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Abstract 

Background: N-methyl-D-aspartate receptors (NMDAR) are important glutamatergic 

ion channels in the brain. Studying the functional activation of NMDAR in vivo in 

humans has not been possible until recently.  

Methods: We used positron emission tomography (PET) with [18F]GE-179, a novel 

radioligand binding inside the open NMDAR channel, to assess the in vivo activation 

of NMDAR. We developed methodology for quantification of ligand binding (Project 

1) that did not require arterial sampling and was then applied to study NMDAR 

activation in aging (n=29, Project 2), epilepsy (n=26, Project 3), and Anti-NMDAR 

encephalitis (n=5, Project 4).  

Results: In Project 1, we validated a method for kinetic modelling using an image-

derived input function and serial venous samples. This approach provided unbiased 

estimates of ligand volume of distribution (VT) that were highly correlated (r=0.95, 

p<0.001) with the gold standard, an arterial input function.  

In Project 2, we observed increased tracer uptake related to aging in healthy 

individuals (VT increase of 0.6 per 10 years, p=0.04), particularly in bilateral 

hippocampi, temporo-parieto-occipital junctions, dorsolateral prefrontal cortex, and 

striata. In people with epilepsy, the age-related increase in VT (1.4 per 10 years, 

p=0.006) was most pronounced in the striatum and thalamus.  

In Project 3, we found reduced interictal ligand uptake in epilepsy that was related to 

longer disease duration (VT decrease of 1.6 per 10 years, p=0.004), spatially 
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widespread and bihemispheric. Regional uptake was increased in those taking 

lacosamide and after anterior temporal lobe resection.  

In Project 4, we observed decreased ligand uptake in Anti-NMDAR encephalitis with 

persisting Anti-GluN1-antibodies (mean VT 6.2 in cases vs. 8.8 in healthy volunteers, 

p=0.02), particularly in bilateral anterior temporal and superior parietal lobes. 

Conclusions: [18F]GE-179 PET is useful to detect altered NMDAR function. We 

observed increased NMDAR activation in aging and decreased activation in interictal 

epilepsy and antibody-positive Anti-NMDAR encephalitis. 
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Impact statement 

N-methyl-D-aspartate (NMDA) receptors are glutamatergic ion channels that are 

involved in a number of physiologic and pathologic processes. They play a role in 

synaptic plasticity, memory, excitotoxicity, and in several neurologic and psychiatric 

disorders. Studying NMDA receptors in humans in vivo has not been possible until 

recently. 

Here, we used positron emission tomography (PET) with the novel radioligand [18F]GE-

179 that binds specifically to the open, i.e. activated, NMDA receptor. A wider use of 

this ligand has been limited by the need for arterial blood sampling to correctly 

quantify radiotracer binding. In Project 1 we simplified this methodology by 

developing and validating a kinetic modelling approach using serial venous samples 

and an image-derived input function. This approach is less invasive than traditional 

methods relying on arterial blood sampling. It may allow the wider use of the tracer in 

research and, if proven useful, in clinical care. 

In Project 2 we observed increased activation of NMDA receptors related to aging in 

healthy volunteers and patients with focal epilepsy. These findings are particularly 

relevant due to the unprecedented aging of the population in high income countries. 

They support the hypothesis of increased neuronal network hyperexcitability during 

aging that may contribute to cognitive decline and neurodegeneration. If these 

findings are reproduced in people with mild cognitive impairment and dementia, they 

may open avenues for novel treatments. The NMDA receptor antagonist memantine is 
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currently being used as a routine treatment of Alzheimer’s disease and the 

glutamatergic modulator riluzole is used in amyotrophic lateral sclerosis. These and 

other medications could be studied using [18F]GE-179 to determine their effect on 

NMDA receptors during healthy aging and in people with neurodegenerative 

disorders.  

In Project 3 we found decreased interictal NMDA receptor activation in people with 

refractory focal epilepsy. This observation contrasts with traditional models of 

neuronal hyperexcitability due to NMDA receptor overactivation in people with 

epilepsy. Our findings highlight the need to restore a balanced NMDA receptor 

activity in people with epilepsy and argue against overt blocking of NMDA receptors. 

We also observed the impact of anti-seizure medications on NMDA receptors that was 

most pronounced for lacosamide, which was not recognised previously. These results 

could contribute to the development of novel treatment strategies for epilepsy. 

[18F]GE-179 PET could be useful to assess the influence of medication on the NMDA 

receptor. 

In Project 4 we observed decreased activation of NMDA receptors in females 

recovering from Anti-NMDA-receptor encephalitis. These findings confirm for the first 

time in vivo the proposed disease mechanism of this autoimmune disorder. They also 

highlight persisting NMDA receptor abnormalities in individuals with only mild or 

minimal symptoms several months after discharge from hospital. If confirmed in larger 

studies, [18F]GE-179 PET could be used to monitor disease activity and guide 

treatment decisions in the subacute and chronic phases of Anti-NMDA-receptor 

encephalitis. 

In conclusion, [18F]GE-179 PET is a valuable tool to study the molecular underpinnings 

of healthy aging and neurological disorders and the impact of medications. 
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1 Introduction 

1.1 NMDA receptor structure and function 

1.1.1 Glutamatergic receptors 

Glutamate is the main excitatory neurotransmitter of the central nervous system 

accounting for one third of all rapid excitatory synapses (Cotman and Berchtold, 2002; 

Watkins and Evans, 1981). The N-methyl-D-aspartate (NMDA) receptor is one of three 

ionotropic receptor types that bind glutamate (Palmada and Centelles, 1998). Other 

ionotropic glutamate channels are the kainate and alpha-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) receptors. Eight subtypes of metabotropic glutamate 

receptors (mGluR) that indirectly modulate synaptic transmission have also been 

described (Niswender and Conn, 2010). 

NMDA receptors are heteromeric ion channels consisting of four subunits that bind 

the agonist glutamate and the co-agonists glycine or D-serine (Wolosker, 2006). In the 

inactivated state, the channel pore is blocked by Mg2+ ions. For activation, NMDA 

receptors require the binding of an agonist, a co-agonist and concomitant 

postsynaptic depolarization to remove Mg2+ from the channel pore (Mori and Mishina, 

1995). In this manner, the receptors are uniquely gated by both ligands and voltage.  

Opening of the receptor channel leads to nonselective influx of cations, mainly Na+ 

and Ca2+, and efflux of K+. Compared to other glutamate receptors, NMDA receptors 

are the most permeable to calcium, they gate slowly, and desensitize only weakly 
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(Wollmuth and Sobolevsky, 2004). These specific characteristics are important for 

long-term potentiation and excitotoxicity, which may play a role in several 

neurological disorders. 

 

1.1.2 Subunit composition 

The NMDA receptor complex consists of several subunits and this composition is 

variable regionally, changes throughout the lifespan, and influences the functional 

properties of the receptor. All receptors contain two obligatory glycine-binding GluN1 

 

Figure 1.1: Scheme of NMDA receptor structure 

The NMDA receptor is a heterotetramer consisting of two obligatory GluN1 subunits and a variable composition 
of GluN2 or GluN3 subunits. The glycine binding site is located on GluN1 subunits, the glutamate site is on 
GluN2/3 subunits. The channel pore is blocked by a Mg2+ ion at rest. Binding of Phencyclidine (PCP) requires 
opening of the channel pore. Reproduced with permission from Krzystanek and Palasz 2019. 
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subunits (Kuryatov et al., 1994) and two variable glutamate-binding GluN2 or GluN3 

subunits, according to current nomenclature (Collingridge et al., 2009). Different splice 

variants for GluN1 messenger ribonucleic acid (mRNA) have been described and they 

may influence the functional properties of the receptor (Magnusson et al., 2010). 

Additionally, there is allosteric interaction between glutamate and glycine, the binding 

of one agonist lowering the affinity for the second (Durham et al., 2020). 

Four subtypes of GluN2 subunits, termed GluN2A-D, have been described. Out of 

these, the GluN2A and GluN2B subunits are most commonly expressed, whereas 

GluN2C and GluN2D are mainly present during early development (Monyer et al., 

1994). GluN2B-containing receptors are predominant during birth and early 

development, but at the onset of sexual maturity the expression of GluN2B is down-

regulated (Bar-Shira et al., 2015). In contrast, GluN2A expression increases during 

development and adulthood (Monyer et al., 1994). A similar increase of the 

GluN2A/GluN2B ratio was observed during hippocampal development in humans 

(Jantzie et al., 2015; Law et al., 2003). 

GluN2A and GluN2B subunit-containing receptors differ functionally. GluN1/GluN2A 

receptors have a higher opening probability and peak open probability in response to 

glutamate compared to GluN1/GluN2B receptors (N. Chen et al., 1999; Erreger et al., 

2005; Gray et al., 2011). In protocols of long-term potentiation (see chapter 1.2.1), 

GluN2A subunit-containing receptors predominantly responded to tonic stimuli, 

whereas GluN2B-containing receptors preferentially transferred charges of short low-

frequency low-amplitude stimuli (Shipton and Paulsen, 2014). These functional 

differences may have differential implications for synaptic plasticity and memory. 

GluN2A knockout mice typically show only minor learning deficits, limited to short-

term memory or the rapid acquisition of spatial information (Shipton and Paulsen, 

2014). The GluN2B subunit might be relevant for novel-object recognition, spatial 

reference memory, and fear memory (Magnusson et al., 2010).  
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The role of GluN3 (subtypes GluN3A und GluN3B) subunits is less well understood. 

Their expression has been localized to oligodendrocytes (Káradóttir et al., 2005) or 

excitatory receptors responsive to glycine but not glutamate (Chatterton et al., 2002).  

The majority of receptors are either diheteromeric, i.e. containing either 

GluN1/GluN2A or GluN1/GluN2B subunits, or triheteromeric, i.e. containing 

GluN1/GluN2A/GluN2B. Most research focused on diheteromeric receptors because 

they can be studied selectively. Although the majority of hippocampal receptors might 

be triheteromeric (Rauner and Köhr, 2011), most research so far focused on 

diheteromeric receptors and their role remains largely unclear. 

 

1.1.3 Synaptic and extrasynaptic sites 

NMDA receptors may be localised both synaptically and extrasynaptically. 

Extrasynaptic sites have been implicated in neurodegenerative conditions including 

Alzheimer’s disease (Bordji et al., 2010). Both receptor populations bind glutamate, 

but they have different affinities towards co-agonists. Synaptic sites are mainly gated 

by D-serine and extrasynaptic sites by glycine (Papouin et al., 2012).  

It is unclear whether specific subunit compositions modulate the localisation of 

receptors along the synapse. Some authors observed that the organisation of NMDA 

receptors along synaptic and extrasynaptic sites was mobile and both GluN2A and 

GluN2B subunits may be located extrasynaptically (Tovar and Westbrook, 2002). 

Others propose that GluN2B-containing receptors are enriched extrasynaptically 

(Massey et al., 2004; Papouin et al., 2012). 

The site of NMDA receptors may have an influence on their function. Activation of 

synaptic sites is thought to be neuroprotective, whereas activation of extrasynaptic 

receptors may promote cell death (Hardingham and Bading, 2010). However, 

conflicting findings have been reported (Papouin et al., 2012). 
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1.2 NMDA receptor involvement in neuronal processes 

1.2.1 Long-term potentiation and depression 

Long-term potentiation (LTP) is a persistent strengthening of synaptic connections 

based on recent patterns of activity (Cooke and Bliss, 2006a). LTP provides a 

compelling neuronal model for synaptic plasticity, declarative learning, and memory. 

In contrast, long-term depression (LTD) is a persistent weakening of synaptic 

connections. Disturbances of LTP and LTD might play a role in chronic pain, 

epileptogenesis and dementia (Cooke and Bliss, 2006a).  

NMDA receptors are key mediators of synaptic potentiation (LTP) and depression 

(LTD) that rely on their specific function of coincidence detection. Opening of NMDA 

receptors requires the simultaneous binding of a presynaptically released agonist, i.e. 

glutamate, and the depolarization of the postsynaptic membrane to remove the Mg2+-

block within the channel pore (Nakazawa et al., 2004). The receptor remains 

inactivated if either one or the other is absent. In this manner, NMDA receptors detect 

coinciding pre- and postsynaptic activity, a process that is thought to be the molecular 

basis of declarative or associative learning.  

Opening of NMDA receptors leads to an influx of Ca2+ ions that trigger a cascade of 

biochemical events that strengthen the postsynaptic response to glutamate by 

incorporating AMPA receptors into the postsynaptic membrane (Ehrlich and Malinow, 

2004). An indirect mechanism might additionally facilitate presynaptic glutamate 

release (S. Choi et al., 2003). These processes are Ca2+ dependent. Reduction of 

intracellular Ca2+ effectively blocks LTP (S. Williams and Johnston, 1989).  

Subunit composition and synaptic localisation may modulate the functional properties 

of NMDA receptors. GluN2A-containing receptors may primarily subserve LTP, 

whereas GluN2B-containing receptors trigger LTD (L. Liu et al., 2004). LTP relies on 

synaptic activation only, whereas LTD involves both synaptic and extrasynaptic sites 

(Papouin et al., 2012). 
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Other forms of neuronal plasticity, independent of LTP or LTD, have also been 

described and NMDA receptors may also play a role (Becker et al., 2014; Vlachos et 

al., 2013).  

 

1.2.2 Working memory 

There is limited knowledge on the neuronal processes involved in working memory, a 

short-lasting form of memory that is important to transiently hold and manipulate 

goal-related information and to guide forthcoming actions.  

Working memory is stored by the maintained firing of a memory-specific subset of 

neurons in the prefrontal cortex (Funahashi et al., 1989). Computational modelling 

suggest that NMDA receptors, due to their slow kinetics, are particularly suited to 

sustain neuronal activity at low firing rates during working memory (Durstewitz et al., 

2000; Lisman et al., 1998; X. J. Wang, 1999). Studies in rodents and non-human 

primates demonstrated that blocking NMDA receptors abolished persistent activity in 

prefrontal neurons during a working memory task (Jackson et al., 2004; M. Wang, 

Yang, C.-J. Wang, Gamo, Jin, Mazer, Morrison, X.-J. Wang and Arnsten, 2013a). 

Significant working memory impairments were seen with local or systemic application 

of NMDA receptor antagonists in rodents (Jackson et al., 2004; Moghaddam and 

Adams, 1998), non-human primates (B. M. Roberts et al., 2010; M. Wang, Yang, C.-J. 

Wang, Gamo, Jin, Mazer, Morrison, X.-J. Wang and Arnsten, 2013a), and humans 

(Driesen et al., 2013; Honey et al., 2004).  

Several neurological and psychiatric disorders are associated with both dysfunctional 

NMDA receptor signalling and working memory deficits. Working memory deficits are 

a core feature of schizophrenia (Silver et al., 2003) and play an important role in 

attention-deficit hyperactivity disorder (ADHD) (Martinussen et al., 2005). Several lines 

of evidence support a hypofunction of NMDA receptors in schizophrenia (Bubeníková-

Valešová et al., 2008). Application of NMDAR antagonists is commonly used to model 



Introduction                                                                                                                   

   

 

 

 

 

31 

   

 

psychotic and cognitive symptoms in schizophrenia, that include deficits in working 

memory. Hypofunction of NMDARs has also been described in ADHD (Chang et al., 

2014). 

Although less typical than impairments in episodic memory, working memory deficits 

are also commonly observed in both focal epilepsy (Stretton and Thompson, 2012; 

Stretton et al., 2012) and Alzheimer’s disease (AD) (Stopford et al., 2012). NMDA 

receptor dysfunction has been demonstrated in these disorders.  

 

1.2.3 Excitotoxicity 

Excitotoxicity is the pathological damage to neurons after intense exposure to 

excitatory neurotransmitters, mainly glutamate (D. W. Choi, 1992; Olney, 1969). 

Excitotoxicity is predominantly, but not exclusively, mediated by prolonged opening 

of NMDA receptors, potentially because of their high permeability to Ca2+ and weak 

desensitization (Rothman and Olney, 1995). Prolonged opening of NMDA receptors 

leads to excess influx of Ca2+ and consequently trigger a neuronal cell-death cascade 

(D. W. Choi, 1995; Weiss et al., 1990). Antagonising NMDA receptor activity 

attenuated glutamate-induced neuronal loss (D. W. Choi et al., 1988; Ferrer-Montiel et 

al., 1998; S. Liu et al., 1997).  

Diverging roles for different NMDA receptor subunit compositions and synaptic 

localisations in promoting excitotoxic damage were proposed. Activation of receptors 

containing GluN2B subunits resulted in cell-death, whereas GluN2A containing 

receptors had both neurotoxic and neuroprotective effects (Engelhardt et al., 2007; Y. 

Liu et al., 2007). Some authors proposed that synaptic receptors may be 

neuroprotective whereas extrasynaptic receptors may be neurotoxic (Hardingham and 

Bading, 2010), whereas others observed that both receptor sites are capable of 

mediating excitotoxicity (Y. Liu et al., 2007; Sattler et al., 2000; Wroge et al., 2012; 

Zhou et al., 2013).  
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Excitotoxicity has been observed in models of cerebral ischemia. Application of 

NMDA receptor antagonists reduced hypoxic neuronal injury in vitro (Rothman, 1984) 

and in vivo (Simon et al., 1984). Excitotoxic injury has also been implicated in models 

of epilepsy (Meldrum, 1993), Alzheimer’s disease (Olney et al., 1997), Huntington’s 

disease (DiFiglia, 1990), Parkinson’s disease (Beal, 1998), and other neurodegenerative 

disorders.  

 

1.2.4 Excitatory and inhibitory roles on neuronal networks 

Traditionally, NMDA receptors have been linked to an activating effect on neuronal 

networks because they bind glutamate, the most prevalent excitatory neurotransmitter 

in the central nervous system. On the other hand, emerging evidence from basic and 

clinical science points to the potential of NMDA receptors to exhibit an inhibitory 

effect on neuronal networks (Fitzgerald, 2012). Although the aspect of network 

suppression through NMDA receptors has received only little attention, recent 

evidence in people with genetic forms of epilepsy provides strong support to this 

concept.  

Typically, NMDA receptor antagonism in vitro and in vivo leads to inhibition of 

pyramidal neurons (Arvanov and R. Y. Wang, 1997; L. Chen et al., 2003; Hirsch and 

Crepel, 1991). Paradoxically, NMDA receptor antagonism can, in certain situations, 

also produce excitatory effects (Grunze et al., 1996; Homayoun and Moghaddam, 

2007; Manzoni et al., 1994) and lead to an activation of limbic structures (Höflich et al., 

2017; Kraguljac et al., 2017; McMillan et al., 2019). NMDA receptor antagonists may 

lead to network activation, detected as increased metabolism in the frontal cortex and 

thalamus and increased blood flow in the anterior cingulate cortex (Lahti et al., 1995; 

Vollenweider et al., 1997) and on recordings in freely moving rats  (Jackson et al., 

2004; Suzuki et al., 2002).  
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There are several potential explanation for the inhibitory effects of NMDA receptors. 

Network suppression is probably mainly mediated by NMDA receptors located on 

gamma-aminobutyric-acid (GABA) releasing interneurons that suppress the activity of 

pyramidal cells (Grunze et al., 1996; Homayoun and Moghaddam, 2007; Manzoni et 

al., 1994). Additionally, an interaction between NMDA and AMPA receptors may play 

a role. NMDA receptors can lead to a downregulation of excitatory AMPA receptors 

(Hall et al., 2007). Conversely, NMDA receptor antagonism increases transmission 

through AMPA receptors (Moghaddam and Adams, 1998; Moghaddam et al., 1997). 

A combination of these factors may lead to network level excitation mediated by 

NMDA receptor hypofunction. 

Recent findings in patients with epilepsy, a disease of overt neuronal excitation and 

insufficient inhibition, underline these concepts. Loss-of function mutations in GRIN 

genes, that encode NMDA receptor subunits, can lead to a syndrome with seizures 

and aphasia (chapter 1.3.3) (Xu and Luo, 2018). NMDA receptor hypofunction in Anti-

NMDA-receptor encephalitis (chapter 1.3.5), an autoimmune disorder, also frequently 

causes seizures (Hughes et al., 2010; Moscato et al., 2014). A therapeutic trial of the 

highly selective NMDA receptor antagonist D-CPP-ene caused an increase of seizures 

in a large proportion of cases (Sveinbjornsdottir et al., 1993). 

Thus, NMDA receptor activation may lead to either activation or inhibition on a 

network level (Fitzgerald, 2012). This consideration is important to guide the 

development of treatments targeting the NMDA receptor. Drugs causing overt hyper- 

or hypofunction of NMDA receptors were not tolerated well, because they blocked 

normal synaptic activity and led to intolerable side effects (Le and Lipton, 2001). A 

balanced tonic activation of NMDA receptors may be necessary for normal function of 

the brain. In this regard, uncompetitive antagonism is a promising concept. An 

uncompetitive antagonist is an inhibitor whose activation is contingent on prior 

activation of the receptor by an agonist (Lipton, 2006). In this manner, an 

uncompetitive antagonist would block overt hyperactivation, i.e. in the context of 
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excitotoxicity, but maintain normal function relatively intact to avoid side effects. 

Memantine is an uncompetitive NMDA receptor antagonist with a  rapid off-rate and 

low affinity (Lipton, 2006). It has been successfully used for treatment of moderate to 

severe Alzheimer’s disease. 

 

1.3 NMDA receptors in health in disease 

1.3.1 Aging 

The worldwide population is aging at an unprecedented rate (United Nations 

Department of Economic and Social Population Affairs, 2019). Aging is associated with 

cognitive decline and a higher risk of neurodegenerative disorders (Park et al., 2002). 

Normal aging leads to a reduced pool of glutamate, particularly in the striatum, as 

measured in vivo with MR-spectroscopy (Kaiser et al., 2005; Zahr et al., 2013). On the 

other hand, a reduced glutamate re-uptake and decreased expression of glutamate 

transporters was observed in older rats (Potier et al., 2010). This could lead to a 

facilitated activation of glutamatergic receptors, particularly located extrasynaptically, 

despite a lower overall glutamate pool (Potier et al., 2010). 

NMDA receptors may be the most vulnerable type of glutamate ion-channels to the 

effects of aging (Magnusson and Cotman, 1993; Magnusson et al., 2010). The overall 

number of NMDA receptors is reduced in older animals (Castorina et al., 1994; 

Magnusson, 2000; Magnusson and Cotman, 1993; Magnusson et al., 2007; Ontl et al., 

2004). Particularly affected are the frontal and parieto-occipital cortex, striatum, and 

hippocampus.  

There is limited knowledge on the effects of aging on NMDA receptors in humans. 

Some post mortem studies found a decrease of NMDA receptor numbers in older 

individuals that was linked to an overall loss of neurons (Kornhuber et al., 1988; 
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Piggott et al., 1992), whereas others did not find a relevant decrease (Law et al., 

2003).  

The change in overall NMDA receptor number may be counteracted by functional 

changes. Several, but not all, studies found an age-related increase in sensitivity and 

responsiveness of the remaining receptors (Billard et al., 1997; Jasek and Griffith, 

1998; Kuehl-Kovarik et al., 2000). There is also a well-documented shift of receptor 

subunit composition from GluN2B towards GluN2A-containing receptors (Brim et al., 

2013; Magnusson, 2000; Magnusson et al., 2002; 2006; Zamzow et al., 2013). NMDA 

receptor heteromers containg GluN2A subunits have a higher opening probability (N. 

Chen et al., 1999; Erreger et al., 2005; Gray et al., 2011). Additionally, there is a shift 

from synaptic towards extrasynaptic NMDA receptor sites during aging (Potier et al., 

2010). These aspects could contribute to the neuronal hyperexcitability observed in 

aging (Senatorov et al., 2019), mild cognitive impairment, and Alzheimer’s disease 

(Fontana et al., 2017; Haberman et al., 2017; Palop et al., 2007; Yassa et al., 2010). 

