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Selection entropy: The information hidden within neuronal patterns
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Boltzmann entropy is a measure of the hidden information contained within a system. In the context of
neuroimaging, information can be hidden within the multiple brain states that cannot be distinguished within
a single image. Here, we show that information can also be hidden within multiple indistinguishable selections
of neuronal patterns between brain regions, as quantified by a novel metric that we term “selection entropy.” We
show the ways in which selection entropy behaves in comparison with the Kullback-Leibler (KL) divergence
(relative entropy). First, we use synthetic data sets to demonstrate that selection entropy is more sensitive to
small changes in probability distributions compared with the KL divergence. Second, we show that selection
entropy identifies a principal gradient between sensorimotor and transmodal brain regions more definitively than
the KL divergence within resting-state functional magnetic resonance imaging time series. As such, we introduce
selection entropy as an additional asset in the analysis of neuronal functional selectivity.
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I. INTRODUCTION

Self-organizing systems such as the brain can be described
in terms of two principles—namely, functional segregation
and integration [1]. Functional segregation refers to the
specialization of different brain regions according to anatom-
ically segregated cortical regions or neuronal populations.
This specialization requires a selective expression of cortical
activation repertoires over time.

This technical work examines the characterization of selec-
tive or distinct repertoires of activation in terms of information
theoretic measures. In particular, we consider the standard
approach based upon the Kullback-Leibler (KL) divergence
(relative entropy) [2] between two probability distributions,
and introduce a new measure that we call “selection entropy.”

This paper comprises four sections. In the first section, we
discuss the concept of Boltzmann entropy in the context of
neuroimaging and show the ways in which it captures the
hidden information contained within indistinguishable rear-
rangements of a system. In the second section, we introduce
selection entropy—a metric that quantifies the hidden in-
formation hidden within the patterns selected between two
systems. In the third section, we use synthetic data sets to
show that selection entropy is more sensitive to small changes
between probability distributions compared with the KL di-
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vergence. In the fourth section, we use resting-state functional
magnetic resonance imaging (fMRI) time series to show that
selection entropy identifies a sensorimotor-to-transmodal gra-
dient of cortical organization [3,4] more distinctly than the KL
divergence.

A. Boltzmann entropy

Boltzmann entropy is a measure of hidden information [5]
that is frequently used as a way of quantifying repertoires of
neuronal states [6–26]. With regard to the concept of Boltz-
mann entropy, we consider a simple example of a neuroimag-
ing modality that collects just two observations, each of which
falls into one of two histogram bins, as shown in Fig. 1(a). We
then ask the following question: in how many ways can we re-
arrange the observations in Fig. 1(a) so as to maintain the same
distribution, i.e., one observation in each of the two bins? The
answer is two, with the second possibility shown in Fig. 1(b).

In other words, if we only have access to the shape of the
distribution (the “macrostate”), we are subject to an intrinsic
ignorance that arises from the two indistinguishable ways (the
“microstates”) in which the observations can be rearranged.
This ignorance is precisely what the Boltzmann entropy quan-
tifies.

Let us now generalize the example in Fig. 1 such that
there are a total of N observations. We then ask: in how many
ways (W ) can these N observations be rearranged to yield
the same histogram shape, such that the first bin contains n1

observations, the second bin contains n2 observations, and so
forth? The answer is given by the standard [27] combinatoric
expression

W = N!∏
i ni!

, (1)
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FIG. 1. (a) A histogram showing that observations (obser.) 1 and
2 (black and white) appear with frequency (fr.) 1 in the first and
second bins, respectively. (b) The other rearrangement of (a) that
yields the same distribution with one observation in each of the two
bins.

where ni is the number of observations (occupation number)
of the ith bin.

For the example in Fig. 1, we can use Eq. (1) to see that
there are indeed W = 2!

1!1! = 2 ways of rearranging a his-
togram of N = 2 observations such that the first bin contains
one observation and the second bin contains one observation.

Standard methods [28] can then be used to show that W
in Eq. (1) leads directly to the following expression for the
Boltzmann entropy, S, associated with a single observation:

S = −
∑

i

pilogpi, (2)

where logW ≈ NS, and pi = ni/N is the probability of occur-
rence of the ith observation. Note that the expression in Eq. (2)
only holds when N and all ni are large.

