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Abstract

Reinforcement learning (RL) agents are particularly hard to train when rewards
are sparse. One common solution is to use intrinsic rewards to encourage agents
to explore their environment. However, recent intrinsic exploration methods often
use state-based novelty measures which reward low-level exploration and may not
scale to domains requiring more abstract skills. Instead, we explore language as a
general medium for highlighting relevant abstractions in an environment. Unlike
previous work, we evaluate whether language can improve over existing exploration
methods by directly extending (and comparing to) competitive intrinsic exploration
baselines: AMIGo (Campero et al., 2021) and NovelD (Zhang et al., 2021). These
language-based variants outperform their non-linguistic forms by 47-85% across
13 challenging tasks from the MiniGrid and MiniHack environment suites.

1 Introduction

A central challenge in reinforcement learning (RL) is designing agents that can solve complex,
long-horizon tasks with sparse rewards. In the absence of extrinsic rewards, one popular solution is
to provide intrinsic rewards for exploration [34, /35,142, |43]]. This invariably leads to the challenging
question: how should one measure exploration? One common answer is that an agent should
be rewarded for attaining “novel” states in the environment, but naive measures of novelty have
limitations. For example, consider an agent that starts in the kitchen of a large house and must make
an omelet. Simple state-based exploration will reward an agent for visiting every room in the house,
but a more effective strategy would be to stay put and use the stove. Moreover, like kitchens with
different-colored appliances, states can look cosmetically different but have the same underlying
semantics, and thus are not truly novel. Together, these constitute two fundamental challenges for
intrinsic exploration: first, how can we reward true progress in the environment over meaningless
exploration? Second, how can we tell when a state is not just superficially, but semantically novel?

Fortunately, humans are equipped with a powerful tool for solving both problems: language. As a
cornerstone of human intelligence, language has strong priors over the features and behaviors needed
for exploration and skill acquisition. It also describes a rich and compositional set of meaningful
behaviors as simple as directions (e.g. move left) and as abstract as conjunctions of high level tasks
(e.g. retrieve the ring and defeat the wizard) that can categorize and unify many possible world states.

Our aim is to see whether language abstractions can improve existing state-based exploration methods
in RL. While language-guided exploration methods exist in the literature [3} 15,12} [13} 2124} 31
44) 1511 153]], we make two key contributions over prior work. First, existing methods assume access
to a high-level linguistic instruction for reward shaping, or otherwise assume that any intermediate
language annotations encountered are always helpful for learning. Instead, we study settings without
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instructions, with more diverse intermediate messages (Figure|l)) that may or may not be useful, but
may nonetheless be a more effective measure of novelty than raw states.

Second, past work often compares only to vanilla RL, while ignoring competitive intrinsic exploration
baselines. This leaves the true utility of language over simpler state-based exploration unclear. To rem-
edy this issue, we conduct a controlled evaluation on the effect of language on competitive approaches
to exploration by extending two recent, state-of-the-art methods: AMIGo [7]], where a teacher pro-
poses intermediate location-based goals for a student, and NovelD [54]], which rewards an agent
for visiting novel regions of the state space. Building upon these methods, we propose L-AMIGo,
where the teacher proposes goals expressed via language instead of coordinates, and L-NovelD,
a variant of NovelD with an additional exploration bonus for visiting linguistically-novel states.
Across 13 challenging, procedurally-generated,
sparse-reward tasks in the MiniGrid [8] and
MiniHack [41] environment suites, we show
that language-parameterized exploration meth- i e
ods outperform their non-linguistic counterparts 5
by 47-85%, especially in more abstract tasks r
with larger state and action spaces. We also

show that language improves the interpretabil-

ity of the training process, either by developing

a natural curriculum of semantic goals (in L- g
AMIGo) or by allowing us to visualize the most 1y
novel language during training (in L-NovelD).

Finally, we show when and where the fine- Figure 1: Language conveys meaningful environ-
grained compositional semantics of the language ment abstractions. Language state annotations in
improves agent exploration, when compared to the MiniGrid KeyCorridorS4R3 [8]] and MiniHack
non-compositional baselines. Wand of Death (Hard) [41] tasks.
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2 Related Work

Exploration in RL. Exploration has a long history in RL, from e-greedy [48] or count-based
exploration [4} 29,130, 32,147, 50] to intrinsic motivation [33H35] and curiosity-based learning [42].
More recently, deep neural networks have been used to measure novelty with changes in state
representations [6} 140} 154] or prediction errors in world models [[1,136, 146]]. Another long tradition
generates curricula of intrinsic goals to encourage learning [[7, |13 [14} [18420, [37H39]]. In this paper,
we explore the potential benefit of language on these approaches to exploration.

