
Complexity and Criticality in
Financial Markets: Systemic Risk

across Frequencies and Cross
Sections

Jeremy D. Turiel

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

SID: 15058723

November 27, 2022



2

I, Jeremy D. Turiel, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has been

indicated in the work.



Abstract

Extreme market events and systemic collapses cause most of the popular attention

to finance and financial markets. Extreme phenomena and the dynamics of con-

nected/interacting systems have been the subject of financial modeling since early

derivatives modeling, exposure risk modeling and portfolio construction. In the

present work we discuss how traditional methods have for the most part failed to

properly model the interconnected global financial and economic system. This led

to systemic risk events and simplistic regulation which does not properly account

for its implications. Analogously, we discuss how from as early as Mandelbrot’s

works on financial prices and fat tails, academics, practitioners and regulators alike

were warned of fat tails in financial modeling and in particular market making and

derivatives pricing. The improper modeling or dismissal of these lies at the cen-

tre of financial downturns ranging from LTCM’s collapse to the quant downturn of

August 2007.

The solution I promote in this thesis is that of complexity and criticality. In line

with this we propose two lines of work. The former analyses markets as complex

networks and their structure through to practical takeaways including a proof of

concept for portfolio construction. The latter instead focuses on extreme events

in high frequency markets with results for both tail modeling and systemic events

and practical insights from those. Recent events have shown how retail investors

and their savings are now heavily involved in financial markets. We hope that our

contribution of methods of practical use for proper risk modeling will encourage

their adoption by practitioners and regulators with the outcome of a more stable and

efficient financial system.
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Chapter 1

Context for complexity and criticality

in the thesis

Technological and methodological advances have allowed researchers to gain un-

precedented insights from the use of big data and advanced computational methods.

This has allowed to validate pre-existing complex theories and create new ones.

Many natural and anthropic systems involve the interaction of a multitude of

agents which results in global characteristics of the system. It was found that, as

one is able to track agents and their interactions in a system, many phenomena and

characteristics can be explained as emerging from simple rules. With the availability

of computing and growth of AI-like systems, the field of agent-based modeling is

rapidly expanding. From a physicist’s perspective though, such systems are at the

basis of statistical mechanics, condensed matter theory and more. From these fields,

the discipline and term “complexity” have emerged, defined in [1] as the repeated

application of simple rules in systems with many degrees of freedom that gives rise

to emergent behaviour not encoded in the rules themselves.

Criticality follows nicely from this concept and is better defined amongst sta-

tistical physicists. This refers to the behaviour of complex and extended systems at

a phase transition where observables become scale free, i.e. with no characteristic

size. Analogously to complexity, at a phase transition, the interacting components

of the systems give rise to emergent macroscopic phenomena which cannot be in-

tuitively explained from the simple laws governing the microscopic components of
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the system. Criticality highlights the importance of the interaction between the mi-

croscopic components in the system to explain emergent phenomena and can be

viewed as the study of complex systems at a critical point of transition (hence the

name). Phase transitions arise in classic statistical mechanics systems in physics and

are well-studied. Examples of these are the Ising model and percolation [2, 3, 4].

Many systems in today’s world are complicated and present systemic break-

downs, but not all are complex and critical. The crucial distinction arises in that

complex critical systems are often in between non-equilibrium states where the sys-

tem’s reactions to a “small” energy release depend strongly on the system’s config-

uration. Small changes in the system’s configuration can determine wildly different,

highly non-linear reactions to small energy releases in the system.

Complexity and criticality, and related methodologies, have become increas-

ingly relevant in the study of quantitative finance, but due to the contextual un-

derstanding and the advanced mathematical knowledge they require, they are often

overlooked.

This is indeed history repeating itself, as already Mandelbrot had studied finan-

cial time series of price returns and suggested that “Large price changes are more

frequent than predicted”. In his early work on the topic [5], which was overlooked

for a long time, he suggests that the random walks used to model financial time

series were wrong on a crucial point. These walks assumed prices to evolve as a

Brownian motion with Gaussian-like steps, while Mandelbrot highlighted the pres-

ence of fat-tails in the distribution of returns and suggested to model this as a Levy

distribution [5, 6, 7, 8]. In the 1990s the seminal works of Mantegna and Stanley

started the community and literature in Econophysics, this was largely based on the

fat-tailes described by Mandelbrot. Still, Mandelbrot’s work was largely revisited

by mainstream academia and practitioners only after the quant meltdown of August

2007. It is now widely accepted, but neither the method nor the observation were

accepted at the time of publication.

Normality assumptions on the price process allow access to a broader suite of

widely known modeling techniques, which is perhaps acceptable when looking for
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predictable patterns through quantitative models (Alpha research), but can prove

very dangerous when used to determine and model risk.

The first notorious example of this came with the rise of the first quant hedge

funds and quant groups in major investment banks in the late 1980s, as Black Mon-

day (October 19th 1987) [9, 10, 11] brought this reality to the world of quantitative

investing.

The collapse and following bailout of Long Term Capital Management

(LTCM) in 1998 is another example of this, where a fat-tailed diversion in bond

prices with different issue dates due to a run to liquidity/safety caused massive

losses to the fund, sending it into default. The fund was using large amounts of

leverage and hedging its bets. The magnitude of the event/divergence was theo-

retically impossible in a Normal distribution - this shows how neglecting fat tails

when dealing with risk caused one of the most systemic and potentially dangerous

defaults in modern financial history.

This brief anecdotal introduction is meant to motivate the reader and the wider

community not only to acknowledge fat tails, but also to deal with their implications

and related modeling techniques.

Mandelbrot is mostly know in complex systems for his seminal work on frac-

tality/fractals, a major one applied to financial markets [12].

Fractals show how certain properties are present at different scales in the same

system. In a broad analogy, in this work we also consider complexity and criticality

at different scales in financial systems.

Indeed most chapters will be structured in two main sections, one focuses on

“traditional” financial network analysis of daily returns and dynamics while the

other looks at the less notorious world of high frequency finance and its critical

phenomena, which have proven far more crucial for modern quantitative finance.

The brief introduction to complex systems and their system-wide phase transi-

tions due to synchronisation (criticality) together with the small anecdotal example

regarding LTCM hint to the fact that risk, but in particular systemic risk are central

to both critical systems and financial markets.
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Uniting both these themes we will deal with risk and in particular systemic

risk at different scales in financial markets from the perspective of complexity and

criticality.

One last ancillary, but nonetheless relevant, theme to introduce is that of de-

noising and extracting signal in real systems which in physics is done through null

models. Null models are techniques of constrained randomisation of a system and

its dynamics which allow to identify non-random patterns in the real data, given the

randomisation assumptions. These will be applied in the present work to show the

non-randomness of our results and determine the significance of observed patterns.

1.1 Market structure and its estimation

In his seminal work on portfolio construction [13] Henry Markowitz provides an

analytical solution for optimal portfolio allocation, the general framework which

stems from this work is commonly referred to as Modern Portfolio Theory (MPT).

MPT relies on two main inputs: an expectation of return for each asset and an es-

timate of pairwise covariance between all assets in the portfolio. The use of the

covariance matrix is crucial as it shows how to optimise portfolio performance

and reduce risk one cannot just account for asset-wise volatility or “beta” (corre-

lation/covariance) to the overall market. Rather, individual relations between assets

are central to reducing risk. The ensemble of pairwise relations in the form of the

covariance matrix introduces us to the concept of market structure.

As per the discussion above, the study of complex systems is interested with

systems of interacting components. This has sparked the development of the disci-

pline and study of complex networks. In the words of Mark Newman, one of the

main academic figures in the field, “a network is, in its simplest form, a collection

of points joined together in pairs by lines” [14]. The discipline has developed a vast

literature ranging from theoretical models [15] to empirical analyses of real world

systems [16, 17] and everything in between.

We have now established that structure and relations between assets are crucial

in portfolio applications and that complex systems deal with connected systems.
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We have also established that the central item of this structural estimation is the

covariance matrix of price returns.

With the critical eye of null models, complex systems and more specifically

Random Matrix Theory (RMT), several authors have investigated these covariance

matrices and their information content. Early works look at the eigenvalue distribu-

tion of empirical return covariances and notice how the high level of noise makes

only the first few large eigenvalues and corresponding eigenvectors deviate from

the null model of a random matrix [18]. In their case 94% of the spectrum could be

fitted by the null model. Indeed, even most recent works [19] from some of those

early authors model the covariance matrix based on its largest eigenvalue alone, as

this is deemed a reasonable approximation at least for theoretical work. Other early

authors in econophysics noticed this phenomenon [20] and both [20, 18] used their

observations to suggest that the covariance might correspond to a random band ma-

trix which suggests that a distance metric between companies can be defined. The

authors in [20] acknowledge that such observations and suggestions could already

be found in earlier work [21].

Two followup works from some of the authors cited above suggest a method

based on RMT to remove the eigenvalues and eigenvectors which correspond to

the noise band [22, 23]. The method was found to be very effective in reducing

estimation noise in empirical covariance matrices.

Early works in covariance estimation [18] had already suggested that the N ·

(N− 1) parameters of the covariance matrix could present a problem as we scale

to larger covariance matrices, since the number of parameters scales quadratically

with the number of assets while the number of observations scales linearly with

the lookback time window T . Indeed we know that if we don’t have T � N the

estimations will be noisy and the covariance will appear random to a large extent.

On the other hand, markets are non-stationary in time so a long lookback T might

introduce noise as the relations slowly change with time.

A solution to this was initially proposed by [24] and then elaborated upon by

[25] where the authors suggest an exponential weighting of the observations in time
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to prioritise more recent and relevant observations while retaining a long lookback

window which helps denoising the covariance estimates.

A comprehensive review of covariance estimation and cleaning methods was

later presented in [26].

RMT is indeed a mathematically sound approach to the problem with strong

theoretical foundations in the field of mathematics and physics. On the other hand

we have discussed above how complexity introduced works on complex networks

and one can see how a covariance matrix is a mathematical object representing re-

lations between its elements and hence a connected system. One issue remained

to transition from covariace matrices to networks: sparsity. Indeed shrinkage and

thresholding methods were proposed in [26] and similar works, but many method-

ologies and analyses in complex networks require relatively sparse connections, but

with a large main connected component. The former was not achieved by shrinkage

while the latter could not be achieved by thresolding.

For completeness, before presenting works on network filtering which is the

focus of covariance estimation in this work, we discuss the earlier logical step of

statistical validation. Statistical validation - which constitutes a generalisation of

simpler thresholding methods - has been used to establish the significance of edges

in correlation matrices, with applications to economics and finance as well as to

other fields [27, 28, 29, 30]. Statistical validation can be implemented by comparing

the empirical correlations with null-hypothesis correlations generated from time-

series randomized over the time dimension to remove dependency.

In the same spirit, one of the authors of [20] proposed a method which took

the “filtering” idea of [22, 23] a step further and imposed structure on the system

[31]. The work by Mantegna & Stanley [32] is at the core of network filtering

and suggests a recursive algorithm with selects the strongest connections from the

given covariance matrix and adds them to the edge list of the network as long as the

addition yields a structure that is still a tree (i.e. no loops). Beside the value added

by the method, a sparse network which can be well represented visually offered a

technique with great interpretability.
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All methods from RMT mentioned above aim to denoise the information in

the covariance estimation. These proposed methods were then tested on portfolio

performance where the denoised covariance is used to build the Markowitz portfo-

lio of some sort. In order to do this, the denoised covariance matrix needs to be

invertible, which is the case for well-defined covariance matrices T �N in general.

This creates an issue with thresholding methods and the tree-filtering approach of

[31] which do not yield invertible matrices.

This issue is solved by the authors in followup works which introduce more

sophisticated filtering techniques that yield invertible matrices [33, 34]. Those au-

thors then went on to propose fast construction methods for a subset of such filtered

graphs [35] for which the covariances can be estimated locally (subsets of N′ neigh-

boring assets), hence reducing the estimation noise as N′� N and we only require

T � N′.

1.2 Percolation vulnerability of network structures

We have now established from Markowitz’s work, and the literature on covariance

estimation that followed, that structure and its correct identification is important for

portfolio construction. We have then seen that we can use filtering techniques and

frame the investigation of market structures in the context of complex networks.

Highlighting how the covariance, hence the structure, is what allows to minimise

risk in MPT we now take a step back and understand why structure is important

in the context of complex networks more broadly and review some of the general

literature that will be relevant for financial risk applications.

The resilience and robustness of networks is of great interest to real world

applications as it relates to telecommunication networks, electric grids, the internet,

social networks and more. Below we present an overview of network robustness

and its foundations based upon the structure presented in [36].

An early study of the theoretical properties of robustness in network models

was conducted by Albert, Jeong and Barabasi [37]. In this work the authors con-

sider two main categories of network degree distributions and corresponding mod-
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els. The first category is characterised by a degree distribution that peaks around

the average degree with exponentially decaying tails which is the case for early

models of network growth such as the random graph model of Erdos and Reyini

[38] and the small-world model of Watts and Strongatz [39]. Both of these early

models lead to networks with fairly homogenous degree distributions, which is not

what is observed in real world networks where we see the emergence of highly

heterogeneous degree distributions which decay as a power law and are therefore

scale-free [40, 41, 17]. This is the case, for instance, in citation networks [42] and

the Internet [43, 44]. In such networks, the probability of a node with a large num-

ber of connections (with respect to the median) is much higher than in a Gaussian

distribution. To obtain networks with such characteristics the authors in [37] adopt

a scale-free model [40] which is based upon growth and preferential attachment

[40, 41]. The main result of this seminal work is then that scale-free networks are

surpringly robust on average to random error and attacks when compared to more

homogenous networks. The caveat lies though in the fact that nodes with large

degree (the “hubs”) can be exploited in non-random targeted attacks to break the

network in smaller components, as these nodes are topologically central.

The random and targeted attacks on networks discussed above merely consist

in the removal of nodes in a network. This can be viewed as the failure of a server

in the connected World Wide Web or a telecommunication system or the disap-

pearance of an individual in a social network. When looking at resilience we are

interested in attacks which cause failures that spread across the network or break

down its connected components into significantly smaller ones. An analogy can

be found in Physics in percolation theory [2, 45] which can simply consider an

arbitrary topology where each node is occupied with probability p and edges ex-

ist only between active nodes. Depending on the topology, at different probability

thresholds of p we observe the emergence of scale-free clusters. It can be intuitively

seen how we can draw connections between clusters in percolation theory and com-

ponents in networks and how p is complementary to the removal probability of a

node.
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The difference between traditional percolation theory and the corresponding

phenomenon in complex networks is that the former considers percolation on lat-

tices in an N-dimensional space, while in complex networks any node can be con-

nected to any other in the network without constraints, hence for a network with N

nodes it can be embedded in (N−1) dimensions where any node can have (N−1)

neighbours. Taking this a step further in the limit N→ ∞ we are considering edge

percolation in infinite dimensions. Depending on topological properties we may or

may not see a giant connected component (i.e. that always contains a finite fraction

of all nodes N) - this is analogous to the critical point where we no longer see a

fragmented network, but the emergence of a component with size that scales as the

number of nodes N. A more in-depth theoretical discussion and connection between

results in percolation theory and network robustness can be found in [46, 47] with

a review present in [36].

1.3 Systemic risk in financial networks

We now bring together the previous two sections on market structure and network

vulnerability to discuss systemic risk in financial markets. We have described in

Section 1.1 how correlation matrices can be “filtered” to create sparse network

structures. This will be relevant for the results presented in this thesis, but by means

of introduction to the topic of financial networks we highlight that so called “real”

networks exist in finance and are the subject of most of the early literature on the

topic.

Financial (interbank) networks are complex systems where financial institu-

tions are interconnected in a variety of ways. The “real” network of connections

originating from financial contracts between institutions or other companies is one

of the most relevant. These contracts normally represent lending (mostly overnight)

between financial institutions in order to optimise short-term liquidity exposures

and exploit available opportunities. Financial institutions also collaborate on the

origination of financial products which are often repackaged and sold between them

in a chain. These networks of “direct” interdependencies have been extensively
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studies in the literature due to data availability and the central role they played in

the 2008 crisis/credit squeeze. Allen & Gale [48, 49] discuss in two visionary ar-

ticles how credit lines between financial institutions where the borrowed money is

used to invest in risk assets can have dramatic effects of credit freezes and fire sales

across the system. Counterparty exposures in the trading and clearing of assets

also form an important financial network for systemic risk, this is the subject of the

work by Eisenberg & Noe [50] who propose a computational method for optimal

clearing in the system and argue that the solution is unique. A similar form of asset-

based exposure in financial institutions comes from cross-holdings of each other’s

stock and holding the same assets, where the former is commonly used to inflate

balance sheets. This network is considered by Elliott et al.[51] where the authors

model the cascade of failures in financial institutions based on it and discuss benefits

and failures of diversification and integration. Diversification across holdings and

cross-holdings indeed reduces volatility and concentration, but also creates overlap

between the balance sheets of different institutions making them interdependent if

one institution has to liquidate its assets and push their price down, thereby creating

systemic risk and domino effects. This leads us to consider the more nuanced cor-

relation between balance sheet holdings of different institutions which forms a fully

connected weighted network between financial institutions, where edge weights of-

ten correspond to a measure of asset holding or portfolio correlations. Allen et

al.[52] investigate asset commonalities and short-term debt of banks and how the

combination of concentration structure and term of the debt generate excessive sys-

temic risk during shocks and their propagation in the system. Diebold & Mariano

[53] present an empirical investigation of holdings concentration and connectedness

amongst financial institutions and how this evolved during different historical shock

periods. Cabrales et al.[54] investigate the tradeoff between risk sharing and conta-

gion by finding optimal tradeoff points in relation to the size and characteristics of

the shock. Results show how the optimal networks often present different levels of

linkage to other firms and instances of segmentation.

