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Abstract

Coronary artery disease (CAD), type 2 diabetes (T2D) and depression are among the

leading causes of chronic morbidity and mortality worldwide. Epidemiological studies indi-

cate a substantial degree of multimorbidity, which may be explained by shared genetic

influences. However, research exploring the presence of pleiotropic variants and genes

common to CAD, T2D and depression is lacking. The present study aimed to identify

genetic variants with effects on cross-trait liability to psycho-cardiometabolic diseases.

We used genomic structural equation modelling to perform a multivariate genome-wide

association study of multimorbidity (Neffective = 562,507), using summary statistics from

univariate genome-wide association studies for CAD, T2D and major depression. CAD

was moderately genetically correlated with T2D (rg = 0.39, P = 2e-34) and weakly corre-

lated with depression (rg = 0.13, P = 3e-6). Depression was weakly correlated with T2D

(rg = 0.15, P = 4e-15). The latent multimorbidity factor explained the largest proportion of

variance in T2D (45%), followed by CAD (35%) and depression (5%). We identified 11

independent SNPs associated with multimorbidity and 18 putative multimorbidity-associ-

ated genes. We observed enrichment in immune and inflammatory pathways. A greater

polygenic risk score for multimorbidity in the UK Biobank (N = 306,734) was associated

with the co-occurrence of CAD, T2D and depression (OR per standard deviation = 1.91,

95% CI = 1.74–2.10, relative to the healthy group), validating this latent multimorbidity

factor. Mendelian randomization analyses suggested potentially causal effects of BMI,

body fat percentage, LDL cholesterol, total cholesterol, fasting insulin, income, insomnia,
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and childhood maltreatment. These findings advance our understanding of multimorbidity

suggesting common genetic pathways.

Author summary

While observational research has shown a substantial degree of overlap between depres-

sion, coronary artery disease and type 2 diabetes, few studies have attempted to identify

genetic variants associated with multimorbidity between these conditions. Here, we

explore the shared genetic architecture of depression, coronary artery disease and type 2

diabetes (i.e., psycho-cardiometabolic diseases) and examine common genetic variants

associated with the co-occurrence of these conditions. Employing a novel method for per-

forming multivariate genome-wide association studies, we show that there are 11 inde-

pendent genetic variants across nine distinct genomic risk loci associated with psycho-

cardiometabolic multimorbidity. We observe enrichment in immune and inflammation-

related pathways and identify 18 multimorbidity-associated genes. We show that the poly-

genic risk score developed based on our multimorbidity genome-wide association study is

predictive of the co-occurrence of depression, coronary artery disease and type 2 diabetes

in an independent sample. Lastly, we identify eight potentially causal risk factors for mul-

timorbidity. These results advance our understanding of the shared genetic influences in

psycho-cardiometabolic diseases.

Introduction

Depression, coronary artery disease (CAD) and type 2 diabetes (T2D) are important public

health issues. Whilst each of these chronic disorders alone represent a major global burden,

multimorbidity between them presents an additional challenge for healthcare systems [1–3].

Epidemiological studies suggest that individuals with depression have an 80–90% greater risk

of cardiovascular morbidity and mortality [4] and a 32–60% higher risk of T2D [5,6] than indi-

viduals without depression. The reverse association has also been observed, with approxi-

mately 40% of people with CAD and 18–28% of people with diabetes either meeting the

criteria for depression or experiencing depressive symptoms [7,8]. Notably, life expectancy in

individuals with a diagnosis of depression is reduced [9], which may be partially accounted for

by the co-occurrence with physical health diseases [10,11]. This emphasizes the importance of

understanding the mechanisms through which mental and physical diseases may co-occur.

The relationship between depression, CAD and T2D may be attributed in part to shared

lifestyle and other risk factors such as lack of physical activity [12,13], unhealthy diet [14,15],

increased body mass index (BMI) [16–18], altered hypothalamic-pituitary-adrenal axis

[19,20], inflammation [21–23] and childhood trauma [24]. For instance, BMI and inflamma-

tion have been causally linked to all three disorders in Mendelian randomization studies [25–

30], albeit with some conflicting findings [31–33]. However, in several meta-analyses, esti-

mates of the CAD-depression and T2D-depression relationship were similar before and after

adjustment for major sociodemographic and lifestyle indicators [5,34–36], suggesting that

these indicators do not entirely explain the association. Another plausible explanation for mul-

timorbidity between these conditions is the presence of shared genetic aetiology (i.e., pleiotro-

pic genes) that function as a hub linking these disorders [2]. In line with this, twin and family

studies reveal moderate genetic correlations between depression and CAD (42%) [37], and

depression and T2D (up to 25%) [38]. However, recent studies based on genome-wide
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association data and polygenic risk scores provide conflicting evidence [39–41], with only

some studies observing significant positive genetic correlations among the above mentioned

traits [42–44]. The genetic overlap between CAD and T2D was more consistent, with multiple

studies reporting a significant positive genetic correlation [42,45,46].

Despite many studies investigating the genetic overlap between depression, cardiovascular

and metabolic diseases [e.g., 47], the latent genetic factor structure across all three diseases has

not been explored. Additionally, research exploring the presence of pleiotropic variants and

genes that are common to depression, CAD, and T2D is lacking. Characterizing multivariate

genetic associations with psycho-cardiometabolic diseases (where psycho stands for depres-

sion, cardio for CAD and metabolic for T2D) and understanding the biological mechanisms

that contribute to multimorbidity between these conditions is important. It would allow us to

examine causal risk factors for multimorbidity (e.g., by providing genetic instruments for

Mendelian randomization analysis) and help to identify potentially engageable treatment

targets.