Language for Exploration. The observation that language-guided exploration can improve RL is
not new: language has been used to shape policies [[24}51] and rewards [3} 15, 21H23) 131} 144, 153] and
set intrinsic goals [12}113]]. Crucially, our work differs from prior work in two ways: first, instead of
reward shaping with high-level instructions, we use noisier, intermediate language annotations for
exploration; second, we directly extend and compare to competitive intrinsic exploration baselines.

L-AMIGeo, our variant of AMIGo with language goals, is similar to the IMAGINE agent of Colas et al.
[L3]], which also sets intrinsic language goals. However, IMAGINE is built for instruction following,
and requires a perfectly compositional space of language goals, which the agent tries to explore so
that it can complete novel goals at test time. Instead, we make no assumptions on the language and
explore to maximize extrinsic reward, using an alternative goal difficulty metric to measure progress.

Meanwhile, reward shaping and inverse RL methods [3, 15, [21-24} 31} 144} 51} 53] reward an agent
for actions associated with linguistic descriptions, but again are primarily designed for instruction
following, where an extrinsic goal is available to help shape intermediate rewards. In our setting,
however, we have not high-level extrinsic goals but low-level infermediate language annotations.
Extrinsic reward shaping methods such as LEARN [22] could be naively applied by simply doing
reward shaping with every intermediate language annotation, and a few of these methods are designed
for low-level language subgoals [24, 31]. However, a shared assumption of these approaches is that
language is always helpful: either because we have expert-curated messages (as in Harrison et al.
[24])), or because we have goal descriptions that let us identify subgoals relevant to the extrinsic
goal (as in ELLA; Mirchandani et al. [31]). In our tasks, however, most language is unhelpful for
progress in the environment, and we have no extrinsic goals. Consequently, past methods reduce to
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simply giving a fixed reward for every intermediate message encountered, which (we will show) fails
to learn. Finally, work concurrent to ours by Tam et al. [49] tackles similar ideas in photorealistic
environments that permit transfer from foundation models. Instead, we explore domain-specific
symbolic games with built-in language where such models are not readily available.

A final distinguishing contribution of our work is that prior work often neglects non-linguistic
exploration baselines. For example, Harrison et al. [24] and LEARN [22] compare to vanilla RL
only; ELLA [31] compares to LEARN and RIDE [40], with limited improvements over RIDE. Prior
work can thus be summarized as showing that linguistic rewards improve over extrinsic rewards
alone. Instead, we provide novel evidence that linguistic rewards improve upon state-based intrinsic
rewards, using the same exploration methods and challenging tasks typical of recent work in RL.

3 Problem Statement

We explore RL in the setting of an augmented Markov Decision Process (MDP) defined as the tuple
(S, A, T,R,~, L), where S and A are the state and action spaces, T : S X A — S is the environment
transition dynamics, R : S x A — R is the extrinsic reward function, where 7, = R(s;, a;) is the
reward obtained at time ¢ by taking action a in state s;, and + is the discount factor. To add language,
we assume access to an annotator L that produces language descriptions for states: ¢; = L(s;),
such as those in Figure[I] Note that not every state needs a description (which we model with a null
description @) and the set of descriptions need not be known ahead of time}’| We ultimately seek a

policy that maximizes the expected discounted (extrinsic) reward R, = E[> ", ¥*riyx], where H is

the finite time horizon. During training, however, we maximize an augmented reward rt* =7+ )\r,ﬁ,
where 7} is an intrinsic reward and ) is a scaling hyperparameter.