 

1.3.2 Epilepsy 

1.3.2.1 Defining seizures and epilepsy 

Epilepsy is one of the most common serious neurological disorders. There are at least 

50 million people with epilepsy worldwide (World Health Organization, 2000). 

Epilepsy has an estimated lifetime prevalence of 5.8 per 1,000 persons in developed 

countries and 15.4 per 1,000 in developing countries (Ngugi et al., 2010).  

Epilepsy has been defined as “a disorder of the brain characterized by an enduring 

predisposition to generate epileptic seizures, and by the neurobiologic, cognitive, 

psychological, and social consequences of this condition” (Fisher et al., 2005). A more 

recent practical approach outlines this predisposition as any of the following (Fisher et 

al., 2014): 

1. “At least two unprovoked (or reflex) seizures occurring >24 h apart; 
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2. One unprovoked (or reflex) seizure and a probability of further seizures similar 

to the general recurrence risk (at least 60%) after two unprovoked seizures, 

occurring over the next 10 years;  

3. Diagnosis of an epilepsy syndrome.” 

This practical definition implies that a single remote symptomatic seizure after a 

relevant insult, e.g. ischemic stroke, qualifies as epilepsy. This is due to the high 

recurrence rate after stroke of > 70% (Fisher et al., 2014; Hesdorffer et al., 2009). 

 

1.3.2.2 Seizures and the glutamatergic system 

Glutamate is directly involved in the generation of epileptic discharges through 

sequences of paroxysmal depolarization shifts (PDS) (During and Spencer, 1993). An 

increase in extracellular glutamate can be observed before and during spontaneous 

seizures in humans (During and Spencer, 1993). Elevated glutamate concentrations in 

different epilepsy syndromes and aetiologies were demonstrated using magnetic 

resonance spectroscopy (MRS) (Davis et al., 2015; Helms et al., 2006; Simister et al., 

2002; 2007; Simister, McLean, Barker and Duncan, 2003a; 2003b). 

PDS are mainly mediated by activation of AMPA receptors (Rogawski, 2011). Blocking 

of NMDA receptors does not abolish PDS (W. L. Lee and Hablitz, 1989; Neuman et al., 

1988). On the other hand, this initial depolarization is a necessary prerequisite for 

opening of NMDA channels, which consequently sustain and prolong ongoing 

depolarization during the later stages of epileptic activity (Baldino et al., 1986; Naylor 

et al., 2013).  

NMDA receptors desensitize weakly and are, thus, likely to sustain prolonged seizures 

and status epilepticus. Blocking NMDA receptors interrupted status epilepticus, 

reduced refractoriness to benzodiazepines and enhanced survival in animal models 

(Ormandy et al., 1989; Rice and DeLorenzo, 1999).  In humans, several reports 
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describe successful termination of super-refractory status epilepticus with the NMDA 

receptor antagonist ketamine (Borris et al., 2000; Prüss and Holtkamp, 2008). 

These advances have been translated into antiepileptic treatment with felbamate, an 

NMDA receptor antagonist and sodium channel modulator (Pellock et al., 2006). 

Cases of fatal aplastic anaemia and hepatic failure have limited the clinical use of 

felbamate.  

On the other hand, NMDA receptor antagonists may also have proconvulsant effects 

(Alldredge et al., 1989; Claudet and Maréchal, 2009; Modica et al., 1990; Peltz et al., 

2005; Sveinbjornsdottir et al., 1993). Treatment with the antagonist D-CPP-ene led to 

an increase in seizures in a large proportion of epilepsy patients (Sveinbjornsdottir et 

al., 1993). 

 

1.3.2.3 Mechanisms of epileptogenesis 

Early epilepsy research in the twentieth century focused mainly on ictogenesis, i.e. the 

propensity to generate epileptic seizures (Pitkänen and Engel, 2014). Despite 

considerable progress and the development of over 20 anticonvulsants, approximately 

one third of people with epilepsy are refractory to medical treatment (Del Felice et al., 

2010).  

Recently, scientific interest has focused on how a brain develops the enduring 

predisposition to generate epileptic seizures. This process is called epileptogenesis 

and has been defined as “the development and extension of tissue capable of 

generating spontaneous seizures, resulting in a) development of an epileptic condition 

and/or b) progression of the epilepsy after it is established” (Pitkänen et al., 2013). By 

increasing our understanding of epileptogenic processes and by developing truly 

antiepileptogenic treatments, one could prevent and abort the development of 

epilepsy or modify and eventually cure the already established disease. However, after 

several unsuccessful antiepileptogenic treatment trials with conventional antiseizure 
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drugs in humans (Trinka and Brigo, 2014), we are still in the beginning of 

understanding the mechanisms of epileptogenesis. 

Epileptogenesis is best studied after a specific insult with a clear onset leading to 

spontaneous seizures, such as stroke or traumatic brain injury (TBI). Clinical experience 

Possible mechanism of epileptogenesis Selected references 
Reorganisation of synaptic circuits  

• Loss of inhibitory interneurons leading to a decrease 
of GABA-mediated inhibition. 

• Sprouting of mossy fibres, possibly causing increased 
recurrent excitation. 

Ribak et al. (1982) 
Sloviter (1987) 
de Lanerolle et al. (1989) 
Kobayashi and Buckmaster (2003) 
Babb et al. (1991) 
Sutula et al. (1989) 

GABA (γ-Aminobutyric acid)  

• Internalisation of GABAA receptors. 
• Changes of GABAA subunit composition. 
• Disturbances of chloride homeostasis with increase of 

chloride influx. 

Goodkin et al. (2005) 
Naylor et al. (2005) 
Brooks-Kayal et al. (1998) 
Loup et al. (2000) 
Huberfeld et al. (2007) 

Growth factors  

• Influence of Brain Derived Neurotrophic Factor (BDNF) 
on GABAA subunit expression. 

• Antiepileptogenic effects of BDNF and erythropoietin 
injections. 

Roberts et al. (2006) 
Paradiso et al. (2009) 
Chu et al. (2008) 

Inflammation  

• Inflammatory mediators, reactive astrocytosis, and 
activated microglia found in resected human epileptic 
tissue. 

• The degree of microglia activation correlates with 
neuronal cell loss and spontaneous seizures. 

• Induction of inflammation with lipopolysaccharide 
lowered the seizure threshold, anti-inflammatory drugs 
reduced seizure frequency in animals. 

Aronica et al. (2007) 
Crespel et al. (2002) 
Amhaoul et al. (2015) 
Bertoglio et al. (2016) 
Kovacs et al. (2006) 
Sayyah et al. (2003) 
Fabene et al. (2008) 
Polascheck et al. (2010) 

mTOR (mammalian target of rapamycin)  

• mTOR involved in epileptogenesis in tuberous 
sclerosis complex (TSC). 

• mTOR inhibitors supress seizures in TSC and in models 
of acquired epilepsy. 

Zeng et al. (2008) 
Zeng et al. (2009) 
Huang et al. (2010) 

Tau protein  

• Targeting hyperphosphorylation of tau with sodium 
selenate prevented epileptogenesis in animal models 
of posttraumatic encephalopathy. 

Liu et al. (2016) 

Table 1.1: Selected mechanisms of epileptogenesis 
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suggests a latent (seizure-free) period of several weeks to years between the initial 

insult and a first unprovoked seizure (Löscher et al., 2015). However, it is unlikely that 

epileptogenesis represents a step function of time after injury. Recent data rather 

indicate that epileptogenesis is a continuous process beginning at the time of brain 

insult and extending past the first unprovoked seizure (Dudek and Staley, 2012; 

Kadam et al., 2010; P. A. Williams et al., 2009).  

Seizures can develop as a relatively unspecific reaction of the brain to different insults. 

Hence a wide range of overlapping and parallel pathways might be involved in 

epileptogenesis. A summary of a few selected mechanisms of epileptogenesis is 

displayed in Table 1.1.  

 

1.3.2.4 Role of NMDA receptors in epileptogenesis 

Several lines of evidence support a progressive involvement of NMDA receptors 

during the development of epilepsy in animal models (Croucher et al., 1995; Mody 

and Heinemann, 1987; Vezzani et al., 1988; Yeh et al., 1989). Antagonism of the 

NMDA receptor prevented epileptogenesis and seizures in the kindling and 

pilocarpine models of epilepsy (Croucher and Bradford, 1990; Croucher et al., 1988; 

Gilbert, 1988; Raza et al., 2004; Rice and DeLorenzo, 1998; Stasheff, Anderson, Clark 

and Wilson, 1989a).  

Glutamate released after seizures likely has excitotoxic effects that can cause neuronal 

damage and could lead to an extension of the epileptic tissue (Tanaka et al., 1997). 

These excitotoxic effects are mainly mediated through NMDA receptors. Several 

studies demonstrated that blocking of NMDA receptors during status epilepticus 

might be neuroprotective (Brandt et al., 2003; Fujikawa et al., 1994; Rice et al., 1998). 
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1.3.3 Epilepsy-aphasia syndromes 

Mutations of the GRIN2A gene, coding the GluN2A subunit of NMDA receptors, have 

been described in 8% to 20% of focal epileptic encephalopathies of childhood (Carvill 

et al., 2013; Lemke et al., 2013; Lesca et al., 2013). The majority of cases presented 

with acquired epileptic aphasia (Landau-Kleffner syndrome) or continuous spike and 

waves during slow-wave sleep syndrome (CSWSS), characterised by focal motor 

seizures and regression of language or global cognitive skills. Mutations to other GRIN 

genes encoding the GluN1 and GluN2B subunits have also been associated with 

epilepsy (Xu and Luo, 2018). 

Functional assessment of the mutated proteins revealed that the majority of these 

mutations caused a loss of NMDA receptor function, followed by gain-of-function 

mutations (Xu and Luo, 2018). In mutations affecting the GluN2A subunit, those 

leading to a receptor gain-of-function were associated with a more severe phenotype 

(Strehlow et al., 2019). 

 

1.3.4 Brain tumours 

Tumour expansion of malignant gliomas inside a rigid skull is facilitated by neuronal 

damage of peritumoural tissue, which is mediated by glutamate excitotoxicity (Takano 

et al., 2001). Gliomas release glutamate into the peritumoural tissue that promotes 

tumour growth (Takano et al., 2001; Ye and Sontheimer, 1999). A potential mechanism 

is the overexpression of the xc
− cystine-glutamate antiporter (Buckingham et al., 2011), 

the increase of extracellular glutamate to toxic levels, and subsequent excitotoxicity 

mediated by NMDA receptors. NMDA receptor antagonism with MK801 or 

memantine slowed the growth of glutamate-secreting tumours (Ramaswamy et al., 

2014; Takano et al., 2001).  

Peritumoural glutamate was associated with a higher risk of seizures in animals 

(Buckingham et al., 2011) and in humans (Yuen et al., 2012). Blocking of the xc system 
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and subsequent reduction of glutamate release, led to reduced frequency of epileptic 

events (Buckingham et al., 2011). Thus, glutamate lowering agents or inhibitors of 

glutamate receptors may be a therapeutic option for tumour-related seizures 

(Campbell et al., 2012). This also suggests that tumour surgery may alleviate seizures 

by removing the glutamate source.  

In a similar manner, D-2-hydroxyglutarate (D2HG), a product of mutant isocitrate 

dehydrogenase 1 (IDH1mut), is released by tumour cells into the surrounding tissue and 

may mimic the activity of glutamate on NMDA receptors (H. Chen et al., 2017). 

IDH1mut gliomas were more likely to cause seizures that could be blocked by NMDA 

receptor antagonists (H. Chen et al., 2017). 

Considerable interest has surrounded the use of perampanel, an AMPA receptor 

antagonist approved for the treatment of seizures, in patients with gliomas. 

Perampanel slowed tumour growth and reduced extracellular glutamate levels (Lange 

et al., 2019; Venkataramani et al., 2019). Perampanel was also used to treat seizures in 

patients with gliomas (Maschio et al., 2019; 2020). The effects of perampanel may be 

related to recently described bona fide synapses between neurons and glioma cells 

that produce AMPA receptor mediated postsynaptic currents and influence neuronal 

activity dependent brain tumour growth (Venkataramani et al., 2019; Venkatesh et al., 

2019). 

 

1.3.5 Anti-NMDA-receptor encephalitis 

Antibodies to the GluN1 subunit of NMDA receptors cause a severe but treatable 

form of immune-mediated encephalitis. Anti-NMDA-receptor encephalitis is typically 

associated with psychiatric, cognitive, and autonomic dysfunction, seizures, speech 

abnormalities, movement disorders, and decreased level of consciousness (Dalmau et 

al., 2007; Graus et al., 2016). The early predominance of psychiatric symptoms, that 

may mimic schizophrenia, frequently leads to initial admissions on psychiatric units (Al-
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Diwani et al., 2019). The psychiatric spectrum is complex and involves mixed mood-

psychosis symptoms (Al-Diwani et al., 2019).  

The disease most frequently affects young women, 95% of cases being younger than 

45 years, and has a female sex predominance of 4:1 (Titulaer et al., 2013). More than 

half of women aged between 18 and 45 affected by the encephalitis have associated 

tumours, most commonly ovarian teratomas (Titulaer et al., 2013). Around one quarter 

of adults older than 45 years have associated tumours, mostly carcinomas, whereas 

tumours are rare in children (Titulaer et al., 2013). Those with associated tumours are 

at lower risk of relapses if the tumour can be removed (Titulaer et al., 2013). 

Although 80% of cases show favourable outcome after treatment, the overall recovery 

may often be protracted and up to 25% suffer relapses (Gabilondo et al., 2011; 

Titulaer et al., 2013). Cognitive deficits may persist for a long time (Finke et al., 2012). 

Long-term immunotherapy may be necessary to prevent relapses and persistent 

antibodies have been reported up to 15 years after disease onset (Alexopoulos et al., 

2011; Hansen et al., 2013; Mariotto et al., 2017). 

The pathomechanism of Anti-NMDA-receptor encephalitis has been studied in vitro 

and in animal experiments. Anti-GluN1 antibodies first increase the clustering of 

NMDA receptors in both synaptic and extrasynaptic sites (Ladépêche et al., 2018) and 

subsequently lead to a cross-linking and internalisation of receptors (Hughes et al., 

2010; Moscato et al., 2014; Wright et al., 2015). This results in a decrease of NMDA 

receptor surface density and NMDA receptor-mediated currents (Hughes et al., 2010). 

In vivo animal experiments suggest that the magnitude of reduction in NMDA 

receptor density relates to antibody titres. It may be reversible, because washing out 

of antibodies improved synaptic receptor density and reduced disease symptoms 

(Hughes et al., 2010; Moscato et al., 2014). Data in humans is lacking but a reduced 

NMDA receptor density was reported post mortem in two autopsied patients with 

anti-NMDA-receptor encephalitis (Dalmau et al., 2007).  
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1.3.6 Alzheimer’s disease 

Alzheimer’s disease (AD) is a neurodegenerative disorder associated with progressive 

loss of memory and cognitive functions. It is the most common cause of dementia 

accounting for up to two thirds of cases. The worldwide prevalence of dementia is 

currently estimated at 44 million, and is expected to double by 2030 and more than 

triple by 2050. The global costs of dementia were estimated at $604 billion in 2010 

and this number is set to rise in the coming years (Prince et al., 2014). 

Considerable progress has been made on the pathomechanisms of AD in the past 20 

years. However, there is still a significant lack of knowledge on early diagnosis, 

selection of patients for prophylactic treatment and monitoring of disease progress. 

Studying activated NMDA receptors in living humans with advanced neuroimaging 

methods might provide valuable answers to some of these problems. 

 

1.3.6.1 Basic pathomechanisms of Alzheimer’s disease 

The most widely accepted model for the pathomechanism of AD is the amyloid 

hypothesis. This is based on the observation that amyloid beta-peptide (Aβ) is the 

primary component of the senile plaques observed in brains of AD patients (Masters 

et al., 1985). This peptide results from cleavage of the amyloid precursor protein 

(APP), coded on chromosome 21. Mutations of the APP gene can lead to early familial 

forms of AD (Goate et al., 1991). The main genetic risk factor of AD is a polymorphism 

in the Apolipoprotein E (APOE) gene, a protein that was observed to bind to Aβ-

peptides (Strittmatter et al., 1993). The amyloid hypothesis is also supported by results 

of cerebrospinal fluid (CSF) and imaging studies. These show that Aβ biomarkers are 

the first to become abnormal even before cognitive symptoms become obvious (Jack 

et al., 2010). 

However, some concerns with the amyloid hypothesis persist. The most commonly 

voiced critique is that Aβ levels do not correlate well with cognitive status in affected 



Introduction                                                                                                                     

  

 

 

 

 

44 

 

 

individuals (Giannakopoulos et al., 2003). Moreover, even individuals with high Aβ 

levels can have normal cognition. Some studies observed that Aβ deposition was not 

associated with relevant neuronal loss in transgenic mice (Irizarry et al., 1997). A 

considerable amount of controversy remains about the pathomechanism of the 

neurotoxic effects of Aβ, which is still mostly unknown (Hardy and Selkoe, 2002).  

 

1.3.6.2 Role of NMDA receptors in Alzheimer’s disease 

Several lines of evidence link accumulation Aβ plaques with disturbances of NMDA 

receptors. Hence, NMDA receptors might play a major role in the pathomechanism of 

AD. This is not surprising, as these receptors are not only involved in learning and 

memory but also in neurotoxicity. The dual function of NMDA receptors and their 

complex relationship with Aβ leads to several well-documented interactions, including 

the (i) overactivation of extrasynaptic NMDA receptors, (ii) overexpression of the 

GluN2B subunit, (iii) reduction of synaptic NMDA receptor density, and (iv) 

accumulation of Aβ through NMDA receptor activation. 

Aβ has been observed to cause a decreased glutamatergic transmission (Palop et al., 

2007; Walsh et al., 2002). A reduced number of synaptic NMDA receptors was found 

in post mortem hippocampal slices of patients with AD (Jacob et al., 2007; Jansen et 

al., 1990; Kravitz et al., 2013; Young, 1987) In animals, Aβ caused the internalization of 

synaptic NMDA receptors through dephosphorylation of the GluN2B subunit (Palop et 

al., 2007; Snyder et al., 2005). Long-term potentiation was impaired in these animals, 

which led to memory deficits. This mechanism was thought to explain cognitive 

decline in AD patients. 

However, further research showed that the interaction between Aβ and NMDA 

receptors may be more complicated. While there was a reduction in synaptic NMDA 

receptors, those located extrasynaptically may be overactivated. Application of Aβ 

leads to increased activity of extrasynaptic NMDA receptors (Ferreira et al., 2015; Hsia 
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et al., 1999; Kamenetz et al., 2003; Shankar et al., 2007; Talantova et al., 2013; J. 

Zhang et al., 2014). Subsequently, an excitotoxic cascade may cause a rise in 

intracellular calcium (Ferreira et al., 2015) and lead to synaptic depression and 

dendritic spine loss (Kamenetz et al., 2003; Shankar et al., 2007). These effects were 

observed early in the course of AD and may precede the development of amyloid 

plaques (Hsia et al., 1999).  

Blocking of overactivated NMDA receptors in animal models of AD counteracted the 

intracellular calcium increases (Ferreira et al., 2015), reduced long-term depression (J. 

Zhang et al., 2014) and prevented synaptic damage (Kamenetz et al., 2003; Shankar et 

al., 2007; Talantova et al., 2013). Despite the negative impact of NMDA antagonists 

on long-term potentiation, NMDA receptor antagonists improved the performance of 

treated animals on spatial memory tests and improved the learning process (J. Zhang 

et al., 2014).  

The uncompetitive NMDA receptor antagonist memantine demonstrated positive 

effects on cognition, mood, and the ability to perform daily activities in AD and was 

approved for the treatment of moderately to severely affected  patients with AD. 

Memantine blocks overactivated NMDA receptors while preserving normal 

glutamatergic activity that may lead to a good tolerability of the drug. Additionally, 

memantine preferentially blocks extrasynaptic NMDA receptors which are likely to be 

pathologically up-regulated in AD (Lipton, 2006).  

Some studies also found activated NMDA receptors to be the cause of Aβ 

accumulation (Bordji et al., 2010; Lesné et al., 2005). Such a mechanism could cause a 

vicious circle with increasing accumulation of Aβ, up-regulation of pathological NMDA 

receptors and, ultimately, neuronal degeneration. This led some authors to speculate 

that Aβ may not be directly causative of AD but rather represents a toxic by-product 

of excessive NMDA receptor activation. These complex processes need to be further 

elucidated in the context of other possible mechanisms including accumulation of tau 

protein and neuroinflammation (Hardy and Selkoe, 2002). 
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1.3.7 Other disorders associated with NMDA receptor dysfunction 

Many neurological and psychiatric disorders may be associated with dysfunctional 

NMDA receptors (Kalia et al., 2008). Hypofunction of NMDA receptors as a model of 

schizophrenia has received a lot of attention (Olney, Newcomer and Farber, 1999a). 

Inhibition of NMDA receptors may be a treatment strategy for major depression 

(Barygin et al., 2017; Murrough et al., 2013). Overactivation of NMDA receptors has 

been described in levodopa-induced dyskinesias in Parkinson’s disease, that may be 

treated with amantadine, a noncompetitive NMDA receptor antagonist (Ahmed et al., 

2011). Excitotoxic damage, attributed to dysfunctional NMDA receptors, has been 

proposed in neurodegenerative disorders including Huntington’s disease (Fan and 

Raymond, 2007) and amyotrophic lateral sclerosis (Shaw and Ince, 1997). Riluzole, a 

modulator of NMDA receptor mediated transmission, is approved for treatment of 

amyotrophic lateral sclerosis (Kalia et al., 2008).  

On the other hand, clinical trials of NMDA receptor antagonists in stroke and 

traumatic brain injury failed, possibly because overt blocking of NMDA mediated 

activity may be detrimental for neuronal survival and plasticity during rehabilitation 

(Ikonomidou and Turski, 2002). 

 

1.4 Imaging NMDA receptors in vivo 

1.4.1 Positron emission tomography of NMDA receptors 

Positron emission tomography (PET) allows in vivo imaging of molecular targets in the 

brain (Galovic and Koepp, 2016) and involves the injection of a positron-emitting 

radioligand (tracer) and the detection of coincident gamma waves within a scanner. 

The resulting image represents the spatial distribution of the tracer within the brain 

(Gunn et al., 2015).  
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Using PET with a receptor-specific radioligand can provide insights into the molecular 

functioning of a living human brain. A large number of tracers have been developed 

but only few demonstrated acceptable brain penetration, low-nonspecific binding, 

high affinity, and target selectivity to progress into clinical studies (Gunn et al., 2015).  

Developing radioligands targeting the NMDA receptor has proven particularly 

difficult. Until recently, in vivo imaging of NMDA receptors has not been possible due 

to the lack of a suitable radiotracer (Sobrio et al., 2010). So far, only few tracers were 

tested in humans (Krämer et al., 2018; McGinnity et al., 2014; van der Aart et al., 2018; 

2019; Waterhouse, 2003). Most of these tracers bind to the phencyclidine (PCP) site 

inside of the NMDA receptor, requiring channel opening for the tracer to bind 

(McGinnity et al., 2014; Waterhouse, 2003). 

One study evaluated eight people with mesial temporal lobe epilepsy (MTLE) with 

[11C]ketamine (Kumlien et al., 1999). There was decreased binding in the ipsilateral 

temporal lobe, however the authors could not differentiate whether the changes were 

due to reduced NMDA-receptor density, reduced perfusion, or focal atrophy. 