Accordingly, the aims of this study were to: (1) model the shared genetic architecture of

depression, CAD and T2D with a latent multimorbidity factor; (2) identify genetic variants

associated with multimorbidity; (3) perform functional gene mapping to determine if the

prioritised genes are enriched in specific tissues or biological pathways; and (4) validate a poly-

genic risk score for multimorbidity within an independent sample.

Methods

Ethics statement

This research was conducted using the UK Biobank resource, application number 65769. The

UK Biobank study was conducted under generic approval from the National Health Service

(NHS) Research Ethics Service. The study protocol used by 23andMe was approved by an

external Association for Accreditation of Human Research Protection Programs (AAHRPP)-

accredited institutional review board. All cohorts contributing to the present study obtained

written informed consent from all participants. Additionally, ethical approval for the present

study was obtained from the University of Bath (PREC: 20–195).

GWAS selection

First, we identified the largest univariate genome-wide association meta-analyses available to

date from individuals of predominantly European ancestry for three distinct phenotypes:

major depression [44], CAD [48], and T2D [42] (Table 1; S1 Appendix methods section). We

avoided using genome-wide association studies (GWASs) with mixed ancestry groups (i.e., >

25% non-European ancestry individuals), as they may bias results from genetic factor analysis

[49]. As a second step, we selected GWASs that do not include the UK Biobank (UKBB) cohort

(i.e., Scott et al. [50] for T2D and Howard et al. [44] for depression with UKBB removed), as

we planned to use this cohort as an independent replication sample for polygenic risk score

(PRS) analysis. For detailed characteristics of the input populations and the sources of data see

S1 Table. For a flowchart of all our analyses see Fig A in S1 Appendix.

Single-trait heritability, genetic correlations, and factor analysis

We used linkage disequilibrium (LD) score regression within Genomic structural equation

modelling (Genomic SEM, version 0.0.5) [49] to estimate the heritability of depression, CAD

and T2D, as well as the genetic correlations among the traits. For quality control steps, see

S1 Appendix methods section. Subsequently, Genomic SEM was used to perform a genetic
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factor analysis using diagonally weighted least squares estimation. To estimate the shared vari-

ance between depression, CAD, and T2D, a common factor model was specified with all three

traits loading onto a latent multimorbidity factor.

Multivariate GWAS and heterogeneity index

We used Genomic SEM to carry out a multivariate GWAS whereby the latent factor of multi-

morbidity (obtained in the previous step) was regressed on each SNP. This permitted a new set

of summary statistics to be estimated for this common factor. SNP effects for the latent factor

were estimated only for SNPs which were present in each of the univariate summary statistics

files, resulting in 6,820,149 SNPs. A follow-up model was specified to obtain a heterogeneity Q

index for each SNP. This index indicates the extent to which the SNP effect deviates from the

common factor structure, with larger QSNP values suggesting greater heterogeneity. Heteroge-

neous SNPs are unlikely to affect all phenotypes via the common factor but, instead, are more

likely to be phenotype-specific, and are thus not indicative of multimorbidity. SNPs with Q

estimates significant at the genome-wide level (QSNP P< 5e-8) and with directionally discor-

dant univariate effect estimates were interpreted as potentially heterogeneous. For details, see

methods section in S1 Appendix.

Functional annotation and gene mapping

Functional mapping and annotation of genetic associations was performed using FUMA

GWAS online platform [51] version 1.5.2d. We used the SNP2GENE pipeline with default set-

tings to identify independent genome-wide significant SNPs (P< 5e-8) in low LD (r2 < 0.1).

LD blocks of independent significant SNPs that are located next to each other (< 250 kb apart)

were merged into one genomic risk locus. To ensure that functional analysis captures the mul-

timorbidity signal and is not driven by any single disease, we removed all SNPs with evidence

for heterogenous effects (QSNP P< 5e−8 and directionally discordant univariate effect esti-

mates) prior to annotation. Given that independent SNPs might not be causal themselves, but

instead in close proximity of causal SNPs, we broadened the genomic loci for annotation to

include all known variants that are available in the 1000G reference panel and are in LD (r2�

0.6) with one of the non-heterogeneous, independent significant SNPs, as done elsewhere [51]

(methods section in S1 Appendix).

Subsequently, to understand which genes may be involved in multimorbidity, functionally

annotated SNPs were mapped to genes based on positional mapping, expression quantitative

trait loci (eQTL) and chromatin interactions (S1 Appendix methods section). Default

Table 1. A list of Contributing Genome-Wide Association Studies.

Phenotype Used in GWAS Year Cases Controls

CAD Discovery GWAS for Genomic SEM Nikpay et al. [48] 2015 60,801 123,504

Discovery GWAS for PRS Nikpay et al. [48] 2015 60,801 123,504

T2D Discovery GWAS for Genomic SEM Mahajan et al. [42] 2018 74,124 824,006

Discovery GWAS for PRS Scott et al. [50] 2017 26,676 132,532

MD Discovery GWAS for Genomic SEM Howard et al. [44] 2019 246,363 561,190

Discovery GWAS for PRS Howard et al. [44] (no UKBB) 2019 140,045 378,325

Univariate GWASs contributing to the multivariate GWAS of psycho-cardiometabolic multimorbidity. All summary statistics are based on individuals of European

ancestry, apart from Nikpay et al. [48], which also includes individuals from mixed ancestry groups (with 77% being European). Summary statistics used to construct

the PRS exclude the UK Biobank cohort. GWAS, genome-wide association study; PRS, polygenic risk score; UKBB, UK Biobank.

https://doi.org/10.1371/journal.pgen.1010508.t001
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parameters were selected for each of these analyses (S1 Text). LocusZoom platform [52] was

used to obtain regional visualization plots of key genomic risk loci.