Like past work [26} [31} 53] we make the simplifying assumption of access to an oracle language
annotator L provided by the environment. Note that the language annotator is “oracle” in that it always
outputs messages that are true of the current state, but not “oracle” in that it indiscriminately outputs
messages that are not necessarily relevant for the extrinsic goal. Many modern RL environments are
pre-equipped with language, including NetHack/MiniHack [28| 41], text-based games [15} 145} 152]],
and in fact most video games in general. In the absence of an oracle annotator, one common approach
is to learn an annotator model from a dataset of language-annotated states [3}22,|31]], though such
datasets are often generated from oracles that are simply run offline instead [31]]. Concurrent work
[49] uses pretrained foundation models to automatically provide annotations in 3D environments,
though such models are not readily available in the symbolic 2D games we explore. Since this idea
has been well-proven, we assume oracle access to L, but as an example, one could straightforwardly
adapt the annotator model trained on BabyAlI by Mirchandani et al. [31]] to our setting.

2For presentational simplicity, the annotator here outputs a single description per state, but in practice, we
allow an annotator to produce multiple descriptions: e.g. in MiniGrid, open the door and open the red door
describe the same state. This requires two minor changes in the equations, described in Footnotes@and



4 L-AMIGo

We now describe our approach to jointly training a student and a goal-proposing teacher, extending
AMIGo [7] to arbitrary language goals.

4.1 Adversarially Motivated Intrinsic Goals (AMIGo)

AMIGo [7]] augments an RL student policy with goals generated by a teacher, which provide intrinsic
reward when completed (Figure 2a). The idea is that the teacher should propose intermediate goals
that start simple, but grow harder to encourage an agent to explore its environment.

Student. Formally, the student S is a goal-conditioned policy parameterized as g (ay | s¢, gt; 0s),
where g; is the goal provided by the teacher, and the student receives an intrinsic reward 7} of 1 only
if the teacher’s goal at that timestep is completed. The student receives a goal from the teacher either
at the beginning of an episode, or mid-episode, if the previous goal has been completed.

Teacher. Separately, AMIGo trains an adversarial teacher policy mr(g; | so; 01) to propose goals
to the student given its initial state. The teacher is trained with a reward r{ that depends on a
difficulty threshold t*: the teacher is given a positive reward of 4+« for proposing goals that take
the student more than t* timesteps to complete, and —f for goals that are completed sooner, or
never completed within the finite time horizon. To encourage proposing harder and harder goals that
promote exploration, t* is increased linearly throughout training: whenever the student completes 10
goals in a row under the current difficulty threshold, it is increased by 1, up to some tunable maximum
difficulty. Finally, to encourage intermediate goals that are aligned with the extrinsic goal, the teacher
is also rewarded with the extrinsic reward when the student attains it.

This teacher is updated separately from the student at different time intervals. Formally, its training
data is batches of (so, g, 7! ) tuples collected from student trajectories for nonzero 7 , where s is
the initial state of the student’s trajectory and g is the goal that led to reward 7 .

The original paper [7] implements AMIGo for MiniGrid only, where the goals g, are (x, y) coordinates
to be reached. The student gets the goal embedded directly in the M x NN environment, and the
teacher is a dimensionality-preserving convolutional network which encodes the student’s M x N
environment into an M x N distribution over coordinates, from which a single goal is selected.

4.2 Extension to L-AMIGo

Student. The L-AMIGo student is a policy conditioned not on (x, y) goals, but on language goals
by s (ag | st,le;0s). Given the “goal” ¢, the student is now rewarded if it reaches a state with the
language description ¢4, i.e. if £, = L(s;){’| Typically this student will encode the goal with a learned
language model and concatenate the goal representation with its state representation.

Teacher. Now the L-AMIGo teacher selects goals from the set of possible language descriptions in
the environment. Because the possible goals are initially unknown, the teacher maintains a running
set of goals G that is updated as the student encounters new state descriptions (Figure [2J).

This move to language creates a challenge: not only must a teacher choose a goal to propose, it must
also determine which goals are achievable at all. For example, the goal go to the red door only makes
sense in environments with red doors. In L-AMIGo, these tasks are factorized into a policy network,
which produces the distribution over goals given a student’s state, and a grounding network, which
predicts the probability that a goal is likely to be achieved in the first place (Figure [2b):

71—T(et | St GT) X pground(gt | St QT) 'ppolicy(gt | St eT) (1
pground(ﬂt | St aT) =0 (f(gh gT) : hground(st; QT)) (2)
Ppoticy (e | 5¢507) o< f(Le:07) - Ppoticy (St 01) 3)

3We can treat language goals and state descriptions equivalently, even if the wordings are slightly different
across environments. In MiniGrid, messages (e.g. go fo the red door) look like goals but can also be interpreted
as state descriptions: [in this state, you have] go[ne] to the red door In MiniHack, messages are description-like
(e.g. you kill the minotaur!), but imagine the teacher’s goal as [reach a state where] you kill the minotaur!