[11C]CNS-5161 PET was used to measure binding to the PCP site on NMDA receptors 

in 18 patients with Parkinson’s disease with (n=8) or without (n=10) levodopa-induced 

dyskinesias (Ahmed et al., 2011). Both patient groups had similar radioligand binding 

in the OFF state, i.e. withdrawn from levodopa. Dyskinetic patients had higher tracer 

uptake in caudate, putamen, and precentral gyrus in the ON state, i.e. after levodopa 

administration. The results confirm abnormal glutamatergic transmission in motor 

areas following levodopa administration in dyskinetic patients and provide support for 

treatment of dyskinesias with NMDA receptor modulators, e.g. amantadine.  

A structurally related tracer, [123I]CNS-1261, was used in several single photon 

emission tomography (SPET) studies in patients with schizophrenia. The authors found 

reduced left hippocampal tracer uptake in medication free, but not in antipsychotic-

treated, patients with schizophrenia compared to healthy controls (Pilowsky et al., 

2006). The authors also observed global reductions of binding in patients treated with 
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clozapine (Bressan et al., 2005) and in healthy controls receiving ketamine (Stone et 

al., 2008).  

A limitation of studies using 11C-labelled tracers is their short half-life of around 20 

minutes, restricting their use to facilities with an on-site cyclotron. 18F-labelled 

radioligands, with a half-life of around 110 minutes, are more simple to use routinely 

because they can be more widely distributed and offer the potential for longer 

acquisitions.  

[18F]GE-179 was developed as an 18F-labelled structural analogue of [11C]CNS-5161 

(McGinnity et al., 2014; Robins et al., 2010) and was used to study eleven patients with 

focal epilepsy and frequent interictal epileptiform discharges (McGinnity et al., 2015). 

A global increase in [18F]GE-179 uptake was seen in eight epilepsy patients not taking 

antidepressants, whereas three patients taking antidepressants showed a decreased 

tracer uptake. Four epilepsy patients showed focal signal alterations compared to 

controls but the findings were difficult to interpret because of the unclear or multifocal 

epilepsy localisation in these cases.  

In another study reported as an abstract, eight out of ten patients with refractory focal 

epilepsy had focal areas of increased [18F]GE-179 uptake (Vibholm et al., 2017). The 

same authors also observed increased radioligand binding after hippocampal 

electrical stimulation in pigs (Vibholm, Landau, Alstrup, et al., 2020). A successful 

blocking experiment with S-ketamine was performed in rats electrically stimulated in 

the amygdala/hippocampus (Vibholm, Landau, Møller, et al., 2020). These findings 

confirm that [18F]GE-179 is a use-dependent radioligand of the PCP site within the 

open NMDA receptor ion channel (Vibholm, Landau, Møller, et al., 2020).  

 

1.4.2  [18F]GE-179 

The novel NMDA receptor radioligand [18F]GE-179 was developed as a structural 18F-

labelled structural analogue of [11C]CNS-5161 (Robins et al., 2010). It demonstrated 
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affinity to the PCP site inside the open/active ion channel and is, thus, a potential use-

dependent marker of NMDA receptor activation. The radioligand demonstrated high 

selectivity, moderate lipophilicity, high brain uptake, acceptable between-subject 

variability, and suitably rapid washout, making it a good candidate for further human 

studies (McGinnity et al., 2014; Robins et al., 2010).  

GE-179 binding was specific to the NMDA receptor PCP site and did not demonstrate 

significant binding to any of the 60 other receptors, channels, and transporters 

assessed (McGinnity et al., 2014; Robins et al., 2010). The specificity of [18F]GE-179 

binding to the PCP site was validated in vivo in electrically stimulated rats (Vibholm, 

Landau, Møller, et al., 2020). [18F]GE-179 PET detected focally activated NMDA 

receptors following pulsed electrical stimulation in the amygdala/hippocampus that 

was blocked by administration of S-ketamine, confirming the use-dependent 

specificity of the radioligand to the open NMDA receptor ion channel.  

In comparison, demonstrating binding specificity in anaesthetised animals is 

challenging because of the low baseline ion channel activity in sedated rodents 

(McGinnity et al., 2019). Thus, initial blocking experiments in anaesthetised rats and 

rhesus monkeys were not successful (Schoenberger et al., 2017), possibly due to the 

effects of anaesthesia. The use-dependent nature of GE-179 binding may require 

receptor activation/opening to demonstrate allow for blocking experiments and these 

may not be effective in anaesthetised specimen (McGinnity et al., 2019). In the 

absence of ketamine or isoflurane anaesthesia, the GE-179 structural analogues CNS-

5161 and GMOM showed reduced binding after administration of PCP site 

antagonists (Biegon et al., 2007; van der Doef et al., 2016).  

GE-179 had no effect on any cardiovascular parameters in conscious dogs or on 

modified expanded acute toxicity in living rats, with a no-observed-adverse-effect-limit 

(NOAEL) of 316 μg/kg, equivalent to 306-times the expected maximum human clinical 

dose (Source: GE Healthcare plc, unpublished data, on file). CNS-5161, a structural 

analogue of GE-179, was administered in doses up to 2 mg to healthy volunteers 
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(Walters et al., 2002) and up to 0.5 mg in patients with neuropathic pain (Forst et al., 

2007). Most commonly observed side effects were transient increases in blood 

pressure and heart rate, with mild headaches and mild visual disturbances also 

reported by some patients. No adverse effects of [18F]GE-179 administered as a 

radiotracer were observed in a pilot study of healthy volunteers and patients with 

epilepsy (McGinnity et al., 2014; 2015).  



Common Methods                                                                                                                 

   

 

 

 

 

51 

   

 

2 Common Methods 

 

2.1 Participants 

We included participants from four centres (National Hospital for Neurology and 

Neurosurgery [NHNN] London, Addenbrooke's Hospital Cambridge, John Radcliffe 

Hospital Oxford, and St. George's University Hospitals London). The participants were 

recruited as part of three studies; NMDA receptors in epilepsy, stroke, and traumatic 

brain injury (UCL study); Imaging NMDA receptor activation following head injury 

using positron emission tomography (Cambridge study); NMDA receptor binding in 

patients with frequent inter-ictal epileptiform discharges (McGinnity et al., 2014; 2015) 

(Hammersmith study). In brief, the studies can be described as follows.  

Firstly, most participants for this thesis were recruited as part of the UCL study, a large 

and ongoing multi-centre project studying NMDA receptor activation using [18F]GE-

179 PET in health and disease. The final study cohort involved 26 subjects with focal 

epilepsy and five with Anti-NMDA-receptor encephalitis. Additionally, ten healthy 

volunteers were recruited. The study used a Siemens Biograph mMR combined PET-

MR scanner and an image-derived input function (IDIF) with venous blood sampling 

for quantification. 

Secondly, ten healthy volunteers were recruited as part of the ongoing traumatic brain 

injury (TBI) study at Addenbrooke's Hospital in Cambridge. Eight of these volunteers 
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were later rescanned. The Cambridge study used a GE Discovery 690 TOF combined 

PET-CT scanner and an arterial input function for quantification. 

Thirdly, nine healthy volunteers were recruited as part of a pilot study using [18F]GE-

179 PET in Hammersmith (McGinnity et al., 2014; 2015). The study used a 

Siemens/CTI ECAT EXACT HR+ model 962 PET scanner at Hammersmith Hospital 

London and an arterial input function for quantification. 

 

2.1.1 Healthy volunteers 

We included 29 healthy volunteers (10 UCL study, 10 Cambridge study, 9 

Hammersmith study) aged between 25 and 65 years without a history of neurologic or 

psychiatric illness and not taking regular medication. We rescanned eight healthy 

volunteers from the Cambridge study, and the remaining two participants were lost to 

follow-up. Out of these eight rescans, one participant was excluded because of failed 

metabolite analysis and another because of failure of arterial sampling during the 

scan, leaving a total of six rescans for analysis. An overview of demographic 

characteristics is given in Table 2.1. 

 

2.1.2 Patients with epilepsy 

We recruited 27 patients with unilateral focal refractory epilepsy aged between 18 and 

65 years undergoing presurgical evaluation at NHNN. For each individual the 

diagnosis, lateralisation, and localisation of epilepsy was determined by a 

multidisciplinary epilepsy surgery evaluation involving neurologists, 

neurophysiologists, neurosurgeons, neuropsychologists, and psychiatrists specializing 

in epilepsy based on clinical history, neurologic examination results, seizure 

semiology, long-term video-electroencephalography telemetry, MRI, and 
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neuropsychological and psychiatric assessments. [18F]fluorodeoxyglucose(FDG)-PET 

was additionally performed in seven cases.  

The epileptogenic zone was confirmed using intracranial electrode recordings in four 

subjects, and in all of these cases [18F]GE-179 PET was performed before electrode 

implantation. 

ID 
Injected dose 

[MBq] 
Age 

[years] Sex Ethnicity 
HAM 01 188 26 M European 
HAM 02 173 31 M Black 
HAM 03 186 55 M European 
HAM 04 180 37 F European 
HAM 05 184 61 M European 
HAM 06 185 62 F European 
HAM 07 192 25 F European 
HAM 08 189 26 M European 
HAM 09 187 57 M European 
CAM 01 179 36 M European 
CAM 02 173 42 M European 
CAM 03 180 43 M European 
CAM 04 177 28 M European 
CAM 05 196 39 M European 
CAM 06 181 61 M South Asian 
CAM 07 165 27 M Australian 
CAM 08 177 43 M European 
CAM 09 179 47 F European 
CAM 10 171 38 M European 
UCL 01 188 26 M Asian 
UCL 02 188 58 F European 
UCL 03 187 27 M Asian 
UCL 04 195 31 M European 
UCL 05 204 46 F European 
UCL 06 190 63 M European 
UCL 07 187 32 M European 
UCL 08 199 30 M European 
UCL 09 193 46 F Asian 
UCL 10 182 47 F European 

Overview Mean 185 ± 9 Mean 41 ± 13 
72% male 

28% female 
79% European 

21% Other 

 
Table 2.1: Characteristics of healthy volunteers 
HAM, Hammersmith cohort; CAM, Cambridge cohort; UCL, University College London cohort; M, male; F, female 
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Excluded were subjects with (i) unclear or undetermined localisation of the 

epileptogenic zone, (ii) a history of neurologic or psychiatric conditions unrelated to 

epilepsy, (iii) history of traumatic brain injury leading to intracranial injuries, (iv) regular 

or recent (<14 days) use of antidepressants, antipsychotics, illicit substances, ketamine 

or felbamate. One subject was excluded after scanning because of corrupted PET 

images hindering reconstruction, leaving 26 participants with epilepsy in the final 

analysis. 

All patients with epilepsy were scanned on the Siemens Biograph mMR combined 

PET-MR scanner and an image-derived input function with venous blood sampling was 

used for quantification. 

 

2.1.3 Patients with Anti-NMDA-receptor encephalitis 

We recruited five participants with clinically and laboratory-confirmed Anti-NMDA-

receptor encephalitis from John Radcliffe Hospital Oxford (n=3) and St. George's 

University Hospitals London (n=2). Included were those who were recently discharged 

from hospital and able to undergo a 70-minute PET-MR scan. Excluded were subjects 

with a history of neurologic or psychiatric conditions unrelated to the encephalitis and 

those with regular or recent (<14 days) use of antidepressants, antipsychotics, illicit 

substances, ketamine or felbamate. 

All patients with encephalitis were scanned on the Siemens Biograph mMR combined 

PET-MR scanner and an image-derived input function with venous blood sampling was 

used for quantification. 

 

2.2 Regulatory approval 

All studies were approved by the local Research Ethics Committee and the local NHS 

Trust research office. All studies received permission to administer [18F]-GE-179 from 
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the Administration of Radioactive Substances Advisory Committee, U.K. All 

participants provided written, informed consent before participation. 

 

2.3 Image acquisition and reconstruction 

All participants underwent dynamic emission PET scans after intravenous injection of a 

target dose of 185 MBq of [18F]GE-179. 

 

2.3.1 Image acquisition in the UCL study 

The UCL study used a Siemens Biograph mMR combined PET-MR scanner for 

acquisitions of 70-minute dynamic emission scans with a 25.8mm axial field of view. 

The rationale for shortening the scan duration from 90 to 70 minutes and for using an 

image-derived input function was to make the scanning procedure more easily 

applicable in clinical practice, as requested by the study funder (Medical Research 

Council). Our group showed that shortening the scan duration to 70 minutes provides 

images that correlate excellently (Spearman’s rank correlation coefficient 0.99, 95% CI 

0.98 - 0.99, p<0.001) with 90 minute scans and the results were robust for all studied 

subregions (7 distributed regions, Spearman’s rank correlation coefficient ranging 

from 0.98 to 1.00) (McGinnity et al., 2018). Our group also recently proposed a novel 

method to estimate the input function from PET images without the need for arterial 

sampling (Sari et al., 2016). We additionally validated this method (see Project 1 in 

chapter 3) for use in the current study with data from 10 healthy volunteers scanned in 

the Cambridge study. 

List-mode data were initially processed using an in-house motion detection algorithm 

(UCL Institute of Nuclear Medicine, in preparation for publication). In brief, an 

algorithm semi-automatically detected sudden changes in three most relevant 

principal components of the PET signal. These sudden changes most likely correspond 
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to sudden head movements. Thus, the frame timing was individually adapted to 

exclude these typically short (duration between seconds to max. 1 min) signal 

alterations and reduce the effect of interframe sudden head movement. This resulted 

in a variable number of 45 to 54 frames. The larger number of short frames during the 

first two minutes after radioligand injection was important to allow accurate estimation 

of the peak of an image-derived input function. Data were reconstructed with a 3-

dimensional filtered backprojection to voxel sizes of 1.402 x 1.402 x 2.032 mm. A 

mean resolution of 6.8mm full width at half maximum (FWHM) was estimated using 

phantom measurements. 

Each subject underwent 3T brain MRI on the Siemens Biograph mMR combined PET-

MR scanner (Siemens Healthineers, Erlangen, Germany). The MR protocol included a 

high-resolution volumetric T1-weighted sequence (MPRAGE) with 2000 ms repetition 

time, 2.92 ms echo time, 256 x 256 matrix, and 1.1 x 1.1 x 1.1 mm voxels. We also 

performed a arterial time-of-flight magnetic resonance angiography (TOF-MRA) 

sequence that included the carotid arteries with 22ms repetition time, 4.17ms echo 

time, 256 x 256 matrix, and 0.625 x 0.625 x 2mm voxels. A T2-weighted 3D SPACE 

sequence was acquired with 5000 ms repetition time, 402 ms echo time, 64 x 64 

matrix, and 1.1 x 1.1 x 1.1 mm voxels. 

Venous samples were obtained 7, 12, 22, 42, and 62 minutes after injection. Samples 

were analysed for radiolabelled metabolites using high-performance liquid 

chromatography and for total radioactivity in whole blood and plasma. 

 

2.3.2 Image acquisition in the Cambridge study 

The Cambridge study used a GE Discovery 690 TOF combined PET-CT scanner for 

acquisitions of 90-minute dynamic emission scans with a 15.4 mm axial field of view. 

Data were reconstructed with a 3-dimensional filtered backprojection to 58 frames 
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with voxel sizes of 2.000 x 2.000 x 3.270 mm. A mean resolution of 4.98mm full width 

at half maximum (FWHM) was previously estimated. (Bettinardi et al., 2011) 

Each subject underwent 3T brain MRI on a Siemens Trio or Skyra system (Siemens 

Healthineers, Erlangen, Germany). The MR protocol included a high-resolution 

volumetric T1-weighted sequence (MPRAGE), as well as an arterial time-of-flight 

magnetic resonance angiography (TOF-MRA) sequence that included the carotid 

arteries. 

Arterial blood from the radial artery was continuously sampled for the first 6.5 minutes 

of the scan with an Allogg ABSS on-line detector (Allogg AB, Mariefred, Sweden), with 

two discrete samples (30 sec and 4.5 minutes) taken beyond the on-line counter for 

cross-calibration against the well counter and plasma-to-whole blood ratio 

determination. Discrete arterial samples were also taken at 10, 15 and 20 minutes 

post-injection, and at 10 minute intervals thereafter. Venous samples were collected 

through a cannula placed in the elbow opposite the injection site at 7, 12, 22, 42, and 

62 minutes following injection. The radioactivity concentration in whole blood and 

plasma for all discrete blood samples was determined with a Hidex Triathler well 

counter (Hidex, Turku, Finland) cross-calibrated to the PET/CT scanner. The fraction of 

parent tracer in plasma for 6 arterial plasma samples (4.5, 10, 20, 40, 60, and 90 

minutes post-injection). Samples were analysed for radiolabelled metabolites using 

high-performance liquid chromatography and for total radioactivity in whole blood 

and plasma. 

 

2.3.3 Image acquisition in the Hammersmith study 

The Hammersmith study used a Siemens/CTI ECAT EXACT HR+ model 962 PET 

scanner for acquisitions of 90-minute dynamic emission scans with a 15.5 mm axial 

field of view. Data were reconstructed with a 2-dimensional filtered back-projection to 
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34 frames with voxel sizes of 2.092 x 2.092 x 2.420 mm. A mean resolution of 4.75mm 

FWHM was previously estimated. (Spinks et al., 2000) 

3D Volumetric T1-weighted coronal SPGR MRI sequences were acquired to exclude 

relevant intracranial structural abnormality and for co-registration with the PET images, 

using a GE Signa 3T HDx system (General Electric, Waukshua, WI, U.S.A.) with a voxel 

size of 0.938 mm x 1.100 mm x 0.938 mm. Coronal T2 and FLAIR were also acquired 

for each participant.  

Arterial samples were obtained continuously for the first 7 minutes and at 10 discreet 

samples afterwards. Venous samples were obtained 7, 12, 22, 42, and 62 minutes 

after injection in 10 out of 18 scans. Samples were analysed for radiolabelled 

metabolites using high-performance liquid chromatography and for total radioactivity 

in whole blood and plasma. 

 

2.4 Fitting of blood data 

We used in-house software (UCL Institute of Nuclear Medicine) running in Matlab 9.2 

to fit input functions, parent fractions and plasma-over-whole-blood (POB) ratios.  

For each participant, the POB ratio was fitted with a function as follow: 

𝑓(𝑡) = 𝑒!"!	∙	% 	 ∙ 𝑥& +	𝑥' 

[Where 0 < x1, 0 < x2, 0 < x3, t is the scan time; x1 ... x3 are the model parameters; f 

POB ratio of [18F]GE-179 at scan time t]. 

For each participant, the fraction of plasma radioactivity attributable to the parent 

[18F]GE-179 was fitted with a Hill type function (Gunn et al., 1998) as follows: 

𝑓(𝑡) = 1 +	
𝑡"! ∙ (𝑥& − 1)
𝑡"! + 𝑥'
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[Where 0 < x1, 0 ≤ x2 < 1, 0 < x3, t is the scan time; x1 ... x4 are the model parameters; f 

parent fraction of [18F]GE-179 at scan time t]. 

The input function (arterial or image-derived) was fitted after correction for parent 

fraction and POB ratio with Feng’s input function model (Feng et al., 1993), which 

consists of the sum of a gamma-variate function and two exponentials. 

 

2.5 Estimation of an image-derived input function 

2.5.1 Theoretical background and rationale 

We aimed to develop and validate a method for the quantification of [18F]GE-179 

binding that is independent of arterial blood sampling. Arterial sampling is invasive, 

laborious, uncomfortable, but generally safe (Zanotti-Fregonara, Chen, et al., 2011). 

Such an invasive approach discourages participation in research studies and hinders 

the translation of methods into a clinical setting, where arterial sampling usually is not 

available.  

A recent publication from our group evaluated  two available options (McGinnity et 

al., 2018), the calculation of standardized uptake value (SUV) images and the use of a 

population based input function. SUV images calculated over the interval of 60 to 70 

minutes had a Spearman’s correlation coefficient of 0.76 with arterial input function 

(AIF) images. A population-based input function provided a higher correlation (0.90) 

with AIF images, but there was a large variability of differences in volume of 

distribution estimates as demonstrated by Bland-Altman plots. Both proposed 

methods failed to replicate findings observed in a pilot project involving epilepsy 

patients (McGinnity et al., 2015). There is no suitable reference region devoid of 

NMDA receptors.  

Thus, we aimed to develop and validate an alternative method using an IDIF, as 

recently proposed by our group (Sari et al., 2016). IDIFs have been used as a 
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noninvasive alternative for several years, but practical challenges remain regarding the 

identification of blood vessels, correction for partial volume effects, and determining 

the parent fraction of the tracer in plasma (Zanotti-Fregonara, Chen, et al., 2011). 

Methods validated on a different tracer or scanner set-up might not be generalizable 

and need to be re-validated for each specific study (Zanotti-Fregonara, Liow, et al., 

2011).  

Our method (Sari et al., 2016) uses arterial time-of-flight (TOF) MRI imaging to 

delineate the location of carotid arteries. However, it does not account for tracer 

metabolism or tracer binding in plasma. Thus, we modified this method by including 

data from venous blood samples in the kinetic modelling. We used a robust partial 

volume correction (PVC) method to correct for spill-out and spill-in effects due to the 

small size of carotid arteries compared to the scanner resolution (Erlandsson and 

Hutton, 2014). The single target correction method requires the segmentation of one 

single volume of interest (i.e. the carotid arteries) and does not need segmentation of 

background areas, making it less labour-intensive than comparable methods.  

PVC is particularly important to correctly detect the radioactivity peak following tracer 

injection. However, the method is of limited value during steady state with 

comparable radioactivity concentrations between soft tissues and blood vessels, as it 

might be susceptible to reinforce noise in images. Thus, PVC was used only for the 

initial 3.5 minutes after tracer injection to capture the radioactivity peak and 

uncorrected values were used for the remainder of the acquisition. The 3.5 minute 

interval was chosen as the time point when intra-carotid and tissue (background) 

activity started to overlap. We also adjusted the image-derived concentrations in the 

carotid arteries for a delay occurring when measuring arterial blood drawn from the 

radial artery, as described previously (Sari et al., 2016).  

A previous study by our group showed different tracer metabolism in epilepsy patients 

versus healthy controls, probably due to intake of antiepileptic drugs in the patient 

group (McGinnity et al., 2015). Thus, we obtained 5 discrete venous samples as 
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described above to estimate the parent fraction and to correct for the POB ratio. This 

also allowed us to calibrate the IDIF with a single venous sample, as has been 

previously proposed (Zanotti-Fregonara, Chen, et al., 2011). We used the latest 

venous sample obtained (i.e. 62 minutes after radioligand injection) as the correlation 

between arterial and venous radioactivity increases with scan duration.  

 

2.5.2 Carotid artery segmentation 

We used arterial TOF MRI scans, that provide an excellent separation of arteries from 

background, for segmentation of carotid arteries. We used a semi-automated region-

growing algorithm with intensity constraints implemented in MRIcron 

(https://people.cas.sc.edu/rorden/mricron/index.html). We manually adjusted all 

segmentations in a slice-by-slice manner to segment the internal carotid artery and 

visible parts of the common carotid artery only. We did not segment other arteries, 

e.g. the vertebral arteries, because of their smaller size that increases the potential for 

partial volume effects. We segmented the internal carotid artery in the cervical, 

petrous, and cavernous segments. We excluded the carotid siphon and cerebral 

segment of the internal carotid artery, because of the sigmoid vessel shape and 

proximity to parts of the temporal lobe, that might make intra-vessel signal estimates 

less accurate and more prone to spill-in effects from brain tissue.  

 

2.5.3 Coregistration of intra-modal images 

We used the linear registration algorithm implemented in Statistical Parametric 

Mapping 12 (SPM12, Wellcome Centre for Human Neuroimaging) to coregister PET, 

T1 and TOF images. The simultaneous acquisition of PET and MR images on the 

combined PET-MR scanner in the UCL study provided am excellent starting point for 

coregistration between PET and MR modalities. First, we coregistered PET into the 

space of T1 because of the superior spatial resolution of structural MR imaging. As a 
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next step, we coregistered T1 to TOF and applied the transformations to the dynamic 

PET series. 