Pathway enrichment analysis and tissue specificity

All genes identified via at least one of these mapping techniques were used as input in FUMA’s

GENE2FUNC pipeline, which annotated the prioritised genes in a biological context (S1

Appendix methods section; S2 Text). Enrichment of input genes was tested using curated gene

sets and GO terms obtained from MSigDB [53] database and WikiPathways [54], whereas tis-

sue specificity analysis was performed in 54 specific and 30 general tissue types based on GTEx

v8 data [55].

Gene-based and gene-set analyses

Given that the effects of individual SNPs can be too weak to detect when dealing with poly-

genic traits, MAGMA [56] gene-based and gene-set analyses were performed (as implemented

within the FUMA platform [51]) to determine the joint effect of multiple SNPs within a given

gene. For gene-based analysis, the degree of association for gene with multimorbidity was

quantified using gene-based P-values, which were obtained by assigning input SNPs to genes

when these were physically located within the gene or within 10kb window on either side. For

gene-set analysis, gene-set P-values were computed for curated gene sets and GO terms

obtained from the MsigDB[53] database. Unlike pathway enrichment analysis implemented

within the GENE2FUNC pipeline, which only tests for enrichment of prioritized genes,

MAGMA gene-set analysis was performed using the full distribution of genetic associations

[51]. Significance for gene set analysis was defined as alpha divided by the total number of pro-

tein coding genes tested.

Polygenic risk score analysis

To evaluate how well our GWAS for multimorbidity captures multimorbidity risk, we per-

formed polygenic risk score (PRS) analysis. To do this, we first repeated the multivariate

GWAS using summary statistics of European ancestry that do not include the UKBB cohort

(Table 1). Subsequently, a PRS was calculated using PRSice-2 [57] to assess its association with

phenotypic multimorbidity. Summary statistics for multimorbidity (excluding UKBB) pro-

vided the allelic weightings for each SNP, which were used to generate polygenic risk scores

for 306,734 individuals in the UKBB cohort–our independent target sample–adjusting for 10

genetic principal components (PCs), sex and age. Multimorbidity was defined as an ordinal var-

iable, where 0 = no disease, 1 = any one disease, 2 = any two diseases, and 3 = all three diseases

(i.e., depression, CAD and T2D). See methods section in S1 Appendix for further details. Subse-

quently, a multinomial logistic regression controlling for sex and age was performed to investi-

gate the degree to which the PRS was associated with multimorbidity. To ensure that SNPs with

higher heterogeneity estimates do not confer disproportionate liability to any individual trait,

we repeated the PRS analysis with non-heterogeneous SNPs only (QSNP P� 5e−8).

To compare how well a multimorbidity-based PRS performs in comparison to PRSs based

on single diseases, we generated PRSs for the individual phenotypes as well. Significant differ-

ences in the four PRSs (i.e., multimorbidity, CAD, T2D, depression) were tested using one-

way ANOVA with post-hoc Tukey HSD to account for multiple comparisons.
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Genetic correlations and Mendelian randomization

As a last step, we used the LD score regression tool v1.0.1 [45,58] implemented in Python

v2.7.18 to estimate genetic correlations between multimorbidity and 18 risk factors, such as

BMI, blood pressure, cholesterol, inflammation, neuroticism, childhood maltreatment and

income (see S1 Appendix methods section for a complete list). For comparability, genetic cor-

relations between the three contributing GWASs (CAD, T2D, depression) and the risk factors

were also obtained. Bonferroni correction was applied to account for multiple comparisons.

To further explore which risk factors may be causal for multimorbidity, we performed

inverse-variance weighted (IVW) two-sample Mendelian randomization (MR) analysis

between selected risk factors and multimorbidity using the TwoSampleMR package [59]. To

ensure our outcome GWAS captures multimorbidity, we removed SNPs with evidence of het-

erogeneity (QSNP P< 5e−8 and directionally discordant effect estimates). A series of sensitivity

analyses were also carried out (S1 Appendix, methods section). All MR analyses were con-

ducted using multimorbidity GWAS without the UKBB. This helped to reduce bias in MR esti-

mates due to sample overlap as eight risk factors were solely based on the UKBB. To account

for non-UKBB related sample overlap, we obtained bias-corrected IVW-MR estimates using

the recently developed MRlap package[60]. MRlap adjusts for biases due to overlapping sam-

ples, weak instruments, and winner’s curse by incorporating cross-trait LD-score regression to

approximate sample overlap [60].

Results

Heritability and genetic correlations

Heritability estimates (reported on the liability scale) were similar across all three univariate

traits: 0.070 (SE = 0.005) for CAD, 0.162 (SE = 0.008) for T2D, and 0.064 (SE = 0.002) for

depression. LD score regression identified a significant moderate correlation between CAD

and T2D (rg = 0.39, SE = 0.03, P = 2e-34), and significant but weak correlations between CAD

and depression (rg = 0.13, SE = 0.03, P = 3e-6), and between depression and T2D (rg = 0.15,

SE = 0.02, P = 4e-15). For heritability Z scores, see S2 Table.