Equation [3|describes the policy network as producing a probability for a goal by computing the dot
product between goal and state representations f (¢;; 07 ) and hpiicy (S¢; 07 ), normalizing over possible
goals; this policy is learned identically to the standard AMIGo teacher (Figure [2iii). Equation [2
specifies the grounding network as predicting whether a goal is achievable in an environment, by
applying the sigmoid function to the dot product between the goal representation f(¢;; 1) and a
(possibly separate) state representation Rground (S¢; 07). Given an oracle grounding classifier, which
outputs only O or 1, this is equivalent to restricting the teacher to proposing only goals that are
achievable in a given environment. In practice, however, we learn the classifier online (Figure [2ii).
Given the initial state sg of an episode, we ask the grounding network to predict the first language
description encountered along this trajectory: ¢y = L(sy), where ¢’ is the minimum ¢ where
L(s:) # @. This is formalized as a multilabel binary cross entropy loss,

Eground(SO;Elst) = - 1Og(pgrouncl(flst | 503 eT)) - ‘g|1,1 Z 10g(1 - pground(él ‘ 503 9T))7 “4)
2'eG\{lig}

where the second term noisily generates negative samples of (start state, unachieved description) pairs
based on the set of descriptions G known to the teacher at the time, similar to contrastive learning
Note that since G is updated during training, Equation 4 grows to include more terms over time.

To summarize, training the teacher involves three steps: (1) updating the running set of descriptions
seen in the environment, (2) learning the policy network based on whether the student achieved
goals proposed by the teacher, and (3) learning the grounding network by predicting descriptions
encountered from initial states. Algorithm[ST]in Appendix [A]describes how L-AMIGo trains in an
asynchronous actor-critic framework, where the student and teacher are jointly trained from batches
of experience collected from separate actor threads, as used in our experiments (see Section [6).

5 L-NovelD

Next, we describe NovelD [54], which extends simpler tabular- [47]] or pseudo- [4} 6] count-based
intrinsic exploration methods, and our language variant, L-NovelD. Instead of simply rewarding an
agent for rare states, NovelD rewards agents for transitioning from states with low novelty to states
with higher novelty. Zhang et al. [54] show that NovelD surpasses Random Network Distillation [6],
another popular exploration method, on a variety of tasks including MiniGrid and Atari.

5.1 NovelD
NovelD defines the reward r}; to be the difference in novelty between state s; and previous state s;_1:

ri = NovelDg(s¢, 5¢—1) = max(N(s;) — aN(s;_1),0) - 1(Ne(ss) = 1) . 5)

Term 1 (NovelD) Term 2 (ERIR)

In the first NovelD term, N(s;) is the novelty of state s;; this quantity describes the difference in
novelty between successive states, which is clipped > 0 so the agent is not penalized from moving
back to less novel states. « is a hyperparameter that scales the average magnitude of the reward. The
second term is the Episodic Reduction on Intrinsic Reward (ERIR): a constraint that the agent only
receives reward when encountering a state for the first time in an episode. N.(s;) is an episodic state
counter that tracks exact state visitation counts, as defined by (x, y) coordinates.

Measuring novelty with RND. In smaller MDPs, it is possible to track exact state visitation counts,
in which case the novelty is typically the inverse square root of visitation counts [47]. However, in
larger environments where states are rarely revisited, we (like NovelD) use the popular Random
Network Distillation (RND) [[6] technique as an approximate novelty measure. Specifically, the
novelty of a state is measured by the prediction error of a state embedding network that is trained
jointly with the agent to match the output of a fixed, random target network. The intuition is that
states which the RND network has been trained on will have lower prediction error than novel states.

*If multiple “first” descriptions are found, the teacher predicts 1 for each description, and 0 for all others.