 

2.5.4 Measuring and processing radioactivity concentration in the 

carotid arteries 

We used the single target partial volume correction method with 10 iterations to 

correct for spill-out and spill-in effects due to the small size of carotid arteries 

compared to the scanner resolution (Erlandsson and Hutton, 2014). We used PVC for 

the initial 3.5 minutes after tracer injection to capture the radioactivity peak and 

obtained uncorrected values for the remainder of the acquisition to reduce the impact 

of noise introduced by PVC.  

Next, we determined a mean delay between radioactivity arriving in the carotid 

arteries and detected in blood drawn from the radial artery, as described previously 

(Sari et al., 2016). We shifted each participants curve to match the activity obtained 

from the radial artery and determined a mean delay of 16.4 s ± 4.5 s that was 

subsequently applied to all participants in a later step. 

The availability of venous blood samples allowed us to calibrate each individual’s 

image-derived measurements with blood data. We correlated late (62min) venous 

samples with the corresponding arterial radioactivity measurements and modelled the 

venous to arterial radioactivity conversion using a linear model. We then calculated 

the estimated arterial radioactivity per subject using this model and scaled the image-

derived measurements to match this target value. 

Lastly, we fit Feng’s input function model (Feng et al., 1993) including venous parent 

fraction and POB data to obtain an IDIF. 
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2.6 Image preprocessing and modelling 

2.6.1 Smoothing 

PET scans were acquired at three different sites (UCL, Cambridge, and Hammersmith 

studies) with different scanner equipment. A large proportion of between-scanner 

differences can be attributed to resolution. We applied a high frequency correction 

using smoothing, as proposed earlier (Joshi et al., 2009), to correct for these 

differences and to adjust all data to the same target resolution. 

 

2.6.2 Flipping 

Data in people with epilepsy are influenced by the lateralisation of the epileptic focus. 

In our epilepsy sample, there was an equal proportion of left- and right-lateralised 

cases. We flipped all data of right-lateralised cases before image spatial preprocessing 

and used a symmetrical DARTEL normalisation template. To prevent bias introduced 

through flipping, we also flipped a randomly selected half of all healthy volunteer 

data. We used flipped volunteer data only for comparisons with epilepsy patients. 

 

2.6.3 Rigid motion correction 

Attenuation and scatter-corrected dynamic PET images were corrected for head 

motion using a post hoc frame-to-frame realignment method, implemented in SPM12. 

For each subject, an early frame with high signal-to-noise ratio and little evidence of 

movement was selected as the reference frame and all subsequent frames were rigidly 

realigned to this reference. The frames within the first 3 minutes after radioligand 

injection were not realigned due to low signal-to-noise ratio. 
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2.6.4 Inter-modal coregistration 

We combined the motion-corrected dynamic PET images to a summation image that 

was linearly coregistered to the T1 structural MR image using SPM12. The 

transformations were then applied to all realigned PET frames. 

 

2.6.5 Structural parcellation 

We used an algorithm based on Geodesic Information Flows (GIF) (Cardoso et al., 

2015) freely available within the NiftyWeb service tool (University College London 

Centre for Medical Image Computing; http:// niftyweb.cs.ucl.ac.uk/) for parcellation of 

brain structures on T1 scans. We combined this parcellation with an image 

segmentation obtained using the Unified Segmentation procedure in SPM12 and 

added classes of cerebrospinal fluid, soft tissue, skull and air. The parcellation was 

simplified into 71 structures by combining smaller regions into larger areas. A second 

atlas was created by combining these areas into cerebral lobes, white matter, 

cerebellum and brainstem. 

We segmented surgical resections using in-house software by comparing post- with 

presurgical T1 scans and iteratively extracting an empirical prior for an atypical tissue 

class, i.e. the resection. This procedure is based on an established lesion-

segmentation algorithm (Seghier et al., 2008) and has been described in detail 

previously (Galovic, Baudracco, et al., 2019). All cavity masks were subsequently 

checked and, if necessary, manually refined by an investigator (MG). Lesions in 

epilepsy patients were manually segmented by an investigator (MG). Resections and 

lesions were added as a tissue class to the whole-brain parcellation. 
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2.6.6 Partial volume correction 

The quantification of PET images is affected by the partial volume effect that is related 

to the limited spatial resolution of usually 5 to 6mm FWHM for modern scanners 

(Erlandsson et al., 2016). This results in a blurring of the image and to a tissue fraction 

effect, occurring when a single voxel contains several tissues. These can lead to spill-in 

or spill-out of activity in neighbouring regions. Particularly affected are small regions in 

close proximity to cerebrospinal fluid or white matter, e.g. the hippocampus.  

Several correction methods have been proposed that utilize structural information 

from high-resolution MR imaging to compensate for partial volume effects due to low 

resolution PET. We used the iterative Yang method (Erlandsson et al., 2012) 

implemented in the PET-PVC toolbox developed in-house (Thomas et al., 2016) for 

adjusting of whole brain data. The modified GIF parcellation (see above) was used for 

structural tissue information. As described above, data in carotid arteries for the 

estimation of an IDIF were corrected using single-target correction. 

 

2.6.7 Modelling 

We extracted time activity curves of the parcellated regions from partial volume 

corrected dynamic PET images. As described previously (McGinnity et al., 2014), we 

used 2-brain-compartment 4-rate-constant (2c4k) full kinetic models with a variable 

blood volume component to quantify [18F]GE-179 cerebral tissue kinetics. We 

calculated volume of distribution (VT) estimates for each region.  

Additionally we computed VT for each scan on a voxel level using Logan graphical 

analysis (Logan et al., 1990). Short frame intervals in the NEST study during the first 3 

minutes after tracer injection were necessary to provide accurate estimates of the 

radioactivity peak in carotid arteries. However, these short frames might introduce 

additional noise that results in inaccurate VT estimates. We implemented an additional 

“temporal smoothing” step that summed short PET frames and effectively reduced 
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noise. We also applied a median filter to effectively remove noise introduced by 

inaccurate VT estimates in single voxels.  

 

2.6.8 Spatial normalization 

We used the Computational anatomy 12 toolbox (CAT12, http://www.neuro.uni-

jena.de/cat/) in SPM12 to segment and nonlinearly register all T1 images to a DARTEL 

template. We applied the same transformations to VT images. Lesions were cost-

function masked prior to spatial processing to reduce their effect on normalisation 

(Brett et al., 2001).  

Cost-function masked postsurgical images were first nonlinearly coregistered to the 

participant’s presurgical scan. The normalisation transformations estimated using the 

presurgical image were then applied to the coregistered postsurgical scan. This 

procedure ensured a high accuracy despite large resections, as has been described 

previously (Galovic, Baudracco, et al., 2019).  

Normalised grey matter segmentations and VT images were masked to grey matter 

only, also masking any lesions or resections. An 8mm FWMH smoothing kernel was 

applied to both image modalities. 

 

2.7 Statistical analysis 

2.7.1 Numerical data 

Categorical variables are presented as N (%), continuous variables as mean ± standard 

deviation. We used the general linear model implemented in SPSS (version 24.0; IBM 

Corp) to compute the association of global or regional VT values with group allocation 

(e.g. patient vs. control) or clinical parameters. All models were corrected for age, sex, 
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and scanner equipment (UCL, Cambridge or Hammersmith scanner). A p-value below 

0.05 was considered significant. 

 

2.7.2 Imaging data 

Voxelwise data (VT images and grey matter segmentations) were analysed using full 

factorial linear models implemented in SPM12. All models were adjusted for age, sex, 

and scanner equipment (UCL, Cambridge or Hammersmith scanner). Results are 

reported at a clusterwise threshold of p<0.05, family-wise error corrected for multiple 

comparisons. 
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3 Project 1: Development 
and validation of an input 
function independent of 
arterial sampling. 

3.1 Introduction 

PET imaging has been used in the past 30 years to non-invasively image targets in the 

human brain. An ever-increasing number of radioligands have been developed (Gunn 

et al., 2015), although only a small fraction of the more than 70 tracers tested in 

humans has been used routinely. Complicated methodological set-up was, besides 

tracer availability and costs, one of the factors hindering the translation of research 

findings into routine clinical scanning.  

We recently described the first-in-human use of [18F]GE-179, a PET radioligand 

selectively binding to the NMDA receptor complex (McGinnity et al., 2014). NMDA 

receptors are not only involved in memory and synaptogenesis, but also have a 

proposed role in excitotoxicity and might contribute to epilepsy, Alzheimer’s and 

Huntington’s disease, and psychosis (Bordji et al., 2010; Cooke and Bliss, 2006b; Fan 

and Raymond, 2007; McGinnity et al., 2015; Olney, Newcomer and Farber, 1999a; 

Rothman and Olney, 1995).NMDA receptor blockers have been used to treat seizures, 
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Alzheimer’s disease or refractory depression (Lipton, 2006; Murrough et al., 2013; 

Pellock et al., 2006). We showed increased [18F]GE-179 uptake in brains of people with 

epilepsy, suggesting an increased activation of NMDA receptors (McGinnity et al., 

2015).  

Several ongoing studies are using [18F]GE-179 but a wide utilisation is limited by the 

need for arterial blood sampling for full quantification of tracer binding. Blood 

sampling from the radial artery is associated with local pain and bruising and carries 

the potential, albeit rare, risks of haemorrhage or thrombosis (Zanotti-Fregonara, 

Chen, et al., 2011). Thus, this invasive and labour-intensive method is not favoured in 

routine practice. A reference region devoid of NMDA receptors is not available 

(McGinnity et al., 2014). Standardised uptake value (SUV) images or a population-

based input function did not provide accurate quantification (McGinnity et al., 2018). 

We have previously proposed a procedure to estimate an image-derived input 

function (IDIF) for molecular imaging quantification independent of arterial blood 

sampling (Sari et al., 2016). However, this method cannot distinguish the fraction of 

the parent compound in plasma from total blood activity and is, thus, of limited use in 

tracers with relevant metabolism. 

Here, we complement this method by including discrete venous samples that allow 

correction for parent fraction and plasma-over-blood (POB) ratios. We validate the 

combined procedure for the [18F]GE-179 tracer showing high correlation between our 

approach and arterial input function.  

 

3.2 Methods 

The methods are described in detail in Chapter 2.  

In brief, we studied 10 healthy volunteers at Addenbrooke’s Hospital in Cambridge, 

UK. Dynamic PET images were acquired on a GE Discovery 690 TOF combined PET-

CT scanner after injection of a target 185 MBq of [18F]GE-179. We obtained arterial 
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blood samples continuously from the radial artery for the first 6.5 minutes and at 10 

discreet intervals thereafter. Venous samples were collected through a cannula placed 

in the elbow opposite the injection site 7, 12, 22, 42, and 62 minutes after injection. 

The same procedures were used for fitting of the arterial and venous parent fraction, 

POB ratio, and both input functions. 

We segmented the internal carotid artery (cervical, petrous, and cavernous segments) 

on TOF MRI scans. We linearly coregistered the dynamic PET data and T1 MRI data 

into TOF image space. We used single target PVC (Erlandsson and Hutton, 2014) for 

the initial 3.5 minutes for estimating the peak of the input function and used 

uncorrected data for the remainder of the scan to reduce noise. The image-derived 

radioactivity in the carotid arteries was then shifted by a previously estimated mean 

delay of 16.4 seconds to match arterial data. We calibrated the image-derived data 

with the 62-minute venous sample radioactivity. The rationale for this processing is 

described in chapter 2.5.1. 

Imaging data was preprocessed and modelled as described in chapter 2.6. We used a 

modified GIF-atlas encompassing 11 distinct brain regions. We selected brain regions 

as representative for different cortical, subcortical, white matter, and infratentorial 

structures that might be representative for different patterns of brain tracer binding 

(McGinnity et al., 2014). The data in these regions was modelled using a 2c4k full 

kinetic model and VT was estimated for each region. 

We calculated the area under the curve (AUC) for the fits of parent fraction, POB ratio, 

and input function. We interpolated radioactivity measurements in the radial artery to 

a time of 60 minutes using the fit of the Feng function (Feng et al., 1993) and 

compared it to venous radioactivity in the sample obtained 62 minutes after injection,  
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Figure 3.1: Comparison of arterial and IDIF + venous measurements 

Comparison of the areas under the fitted curves (AUC) for arterial and venous parent fraction (panel A) and 
plasma-to-whole blood ratio (panel B), together with the final input function (panel C). On each plot the dotted 
line is the linear regression fit, the grey line indicates the line of unity. The comparison of the mean shapes of the 
arterial and IDIF + venous input functions is displayed in panel D. The light orange/blue areas denote the 
corresponding 95% confidence intervals. 
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assuming a 2 minute delay between arterial and venous data due to tissue diffusion. 

We compared AUCs, radioactivity counts, and regional VT estimates between arterial 

and venous/image-derived data using Pearson’s correlation coefficient (r). 

Additionally, Bland-Altman plots were used to compare VT estimates. We estimated 

the regional and global coefficient of variation (CoV) for VT estimates modelled using 

the arterial (AIF) or image-derived (IDIF) input functions. 

Additionally, we evaluated the effect of reducing venous sampling to only the late 

sample obtained 62 minutes after the injection. This approach required determination 

of population-based estimates of the x1 and x3 parameters that determine the shape 

of POB ratio and parent fraction curves (see chapter 2.4). The remaining x2 parameter, 

determining the amplitude of the curve, was then estimated using the single venous 

sample. The remaining blood data processing was left unchanged. 

 

3.3 Results 

3.3.1 Standard analysis 

The demographic characteristics of the studied 10 healthy volunteers are listed in 

Table 2.1. There was a high correlation between the areas under the curve fits of 

arterial (mean 31 ± 10) and venous (mean 31 ± 10) parent fraction measurements (r = 

0.99, p<0.001, Figure 3.1A). There was a high correlation between AUCs of arterial 

(mean 111 ± 9) and venous (mean 109 ± 8) POB measurements (r = 0.93, p<0.001, 

Figure 3.1B).  

The mean differences in measured whole blood radioactivity in arterial and venous 

samples declined over time (Figure 3.2A, 5 min 0.52 kBq/ml [0.25-0.80], 10 min 0.24 

[0.15-0.34], 20 min 0.17 [0.11-0.23], 40 min 0.10 [0.06-0.14], 60 min 0.07 [0.04-0.10]). 

The highest correlation was observed between the arterial 60-minute (1.23 kBq/ml ± 

0.29) and venous 62-minute (1.17 kBq/ml ± 0.29) radioactivity concentrations (r = 0.99, 



Project 1: Development and validation of an input function independent of arterial sampling.                                   

   

 

 

 

 

73 

   

 

 p<0.001, Figure 3.2F). We fitted a linear model to scale 62-minute venous to 60-

minute arterial radioactivity concentrations (Activityarterial = Activityvenous * 0.987 + 

0.082), that was later applied to calibrate the image-derived data. 

There was high correlation of AUCs of fitted AIF (73 ± 16) and IDIF+venous (74 ± 17) 

corrected for parent fraction and POB ratio (r = 0.92, p<0.001, Figure 3.1C). A plot of 

 

Figure 3.2: Comparison of arterial and venous radioactivity concentrations 

The mean difference between arterial and venous radioactivity concentrations at times t and t + 2 minutes 
respectively is displayed in panel A. Vertical bars denote 95% confidence intervals. Scatter plots of arterial vs. 
venous radioactivity concentration for arterial sampling times of 5, 10, 20, 40, and 60 minutes post-injection are 
displayed in panels B to F. On each plot the dotted line is the linear regression fit, the grey line indicates the line 
of unity. 
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arterial and image-derived calibrated and delay-corrected radioactivity concentrations 

is displayed in Figure 3.1D and shows good overlap between the curve shapes. 

Regional VT estimates obtained using arterial or image-derived input functions are 

presented in Table 3.1. There was a high correlation of an overall 110 (11 regions in 

10 subjects) VT estimates between AIF- and IDIF-modelled data (mean VT AIF 9.7 ± 2.2 

vs. IDIF+venous 9.5 ± 2.2, r = 0.95, p<0.001). The mean correlations remained high 

when splitting the data per region (mean r 0.94 ± 0.02, Figure 3.3A) or per subject 

(mean r 0.94 ± 0.08, Figure 3.3B). A Bland Altman plot comparing VT estimates 

obtained using AIF- and IDIF-modelled data is displayed in Figure 3.3C. There was a 

small between-method mean difference of VT estimates of -1.7%, with a 95% 

confidence interval of differences ranging from -15.9% to 12.4%. The regional  

 

 
 AIF IDIF – all venous samples 

r coefficient p value 
VT estimate 
(mean ± SD) 

CoV 
(%) 

VT estimate 
(mean ± SD) 

CoV 
(%) 

WM brain 9.2 ± 2.1 23.2 9.0 ± 2.0 21.8 0.94 <0.001 
WM cerebellum 9.3 ± 2.0 21.4 9.2 ± 1.9 20.9 0.94 <0.001 
GM cerebellum 8.8 ± 1.9 21.5 8.8 ± 1.9 22.1 0.96 <0.001 
Brainstem 8.7 ± 1.7 19.1 8.6 ± 1.8 20.4 0.94 <0.001 
Thalamus 11.9 ± 2.6 21.5 12.0 ± 2.6 21.7 0.95 <0.001 
Putamen 11.3 ± 2.5 22.3 11.2 ± 2.5 22.5 0.97 <0.001 
Precentral gyrus 9.2 ± 1.9 21.0 8.8 ± 1.8 20.8 0.89 0.001 
Parahippocampal gyrus 8.6 ± 2.3 27.2 8.4 ± 2.2 26.5 0.93 <0.001 
Occipital lobe 9.2 ± 1.7 18.2 9.0 ± 1.7 18.6 0.92 <0.001 
Precuneus 10.0 ± 1.9 19.3 9.7 ± 2.0 20.6 0.92 <0.001 
Insular cortex 10.1 ± 1.9 19.3 9.9 ± 2.0 20.4 0.94 <0.001 
Overall 9.7 ± 2.2 21.3 ± 2.5 9.5 ± 2.2 21.5 ± 2.0 0.95 <0.001 

 
Table 3.1: Regional VT estimates obtained with an arterial and venous/image-derived input 
function. 
AIF, arterial input function; IDIF, image-derived input function; VT, volume of distribution; CoV, coefficient of 
variation; r coefficient, Pearson’s correlation coefficient; SD, standard deviation; WM, white matter; GM, grey 
matter. 
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Figure 3.3: Comparison of total volume of distribution estimates modelled with arterial or 
IDIF + venous input functions 

Scatter plots of total volume of distribution (VT) estimates obtained with arterial and IDIF + venous input functions 
are displayed in panel A (split by region) and B (split by patient). The red dotted line is the linear regression fit, the 
grey line indicates the line of unity. Panel C displays a Bland-Altman plot comparing VT estimates modelled with 
arterial and IDIF + venous input functions. The thick black line is the mean bias of the VT estimates modelled using 
an IDIF + venous input function, the dotted black lines denote the 95% confidence intervals. 

 

0

5

10

15

20

25

0 5 10 15 20 25

V T
ID

IF
[m

l/c
m

3 ]

VT AIF [ml/cm3]

Vt arterial vs venous

WM brain

WM cerebellum

GM cerebellum

Brainstem

Thalamus

Putamen

Precentral gyrus

Parahippocampal gyrus

Occipital lobe

Precuneus

Insular cortex

Series13

Linear (Series13) 0

5

10

15

20

25

0 5 10 15 20 25

V T
ID

IF
[m

l/c
m

3 ]
VT AIF [ml/cm3]

Vt arterial vs venous

WM brain

WM cerebellum

GM cerebellum

Brainstem

Thalamus

Putamen

Precentral gyrus

Parahippocampal gyrus

Occipital lobe

Precuneus

Insular cortex

Series13

Linear (Series13)

A VT estimates split by region VT estimates split by subject

C

B

0

5

10

15

20

25

0 5 10 15 20 25
V T

ID
IF

VT AIF

Vt arterial vs venous

WM brain

WM cerebellum

GM cerebellum

Brainstem

Thalamus

Putamen

Precentral gyrus

Parahippocampal gyrus

Occipital lobe

Precuneus

Insular cortex

Series13

Linear (Series13)

0

5

10

15

20

25

0 5 10 15 20 25

V T
ID

IF

VT AIF

Vt arterial vs venous

WM brain

WM cerebellum

GM cerebellum

Brainstem

Thalamus

Putamen

Precentral gyrus

Parahippocampal gyrus

Occipital lobe

Precuneus

Insular cortex

Series13

Linear (Series13)

Bland Altman plot comparing AIF and IDIF modelled VT estimates

+1.96 SD

mean

-1.96 SD

0

5

10

15

20

25

0 5 10 15 20 25

VT
 ID

IF

VT AIF

Vt arterial vs venous

CAM 01

CAM 02

CAM 03

CAM 04

CAM 05

CAM 06

CAM 07

CAM 08

CAM 09

CAM 10

Series13

Linear (Series13)

0

5

10

15

20

25

0 5 10 15 20 25

VT
 ID

IF
VT AIF

Vt arterial vs venous

CAM 01

CAM 02

CAM 03

CAM 04

CAM 05

CAM 06

CAM 07

CAM 08

CAM 09

CAM 10

Series13

Linear (Series13)

0

5

10

15

20

25

0 5 10 15 20 25

VT
 ID

IF

VT AIF

Vt arterial vs venous

CAM 01

CAM 02

CAM 03

CAM 04

CAM 05

CAM 06

CAM 07

CAM 08

CAM 09

CAM 10

Series13

Linear (Series13)

-50

-40

-30

-20

-10

0

10

20

30

40

50

0 2 4 6 8 10 12 14 16 18 20

D
iff

er
en

ce
 in

 V
T

[%
 m

L/
cm

3 ]

Mean VT [mL/cm3]

Bland Altman plot: Vt arterial vs. venous

Mean_diff

Lower_CI_diff

Upper_CI_diff

zero_line

V01_2

V02_2

V03_2

V04_1

V05_2

V06_2

V07_1

V08_1

V09_1

V10_1



Project 1: Development and validation of an input function independent of arterial sampling.                                     

  

 

 

 

 

76 

 

 

coefficients of variation between AIF- and IDIF-modelled data were comparable (mean 

CoV AIF 21.3% ± 2.5% vs. IDIF 21.5% ± 2.0%, t = -0.8, p=0.46). 

 

3.3.2 Simplification to one venous sample 

We also assessed the performance of the standard venous/IDIF approach described 

above with a simplified procedure using only a 62-minute venous sample. Using this 

procedure, there was a lower correlation between the areas under the curve of parent 

fraction measurements (single venous sample 32 ± 8 vs. arterial 31 ± 10 min, r = 0.96, 

p<0.001, Figure 3.4A), POB estimates (single venous sample 107 ± 9 vs. arterial 111 ± 

9 min, r = 0.91, p<0.001, Figure 3.4B) and input functions (single venous sample 73 ± 

13 vs. arterial 73 ± 16 kBq.min/mL, r = 0.81, p=0.005, Figure 3.4C). 

Regional VT estimates obtained using the simplified image-derived input function are 

presented in Table 3.2. There was a lower correlation between arterial and IDIF + 

single venous sample modelled data (mean VT: arterial 9.7 ± 2.2 vs. IDIF + single 

 

Figure 3.4: Comparison of arterial and IDIF + single venous sample measurements 

Comparison of the areas under the fitted curves (AUC) for arterial and single venous sample parent fraction (panel 
A) and plasma-to-whole blood ratio (panel B), together with the final input function (panel C). The dotted line is 
the linear regression fit, the grey line indicates the line of unity.  
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venous 10.7 ± 2.7, r = 0.71, p<0.001). The mean correlations were also lower when 

splitting the data per region (mean r 0.64 ± 0.13, Figure 3.5A) or per subject (mean r 

0.89 ± 0.08, Figure 3.5B). The Bland Altman plot detected a mean difference of VT 

estimates of 9.9%, with a 95% confidence interval of differences ranging from -23.9% 

to 43.7% (Figure 3.5C). The simplified IDIF + single venous sample modelled data had 

similar coefficients of variation of VT compared to arterial-based data (mean VT CoV: 

arterial 21.3% ± 2.5% vs. IDIF + single venous 21.5% ± 5.7%, t = 0.2, p=0.87). 