The recent review of systemic risk in financial networks by Jackson and Per-



1.3. Systemic risk in financial networks 21

naud [55] provides an overview of real financial networks and their relation to sys-

temic risk. They organise some of the instances of systemic contagion described

above as follows: Contagion through “direct externalities”, which arises from direct

counterparty relations between financial institutions or correlated investments and

exposures more generally. The former can cause insolvency which cascades across

the system of loans across institutions, while the latter is a bit more subtle. Even

when a bank does not directly lend to another they might hold similar assets in their

portfolios or be exposed to similar factors. When an institution enters in distress it is

forced to quickly liquidate its holdings and reduce leverage. This adversely impacts

market prices and the correlated portfolios of other institutions which might have to

de-risk themselves, thereby inducing a negative feedback loop analogous to that of

August 2007. One last aspect of these phenomena which leads onto the next class

of systemic risk, i.e. feedback effects and self-fulfilling prophecies, is similarity.

When a bank becomes insolvent similar institutions are negatively affected even if

they don’t have direct or indirect exposures just based on the fact that the “market”

doubts their holdings, structure and solvency.

The other main kind of systemic event is not driven by any fundamental change

in value of the institution or its assets, rather it originates merely from a change

in beliefs in the market and the existence of multiple states of equilibrium in the

connected system. The classic example of opinion-driven systemic risk arises via

self-fulfilling behaviour. The most basic case is that of bank runs: banks transform

the short-term exposure of deposits into the long-term one of illiquid investments,

but this creates the risk that when too many people ask for their deposits back at

once the bank is not able to service them immediately due to the illiquidity of their

exposure. This is turn transforms expectations of illiquidity of the bank into reality

and more panic. Another example of self-fulfilling behaviour comes when banks

on the other hand no longer trust the solidity of the businesses they lend to, this

causes them not to lend or raise rates which in turn causes businesses to default. As

businesses default banks begin not to trust each other either and the whole credit

market freezes. Similar cases to these consist of banks not honoring contracts with
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each other and thereby causing chains of defaults or being forced into a fire-sale of

their holdings which in turns affects other banks and their obligations to each other.

It is important to highlight that, in spite of making a distinction in terms of high

and low frequency domain in the structuring of our chapters, this particular section,

as partly some others, applies to both high and low frequency domains in particular

with regards to fire sales, as will be discussed in the following sections.

We note that the works mentioned above mostly originate from the econo-

metric and financial streams of this literature. Another perspective on this theme

which is increasingly considered by academics, practitioners and regulators is that

of Complex Systems and Econophysics approaches to the analysis of networks in

financial systems. Academics in this field often have a background in Statistical or

Condensed Matter Physics and the methods used to analyse connected and complex

systems in this context are often more scientifically rigorous, advanced and often

provide unbiased, quantifiable results.

The early work by Aharony & Swary [56] investigates the contagion effects

of the three major U.S. bank failures to date. The authors find that only banks

which default due to issues which implicate other banks cause contagion effects.

When the cause of default is specific such as in the case of frauds there is little

to no contagion. The findings support the argument that similarity and correlations

between institutions do indeed cause contagion effects. The related work by Furfine

[57] cites [56] as an example of the established literature on how bank failures affect

the financial system, but suggests to focus on a second less popular aspect at the

time: the contagion risk due to the “real” network of interbank exposures. This

would indeed develop into the main stream of literature on financial systemic risk.

Early Econophysics works observe the importance of network structure in con-

tagion and robustness as discussed in Section 1.2 and perform analyses of network

structures in finance and their implications for systemic risk, shocks and stability.

Angelini et al.[58] investigate interbank clearing networks and the impact of

liquidity or solvency issues of a banks and how the shock spreads in the system.

They verify that is such heteregonous systems only few players cause domino ef-
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fects which are systemic. This result is in line with those from general network

theory robustness discussed in Section 1.2 in [37, 46, 47, 36]. The heterogeneity

of interbank networks and its effects were also studied in [59] and Boss et al.[60],

where the authors also observe regional clusters of banks which form community

structures and highlight how these networks are different from the homogeneous

ones assumed by economic theory. A series of works from Iori and co-authors in-

vestigates heterogeneity not in the structure of connections and degree distributions,

but rather in the size of the institutions in the network. They highlight in [61] that

homogeneous systems are less prune to shocks, yet even for heterogeneous ones the

stabilising role of the interbank market remains. The interplay between the advan-

tage of pooling risk and the risk for cascading failures is also the focus of [62] where

simulations show how homogeneous systems benefit in stability from wider systems

with small avalanche effects. Avalanches become more prominent with system het-

erogeneity and the authors achieve a critical regime of power law avalanche sizes

by tuning heterogeneity and connectivity. Power law avalanche sizes are common

and of great interest in real world critical systems [1].

More recent works on interbank network data contribute practical insights and

monitoring techniques. Iori et al.[63] apply techniques from statistical mechanics to

the Italian overnight money market to investigate the evolution of network connec-

tivity during the maintenance period. The authors evaluate the current arrangement

and its implications for system stability. They also employ null models in the con-

text of efficiency in the absence of speculative and preferential trading relationships.

Cimini et al.[64] address the issue of partial network information where often

few (if any) links are known and only the degree and other properties of individ-

ual nodes are known. They propose a network reconstruction technique and test it

on the International Trade Network and the E-mid market (Electronic Market for

Interbank Deposits).

In terms of monitoring techniques and useful metrics Battiston et al.[65] in-

troduce DebtRank, a novel measure of systemic impact inspired by feedback-

centrality which suggests the transition from too-big-to-fail to too-systemic-to-fail.
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The method is tested on the network of financial institutions in 2008 and shown

to correctly identify the ones most involved in the $1.2tn FED emergency loans

program.

1.4 Market microstructure and High Frequency

Trading players
In Sections 2.3, 2.4 we provide an overview of the topics around our study of flash

crashes and contagion in high frequency markets. These topics belong to the still

emerging field of market microstructure, which we define below based on [66].

Financial markets can be studied from two main perspectives: by studying

prices and diving into the underlying dynamics as a result, or by analysing micro-

scale actions of market players and working from the bottom up. As suggested by

its name, market microstructure chooses the latter path as it focuses on trading at the

micro-scale. It is important to notice though that, in a similar fashion to statistical

mechanics and related fields, one cannot reduce market microstructure as the study

of markets at atomic scale; rather, its study at atomic scales provides insights into

emergent macro-scale phenomena which have been poorly understood for decades.

In the present section, we provide a succinct overview of the main roles of

market players in modern electronic markets and continuous-time double auctions.

We first have to define continuous-time double auctions, which are the mech-

anism most modern exchanges rely upon. These auctions are based upon the use

of a publicly observable Limit Order Book (LOB), which is made of limit orders

expressing the intention of a buyer or seller to transact a given quantity at a given

price. Transactions occur in these auctions whenever an incoming buyer (or seller)

agrees to buy (sell) at the prices and quantities available on the LOB. LOBs are

updated in real time and analysing the flow of market orders, limit orders and can-

cellations (i.e. order flow) allows for the bottom up perspective on liquidity and

price dynamics which market microstructure aims for.

Trades mostly occur in the LOB between a limit order sitting in the book and

an order of opposite sign arriving at the same price. As limit orders in the book
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constitute liquidity in continuous-time double auctions, the issuer of the limit order

is referred to as liquidity provider while its counterparty in the trade as liquidity

taker.

Liquidity providers are modern days market makers which provide liquidity on

both sides of the book and profit from earning the spread on round trip trades, while

keeping inventory and hence exposure to price changes to a minimum.

Liquidity takers trigger trades in the market, which are traditionally categorised

as:

• Informed trades: triggered by sophisticated traders with information about

the future price of an asset with the goal to profit from the price change.

• Uninformed trades: triggered by either unsophisticated traders which are

unable to process information about the future price of an asset or by liquidity

trades which aim to liquidate assets, reduce portfolio risk or offload an inven-

tory imbalance. Uninformed trades are also referred to as “noise trades” since

they do not correlate with future price changes and seem to occur at random.

We would like to delve deeper into the business of market makers, as they will

be the target of practical insights from our results.

Market makers are mainly of two types: traditional market makers (typically

investment banks) are tightly regulated and obliged to always provide quotes to buy

and sell assets they deal in to their clients, usually through an API. Modern day

High Frquency Trading (HFT) liquidity providers instead provide liquidity directly

on the exchange by posting (and cancelling) limit orders at high frequency at dif-

ferent levels of the book. They are responsible for most of the liquidity on modern

exchanges and play what is called the “liquidity game”.

From our brief statement above it may seem that if prices behave like a mar-

tingale (i.e. they have i.i.d increments) and market makers earn the spread they are

in a business of risk-free returns! Further, competition for volume is fierce between

HFT market makers and this has reduced spreads from historical levels of 60bps to

a few units. These two empirical facts lead to the obvious question: why has the
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spread not converged to zero (at least for large tick stocks)? The answer is that also

market makers experience risk mostly in the form of adverse selection and price im-

pact. Adverse selection arises from the fact that market makers must post binding

quotes which can be exploited by informed trades who see an opportunity to buy

or sell at an advantageous price. Further, if quotes are not adjusted properly, mar-

ket makers can experience highly unbalanced flows and accumulate an inventory

position which is on the wrong side of the coming price change. To mitigate this

risk, market makers adapt to order flow imbalances by updating their quotes in an

attempt to reduce this. Hence, as more buy (sell) orders come they move the ask

and bid prices up (down) to encourage sellers (buyers). This in return causes what

is called price impact of a trade, i.e. the fact that buy (sell) trades cause the price to

rise (fall). These dynamics are what the non-zero spread compensates for - the risk

taken by market makers.

To introduce the liquidity game we discuss the concept of skewness of price

impact, i.e. the fact that the distribution of price changes after a trade is heavy tailed

and skewed in the direction of the trade. This means that unusually large price

changes are not unlikely and are often caused by the action of highly informed

traders. This poses a great risk to market makers which can be viewed as selling

insurance, where small gains need to offset large and less frequent losses. For this

reason, liquidity is fragile and disappears almost instantly when liquidity providers

deem the risk too high. Due to these dynamics of fleeing liquidity, ensuring the

proper functioning of markets is a highly complex and everchanging task.

Another perspective on players in high frequency markets is that of individu-

als, companies and external providers. We report below a summary following the

structure in the book by Irene Aldridge [67].

High frequency trading firms compete with other investment managers for

quick access and exploitation of market inefficiencies. Competitors in this field

may be trading desks at investment banks and hedge funds. Some of the largest

players in HFT markets are DE Shaw, Tower Research Capital and Renaissance

Technologies. Major HFT market makers instead are the likes of Citadel Securities
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and Two Sigma Securities.

The capital used by these firms is provided by investors such as funds of funds,

hedge funds looking to diversify, or proprietary firm capital as in the case of invest-

ment banks.

There are a range of services and providers involved in this business.

Execution brokers and ECNs (electronic communication networks) route and

execute trades. Execution brokers are often major investment banks while ECNs

are the likes of ICAP and Thomson/Reuters.

Broker-dealers also provide custody and clearing services, i.e. safekeeping of

trading capital and trade reconciliation, respectively. Transaction fees compensate

these players for the risks of being responsible for the assets and insuring against

counterparty defaults.

HFT operations heavily rely on advanced hardware and software, we provide

a summary of components of the latter.

• Generation of trading signals is at the core of HFT strategies and translates

into portfolio allocations and P&L (Profit & Loss). Signals can be obtained

from complex manipulations of tick data as well as information gathering

from news, satellites and alternative data providers.

• Trades need to be executed with meticulous efficiency in HF markets, as profit

margins on each short term individual trade are small. This is the task of

optimal execution algorithms which aim to achieve a given price in a given

timeframe by balancing aggressiveness and breaking trades into optimal lots.

• The last crucial component of software in such operations is risk manage-

ment, especially because at such trading speeds human oversight is ineffec-

tive at best. These components ensure that the systems stay within P&L and

risk bounds as well as handle fault events.

A final key role in the HFT business and the financial industry is that of the

government and regulation, which introduces the next section. In terms of regula-

tion HFT is treated analogously to day trading and abides by common trading rules,
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such as the fact that the HFT execution arms of hedge funds must be completely

separate in order to ensure impartiality when servicing external clients (see again

the case of Citadel Securities and Two Sigma Securities). An unsuccessful attempt

to introduce regulation on transaction cost surcharges was made in 2009, which

leads to our broader discussion of market structures, dynamics and regulation in the

next section.

1.5 The effect of regulation and liquidity structures

We have just seen how liquidity and price stability are at the core of electronic

exchanges and HFT. Here we report an overview of current market structures, regu-

lations and their issues [68, 69]. We also summarise proposed regulatory improve-

ments in the literature. This ties in with our own analysis and reflections from

Section 7.3 later on. Modern electronic trading presents what is commonly referred

to as “liquidity fragmentation” where, for instance, the US Equity market is split

between over 10 public exchanges, 30+ dark pools and hundreds of internalising

broker-dealers [70].

As the number of trading venues increases so do liquidity imbalances amongst

them and the complexity of guaranteeing fairness and protection on execution

prices. Dark pools present the additional issue of not displaying the price process

and liquidity which allows more sophisticated players to blindside less sophisticated

ones in a variety of ways. We will not discuss dark pools further here though, as

they do not relate to our work directly.

Liquidity fragmentation sees conflicting opinions amongst academics on its

effect on modern HFT markets, in this section we report two main works and show

that they just look at different aspects of what “improvement” means. O’Hara &

Ye [71] find that fragmentation generally reduces transaction costs and increases

execution speed. They do observe an increase in short-term volatility, but somewhat

compensated for by a more efficient random walk-like price process.

The finding of increased short term volatility brings us to the opposite perspec-

tive by Golub et al.[68] which, differently from [71], is written after the crash of
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May 2010.

To understand their perspective we must first provide some background on

Intermarket Sweep Orders (ISOs), Auto-routing and regulatory protection such as

the Order Protection Rule.

Intermarket Sweep Orders are limit orders to be quickly executed in a specific

venue even when another market is publishing a better quote. As these orders do

not require computation and routing to achieve the best price they can be executed

faster than regular market orders. In order to comply with Regulation NMS order

protection obligations, ISOs need to concurrently send orders to other markets with

Protected Quotations. For a more thorough overview of ISOs we refer the interested

reader to [72, 73].

Compliance with the Order Protection rule is achieved through Auto-routing,

which we outline as follows. When an order is submitted to exchange A not dis-

playing the NBBO, part of that order corresponding to the “Protected Quotation” is

routed to another exchange B. Only once the Protected Quotation is cleared on “B”

the order on “A” will be executed, regardless of liquidity on that or other venues.

The order potentially rips through the book causing a single-venue mini flash crash.

Hence, allowing a market participant to submit an order on exchange A specif-

ically and not at the NBBO (National Best Bid and Offer) can cause the order to

consume volume at deeper levels in the book in spite of liquidity being potentially

available at better levels in the book on other venues.

The Order Protection Rule is at the core of Regulation NMS which aims to

provide intermarket protection in US Equities. This regulation was likely appro-

priate in the past, but the current HFT environment and increase in the number of

mini crashes shows that market players need a better picture of liquidity and how

their orders take it. A simple suggestion in [68] is that the rule be extended to the

Depth of Book and not only the top which would prevent trades at deeper levels

in the book on a venue when liquidity is still available at a better price in another

venue. This is though difficult to uphold and fleeting liquidity deeper in the book

was shown to contribute little to overall liquidity [74]. Further, Fleeting Liquidity
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would likely cause orders to be cancelled before the routing took place anyway.

Golub et al.[68] also advocate for the removal of ISOs as players which use

them are well aware that there is not enough liquidity in the venue and the order will

aggressively consume multiple levels in the book. Further, their faster execution has

been used by HFTs to profit from latency arbitrage.

In a nutshell the authors of [68] do not disagree on the empirical fact that

execution is faster and spreads are tighter [71], rather they say that this comes at

a price of better markets on average, but worse and more frequent extreme events.

This can be improved through regulation.

Linton et al. in their chapter on regulation in HFT markets [69] begin with

this distinction as well and recognise that the dynamics of electronic HFT markets

are different to anything before. Regulators therefore have the problem of ensur-

ing that liquidity and price discovery are constantly provided. One of the points

made which we elaborate upon in Section 7.3 is that market dynamics are too fast

now for traditional ex post regulation which must transition to ex ante with the sup-

port of technology and data-driven monitoring tools. Regulators have been asking

these questions and we conclude the section with their proposed solutions so far.

The “flash crash” commission in the US suggested enhanced market halts, circuit

breakers and changes in trading priority rules as well as more information gathering

and surveillance. The European Commission also suggested changes along those

lines in the form of algorithmic trading restrictions, minimum resting times, market-

maker obligations and the transaction taxes already proposed and refused in 2009

[67]. The UK commissioned the Foresight project, an extensive study to evaluate

these proposals.

