping, tree
reconstruction, dating, and ACR tools mentioned above, we used goalign (v0.3.6) and gotree

https://www.mdpi.com/article/10.3390/v15061244/s1
https://www.mdpi.com/article/10.3390/v15061244/s1
https://github.com/evolbioinfo/HIV1-UK
https://github.com/evolbioinfo/HIV1-UK
https://github.com/evolbioinfo/HIV1-UK
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(v0.3.0b) [42] for basic sequence alignment and tree manipulations, as well as ETE3 frame-
work [43] for basic tree manipulations (format conversion, pruning, etc.). Survival analy-
sis was performed with Python3 package SurPyval (github.com/derrynknife/SurPyval).
Sierra web service [23] for ARV and DRM detection was used via Python3 package sierrapy
(github.com/hivdb/sierra-client accessed on 1 April 2023).

Appendix B

Algorithm A1: Algorithm for Counting NADR, NTDR, Nloss in a Tree T
Data: tree T, annotated with tip treatment-status and node and tip DRM-status
Result: ADR, TDR, and DRM loss counts: NADR, NTDR, Nloss
NADR, NTDR, Nloss ← 0, 0, 0
for node ∈ T do

if “resistant′′ == DRM_status(node) then
/* “Sensitive” to “resistant” state change between the node’s parent

and the node. We will decide whether this change is due to an ADR
event in an observed treated patient’s virus, or a hidden TDR
leading to resistance in an observed individual’s virus. */

if root(node) ∨ “sensitive′′ == DRM_status(parent(node)) then
/* 1.Count treatment-experienced & -unknown subtree tips */
Nexperienced, Nunknown ← 0, 0
for t ∈ tips(node) do

if treatment_status(t) == “experienced′′ then
Nexperienced += 1

end
if treatment_status(t) == “unknown′′ then

Nunknown += 1
end

end
/* 2.Calculate the probability Pnaive that the subtree is

naive-only. If it contains treatment-experienced patients,
Pnaive is 0. If there are only treatment-naive individuals,
Pnaive is 1. Each treatment-unknown individual is considered as
naive with a probability 1

2, and Pnaive is 1
2

Nunknown . */
if Nexperienced > 0 then

Pnaive ← 0
else

Pnaive ← 1
2

Nunknown

end
/* 3. Decide which type of the event we have at the source of

this subtree. If the subtree includes a treated patient
(Pnaive = 0), then it is an ADR event (see Figure 2a,c): hence
we will increase NADR by 1. If the subtree is naive-only
(Pnaive = 1), then it is a hidden TDR (see Figure 2b,d): hence
we will increase NTDR by 1. When the subtree contains only
treatment-unknown and -naive individuals, we will increase both
counts according to Pnaive. */

NTDR += Pnaive ; /* hidden TDR */
NADR += 1− Pnaive ; /* ADR in an observed treated patient */

end
/* An internal node whose state is resistant, i.e., TDR. */
if ¬tip(node) then

NTDR += 1 ; /* observed TDR */
end

else
/* “Resistant” to “sensitive” state change, i.e., a DRM loss. */
if ¬root(node) ∧ “resistant′′ == DRM_status(parent(node)) then

Nloss += 1
end

end
end
return NADR, NTDR, Nloss

https://github.com/derrynknife/SurPyval
https://github.com/hivdb/sierra-client/tree/master/python
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Appendix C. Additional Tables

Table A1. Resistant sequence counts in B and C datasets (after filtering by patient and temporal
outlier removal).