Factor analysis

We specified a common factor model where all three traits loaded onto the same multimorbid-

ity factor. T2D loaded most highly on this factor, followed by CAD and depression (Fig 1).

Accordingly, the common factor explained the largest proportion of variance in T2D (R2 =

0.45), followed by CAD (R2 = 0.35) and depression (R2 = 0.05). Hence, the common factor

explained on average 28.3% of the total standardised genetic variance between the three traits.

Model fit indices were not available due to specifying a fully saturated model (df = 0).

Multivariate GWAS and heterogeneity index

We identified 389 SNPs associated with multimorbidity, of which 11 were independent

(Table 2, Figs 2 and B in S1 Appendix). The independent SNPs were distributed across nine

genomic loci (S3 Table). The QSNP heterogeneity estimate was significant for six of the 11

SNPs (P< 5e-8; S4 Table; Fig C in S1 Appendix).

An inspection of the univariate betas within the three contributing GWASs revealed direc-

tionally discordant estimates across the three traits for four of the 11 independent SNPs

(S5 Table), indicating that these particular SNPs were unlikely to operate via the common fac-

tor but, instead, were more likely to be phenotype specific. The remaining seven SNPs were

consistent in the direction of their univariate betas, with four SNPs showing the largest effects
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for CAD and T2D, and three SNPs having comparable estimates across the three traits (for

regional plots of these SNPs see Fig 2). While we observed moderate genomic inflation (i.e.,

λGC of 1.69), an intercept of 0.99 (SE = 0.01) indicated that it was likely due to polygenicity

rather than uncontrolled inflation (S2 Table). The effective sample size for the multimorbidity

GWAS was 562,507.

Fig 1. A Common Factor Model for Psycho-Cardiometabolic Multimorbidity. Unstandardized coefficients (SE) on

the left and standardized coefficients (SE) on the right for the genetically defined common factor of multimorbidity.

The model uses unit variance identification for the latent factor. All paths are significant at P< 2e-13. MM,

multimorbidity; CAD, coronary artery disease; T2D, type 2 diabetes; MD, major depression; U, residual variance.

https://doi.org/10.1371/journal.pgen.1010508.g001

Table 2. Independent Significant SNPs at r2 <0.1 identified in the Multivariate GWAS of Psycho-Cardiometabolic Multimorbidity.

Locus rsID Chr Position P-value LD SNPs GWAS SNPs QSNP

P-value

Nearest Gene

1 rs10789340 1 72940273 3.38E-10 580 394 3.15e-12 RPL31P12
2 rs9349379* 6 12903957 3.17E-19 222 135 2.91e-27 PHACTR1
3 rs10455872* 6 161010118 4.81E-15 200 143 1.55e-25 LPA
3 rs186696265* 6 161111700 3.78E-11 91 56 7.53e-21 RP1-81D8.3
4 rs2043539 7 12253880 1.23E-08 329 210 3.52e-07 TMEM106B
5 rs3731239 9 21974218 3.03E-09 167 113 3.45e-06 RP11-145E5.5: CDKN2A
5 rs2891168 9 22098619 6.88E-74 215 155 1.36e-27 CDKN2B-AS1
6 rs532436 9 136149830 2.88E-08 168 65 8.93e-06 ABO
7 rs34872471* 10 114754071 2.32E-11 133 109 1.85e-17 TCF7L2
8 rs2004910 12 121374727 3.60E-09 493 337 0.003 RPL12P33
9 rs1962412 17 46970259 2.57E-08 510 359 0.095 SUMO2P17:

ATP5G1

rsID, unique identifier of independent significant single nucleotide polymorphisms (SNPs); Chr, chromosome; Position, position on hg19. LD SNPs = the number of

SNPs in linkage disequilibrium (LD) with the corresponding independent significant SNP. This includes non-GWAS-tagged SNPs extracted from 1000G reference

panel. GWAS SNPs = number of multimorbidity GWAS-tagged SNPs in LD (r2 < 0.1) with the corresponding independent significant SNP filtered by P � 0.05. QSNP

P-value = test for violation of the null hypothesis that the SNP acts entirely through the common factor. An asterisk indicates heterogeneous SNPs with a QSNP P< 5e-8

and directionally discordant univariate betas. While another two SNPs had QSNP P < 5e-8 indicative of heterogeneity, their univariate beta estimates were directionally

concordant.

https://doi.org/10.1371/journal.pgen.1010508.t002
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Functional annotation and gene mapping

To ensure that functional analysis captured multimorbidity and was not driven by any single

disease, we only included non-heterogeneous SNPs and those in LD. This left 1,562 GWAS

tagged SNPs, which were functionally annotated to genes based on positional mapping, eQTL

associations and chromatin interactions using FUMA. A total of 200 unique genes were impli-

cated by at least one of these mapping techniques while 37 were identified using all three meth-

ods. For a complete list of prioritised genes refer to S6 Table.

Gene-based analysis of all SNPs

Gene-based analysis using MAGMA[56] provided P-values for the joint association effect of

all non-heterogeneous SNPs. Non-heterogeneous SNPs were mapped to 18,931 protein coding

genes, with 122 of these genes being identified as significant after correcting for the number of

genes tested (P = 0.05/18931 = 2.64e-6). Eighteen genes identified using MAGMA overlapped

with the genes implicated by FUMA, providing stronger support for the involvement of these

particular genes (Table 3).