 

  

 
 AIF IDIF – single venous  sample 

r coefficient p value 
VT estimate 
(mean ± SD) 

CoV 
(%) 

VT estimate 
(mean ± SD) 

CoV 
(%) 

WM brain 9.2 ± 2.1 23.2 9.3 ± 1.7 18.1 0.76 0.01 
WM cerebellum 9.3 ± 2.0 21.4 9.6 ± 1.7 17.8 0.68 0.03 
GM cerebellum 8.8 ± 1.9 21.5 9.4 ± 1.8 19.5 0.69 0.03 
Brainstem 8.7 ± 1.7 19.1 9.0 ± 1.7 18.5 0.63 0.05 
Thalamus 11.9 ± 2.6 21.5 13.8 ± 2.4 17.7 0.71 0.02 
Putamen 11.3 ± 2.5 22.3 12.3 ± 2.5 20.5 0.72 0.02 
Precentral gyrus 9.2 ± 1.9 21.0 10.8 ± 2.3 21.7 0.47 0.17 
Parahippocampal gyrus 8.6 ± 2.3 27.2 9.3 ± 3.5 37.4 0.86 0.002 
Occipital lobe 9.2 ± 1.7 18.2 10.7 ± 1.9 17.6 0.44 0.21 
Precuneus 10.0 ± 1.9 19.3 12.0 ± 2.6 22.0 0.52 0.13 
Insular cortex 10.1 ± 1.9 19.3 11.5 ± 2.4 20.9 0.52 0.12 
Overall 9.7 ± 2.2 21.3 ± 2.5 10.7 ± 2.7 21.1 ± 5.7 0.71 <0.001 

 
Table 3.2: Regional VT estimates obtained with an arterial input function or an input function 
using a single venous and image-derived measurements. 
AIF, arterial input function; IDIF, image-derived input function; VT, volume of distribution; CoV, coefficient of 
variation; r coefficient, Pearson’s correlation coefficient; SD, standard deviation; WM, white matter; GM, grey 
matter. 
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Figure 3.5: Comparison of total volume of distribution estimates modelled with arterial or 
IDIF + single venous sample input functions 

Scatter plots of total volume of distribution (VT) estimates obtained with arterial and IDIF + single venous sample 
input functions are displayed in panel A (split by region) and B (split by patient). The red dotted line is the linear 
regression fit, the grey line indicates the line of unity. Panel C displays a Bland-Altman plot comparing VT 
estimates modelled with arterial and IDIF + single venous sample input functions. The thick black line is the mean 
bias of the VT estimates modelled with an IDIF + single venous sample input function, the dotted black lines 
denote the 95% confidence intervals. 
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3.4 Discussion 

We present a novel method for quantification of [18F]GE-179 binding in brain that is 

independent of arterial sampling and might, thus, support wider use of this radiotracer 

for the assessment of the NMDA receptor. The input function estimated using a whole 

blood image-derived input function (IDIF) combined with corrections from venous 

data (i.e., parent fraction and plasma-to-whole blood ratio) was highly correlated with 

the gold standard input function determined from arterial sampling. The mean bias in 

VT estimates from the IDIF + venous approach was small (< 2%) and between-method 

differences were within a clinically reasonable range. Furthermore, the IDIF + venous 

approach did not increase the variability of the VT estimates. The performance of this 

procedure was better than that of previously proposed approaches aimed at obviating 

arterial sampling, namely the use of SUV or population-based input functions 

(McGinnity et al., 2018). However, simplification of the IDIF + venous method to use a 

single venous measurement rather than data from five venous samples provided lower 

correlations and larger differences in VT estimates. 

Previous attempts to simplify [18F]GE-179 quantification using SUV or a population-

based input function did not yield convincing results and both methods failed to 

reproduce differences in grey-matter VT between patients with epilepsy and healthy 

volunteers (p>0.05) that were previously obtained using arterial modelled data on the 

same dataset (McGinnity et al., 2018). A reference region devoid of NMDA receptors 

is not available. Thus, an alternative quantification approach is the estimation of an 

image-derived input function (Sari et al., 2016). However, an IDIF estimates 

radioactivity in whole blood and cannot determine the parent fraction of the tracer in 

plasma or the plasma-to-whole blood ratio. Hence, a methodology completely devoid 

of blood sampling will not provide an accurate input function for kinetic modelling 

unless radiolabelled metabolites are absent and the plasma-to-whole blood ratio is 

close to 1. We chose a previously described approach of substituting arterial with 
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venous samples and used venous data to determine the tracer parent fraction in 

plasma, the plasma-to-whole blood ratio and to scale the IDIF. 

 

3.4.1 Comparison of venous and arterial samples 

Previous studies found that venous samples taken with a longer delay after tracer 

injection provided better approximations of radioactivity in arterial blood (Takagi et 

al., 2004; Zanotti-Fregonara et al., 2012). This points to an increasing equilibrium 

between venous and arterial blood. Previous studies reported little or no differences 

between venous and arterial radioactivity concentration more than 40-60 minutes after 

ligand injection (Meyer et al., 2005; Takagi et al., 2004; Wakita et al., 2000; Zanotti-

Fregonara et al., 2012). Similarly, we found decreasing differences and increasing 

correlations between arterial and venous radioactivity over time. The whole blood 

radioactivity concentration in a venous sample drawn 62 minutes after tracer injection 

was highly correlated with the 60-minute arterial sample (r = 0.99). There remained a 

small underestimation of arterial data (mean difference -4% ± 2%) that was corrected 

using a linear model. Thus, we are confident that late venous whole blood 

radioactivity concentration provided a good estimate for calibrating the IDIF. 

Greuter and colleagues performed an extensive evaluation of venous and arterial data 

(Greuter et al., 2011), correlating arterial and venous data obtained at 3 to 7 

timepoints in studies with 5 different tracers with 254 paired samples overall. They 

observed differences in correlation coefficients between tracers and measured 

parameters (radioactivity concentration, parent fraction, POB ratio) concluding that 

arterial samples cannot be readily substituted with venous measurements but will 

require validation for each tracer and measured parameter.  

We provide evidence that parent fraction, POB ratio, and late radioactivity 

concentration can be reliably approximated using venous samples in [18F]GE-179 PET. 

The correlations for parent fraction and late radioactivity concentration were high (r = 
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0.99). The correlation for POB ratio was lower (r = 0.93), but still supported the 

feasibility of venous measurements. 

 

3.4.2 Combination of IDIF with venous data versus an arterial input 

function 

The IDIF determined from the carotid arteries provided a similar shape to the input 

function determined from data from the radial artery. These data provide support that 

a previously proposed procedure correctly quantifies the radioactivity concentration in 

the carotid arteries (Sari et al., 2016). Residual differences between the arterial 

sampling and IDIF-based input functions can be explained by a higher noise and lower 

sampling rate in the imaging data for the first 6.5 minutes over which arterial samples 

were continuously sampled. The slight overestimation of radioactivity between 100 

and 300s after the injection could be due to spill-in effects from tracer uptake in brain 

or other tissue. 

The combination of IDIF and venous data provided good estimates of the input 

function. This translated into high overall, regional, and subject-wise correlations of VT 

estimates, with only minimal mean bias (-1.7%). These correlations were higher than 

those observed using SUV images or a population-based input function (McGinnity et 

al., 2018). The range of relative VT differences was not negligible but was well within a 

clinically reasonable 20% range. This is important and means that clinically relevant 

effect sizes of 20% or more are detectable with this technique. Between-method limits 

of agreement below 20% are less likely to be clinically relevant. In a population of 

patients with epilepsy not taking antidepressants scanned with [18F]GE-179 PET we 

previously found a median whole brain VT of 8.0 compared to a median VT of 6.2 in 

healthy volunteers (McGinnity et al., 2015). Thus, such a 29% between-group 

difference is likely to be detected by our method, providing support for its practical 
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applicability. There were no relevant outliers and there was no difference in overall 

data variability, providing further support for the robustness of the proposed method. 

 

3.4.3 Alternative approaches 

As expected, reducing the number of venous samples to only one late sample (62-

minute) provided less accurate estimates. This approach requires the use of 

population based curves of parent fraction and POB ratio that were then scaled with 

the single sample. These estimates were less accurate than those obtained with a full 

set of venous samples. They translated into inaccuracies in input function and VT 

estimates. There was relevant bias in VT estimates (mean difference 9.9%) and the 95% 

confidence intervals of VT differences exceeded the 20% range, making this approach 

not reliably applicable for clinically use.  

Another potential approach for estimating an input function from imaging data is 

simultaneous estimation (SIME), that estimates the input function by fitting multiple 

tissue activity curves from different brain regions (Sari et al., 2018). However, SIME 

involves the estimation of a large number of parameters, might lack precision and may 

need scaling with one or several discrete blood samples (Feng et al., 1997). The 

application of SIME to [18F]GE-179 PET will be the focus of future studies. 

 

3.4.4 Limitations 

This study has limitations. We studied a small number of subjects acquired at a single 

centre due to the limited use of this radiotracer so far. We did not include people with 

neuropsychiatric disorders but the large variability of tracer binding (VT) in the included 

healthy subjects makes us confident that the IDIF + venous approach may be 

generalisable to people with brain disorders taking medication. Our procedure 

requires venous sampling that is invasive and labour intensive. Puncture of the cubital 
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vein is, nevertheless, less invasive and safer than placement of a cannula in the radial 

artery, and does not require such highly trained personnel. Estimation of the IDIF 

requires manual editing of the segmentation of the carotid arteries but this process 

could be automated in future (Jodas et al., 2016).  

 

3.4.5 Conclusions 

We validated a reliable method to quantify [18F]GE-179 binding that does not require 

arterial sampling. In addition, we present evidence for reliable estimation of parent 

fraction, POB ratio and late whole blood radioactivity concentration for this tracer 

using venous sampling. These approaches might widen the use of this tracer and the 

method could also be applied to other radiotracers, but this will require separate 

validation. A simplification of the method to use a single venous sample provided less 

accurate estimates and should not be used, unless full venous sampling is not 

available or not feasible. 
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4 Project 2: NMDA receptor 
activation in aging. 

 

4.1 Introduction 

A global increase in longevity has led to an unprecedented ageing of the world’s 

population. In 2018, for the first time in human history, persons aged above 65 years 

outnumbered children below five years of age (United Nations Department of 

Economic and Social Population Affairs, 2019). The proportion of above 80-year-olds 

will double by 2045 and quadruple by 2095 (United Nations Department of Economic 

and Social Population Affairs, 2019). Ageing is associated with a decline in cognitive 

abilities, particularly affecting processing speed, declarative, and working memory 

(Park et al., 2002). The risk of neurodegenerative disorders, e.g. Alzheimer‘s or 

Parkinson’s disease, increases with age.  

N-methyl-D-asparate (NMDA) receptors are ionotropic receptors that bind glutamate, 

the main excitatory neurotransmitter of the nervous system. NMDA receptors are 

heterotetramers assembling two GluN1 subunits with two variable units, typically 

GluN2A or GluN2B and less frequently GluN3. NMDA receptors are key mediators of 

long-term synaptic potentiation (LTP) and depression (LTD) that are believed to 

represent the cellular correlates of declarative learning and memory, thus gaining 
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considerable interest (Cooke and Bliss, 2006b; Nakazawa et al., 2004). They also 

subserve persistent neuronal firing during working memory retention (Lisman et al., 

1998; M. Wang, Yang, C.-J. Wang, Gamo, Jin, Mazer, Morrison, X.-J. Wang and 

Arnsten, 2013b).  

Activation of NMDA receptors located extrasynaptically can be neurotoxic and has 

been implicated in Alzheimer’s disease and excitotoxicity (Hardingham and Bading, 

2010; Y. Zhang et al., 2016). Accumulation of amyloid-beta in Alzheimer’s disease 

redistributes NMDA receptors from synaptic towards extrasynaptic sites (Snyder et al., 

2005). In turn, extrasynaptic NMDA receptor activation raises amyloid-beta production 

(Hoey et al., 2009), overexpresses tau proteins (Sun et al., 2016), and might inhibit 

long-term potentiation underlying memory consolidation (Li et al., 2011). Suppression 

of overactivated, primarily extrasynaptic, receptors with the uncompetitive antagonist 

memantine is a routine treatment for Alzheimer’s disease (Lipton, 2006). 

NMDA receptors are more vulnerable to aging than other glutamate ion-channels 

(Magnusson and Cotman, 1993; Magnusson et al., 2010). Lower overall expression of 

NMDA receptors was observed in older animals, particularly in the frontal and parieto-

occipital cortex, striatum, and hippocampus (Castorina et al., 1994; Magnusson, 2000; 

Magnusson and Cotman, 1993; Magnusson et al., 2007; Ontl et al., 2004). Despite the 

loss of overall receptor numbers, several, but not all, studies described an age-related 

increase in sensitivity and responsiveness of the remaining receptors (Billard et al., 

1997; Jasek and Griffith, 1998; Kuehl-Kovarik et al., 2000). This might be explained by 

a selective decline of GluN2B subunits and shift towards a larger proportion of 

GluN2A-containing receptors (Brim et al., 2013; Magnusson, 2000; Magnusson et al., 

2002; 2006; Zamzow et al., 2013) that have a higher opening probability (N. Chen et 

al., 1999; Erreger et al., 2005; Gray et al., 2011). In addition, aging caused a shift of 

receptors from the synapse to extrasynaptic sites (Potier et al., 2010). A decreased 

expression of glutamate transporters with deficient glutamate re-uptake was observed 

in aged rats, leading to facilitated activation of extrasynaptic NMDA receptors (Potier 
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et al., 2010). A relationship between NMDA receptor abnormalities during senescence 

and cognitive decline has been proposed (Kumar, 2015).  

Little knowledge exists on the effects of aging on NMDA receptors in humans. Several 

(Kornhuber et al., 1988; Piggott et al., 1992), but not all (Law et al., 2003), studies 

found a decrease in NMDA receptor numbers in post mortem brains of older 

individuals, potentially linked to an overall loss of neurons. Functional aspects are, 

however, difficult to evaluate in post mortem tissue and can only be reliably assessed 

in vivo. 

Here, we measured the in vivo opening probability of NMDA receptors across 

different age-ranges in three independent cohorts of healthy adults. We used positron 

emission tomography (PET) with [18F]GE-179, a recently developed radiotracer that 

selectively binds inside the open, i.e. activated, NMDA receptor complex (McGinnity 

et al., 2014).  

 

4.2 Methods 

Recruitment, data acquisition and imaging preprocessing were performed as 

described above (see Common Methods in chapter 2). In brief, we recruited 29 

healthy volunteers scanned using [18F]GE-179 at three sites (UCL, Cambridge, 

Hammersmith). No volunteers took regular medication or had a history of 

neuropsychiatric conditions.  

We extracted VT estimates in grey matter, white matter and non-brain tissue 

(combination of soft tissue and skull). We calculated the association of regional VT 

estimates with age using the general linear model, adjusting for the effects of sex and 

scanner equipment. P-values below 0.05 adjusted for multiple comparisons using 

Bonferroni correction were considered significant. Scatter plots of age to VT estimates 

are displayed for values adjusted for the effects of sex and scanner equipment. 
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To address the subregional distribution of findings in grey matter, we also performed 

a voxel-wise analysis of parametric VT images. We calculated the association of 

voxelwise VT estimates with age using a full factorial general linear model, adjusting 

for the effects of sex and scanner equipment. We report p-values at a threshold of 

p<0.05 on a cluster-level family-wise error corrected for multiple comparisons. 

To address the contribution of age-related neurodegeneration, i.e. reductions in grey 

matter volume, to our findings, we performed voxel-based morphometry (VBM) using 

segmented and modulated parametric grey matter volume images obtained using the 

CAT12 toolbox on 3T T1 MRI scans. We determined the association of global [18F]GE-

179 VT uptake with grey matter volume reduction and display the overlap of VT and 

VBM voxelwise findings. 

Lastly, we performed sensitivity analyses of age-related [18F]GE-179 VT changes in grey 

matter in each cohort separately. In cohorts without significant voxelwise results, we 

also reported exploratory findings at an uncorrected threshold of p<0.05 with a 

minimum cluster size of 100 contiguous voxels. 

 

4.3 Results 

4.3.1 Overall results 

We included 29 healthy volunteers with a mean age 41 ± 13 years (range 25 to 63 

years, Table 2.1). There were no between-cohort differences in distributions of age 

(Hammersmith mean 42 ± 16 years, Cambridge 40 ± 10, UCL 41 ± 13, p = 0.94) or sex 

(Hammersmith 3/9 female, Cambridge 1/10 female, UCL 4/10 female, p = 0.32).  

We found a significant association of VT in grey matter with age (F = 7.2, p = 0.04, 

Figure 4.1A), with an estimated VT increase of 0.6 per 10 years (95% CI 0.1 to 1.1; 

corresponding to a 7% increase compared to mean VT, 95% CI 1-12%). The linear  
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Figure 4.1: Association of GE-179 uptake in grey matter with age in healthy volunteers 

The association of grey matter GE-179 VT with age in healthy volunteers (n=29) is displayed in panel A. Grey 
matter VT and age are displayed as mean centred values that were adjusted for the effects sex and scanner 
equipment. The regression line fit and its 95% confidence interval for the overall cohort is displayed on the left, 
the fits for each individual cohort are displayed on the right. The subregional distribution of grey matter VT 
associated with age is shown in panel B (p<0.05 FWE corrected). 
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regression line fits of age over grey matter VT were highly similar between all cohorts 

(Figure 4.1A right). On a subregional level (Figure 4.1B), we observed significant age-

related increases in VT in bilateral parieto-occipital junctions and posterior temporal 

lobes (right, T = 6.0, 4167 voxels, p<0.001; left, T = 5.1, 5295 voxels, p < 0.001), 

bilateral striata and hippocampal heads (right, T = 5.9, 5427 voxels, p < 0.001; left, T 

= 6.0, 5566 voxels, p < 0.001), and bilateral superior and middle frontal gyri (right, T = 

5.8, 4854 voxels, p<0.001; left, T = 5.7, 5267 voxels, p < 0.001). 

There was no association of grey matter VT with sex (F = 1.1, p = 0.93) or scanner 

equipment (F = 1.2, p = 0.95). There was no association of age with VT in white matter 

(F = 1.3, p = 0.78, VT increase by 0.2 per 10 years, 95% CI -0.2 to 0.7, Figure 4.2A) or 

non-brain tissue (F = 1.7, p = 0.63, VT decrease by 0.1 per 10 years, 95% CI -0.3 to 

0.1, Figure 4.2B).  

There was a negative association of age with grey matter volume (F = 8.4, p = 0.008, 

volume decrease by 19 ml per 10 years, 95% CI 5 to 32 ml, Figure 4.3A). On a voxel-

wise level (Figure 4.3B), higher age correlated with lower grey matter volume in 

bilateral medial superior frontal gyri (T = 8.7, 7880 voxels, p < 0.001), bilateral fusiform 

and lingual gyri (right, F = 6.7, 1685 voxels, p = 0.001; left, F = 7.1, 2752 voxels, p < 

0.001), bilateral mesial temporal lobes and insular cortices (right, F = 5.8, 5295 voxels, 

p < 0.001; left, F = 6.9, 8007 voxels, p < 0.001), right parietooccipital junction (F = 

6.3, 781 voxels, p = 0.03), bilateral thalami (F = 5.9, 1062 voxels, p = 0.007), and 

bilateral posterior cingulate gyri (F = 4.8, 652 voxels, p = 0.05). Figure 4.3B shows that 

the majority of areas with age-related increases in [18F]GE-179 uptake were different 

from areas that showed significantly reduced grey matter volume with age. Grey 

matter VT was not associated with grey matter volume (F = 0.2, p = 0.69).  
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Figure 4.2: Association of GE-179 uptake in white matter and nonbrain tissue with age in 
healthy volunteers  

Association of GE-179 VT in white matter (panel A) and nonbrain tissue (panel B) with age in healthy volunteers 
(n=29). Grey matter VT and age are displayed as mean centred values that were adjusted for the effects sex and 
scanner equipment. The regression line fit and its 95% confidence interval for the overall cohort is displayed on 
the left, the fits for each individual cohort are displayed on the right. 
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4.3.2 Sensitivity analyses 

We performed sensitivity analyses in each cohort separately. The lowest coefficient of 

variation was observed in the Hammersmith cohort (13.2%) compared to the 

Cambridge (16.4%) or UCL (25.3%) cohorts. There was a significant association of VT in 

grey matter with age in the Hammersmith cohort (F = 29.6, p = 0.002, VT increase by 

0.6 per 10 years, 95% CI 0.3 to 0.9, Figure 4.4A). The slope of the linear regression fit 

was similar but the association was non-significant in the Cambridge (F = 1.7, p = 

0.24, VT increase by 0.6 per 10 years, 95% CI -0.5 to 1.7, Figure 4.4B) and UCL (F = 

1.2, p = 0.30, VT increase by 0.8 per 10 years, 95% CI -0.9 to 2.4, Figure 4.4C) cohorts. 

On a voxelwise level, there was a significant association of age with increased VT in 

bilateral superior frontal gyri (right, T = 5.5, 2270 voxels, p = 0.005; left, T = 5.3, 1579 

voxels, p=0.02) left striatum, caudate nucleus, and hippocampus (T = 5.1, 2261 voxels, 

p = 0.005), and left posterior temporal lobe and temporo-occipital junction (T = 4.8, 

1908 voxels, p = 0.01) in the Hammersmith cohort (Figure 4.4A). There were no 

significant clusters in the Cambridge or UCL cohorts. An exploratory analysis found 

non-significant (p<0.05 uncorrected) clusters in bilateral parieto-temporo-occipital 

junctions, inferior and superior frontal lobes, striata and entorhinal cortices in the 

Cambridge cohort (Figure 4.4B) and in bilateral superior and medial frontal gyri, 

striata, and occipital lobes in the UCL cohort (Figure 4.4C). 

 

4.3.3 Epilepsy cohort 

Similarly, age-related increases in [18F]GE-179 VT were observed in a group of 26 

people with focal refractory epilepsy (F = 9.9, p = 0.006, VT increase by 1.4 per 10 

years, 95% CI 0.5 to 2.4; corresponding to a 14% increase per 10 years compared to 

mean VT, 95% CI 5-24%) after correction for sex, duration of epilepsy, seizure 

frequency, number of AEDs and intake of Lamotrigine, Lacosamide, and Perampanel. 
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Figure 4.3: Association of grey matter volume with age in healthy volunteers 

The association of grey matter volume with age in healthy volunteers (n=29) is displayed in panel A. Grey matter 
volume and age are displayed as mean centred values that were adjusted for the effects sex and scanner 
equipment. The regression line fit and its 95% confidence interval for the overall cohort is displayed on the left, 
the fits for each individual cohort are displayed on the right. The subregional distribution of grey matter volume 
(blue colours) and GE-179 VT (yellow/red colours) associated with age is shown in panel B (p<0.05 FWE corrected). 
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The effects were most pronounced in the striatum and thalamus contralateral to the 

epileptic focus. For details please refer to chapter 5.3.2 and Figure 5.2A. 