Number Number of Cases (% of All)
of B C

DRMs All Non-Polymorphic All Non-Polymorphic

0 26,859 (68.59%) 31,518 (80.49%) 13,661 (72.63%) 15,795 (83.98%)
1 7257 (18.53%) 3852 (9.84%) 3174 (16.87%) 1496 (7.95%)
2 2128 (5.43%) 1243 (3.17%) 785 (4.17%) 466 (2.48%)
3 852 (2.18%) 688 (1.76%) 397 (2.11%) 362 (1.92%)
4 537 (1.37%) 471 (1.20%) 258 (1.37%) 244 (1.30%)
5 386 (0.99%) 350 (0.89%) 201 (1.07%) 174 (0.93%)
6 308 (0.79%) 288 (0.74%) 128 (0.68%) 113 (0.60%)
7 183 (0.47%) 178 (0.45%) 80 (0.43%) 57 (0.30%)
8 174 (0.44%) 163 (0.42%) 44 (0.23%) 36 (0.19%)
9 121 (0.31%) 109 (0.28%) 24 (0.13%) 21 (0.11%)
10 95 (0.24%) 70 (0.18%) 19 (0.10%) 16 (0.09%)
11 65 (0.17%) 70 (0.18%) 12 (0.06%) 10 (0.05%)
12 50 (0.13%) 41 (0.10%) 8 (0.04%) 5 (0.03%)
13 43 (0.11%) 36 (0.09%) 6 (0.03%) 5 (0.03%)
14 23 (0.06%) 25 (0.06%) 6 (0.03%) 3 (0.02%)
15 23 (0.06%) 22 (0.06%) 2 (0.01%) 2 (0.01%)
16 18 (0.05%) 11 (0.03%) 0 (0.00%) 0 (0.00%)
17 12 (0.03%) 14 (0.04%) 1 (0.01%) 1 (0.01%)
18 10 (0.03%) 5 (0.01%) 0 (0.00%) 0 (0.00%)
19 4 (0.01%) 2 (0.01%) 0 (0.00%) 1 (0.01%)
20 5 (0.01%) 2 (0.01%) 2 (0.01%) 1 (0.01%)
21 5 (0.01%) 1 (0.00%) 1 (0.01%) 1 (0.01%)
22 1 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

Table A2. DRMs with prevalence > 0.5% found in position RT:T215 in B dataset, and the evolution
of their presence over time.

Date Total DRM Resistant Cases TDR ADR Loss
Samples (% of All) Treatment- Cases Cluster Cases Cases

Experienced Naive (% of Num. Sizes (% of (% of
(% of Resistant) Resistant) Resistant) Resistant)

14-03-16 39159

D 462 (1.2%) 86 (18.6%) 334 (72.3%) 459.25 (99.4%) 103 1–99 71.75 (15.5%) 69 (14.9%)
F 257 (0.7%) 215 (83.7%) 19 (7.4%) 41.25 (16.1%) 37 1–4 222.75 (86.7%) 7 (2.7%)
S 378 (1.0%) 59 (15.6%) 293 (77.5%) 364.25 (96.4%) 115 1–45 51.75 (13.7%) 38 (10.1%)
Y 883 (2.3%) 790 (89.5%) 37 (4.2%) 119.50 (13.5%) 102.5 1–5 785.50 (89.0%) 22 (2.5%)

17-12-14 36258

D 441 (1.2%) 83 (18.8%) 322 (73.0%) 437.25 (99.1%) 102 1–88 70.75 (16.0%) 67 (15.2%)
F 256 (0.7%) 214 (83.6%) 19 (7.4%) 41.25 (16.1%) 37 1–4 221.75 (86.6%) 7 (2.7%)
S 358 (1.0%) 53 (14.8%) 284 (79.3%) 348.75 (97.4%) 109 1–44 47.25 (13.2%) 38 (10.6%)
Y 880 (2.4%) 788 (89.5%) 37 (4.2%) 118.00 (13.4%) 102 1–5 783.00 (89.0%) 21 (2.4%)

17-12-09 22540

D 314 (1.4%) 61 (19.4%) 234 (74.5%) 309.50 (98.6%) 83 1–47 60.50 (19.3%) 56 (17.8%)
F 241 (1.1%) 204 (84.6%) 17 (7.1%) 36.50 (15.1%) 33.5 1–4 209.50 (86.9%) 5 (2.1%)
S 226 (1.0%) 34 (15.0%) 178 (78.8%) 222.00 (98.2%) 75 1–21 35.00 (15.5%) 31 (13.7%)
Y 837 (3.7%) 752 (89.8%) 34 (4.1%) 99.00 (11.8%) 87 1–5 751.00 (89.7%) 13 (1.6%)

17-12-04 7511

D 123 (1.6%) 31 (25.2%) 85 (69.1%) 109.50 (89.0%) 45.5 1–21 37.50 (30.5%) 24 (19.5%)
F 185 (2.5%) 160 (86.5%) 14 (7.6%) 24.00 (13.0%) 24 1–2 163.00 (88.1%) 2 (1.1%)
S 70 (0.9%) 17 (24.3%) 43 (61.4%) 63.75 (91.1%) 34 1–8 22.25 (31.8%) 16 (22.9%)
Y 655 (8.7%) 597 (91.1%) 24 (3.7%) 54.25 (8.3%) 51 1–4 602.75 (92.0%) 2 (0.3%)