In practice though, when it comes to passing regulation on HFTs, diverging

views on their role and appropriate regulation emerged, leaving the issue unresolved

to date.

We direct the interested reader to the chapter by Linton et al. for a more thor-

ough discussion as this is beyond the scope of the present work [69]. We do point

out that most regulatory proposals take a very traditional finance or econometric
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approach to the problem, but we aim to highlight in Section 7.3 how the academic

and industry approach to HFT has moved on to complexity and advanced empirical

methods.



Chapter 2

Introduction to the thesis

I have provided context for the overarching themes of complexity and criticaly in

this thesis in Chapter 1. In this chapter I narrow down our focus by introducing the

topics more closely related to our work and results in this thesis. Sections 2.1 &

2.2 continue our discussion from Sections 1.1, 1.3 and introduce market structure

estimation and denoising through complex networks. Further, we present industry

standard practices for portfolio construction and innovative network-based portfolio

weighting methods.

The remainder of the thesis is then structured as follows. Chapter 3 introduces

the methodologies used in this thesis. Simplicial persistence in particular is one of

the novel concepts and methods introduced in the works that make up this thesis. I

then move on to presenting the range of results for this thesis. Chapter 4 presents

results on the evolution of market structures with time, investigated through simpli-

cial persistence and null models. We conclude the chapter with a proof of concept

application of temporal persistence for portfolio construction. The following two

chapters focus on results in the context of high frequency markets, in particular of

flash crashes. Chapter 5 analyses the volume distribution of crash and non-crash

periods, showing the unboundedness of the former. A different perspective on flash

crashes is then provided in Chapter 6.2, where I investigate simultaneous crashes

across assets and their structure. This phenomenon ties back to our interpretation of

systemic risk in Chapter 4 and has been shown to be increasingly relevant in modern

markets. Following the exposition of results in these three chapters, Chapter 7 takes
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a step back to discuss the main takeaways emerging from our results in the context

of the literature and proposals by major authorities in the field. Finally, Chapter 8

summarises the findings presented in this thesis and offers perspectives for future

work.

I highlight for the reader that the material and results presented in this thesis are

based upon four published works by myself and my PhD supervisors Tomaso Aste

and Paolo Barucca, as well as others still unpublished which are being prepared or

reviewed for journal publication at this time. More specifically, [75, 76] focus on

the market structure and simplicial persistence results from Chapter 4. The results

on flash crashes in Chapters 5, 6.2 instead are based upon [77, 78], respectively. [75]

was awarded “Best Oral Presentation” at Complex Networks 2019 and published in

the conference proceedings. I am also the recipient of the “Entropy award” for Best

PhD poster presentation at the Econophysics Colloquium 2021, where I presented

[77]. Finally, [78] was just published in Entropy.

2.1 Complex networks and market structure

We have seen in Section 1.3 how real networks in finance are of great importance

for “big picture” evaluations of systemic risk, in particular for monitoring, regu-

lation and enforcement. Most of investment finance though focuses on portfolios,

market volatility and diversification, as per the discussion in Section 1.1. Market

structures are often inferred from return time series of assets in the portfolio in the

form of a covariance matrix. As briefly mentioned above (Section 1.1), in order

to create sparse network structures from the fully connected weighted network of

empirical covariances we apply network filtering techniques. These are algorith-

mic techniques which allow to filter the noise and obtain the underlying network

structures behind covariance matrices.

A seminal work in Econophysics and network filtering is that of Mantegna &

Stanley [32]. The authors introduce the Minimum Spanning Tree (MST) filtering

technique which iteratively selects the highest weight links which preserve a tree

structure (no loops) of the filtered network. Mantegna shows in his first followup
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applied work on the method [31] that the resulting tree provides a network of stocks

with meaningful taxonomy of sectors and hierarchical structure. Closely follow-

ing this, another followup work with Vanderwalle & Bonanni [79] investigated the

structure of stock market indices globally. The correct time horizon and choice

of reference currency allow the authors to find meaningful taxonomies through the

MST.

A range of authors have conducted followup works leveraging the MST

method. Vanderwalle [80] considers over 6000 U.S. stocks over two decades. Their

correlation matrix and MST are used to show a heavy tailed degree distribution per-

sistent across the decades considered suggesting a highly heterogeneous structure.

Further, the structure is shown to evolve slowly and locally in time and non-trivial

correlations are found in the seemingly chaotic market.

Bonanno et al.[81] conduct an extensive study which aims to show how mar-

kets are complex beyond the trivial models or randomness or single market factors.

To do this they compare MST networks of real covariance matrices of returns and

volatilites across global indices with the more simplistic random and single factor

models. This work likely elaborates on the previous one by some of the authors [82]

which had shown basic differences between the structure of real markets and arti-

ficial ones in terms of degree distribution, hierarchical complexity and large scale

correlation properties characteristic of complex networks. Similar results are ob-

tained by Plerou et al.[83] with a more involved methodology based on RMT. This

shows the simplicity provided by the MST and sparse networks as well as confirm-

ing that the findings can be replicated with methods from other disciplines.

Other works by the co-founder of Econophysics Eugene Stanley (with Rosario

N. Mantegna) such as [83] investigate market-based networks. The work by Wang

et al.[84] considers the spillover network of extreme price fluctuations amongst fi-

nancial institutions with an analysis of crisis periods of interest to regulators and

policy makers. Chen et al.[85] also consider correlation networks and provide in-

sights and methodologies to leverage network topology to monitor the market.

Temporal dynamics of networks have become of interest in general network
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theory as they allow to investigate the evolution of systems and their structural prop-

erties. It is intuitive how this transfers well to financial correlation networks as they

map the evolution of market structures. The early work by Vanderwalle discussed

above [80] was followed by a range of works investigating the temporal dynamics

of MST-filtered networks. The degree distribution of networks and its properties are

one of the main quantitative measures of structure, the authors in [86] consider the

degree distribution of MST networks of markets with time. They find as per [80] a

slow evolution in the degree of each stock with a timescale in the range of years. The

evolution of filtered structures is also discussed in [87], where the authors propose

variations on the original MST filtering technique and show how improvements lead

to more consistent and stable structures in time. This supports the idea that market

structures are somewhat stable and with “long memory” characteristics, which can

become more evident as the filtering procedure improves.

When discussing temporal dynamics of networks in finance the evolution in

time is not the only cross-section that matters. Early Econophysics works show

that the distribution of asset returns at different horizons obeys a universal scaling

law [88, 89]. The corresponding phenomenon in network structures is investigated

in [90] where the authors investigate the MST of return correlations in U.S. stocks

at different return horizons. They find hierarchical structures in high frequency as

well, but show how this structure is markedly different as the time scale lengthens,

with a more in-depth investigation of how the energy sector’s role within the net-

work evolves with time scale. Ideas of scaling in financial markets are also present

in the early Econophysics literature [91].

Finally, the work by Bonanno, Lillo & Mantegna [87] investigates various as-

pects of complexity in financial markets. The authors show in particular the com-

plex interactions of financial time series and how hierarchical filtering/clustering

allows those structures to emerge more clearly from correlation matrices. A par-

ticular further level of complexity considered in the work is that of the change in

market structures during extreme events. This leads well to our introduction of high

frequency markets and extreme market events, as those and their structure will be
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the focus of our results on high frequency markets.

2.2 Portfolio construction in practice
In this last section we tie together the previous ones around portfolio construction,

networks, market structures and risk. We do this with a focus on works which

provide practical applications to portfolio construction and allow to show the reader

the need for advanced methods and their advantages.

We start with a review of traditional methods and their applications in industry.

The work by Satchell & Scowcroft [92] presents applications of what is known as

the Black-Litterman model [93], a Bayesian portfolio construction procedure. The

authors explain portfolio construction with these models and show their value as

financial management tools.

In line with the approach of this work, from having shown how these methods

are usefully applied in practice [92] we now move to question their correctness and

robustness and provide alternative solutions or improvements. Axioma Inc. (now

part of Qontigo)1 is one of the largest providers of portfolio construction analytics.

Its CEO and Director of R&D show extensive research on the topic in [94]. They

analyse the negative impact of estimation error in mean-variance portfolio optimisa-

tion. As discussed in Section 1.1, asset weights are highly sensitive to small changes

in the inputs. The authors propose a robust mean variance framework designed to

explicitly account for parameter uncertainty in optimisation models.

We can see from the discussion on robustness of mean-variance methods, that

recent practitioner insights still show the dominance of traditional methods in port-

folio construction. Specialists in the field though continue to propose advanced so-

lutions to solve practical problems with the estimation of structures and following

risk optimisation.

We therefore review a range of RMT and network-based methods with innova-

tive approaches to portfolio construction, these lead the way to our proof of concept

portfolio construction approach presented in Section 4.6.

1Axioma portfolio optimizer: https://qontigo.com/products/
axioma-portfolio-optimizer/

https://qontigo.com/products/axioma-portfolio-optimizer/
https://qontigo.com/products/axioma-portfolio-optimizer/
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Some of the main authors of the financial networks literature such as Fabrizio

Lillo and Rosario N. Mantegna co-author a work [95] which tests improved co-

variance estimators from RMT and shows they outperform empirical estimates in

terms of realised risk when T ∼N and in particular with short selling allowed. With

T > N they cannot outperform, but provide more diversified portfolios. With T < N

empirical estimates are very poor. A range of methods and solutions to reduce noise

in empirical estimates (even in T < N) is proposed in works by Tomaso Aste with

parsimonious local modeling [96, 97] and similarity clustering of market states [98].

Clusters and communities are a main feature of heterogenous network struc-

tures which we have seen in Section 1.3 to characterise risk in financial networks.

The authors of [99] do not explaicitly use network filtering, rather hierarchical clus-

tering and optimise the portfolio within each cluster. They show outperformance to

mean-variance optimisation out of sample with 1-4 hours rebalancing periods.

On this line, Tola et al.[100] show how clustering algorithms applied to an

MST-filtered correlation network help reduce statistical uncertainty in the construc-

tion of financial portfolios

A more network native and original approach is perhaps that of Pozzi, Di Mat-

teo & Aste [101] (supporting information in [102]). The authors explore the idea

that network cores are more connected and systemic in heterogenous networks and

apply it to networks filtered with the Planar Maximally Filtered Graph (PMFG)

method. They consider stock centrality as the mean of betweenness and eigenvec-

tor centralities and show how peripheral stocks yield better risk-adjusted returns

than stocks in the core. This provides a fully network native investment procedure

which can be tailored to individual investment objectives.

2.3 Microstructural dynamics of flash crashes

We recall from Section 1.5 that academics, regulators and practitioners alike have

noted that price efficiency has improved as a result of HFTs, but also that exchanges,

assets and even markets now carry more systemic risk as a result of the new dynam-

ics of liquidity, risk constraints and market venues. The growth in systemic risk due
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to electronic trading has given rise to a growing number of increasingly large flash

crashes [103] of which the one on May 6th 2010 was the first notorious example.

The report on the May 6th crash by Nanex [104] begins to suggest how high

frequency order placement and saturation might have worsened the extent of the

crash. The authors in [105] delve deeper into this idea and investigate flash crashes

between 2006 and 2011 to show a system-wide phase transition around ∼ 500ms to

an all-electronic trading market characterised by black swan events. Further insight

into the impact of HFT players in flash crashes was provided by the simulations

in [106], where the authors show how lowering the number of HFT players in the

simulation reduces the extent of the crash, even when the size of the large sell order

which triggered it is kept constant.

The authors explain the relation between the number of HFT players and the

extent of the crash as due to the “hot potato” phenomenon described in [68]. This

phenomenon can be explained as follows. When an unusually large sell (buy) order

hits the market it gets absorbed by liquidity providers (often HFT market makers)

which, as a result, accumulate a long (short) position in their inventory. The un-

usually large order though impacts the price, as per our discussion of price impact

in Section 1.4, and potentially triggers risk limits by those market makers holding

the inventory. Meanwhile as the price drops (rises) dramatically ordinary market

players withdraw from the market. As a result of the risk limits HFTs try to reduce

their inventory with aggressive market orders. As everyone else has withdrawn,

they trade with each other at extremely high frequency, thereby creating high trad-

ing volumes. This particular phase characterises the “hot potato” phenomenon, i.e.

the inventory exposure being passed around like a “hot potato”.

The positive feedback loop continues as follows. When trading volume is used

as a proxy for liquidity the “hot potato” phenomenon creates apparent liquidity

which triggers execution by lower frequency players which are also trying to reduce

exposure as the market drops (rises).

The authors in [68] make two further points on HFTs and modern market dy-

namics during these extreme events. Another cause of apparent liquidity and market
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depth is Fleeing Liquidity by HFT market makers through the fast cancellation of

limit orders which was suggested to create the illusion of market depth. This was

touched upon earlier in Section 1.4.

As the number of trading venues and exchanges rises liquidity is fragmented.

Sweep orders and arbitrageurs aim to move liquidity and remove arbitrage oppor-

tunities across exchanges, but can create dangerous effects. Sweep orders between

markets operate at lower frequencies than these fast cancellations, thereby sweeping

the book after liquidity has potentially already been removed. This worsens the sys-

temic aspect of these events across the fragmented liquidity structure of exchanges.

Extreme events of this kind, which are characterised by non-linear reactions

to shocks in the system and positive feedback loops, exist in man-made and natu-

ral systems and are instances of self-organised criticality. In this type of systemic

events the system reaches a critical state where a small release in energy or im-

balance triggers highly non-linear reactions in size. This is the case in avalanches,

earthquakes and sandpiles [1, 107, 108].

Events with such underlying dynamics are characterised by heavy-tailed power

law distributions. The tail’s decay exponent in these distributions is crucial for their

modeling as it indicates which moments of the distribution are defined and which

diverge. This can be of great practical relevance for both regulators and practition-

ers, in particular traditional market makers. These have an obligation to provide

liquidity at all times and cannot simply withdraw from the market under extreme

conditions. This constraint brings the need to model trade volume flow in the mar-

ket as well as from clients in order to provide actionable pricing also under extreme

market conditions. Predictive tools for volume modeling which rely on advanced

statistical methods and Artificial Intelligence are now being adopted by most mar-

ket makers, but a deep understanding of the underlying data distributions are cru-

cial to correctly fit and deploy these models. For example, unbounded distributions

have major implications for the use of Gaussian-based versus distribution-agnostic

(quantiles) confidence intervals and how extreme values are modeled and accounted

for in terms of pricing and inventory management. Our work makes the argument
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that power law distributions and critical dynamics must be included in modern mod-

eling, in particular when dealing with extreme events is the focus, as in risk model-

ing.

In the above discussion, we have shown the relevance and interest in these ex-

treme events and how their dynamics were investigated mostly through simulations.

In spite of their importance, to our knowledge no investigation of the statistical

properties of these events in their microstructural dynamics has been conducted yet.

The statistics underlying extreme events are of great relevance for the study of the

dynamics of these phenomena, but mostly for market makers who aim to provide

liquidity and stability during such events and should have the tools to model and

best navigate them.

The results in Section 5.2 bridge this gap through analyses of flash crash events

in high frequency markets from the perspective of critical systems and avalanche-

like dynamics to show how the detected flash crashes constitute black swan events

with unbounded trading volume distributions while the remaining order flow is sub-

critical and bounded. This is of great importance for the modeling of order flow

(and related assumptions) in both normal and extreme market conditions.

2.4 Synchronisation and co-crash structures

From the discussion in the previous section, we see that crashes of different sizes

seem to involve a self-perpetuating cycle [106] with positive feedback loops.

This type of self-excited process is also investigated in [109] for the liquidity

and information dependence between two sample assets, showing how liquidity

shocks to an asset can propagate to related ones (and by extension to the wider

market).

The frequency and size (in terms of number of securities involved) of simulta-

neous crashes in HFT is also investigated in the literature. For instance, the works

by Lillo and co-authors [103, 110] investigate the dynamics of simultaneous flash

crashes and motivate their importance by showing the growth in the number of mini

crashes in recent years. They also show that the number of simultaneously crash-
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ing securities has grown over the last 10 years, thereby highlighting the increasing

systemic relevance of this phenomenon.

One of the perspectives on systemic risk in this work, which will be discussed

further in Sections 7.4, 7.1, is that of the risk component of an event (say a flash

crash) that is given by the asset’s influence over other assets and their intercon-

nectedness. This causes the isolated event to spread in the market and affect more

assets, thereby increasing its impact and relevance for all market participants. A

related concept is that of “synchronisation” which is the systemic and concentra-

tion aspect that arises from the alignment and interdependence of actions between

market players rather than assets. This will also be a topic of discussion later on in

Section 7.4.

The systemic risk posed by HFTs has been investigated in the literature in

the last decade. The work by Paulin et al.[111] simulates flash crashes through

agent based modeling and highlights the importance of market structures in the sys-

temic propagation of extreme events. The works by Abreu & Brunnermeier [112]

and Bhojraj et al.[113] investigate the risks of synchronisation of arbitrageurs in

financial markets and acknowledges the phenomenon. Other works investigate the

systemic risk of HFT dynamics. Jain et al.[114] investigate how low-latency HFT

trading can worsen extreme systemic events in financial markets and argues for the

need to incorporate correlation and market structure in regulating these risks. The

work by Harris [115] discusses many mechanisms, among which, systemic risks

originating from order routing and self-reinforcing mechanisms causing crashes.

The review by De Gruyter [116] summarises systemic aspects of HFTs and mar-

ket structure such as position correlation and herd behaviour, adverse selection in

orders and crowding as well as negative contribution to price discovery, at times.