Pathway enrichment analysis and tissue specificity of prioritised genes

The prioritised genes demonstrated enrichment in 10 Reactome pathways, three GO molecu-

lar functions, 43 GO biological processes, nine KEGG and 25 canonical pathways, among oth-

ers. Based on an FDR-adjusted P-value, the strongest enrichment was observed in immune

system and cytokine related pathways such as “regulation of IFNα signalling”, “interferon

receptor binding", “cytokine activity”, “serine phosphorylation of STAT protein”, and “natural

Fig 2. Manhattan and LocusZoom Plots of the Multivariate GWAS of Psycho-Cardiometabolic Multimorbidity.

(A) A Manhattan plot displaying the results for the multivariate GWAS of psycho-cardiometabolic multimorbidity

obtained using Genomic SEM (with Diagonally Weighted Least Squares estimation). The y axis depicts–log10(P)

values for variants associated with multimorbidity. The dashed, horizontal grey line denotes the genome-wide

significance threshold at P = 5e-8. Points above the grey line represent genome-wide significant hits. The black

diamonds represent independent hits. The grey stars represent independent SNPs with evidence for heterogeneous

effects (QSNP P< 5e−8 and directionally discordant univariate effect estimates). (B, C, D) Regional plots centered on

three top variants (rs10789340, rs2043539 and rs2004910, respectively) that have comparable univariate estimates

across coronary artery disease, type 2 diabetes and depression. Coding genes are shown in the panel below. The blue

line represents the recombination rate.

https://doi.org/10.1371/journal.pgen.1010508.g002
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killer cell activation involved in immune response”. For complete results of gene set enrich-

ment analysis see S7 Table. Tissue specificity analysis using 53 specific and 30 general GTEx

tissue types demonstrated significant enrichment of upregulated differentially expressed gene

sets in kidney (PBon < 0.001; Fig D in S1 Appendix) and kidney cortex tissues (PBon = 0.003;

Fig E in S1 Appendix).

MAGMA gene-set and tissue expression analyses

Out of all 15,485 gene sets tested (in comparison to only prioritised genes above), MAGMA

gene set analysis identified five significant gene sets related to processes such as DNA binding,

nucleic acid binding, and regulation of respiratory system process (all PBon < 0.031; S8 Table).

Lastly, tissue specificity analysis revealed significant gene expression in the cerebellum (PBon =

0.040; Fig F in S1 Appendix) and the pituitary gland (PBon = 0.045; Fig G in S1 Appendix), rela-

tive to other tissue types.

Polygenic risk score analysis

To validate the latent multimorbidity factor, we derived a PRS for multimorbidity in the

UKBB cohort (N = 306,734). To do this, we first repeated the multivariate GWAS using sum-

mary-level data that did not include the UKBB. Results aligned very closely to our discovery

GWAS (see results section in S1 Appendix, S4 and S9 Tables for more detail). In UKBB, we

observed a dose-response relationship, whereby PRS for multimorbidity was lowest in healthy

individuals (M = -0.037, SE = 0.002), followed by individuals with any one disease (M = 0.111,

SE = 0.004) and any two diseases (M = 0.379, SE = 0.013). PRS was highest in individuals with

Table 3. MAGMA results for 18 genes identified using four distinct methods: MAGMA gene-based analysis, positional, eQTL and chromatin interaction mapping.

Gene Status Chr Start End nSNPs Z P-valuea

NEGR1 confirmed 1 71851623 72758417 1673 5.37 3.87E-08

TMEM106B confirmed 7 12240867 12292993 272 5.40 3.30E-08

RP11-145E5.5 novel 9 21792635 22042985 412 6.91 2.40E-12

C9orf53 novel 9 21957137 21977738 19 6.07 6.34E-10

CDKN2A novel 9 21957751 22005300 48 7.08 7.40E-13

CDKN2B novel 9 21992902 22019362 37 7.85 2.05E-15

SPPL3 novel 12 121190313 121352174 463 5.78 3.70E-09

AC079602.1 novel 12 121397641 121420095 66 6.27 1.85E-10

HNF1A confirmed 12 121406346 121450315 143 5.87 2.18E-09

C12orf43 novel 12 121430225 121464305 110 5.74 4.63E-09

OASL novel 12 121448095 121487045 118 5.75 4.42E-09

TTLL6 novel 17 46829597 46904576 205 5.33 4.99E-08

ATP5G1 novel 17 46960127 46983233 48 5.66 7.58E-09

UBE2Z novel 17 46975731 47016418 112 5.43 2.82E-08

SNF8 novel 17 46996678 47032479 110 5.47 2.19E-08

GIP novel 17 47025916 47055958 92 5.62 9.51E-09

IGF2BP1 novel 17 47064774 47143012 125 5.30 5.78E-08

TCF4 novel 18 52879562 53342018 668 4.75 1.03E-06

Confirmed status refers to genes that have been associated with all three disorders (i.e., coronary artery disease, type 2 diabetes and depression) in previous studies.