 

4.4 Discussion 

We measured aging-related changes to the in vivo opening probability of NMDA 

receptors in humans by pooling data acquired with the novel [18F]GE-179 PET 

radioligand. We found increased NMDA receptor opening probability in grey matter 

of older healthy adults and older people with focal epilepsy. These changes were 

specific to grey matter and were not observed in white matter or non-brain tissue. 

They were spatially and statistically not related to grey matter volume loss, a surrogate 

marker of neurodegeneration. The effects were most pronounced in bilateral superior 

frontal lobes, striata, temporo-parieto-occipital junctions, and, to a lesser extent, 

medial temporal lobes. 

 

4.4.1 Age-related increase of NMDA receptor opening probability 

There are several potential explanations for an age-related increase of NMDA 

receptor opening probability in humans. Firstly, it is unlikely that it reflects an increase 

in overall NMDA receptor availability. Most animal studies described a decrease of 

NMDA receptor numbers with higher age (Castorina et al., 1994; Magnusson, 2000; 

Magnusson and Cotman, 1993; Magnusson et al., 2007; Ontl et al., 2004). Similarly, 

several (Kornhuber et al., 1988; Piggott et al., 1992), but not all (Law et al., 2003), post 

mortem studies in humans found reduced overall NMDA receptor binding. It is 

unclear to what extent the reduction of NMDA receptor numbers relates to loss of 

neurons. The effects were, however, more pronounced for NMDA receptors 

compared to other glutamate ion channels (Magnusson and Cotman, 1993; 

Magnusson et al., 2010), suggesting a higher vulnerability of NMDA receptors to 

aging. Thus, the higher [18F]GE-179 binding observed in the current study likely relates 
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to a functional modification of NMDA channel opening probability, despite a probable 

decrease in receptor numbers. This is corroborated by several studies that found an 

age-related increase in sensitivity and responsiveness of the remaining receptors 

(Billard et al., 1997; Jasek and Griffith, 1998; Kuehl-Kovarik et al., 2000). It has been 

suggested that these adaptations could reflect functional compensation to maintain 

cognitive function during aging despite neuronal or ion-channel loss (Billard et al., 

1997; Serra et al., 1994). 

Secondly, an aging-related shift in NMDA receptor subunit composition and synaptic 

localisation could contribute to an increased opening probability. GluN2B subunits are 

more susceptible to aging compared to GluN2A subunits, leading to an age-related 

increase in the GluN2A/GluN2B ratio (Brim et al., 2013; Magnusson, 2000; Magnusson 

et al., 2002; 2006; Zamzow et al., 2013). GluN2A containing NMDA receptors have a 

higher opening probability and peak open probability in response to glutamate (N. 

Chen et al., 1999; Erreger et al., 2005; Gray et al., 2011). Additionally, aging also 

causes a facilitated activation of extrasynaptic compared to synaptic NMDA receptor 

sites (Potier et al., 2010). Extrasynaptic NMDA receptors are also more likely to be 

activated in neurodegenerative disorders, particularly by amyloid-beta in Alzheimer’s 

disease (Sepulcre et al., 2016; Talantova et al., 2013). In turn, overactivated 

extrasynaptic NMDA receptors are more likely to induce cell death (Hardingham and 

Bading, 2010) and accumulation of neurofibrillary tau tangles (Chohan and Iqbal, 

2006). 

Thirdly, alterations of glutamate homeostasis during aging could contribute to an 

increased NMDA receptor opening probability. Evidence in rodents points to a 

decreased expression of glutamate transporters and consequently a reduced 

glutamate reuptake in aged animals (Brothers et al., 2013; Farrand et al., 2015; Nickell 

et al., 2007; Potier et al., 2010; Vatassery et al., 1998). This can lead to glutamate 

spillover to the extrasynaptic space and to activation of extrasynaptic NMDA receptors 

that might cause excitotoxicity (Farrand et al., 2015; Potier et al., 2010). Treating aged  
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Figure 4.4: Association of GE-179 uptake in grey matter with age in individual cohorts 

The association of grey matter GE-179 VT with age in healthy volunteers is displayed in the Hammersmith (n=9, 
panel A), Cambridge (n=10, panel B), and UCL (n=10, panel C) cohorts. The subregional distribution of grey 
matter VT associated with age is shown on the left (p<0.05 FWE corrected for Hammersmith, and p<0.05 
uncorrected for Cambridge and UCL). Scatter plots with the regression line and 95% confidence intervals are 
shown on the right. Grey matter VT and age are displayed as mean centred values that were adjusted for the 
effects sex and scanner equipment.  
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rodents with riluzole, a glutamate modulator, increased glutamatergic reuptake and 

prevented age-related cognitive deficits (Brothers et al., 2013; Pereira et al., 2014). 

The findings observed in healthy aging were replicated in people with focal refractory 

epilepsy. Interestingly, the aging-related increase of tracer binding in people with 

epilepsy was more than double that of normal aging (VT increase 1.4 in epilepsy vs. 

0.6 in healthy volunteers per 10 years). We speculate that epilepsy and aging may 

have additive effects on NMDA receptor alterations. This could be due to additional 

release of glutamate during seizures and possible excitotoxicity (During and Spencer, 

1993), oxidative stress, metabolic disturbances, and inflammation in epilepsy (Sutula 

et al., 2003; Vezzani et al., 2011). Similarly, we previously observed that the rate of 

ongoing neurodegeneration in epilepsy, measured with cortical thinning, was more 

than double that of normal aging (Galovic, van Dooren, et al., 2019). Because the rate 

of cortical thinning was particularly accelerated in people with epilepsy aged above 55 

years, we hypothesized that the brains of people with epilepsy are more vulnerable to 

aging-related disturbances (Galovic, van Dooren, et al., 2019).  

 

4.4.2 Spatial distribution of age-related changes to NMDA 

receptors 

We showed that aging-related alterations of NMDA receptors were not uniform 

throughout the human brain but preferentially affected specific cortical and subcortical 

areas. Most of these regions have been suggested to play a role in cognitive 

processes. The superior anterior frontal cortex (D'Esposito et al., 1995), the striatum 

(Provost et al., 2015), and the temporo-parieto-occipital junction (Salmon et al., 1996) 

play a role in working memory (Owen et al., 2005). The medial temporal lobe 

subserves episodic memory (Nyberg et al., 1996). In addition, several, but not all, of 

the areas with increased NMDA receptor opening probability overlap with regions of 

the default mode network (DMN), a brain system preferentially active when individuals 
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are left to think to themselves. Aging leads to increases in DMN activity that reflect a 

deficit in cognitive control associated with worse working memory performance 

(Sambataro et al., 2010). Lastly, the spatial distribution of NMDA receptor alteration in 

our study resembles the cortical distribution of tau and amyloid-beta deposits in 

cognitively normal elderly individuals (Sepulcre et al., 2016) and in Alzheimer’s disease 

(Jack et al., 2013; Okamura et al., 2014). Early Alzheimer’s disease and mild cognitive 

impairment are associated with network hyperexcitability (Fontana et al., 2017; 

Haberman et al., 2017; Palop et al., 2007; Yassa et al., 2010) that can also be observed 

during normal aging (Senatorov et al., 2019). Taken together, the areas of greater 

NMDA receptor disturbances might be part of cognitive brain system that is 

vulnerable to aging and neurodegenerative diseases. Such functional changes may 

precede grey matter atrophy in these areas. 

The spatial distribution of age-related effects on NMDA receptors in people with 

epilepsy was restricted to subcortical structures contralateral to the seizure focus. This 

is a more restricted pattern compared to healthy volunteers, probably because of an 

inverse effect of epilepsy duration on cortical structures (longer duration of epilepsy 

leads to lower NMDA receptor opening probability). 

There is also a large overlap between the areas with age-related NMDA receptor 

alterations in humans and in rodents. Similarly to the current study in humans, the 

frontal cortex (Castorina et al., 1994; Magnusson, 2000; Magnusson and Cotman, 

1993; Ontl et al., 2004), striatum (Castorina et al., 1994; Magnusson and Cotman, 

1993), parieto-occipital cortex (Magnusson, 2000; Magnusson and Cotman, 1993), and 

hippocampus (Castorina et al., 1994; Magnusson, 2000) previously showed NMDA 

receptor abnormalities in older animals. This supports the notion that age-related 

abnormalities follow a specific spatial pattern and that some brain areas are more 

vulnerable than others. 
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4.4.3 Methodical considerations 

Several methodical considerations should be noted. Firstly, [18F]GE-179 is a novel 

radioligand that showed specific and selective binding in vitro and in vivo to the 

phencyclidine site inside the open NMDA channel (McGinnity et al., 2014; Vibholm, 

Landau, Møller, et al., 2020). Demonstrating specific binding in vivo can be 

challenging for use dependent tracers (McGinnity et al., 2019). Recently, 

administration of the NMDA receptor antagonist S-ketamine successfully blocked 

[18F]GE-179 binding in a use dependent manner in vivo during pulsed electrical 

stimulation (Vibholm, Landau, Møller, et al., 2020), confirming the specificity for the 

phencyclidine site. Likewise, GE-179’s antecedent, CNS 5161, was successfully 

blocked by phencyclidine site antagonists in vivo (Biegon et al., 2007). It should be 

noted that the phencyclidine site is expressed on all NMDA receptors. Thus, [18F]GE-

179 imaging cannot distinguish between the subunit composition or 

synaptic/extrasynaptic localisation of receptors. 

Secondly, it has been suggested that NMDA receptor abnormalities might be the 

consequence of neuronal loss (Billard et al., 1997; Serra et al., 1994). In our study, the 

spatial distribution of increased NMDA receptor opening probability in the brain 

differed from the pattern of progressive structural neurodegeneration measured with 

grey matter volume, suggesting that these are distinct processes. In addition, to 

reduce the influence of grey matter atrophy on our results we corrected the PET 

findings for partial volume effects, but the observed effects were comparable when 

using non-corrected data. 

Thirdly, aging might result in differences in radioligand metabolism or cerebral blood 

perfusion. It is unlikely that this would influence our findings because VT estimates are 

corrected for tracer metabolism and cerebral perfusion. 

Fourthly, although the slope of regression fits and the subregional distribution of 

findings was similar between cohorts, the results were not significant in the Cambridge 
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and UCL cohorts. One explanation is the small sample size of cohorts. In addition, 

both the Cambridge and UCL cohorts showed higher PET data variability, owing to a 

lower PET scanner resolution and the use of image-derived input function estimates in 

the UCL cohort. This would reduce the signal-to-noise ratio and make it less likely to 

observe significant effects despite comparable trends. Thus, pooling of multicentre 

data was necessary to increase the statistical power of our study. Scanning equipment 

did not significantly influence the results and we adjusted all statistical models for site 

allocation to further minimise any residual between-cohort effects. 

Lastly, we were restricted to studying a limited age range of 25 to 65 years for healthy 

volunteers and 18 to 65 years for people with epilepsy due to ethical considerations. 

Younger participants are more likely to be adversely affected by radiation and older 

subjects are less likely to tolerate a 70 to 90 minute scan and have a higher risk of 

concomitant or subclinical neurodegenerative disorders. We included few women of 

childbearing age due to the potential effects of radiation. 

 

4.4.4 Conclusions 

We observed in vivo increased NMDA receptor opening probability in older healthy 

adults and people with epilepsy. These functional changes were not uniform 

throughout the brain but particularly affected areas that may play a role in cognitive 

processes and preceded grey matter atrophy of these regions. The exact 

pathophysiology is not clear with several potential explanations for this finding. Future 

studies should determine the age-related expression of NMDA receptor subunits and 

glutamate transporters. They should examine whether increased NMDA receptor 

activation relates to cognitive decline or neurodegenerative disorders and whether it 

might be a marker of the risk to develop Alzheimer’s dementia. Lastly, our findings 

provide support for exploratory human trials of memantine and riluzole to reduce 

NMDA receptor opening probability and cognitive decline in elderly individuals.  
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5 Project 3: NMDA receptor 
activation in focal epilepsy. 

5.1 Introduction 

Epilepsy, a disease characteristically manifesting with neuronal hyperexcitability, has 

been linked to dysfunction of NMDA ion-channels that bind glutamate, the main 

excitatory neurotransmitter in the central nervous system. Alterations of NMDA 

receptors played a role in animal models of epileptogenesis, the process underlying 

the development of epilepsy (Ghasemi and Schachter, 2011). Blocking of NMDA 

receptors prevented epileptogenesis and was neuroprotective (Brandt et al., 2003; 

Raza et al., 2004; Stasheff, Anderson, Clark and Wilson, 1989b).  

In humans, the available evidence on the role of over- or underactivated NMDA 

receptors in epilepsy is conflicting. Firstly, immunohistochemistry studies of 

postsurgical temporal lobe specimen in people with refractory epilepsy found 

decreased (Bayer et al., 1995; Blumcke et al., 1996; Geddes et al., 1990; Hosford et 

al., 1991; Spreafico et al., 1998) or increased (Brines et al., 1997; Geddes et al., 1990; 

Mathern et al., 1997; McDonald et al., 1991) NMDA receptor density. binding inside 

the open, i.e. activated, NMDA receptor channel was described (Hosford et al., 1991; 

McDonald et al., 1991). A higher proportion of GluN2B subunits has also been 

observed (Mathern et al., 1998).  
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Secondly, mutations in GRIN genes coding GluN1, GluN2A, and GluN2B subunits 

cause a neurodevelopmental disorder with seizures. More mutations were functionally 

characterised as loss- than gain-of-function, but both alterations led to seizures (Xu 

and Luo, 2018). In mutations affecting the GluN2A subunit, those leading to a 

receptor gain-of-function were associated with a more severe phenotype (Strehlow et 

al., 2019). 

Thirdly, NMDA receptor antagonists have been used to treat seizures (Felbamate 

Study Group in Lennox-Gastaut Syndrome, 1993; Pellock, 1999) and status epilepticus 

(Borris et al., 2000; Prüss and Holtkamp, 2008) but proconvulsant effects have also 

been reported (Alldredge et al., 1989; Claudet and Maréchal, 2009; Modica et al., 

1990; Peltz et al., 2005; Sveinbjornsdottir et al., 1993). 

Lastly, only two studies thus far analysed NMDA receptors in people with epilepsy in 

vivo using PET, but they produced contradictory results. [11C]ketamine binding was 

reduced in the ipsilateral temporal lobe in eight people with mesial temporal lobe 

epilepsy (MTLE), which could either point to a reduced NMDA receptor density, 

reduced tissue perfusion or focal atrophy (Kumlien et al., 1999). We performed a pilot 

study with [18F]GE-179, measuring the opening probability of NMDA receptors in 

eleven people with focal epilepsy and frequent interictal epileptic discharges 

(McGinnity et al., 2015). We observed globally increased binding in eight patients not 

taking antidepressants and decreased binding in three patients on antidepressants. 

Focal NMDA receptor binding alterations were detected in a subset of patients but 

were difficult to interpret because of the undetermined localisation of epilepsy in 

these cases. 

Here, we measured in vivo NMDA receptor activation using [18F]GE-179 PET in people 

with well-localised refractory focal epilepsy undergoing presurgical evaluation and 

matched healthy volunteers. We associated NMDA receptor binding with clinical 

characteristics and epilepsy localisation, and compared postsurgical with presurgical 

uptake. 
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5.2 Methods 

We followed the methods as described in detail in chapter 2. We included 26 people 

(mean age 38 ± 13 years, 11 [42%] female) with unilateral focal refractory epilepsy 

arising from the temporal (n=17) and frontal lobes (n=5) or other localisation (n=4) 

undergoing presurgical evaluation at NHNN and scanned at the UCL site. Seven 

Variable Mean ± SD or N (%) F Beta (95% CI) P value 
Demographic characteristics     

Age (years, unadjusted) 38 ± 13 0.1 0.02 (-0.09, 0.13) 0.71 
Female Sex (unadjusted) 15 (58%) 0.4 -0.8 (-3.6, 1.9) 0.53 
Non-European Ethnicity 5 (20%) 0.03 -0.3 (-4.0, 3.4) 0.87 
Smoking 3 (12%) 2.7 -3.3 (-7.6, 0.9) 0.12 
Beck’s Depression Inventory score 13 ± 9 0.003 0.004 (-0.15, 0.16) 0.95 
Duration of epilepsy (years) 19 ± 12 4.9 -0.13 (-0.26, -0.01) 0.04 
Focal lesion on MRI 17 (65%) 1.1 -1.5 (-4.4, 1.4) 0.31 

Epilepsy localisation     
Mesial temporal 7 (27%) 0.1 -0.6 (-3.8, 2.7) 0.72 
Temporal  18 (69%) 1.2 -1.7 (-4.9, 1.5) 0.28 
Frontal 5 (19%) 0.7 1.5 (-2.4, 5.5) 0.43 
Other 3 (12%) 0.3 1.2 (-3.2, 5.6) 0.57 

Seizure frequency     
Overall seizure frequency (per month) 34 ± 40 0.7 0.02 (-0.02, 0.05) 0.40 
SPS frequency (per month) 14 ± 27 1.5 0.03 (-0.02, 0.09) 0.24 
CPS frequency (per month) 19 ± 31 0.03 0.004 (-0.04, 0.05) 0.87 
SGS frequency (per month) 1 ± 3 0.9 -0.3 (-0.8, 0.3) 0.36 
Last seizure (days before scan) 25 ± 107 0.1 -0.002 (-0.02, 0.01) 0.73 

Antiepileptic drugs at scan     
Number of antiepileptic drugs 2 ± 1 4.3 1.3 (0.003, 2.5) 0.05 
Levetiracetam 10 (39%) 1.5 1.7 (-1.2, 4.5) 0.24 
Oxcarbazepine 10 (39%) 2.1 2.1 (-0.9, 5.0) 0.16 
Lamotrigine 7 (27%) 5.7 -3.3 (-6.2, -0.4) 0.03 
Zonisamide 7 (27%) 0.1 -0.6 (-3.8, 2.7) 0.73 
Lacosamide 5 (19%) 6.5 3.9 (0.7, 7.1) 0.02 
Clobazam 5 (19%) 0.03 -0.3 (-4.0, 3.3) 0.86 
Perampanel 3 (12%) 4.2 4.1 (-0.07, 8.2) 0.05 

 
Table 5.1: Clinical characteristics and their association with [18F]GE-179 uptake in epilepsy 
patients. 
SD, standard deviation; SPS, simple partial seizure; CPS, complex partial seizure; SGS, secondarily generalized seizure. 

 
 



Project 3: NMDA receptor activation in focal epilepsy.                                                                         

   

 

 

 

 

103 

   

 

patients had mesial temporal lobe epilepsy with hippocampal sclerosis and half (n=13) 

of all patients had epilepsy lateralised to the left hemisphere. Six patients were 

rescanned after anterior temporal lobe resection. Twenty-nine healthy volunteers 

(mean age 41 ± 13 years, 8 [28%] female) were recruited and scanned at three sites 

(UCL [n=10], Cambridge [n=10], Hammersmith [n=9]).  

The Cambridge and Hammersmith sites used PET-CT scanners with an arterial input 

function, whereas the UCL site used a PET-MR scanner with a venous/image-derived 

input function (see chapter 3 for method validation). Only one venous sample was 

obtained in 6 patients in the UCL study and we applied the simplified one-sample 

approach to these cases (chapter 3.3.2). Venous sampling failed in 4 scans and we 

used population-based parent-fraction and plasma-over-blood ratio curves in these 

scans (McGinnity et al., 2018). Prior to preprocessing, imaging data in epilepsy 

patients and an equivalent proportion of randomly selected healthy volunteers were 

flipped to display the hemisphere ipsilateral to the epileptic focus on the left. 

As a first step, we extracted VT estimates in grey matter and calculated their 

association with clinical characteristics in patients with epilepsy using the general 

linear model adjusting for age and sex. We chose significant variables from the first set 

of analyses and included them in a multivariable model, additionally correcting for 

seizure frequency as a proxy for disease severity. To address the subregional 

distribution of the findings, we replicated the same multivariable general linear model 

on voxelwise VT estimates in grey matter. 

We determined test-retest reliability of [18F]GE-179 PET scans using data from 5 

healthy volunteers scanned at least 1 year apart in the Cambridge study using scatter 

plots, correlation coefficients, and Bland Altman plots. In addition to absolute VT, we 

also compared relative VT, i.e. the ratio between lobar and global grey matter VT in a 

scan.  

Next, we compared the overall grey matter VT in healthy volunteers with epilepsy 

patients using the general linear model adjusting for sex, age, and cohort allocation 
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(i.e. scanning equipment). We split patients into subgroups with mesial temporal lobe 

epilepsy with hippocampal sclerosis (MTLE+HS), temporal lobe epilepsy (TLE, 

including both neocortical or mesial localisations), and frontal lobe epilepsy (FLE). We 

also analysed subregional differences in voxelwise VT estimates with a full factorial 

general linear model corrected for sex, age, and cohort allocation taking global VT into 

account via an analysis of covariance (ANCOVA) by group (McGinnity et al., 2015). To 

address the contribution of epilepsy-related grey matter atrophy to our findings, we 

performed voxel-based morphometry (VBM) using segmented and modulated 

 

Figure 5.1: Test-retest measurements of [18F]GE-179 PET 

Test and retest regional estimates of GE-179 VT in five healthy volunteers are displayed as absolute values (panel 
A) or relative values normalised to global grey matter VT (panel B). Scatter plots on the left show the linear 
regression fit (red dotted line) and the optimal fit (grey line). Bland-Altman plots on the right show the bias of the 
mean of the VT estimates (black line) and the 95% confidence intervals (black dotted lines). 
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parametric grey matter volume images obtained using the CAT12 toolbox on 3T T1 

MRI scans. We displayed the overlap of VT and VBM voxelwise findings. 

Lastly, we analysed changes in relative regional VT after anterior temporal lobe 

resection in six patients using paired t-tests. We used relative instead of absolute VT 

measurements due to their improved reproducibility (chapter 5.3.1). We compared 

post- with presurgical voxelwise VT using a paired t-test and a small volume correction 

to regions found to be significant in the regional analysis (contralateral basal ganglia 

and temporal lobe). 

We report voxelwise p-values at a threshold of p<0.05 on a cluster-level family-wise 

error corrected for multiple comparisons. 

 

5.3 Results 

5.3.1 Test-retest measurements of [18F]GE-179 uptake 

Five healthy volunteers from the Cambridge cohort were rescanned at least one year 

apart. Absolute grey matter VT in cerebral lobes and subcortical structures (basal 

ganglia, thalamus) correlated moderately between measurements (r = 0.48, p = 0.002, 

Figure 5.1A). Bland Altman plots (Figure 5.1B) showed positive bias of the mean 

(4.4%) and large variability (95% CI -25.7 to 34.4%) of VT differences between scans. 

In contrast, relative grey matter VT was highly correlated between measurements (r = 

0.91, p < 0.001, Figure 5.1C). There was small bias of the mean (0.4%) and small 

variability (95% CI -4.8 to 5.7%) of relative VT differences between scans (Figure 5.1D). 

 

5.3.2 [18F]GE-179 uptake and demographics in epilepsy patients 

Detailed clinical characteristics of the included 26 patients with epilepsy and their 

association with global VT in grey matter are displayed in Table 5.1. We included all 
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significant variables from Table 5.1 into a multivariable model of [18F]GE-179 VT in grey 

matter, additionally adjusting for age, sex, and seizure frequency (Table 5.2). We 

found a significant positive association of VT in grey matter with age (F = 9.9, p = 

0.006, Figure 5.2A), observing an estimated VT increase of 1.4 (95% CI 0.5 to 2.4) per 

10 years. On a subregional level (Figure 5.2A), we observed significant age-related 

increases in VT in a large cluster (T = 5.1, 13465 voxels, p=0.002) involving the bilateral 

striata, ipsilateral orbitofrontal cortex, contralateral thalamus, and contralateral 

hippocampus.  