In summary, co-crashes are becoming more frequent and systemic. It is there-

fore important to investigate their structure. In particular, it is relevant to understand

which stocks are central to larger systemic events as well as the contagion structure

between stocks in the market. This is a central theme in market stability for regula-

tors as well as in risk management for market makers.
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The results in Section 6.2 join the two themes of flash crashes and cross-asset

systemic risk by delving deeper into the dynamics of simultaneous flash crashes

of different sizes throughout 300 liquid stocks traded on the NASDAQ Exchange.

We investigate the empirical distribution of crash sizes and the structure of these

events in the market. We also investigate whether larger systemic events involve

highly unstable stocks (which crash often) or stocks that are more stable in their

price dynamics, yet more influential to trigger larger systemic events when subject

to liquidity shocks. We apply tools from statistical physics to show the difference

between crashes which involve a small or large number of assets. We uncover a

phase transition occurring when the crash size exceeds 5 companies. Implications

for systemic risk in high frequency markets are discussed from both trading and

regulatory perspectives.



Chapter 3

Method

The literature on portfolio construction and risk reviewed in Section 1.1 focuses

on correctly estimating and denoising the covariance matrix of asset returns, which

represents the structure of the market. This estimation in crucial as the covariance

matrix is the main input to portfolio optimisation algorithms. With this is mind we

outline our methods below as follows. Section 3.1 describes our estimation of the

covariance matrix with exponential smoothing. Section 3.2 the describes our “de-

noising” methods which correspond to quantile thresholding and Triangulated Max-

imally Filtered Graph (TMFG) filtering. The most relevant simplicial substructures

are then obtained from those top ranked in temporal persistance, defined in Sec-

tion 3.3. These filtering methods can be questioned, as one might ask if it is not

the method which yields the observed results. To remove these doubts and inves-

tigate the generating process of market structures we study and compare the null

models presented in Section 3.4. We conclude by introducing a simple measure for

portfolio construction in Section 3.5.

Much of the work in market microstructure deals with the complex relations

between order flow activity and price returns. This is the case as most applications

in this field relate to optimal order execution and market making, where price im-

pact is key. We too investigate the relation between price returns and order flow in

this work. We consider anomalous price returns (both positive and negative) and

the traded volume during such return intervals. The LOB and order flow (OF) are

the key representations of market state and activity in high frequency finance, we
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begin by introducing those. We then analyse the distribution of traded volumes.

We focus on trades in particular, based on findings from the literature on market

microstructure which has identified them as the most informative type of market

event in the OF [117], upon which much of the market impact literature is based

[118, 119, 120]. Still on the topic of flash crashes, we consider instances where

multiple assets crash together and the distribution of such co-crash sizes. Finally,

we use null models (introduced in Chapter 1) to show the significance of our results.

3.1 Market structure estimation from price data

Correlations are noisy measures of co-movement in financial asset prices, which

are often non-stationary within the observation window. Longer time windows

benefit the measure’s accuracy, as we have more observations to estimate the

N(N − 1)/2 parameters of the matrix of N assets. However, a longer observa-

tion window can come with the disadvantage of weighting more and less recent

co-movements equally with the risk of averaging over a period in which the values

are non-stationary. In order to compensate for this effect, we apply the exponential

smoothing method for Kendall correlations [25]. As already suggested in Section

1.1, this method yields more accurate correlation estimates, as it applies an expo-

nential weighting to the correlation window, prioritising more recently observed

co-movements.

3.2 Network filtering: quantile thresholding and the

TMFG

To obtain sparse network structures from the correlation matrices, we apply two fil-

tering techniques with fundamental differences. The first filtering method is quan-

tile thresholding, which corresponds to hard thresholding to generate an adjacency

matrix through the binarisation of individual correlations. We consider the N×N

correlation matrix A and its elements {Ai j}N
i, j=0. The quantile q of {Ai j}N

i, j=1 is then

vq, where the adjacency matrix is defined as
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Ai, j =

ρi, j ≥ vq, 1

ρi, j < vq, 0
(3.1)

This filtering technique is entirely value-based with no structural or other con-

straints. We apply it by providing a quantile level q which yields edge sparsity

analogous to that of the corresponding TMFG filter.

The second filtering technique is the TMFG method [35]. This topological

filtering technique embeds the matrix with topological constraints on planarity in a

graph composed by simplicial triangular and tetrahedral cliques. Edges are added

in a constrained fashion with priority according to their (absolute) value. The graph

essentially corresponds to tiling a surface of genus 0. This technique represents

a filtering method that accounts for values, but also imposes an underlying chordal

structural form which might help regularising the filtered graph also for probabilistic

modeling [34]. Furthermore, this technique imposes higher order structures, namely

triangles and tetrahedra, which are known to be a feature of financial markets and

social networks.

3.3 Simplicial soft persistence
We focus on temporal persistence of tetrahedral and triangular simplicial complexes

(motifs) in the TMFGs and graphs filtered via quantile thesholding constructed

from correlations over rolling windows as per Section 3.1. TMFG networks can

be viewed as trees of tetrahedral (maximal) cliques connected by triangular faces,

these are triangular cliques called separators, which different meaning in the taxon-

omy. As the TMFG is a tree of maximal cliques, the removal of a separator split

the graph into two parts. We point out that not all triangular faces of the tetrahedral

cliques are separators and we will refer to those which are not merely as triangles.

We point out though that both triangles and separators were considered for the

results in Section 4.3, in order to account for all triangles in the filtered graph, as

quantile thresholding does not distinguish between triangular faces and separators.

When investigating the time evolution of a graph, the literature often considers
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“survival”, i.e. hard persistence, of an edge or a motif in time [121, 122]. This

implies that to be persistent between times t and t + τ the edge needs to be present

in the graph at all intermediate times ∈ [t, t + τ]. We propose the concept of “soft”

persistence and argue that in highly stochastic systems where estimation is noisy

this measure is more appropriate to track long term structural evolution. We define

“soft” persistence as follows.

A motif corresponding to clique Xc is considered soft-persistent between time

t and t + τ if and only if the motif is present at both the initial time t and at t + τ . A

visual intuition for motif (triangle) persistence through time is provided in Figure

3.1.

Figure 3.1: Motif persistence visualisation. Visual representation of a TMFG structure’s
motif (triangle) persistence in time. The green triangle in figure a) is persistent
through figure c), while other two triangles (present in figure a) within the red
triangle) do not persist due to the rewiring of an edge. Figure b) shows one of
non-persistent triangles with dashed contour. The rewired edge is also dashed
and colors are used for visualisation purposes to “track” the triangles through
the rewiring. This visualisation aims at showing the impact of edge rewiring on
motif persistence and the difference between edge and motif persistence.

We investigate the decay in the number of persistent motifs between filtered

correlation networks with observation windows progressively shifted by one trading

day and we quantify how the average persistence decays with the time shift τ .

As mentioned above, here we use a form of soft persistence which is different

from hard persistence (survival) of motifs which is more common in the literature

[121, 122].
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The binary persistence value of motif c ∈C at time t and t + τ is

Pm(X
t,t+τ

c ) = (Xc ∈X t
C)∧ (Xc ∈X t+τ

C ). (3.2)

The average persistence for the entire clique set over T starting points at time

shift τ is

〈Pm(X
τ

c )〉T,C =
1
T
· 1
|C|
·

T

∑
t=0

∑
c∈C

Pm(X
t,t+τ

c ). (3.3)

Where we consider the motif sets X t
C = {X t

i }i=c1,...,c|C| and X t+τ

C = {X t+τ

i }i=c1,...,c|C| .

We observe that persistence decays as a power law with two regimes: one with

a faster decay followed by one with a slower decay. The transition point between

these two regimes, τplat , is computed by minimising the unweighted average mean

squared error (MSE) between the two power law fits over all possible transition

points in time. The average motif persistence in the plateau regime is defined as

〈Pm(Xc)〉T,T =
1
T
· 1
T − τplat

·
T

∑
t=0

T

∑
τ=τplat

Pm(X
t,t+τ

c ). (3.4)

In order to verify that the persistence decay of motifs is not simply the con-

sequence of the persistence decay of individual edges, we test the null hypothesis

that motifs are formed by edges in the network whose existence is not mutually de-

pendent. The hypothesis being tested is that motif persistence simply results from

persistence in its component edges (c1,c2,c3):

Pm(χ
t,t+τ
c ) = Pm(χ

t,t+τ
c1

) ·Pm(χ
t,t+τ
c2

) ·Pm(χ
t,t+τ
c3

), (3.5)

We also compare the decay exponents for multiple random stock selections

over different markets to identify whether the steepness of motif decay (edge, closed

triad or tetrahedron clique) is indicative of market stability/development stage. We

further investigate more liquid markets such as the NYSE from both a quantitative

and qualitative point of view.We classify motifs in the plateau by their soft persis-
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tence and study the sector structure of the most persistent motifs. We also verify

that these motifs are not trivially retrieved by maximum correlation edges or motifs

in the correlation matrix.

3.4 Null models of market dynamics
We have defined null models early in Chapter 1 and discussed instances of their

application in the literature. Null models are the basis of statistical testing for most

results in this thesis, in line with common practice in complexity science. The

null models described below are calibrated on empirical data from Section 4.1 and

enforce constraints to test whether these are sufficient to reproduce the empirical

observations (the persistence in this case) or not. We consider null models increas-

ingly more constrained to show that, even imposing full pairwise structure in the

generating model for time series, we are unable to replicate empirical persistence

in null models. This provides a strong argument for the investigation of simplicial

complexes beyond individual edges (i.e. motifs) and their long memory processes.

Random return shuffling Individual stock log-return (rt = logPricet−logPricet−1)

time series are randomly shuffled, i.e. a random permutation along the time dimen-

sion of each variable is applied, to obtain a null model for noisy, spurious correla-

tions. This model maintains the overall statistics of the values of each time series

but eliminates any correlation structure.

Rolling univariate Gaussian generator We calculate the rolling mean µt−δt ,t and

standard deviation σt−δt ,t of the log-return series over the time window (t−δt , t] for

each node (stock) separately. We then generate ensembles by sampling the return

rt at each point in time from the (rolling) univariate Gaussian distributions with

sample mean and variance rt ∼N (µt−δt ,t , σ2
t−δt ,t

), with N (µ, σ2) being a normal

distribution with mean µ and variance σ2. This intends to simulate the process as a

simple moving average with uncorrelated time-varying Gaussian random noise.

Fixed Multivariate Gaussian generator We calculate the mean µ (for each node)

and covariance matrix Σ throughout the whole length of the log-return time series.

We then generate ensembles by sampling the vector of returns rt at each point in
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time for all stocks from the fixed multivariate Gaussian with empirical means and

covariance matrix, rt ∼N (µ, Σ). This aims to represent an underlying fixed market

structure with sampling noise.

Rolling multivariate Gaussian generator After obtaining the log-return time se-

ries, we calculate the rolling mean µ t−δt ,t (for each node) and covariance matrix

Σt−δt ,t between the series. We generate ensembles by sampling the return at each

point in time rt for all stocks from the (rolling) multivariate Gaussian distributions

with sample means and covariance matrices rt = N (µ t−δt ,t , Σt−δt ,t). This intends

to detect the changing market structure and simulate the process as being generated

by a multivariate Gaussian distribution with time-varying constraints on structural

relations.

3.5 Portfolio construction methods and risk mea-

sures
In order to provide an application to systemic risk, we show that indeed the most

persistent motifs represent clusters of systemic risk and high volatility. To do so,

we construct a portfolio containing all stocks in the ten most persistent motifs in the

plateau region, as defined in Equation 3.4 (for each market). We then compare its

volatility with that of random portfolios with the same number of assets.

We conclude by defining the persistence measure Pm(vi) in Equation 3.6 to

compare random portfolios weighted by 1/σ2 with those weighted by 1/Pm(vi).

This persistence weighting is still simple and asset-wise, but it accounts for struc-

ture in that it is based upon a non-local network measure. We do this for the four

different markets, with all results showing meaningful volatility reductions.

Pm(vi) = ∑
Xc∈XC|vi∈Xc

〈Pm(Xc)〉T,T (3.6)

The measure presented in Equation 3.6 is defined for each vertex vi in the

network as the sum over all 〈Pm(Xc)〉T,T (average pesistence of motif Xc in the

plateau) where vertex vi belongs to clique Xc.
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3.6 Limit order books and order flow
In this section, we provide an introduction to limit order books, their representation

in full and reduced-form, including LOB states and OF.

Figure 3.2: An illustration of a limit order book. We observe a market order being filled
at the ask side and an incoming limit order being added to the bid side. The
quantity of the market order then becomes traded volume.

Modern equity trading is conducted electronically. Major exchanges in the

U.S. and the rest of the world facilitate this via a LOB, one per stock. The order book

represents a collection of buyers and sellers, ordered by price and time, bidding and

offering stock for purchase or sale. Figure 3.2 depicts an order book where buyers

and sellers are shaded in blue and yellow, respectively.

At a given time t, the highest price buyers are prepared to buy the stock for

is called the bid price and is denoted by bt . Similarly, the lowest price sellers are

prepared to sell the stock for is referred to as the ask price and is denoted by at .

From the limit order book, we can derive the mid-price, pt := (bt +at)/2, the bid-

ask spread, at−bt , and the tick size, the smallest price increment between different

price levels in the order book, as illustrated in Figure 3.2. For the Nasdaq exchange,

where the data described in Sections 5.1, 6.1 is obtained, the tick size is $0.01.
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Beyond the bid and ask, there are additional levels in the order book.

An order is defined as the four-tuple (side, quantity, price, time), representing

the side of the order book the order is posted to, the price at which the order is

submitted, the desired amount to be traded and the time of submission. Orders may

be entered, and if active, cancelled at any time. When an order is submitted the

matching engine of the exchange attempts to match it with existing orders in the

book. Orders which match and result in the full quantity being traded immediately

are called market orders. Orders which do not match, or only match partially, are

referred to as limit orders. When there are multiple limit orders with the same side

and price present, they are queued chronologically at that price level according to

the first-in-first-out (FIFO) principle. For an in-depth description of modern equity

trading and the order book we refer the interested reader to [123, 124, 66].

3.7 Jump detection
We detect price jumps (up and down crashes) similarly to [103] in 1 minute non-

overlapping returns, as per Sections 5.1, 6.1. We apply the basic jump detection

method from [125] and detect jumps at the 1% significance level. In addition to the

basic features of the method for robust volatility estimation we obtain an estimate

of intraweek periodicity and adjust the return series and jump detection according

to [126] as well.

3.7.1 Power law fitting and exponents

We analyse the volume distributions and fit power law functions to the tails of the

empirical Complementary Cumulative Distribution Function (CCDF). For fitting

purposes, we define the tail as the percentile interval [90%,99.9%], where the high-

est values are excluded to reduce fitting noise and discount finite size effects. We

highlight that the results are robust to different choices of tail quantile intervals, as

will be discussed in Section 5.2. The fit is then simply applied as a linear fit (min-

imum squared error) to the log-log data. In order to support the robustness of our

result we also apply the method described in Clauset et al.[127] to obtain a second

fit and set of exponents consistent with the first ones. To do so we use the package
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from Alstott et al.[128].

3.8 Crash size distribution
We investigate whether co-jumps which involve different numbers of stocks orig-

inate from the same dynamic process and present the same distribution. We also

consider whether individual stocks are involved to the same extent across co-crashes

of different sizes or if a pattern emerges.

We define the unnormalised crash frequency for stock x, in co-crashes with m

stocks as

fx,m =
T

∑
t=0

cx,t,m (3.7)

with

cx,t,m =

1, if stock x is involved in a crash of size m at time t

0, otherwise
(3.8)

By marginalising over the ensemble of stocks x we obtain the frequency distri-

bution across co-crash sizes

fm = ∑
x

fx,m (3.9)

The changes in the composition of the crashes are investigated by computing

the correlation between the involvement of firms across crashes of different sizes.

Namely, for each crash size m we assign to each firm x a rank in decreasing order

by fx,m. We then compute the Spearman correlations between these ranks.

3.9 Null models and statistical testing
To support the visual intuition of our results we apply statistical testing in the form

of null models.

In the first null model we apply, the Spearman correlation is used to measure

rank similarity between the crash frequency distributions across stocks at different
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crash sizes m. As the frequency distributions are noisy and fat-tailed the correla-

tion p-values from the t-test seem hard to justify as a reliable measure. Hence, we

create a simple null model of correlation significance through a biased reshuffling

analogous to those in Section 3.4.

To do so we sample without replacement the whole list of stocks Sm according

to ∝ fm from Section 3.8 to obtain a biased reshuffling Gi,m of the stocks according

to their crash frequency.

For each shuffled list we calculate the Spearman correlation coefficient be-

tween the sample and the original list to form the null distribution as:

Dm = Spearman(Gi,m,Sm)
105

i=1 (3.10)

where the Spearman correlation can be defined as the Pearson correlation be-

tween the rank variables:

Spearman(X ,Y ) = ρ(R(X),R(Y )) =
Cov(R(X),R(Y ))

σR(X) ·σR(Y )
(3.11)

where R is the rank operator (convert values to rank values), ρ is the Pearson

correlation, Cov is the covariance and σ is the standard deviation.