See the Appendix for the details of the steps leading from
Eq. (1) to Eq. (2).

B. Selection entropy

Let us now extend the toy model in Fig. 1 such that we
deal with two histograms, each of which is populated by three
observations that are distributed across two bins, as shown in
Fig. 2(a).

We now ask an entirely different question to the one con-
sidered with regard to the Boltzmann entropy: in how many
ways can the observations contained within the same bins
in the two histograms be selected between one another? By
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FIG. 2. (a) Two histograms for systems 1 and 2 showing that
there are two observations in the first bin and one observation in
the second bin for system (sys.) 1 and vice versa for system 2.
(b) The same two histograms as in (a), showing that there are a total
of four ways in which observations can be selected between like bins,
as indicated by the arrows.

inspecting Fig. 2(a), we see that, for each of the two ways in
which the bin 1 observations in system 1 can be selected by
system 2, there are two ways in which the bin 2 observations
in system 2 can be selected by system 1 [Fig. 2(b)].

We can generalize the example in Fig. 2 by considering two
histograms that contain N and M total observations. The total
number of ways (Wsel ) of selecting observations between like
bins is given by the product of

(i) the number of ways of selecting the m1 observations in
the first bin of system M from the n1 observations in the first
bin of system N and

(ii) the number of ways of selecting the m2 observations
in the second bin of system M from the n2 observations in the
second bin of system N ,
and so forth, as given by the product of the binomial coeffi-
cients

Wsel =
∏

i

ni!

mi!(ni − mi )!
, (3)

where ni and mi are the numbers of observations in the ith bins
of the two histograms.

We can generalize the example in Fig. 2 by comparing
two histograms constructed using data from a total of N1

observations of system 1 and N2 observations of system 2,
respectively. Suppose that n(1)

i of the N1 measurements of
system 1 and n(2)

i of the N2 measurements of system 2 fall
into bin i. Let ni = max(n(1)

i , n(2)
i ) be the larger of these

two numbers and mi = min(n(1)
i , n(2)

i ) be the smaller. The
total number of ways of selecting mi observations from ni is

ni!
mi!(ni – mi )!

. The total number of ways (Wsel ) of selecting the
smaller number from the larger number of observations in all
bins is given by the product of these binomial coefficients:

Wsel =
∏

i

ni!

mi!(ni − mi )!
. (4)

Using Eq. (3) for the example in Fig. 2(b), we see that there
are indeed 2!

1!(2−1)! × 2!
1!(2−1)! = 4 ways in which observations

can be selected from like bins in the two histograms.
Following the same logic used to derive the Boltzmann

entropy in Eq. (2) from the expression for rearrangements in
Eq. (1) (see the Appendix), we begin by taking the logarithm
of the expression for selections in Eq. (3):

logWsel =
∑

i

(log(ni )! − log(mi )! − log((ni − mi )!)). (5)

We then assume that the numbers of observations in all bins
are sufficiently large to allow us to use Stirling’s approxima-
tion [i.e., log(y!) ≈ ylogy−y ], such that

logWsel ≈
∑

i

(
milog

(
ni

mi
− 1

)
− nilog

(
1 − mi

ni

))
. (6)

We can then express the numbers of observations within
the ith bins of the two systems (mi and ni) in terms of the
probabilities of finding the system in the ith bin [pM (mi)
and pN (ni )] and the total numbers of observations in the
two systems (M and N) as follows: ni = pN (ni )N and
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mi = pM (mi )M, such that

logWsel ≈
∑

i

(
M pM (mi )log

(
pN (ni )

pM (mi )

N

M
− 1

)

− N pN (ni ) log

(
1 − pM (mi )

pN (ni )

M

N

))
. (7)

We then define a ratio (r) of the observations,

r ≡ M

N
, (8)

which we use together with Eq. (7) to obtain

logWsel ≈ N
∑

i

(
r pM (mi )log

(
1

r

pN (ni )

pM (mi )
− 1

)

− pN (ni )log

(
1 − r

pM (mi )

pN (ni )

))
. (9)

We then arrive at the following quantity, which we term the
“selection entropy” associated with a single observation in the
N length time series:

Ssel =
∑

i

(
r pM (mi )log

(
1

r

pN (ni )

pM (mi )
− 1

)

− pN (ni )log

(
1 − r

pM (mi )

pN (ni )

))
. (10)

It should be noted that, in the general case when N �= M,
the selection entropy depends on the numbers of observations
made (N and M). In this sense, the selection entropy is not
just a feature of the two probability distributions alone, as
it depends on how many measurements are made of each
system.