We also found a significant negative association with duration of epilepsy (F = 10.9, p 

= 0.004, Figure 5.2B), with an estimated VT decrease of 1.6 (95% CI 0.6 to 2.7) per 10 

years. In the voxelwise analysis, duration of epilepsy was negatively associated with VT 

(i.e. the longer the duration of epilepsy the lower the VT) in the ipsilateral striatum, 

thalamus, temporo-frontal junction (piriform cortex, amygdala, orbitofrontal cortex), 

anterior temporal neocortex (T = 4.9, 7052 voxels, p = 0.03), and in the contralateral 

striatum, thalamus, and orbitofrontal cortex (T = 4.6, 6223 voxels, p = 0.04).  

Variable F Beta (95% CI) P value 
Age (per 10 years) 9.9 1.4 (0.5, 2.4) 0.006 
Duration of epilepsy (per 10 years) 10.9 -1.6 (-2.7, -0.6) 0.004 
Lacosamide intake at scan 9.8 4.5 (1.5, 7.6) 0.006 
Female Sex 1.0 -1.0 (-3.2, 1.1) 0.34 
Overall seizure frequency (per month) 0.01 0.001 (-0.03, 0.03) 0.91 
Number of antiepileptic drugs 0.7 0.2 (-1.0, 1.5) 0.68 
Lamotrigine intake at scan 1.5 -1.4 (-3.8, 1.0) 0.24 
Perampanel intake at scans 1.2 1.9 (-1.7, 5.4) 0.28 

 
Table 5.2: Multivariable model of [18F]GE-179 uptake in epilepsy patients. 
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Figure 5.2: Association of GE-179 uptake with age, disease duration, and lacosamide intake 
in patients with epilepsy. 

The figure shows the association of GE-179 VT with age (panel A), disease duration (panel B), and lacosamide 
intake (panel C) in patients with epilepsy (n=26). The voxelwise distribution of results is shown on brain surfaces 
and slices on the left (p<0.05 FWE corrected; blue colours indicate increased uptake, red colour indicate 
decreased uptake), the global grey matter findings are shown in plots on the right. Global grey matter VT and 
clinical variables are displayed as mean centred values adjusted for co-variates. 
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Grey matter VT was increased in patients taking lacosamide at time of scan (F = 9.8, 

Beta 4.5, 95% CI 1.5 to 7.6, p = 0.006). These increases were localised to the 

ipsilateral temporal neocortex and temporo-parieto-occipital junction (T = 5.8, 12357 

voxels, p = 0.003, Figure 5.2C). Lamotrigine intake was associated with a 

nonsignificant decrease in VT (F = 1.5, Beta -1.4, 95% CI -3.8 to 1.0, p = 0.24) and 

perampanel intake with a nonsignificant increase in VT (F = 1.2, Beta 1.9, 95% CI -1.7 

to 5.4, p = 0.28). On voxelwise analyses, we did not detect any areas with significant 

changes in VT related to lamotrigine or perampanel intake. 

 

5.3.3 [18F]GE-179 uptake in epilepsy patients compared to healthy 

volunteers 

People with epilepsy and healthy volunteers did not significantly differ in age (F=0.4, 

p=0.52) and sex (F=0.1, p=0.76). Global [18F]GE-179 VT in grey matter did not differ 

between healthy volunteers (n = 29, mean VT 9.2, 95% CI 8.5 to 10.0) compared with 

patients with mesial temporal lobe epilepsy and hippocampal sclerosis (MTLE+HS, n = 

7, mean VT 9.1, 95% CI 7.5 to 10.8, F = 0.01, p = 0.93), patients with temporal lobe 

epilepsy (TLE, n = 18, mean VT 9.5, 95% CI 8.0 to 10.9, F = 0.2, p = 0.67), or patients 

with frontal lobe epilepsy (FLE, n = 5, mean VT 10.4, 95% CI 7.8 to 13.0, F = 0.8, p = 

0.38). 

On voxelwise analysis, patients with MTLE+HS (Figure 5.3A) had focal relative 

decreases of VT in bilateral precunei and cuneus (T = 8.0, 2063 voxels, p < 0.001), 

ipsilateral mesial temporal lobe (T = 6.4, 2166 voxels, p < 0.001), contralateral 

superior and middle temporal gyri (T = 6.4, 2060 voxels, p < 0.001), contralateral 

inferior temporal gyrus (T  = 5.9, 778 voxels, p = 0.002), and bilateral opercula 

(ipsilateral, T= 5.3, 545 voxels, p = 0.01; contralateral, T = 6.0, 1828 voxels, p < 

0.001). 
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Figure 5.3: Abnormal GE-179 uptake and epilepsy localisation. 

The figure shows abnormal GE-179 VT in patients with mesial temporal lobe epilepsy with hippocampal sclerosis 
(n=7, panel A), temporal lobe epilepsy (n=18, panel B), and frontal lobe epilepsy (n=5, panel C) compared with 
healthy volunteers (n=29). The voxelwise distribution of GE-179 PET results is shown on brain surfaces and slices 
on the left (p<0.05 FWE corrected; blue colours indicate increased uptake, red colour indicate decreased uptake). 
Grey matter atrophy assessed with voxel-based morphometry is overlaid in purple (p<0.05 FWE corrected). 
Comparisons of estimated marginal means of global grey matter GE-179 VT between patients and healthy 
volunteers are shown in plots on the right.  
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Patients with TLE (Figure 5.3B) had focal relative decreases of VT in bilateral precunei 

(T = 6.6, 4277 voxels, p < 0.001), bilateral opercula (ipsilateral, T = 4.8, 546 voxels, p 

= 0.02; contralateral, T = 6.1, 2830 voxels, p < 0.001), contralateral superior and 

middle temporal gyri (T = 5.9, 1965 voxels, p < 0.001), contralateral inferior temporal 

gyrus (T = 5.7, 1401 voxels, p < 0.001), ipsilateral mesial temporal lobe (T = 5.4, 796 

voxels, p = 0.002), and ipsilateral middle and inferior temporal gyri (T = 5.0, 487 

voxels, p = 0.03). 

Patients with FLE (Figure 5.3C) had focal relative decreases of VT in bilateral 

orbitofrontal cortices (ipsilateral, T = 4.5, 650 voxels, p = 0.003; contralateral, T = 4.5, 

369 voxels, p = 0.04), ipsilateral posterior superior temporal gyrus (T = 6.0, 2589 

voxels, p < 0.001), ipsilateral angular gyrus (T = 5.3, 648 voxels, p = 0.003), and 

ipsilateral fusiform gyrus (T = 4.7, 363 voxels, p = 0.04). 

We found significant grey matter atrophy measured with VBM in patients with 

MTLE+HS (Figure 5.3A) in the ipsilateral hippocampus (T = 7.6, 1724 voxels, p = 

0.001). VBM did not detect significant grey matter atrophy in the overall group of 

patients with TLE (Figure 5.3B) or FLE (Figure 5.3C). 

 

5.3.4 [18F]GE-179 uptake before and after temporal lobe surgery 

Due to improved reproducibility (chapter 5.3.1), we determined relative VT ratios in 

cerebral lobes and subcortical structures (basal ganglia, thalamus) in six patients with 

temporal lobe epilepsy scanned before and after anterior temporal lobe resection. 

After surgery, there was a significant increase in relative VT (Figure 5.4A) in the 

contralateral temporal lobe (mean relative VT presurgical 1.00 vs. postsurgical 1.04, T 

= 3.2, p = 0.02) and basal ganglia (mean relative VT presurgical 1.11 vs. postsurgical 

1.15, T = 5.5 p = 0.003). In comparison, mean relative VT in healthy volunteers was 

1.05 (95% CI 0.93 to 1.17) in the temporal lobe and 1.15 (95% CI 0.97 to 1.33) in the 

basal ganglia. Other regions did not show significant differences. There were no  
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Figure 5.4: Relative changes in GE-179 uptake after epilepsy surgery. 

Panel A shows relative changes of GE-179 VT in the contralateral temporal lobe and basal ganglia of patients with 
temporal lobe epilepsy before and after anterior temporal lobe resection. Panel B shows the voxelwise 
distribution of post- vs. presurgical relative GE-179 VT in these patients (p<0.05 FWE corrected; blue colours 
indicate increased relative uptake after surgery, red colours indicate decreased relative uptake after surgery). 
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differences in postsurgical relative VT changes between patients who became seizure-

free and those with ongoing seizures. On voxelwise analysis (Figure 5.4B), we 

confirmed postsurgical increases of relative VT in the contralateral middle and inferior 

temporal gyri (T = 9.4, 546 voxels, p = 0.01). 

 

5.4 Discussion 

We report in vivo alterations of NMDA receptor activation in the largest cohort of 

patients with epilepsy studied with NMDA receptor PET to date. We found decreased 

interictal tracer uptake in patients with longer duration of epilepsy, whereas uptake 

was increased in older individuals. We observed focal reductions of tracer uptake in 

patients with epilepsy compared with healthy volunteers and these reductions were 

bilateral and spread beyond the epileptic focus. The spatial distribution of decreased 

uptake was related to the localisation of the epileptic focus and differed between 

patients with temporal or frontal lobe epilepsy. After anterior temporal lobe resection, 

we found relative increases in tracer binding in the contralateral temporal lobe and, 

less consistently, in the contralateral basal ganglia.  

 

5.4.1 NMDA receptor hypofunction and neuronal hyperexcitability 

Traditionally, activation of NMDA receptors that bind glutamate, an excitatory 

neurotransmitter, was thought to lead to activation of neuronal circuits. Emerging 

evidence from animal and human studies points to both activating and suppressing 

effects of NMDA receptors on neuronal networks (Fitzgerald, 2012). Network 

suppression could be mediated by activation of NMDA receptors on GABAergic 

interneurons that may in turn inhibit excitatory pyramidal cells (Grunze et al., 1996; 

Homayoun and Moghaddam, 2007; Manzoni et al., 1994). Another potential 

mechanism is the downregulation of excitatory AMPA receptors through NMDA 

receptors (Hall et al., 2007). Conversely, NMDA receptor antagonism increases 
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glutamatergic transmission through AMPA receptors (Moghaddam and Adams, 1998; 

Moghaddam et al., 1997). A recurrent finding is the activation of limbic structures after 

blocking of NMDA receptors with ketamine (Höflich et al., 2017; Kraguljac et al., 2017; 

McMillan et al., 2019). Thus, NMDA receptor hypofunction may lead to hippocampal 

activation and subsequently to increased likelihood of seizures. 

In patients with epilepsy, reduced binding inside the open, i.e. activated, NMDA ion 

channel and a higher proportion of GluN2B subunits, that have a lower opening 

probability (N. Chen et al., 1999; Erreger et al., 2005; Gray et al., 2011), have been 

observed in temporal lobe specimen (Hosford et al., 1991; Mathern et al., 1998; 

McDonald et al., 1991). Both gain- and loss-of-function mutations in GRIN genes 

encoding NMDA receptor subunits led to seizures (Xu and Luo, 2018). Seizures are 

frequent in anti-NMDA receptor encephalitis, an autoimmune disorder associated with 

internalisation and hypofunction of NMDA receptors (Hughes et al., 2010; Moscato et 

al., 2014). An increase of seizures was observed in a large proportion of patients in a 

trial of the competitive highly selective NMDA receptor antagonist D-CPP-ene 

(Sveinbjornsdottir et al., 1993). 

These observations allow for several interpretations of our findings. We demonstrated 

lower tracer uptake in epilepsy patients with longer disease duration (Figure 5.2B) and 

spatially distinct reductions in patients compared to controls (Figure 5.3). Lower 

[18F]GE-179 uptake points to a reduced opening probability of NMDA receptors 

(McGinnity et al., 2014) that could reflect a reduction in the surface expression or 

change of the functional properties of NMDA receptors. Our results are in line with the 

notion that increased NMDA receptor activation is relevant during epileptogenesis 

and the early stages of epilepsy whereas longer disease duration leads to progressive 

hypoactivation of NMDA receptors (McNamara et al., 1988).  

NMDA receptor hypofunction, as observed in our chronic refractory epilepsy cohort, 

could lead to reduced activation of inhibitory interneurons (Grunze et al., 1996; 

Homayoun and Moghaddam, 2007; Manzoni et al., 1994) and increased glutamatergic 
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activation of AMPA receptors (Hall et al., 2007; Moghaddam and Adams, 1998; 

Moghaddam et al., 1997), that was recently observed in patients with epilepsy 

(Miyazaki et al., 2020). This may subsequently cause limbic hyperexcitability (Höflich et 

al., 2017; Kraguljac et al., 2017; McMillan et al., 2019) and could contribute to 

seizures. Alternatively, NMDA receptor hypofunction could reflect a compensatory 

mechanism due to increased release of glutamate during seizures (During and 

Spencer, 1993). Glutamatergic stimulation may reduce the transcription of the 

obligatory GluN1 subunit, thus leading to a reduced NMDA receptor density (Gascón 

et al., 2005). Overall, this is a less likely explanation because NMDA receptors tend to 

be stably expressed and are less likely to be regulated by neuronal activity than other 

glutamatergic ion channels (Lissin et al., 1998). 

Our results are in accordance with several, but not all, previous PET and 

immunohistochemistry studies in human epilepsy (Bayer et al., 1995; Blumcke et al., 

1996; Geddes et al., 1990; Hosford et al., 1991; McDonald et al., 1991; Spreafico et 

al., 1998). A study using [11C]ketamine found reduced binding in the ipsilateral 

temporal lobe of patients with MTLE (Kumlien et al., 1999). We previously observed 

increased [18F]GE-179 binding in eight epilepsy patients not taking antidepressants 

and decreased binding in three patients on antidepressants (McGinnity et al., 2015). 

Increased binding in this previous study could reflect the selective inclusion of patients 

with frequent interictal epileptic discharges. Epileptic discharges during the scan 

could lead to glutamate release (During and Spencer, 1993) and activation of NMDA 

receptors. Because subjects included in the current study were less likely to have 

interictal epileptic discharges they may have been less prone to abnormal glutamate 

release during the scan. 
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5.4.2 Focal changes of NMDA receptor activation in epilepsy 

Focally decreased NMDA receptor activation was spatially distinct between epilepsy 

subtypes (Figure 5.3). The ipsilateral mesial temporal lobe was more likely to show 

abnormal tracer uptake in MTLE+HS, whereas the ipsilateral temporal neocortex 

showed abnormal uptake in the overall TLE group. In contrast, patients with FLE had 

abnormal tracer uptake mainly in the orbitofrontal cortex and the parietal lobe. In all 

subgroups, reductions in NMDA receptor activation were widespread, affecting areas 

beyond the epileptic focus and spreading to the contralateral hemisphere. We did not 

observe any focal increases in NMDA receptor activation. This reinforces the concept 

of epilepsy as a network disorder. A similar distribution has been found in studies 

examining structural MRI abnormalities in epilepsy (Galovic, van Dooren, et al., 2019; 

Whelan et al., 2018). These regions may be particularly vulnerable because of their 

high interconnection with the epileptic focus. There is a high overlap between the 

areas affected in MTLE+HS (Figure 5.3A) and the regions structurally connected with 

the hippocampus (Figure 5.5, reproduced with permission from (Galovic, van Dooren, 

et al., 2019).  

Although we observed a different spatial distribution of NMDA receptor alterations 

between TLE and FLE (Figures 5.3B and 5.3C), the value of [18F]GE-179 PET for 

presurgical evaluation may be limited because the abnormalities were bilateral and 

widespread. In contrast, FDG-PET shows in many cases a large area of reduced uptake 

that includes the epileptogenic zone and was shown to be helpful in localisation and 

lateralisation of the epileptic focus (Willmann et al., 2007). FDG-PET was performed in 

6 of our epilepsy patients and showed focal hypometabolism in the presumed 

epileptogenic zone in five cases and bilateral hypometabolism in one case. Further 

studies may be needed to directly evaluate the lateralising and localising value of 

[18F]GE-179 PET in individual patients with epilepsy. 

We found relative postsurgical increases of tracer uptake in the contralateral temporal 

lobe (on voxelwise and regional analysis) and basal ganglia (on regional analysis only) 
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after anterior temporal lobe resections (Figure 5.4). These areas showed reduced 

tracer uptake in TLE before surgery (Figure 5.3B). Thus, postsurgically increased 

uptake could reflect normalisation of NMDA receptor activation in the contralateral 

hemisphere after removal of the ipsilateral epileptogenic zone. This is supported by 

the observation that postoperative relative VT in these areas was comparable to that 

observed in healthy volunteers. Alternatively, it could point to neuronal compensation 

through increased NMDA receptor activation in the contralateral temporal cortex after 

removal of ipsilateral temporal lobe.  

 

5.4.3 Effects of antiepileptic drugs 

We observed increased NMDA receptor activation, particularly in the ipsilateral 

temporal lobe and parieto-occipital junction, in patients taking lacosamide (Figure 

5.2C). Lacosamide’s primary mechanism of action is thought to be the blocking of 

voltage-gated sodium channels. However, lacosamide is an analogue of the 

endogenous amino acid and NMDA-receptor modulator D-serine (European 

Medicines Agency Evaluation of Medicines …, 2008). In vitro models did not find 

 

Figure 5.5: Areas structurally connected with the hippocampus 

The structural connectivity with left and right hippocampi in 10 healthy volunteers is presented as the regional 

proportion of connected voxels. Reproduced with permission from (Galovic, van Dooren, et al., 2019). 
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direct binding of lacosamide to NMDA receptors, nor did lacosamide modulate 

NMDA receptor currents (Errington et al., 2006). On the other hand, lacosamide 

efficiently prevented NMDA-induced convulsions and reduced mortality in rodents 

(Stöhr et al., 2007). Thus, lacosamide might modulate NMDA receptor function 

through a yet unrecognised mechanism that warrants further evaluation. 

Patients taking lamotrigine showed a trend for decreased tracer binding, whereas 

those taking perampanel had a trend for increased tracer binding, but they were not 

significant in the multivariable model (Table 5.2). Lamotrigine acts as a glutamatergic 

modulator and attenuates cortical glutamate release and could, in accordance with 

our observations, cause nonsignificant reductions of NMDA receptor activation (Anand 

et al., 2000; Farber et al., 2002; C.-Y. Lee et al., 2008; Ramadan et al., 2012; S. J. 

Wang et al., 1996). Lamotrigine effectively reduced glutamatergic excitotoxicity (Eisen 

et al., 1993; Tekin et al., 1998). Perampanel does not directly affect NMDA receptor 

currents. It might, however, lead to increased availability of unbound extracellular 

glutamate through AMPA receptor antagonism that could indirectly and 

nonsignificantly activate NMDA receptors (C.-Y. Chen et al., 2014). 

 

5.4.4 Effects of age 

We confirmed in this cohort of patients with focal epilepsy that aging is associated 

with an increased opening probability of NMDA receptors (Figure 5.2A), as previously 

demonstrated in healthy individuals (detailed discussion in chapter 0). The rate of 

receptor overactivation per decade in epilepsy patients was more than double that of 

healthy volunteers, pointing to a higher vulnerability of the epileptic brain to aging. 

This observation supports previous findings of progressive neurodegeneration on 

structural neuroimaging (Galovic, van Dooren, et al., 2019). The subcortical areas 

affected by aging in epilepsy patients (Figure 5.2A) were largely similar to those in 

healthy volunteers (Figure 4.1). Cortical areas were less likely to show an aging-related 
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increase in tracer uptake in patients with epilepsy compared to healthy individuals 

because epilepsy leads to decreased uptake in several cortical areas (Figure 5.3). 

 

5.4.5 Methodical considerations 

Several methodical considerations should be noted. Firstly, [18F]GE-179 has 

demonstrated specificity for the open NMDA ion channel in vitro and during recent 

activation/blocking studies in vivo (discussed in more detail in chapter 0). Tracer 

binding is, however, not selective for any NMDA receptor subunit and, thus, cannot 

distinguish between heteromeric compositions or synaptic localisations of receptors. 

Tracer binding reflects receptor opening probability, a compound measure of 

receptor availability and activation. 

Secondly, our findings of reduced tracer uptake in epilepsy patients are unlikely to be 

explained by grey matter atrophy because the PET signal changes far exceeded 

reductions of grey matter volume on VBM (Figure 5.3). Additionally, we corrected the 

PET results for partial volume effects, thus adjusting the PET signal for potential effects 

of brain atrophy. It is also unlikely that our findings relate to tissue hypoperfusion, 

because hypoperfusion is usually unilateral and restricted to the epileptogenic zone 

whereas our findings were bilateral and widespread (Boscolo Galazzo et al., 2015). In 

addition, VT estimates obtained using kinetic modelling applied to the PET signal are 

not dependent on tissue blood perfusion. 

Thirdly, we showed large variability of test-retest [18F]GE-179 measurements. Thus, 

PET studies might be more robust to detect relative focal differences rather than 

absolute global changes. This might explain why relative focal differences were 

consistently demonstrated in all epilepsy subgroups (Figure 5.3) and postsurgically 

(Figure 5.4), but global changes could not be detected compared to healthy 

volunteers. Additional signal variability might have been introduced by the usage of a 

venous/image-derived input function in the UCL cohort. Thus, analysing PET studies 
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with high signal variability requires large cohorts for group comparisons and may 

make comparisons on an individual level difficult and restricted to relative focal rather 

than absolute global changes. To increase statistical power, we pooled data from 

three available healthy control cohorts. Scanning equipment did not significantly 

influence the results (see cohort comparison in chapter 4.3.1) and we adjusted all 

statistical models for site allocation to further minimise any residual between-cohort 

effects. 

Lastly, a limitation inherent to most epilepsy studies is the possible influence of AED 

intake in patients compared with controls. However, even when correcting for number 

of type of AED taken in epilepsy patients we found reduced tracer uptake in cases 

with longer duration of epilepsy (Figure 5.2), adding support for the finding of 

reduced tracer uptake in epilepsy patients compared to healthy volunteers.  

 

5.4.6 Conclusions 

We observed reduced interictal NMDA receptor activation in patients with chronic 

refractory focal epilepsy, particularly in those with longer disease duration. These 

results challenge traditional concepts of NMDA receptor overactivation in chronic 

epilepsy. In view of this and previous studies, achieving a balanced NMDA receptor 

activation might be necessary for normal neuronal function, because both increased 

and reduced activation of NMDA receptors can cause seizures. Such knowledge will 

have an impact on the development of new antiepileptic drugs targeting NMDA 

receptors. Further research should address the value of [18F]GE-179 PET as a 

molecular surrogate marker for monitoring epileptic activity. 
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6 Project 4: NMDA receptor 
activation in Anti-NMDA-
receptor encephalitis 

6.1 Introduction 

Anti-NMDA-receptor encephalitis is a recently described autoimmune disorder 

leading to a syndrome with psychiatric, cognitive, and autonomic dysfunction, 

seizures, speech abnormalities, movement disorders, and decreased level of 

consciousness (Dalmau et al., 2007; Graus et al., 2016). Around 80% of cases have a 

favourable outcome following immunotherapy but relapses may occur in up to a 

quarter of cases (Gabilondo et al., 2011; Titulaer et al., 2013). The majority of 

recovered cases report persistent cognitive deficits of variable severity affecting 

executive functions and memory (Finke et al., 2012).  

The disease is mediated by autoantibodies to the GluN1 subunit of the NMDA 

receptor that cause a crosslinking and internalisation of the receptors (Hughes et al., 

2010; Ladépêche et al., 2018; Moscato et al., 2014). In vitro and animal experiments 

showed that the magnitude of reduction in NMDA receptor density is related to 

antibody titres and the effects are reversible when the antibody titre is reduced 

(Hughes et al., 2010; Moscato et al., 2014). Similarly, a reduction of NMDA receptor 
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density was reported post mortem in two autopsied patients with anti-NMDA-receptor 

encephalitis (Dalmau et al., 2007).  