Given the null model distribution from Equation 3.10 we then define the sig-

nificance of the correlation between sizes m,m+ τ (i.e. the p-value) as the quantile

of Spearman(Sm+τ ,Sm) in Dm.

The second null model we apply is simpler and aims to verify that the increase

in the fraction of flash crashes involving the top N liquid stocks with crash size is

not just an artifact of the growing crash size (ie more stocks involved in the crash

and hence more likely to select one of the top N most liquid). To do so we choose

N random stocks and compute the fraction of flash crashes with at least one of them

across crash sizes. The distribution of the percentage of crashes with at least one of

the N sampled stocks for each crash size constitutes the null model.
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3.10 Crash-weighted trading volume
To investigate the relationship between crash size and the involvement of highly

traded stocks we define a weighted average daily Dollar Traded Volume for each

crash size, where the weighting is given by the normalised crash frequency of each

stock.

For crash size m and crash frequency distribution fx,m, as per Section 3.8, we

define the crash-weighted Dollar Traded Volume DTVm as:

DTVm =
∑x fx,m DTVx,m

fm
(3.12)

This measure aims to represent how more highly traded stocks are involved at dif-

ferent crash sizes.



Chapter 4

Simplicial persistence: from long

memory to portfolio construction

The main findings of this thesis on market structures and portfolio construction

are described in this section. We begin with an overview of results on the long

memory of edges and simplicial complexes in TMFG-filtered correlation networks.

The section continues with an analysis of null models of financial market structures

and a comparison with real data to gain insights about the generative process of

its stochastic structure. We then suggest how soft persistence captures the under-

lying change in market structure by relating its decay exponent to the efficiency

(a proxy for stability) or average traded volume in the market (a proxy for fluidity

which yields well-defined stable structures). We analyse the taxonomy emerging

from persistence by showing that the most persistent motifs correspond to stocks in

the same sector with strong underlying price drivers. We conclude the section with

results in systemic risk applications to financial portfolios, where we show that the

most persistent motifs present strong co-movement dynamics from the portfolio

of 10 most persistent motifs being highly volatile and systemic. This leads to an

idea for portfolio optimisation, where we propose a non-local portfolio weighting

measure based on persistence and compare it with volatility weighting to show im-

provements in out of sample portfolio volatility.

This section (Section 4) presents our results on network filtering and persis-

tence in market structures and their systemic risk. In line with our approach in the
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introduction where Section 1.2 provides context from the physical sciences for our

methods and leads to Section 1.3 which applies them to financial markets, we begin

with a contextualisation and comparison of our findings in the context of statistical

physics and long memory processes in its structures.

Later in this section, we make use of network filtering to investigate the tem-

poral evolution of the market structure and we compare the persistence of certain

network motifs with different levels of market efficiency. Market efficiency can be

viewed as an emergent property of a system whose state is determined by the in-

teraction of multiple agents which compete to exploit the system’s inefficiencies,

thereby making the system’s dynamics more random as predictability in those dy-

namics is exploited (and thereby reduced) until no longer present. Liquidity in mar-

kets can be viewed as the level of fluidity and granularity of the system’s dynamics.

More fluid markets are characterised by more agents and interactions which reduce

noise in the dynamic process of the emergent variable (the price).

Further, the persistence that we analyse in these systems can be compared with

the autocorrelation in spin glasses. Indeed, in the physics of spin glasses, slow relax-

ation and correlation persistence have been studied for a very long time [129, 130].

Simulation results and experiments reveal that the dynamic correlation function de-

cays as a power law in the proximity and below the glass transition [131] in a similar

way to what we report in the present work. In such systems one also observes aging

effects which show an initial exponentially fast decay of the spin-spin autocorre-

lation function and then a freeze into slow dynamics [129]. Intriguingly, this was

observed also in simulated network systems [132] and in financial systems in the

present work.

Edge persistence is also studied in Network Science in the form of survival

(hard persistence) [133, 134, 135, 136] as well as in Econophysics [137, 138, 139,

140, 141]. Further, [142] defines one step node persistence analogously to the the

definition for edges in the present work.

The main findings of this thesis on market structures and portfolio construc-

tion are described below. We first introduce the data used to produce the results in
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this chapter in Section 4.1. We then begin with an overview of results on the long

memory of edges and simplicial complexes in TMFG-filtered correlation networks

in Section 4.2. Section 4.3 proceeds with an analysis of null models of financial

market structures and a comparison with real data to gain insights about the gen-

erative process of its stochastic structure. We then suggest how soft persistence

captures the underlying change in market structure in Section 4.4, by relating its de-

cay exponent to the efficiency (a proxy for stability) or average traded volume in the

market (a proxy for fluidity which yields well-defined stable structures). In Section

4.5 we analyse the taxonomy emerging from persistence by showing that the most

persistent motifs correspond to stocks in the same sector with strong underlying

price drivers. We conclude with results on systemic risk applications to financial

portfolios in Section 4.6, where we show that the most persistent motifs present

strong co-movement dynamics from the portfolio of 10 most persistent motifs be-

ing highly volatile and systemic. This leads to an idea for portfolio optimisation,

where we propose a non-local portfolio weighting measure based on persistence

and compare it with volatility weighting to show improvements in out of sample

portfolio volatility.

4.1 Data
We select the 100 most capitalised stocks from four markets: NYSE, Italy, Germany

and Israel (400 stocks in total). These markets range from highly liquid and more

developed ones such as the New York Stock Exchange and the Frankfurt Stock

Exchange to less liquid markets such as the Italian Stock Exchange and the Tel

Aviv Stock Exchange.

We investigate daily closing price data1 for:

• New York Stock Exchange (3/01/2014 - 31/12/2018);

• Frankfurt Stock Exchange (3/01/2014 - 28/12/2018);

• Borsa Italiana (Italian Stock Exchange) (3/01/2014 - 28/12/2018);

1Source: Bloomberg Finance L.P.
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• Tel Aviv Stock Exchange (5/01/2014 - 1/1/2019).

The data includes 1258 daily prices observations for the NYSE, 1272 for FSE

and BI and 1225 for TASE.

To estimate market structures from the return series of the data we compute

correlation matrices with exponential smoothing from rolling windows of δ = 126

trading days with a smoothing factor of θ = 46 days, as per [25] and our discussions

in Sections 1.1, 3.1. This is done for all realisations of each null model ensemble

(see Section 3.9) and for the real data.

4.2 Long memory of motif structures
Market efficiency imposes the absence of temporal memory in price returns, but

the presence of long memory in higher-order moments of returns and long-term

dependence (autocorrelation) of absolute and squared returns have been observed

and are now considered among the important stylised facts in markets [143]. For

instance, in [144, 145], later extended in [118], it was shown that order signs obey a

long memory process, balanced by anti-correlated volumes which guarantee market

efficiency. In financial time series analysis, through the generalised Hurst exponent

analysis, it was observed that memory effects are related to the stage of maturity

of the market, with more mature markets being more random [146]. However,

these memory effects have been so far observed on the stochastic evolution of each

single variable and not on the collective evolution of the dependency structure of

the market.

With results in the present section we provide the missing piece, connecting

market structure and market memory by analysing the autocorrelation of market

structures [147], through persistence of its filtered correlation matrix [148].

The plot in Figure 4.1 shows the power law decay (evident from the linear

trend in log-log scale) in 〈Pm(X τ)〉T=200,C vs. τ , followed by a plateau region

that also decays as a power law, but with a smaller exponent. We also observe that

all motif decays have τplat ∈ [δ twindow/2,δ twindow], where δ twindow represents the

length of the estimation window of the correlation matrix. The window used has
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δ twindow = 126 trading days and a value of θ = 46 for exponential smoothing, as

per [25]. The choice of δ twindow corresponds to roughly 6 months of trading and

satisfies N < δ twindow, with N the number of assets in the correlation matrix. The

correlation matrix is hence well-conditioned and invertible. On the other hand the

exponential smoothing with θ = 46 mainly considers recent observations from the

latest few months.

There are N− 3 = 97 tetrahedral cliques in the starting TMFG networks and

3N−8 = 292 face triangles.

Figure 4.1: Temporal Decay of Simplicial Soft Persistence. Decay of triangular clique
faces, separators and clique motifs persistence for 100 NYSE stocks, as a func-
tion of time interval τ = [0,900] (average over 200 starting points). The motifs
and network are obtained via TMFG filtering. The two power-law regimes are
identified by the minimum MSE sum of the fits. The second region in termed
“plateau” in contrast with the strong decay observed in the “decay” region al-
though we recongnise that

In Figure 4.1 we notice that the minimum MSE for the two linear fits is

achieved at the transition point between the decay phase and the plateau. The tran-

sition point τplat can therefore be identified by minimising a standard fit measure

with two phases, which strengthens the unsupervised nature of our method. The

method for minimum MSE search is described Section 3.3.
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4.3 Null models of persistence in filtered structures

The results in this section aim to demonstrate that there exists a stable sub-structure

in the system which is found via the higher order relation approach (i.e. beyond

pairwise simplicial relations). We observe that more efficient markets have more

stable structures. We study how simplicial motifs - such as edges, triangles and

tetrahedra - are persisting or decaying through the time evolution of the filtered

networks computed over a rolling time window. In order to test the multivariate

long memory properties of financial time series, we compare the motif persistence

in networks from real data with motif persistence from a range of null models [149] -

corresponding to a range of parsimonious assumptions on the underlying generative

processes - for groups of time series.

Each null model preserves different aspects of the time series, allowing to vali-

date hypotheses about the long memory of market structures by ranking persistence

decays of real time series against null models.

More specifically, in this section we report results for the edge and motif (trian-

gle) persistence for real data as well as for the null models described in Section 3.4.

We compare real data with null models and TMFG filtering with quantile thresh-

olding.

Figure 4.2 shows the decay in edge persistence for both filtering methods. We

notice that the random shuffling null model lies at the bottom, as it should produce

completely random structures with little residual persistence due to probabilistic

combinatorics and structural filtering constraints in the TMFG. This shows that per-

sistence is not an artifact of any of the filtering techniques used and not a mere re-

sult of return volatility of individual assets (which is preserved by return shuffling).

From Fig. (4.2) we also notice that the rolling univariate Gaussian model lies just

above as it does not account for structure at all and only preserves rolling means

and standard deviations, this shows how persistence cannot merely be attributed

to common long term trends or volatility variations. This null model carries some

broad sense of structure and market direction and it shows how persistence does

not merely originate from overall market trends. We then find a second cluster, of
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structured models, with the rolling multivariate Gaussian at the bottom. This shows

how market persistence goes beyond asset means and covariances, even after spuri-

ous structures have been removed. We then find the real data, just below the stable

multivariate Gaussian and with an ongoing slow, but stable decay. This shows how

markets are characterised by slowly evolving long memory structures, in line with

the literature reviewed in Section 1.1.

Figure 4.3 shows the decay in triangular motif persistence for both filtering

methods. We notice results analogous to those in Figure 4.2 for TMFG filtered

graphs. Graphs filtered through quantile thresholding instead show a high level of

noise in their top cluster (where structure is present). A higher number of motifs

than those of the TMFG is found, but the ranking of null models is at times in-

consistent, as well as the position of the decay curve for real data. We would have

expected some triangles to break when looking at motif persistence only, as well

as to find that the clustering coefficient decreases in persistent graphs (as it does

in TMFG graphs). The clustering coefficient for quantile persistent graphs is also

found to be much higher, suggesting that the filtered structure is highly localised and

clustered, while that of the TMFG is more distributed, identifying systemic groups

of stocks throughout the market structure.

4.4 Market classification via decay exponent
We now consider how the decay exponent of TMFG graphs behaves across markets.

Table (4.1) compares the decay exponents for cliques (4-cliques), triangular motifs

and clique separators in the NYSE, German stock market, Italian stock market and

Israeli stock market. The decay exponent α is obtained from the power law decay

fit:

〈Pm(X
τ)〉T,C = β · τα (4.1)

We notice from the results in Table (4.1) that the NYSE, which is clearly the

most developed and liquid stock market, has the lowest decay exponent (in mod-
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Figure 4.2: Decay of number of persistent edges in null models. Decay in the number of
persistent edges with δτ for the time series null models of market returns and
real data for the NYSE. We notice how for both TMFG filtering and quantile
thresholding the real data lies between the rolling multivariate Gaussian ensem-
ble and the stable multivariate Gaussian ensemble. This indicates that the real
market structure does evolve slowly in time, but with persistence beyond what
can be inferred from estimates of its covariance structure. Here we plot the
number of persistent edges instead of persistence as a probability to show that
both filtering methods start from the same edge sparsity.
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Table 4.1: Simplicial persistence decay exponents by country. This table reports ex-
ponents for the decay power law regime computed with MSE. The analysis
refers to 100 randomly selected stocks amongst the 500 most capitalised, over
time intervals τ = [0,900) and t = [0, ...,200) different initial temporal network
layers. For all motif analyses in this work, triangles and separators constitute
non-overlapping sets, as these represent theoretically and taxonomically differ-
ent structures and decay characteristics.

Market Clique Triangular Motif Clique Separator
NYSE -0.392 -0.493 -0.245
Germany -0.792 -0.598 -0.381
Italy -0.785 -0.811 -0.174*
Israel -1.024 -0.866 -0.728

* Result compromised by regimes not well identified for motif decay in large
systems (≈ 100 stocks).

ulus, which corresponds to the slowest decay) for both cliques and triangles. This

indicates that the estimation of its correlation structure from shorter time windows

is less noisy and hence more consistent in time. Germany and Italy have similar

values for clique exponents, with Germany seemingly more stable in terms of tri-
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Figure 4.3: Decay of number of persistent motifs (triangle) in null models. Decay in
the number of persistent motifs with δτ for the time series null models of mar-
ket returns and real data for the NYSE. We notice how for TMFG filtering the
real data still lies between the rolling multivariate Gaussian ensemble and the
stable multivariate Gaussian ensemble (as in Figure 4.5a). We instead notice
that the decay ordering is noisier for quantile thresholding, showing how the
method’s focus on individual connections affects it generalisation to motifs.
This is despite the higher number of motifs in the quantile thresholding graph.
Here we plot the number of persistent motifs instead of persistence as a proba-
bility to show that in spite of both filtering methods starting from the same edge
sparsity (Fig. 4.5a) the number of initial cliques and persistent cliques is very
different across methods. This is likely due to the highly clustered structure of
thresholding-based networks.
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angular motifs. Israel, a younger and less liquid stock market, follows with a faster

decay in both tetrahedral cliques and triangular motifs. The ordering of these mar-

kets is not clearly identifiable in clique separators as noise in the data does not allow

for the two decay regimes to be correctly identified in all markets (in this case for

Italy). Separators have a distinct role and meaning in the graph’s taxonomy and

further work should allow for a more thorough analysis of those.

We observe promising results for a monotically increasing relation between

the decay exponent and the average daily volume of the market. The solidity of this

result shall be investigated in future works.

We now show that simplicial persistence is indeed meaningful beyond edge

persistence, which strengthens the novelty of our contribution. In Table (4.1) the

decay exponent is not adjusted by the probability that all edges in the clique must

be present in the temporal layer for the clique to exist. We show in Table (4.2) that,
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when adjusted by the probability of all its edges existing simultaneously, triangular

motifs have a slower decay than individual edges. The results in Table (4.2) are

obtained from a set of randomly selected stocks different to those used for Table

(4.1). This adds further confidence in the results and their generality.

We stress that Table (4.2) rejects the hypothesis that motifs are formed by

edges in the network whose existence is not mutually dependent (Equation 3.5).

The hypothesis is rejected by the consistently lower decay exponent (in modulus)

for adjusted persistence of triangular motifs. We can then conclude that motifs

are more stable structures across temporal layers of the network, with significant

interdependencies in their edges’ existence.

Table 4.2: Persistence of higher order motifs beyond component edges. This table re-
ports exponents for the decay power law regime computed with MSE. The anal-
ysis refers to 100 randomly selected stocks amongst the 500 most capitalised,
over time intervals τ = [0,900[ and t = [0, ...,200[ different initial temporal net-
work layers.

Market Edge Triangular Motif Triangular Motif**
NYSE -0.164 -0.398 -0.133
Germany -0.265 -0.471 -0.157
Italy -0.144* -0.458 -0.153
Israel -0.397 -0.830 -0.277

* Result compromised by regimes not well identified for edge decay in large
systems (≈ 100 stocks)
** Motif exponent adjusted by the probability of simultaneous edge persistence in
the motif).

4.5 Sector analysis of most persistent motifs

Figure (4.4) provides a visualisation of the network components formed by the

ten most persistent triangles in the NYSE. We observe that all strongly persistent

triangles have elements which belong to the same industry sector. Table 4.3 shows

this for the same ten triangles displayed in Figure (4.4). We notice that stock prices

in the sectors in Table (4.3) are mostly driven by sector-wide fundamentals, which

justify the persistent structure in the long term. Other motifs are constituted by
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Figure 4.4: Persistent NYSE motifs visualised. Network representation of the ten most
persistent triangular motifs in the TMFG layers for the 100 most capitalised
stocks of the NYSE..

Exchange Traded Funds (ETFs) and their main holdings 2.