5.2 [Extension to L-NovelD

Our incorporation of language is simple: we add an additional exploration bonus based on novelty
defined according to the language descriptions of states:

NOVelDe(fhgt,l) £ maX(N(Zt) — OZN(ftfl),O) . ]l(Ne(ét) = 1) (6)

This bonus is identical to standard NovelD: N (¢) is the novelty of the description ¢ as measured
by a separately parameterized RND network encoding the descriptionE] and N, (¢;) = 1 when the
language description has been encountered for the first time this episode. We keep the original
NovelD exploration bonus, as language rewards may be sparse and a basic navigation bonus can
encourage the agent to reach language-annotated states. The final intrinsic reward for L-NovelD is

ri = L-NovelD(sy, 8t 1,44, ;1) = NovelD, (54, s;1) + A\¢NovelDy(¢s, ;1) (7)

where )\, controls the trade-off between Equations [5|and 6]

One might ask why we do not simply include the language description £ as input into the RND
network, along with the state. While this can work in some cases, decoupling the state and language
novelties allow us to precisely control the trade-off between the two, with a hyperparameter that can
be tuned to different tasks. In contrast, a combined input obfuscates the relative contributions of state
and language to the overall novelty. Appendix [F2]has ablations that show that (1) combining the
state and language inputs or (2) using the language novelty term alone leads to worse performance.

6 Experiments

We evaluate L-AMIGo, AMIGo, L-NovelD, and NovelD, implemented in the TorchBeast [27] imple-
mentation of IMPALA [[17]], a common asynchronous actor-critic method. Besides vanilla IMPALA,
we also compare to a naive (fixed) message reward given for any message in the environment, which is
similar doing extrinsic reward shaping for all messages (e.g. LEARN [22]; also [3} 15} 21 23} 44, 153]])
or prior approaches that assume that messages are always helpful (Harrison et al. [24], ELLA [31]]);
see Appendixfor more discussion on this baseline and its equivalencies to prior Workﬂ We run
each model 5 times across 13 tasks within two challenging procedurally-generated RL environments,
MiniGrid [8]] and MiniHack [41]], and adapt baseline models provided for both environments [7,41]];
for full model, training, and hyperparameter details, see Appendix

6.1 Environments

MiniGrid. Following Campero et al. [[7]], we evaluate on the most challenging tasks in MiniGrid [8]],
which involve navigation and manipulation tasks in gridworlds: KeyCorridorS{3,4,5}R3 (Figure|1)
and ObstructedMaze_{1D1,2Dlhb,1Q}. These tasks involve picking up a ball in a locked room,
with the key to the door hidden in boxes or other rooms and the door possibly obstructed. The suffix
indicates the size of the environment, in increasing order. See Appendix [G.]for more details.

To add language, we use the complementary BabyAlI platform [9] which provides a grammar of
652 possible messages, involving goto, open, pickup, and putnext commands applied to a variety of
objects qualified by type (e.g. box, door) and/or color (e.g. red, blue). The oracle language annotator
emits a message when the corresponding action is completed. On average, only 6 to 12 messages
(1-2% of all 652) are needed to complete each task (see Appendix [G.1]for all messages).

Note that since BabyAl messages are not included in the original environment from which we adapt
baseline agents [7], none of our MiniGrid agents encode language observations directly into the state.
While it can be tempting and beneficial to use language in this way, one a priori benefit of using
language solely for exploration is that language is only needed during training, and not evaluation.
Regardless, see Appendix [E for additional experiments with MiniGrid agents that encode language
into the state representation; while this boosts performance of baseline models, the experiments show
that language-augmented exploration methods still outperform non-linguistic ones.

3For multiple messages, we average NovelD of each messsage.
SFor an implementation of a message reward with simple novelty-based decay, see the message-only L-
NovelD ablation results in Appendix[lﬁ} which underperforms full L-NovelD and L-AMIGo.
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Figure 3: Training curves. Mean extrinsic reward (= std err) across 5 independent runs for each
model and environment. In general, linguistic variants outperform their non-linguistic forms.

MiniHack. MiniHack [41] is a suite of procedurally-generated tasks of varying difficulty set in the
roguelike game NetHack [28]]. MiniHack contains a diverse action space beyond simple MiniGrid-
esque navigation, including planning, inventory management, tool use, and combat. These actions
cannot be expressed by (z,y) positions, but instead are captured by in-game messages (Figure |I).
We evaluate our methods on a representative suite of tasks of varying difficulty: River, Wand of
Death (WoD)-{Medium,Hard}, Quest-{Easy,Medium}, and MultiRoom-{N2,N4}-Extreme.