Novel status refers to genes that are for the first time being linked to all three disorders. Chr, chromosome; nSNPs, number of single nucleotide polymorphisms; Z, Z-

statistic; eQTL, expression quantitative trait loci.
aBonferroni corrected P-value threshold was set at 0.05 / (the number of tested genes) = 2.64e-6.

https://doi.org/10.1371/journal.pgen.1010508.t003
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all three diseases (M = 0.585, SE = 0.046), which aligned well with the common factor structure

specified using Genomic SEM (Fig 3; S10 Table) and suggested that findings were not driven

solely by the comorbidity between CAD and T2D. Results from multinomial logistic regres-

sion revealed that for one standard deviation increase in multimorbidity-PRS, the odds of

experiencing multimorbidity (i.e., co-occurrence of CAD, T2D and depression) increased by

91% relative to the healthy group (OR = 1.91, 95% CI = 1.74–2.10). Multimorbidity-PRS was

best suited at predicting multimorbidity, rather than any one (OR range = 1.07–1.38) or any

two diseases (OR range = 1.46–1.73). Additionally, multimorbidity-PRS outperformed indi-

vidual PRSs based on CAD, T2D, and depression, especially for the multimorbid group

(Table 4). A PRS analysis using only non-heterogeneous SNPs (QSNP P� 5e−8) returned

almost identical results (S10 Table).

Furthermore, the four PRSs were statistically different in individuals with multimorbidity,

F(3, 1740) = 7.32, P< .001. Tukey’s HSD test indicated that the multimorbidity PRS

Table 4. Association between four Polygenic Risk Scores and Disease Status in UK Biobank adjusted for Age and Sex using Multinomial Logistic Regression

(N = 306,734).

Outcome MM-PRS Adjusted OR (95% CI) CAD-PRS Adjusted OR (95% CI) T2D-PRS Adjusted OR (95% CI) MD-PRS Adjusted OR (95% CI)

Healthy Ref Ref Ref Ref

MD only 1.07 (1.06–1.08) 1.01 (1.00–1.02) 1.01 (0.99–1.02) 1.20 (1.18–1.21)

T2D only 1.36 (1.33–1.38) 1.13 (1.11–1.15) 1.42 (1.40–1.45) 1.07 (1.05–1.10)

CAD only 1.38 (1.35–1.41) 1.41 (1.38–1.44) 1.07 (1.05–1.09) 1.1 (1.07–1.12)

MD and T2D 1.46 (1.40–1.52) 1.16 (1.12–1.21) 1.44 (1.38–1.5) 1.24 (1.19–1.30)

MD and CAD 1.46 (1.39–1.53) 1.37 (1.31–1.44) 1.09 (1.04–1.14) 1.27 (1.21–1.33)

CAD and T2D 1.73 (1.66–1.81) 1.44 (1.38–1.50) 1.52 (1.46–1.59) 1.19 (1.14–1.24)

Multimorbidity 1.91 (1.74–2.10) 1.53 (1.39–1.68) 1.53 (1.39–1.68) 1.38 (1.25–1.51)

Polygenic risk scores have been standardised. Reference category = healthy. Multimorbidity = CAD + T2D + MD. OR, odds ratio; CI, confidence interval; MM,

multimorbidity; CAD, coronary artery disease; T2D, type 2 diabetes; MD, major depression.

https://doi.org/10.1371/journal.pgen.1010508.t004

Fig 3. Out-of-Sample Prediction for Phenotypic Psycho-Cardiometabolic Multimorbidity or Single Diseases

using Polygenic Risk Scores. (A) Multimorbidity polygenic risk score across groups of individuals with no, any one,

two or three diseases. (B) Four polygenic risk scores for MD, CAD, T2D, and multimorbidity across groups of

individuals with no, any one, two or three diseases. MD, major depression; CAD, coronary artery disease; T2D, type 2

diabetes; MM, multimorbidity; PRS, polygenic risk score.

https://doi.org/10.1371/journal.pgen.1010508.g003
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(M = 0.59, SE = 0.05) was significantly higher in individuals with all three diseases than PRSs

for depression (M = 0.29, SE = 0.05, Padj = .001), CAD (M = 0.38, SE = 0.05, Padj = .011), or

T2D (M = 0.39, SE = 0.05, Padj = .015; Fig 3).

A sex-stratified analysis using multinomial logistic regression revealed comparable results

for males and females. Specifically, relative to the healthy group, for every one standard devia-

tion increase in multimorbidity-PRS, the odds of experiencing multimorbidity increased by

94% (OR = 1.94, 95% CI = 1.73–2.17) for males and 86% (OR = 1.86, 95% CI = 1.57–2.20) for

females (S10 and S11 Table).

Genetic correlations and Mendelian randomization

Results from LD score regression revealed significant genetic correlations with multimorbidity

for 17 out of 18 risk factors (all PBon < 0.002). The strongest genetic correlations were observed

for BMI (rg = 0.60, SE = 0.02, PBon = 9e-251), body fat percentage (rg = 0.56, SE = 0.02, PBon =

3e-174), and C-reactive protein (CRP; rg = 0.41, SE = 0.04, PBon = 3e-20). Interestingly, moder-

ate correlations were also observed with insomnia (rg = 0.36, SE = 0.03, PBon = 2e-44), neuroti-

cism (rg = 0.33, SE = 0.02, PBon = 2e-55), and childhood maltreatment (rg = 0.33, SE = 0.03,

PBon = 1e-32) (S12 Table).

Mendelian randomization analyses revealed potentially causal associations of BMI, body fat

percentage, LDL cholesterol, total cholesterol, fasting insulin, income, insomnia, and child-

hood maltreatment that survived correction for multiple testing using the Benjamini-Hoch-

berg (BH) false discovery rate. Sensitivity analyses estimates using MR-Egger, simple mode,

weighted median and weighted mode methods were generally consistent for all these traits

(with a minimum of three out of four sensitivity analyses having significant causal estimates),

indicating robustness of our primary results (Fig 4; S13 Table). Evidence for neuroticism,

blood pressure traits, and triglycerides was more mixed. We found little or no evidence to sup-

port a causal effect of intelligence, worry, sensitivity to environmental stress and adversity,

HDL cholesterol, smoking status, and C-reactive protein (Figs H-Y in S1 Appendix; S13

Table). Results from the remaining sensitivity analyses and MRlap are reported in the supple-

mentary material (S1 Appendix, results section and Figs H-Y; S13–S14 Tables).