We also investigate whether motif persistence and motif structures can be eas-

ily retrieved from the original correlation matrix. The purpose of this is to check

that our TMFG filtering method is not redundant and trivially replaceable. To test

this, we consider the ten most present persistent triangles across the plateau region

and check their overlap with the ten most correlated triplets in each unfiltered corre-

lation matrix. We find that no more than one triangle lies in the intersection between

the two sets, in each temporal layer. We also check the correlation between motif

persistence and the average sum or product (results are equivalent for our purpose)

of its individual edges’ correlation for all unfiltered correlation layers. We observed

through the Pearson and Kendall correlation values that the two measures are only

2The reason for the existence of these motifs is intuitive and does not affect our analysis, as ETF-
related motifs are unlikely to be present in the network formed by a random selection of stocks or by
stocks in a portfolio. These motifs are present here as we focus on the 100 most capitalised stocks
in the NYSE, which include ETFs.
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Table 4.3: Motif components and Financial Times sector affiliation for the ten most
persistent motifs in the NYSE’s 100 most capitalised stocks.

Node 1 Node 2 Node 3 FT Sector
Biogen Inc Gilead Sciences Inc Celgene Corp Biopharmaceutical
UnitedHealth Group Inc Cigna Corp Anthem Inc Health Care
Biogen Inc Gilead Sciences Inc Amgen Inc Biopharma/tech
Bank of America Corp JPMorgan Chase & Co Morgan Stanley Financials-Banks
Vanguard FTSE ETF** MSCI EAFE ETF Vanguard FTSE ETF*** Index ETFs
Invesco QQQ Trust* Amazon.com Inc Alphabet Inc Tech
ConocoPhillips Schlumberger NV Exxon Mobil Corp Oil & Gas
NVIDIA Corp Texas Instruments Inc Broadcom Inc Tech Hardware
Chevron Corp Schlumberger NV Exxon Mobil Corp Oil & Gas
Chevron Corp ConocoPhillips Schlumberger NV Oil & Gas

* ETF on NASDAQ - Top Holdings include Amazon, Facebook, Apple, Alphabet
** Vanguard FTSE Developed Markets Index Fund ETF Shares
*** Vanguard FTSE Emerging Markets Index Fund ETF Shares

loosely related, as correlation explained no more than 20% of the variance in the set

of variables with large persistence.

4.6 The volatility of motif portfolios and inverse per-

sistence weighting
We check that a subgraph (a portfolio, i.e. group of stocks) formed by the 10 most

persistent motifs in each market presents a significantly higher out of sample stan-

dard deviation σsub (volatility - standard deviation of the mean log-return of the

subgraph elements’ prices) due to its stable correlations. To do this, we consider

the σsub of the motif subgraph and a distribution of σsub for 105 randomly selected

subgraphs with the same number of nodes (stocks).

As expected, we observe in Figure 4.5 that the persistent motif subgraph is

characterised by a σsub over two standard deviations above the mean of the distri-

bution as well as above its 75% quantile throughout the considered markets. We

should highlight that the σsub of subgraphs is evaluated out of sample with respect

to the period the persistence was calculated on, showing that this method is not only

observational, but also predictive.
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Figure 4.5: Persist motifs vs random portfolios volatility. Portfolio volatility distribution
for the 100 most capitalised stocks in the NYSE (a), German stock market (b),
Italian stock market (c) and Israeli stock market (d). The reference portfolio
(red bar) contains all stocks in the 10 most persistent triangles and distribution
portfolios are formed from a random selection of stocks (mean distribution
volatility represented by the green bar).

In line with the approach of this thesis, we now propose an applied proof of

concept based on our findings. We wish to form a measure directly applicable

to portfolio optimisation and compare it with the widespread inverse volatility (∝

1/σ ) weighting. Our findings from Figure 4.5 show that highly persistent structures

have higher out of sample volatility, due to idiosyncratic risk. As we aim for low

volatility, we consider the measure introduced in Equation 3.6. In line with inverse

volatility weighting we weight each stock i (vertex vi) in our portfolio as ∝ Pm(vi).

In Figure 4.6 we present out of sample results where we observe a reduction in

volatility throughout markets, with distributions more than one standard deviation

apart. We discuss these results and their implications more in depth later, in Section

7.2.
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Figure 4.6: Volatility of persistence-weighted vs variance-weighted portfolios. Portfo-
lio volatility distribution for the 100 most capitalised stocks in the NYSE (a),
German stock market (b), Italian stock market (c) and Israeli stock market (d).
The VOL portfolios are formed by weighting a random selection of assets by
1/σ2 while the PERSIST portfolios are formed weighting assets by 1/Pm(vi).



Chapter 5

Systemic risk in HFT: from single to

multi-asset dynamics

We provide a general introduction to the ecosystem of high frequency markets in

Sections 1.4, 1.5. In Section 2.3 we discussed the systemic risk aspects closer to the

findings which we present in this chapter. Section 2.3 introduces the dynamics of

flash crashes and the idea of positive feedback loops. This provides the context to

interpret the numerical observations in this chapter.

5.1 Data
We consider granular order flow data for a universe of 300 liquid stocks from the

NASDAQ exchange between 3/1/2017 and 25/9/2020. Section 5.2 focuses on a

single asset (Apple - AAPL in our case), while co-crash results are based upon the

full universe of stocks. High frequency price data is obtained from LOBSTER [150]

and sampled to obtain non-overlapping one minute returns. This frequency was also

adopted in [103] and other works in the literature for the detection of price jumps

as it is understood that below this limit microstructural noise becomes relevant and

can impact the validity of the method. The data from LOBSTER provides detailed

order flow data which indicates the type (limit order, cancellation, execution of a

limit order), the side (buy or sell) and volume of each event in the order flow. This

allows to isolate trading volume and other quantities from the rest of the order flow

and we discuss the importance of this in Chapter 3.
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Return series for the jump detection method described in Section 3.7 were

obtained from 1 minute non-overlapping returns of the original time series. The 1

minute intervals used for the return analysis are then used to bucket trading volumes

by time interval. The minute-wise volume buckets then contain the sum of traded

volumes in each non-overlapping 1 minute interval, with its corresponding jump or

no jump label from the method in Section 3.7.

5.2 The unboundedness of crash dynamics
The relation between order flow and price returns is at the core of most studies in

market microstructure, as per our more extended discussion in Section 3.6. In this

section we begin our study of flash crashes in high frequency markets by comparing

the order flow dynamics in “normal” and flash crash periods. The plots in Figure

5.1 show the distribution of aggregate trade volumes by minute for time intervals

when a price jump was detected (Figure 5.1a) and those when it was not (Figure

5.1b).
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Figure 5.1: Trading volume distributions of jump and non-jump intervals. Log-log
plot of the volume distributions for 1 minute intervals with power. The plots
report the empirical distribution and power law tail fit for intervals with jumps
(Figure (a)) and no jumps (Figure (b)). In Figure (a) we find a decay exponent
< 2 which indicates an unbounded critical distribution, while in Figure (b) we
find a decay exponent > 3 which indicates a bounded distribution with well
defined mean and variance.

We indeed observe the distribution of jump volumes to be shifted in mean and

median and characterised by higher volumes, but this was expected from the relation
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between traded volume, price impact and volatility [117]. What is interesting is

the fact that the jump distribution is not only shifted with respect to the general

distribution, but also characterised by a heavier tail. At this point we highlight that

our jump detection method described in Section 3.7 is only aware of price changes,

thereby removing any bias on explicitly selecting anomalous volumes, apart from

their potentially anomalous corresponding price jump.

Table 5.1: Decay exponents of jump and non-jump intervals for liquid stocks. We ap-
ply the method from Clauset et al.[127] to fit jump and non-jump volume distri-
butions analogously to Figure 5.1 and verify the robustness of our results. We
select stocks from the ones with the highest average number of book updates
per day (a proxy for liquidity) within the universe of stocks and period consid-
ered. We find again a decay exponent < 2 for jump intervals which indicates
an unbounded critical distribution, while we find a decay exponent > 3 for no-
jump intervals which indicates a bounded distribution with well defined mean
and variance.

Stock Jump Exponent Non-Jump Exponent
MSFT 1.90 2.02
AAPL 1.48 2.04
AMD 1.79 2.48
ADBE 1.88 2.14
AVGO 1.58 2.14
CHTR 1.66 2.25
BIIB 1.30 2.19
CSCO 1.52 2.01
MS 1.57 2.63
AMAT 1.76 2.10
GOOG 1.86 2.18
T 1.53 2.80
SBUX 1.48 2.02

We apply the methodology from Section 3.7.1 to fit the power law tails of the

jump and non-jump trade volume distribution CCDFs (Complementary Cumula-

tive Distribution Function). The decay exponents are reported in Figure 5.1. We

notice how the decay exponent of jump volumes is < 2 in modulus, while that of

non-jump volumes is > 2 in modulus. Decay exponents in power law distributions

are of great importance [1] as they indicate which moments of the distribution are

defined. Indeed a decay exponent < 2 indicates that the second moment of the dis-

tribution (variance) is not defined, i.e. the distribution is unbounded, while one > 2
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characterises a bounded distribution with well-defined variance. This can also be

viewed as the fact that the sample variance diverges with sample size for exponent

< 2, while it converges to the “true” variance in the limit, for exponent > 2.

As the exponent values are crucial for our discussion, we wish to clarify

some robustness properties of the results in relation to our description of the fit-

ting methodology in Section 3.7.1.

We choose the percentile interval [90%,99.9%] to fit the power law tail, but our

main results are robust to choosing a starting level of say 95% and not excluding

values beyond 99.9%. The latter in particular gives a non-jump exponent > 3 (α =

3.21) and a virtually unchanged jump exponent. This shows how the exponent in

Figure 5.1b is a lower bound and our qualitative conclusions are robust.

In order to further show the robustness of our results we apply the fit method

from Clauset et al.[127] as described in Section 3.7.1 and report consistent results

with the ones from Figure 5.1 for AAPL for multiple liquid stocks in Table 5.1.

Another potential critique could arise from the fact that our fit in Figure 5.1b

excludes jump intervals and this could be the cause of the observed bounded vari-

ance as extreme values are removed. We have indeed investigated the more com-

prehensive distribution which includes both jump and non-jump intervals and found

that this has little statistical effect on the fit and resulting exponent (α = 2.02). This

also highlights that our filtering of jump intervals alone shows the unboundedness

in their volume distribution and further supports our analysis and the validity of its

conclusions.

A very important consequence of the above observations of the different decay

exponent between jump and non-jump distributions, rather than just a shift, is the

fact that indeed the two sets of intervals have different underlying distributions,

generating processes and resulting characteristics. We report that the idea that the

order flow distribution is not fully stationary and that it might influence the impact

and subsequent order flow is already hinted by Bouchaud and co-authors in [151]

on the basis of previous studies on impact [152, 153, 118].

Our finding adds the essential point to the microstructural literature than indeed
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Figure 5.2: Trading volume distributions of jump intervals by return sign. Log-log plot
of the volume distributions for 1 minute intervals. The plots report the empirical
distribution and power law tail fit for intervals with jumps and positive (Figure
a) and negative (Figure b) corresponding price returns. In both, we find a decay
exponent < 2 which indicates unbounded critical distributions.

volume distributions are heavy-tailed, but that under “normal” market conditions

the distribution is bounded and can be well approximated by risk models which

assume Gaussian properties. Gaussian assumptions in risk modeling mostly rely

on the assumption of bounded variance. On the other hand, black swan events in

volume bursts belong to a different distribution and process altogether. A similar

idea was suggested in [105] where the authors investigate flash crashes between

2006 and 2011 to show a system-wide phase transition around ∼ 500ms to an all-

electronic trading market characterised by black swan events. From the perspective

of self-organised criticality, anomalous price jumps present an underlying volume

process characterised by black swan events of onbounded magnitude where events

of arbitrarily large sizes are characterised by non-zero probabilities.

The distinction is crucial in this context as black swan events characterise un-

bounded distributions alone and we observe how these extreme and anomalous price

events are characterised by black swan events in the underlying market activity. This

indeed supports the thesis from the literature described in Section 2.3 that crashes

are characterised by a very large and concentrated trade activity with unbounded

variance, different from the trade distribution of regular order flow.

A breakdown of the results from Figure 5.1a is presented in Figure 5.2, which
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analyses the volume distributions of up and down jumps separately. It is broadly

accepted in the literature that the return distribution is asymmetric with a heavier

tail for negative returns [66]. Based on the relation between volume imbalance and

price returns [154] one could suggest that the detected jumps correspond to nega-

tive returns which present a heavier tailed volume distribution. We show that our

jump detection method accounts for this asymmetry as we detect a similar number

of positive and negative jumps. Further, exponents for the volume distributions of

positive and negative return intervals in Figure 5.2 are both consistent with our pre-

vious findings from Figure 5.1. However, we highlight that, as expected, negative

return intervals are characterised by a heavier distribution tail as events are more

extreme to the downside [155, 156, 157].



Chapter 6

Co-crashes and their structure

We provide a general introduction to the ecosystem of high frequency markets in

Section 1.4, 1.5. In Section 2.4 we discussed the systemic risk aspects closer to the

findings which we present in this chapter. Section 2.4 recalls the ideas behind com-

plex and connected systems from Section 1.2 to introduce the emerging literature

on synchronisation of black swan events in high frequency markets. This aligns

with the more “traditional” definition of systemic risk where extreme events spread

across multiple assets due to correlated actions by market players. This introduces

our basic results in Section 6.2 on the distribution of co-crash sizes. Further, in

Section 6.3 we show a phase transition of the crash frequency distribution at higher

crash sizes and provide statistical validation for it. We conclude the chapter with

early results from future work underway on the role of liquid stocks in co-crash

structures and the more general core-periphery structure of the co-crash network.

6.1 Data
We consider granular order flow data for a universe of 300 liquid stocks from the

NASDAQ exchange between 3/1/2017 and 25/9/2020. Section 5.2 focuses on a

single asset (Apple - AAPL in our case), while co-crash results are based upon the

full universe of stocks. High frequency price data is obtained from LOBSTER [150]

and sampled to obtain non-overlapping one minute returns. This frequency was also

adopted in [103] and other works in the literature for the detection of price jumps

as it is understood that below this limit microstructural noise becomes relevant and
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can impact the validity of the method. The data from LOBSTER provides detailed

order flow data which indicates the type (limit order, cancellation, execution of a

limit order), the side (buy or sell) and volume of each event in the order flow. This

allows to isolate trading volume and other quantities from the rest of the order flow

and we discuss the importance of this in Chapter 3.

Return series for the jump detection method described in Section 3.7 were

obtained from 1 minute non-overlapping returns of the original time series. The 1

minute intervals used for the return analysis are then used to bucket trading volumes

by time interval. The minute-wise volume buckets then contain the sum of traded

volumes in each non-overlapping 1 minute interval, with its corresponding jump or

no jump label from the method in Section 3.7.

6.2 The distribution of co-crashes

The work by Lillo et al.[103] discussed in Section 2.4 highlights how co-crashes

have become larger and more frequent in recent years. This shows the growing im-

portance of such events and motivates us to investigate their structure and properties

further. The plot in Figure 6.1a shows the frequency distribution fm of the number

of stocks involved in each flash crash. Figure 6.1b plots the cumulative frequency

f (M ≥ m). It is evident from both figures that the distribution is heavy-tailed and

there is a change in the slope around m ≈ 5 and a finite size effect at ≈ 102, i.e.

when the crash involves most of the system (system size 3 · 102) [1]. This kind

of distribution was already reported in [103], where the authors investigated and

modeled flash crash sizes and frequencies as a unique Hawkes process.

The authors there suggest that each security’s crash dynamics should be mod-

eled as a self-excitation process, but they point out that this would involve tuning

a large number of parameters on very noisy data. They therefore decide to model

the collective self-excitation process of securities as the frequency of crashes (or

co-crashes) and their size. Hence, all crash sizes are treated as instances of a multi-

asset Hawkes process in [103], with no distinction between the assets involved in

each crash or their structure.
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Figure 6.1: Heterogeneous crash size distributions. Log-log plot of the flash crash size
distribution. We observe that sizes lesser than 4 diverge from the power law,
with lower than expected frequency. This suggests that crashes of this size and
onwards do not belong to the same self-organised process, but that this is rather
a heterogeneous distribution.

6.3 A phase transition to systemic crashes
For the multi-asset flash crash investigation in this work we take a more granular

approach and move to investigate the structure of co-crashes and the individual

susceptibility of each stock.

To further investigate the difference between small and large crash sizes we

report in Figure 6.2a the Spearman correlation between the ranks of crash frequency

for all stocks in the dataset from Section 6.1. Specifically, each line reports the

correlation between the rank of the companies in the initial crash size m with all

other crashes of higher size m+ τ . We indeed observe how crashes of smaller sizes

(m < 5) have a substantially different composition to crashes of larger sizes. We

instead observe that for sizes m > 6 a steady state is reached with a large component

of the population represented across all crashes with similar ranks in terms of crash

frequency. These steady states for m > 5 are significantly higher than the ones

of smaller sizes, as the structure no longer evolves significantly between higher

size crashes. The plot in Figure 6.2b provides a clearer visualisation of this. We

highlight that already at size 5 the correlation transitions directly to the steady state,

although a lower one with respect to the ones for crash size 6 and above.

To validate the visual results from Figure 6.2 we apply the null model of cor-

relation significance between crash frequency distributions from Section 3.9.
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(a) Spearman correlation between all consecutive crash sizes.
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(b) Spearman steady state correlation mean in
[m+2,m+20] , ∀m.