For space reasons, we describe the WoD-Hard environment here, but defer full descriptions of tasks
(and messages) to Appendices|G.2]and [H. In WoD-Hard, depicted in Figure[] the agent must learn to
use a Wand of Death, which can zap and kill enemies. This involves a complex sequence of actions:
the agent must find the wand, pick it up, choose to zap an item, select the wand in the inventory, and
finally choose the zapping direction (towards the minotaur which is pursuing the player). It must then
proceed past the minotaur to the goal to receive reward. Taking these actions out of order (e.g. trying
to zap with nothing in the inventory, or selecting something other than the wand) has no effect.

It is difficult to enumerate all MiniHack messages, as they are hidden in low-level game code which
has many edge cases. As an estimate, we can examine expert policies: agents which have solved
WoD tasks encounter around 60 messages, of which only 5-10 (8—-16%) are needed for successful
trajectories, including inventory (f - a metal wand, what do you want to zap?, in what direction?) and
combat (You kill the minotaur!, Welcome to level 2.) messages; most are irrelevant (e.g. picking up
and throwing stones) or nonsensical (There is nothing to pick up, That is a silly thing to zap). In the
other tasks, only 8-18% of the hundreds of unique messages are needed for success (Appendix [G.2).

Unlike the MiniGrid environments, we adapt baseline models from [41]], which all already encode
the in-game message into the state representation. Despite this, as we will show, using language as an
explicit target for exploration outperforms using language as a state feature alone.

7 Results

Figure [3 shows training curves with AMIGo, NovelD, language variants, and the IMPALA and
naive message reward baselines. Following Agarwal et al. [2], we summarize these results with the
interquartile mean (IQM) of all methods in Figure 4] with bootstrapped 95% confidence intervals
constructed from 5k samples per model/env comb1nat10n We come to the following conclusions:

"See Appendix E for full numeric tables and area under the curve (AUC)/probability of improvement plots.
8See Appendix IF| for ablation studies of L-AMIGo’s grounding network and the components of L-NovelD.
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Linguistic exploration outperforms non-linguistic exploration. Both algorithms, L-AMIGo and
L-NovelD, outperform their nonlinguistic counterparts. Despite variance in runs and across environ-
ments, averaged across all environments (Overall) we see a statistically significant improvement of
L-AMIGo over AMIGo (.27 absolute, 47% relative) and of L-NovelD over NovelD (.35 absolute,
85% relative). In some tasks, Figure [3|shows that L-AMIGo and L-NovelD reach the same asymptotic
performance as their non-linguistic versions, but with better sample efficiency and stability (e.g.
KeyCorridorS3R3 L-AMIGo, Quest-Easy L-NovelD; see Appendix [D.3] AUC plots). Lastly, the
failure of the naive message reward shows that indiscriminate reward shaping fails in tasks with
sufficiently diverse language; instead, some notion of novelty or difficulty is needed to make progress.

Linguistic exploration excels in larger environments. Our tasks include sequences of environments
with the same underlying dynamics, but larger state spaces and thus more challenging exploration
problems. In general, larger environments result in bigger improvements of linguistic over non-
linguistic exploration, since the space of messages remains relatively constant even as the state
space grows. For example, there is no difference in ultimate performance for language/non-language
variants on KeyCorridorS3R3, yet the gaps grow as the environment size grows to KeyCorridorS5R3,
especially in L-NovelD. A similar trend can be seen in the WoD tasks, where AMIGo actually
outperforms L-AMIGo in WoD-Medium, but in WoD-Hard is unable to learn at all.

7.1 Interpretability

One auxiliary benefit of our language-based methods is that the language states and goals can
provide insight into an agents’ training and exploration process. We demonstrate how L-AMIGo and
L-NovelD agents can be interpreted in Figure [6]

Emergent L-AMIGo Curricula. Campero et al. [7] showed that AMIGo teachers produce an
interpretable curriculum, with initially easy (z,y) goals located next to the student’s start location,
and later harder goals referencing distant locations behind doors. In L-AMIGo, we can see a similar
curriculum emerge through the proportion of language goals proposed by the teacher throughout
training. In the KeyCorridorS4R3 environment (Figure[Gh), the teacher first proposes the generic goal
open (any) door before then proposing goals involving specific colored doors (where <C> is a color).
Next, the agent discovers keys, and the teacher proposes pick[ing] up the key and putting it in certain
locations. Finally, the teacher and student converge on the extrinsic goal pick up the ball.