Discussion

The present study explored the multivariate genetic architecture of major depression, T2D,

and CAD. Assessment of bivariate genetic correlations suggested a shared genetic architecture

between all three disorders. The strongest correlation was observed between CAD and T2D (rg
= 0.39), with weaker correlations detected between depression and CAD (rg = 0.13) and depres-

sion and T2D (rg = 0.15), suggesting a more distinct genetic basis. This was in line with find-

ings from previous studies which reported genetic correlations of a similar magnitude [44–46].

Akin to the bivariate correlation pattern we observed, results from the factor analysis also

revealed that on the genetic level, psycho-cardiometabolic multimorbidity is most representa-

tive of CAD and T2D, but less so of depression. Using this factor structure, we identified 11

independent SNPs associated with multimorbidity across nine genomic loci. The direction of

effect estimates was concordant across CAD, T2D and depression for seven of the 11 variants,

suggesting consistent risk associations with multimorbidity. For the majority of SNPs (n = 7),

the largest effects were observed for CAD and T2D. Three SNPs (rs10789340, rs2043539,

rs2004910) had comparable effect estimates across the three traits.

Six of the 11 independent SNPs were previously identified as genome-wide significant in

the contributing GWAS of CAD [48]. Four of the 11 independent SNPs were also identified as

genome-wide significant in the contributing GWAS of T2D [42], and three were identified as
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Fig 4. Scatter plots of Two-Sample Mendelian Randomization results. Scatter plots showing SNP effects of body

mass index (A), body fat percentage (B), LDL cholesterol (C), total cholesterol (D), fasting insulin (E), income (F),

insomnia (G), and childhood maltreatment (H) on psycho-cardiometabolic multimorbidity. The slopes represent

estimates from the primary (inverse variance weighted) and sensitivity analyses (MR-Egger, simple mode, weighted

median, weighted mode). MR, Mendelian randomization; LDL, low-density lipoprotein; SNP, single nucleotide

polymorphism.

https://doi.org/10.1371/journal.pgen.1010508.g004
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genome-wide significant in the GWAS of depression [44]. While this was indicative of greater

shared genetic architecture underlying CAD and T2D, it could also partially be driven by the

smaller effect sizes generally observed for depression-associated SNPs [44]. Weaker associa-

tions with depression may also be attributable to greater polygenicity and heterogeneity of

depression. Individuals with the same diagnoses of depression may express very different–and

even opposing (e.g., increase or decrease in sleep and appetite)–symptom profiles that, in turn,

may be related to different pathophysiological mechanisms. For example, previous research

has shown that PRSs for higher body mass index, triglycerides [61], C-reactive protein and lep-

tin [62,63] were specifically associated with major depression characterized by atypical symp-

toms (such as hyperphagia, hypersomnia and weight gain) but not with major depression in

general or with other specific subtypes. Thus, lumping different symptom patterns may

weaken or dilute genetic associations [64].

Focusing on non-heterogeneous SNPs to minimize genetic signals driven by a single disor-

der, FUMA prioritised 200 genes putatively associated with multimorbidity, 18 of which were

also identified using positional mapping, eQTL mapping, chromatin interaction mapping, and

MAGMA gene-based analysis, thereby providing the most consistent support for these genes.

Three of these genes (NEGR1, TMEM106B, HNF1A) have been linked to each of the three dis-

eases (CAD, T2D and depression) in previous studies [44,65–74], supporting their probable

involvement in psycho-cardiometabolic multimorbidity. The remaining 15 were completely

novel (e.g., SNF8 and AC079602.1) or had only been linked to one or two diseases. For exam-

ple, while SPPL3 and TCF4 have been associated with T2D [42,67] and depression [72,75,76]

(as well as various other psychiatric traits [77,78]), an association with CAD has not yet been

reported. However, SPPL3 and TCF4 have been linked to CAD risk factors such as cholesterol

levels [79,80] and CRP [79,81,82], suggesting a potential role in multimorbidity. Similarly,

UBE2Z, GIP and IGF2BP1 have been linked to CAD [70,83,84], T2D [66,67,85], and depres-

sion-related traits such as insomnia, BMI, educational attainment, CRP levels, platelet count

and smoking [82,86–92]. As such, even though a direct association with depression has not yet

been established, their relevance in psycho-cardiometabolic multimorbidity seems biologically

plausible.

A similar pattern was observed for the other genes, whereby the majority tagged common

risk factors for CAD, T2D and depression, such as adiposity related traits (BMI, body fat per-

centage, waist/hip circumference), inflammatory markers (CRP, interleukin-6, interleukin-5),

lipids (low- and high-density lipoprotein levels), platelet traits (platelet count, plateletcrit), and

N-glycan levels [42,70,79,87,93–100]. Previous knowledge for three of the identified genes

(RP11-145E5.5, SNF8, AC079602.1) was weak, suggesting potentially novel targets for follow-

up in relation to multimorbidity.