1 2 3 4 5 6 7 8 9
Flash crash size

10 8

10 6

10 4

10 2

100

Nu
ll 

m
od

el
 si

gn
ifi

ca
nc

e

(c) Quantile of Spearman(Sm+τ ,Sm) in Dm, as
per Section 3.9. With Sm+τ the steady state
distribution ∼ [m+2,m+10].

Figure 6.2: Crash component rank correlation phase transition. Evidence that there is
a transition around m = 5 with crashes involving a small number of compa-
nies (m < 5) being substantially differently populated with respect to crashes
involving a larger number of companies (m > 5). The plot in Figure a reports
the Spearman correlations of ranks in frequency between each starting crash
size and higher crash sizes. The color map is based upon the starting co-crash
size and allows to visualise how higher co-crash sizes belong to a different dis-
tribution. The plot in Figure b looks at the average correlation in the range
[m+ 2,m+ 20] for each value of m from Figure a, which offers better visual
intuition. The plot in Figure c reports the steady state statistical significance of
the base crash size’s frequency distribution indicating a phase transition.
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Figure 6.2c shows the correlation significance between the starting point m on

the horizontal axis and its steady state distribution∼ [m+2,m+10]. We observe the

first significant value at 1% around m = 4 which confirms the intuition from Figures

6.1a, 6.1b that crash sizes up to≈ 4 belong to a different process than larger crashes.

Indeed smaller crashes are dominated by less stable stocks and larger ones by very

liquid stocks with high market capitalisation. This suggests that more influential

and systemic stocks are involved in larger crashes and perhaps even trigger those.

A reason for why this is not the case in small crashes can be that these stocks are

systemic enough to mostly cause crashes of larger size. These are then even more

relevant for systemic risk.

This is therefore further evidence of the occurrence of a transition in the pro-

cess between smaller and larger crashes. The slow decay of smaller crash sizes

indicates how these belong to similar distributions of non-systemic events, but as

the crash size grows the steady state gets closer to the large crash level. This sug-

gests that larger crashes have some systemic characteristics.

If we take a closer look at the top ranked stocks at each size we observe that

smaller crash sizes are dominated by very volatile and illiquid stocks which are sub-

ject to large jumps perhaps due to the lack of a smooth price process in their trading.

We would expect this though to make them susceptible to larger systemic events as

well and hence stably ranked. Yet, we observe very low to null rank correlation be-

tween individual (and small) crash frequencies and the large crash size steady state.

It seems as if not only these crashes are non-indicative, but also as indicated by the

phase transition in Figure 6.2c they belong to an unrelated ranking and distribution.

We highlight that we considered rankings and ranking correlation in order to avoid

any sensitivity to large values or outliers at smaller or larger frequencies.

Large crash sizes involve stocks such as Microsoft (MSFT) and Apple (AAPL)

as consistently high ranked. We highlight that these stocks are highly liquid and

characterised by a stable price process with very few price jumps. Indeed the few

times they get involved into jumps they are often part of larger simultaneous crashes,

which involve more stable and systemic stocks. Further, when analysing the co-
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crash relations between pairs of stocks we observed a heavy-tailed distribution of

centrality for these large systemic stocks which suggests a community and core-

periphery like structure of the contagion network of co-crashes [158, 159, 160, 161,

162].

6.4 Early insights into the structure of co-crash net-

works
The observations from Section 6.3 above prompted us to conduct further analyses

on the relation between stock liquidity (where average daily Dollar Traded Volume

(DTV) is used as a proxy) and crash frequency at different crash sizes.

To validate visually and numerically our observation that highly traded stocks

are more present in large crashes we present the plots in Figure 6.3. The plot in Fig-

ure 6.3b shows the average daily traded volume of a stock per crash size, weighted

by its crash frequency, as per the definition in Section 3.10. This is plotted against

the crash size to show a clearly increasing trend in crash-weighted traded volume

with crash size. This shows how larger crashes see stocks with higher traded vol-

umes more frequently involved.

This could though be the consequence of a subset of crashes which involve

highly traded stocks. We therefore test this with results in Figure 6.3a which show

how not only the average crashing stock is more “liquid” in larger crashes, but

also that the fraction of crashes which involve at least one of the top 20 stocks by

traded volume in our universe increases with crash size. As suggested in Section

3.9 we need to control for the increase in crashes with one of the 20 stocks due

to larger crashes sampling more stocks. We use 104 realisations of the null model

from Section 3.9 and show qualitatively at least that the increase goes beyond this

expected bias and is indeed a feature of the system.

In line with this, we test how the traded volume of each stock correlates with

its crash frequency, for each crash size. We report results for the Spearman correla-

tion coefficient in Figure 6.3c, where dots are used for correlations significant to the

5% confidence level and crosses otherwise. We see that co-crashes of size 1 and 2
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(a) Positive relation between fraction of crashes involving liquid stocks and
crash size m.
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(b) Positive relation between crash-weighted
average daily Dollar Traded Volume and
crash size m.
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(c) Spearman correlation between traded vol-
ume and crash frequency across crash
sizes m.

Figure 6.3: Relation of traded volume to crash size and liquid stock peripheries. The
figures above show evidence of a relationship between the traded volume of
stocks and their involvement in crashes of different sizes. Figure (a) shows the
general positive relation between crash size and involvement of highly traded
stocks. Figures (b), (c) show how the relationship exists not only on average,
but also how “liquid” stocks are more involved throughout crashes at higher
crash sizes.

seem to have an inverse or no relation between volume traded and crash size. At our

previously identified phase transition point m ≈ 5 we see the first significant posi-

tive correlation between volume traded and crash frequency which stays somewhat

stable or is slightly increasing with crash size.

This last result is less clear than the previous one, but still shows a positive

correlation between volume traded (a proxy for liquidity) and crash frequency at

crash sizes m > 5.

The presence of liquid stocks in most large crashes observed in Figure 6.3a
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Figure 6.4: The community structure of co-crash networks. Overlap of top 20 periphery
stocks for each pair of top (20) liquid stocks. The plot shows how, as long as
the two core liquid stocks are not part of the same community, liquid stocks
represent different cores with non-overlapping peripheries.

prompts questions around the periphery structure of the different liquid stocks and

implications for systemic risk. Further work in this direction is already underway

with promising preliminary results which we present in Figure 6.4. For the plot

we select the top 20 liquid stocks by average daily Dollar Traded Volume. We

then define the periphery of each as its top 20 most co-crashing stocks across crash

sizes. The plot then represents the periphery overlap for each pair of liquid stocks

when those belong to each other’s periphery (blue) or not (yellow). We also present

in green the overlap of each stock’s periphery with the overall top 20 stocks by

crash frequency. These results provide significant indications of a core-periphery

network with multiple cores represented by one or more liquid stocks, with little

overlap between different peripheries. This is strengthened by the fact that the over-

lap between different peripheries is similar to that with the 20 most crashing stocks

(green) which can be viewed as a null model of overlap due to mere crash frequency

and not structural closeness. Liquid stocks in the same community, instead, present
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much higher periphery overlap.



Chapter 7

Discussion

7.1 Systemic risk is real

It is now evident to the reader that the focus of this work is on systemic risk in

financial markets across frequencies, market participants and assets. We should not

think though that this is an issue in isolation and only relates to financial markets

and risk. We have already reviewed in Section 1.2 how percolation and cascades in

connected systems have been studied in telecommunication networks, electric grids,

the internet, social networks and many other systems. We then saw that already in

the traditional financial and economic literature there has been strong interest in

systemic risk, in particular following financial and economic crises. Our discussion

in Section 1.3 then moved to review applications of the concepts from Physics and

Network Theory of Section 1.2 to financial markets. The growing Econophysics

literature reviewed in Section 1.3 focuses complex connected systems in financial

markets, at both high and low frequencies. Our review shows how different kinds

of systemic risk are present in the financial system and can be analysed, monitored

and prevented. Further, our discussion of regulation later in Section 7.3, reviews the

literature of agent based modeling in finance and economics and the importance of

modeling the complexity of systems arising from agent interactions in a bottom up

fashion.

All these works analyse real data and systems of crucial importance for our

daily lives and show how systemic risk is real, relevant and worth understanding.
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In line with this, we discuss the results from Section 4 to gain insights into the

different types of systemic risk present and how we can learn to better deal with

them.

7.1.1 Null models and generating market structures

The power law decay of edge and simplicial motifs persistence, reported in Fig-

ure 4.1, suggests that market structures are characterised by a slow evolution with

long memory. This decay type is in contrast with an exponential decay of persis-

tence which would imply short or no memory in the system. This observation is

in line with the works by Bouchaud et al. and Lillo at al. in [119, 144, 118, 146],

where power law decays in autocorrelation are identified as manifestations of long-

memory processes in efficient markets. However, it extends the concept to higher

order structures.

The comparison between soft persistence in correlation structures of real data

and artificial data generated from univariate null models (Figures 4.2 and 4.3) shows

that the persistence and memory of real structures implies multivariate structures

at least. We also demonstrate how real structures present higher persistence than

sampling from a rolling multivariate Gaussian, hence suggesting that pairwise co-

variances and moving averages do not suffice to induce the long memory present

in real markets. As per the analysis on motif persistence beyond that of individual

edges in Section 4.4, we suggest that higher order relations in terms of structural

evolution are present. As just discussed, the ordering of null models in Figures 4.2,

4.3 supports the validity of the persistence measure.

7.1.2 Advantages of topological filtering: the TMFG

The comparison of simplicial persistence of triangles between quantile thresholding

and TMFGs, reported in Figure 4.3, reveals that quantile thresholding struggles to

separate the decay of real structures from that of rolling Gaussian generated ones.

This could be attributed to the “local” nature of the method, which matches the

pairwise interpretation of relations generated from a rolling Gaussian. TMFGs in-

stead, perhaps due to their non-local embedding, provide a consistent ordering of
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null models with relatively low noise.

The ability to correctly identify persistent motifs throughout the market sample

is essential, as we have shown in Section 4.6 that the most persistent motifs are

highly systemic. Persistent structures in quantile thresholded graphs present higher

and more stable clustering coefficients. This suggests a very localised and compact

structure. TMFGs instead present a lower clustering coefficient and a slower decay

with τ , as expected since some structures break. This is further evidence of the

ability of the TMFG filtering method to identify meaningful persistent structures

throughout the market. The issue with quantile thresholding is likely due to the

method being merely value-based with no sensible structural constraint, differently

from the TMFG.

The ranking of national markets based on their decay exponents in Table 4.1

can be interpreted in terms of the reduction of estimation noise in more liquid mar-

kets, as large deviations become less likely and correlations as well as prices more

reflective of the underlying generative processes and structures. This suggests that

more efficient and capitalised markets are characterised by structures which are

more stable in time and better reflected in the data. The decay exponent ranking

also leads to the conclusion that more developed markets are characterised by more

meaningful underlying structures and cliques, suggesting that systemic risk may

pose a greater threat in developed markets.

The results in Table 4.2 support the hypothesis that motifs constitute mean-

ingful structures in markets, beyond their individual edges. These results apply the

null model of motif edges from Section 4.4 and show solid evidence to reject it.

We can then conclude that highly persistent motifs are not a mere consequence of

highly persistent individual edges, but also of the correlation in those edges existing

concurrently. This result supports the conclusions above on local filtering methods

and generative processes.

Table 4.3 strengthens the importance of persistent motifs. Indeed, the ten most

persistent motifs visualised in Figure 4.4 are representative of industry sectors in the

NYSE. These sectors are not identified by the motifs with higher edge correlation,
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which instead are dominated by motifs often due to correlation noise in high volatil-

ity stocks. Persistence and the identification of persistent motifs are hence found to

be non-trivial with respect to correlation strength of individual edges or motifs. The

impact on portfolio diversification (reduction in the variability σsub) of the motifs

in Figure 4.4 indicates that these structures are highly relevant for systemic risk and

portfolio volatility, with high predictive power provided by the long memory prop-

erty of persistence, which is an intrinsic temporal feature. As these motifs are not

characterised by noticeably strong correlations, a common variance optimisation of

the portfolio is unlikely to optimise the weights to sufficiently minimise the risk

from these highly systemic structures.

7.2 Don’t panic: the need for smarter portfolio risk

From the introduction to complex systems in Sections 1.2, 1.3 to results in Sec-

tions 4.2, 4.3 and discussions in Sections 7.1.1, 7.1.2 we are now able to appreciate

that the world is complex. Further, financial markets are a perfect example of a

system where such complexity originates from the interaction of a large number of

agents, where models and their assumptions break down and only better tools for

empirical modeling can help. The discussion in Sections 7.1.1, 7.1.2 highlights the

importance of modern methodologies with a “practical focus”, which offer a dif-

ferent perspective to traditional methods. What is often lacking is not anymore the

awareness that such methods should be used, but rather bridging the gap between

empirical insights and ways of applying them. Below we offer our contribution to

turning such observational insights into practical methods for portfolio construc-

tion. Ours is just a simple proof of concept, but we hope to stimulate further work

on the topic.

The systemic relevance of persistent motifs as well as their out of sample fore-

casting power are shown by the results in Section 4.6 and in [75], where significantly

higher out of sample portfolio volatility is observed for the subgraph of persistent

motifs. The motif subgraph σsub is significantly above both the mean and median

of the random subgraphs’ σsub distribution.
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This is an example of how just selecting nodes (stocks) from the ten most per-

sistent motifs forms a subgraph with higher long term variability σsub. Clearly when

aiming for a reduction in systemic risk, low σsub (the opposite) is the objective. The

observations from Section 4.6 and [75] lay the ground for the construction of port-

folios where asset weights aim to reduce the volatility originating from persistent

correlations in motif structures.

Indeed, we provide a proof of concept for applications to portfolio diversifica-

tion in Section 4.6, where we propose a simple node-specific measure for portfolio

weighting and selection. We show the out of sample volatility distribution of ran-

dom portfolios with weights optimised as 1/Pm(vi) to be significantly lower than

the distribution of portfolios optimised as 1/σ2, a widespread industry standard for

portfolio weighting. This result can be explained by the persistence in time being

the base of this measure, providing strong out of sample predictive power. Volatility

is known to change in the medium to long term for most assets, whilst correlation is

also difficult to estimate due to noise in the data and measures. This result greatly

enhances the importance and applicability of this work to portfolio optimisation by

providing a mapping from persistence-related observations to a direct measure for

portfolio optimisation.

It is important to notice that this comparison is meaningful beyond that of

an industry standard with a novel approach which outperforms it. The volatility

weighting is based on individual assets taken in isolation, weakly influenced by

the portfolio’s composition of assets. The persistence-based weighting is instead

strongly based upon the cliques (therefore the other assets) present in the portfo-

lio. Portfolio composition also influences how the network is filtered, providing a

second level of the system’s influence on the asset’s weighting by persistence. This

shows the relevance of structure and how network analysis and complex systems

can greatly enhance our understanding of real world systems beyond traditional

methods.

As we have shown that both measures are relevant and weakly correlated, fu-

ture works should investigate a technique to jointly optimise portfolio weighting for
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persistence and volatility.

7.3 Leading vs reactive regulation: a history of com-

plexity and policy
Our discussion of complexity in Chapter 1 has shown how complex multi-agent

systems such as financial markets present non-trivial dynamics. These dynamics

are often not contemplated in classical economic and financial theories which do

not attempt to model the connectedness of such global systems or use bottom-up

data-driven techniques.

A major figure in applying such techniques to high frequency systems and,

more recently, to the financial and economic system as a whole is J. Doyne Farmer.

In his works already preceding the crisis of 2008 and the crash of May 2010 he

suggests how simple models of minimal intelligence agents capture the empirical

features of high frequency systems better than standard economic models [163].

These models often have a few tuning parameters which can be fit to the data.

Following the 2008 financial crisis Farmer & Foley [164] ring the alarm on the

fact that, in spite of the world just having seen traditional economic theories and

policies fail, policy-makers are still using common sense and anecdotal analogies to

make decisions which impact the daily life of us all. The authors suggest the need to

adopt Agent-based Modeling (ABM) to model economic policies and their effects

in an effort to move away from the rational agent-like assumptions in economics

which had just spectacularly failed.

The concept of overlapping portfolios causing systemic risk was discussed in

Section 1.3 initially on the basis of anecdotal modeling and basic financial analysis

of empirical data. The more advanced Econophysics works align with that of Cac-

cioli et al.[165] which suggests that the network is “robust yet fragile” with rare,

but catastrophic contagion events. The authors suggest a model and methodolo-

gies which can be calibrated on real data and used as simple tools for macro stress

testing.

In spite of the empirical evidence and the growing literature the more recent
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work on the current state of complexity adoption in policy suggests we are still very

behind [166]. We have made the superficial step forward to adopt complexity terms

such as “network”, “contagion”, “feedback” and “resilience” yet the use of com-

plexity methods is still at a very early stage of adoption. Recent advances in Econo-

physics and financial complexity provided methodologies for better monitoring and

analysis of highly connected and complex economic systems. The importance of

these methods could certainly not be overlooked during the COVID-19 crisis where

we witnessed how advanced modeling of contagion was in high demand and the

global connectedness of our supply chain systems led to massive shortages and

concerns.

Rather than always realising the importance of such methodologies once the

crisis has erupted and only using anecdotal evidence to prevent the next, we argue

that “leading” rather than “reactive” regulation and policy can and should arise from

the use of complexity in finance and economic policy at all levels.

In this spirit we advance the current literature on high frequency crashes from

the perspective of connected systems and criticality in the sections below.