In summary, just as the Boltzmann entropy in Eq. (2)
quantifies the hidden information contained within indistin-
guishable rearrangements of a single histogram via Eq. (2),
the selection entropy in Eq. (10) quantifies the hidden infor-
mation contained within indistinguishable selections between
like bins of histogram pairs via Eq. (3).

C. KL divergence

The KL divergence quantifies the extent to which two
probability distributions differ from one another. The KL
divergence has frequently been used in the context of neu-
roscience [29,30] and, as such, together with the Boltzmann
entropy, will form our main point of reference in characteriz-
ing selection entropy.

Using the same notation as in Eq. (10), the KL divergence
from pM (mi ) to pN (ni ) is defined as follows:

KL =
∑

i

pN (ni )log

(
pN (ni )

pM (mi )

)
. (11)

When two distributions are identical, the KL divergence
attains its lower bound of zero.

II. METHODS

A. Equal-length time series

We will henceforth calculate the selection entropy between
pairs of equal-length neuroimaging time series. This means
that the resultant histograms are constructed from equal num-
bers of data points, and hence from Eq. (8) r ≡ M

N = 1,
which means that we use the following simplified version of
Eq. (10):

Ssel =
∑

i

(
pM (mi )log

(
pN (ni )

pM (mi )
− 1

)

− pN (ni )log

(
1 − pM (mi )

pN (ni )

))
. (12)

B. Gaussian distributions

Equipped with this intuitive measure of hidden informa-
tion, we can now use numerical analyses to understand better
how selection entropy behaves in relation to the KL diver-
gence. We will use samples from known distributions and
empirical time series from resting-state functional magnetic
resonance imaging. To create samples from known distribu-
tions we perform the following steps:

Step 1: We sample from a series of Gaussian distributions
with mean zero and standard deviations that vary from one to
two in small increments.

Step 2: We sample from a second set of Gaussian distri-
butions that also have mean zero, but for which the standard
deviations change in the opposite direction from two to one in
small negative increments.

Step 3: We create histograms from the two sets of samples
in steps 1 and 2, by entering each data point into one of 100
bins.

Step 4: We divide each of the histogram entries in step 3
by the total number of data points in each histogram to obtain
(sample) probability distributions.

Step 5: We calculate the selection entropy and KL diver-
gence for each pair of probability distributions in step 4.

C. Gradient-based resting-state fMRI

All the empirical time series were obtained from the 1200-
subject release of the Human Connectome Project [31] in 30
young adults (age, 22 to 35 years). Images are acquired using
a 3T Scanner (Siemens Skyra 3 Tesla MRI scanner; repetition
time = 720 ms, time to echo = 33 ms, flip angle = 52◦, voxel
size = 2 mm isotropic, 72 slices, matrix = 104 × 90, field of
view = 208 × 180 mm, multiband acceleration factor = 8).

We parcellated these data using the Schaefer 100 atlas [32]
to obtain a resting-state functional connectivity matrix and
then computed pairwise correlations between all cortical and
subcortical time series to obtain normative functional con-
nectivity matrices. These 100 regions were then reorganized
according to the principal gradient identified by Margulies
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FIG. 3. The 100 regions of the atlas organized according to the
sensorimotor-to- transmodal principal gradient. Images are shown in
groups of 10, with image 1 displaying regions 1 through 10 in black,
image 2 displaying regions 2 through 11, and so forth.

et al. [3,4], with sensorimotor regions at one end (region 1)
and regions associated with higher cognitive function at the
other end (Fig. 3).

D. fMRI data analysis

We compare the behavior of selection entropy and KL
divergence for resting-state fMRI data via the following steps:

Step 1: We create histograms from each of the 100 time
series for the 30 subjects by entering each data point into one
of 100 bins.