Due to the complexity of the WoD-Hard environment, the curriculum for the teacher is more
exploratory (Figure [6¢). The teacher proposes useless goals at first, such as finding staircases and
slings. At one point, the teacher proposes throwing stones at the minotaur (an ineffective strategy)
before devoting more time towards wand actions (you see here a wand, the wand glows and fades).
Eventually, as the student grows more competent, the teacher begins proposing goals that involve
directly killing the minotaur (you kill the minotaur, welcome to experience level 2) before converging
on the message you see a minotaur corpse—the final message needed to complete the episode.

L-NovelD Message Novelty. Similarly, L-NovelD allows for interpretation by examining the
messages with highest intrinsic reward as training progresses. In KeyCorridorS4R3 (Figure [6p), the
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Figure 6: Interpretation of language-guided exploration. For the KeyCorridorS4R3 and WoD-Hard
environments, shown are curricula of goals proposed by the L-AMIGo teacher (a,c) and the intrinsic
reward of messages (some examples labeled) for L-NovelD (b,d).

novelty of easy goals such as open the door decreases fastest, while the novelty of the true extrinsic
goal (pick up the ball) and even rarer actions (put the key next to the ball) remains high throughout
training. In WoD-Hard (Figure [6d), messages vary widely in novelty: simple and nonsensical
messages like that is a silly thing to zap and it’s a wall quickly plummet, while more novel messages
are rarer states that require killing the minotaur (you have trouble lifting a minotaur corpse).

7.2 Do semantics matter?

Language not only denotes meaningful features in the world; its lexical and compositional semantics
also explain how actions and states relate to each other. For example, in L-AMIGo, an agent might
more easily go to the red door if it already knows how to go to the yellow door. Similarly, in
L-NovelD, training the RND network on the message go to the yellow door could lower novelty of
similar messages like go to the red door, which might encourage exploration of semantically broader
states. While our primary focus is not on whether agents can generalize to new language instructions
or states, we are still interested in whether these semantics improve exploration for extrinsic rewards.

To check this hypothesis, in Figure[5|we run “one-hot” variants of L-AMIGo and L-NovelD where the
semantics of the language annotations are hidden: each message is replaced with a one-hot identifier
(e.g. go to the red door — 1, go to the blue door — 2) but otherwise functions identically to the
original message. We make two observations. (1) One-hot goals actually perform quite competitively,
demonstrating that the primary benefit of language in these tasks is to abstract over the state space,
rather than provide fine-grained semantic relations between states. (2) Nevertheless, L-AMIGo is
able to exploit semantics, with a significant improvement (.20 absolute, 32% relative) in aggregate
performance over one-hot goals, in contrast to L-NovelD, which shows no significant difference.
We leave for future work a more in-depth investigation into what kinds of environments and models
might benefit more from language semantics.



8 Discussion

The key insight in this paper is that language, even if noisy and often unrelated to the goal, is a
more abstract, efficient, and interpretable space for exploration than state representations. To support
this, we have presented variants of two popular state-of-the-art exploration methods, L-AMIGo and
L-NovelD, that outperform their non-linguistic counterparts by 47-85% across 13 language-annotated
tasks in the challenging MiniGrid and MiniHack environment suites.

Despite their success here, our models have some limitations. First, as is common in work like ours, it
will be important to alleviate the restriction on oracle language annotations, perhaps by using learned
state description models [31}49]]. Furthermore, L-AMIGo specifically cannot handle tasks such as
the full NetHack game which have unbounded language spaces and many redundant goals (e.g. go
to/approach/arrive at the door), since it selects a single goal which must be achieved verbatim. An
exciting extension to L-AMIGo would propose abstract goals (e.g. kill [any] monster or find a new
item), possibly in a continuous semantic space, that can be satisfied by multiple messages.

More general extensions include better understanding when and why language semantics benefits
exploration (Section[7.2) and using pretrained models to imbue semantics into the models beforehand
[49]. Additionally, although the agents in this work are able to explore even when not all language
is useful, we must take caution in adversarial settings where the language is completely unrelated
to the extrinsic task (and thus useless) or even describes harmful behaviors. Future work should
measure how robust these methods are to the noisiness and quality of the language. Nevertheless, the
success of L-AMIGo and L-NovelD demonstrates the power of even noisy language in these domains,
underscoring the importance of abstract and semantically-meaningful measures of exploration in RL.
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