The prioritised genes showed an enrichment in immune and cytokine related pathways,

which are involved in the regulation of immune and inflammatory responses–both of which

have been implicated in the pathophysiology of CAD, T2D and depression. For example, inter-

ferons and cytokines play a central role in the innate immune system and in the initiation of

inflammatory cascades [101,102]. Experimental and longitudinal studies suggest that for a sig-

nificant subset of patients, immune system dysfunction in general and inflammation in partic-

ular may be causally implicated in the development of depression [103–106]. A recent study

showed that higher interleukin 6 activity is potentially causal especially for specific symptoms

of depression, such as sleep problems or fatigue [107]. Similarly, chronic inflammation has

been identified as a feature of CAD, promoting the growth of plaques in the arteries and wors-

ening clinical outcomes, irrespective of serum lipid levels [108,109]. Innate and adaptive

immunity, together with low-grade inflammation have also been recognised as important

aetiological factors in the pathogenesis of insulin resistance and T2D [110]. Hence, the
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implicated genes and biological processes reflect biological plausibility for shared genetic aeti-

ology between CAD, T2D and depression. On the other hand, it is also possible that an inflam-

matory response is the downstream effect of these diseases.

Tissue specificity analysis indicated increased gene expression relative to other tissue types

in the cerebellum and the pituitary gland. This is of interest as the structure and function of

these regions seems to be altered in depression. For example, individuals with depression tend

to have an overactive hypothalamic-pituitary-adrenal axis (our main stress response system),

leading to increased cortisol levels and suppressed immune responses [20]. Similarly, with

regard to the cerebellum, important cerebellar alterations have been identified in patients with

depression [111], impacting emotion regulation ability [112]. Despite the limited contribution

of depression to the latent multimorbidity factor, the involvement of these two regions pro-

vides reassurance that depression is captured in our analysis. This is further supported by

genetic correlation and MR results between a number of depression-related risk factors, such

as insomnia, childhood maltreatment and adiposity traits.

Overall, while we observed weak-to-strong genetic correlations between 17 risk factors and

multimorbidity, only eight of these associations (BMI, body fat percentage, LDL cholesterol,

total cholesterol, fasting insulin, income, insomnia, and childhood maltreatment) demon-

strated consistent estimates across most MR analyses, suggesting potentially causal effects.

The findings of the present study should be interpreted in light of the following limitations.

First, we only considered common genetic variants, but it is also possible that multimorbidity

is driven by rare variants with minor allele frequencies below 1%. Second, the contributing

GWAS by Nikpay et al.[48] included mixed ancestry individuals (23%), which is cautioned

against when using Genomic SEM. However, as the LD score intercepts for CAD and multi-

morbidity GWASs were close to 1 (0.88 and 0.99, respectively), suggests that our results are

unlikely to be biased due to ancestry issues. Third, although we removed SNPs with strong evi-

dence for heterogeneity (QSNP P< 5e−8 and directionally discordant univariate effect esti-

mates), there were still many variants left in the analyses with suggestive evidence for

heterogeneity. This means that our downstream analyses may be biased towards pathways

related to any one or two constituting diseases. Therefore, when using multimorbidity sum-

mary statistics in future studies, it may be appropriate to apply an even more stringent hetero-

geneity threshold (e.g., P< 5e-6), depending on the nature of the investigation.

Fourth, multimorbidity was defined by the common factor structure we specified using

Genomic SEM, where the latent variable accounted for the largest proportion of variance in

T2D and CAD, with a smaller amount of variance explained in depression. This had implica-

tions for the identification of genetic variants and the prioritisation of genes, which were based

on the latent multimorbidity factor and were therefore capturing depression to a lesser extent.

Genetic variants identified based on such a factor structure may put into question the

interpretability of current results, as SNPs for multimorbidity may simply reflect the prespeci-

fied factor structure (i.e., an effect of the GWASs used) rather than a robust finding. However,

considering that (1) the mean PRS was larger in individuals with all three diseases compared

to those with any one or two diseases and (2) a multimorbidity PRS (as opposed to PRSs for

single diseases) was most strongly associated with multimorbidity phenotype, suggests that the

present study detected putative pleiotropic variants that influence CAD, T2D and depression.

In summary, the present study investigated the shared genetic architecture across CAD,

T2D and depression and performed a multivariate GWAS of psycho-cardiometabolic multi-

morbidity. The analysis identified 11 independent SNPs associated with multimorbidity and

18 putative multimorbidity-associated genes. Three of these genes had already been linked to

each of the three diseases in previous studies and 15 were novel or had only been linked to one

or two diseases. The prioritised genes were enriched in immune and inflammatory pathways,
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elucidating putative biological mechanisms underlying psycho-cardiometabolic multimorbid-

ity. Considering that susceptibility to CAD, T2D and depression is also influenced by environ-

mental factors [113–116], future studies should explore multimorbidity in the context of gene-

environment correlations and interactions. Lastly, to decipher the role of depression heteroge-

neity, similar analyses could be performed using subgroups of individuals characterized by dif-

ferent depression profiles (e.g., atypical symptoms, inflammation).

Overall, our findings advance our understanding of genetic associations related to multi-

morbidity and provide avenues for future research.

Web resources

Genomic SEM: https://github.com/GenomicSEM/GenomicSEM/wiki.

LDSC package in Python: https://github.com/bulik/ldsc.

FUMA GWAS online platform: https://fuma.ctglab.nl.

PRSice-2: https://choishingwan.github.io/PRSice/step_by_step/.

LocusZoom: http://locuszoom.org/.
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