Step 2: We divide each of the histogram entries in step 1
by the total number of data points in each histogram to obtain
sample probability distributions.

Step 3: We calculate the selection entropy and KL diver-
gence for all pairs of probability distributions in step 2, thus
obtaining matrices of size 100 × 100 × 30 (regions × regions
× subjects).

Step 4: We smooth and average the matrices in step 3
across subjects to obtain two matrices of size 100 × 100
each, summarizing the selection entropy and KL divergence
between all pairs of regions.

Step 5: We calculate the mean and standard errors of the
first, second, etc., diagonals of the matrices in step 4 to ob-
tain the change in selection entropy and KL divergence with
increasing separation along the principal gradient.

III. RESULTS

All results described in what follows can be reproduced
with the accompanying MATLAB code.

We first establish the behavior of selection entropy and
KL divergence revealed by the synthetic time series (sampled
from Gaussian distributions with varying standard deviations).
We then review the corresponding results based upon the
empirical (fMRI) time series.

0.3

-0.5               0.5 -6     
 values     

 6

(b)

(a)

p
0

0

1

sel. ent.KL

FIG. 4. (a) Two Gaussian curves with mean zero, with standard
deviations that range between 1 and 2 (dashed line) and between
2 and 1 in small increments. The curves are shown at minimum,
zero, and maximum differences in the standard deviations (�σ ).
(b) Normalized values of the KL divergence (thin line) and the selec-
tion entropy (sel. ent.; thick line) for the same range of differences in
the standard deviations shown in (a).

A. Gaussian distributions

As two Gaussian distributions become increasingly similar
[Fig. 4(a)], we find that the selection entropy and KL diver-
gence approach the origin in concave downward and concave
upward curves, respectively [Fig. 4(b)].

Both the selection and KL divergence quantify the differ-
ence between the two distributions from which samples are
taken. However, the selection entropy has an inflection point
near the origin as the two distributions become arbitrarily
close to one another. This indicates that the selection entropy
is more sensitive to small differences between distributions.

B. Gradient-based resting-state fMRI

We base this section on probability distributions obtained
from resting-state fMRI time series [Fig. 5(a)] collected in
100 regions organized according to a principal sensorimotor-
to-transmodal gradient. We calculate the subject-averaged KL
divergence and selection entropy for all pairs of these regions
[Fig. 5(b)]. We then calculate the average KL divergence and
selection entropy with increasing distance along the principal
gradient [Fig. 5(c)].

We see from Fig. 5(c) that the selection entropy displays
a more pronounced monotonic increase with increasing sepa-
ration along the principal gradient, as compared with the KL
divergence.

IV. DISCUSSION

We have shown that there are scenarios in which the se-
lection entropy reveals different information to that provided
by the commonly used KL divergence, as demonstrated by
Figs. 4 and 5. Technically, we can characterize the relationship
between selection entropy and KL divergence mathematically
by expressing Eq. (12) as follows:

Ssel =
∑

i

(
pN (ni )log

(
pN (ni )

pM (mi )

)
+ (pM (mi )

− pN (ni ))log

(
pN (ni )

pM (mi )
− 1

))
, (13)
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FIG. 5. (a) The time course for the first region of the first subject
(left), with its associated probability distribution (right). (b) The
smoothed KL divergence (left) and selection entropy (SE, right) for
all 100 × 100 region pairs. The outer Brainspace images indicate
quartiles of the principal gradient-ordered regions, i.e., the first image
shows regions 1 through 25 in black, the second shows regions 26
through 50, etc. (c) Mean and standard error of the KL divergence
(left) and selection entropy (right) for increasing separation between
regions along the principal gradient.

where we recall from Eq. (11) that the first sum of terms
are equal to the KL divergence, such that we can write the
selection entropy as follows:

Ssel = KL +
∑

i

(pM (mi ) − pN (ni ))log

(
pN (ni )

pM (mi )
− 1

)
;

(14)
i.e., the selection entropy can be viewed as a sum of terms that
augment the KL divergence.