7.4 Complexity and criticality as the two cross sec-

tions of systemic risk
In the present chapter we have discussed the more “traditional” aspects of systemic

risk in low frequency markets and portfolios. Section 7.3 introduced the importance

of regulation in markets at both high and low frequencies. We now move to discuss

the former in the general perspective of complexity and criticality of this work.

The results presented in Section 5 cover two cross-sections of systemic risk in

high frequency markets: across assets and across market participants. The former

is investigated in Sections 6.2, 6.3 where we discuss the structure of co-crashes and

the structural characteristics of the co-crash network. The latter is somewhat less

obvious and entails understanding how flash crashes happen and how interactions

between market participants create positive feedback loops. Our investigation of the

volume distribution of anomalous price events reveals a fat tailed distribution with
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unbounded variance characteristic of critical systems. These events have non-zero

probability of being arbitrarily large due to their dynamics triggering a potentially

endless loop of actions and reactions from agents in the system.

Whether the systemic risk discussed above is across market participants or as-

sets we look to show clear ties to the works on percolation and phase transitions

presented in Section 1.2. These phenomena constitute systemic risk in high fre-

quency financial markets and both cross-sections can be traced back to simple rules

of interaction between agents in the system, as discussed below.

7.4.1 Complexity: across Assets

In Sections 6.2, 6.3 we present results on co-jump structures in High Frequency

markets. We investigate the distribution of co-jump sizes for 300 stocks on 1 minute

returns. We highlight features of this distribution such as the finite size effect in

the tail and the divergence of small crash frequencies from the distribution. We

show how the ranking and structure of crash frequency throughout stocks changes

drastically through a phase transition between small and large crash sizes at size

∼ 5. We quantify this with the Spearman correlation between crash frequency ranks

at different co-crash sizes. We then apply a null model of crash frequency at each

crash size to test the hypothesis of a phase transition. Finally we highlight how

larger crashes are dominated not by the less liquid stocks present in small crashes,

but rather by highly liquid and systemic stocks which characterise communities and

core-periphery like structure in co-crashes. We suggest that these systemic events

can be viewed as communities centered around these most influential stocks.

We know from the literature that heterogeneous network structures can be vul-

nerable and highly unstable, as well as fragmented if characterised by multiple

cores. One of the possible reasons for this can be inferred from the interviews

with different market players following the crash of May 6th [167]. Many HFTs

highlight the centralised risk constraints for volatility and P&L which cause them

to withdraw from the market in case of extreme conditions or losses. As they consti-

tute much of the liquidity in the market in particular for smaller stocks, withdrawing

from those causes liquidity draughts. These are often systemic as players have cen-
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tral risk constraints and withdraw from the entire market (across assets) as those are

triggered. Further, as systemic stocks crash, arbitrageurs come into play to level

prices across the market, hence making the isolated event a systemic one. In this

view well-known stocks are not systemic per se, but rather as a result of non-siloed

trading by HFTs and ETFs.

In light of the present results future works shall investigate the asyncronous

price changes of securities and model spreading dynamics of flash crashes and their

directed structure. Lead-lag investigations of causality of these larger crashes are

also suggested for future work.

Already from our results one can focus on the stocks we find most systemic

in larger flash crashes for co-jumps of size 5 and higher and induce trading halts or

limitations to avoid further spreading of these systemic events. This is crucial as

our results combined with those of [103] suggest a systemic self-excited process in

both frequency and magnitude of those crashes.

We leave the investigation of this structure for future work and highlight that

this is of high importance for practitioners and regulators when dealing with mar-

ket efficiency and stability, particularly as trading frequencies rise and electronic

trading grows widespread across securities.

We conclude by observing that volatility and P&L-based trading breaks used

by market players may worsen these events and their systemic characteristics since

they cause liquidity withdrawals throughout stocks and market players. This in-

troduces systemic synchronisation throughout the market and makes individual as-

sets more susceptible to small trading volumes. Further, we suggest to monitor the

stocks we find systemic throughout larger crashes to model the contagion of liquid-

ity crises and halt trading before these spread and distort a larger number of assets.

This should also be topic of future work aimed at smart and efficient regulation in

High Frequency markets.

7.4.2 Criticality: across market players

In the present section we take a step back for broader perspective and provide a

discussion of results from Section 5.2 in their context. The findings have crucial
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practical implications for financial modeling where normality assumptions are still

widespread, in particular in risk models. We highlight that extreme events origi-

nating from a heavy-tailed distribution with unbounded variance are not compatible

with assumptions of normality and their unbounded variance causes to overestimate

significantly the variance of the “normal” underlying volume distribution while not

detecting the unbounded variance of extreme risk events.

The particular features of the trade volume distribution in flash crashes sup-

port the anecdotal explanation of the “hot potato” phenomenon in the literature [68]

which suggests that HFT market makers stay in the market under extreme condi-

tions and absorb large trades which cause them to build up large inventories. Once

inventory limits are hit the market makers look to reduce it more aggressively as the

price moves against them, but can only trade with each other. This causes the posi-

tive feedback loop of frenetic trading activities between these market makers trying

to reduce their exposure. On top of the market makers trading aggressively and driv-

ing the price further up or down on the crash, other players see an increase in traded

volume which they interpret as liquidity and start adding to the imbalance in order

flow, as they try to reduce their losses during the crash as well. The careful reader

can indeed understand from here why these events are particularly characterised by

unbounded traded volume distributions which originate from dynamics of positive

feedback loops analogous to those of self-organised criticality [1]. The dynamics

described above induce a positive feedback loop which is only bounded by human

actions or lack of activity by lower frequency agents, but it is unbounded is size in

its underlying nature. This further highlights the need for careful regulation of such

events as their potential risk is unbounded.

The reader should be aware that our calibration for jump detection discounts

changes in overall volatility and detects anomalously large jumps. These time in-

tervals are not only characterised by large price changes, but by anomalous ones.

These originate from avalanche-like positive feedback loops which cause black-

swan trading activity events. We highlight that we have also analysed other order

flow events such as limit orders and deletions, but trades are the only event we see
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to be bounded for non-jump intervals and unbounded for jump intervals. These

events are indeed anomalous as particularly trade volumes are carefully calibrated

by market participants under normal market conditions in order to minimise impact

and detectability of the order flow. Further, trades are most closely related to price

impact and the narrative of “hot potato” dynamics.

7.5 The reality of modeling: fat tails matter

As discussed in Section 2.3, event size distributions with fat tails are characteris-

tic of system dynamics in complexity and criticality. These events can be viewed

as “energy releases” in the transition of a system from one steady state (stable

configuration) to another. Event size distributions in critical systems are often

studied for risk assessment of catastrophic events. Some examples are the mag-

nitudes (in their respective measures) of snow avalanches, earthquakes (and their

damages) and sandpile and ricepile energy releases between stable configurations.

[168, 169, 107, 108, 170, 171].

The hard sciences that deal with such events have developed tools, approaches

and methodologies particularly fit for heavy tails and related risks. It is important

to notice how such distributions do not provide the same kind of friendly closed

form solutions of Gaussian distributions and are hence less studied in introductory

undergraduate and graduate statistics courses. This leads precisely to our discussion

of quantitative financial modeling below and the consequences of its early history

described when introducing Section 1.

Financial modeling has evolved from traditional financial and economic theo-

ries which aim for elegant closed form solutions and are based on assumptions of

Normality throughout their methods. The assumption of Normality is understand-

able for models which deal with the body of the distribution in financial measur-

ables. In this restricted context, Normality can be a valid approximation and the

tractability of solutions has practical benefits. Risk models instead focus on the

tails of the distribution. Yet, they have evolved with the rest of financial models,

in spite of Normality approximations breaking down in the tails. Below we dis-
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cuss results relevant for tail modeling and financial risk and show how Normality

assumptions lead to grossly incorrect risk models. This leads well onto out conclu-

sion on the importance of complex and critical systems in financial modeling and

how these more advanced methods from Physics and hard sciences should be not

only discussed, but also widely implemented in practice, thereby raising the bar for

quality of financial modeling in industry as well as academic settings.

In this thesis we investigate anomalous price changes in high frequency mar-

kets, also known as flash crashes. We analyse the volume distribution over 1 minute

time intervals and show that intervals with no anomalous price changes have a tail

exponent > 2 which implies a well defined variance. Intervals with anomalous price

changes present a volume distribution with tail exponent < 2 which is characterised

by black swan events and unbounded variance. Our findings reflect the analyses

in the literature suggesting how such anomalous crashes originate from positive

feedback loops which involve HFT market players. This is in line with findings in

self-organised criticality on natural phenomena such as avalanches. Correct statis-

tics is crucial for risk modeling, in particular when focusing on extreme events. The

unboundedness of the crash volume distribution makes the argument for the use of

robust heavy-tailed statistics in volume forecasting and risk modeling in high fre-

quency markets. Further, the positive feedback loops and the risk of black swan

events and market disruptions should prompt market regulators to make sure that

risk constraints are being implemented in a fragmented manner across assets, ex-

changes and players to avoid alignments in trading halts and liquidity withdrawals.

All of the above-mentioned findings are tied together and discussed in Section

7, where we take a step back and reflect on our findings in the context of the litera-

ture as a whole. We offer direction for future works in market structure for proper

persistence-based portfolio construction. Similarly for flash crash dynamics we sug-

gest to investigate the cumulative traded volume profile during crashes vs. regular

time intervals. For co-crashes we provide a preview of future work on our end to

open the door for the investigation of co-crash and market structure in general in

the context of High Frequency markets. We also provide a review and suggestions
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for regulatory investigations and potential changes in particular in Section 7.3.



Chapter 8

Conclusion

In this chapter we wrap up the thesis with some overarching perspectives and direc-

tions for future work and regulatory improvements - all in the context of complexity

and criticality.

8.1 From empirical observations to applied methods:

our work in perspective
The present work focuses on systemic risk in financial markets, analysed with the

meticulous lens of statistical physics and derived disciplines. We focus on the two

major fields of financial market practice: portfolio construction for long term asset

allocation and market microstructure for high frequency market making and execu-

tion.

Our introduction to portfolio construction draws upon a large body of literature

dating back multiple decades. We therefore adopt a chronological approach to the

introduction of this topic. We begin with Section 1.1 which discusses the impor-

tance of market structure, as represented by the covariance matrix and its derived

forms, from the early works of Markowitz to recent works in Econophysics and net-

work filtering upon which our results are based. Section 1.2 follows to introduce the

more recent works which focus on complex networks and extreme disruption events

on these, from theory to practical observations in the physical and social sciences.

Finally, Sections 1.1, 1.3 bring the original works on market structure together with

the more recently developed discipline of complex networks to discuss systemic
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risk in financial markets and empirical works on this. Finally, portfolio construc-

tion in Section 2.2 takes such empirical findings to provide heuristics and methods

for superior portfolio allocation and risk management.

Our results presented in Section 4 resemble this structure by presenting em-

pirical evidence on the long memory of simplicial complexes in Section 4.2 and

validating this through null models in Section 4.3. More empirical analysis and val-

idation of our findings by matching our most persistent motifs with industry sector

classification from the Financial Times is presented in Sections 4.4, 4.5. In line with

our direction to start from empirical analysis to then propose methods with practical

applications, we present in Sections 4.6 a volatility analysis of the most persistent

motifs and leverage this to showcase a proof of concept for portfolio weighting

based on persistence in Section 4.6.

Our introduction to HFT markets and flash crashes takes a somewhat different

approach, in part because of its more recent history and because our contribution

and suggestions are not purely methodological, but very much focused on the inner

workings of market microstructure and its regulatory framework. With this in mind,

Section 1.4 introduces market microstructure and participants in high frequency

markets. Similarly, Section 1.5 presents background and current regulation in high

frequency markets as well as infrastructure such as exchanges and the related issue

of liquidity fragmentation.

We then focus on the topic of HFT systemic risk in the two forms investigated

throughout the paper. Section 2.3 introduces flash crashes and their critical dynam-

ics by highlighting how they arise from systemic synchronisation across market

players and positive feedback loop dynamics. Analogously, Section 2.4 introduces

the more traditional systemic risk across assets in the context of market microstruc-

ture with the literature on contagion dynamics and co-crashes.

Our discussion of crash dynamics from Section 2.3 is then connected to our

own findings in Section 5.2 which show that crash volume dynamics are critical,

with an unbounded variance distribution. These findings are evidence of different

dynamics with positive feedback loops during crashes and we discuss implications
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for practitioners and regulators in Sections 7.5, 7.4.2.

The remaining results sections focus on co-crash dynamics and systemic risk

across assets in flash crashes, with a preview of followup work underway. Sec-

tion 6.2 shows general results around the heavy tailed distribution of co-crash sizes,

leading to the statistically validated findings in Section 6.3 which show the phase

transition from small to large crash sizes in terms of crash frequency ranking across

the considered universe of stocks. Finally, Section 6.4 looks into the structure of

the co-crash network to show how highly traded stocks are increasingly involved on

average and throughout crashes, as crash size increases. We also show more pre-

liminary results on the correlation significance between trading volume and crash

frequency of each stock, at higher crash sizes. The final result presented is then the

basis for our followup work on the topic and it shows evidence of core-periphery

structures in the co-crash networks with multiple communities and one or more liq-

uid stocks at their core. This is not an indication of causality, but at least provides

the basis for major followup work by hinting that there is an interesting network

structure in extreme HFT events to be investigated.

8.2 The solution: complexity and criticality

We have seen in Section 1 how complex systems with critical dynamics exist in the

real world and in particular how critical dynamics are found in natural and anthro-

pogenic extreme events from avalanches to defaults of electric grids.

Financial systems have been of great interest in the context of complex systems

in the last decades, as per the review in Section 1.3. We also saw from Section 2.2

how finance practitioners are still dealing with the issues of traditional methods. A

similar phenomenon emerges from Section 7.3, where we report that regulators still

use traditional finance and economic methods and little to no advanced live moni-

toring and analysis. The need for ex ante regulation was also highlighted by major

authorities in the field [69]. The chapter by Linton et al. [69] suggests that, analo-

gously to how markets have changed fundamentally, so must regulation. The speed

of markets no longer allows for reactive regulation, rather regulators must establish



8.2. The solution: complexity and criticality 100

a set of automated responses to market disruptions and systemic risk events. To do

so, high frequency technology must be used by regulators to gather and process data

for live monitoring and intervention, as suggested by other authorities in the field as

well [166].

Terminologies from complex and connected systems are now being adopted,

but the implementation of methods is still at the very early stages.

After showing and discussing the importance of advanced findings in this work

across frequencies and systemic cross-sections we hope to have contributed moti-

vation and practical methodologies to promote the adoption of complex systems

approaches to finance from Econophysics and networks to market microstructure.

These disciplines and tools are of particular importance in the context of moni-

toring and controlling risk for both institutions and regulators. More specifically,

we highlight how our observations on long memory in persistent structures and

the proposed persistence weighting lay the foundation for future work on portfolio

weighting based on simplicial complexes and validated filtered structures. Further,

our findings on flash crashes should prompt regulators to reason about how these

phenomena can be controlled and allow market makers to prepare for this emerging

high frequency systemic risk.

Beyond the monitoring aspect of these advanced methods we have understood

that dynamics are complex and emerging phenomena are non-trivial throughout

financial markets. In line with our review in Section 7.3 we advocate for smart

regulation which uses ABMs and other advanced modeling methods to simulate the

complex outcomes of new regulation and induced behaviour.

In analogy with how traditional modeling and regression methods are evolv-

ing into the use of Artificial Intelligence we suggest that the transition to electronic

markets should progress to “smart electronification”, where regulation and market

structures are modified to reduce fleeing liquidity and positive feedback loops which

result in the observed black swan events. Trading halts are an example of a tradi-

tional “temporary” fix, but we believe that more advanced methods and analyses

can lead to the smoother and more orderly functioning of markets and avoid such
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abrupt measures.

In essence, we have shown that complexity and criticality are inherent in finan-

cial markets and institutions across frequencies, scales and cross sections. We have

also highlighted how the appropriate methods are not widely adopted yet amongst

practitioners and regulators. From our historical reviews and more we can see the

potentially catastrophic consequences of this. This prompts us to propose the meth-

ods presented in this work alongside practical applications in order to promote

adoption amongst practitioners and regulars and raise the bar for the quality and

soundness of production modeling.

This thesis has summarised a large body of literature on financial systemic risk

and we have produced highly relevant and impactful results for systemic risk in

both portfolios and high frequency markets. Still, we believe to have just scratched

the surface of themes such as temporal persistence of higher order structures in fi-

nancial networks. Future work should analyse motifs of different sizes and refine a

portfolio weighting method which jointly optimises individual volatilities and cor-

relation structures in portfolios. Our investigation of flash crash dynamics and co-

crash structures in high frequency markets is perhaps of even greater interest at this

time and certainly less documented. Work underway shall investigate the co-crash

network at different points in time and any spreading dynamic on it. Further, the

cumulative traded volume profile during a flash crash should be obtained and in-

vestigated against null models to better understand empirical volume dynamics in

jump processes.
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tegna. Bootstrap validation of links of a minimum spanning tree. Physica A:

Statistical Mechanics and its Applications, 512:1032–1043, 2018.

[28] Michele Tumminello, Salvatore Micciche, Fabrizio Lillo, Jyrki Piilo, and

Rosario N Mantegna. Statistically validated networks in bipartite complex

systems. PloS one, 6(3), 2011.
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