17-12-99 1576

D 28 (1.8%) 9 (32.1%) 17 (60.7%) 20.00 (71.4%) 14.5 1–2 10.00 (35.7%) 2 (7.1%)
F 42 (2.7%) 41 (97.6%) 1 (2.4%) 2.00 (4.8%) 2 1–2 40.00 (95.2%)
S 9 (0.6%) 3 (33.3%) 4 (44.4%) 5.00 (55.6%) 4.5 1–2 4.00 (44.4%)
Y 205 (13.0%) 187 (91.2%) 6 (2.9%) 12.25 (6.0%) 12 1–2 192.75 (94.0%)

14-11-96 7

D 1 (14.3%) 1 (100.0%) 1.00 (100.0%)
F 1 (14.3%) 1 (100.0%) 1.00 (100.0%)
S
Y 2 (28.6%) 2 (100.0%) 2.00 (100.0%)
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Table A3. Numbers of data points available for loss time calculation for non-polymorphic DRMs
found in B and C datasets (see Table 4).

DRM Class Num. Data Points B Num. Data Points C
Left- Right- Interval- Left- Right- Interval-

Censored Censored

PR:L33F PI 36 17 0
PR:M46I PI 95 8 1
PR:I54V PI 77 7 4
PR:V82A PI 80 17 1
PR:L90M PI 153 35 0
RT:M41L NRTI 238 68 4
RT:E44D NRTI 50 9 1
RT:A62V NRTI 68 14 0
RT:D67N NRTI 231 25 4
RT:K70R NRTI 216 4 2

RT:K103N NNRTI 612 90 8 310 11 5
RT:V108I NNRTI 148 9 2
RT:Y181C NNRTI 264 9 5
RT:M184V NRTI 825 7 3 408 4 7
RT:G190A NNRTI 185 14 4
RT:L210W NRTI 140 19 0
RT:T215D NRTI 24 43 2
RT:T215F NRTI 69 3 2
RT:T215S NRTI 30 35 3
RT:T215Y NRTI 223 5 1
RT:K219E NRTI 72 8 1
RT:K219Q NRTI 79 32 3
RT:K219N NRTI 38 18 1
RT:H221Y NNRTI 153 17 1

References
1. Larder, B.A.; Kemp, S.D. Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to zidovudine (AZT).

Science 1989, 246, 1155–1158. [CrossRef] [PubMed]
2. Lepri, A.C.; Sabin, C.A.; Staszewski, S.; Hertogs, K.; Müller, A.; Rabenau, H.; Phillips, A.N.; Miller, V. Resistance Profiles in

Patients with Viral Rebound on Potent Antiretroviral Therapy. J. Infect. Dis. 2000, 181, 1143–1147. [CrossRef]
3. Hué, S.; Gifford, R.J.; Dunn, D.; Fernhill, E.; Pillay, D.; UK Collaborative Group on HIV Drug Resistance. Demonstration of

sustained drug-resistant human immunodeficiency virus type 1 lineages circulating among treatment-naïve individuals. J. Virol.
2009, 83, 2645–2654. [CrossRef] [PubMed]

4. Mourad, R.; Chevennet, F.; Dunn, D.T.; Fearnhill, E.; Delpech, V.; Asboe, D.; Gascuel, O.; Hue, S.; UK HIV Drug Resistance
Database & the Collaborative HIV, Anti-HIV Drug Resistance Network. A phylotype-based analysis highlights the role of
drug-naive HIV-positive individuals in the transmission of antiretroviral resistance in the UK. AIDS 2015, 29, 1917–1925.
[CrossRef]

5. Castro, H.; Pillay, D.; Cane, P.; Asboe, D.; Cambiano, V.; Phillips, A.; Dunn, D.T.; for the UK Collaborative Group on HIV
Drug Resistance; Aitken, C.; Asboe, D.; et al. Persistence of HIV-1 transmitted drug resistance mutations. J. Infect. Dis. 2013,
208, 1459–1463. [CrossRef]

6. The World Health Organization. Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and Preventing Hiv Infection:
Recommendations for a Public Health Approach, 2nd ed.; World Health Organization: Geneva, Switzerland, 2016.

7. Stadler, T.; Bonhoeffer, S. Uncovering epidemiological dynamics in heterogeneous host populations using phylogenetic methods.
Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120198. [CrossRef]

8. Stadler, T.; Kühnert, D.; Bonhoeffer, S.; Drummond, A.J. Birth-death skyline plot reveals temporal changes of epidemic spread in
HIV and hepatitis C virus (HCV). Proc. Natl. Acad. Sci. USA 2013, 110, 228–233. [CrossRef]
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