Similarly, we can characterize the relationship between
Boltzmann entropy and selection entropy mathematically by
rewriting Eq. (12) as follows:

Ssel =
∑

i

pN (ni )logpN (ni ) −
∑

i

pM (mi )logpM (mi )

−
∑

i

(pN (ni ) − pM (mi ))log(pN (ni ) − pM (mi )),

(15)

which comprises the following three terms: (i) the Boltzmann
entropy for system N,

SN = −
∑

i

pN (ni )logpN (ni ); (16)

(ii) the Boltzmann entropy for system M,

SM = −
∑

i

pM (mi )logpM (mi ); (17)

and (iii) the Boltzmann entropy for the difference between
systems N and M,

SN−M = −
∑

i

(pN (ni ) − pM (mi ))log(pN (ni ) − pM (mi )).

(18)

Using Eqs. (15) through (18), e can therefore write the
selection entropy as the following linear combination of
Boltzmann entropies:

Ssel = SM − SN + SN−M . (19)

This shows that, in addition to the hidden information
in the two systems (SM − SN ), the selection entropy also
contains an interaction term (SN−M ) that depends upon the
difference in probabilities between the two systems.

The relationship between Boltzmann entropy and selec-
tion entropy can be expanded upon in terms of the disparity
between measurements and indistinguishable configurations.
For instance, the Boltzmann entropy quantifies the hid-
den information associated with an ambiguity between a
macroscopic measurement (“macrostate”) and multiple indis-
tinguishable microscopic rearrangements (“microstates”) of
the underlying system. We can view this ambiguity in terms
of the multiple ways of shuffling the constituent masses of
a probability distribution while keeping its shape unchanged
[see Fig. (1)]. On the other hand, the selection entropy quan-
tifies the hidden information associated with an ambiguity
between what we can call a “macroselection” (i.e., the knowl-
edge that the states of one system are selected from another)
and what we can call “microselections” (i.e., the multiple
ways in which like state components of two systems can be
cross-selected) (see Fig. 2).

As opposed to the KL divergence, the selection entropy dis-
plays an inflection point as probability distributions become
very similar, as shown with the synthetic data (Fig. 4). This
suggests that the selection entropy is more sensitive to small
changes in distributions. Furthermore, the selection entropy is
more sensitive to changes between time series-derived proba-
bility distributions collected from neuronal regions relative to
their location along a principal gradient of cortical organiza-
tion [Fig. 5(c)]. As such, we suggest that selection entropy
could be useful in the study of functional segregation, due
to its ability to reveal novel information within neuroimaging
time series.

All data and accompanying MATLAB code are available
at the following public repository [33].
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APPENDIX

We begin by taking the logarithm of W in Eq. (1):

logW = log

(
N!∏x

i=1 ni!

)
= log(N!) − log

(
x∏

i=1

ni!

)

= log(N!) −
x∑

i=1

log(ni!). (A1)

We then assume that N and all ni are large, such that we
can use Stirling’s approximation [log(y!) ≈ ylogy−y] to give

logW ≈ N logN − N −
x∑

i=1

(nilogni − ni )

= N logN − N −
x∑

i=1

nilogni +
x∑

i=1

ni, (A2)

where
∑

i ni = N , such that

logW ≈ N logN − N −
x∑

i=1

nilogni + N

= N logN −
x∑

i=1

nilogni. (A3)

We can now express the number of observations oc-
cupying the ith bin (ni ) in terms of the probability of
finding an observation in the ith bin (pi ) as ni = N pi, such
that

logW ≈ N logN −
x∑

i=1

N pilog(N pi )

= N logN −
x∑

i=1

N pi(logN + logpi )

= N logN −
x∑

i=1

N pilogN −
x∑

i=1

N pilogpi

= N logN − N logN
x∑

i=1

pi − N
x∑

i=1

pilogpi, (A4)

where
∑

i pi = 1, such that

logW ≈ N logN − N logN − N
x∑

i=1

pilogpi

= −N
x∑

i=1

pilogpi; (A5)

i.e., the logarithm of the number of ways W of rearranging
the observations for a given set of occupation numbers ni is
directly proportional to the entropy associated with a single
observation −∑x

i=1 pilogpi.
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