It is controversial whether antibody titres in serum and cerebrospinal fluid (CSF) 

correlate with clinical outcome, as persistently elevated titres were observed in some 

but not all patients who did not improve clinically (Dalmau et al., 2008; Gresa-Arribas 

et al., 2014). It remains unknown how to guide the intensity and duration of 

immunotherapy. In particular, reliable biomarkers for the risk of relapses or long-term 

outcome after an initial episode of Anti-NMDA-receptor encephalitis are not available 

and it is unclear how to monitor disease activity in the longer term. 

Neuroimaging studies described several abnormalities in patients with Anti-NMDA-

receptor encephalitis. Around half of cases show T2 or FLAIR hyperintensities in the 

hippocampi, cerebellar or cerebral cortex (Dalmau et al., 2007). Volumetry may detect 

hippocampal atrophy that correlates with disease severity and memory performance 

(Finke et al., 2016). Patients also show widespread white matter changes, particularly 

affecting the cingulum, and a reduced connectivity of both hippocampi with the 

default mode network (Finke et al., 2013). FDG-PET shows a typical pattern of 

occipital hypometabolism that may be more sensitive than structural MRI (Leypoldt et 

al., 2012; Probasco et al., 2018). Nevertheless, none of the imaging methods studied 

so far enabled the direct measurement of NMDA receptor activity in vivo in patients 

with Anti-NMDA-receptor encephalitis. 

Here, we used PET with the novel radioligand [18F]GE-179 that binds inside the open, 

i.e. activated, NMDA ion channel to study five females after discharge from hospital 

following confirmed Anti-NMDA-receptor encephalitis. We aimed to determine, 

whether disturbances in NMDA receptor function persist even after improvement of 

most symptoms and whether they correlate with antibody titres in serum. 
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6.2 Methods 

We followed the methods as described in detail in chapter 2. We screened 

consecutive patients with Anti-NMDA-receptor encephalitis that were hospitalised or 

under regular follow-up in two tertiary referral centres in the UK (John Radcliffe 

University Hospital Oxford and St. George’s University Hospital London). We included 

patients with confirmed disease according to established diagnostic criteria (Graus et 

al., 2016) who were (i) between 18 and 65 years old, (ii) had minimal or no symptoms 

and could thus tolerate a 70-minute PET-MR scan, and (iii) did not take any medication 

that could interfere with NMDA receptors, in particular antipsychotics or 

antidepressants, permitting immunotherapy and anticonvulsants. The included 

participants in the “active” group (cases #1-4) had detectable Anti-GluN1 antibodies 

in serum on day of scanning. We also included one “inactive” participant (case #5) 

with nondetectable antibodies in serum for comparison. 

All patients were scanned at the UCL site. Clinical data were retrospectively extracted 

from medical records according to previously described procedures (Al-Diwani et al., 

2019). We calculated the CASE score, a measure of autoimmune encephalitis severity, 

at discharge (Lim et al., 2019). Cognitive testing with Addenbrooke’s Cognitive 

Examination III (ACE-III) and assessment with Beck’s Depression Inventory (BDI) were 

performed shortly before the scan.  

The live cell-based assays for serum Anti-GluN1 titre measurements were done as 

follows. HEK293T cells were cultured at 37°C in Dulbecco’s Modified Eagle Medium 

(DMEM) supplemented with foetal calf serum and antibacterial/antimycotic solution 

for 30 hours on glass cover slips, then transfected with plasmid DNA containing GluN1 

subunit for 15 hours. Following incubation for a further 24 hours in 1.4 μL/ml ketamine 

supplemented culture medium sera were tested. Serum, previously thawed to room 

temperature, was diluted 1:20 with DMEM supplemented with 1% bovine serum 

albumin and 200mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). 

250μL diluted samples were testing alongside positive and negative controls. Samples  
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Variable Case #1 Case #2 Case #3 Case #4 Case #5 
Age, Sex,  
Ethnicity 

22, F,  
Asian 

36, F,  
Caribbean 

25, F,  
Caribbean 

30, F,  
European 

28, F,  
European 

Data at scan      
GE-179 uptake in GM 7.3 6.6 6.0 4.6 9.7 
Serum GluN1-IgG 1:320 1:320 1:160 1:320 Not detectable 
Current episode Relapse Relapse First First First 
Overall number of 
episodes 

3 2 1 1 1 

ACE-III 96 95 86 96 96 
BDI 16 3 8 6 5 

Timing      
Time from discharge to 
scan (months) 

2 8 6 8 16 

Duration of hospitalization 
(months) 

1.5 1.3 10 2.5 2 

Time from symptom onset 
to scan (months) 

4 12 18 11 19 

Time from symptom onset 
to admission (days) 

14 21 64 12 25 

Treatment      

Current medication 

CP, Prednisone, 
Lorazepam, 
TMP/SMX, 

Omeprazole 

Levetiracetam, 
Clonazepam, 

Ferrous 
fumarate 

Prednisone, 
Lansoprazole 

Levetiracetam 
Oral 

contraceptive 

Immunotherapy  
during hospitalisation 

Steroids, PLEX, 
CP 

Steroids, PLEX, 
CP 

Steroids, PLEX, 
IVIG 

Steroids, PLEX 
Steroids, PLEX, 

IVIG, CP 

Other treatments  
during hospitalisation 

Antipsychotic, 
Benzodiazepine 

Antipsychotic, 
Antiepileptic, 

Benzodiazepine 

Antipsychotic, 
Antiepileptic, 

Benzodiazepine 
Antiepileptic 

Antipsychotic, 
Antiepileptic, 

Benzodiazepine 
Clinical features  
during hospitalisation 

     

Hospitalised in Oxford Oxford London London Oxford 
CASE score at discharge 5 4 5 5 8 
Prodrome Y Y Y Y Y 
Psychiatric Y Y Y Y Y 
Cognitive Y Y Y Y Y 
Speech dysfunction Y Y N Y Y 
Seizures N N Y Y Y 
Movement disorder Y Y Y Y Y 
Reduced consciousness N N Y Y N 
Autonomic Y N N N Y 
Central hypoventilation N N N N N 
Ovarian teratoma N N Y Y N 
Post-HSV encephalitis N N N N N 

Para-clinical features  
during hospitalisation 

     

MRI abnormal N N N N Y 
EEG abnormal Y Y Y Y ? 
CSF pleocytosis Y Y N N Y 
CSF lymphocytosis Y Y Y Y Y 
CSF elevated protein Y Y N N Y 

 
Table 6.1: Characteristics of patients with Anti-NMDA-receptor encephalitis 
Y, Yes/Present; N, No/Absent; ?, unknown; F, female; CM, Grey matter; ACE-III, Addenbrooke’s Cognitive Examination III; BDI, 
Beck’s Depression Inventory; CP, Cyclophosphamide, TMP/SMX, Trimethoprim/sulfamethoxazole; PLEX, Plasma exchange; 
IVIG, Intravenous immunoglobulins; HSV, Herpes simplex virus; MRI, Magnetic resonance imaging; EEG, 
Electroencephalography; CSF, Cerebrospinal fluid examination. 
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were incubated with transfected cells for 1 hour at room temperature. The diluted 

samples were then aspirated, each well was washed 3 times with DMEM-HEPES, each 

cover slip was then fixed with 4% formaldehyde for 5 minutes and then washed three 

times with DMEM-HEPES. The cells were then incubated with secondary antibody 

(Alexa Fluor 594-conugated donkey anti-human IgG Fc-gamma; Jackson 709-585-

098) in the dark for 45 minutes. This was aspirated, and each well was washed twice in 

DMEM-HEPES then twice in PBS. Each coverslip was individually mounted in 4′,6-

diamidino-2-phenylindole (DAPI)-supplemented mounting medium on a glass 

slide. Following review of positive and negative control cover slips test samples were 

read at 40x zoom on a Leica DM2000 fluorescence microscope. Positivity 

was determined by the presence of a characteristic coronal cell surface deposition of 

fluorescent reporter antibody on multiple cells. All positive samples were repeated on 

an independent assay and serially diluted to establish an end-point dilution, the 

dilution at which the positive signal was still unambiguously present. 

We compared these subjects with twenty-nine healthy volunteers from three cohorts 

(UCL [n=10], Cambridge [n=10], Hammersmith [n=9]). The Cambridge and 

Hammersmith sites used PET-CT scanners with an arterial input function, whereas the 

UCL site used a PET-MR set-up with a venous/image-derived input function (see 

chapter 3 for method validation). All participants gave written informed consent 

according to the Declaration of Helsinki. 

We calculated [18F]GE-179 volume of distribution (VT) estimates in global grey and 

white matter and in lobar regions of interest. We compared VT estimates between 

patients with encephalitis and healthy volunteers using the general linear model 

adjusting for age, sex, and cohort allocation (i.e. scanning equipment). We report VT 

means as estimated marginal means that were adjusted for the effects of age, sex, and 

cohort allocation. To analyse the subregional distribution of the findings, we fitted the 

same general linear model on voxelwise VT estimates. To address the contribution of 

grey matter atrophy to our findings, we performed voxel-based morphometry (VBM)  
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Figure 6.1: GE-179 uptake in “active” or “nonactive” Anti-NMDA-receptor encephalitis and 
healthy volunteers. 

The figure shows the spatial distribution of [18F]GE-179 VT on brain slices and surface projections. Panel A displays 
individual ligand uptake in “active” Anti-NMDA-receptor encephalitis cases (n=4) that were scanned 2-8 months 
after discharge and had elevated serum Anti-GluN1 antibodies (1:160 – 1:320). The mean brain uptake in these 
cases is shown below. Panel B displays one “nonactive” Anti-NMDA-receptor encephalitis case scanned 16 
months after discharge with undetectable Angi-GluN1 antibodies on day of scanning. Panel C shows mean uptake 
in healthy volunteers (n=29). 

 

A   “Active” encephalitis cases, 2 - 8 months after discharge, Serum Anti-GluN1 IgG 1:160 - 1:320

B   “Inactive” encephalitis case, 16 months after discharge, Serum Anti-GluN1 IgG not detectable

C   Healthy volunteers
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using segmented and modulated parametric grey matter volume images obtained 

using the CAT12 toolbox on 3T T1-weighted MRI scans. We report voxelwise p-values 

at a threshold of p<0.05 on a cluster-level family-wise error corrected for multiple 

comparisons. 

 

6.3 Results 

We included four “active” patients (cases #1-4, mean age 28 ± 6 years, all female) with 

Anti-NMDA-receptor encephalitis, mild or minimal symptoms, and persisting Anti-

GluN1 antibodies in serum (titre range 1:160 to 1:320) that were scanned two to eight 

months after discharge from hospital. For comparison, we included one “inactive” 

patient (case #5, age 28, female) with undetectable antibodies in serum who was 

scanned 16 months after discharge from hospital and 29 healthy volunteers (mean age 

41 ± 13 years, 8 [28%] female). Patient characteristics are displayed in Table 6.1.  

Active cases #1-4 had lower [18F]GE-179 brain uptake compared to the inactive case 

#5 and to healthy volunteers (Figure 6.1). Active cases had lower [18F]GE-179 VT in 

grey matter (estimated marginal mean 6.2 [95% CI 4.4 – 8.0]) compared to healthy 

volunteers (8.8 [95%CI 8.1 – 9.4], F=6.5, p=0.02) but not in white matter (4.3 [95% CI 

2.6 – 6.0] vs. 5.6 [95% CI 5.0 – 6.2], F=2.0, p=0.17), as shown in Figure 6.2A. All 

female healthy volunteers younger than 40 years had VT estimates in grey matter 

above 8 (mean 9.3 [95% CI 6.3-12.3]). Inactive case #5 had similar VT estimates in grey 

(9.7) and white (5.8) matter compared to healthy volunteers (Figure 6.1).  

The relationship between serum Anti-GluN1 IgG titres and time from discharge from 

hospital with grey matter VT is displayed in Figures 6.3A-B. There was little variability 

in cognitive testing results at time of scanning (ACE-III, range 86 to 96, Figure 6.3C) 

and symptom severity at discharge (CASE score at discharge, range 4 to 8, Figure 

6.3D) because all cases were only minimally affected. 
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Figure 6.2: Comparison of GE-179 uptake in antibody-positive Anti-NMDA-receptor 
encephalitis cases and healthy volunteers. 

Panel A shows boxplots of GE-179 VT in global grey matter in antibody-positive “active” cases with Anti-NMDA-
receptor encephalitis (ENC, n=4) and healthy volunteers (CTRL, n=29, split by cohort). Panel B shows voxelwise 
differences in GE-179 VT between encephalitis cases and healthy volunteers (p<0.05 FWE corrected, red colours 
indicate decreased uptake in encephalitis cases). Panel C displays voxelwise differences in grey matter volume 
between encephalitis cases and healthy volunteers (p<0.05 FWE corrected, blue colours indicate atrophy in 
encephalitis cases). 
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On voxelwise analysis (Figure 6.2B), active cases had significantly reduced [18F]GE-179 

uptake in bilateral anterior temporal lobes (left, T = 4.5, 1937 voxels, p = 0.02; right, T 

= 4.9, 1416 voxels, p=0.05) and a large cluster involving bilateral superior parietal 

lobes, paracentral lobules, left posterior cingulate gyrus, and left precuneus (T = 5.8, 

6593 voxels, p < 0.001). Reduced uptake in active cases compared to healthy 

volunteers was confirmed in the temporal (cases 5.7 [95% CI 3.9 – 7.6] vs. controls 8.6 

[95% CI 8.0 – 9.2], F=8.3, p=0.008) and parietal (6.2 [95% CI 4.3 – 8.2] vs. 9.1 [95% CI 

8.4 – 9.8], F=7.3, p=0.01) lobes using regional VT estimates (Figure 6.2A). Reduced 

grey matter volume on VBM (Figure 6.2C) was observed in both cerebellar 

hemispheres (left, T = 4.6, 2189 voxels, p = 0.001; right, T = 4.3, 1337 voxels, p = 

0.008) and did not overlap with the PET findings. 

 

6.4 Discussion 

We report the first use of [18F]GE-179 to measure in vivo the activation of NMDA 

receptors in patients with Anti-NMDA-receptor encephalitis. We demonstrated a 

reduced opening probability of NMDA receptors, most prominently in the anterior 

temporal and superior parietal cortices, in a series of patients with detectable Anti-

GluN1 antibodies in serum, despite them having only mild or minimal symptoms and 

being discharged from hospital several months before the scan. In contrast, a clinically 

recovered patient without detectable Anti-GluN1 antibodies in serum had normal 

NMDA receptor opening probability. 

 

6.4.1 NMDA receptor hypofunction as a disease mechanism in 

Anti-NMDA-receptor encephalitis 

These results confirm the proposed mechanism of Anti-GluN1 antibodies that was 

observed in vitro, in animal studies and in post mortem specimen. The crosslinking  
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Figure 6.3: Association of GE-179 uptake in Anti-NMDA-receptor encephalitis cases with 
clinical variables. 

Scatter plots show the association of GE-179 VT in Anti-NMDA-receptor encephalitis cases (n=5, “active” and 
“nonactive” cases) with serum Anti-GluN1 IgG (panel A), time from discharge to scan (panel B), cognitive testing 
with ACE-III (panel C), and symptom severity at discharge measured with the CASE score (panel D). 
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and internalization of NMDA receptors mediated by these antibodies (Hughes et al., 

2010; Ladépêche et al., 2018; Moscato et al., 2014) is in accord with the reduced 

receptor opening probability observed in our study. The degree of this reduction 

(mean 30% reduction in “active” patients compared to healthy volunteers) is striking, 

considering the mild or minimal symptoms in the studied patients and that scanning 

was performed two to eight months after discharge from hospital. Our results indicate 

that impaired function of NMDA receptors may persist for months after discharge from 

hospital despite only minimal symptoms. The human brain may largely compensate 

for a 30% reduction of NMDA receptor opening probability at rest, thus leading only 

to mild symptoms.  

Persistent Anti-GluN1 antibodies in CSF and serum have been previously observed up 

to 15 years after disease onset (Alexopoulos et al., 2011; Hansen et al., 2013; Mariotto 

et al., 2017). It remains controversial whether persistent antibodies have pathogenic 

effects on the brain. It has been suggested that antibody synthesis might not reflect 

disease activity (Hansen et al., 2013; Mariotto et al., 2017). Our results may argue 

against this notion, because we observed a mean 30% reduction of NMDA receptor 

opening probability in cases with elevated antibody titres in contrast to normal NMDA 

receptor activation in a case without antibodies in serum. Our results suggest that 

persistent antibodies may disturb NMDA receptor function in the brain that can be 

compensated, leading only to minimal symptoms. It has to be noted that two out of 

four of the patients with antibodies in serum had relapses and three out of four were 

reducing their anti-inflammatory medication. Thus, it is unclear whether the studied 

series is representative of the typical population of Anti-NMDA-receptor encephalitis 

patients. Further studies with [18F]GE-179 will need to assess larger groups of patients 

at several time points and correlate the PET findings with clinical recovery and 

antibody titres in CSF and serum. 

We could only scan patients who tolerated a 70 minute PET scan and were not taking 

antipsychotics or antidepressants to prevent confounding our results with movement 
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artefacts or the effects of medication on NMDA receptors. We did not include cases 

with severe symptoms or anesthetised patients, because anaesthetics might reduce 

the baseline activity of NMDA receptors and could bias the results. Nevertheless, we 

expect that the opening probability of NMDA receptors at the peak of clinical 

symptoms would be substantially lower compared to the mildly affected cases studied 

here. Thus, future studies with [18F]GE-179 should assess more severely affected cases. 

However, such studies would run into the risk of biasing the findings through the 

action of antipsychotic medication or anaesthetic agents.  

 

6.4.2 NMDA receptor hypofunction and clinical correlates 

NMDA receptor hypofunction observed in our study may explain several of the 

symptoms in Anti-NMDA-receptor encephalitis. NMDA receptors subserve long-term 

potentiation (Cooke and Bliss, 2006b), a process relevant for memory consolidation. 

Sustained activation of NMDA receptors is also relevant for persistent neuronal activity 

that is the basis for storage of working memory (Lisman et al., 1998; M. Wang, Yang, 

C.-J. Wang, Gamo, Jin, Mazer, Morrison, X.-J. Wang and Arnsten, 2013b; X. J. Wang, 

1999). Altered NMDA receptor function would, thus, explain episodic and working 

memory deficits. Anti-NMDA-receptor encephalitis patients typically show psychiatric 

features with mixed mood-psychosis symptoms, that may be initially misdiagnosed as 

a first episode of schizophrenia (Al-Diwani et al., 2019). The administration the NMDA 

receptor antagonists ketamine and phencyclidine can lead to psychotic symptoms 

including hallucinations and dissociative experiences (Krystal et al., 1994). They may 

also induce orofacial and limb dyskinesia, autonomic instability, and seizures 

(Alldredge et al., 1989; Modica et al., 1990; Weiner et al., 2000). These observations 

have led to the NMDA receptor hypofunction hypothesis in schizophrenia (Olney, 

Newcomer and Farber, 1999b) and warrant future PET studies using [18F]GE-179 in 

patients with psychosis. 
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Although we observed a global reduction of NMDA receptor activation in patients 

with Anti-NMDA-receptor encephalitis (Figure 6.1 and 6.2A), the effects were most 

pronounced in the anterior temporal, superior parietal, and posterior cingulate 

cortices (Figure 6.2B). The anterior temporal lobe is important for episodic memory (T. 

M. C. Lee et al., 2002). Both parietal and posterior cingulate cortices were found to be 

involved in psychosis (Northoff et al., 2005; Yildiz et al., 2011). Electrical stimulation of 

the superior parietal lobule evoked visual and sensory hallucinations (Balestrini et al., 

2015). Thus, altered NMDA receptor function in these areas may correspond to the 

spectrum of symptoms observed in Anti-NMDA-receptor encephalitis. 

Our findings cannot be explained by differences in grey matter volume, because VBM 

did not detect relevant atrophy outside of the cerebellum and the PET results were 

corrected for partial volume effects. The findings are also independent of brain 

perfusion, because VT estimates are corrected for local and global blood perfusion 

effects.  

It is unclear how to interpret the variability of tracer uptake in “active” cases (Figure 

6.1A). This variability could reflect disease activity. Although antibody titres in serum 

were similar in “active” cases (range 1:160 to 1:320, Figure 6.3A), intrathecal titres 

might be a better marker of disease activity. However, we could not obtain CSF 

samples on the day of scanning because of ethical considerations. The degree of 

cognitive deficits at time of scan (Figure 6.3C), disease severity at discharge (Figure 

6.3D) and other clinical parameters (Table 1) were not related to tracer uptake. ACE-III 

might not be sufficiently sensitive to detect mild deficits that were reported by the 

patients at time of scanning. Another explanation for the variability observed between 

“active” patients is the 21.3% coefficient of variation for [18F]GE-179 PET. 
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6.4.3 Limitations 

This study has limitations. Firstly, the sample size in this pilot study was small. 

However, despite including only four active patients, we found marked and significant 

reductions of tracer binding compared to healthy volunteers.  

Secondly, the age and sex distribution of heathy volunteers differed from patients. 

The healthy control group was obtained by pooling the majority of data obtained with 

[18F]GE-179 PET worldwide in order to maximise statistical power. These healthy 

volunteers were acquired for studies of patients with epilepsy and traumatic brain 

injury and they infrequently included young female individuals to reduce the potential 

effects of radiation. Future studies of Anti-NMDA-receptor encephalitis cases will 

require a dedicated control group. Nevertheless, no healthy females below age 40 in 

our study had tracer uptake in grey matter below 8, thus making it unlikely that our 

results can be explained by difference in age or gender alone. Additionally, all 

analyses were statistically corrected for age, gender, and cohort effects to reduce 

confounding to a minimum. 

Thirdly, data of healthy controls was acquired in several cohorts with different scanner 

equipment and data acquisition protocols. Small between-cohort differences 

remained (i.e. lower signal across all regions in the Cambridge cohort, Figure 6.2A) 

and we statistically corrected for these factors in all models. Additionally, Figure 6.2A 

indicates a lower grey matter VT in patients vs. controls at the UCL site, making it 

unlikely that the results can be explained by between-cohort differences alone. 

Lastly, we could not completely eliminate the effect of medication on scanning but, 

because substances with potential effects on NMDA receptors were not permitted, 

the effects are likely to be minor. 
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6.4.4 Conclusions 

To conclude, we observed in vivo the reduced activation of NMDA receptors in a 

series of patients with Anti-NMDA-receptor encephalitis using a novel and minimally 

invasive imaging approach. If validated in larger and longitudinal studies, this method 

might be used to track disease activity and response to treatment in Anti-NMDA 

receptor encephalitis and might generate novel insights into disease mechanisms. 
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7 Conclusions and outlook 

In this thesis, I describe the use of [18F]GE-179 PET to characterize NMDA receptor 

activation in aging, focal epilepsy, and Anti-NMDA-receptor encephalitis.  

NMDA receptors are involved in several physiological neuronal processes and in the 

disease mechanisms of several neurological and psychiatric disorders (Bordji et al., 

2010; Cooke and Bliss, 2006b; Fan and Raymond, 2007; McGinnity et al., 2015; Olney, 

Newcomer and Farber, 1999a; Rothman and Olney, 1995). The recent development of 

[18F]GE-179, a radioligand specific to the open, i.e. activated, NMDA receptor is an 

important step towards understanding of their role in physiological and pathological 

processes in the human brain. So far, a small number of studies have been reported 

with this tracer (McGinnity et al., 2014; 2015; Vibholm et al., 2017; Vibholm, Landau, 

Alstrup, et al., 2020).  

I present data from the largest cohort assessed with [18F]GE-179 PET so far. We 

developed and validated a methodology for kinetic modelling independent of arterial 

sampling, that may allow a more widespread adoption of this radioligand. We found 

increased opening probability of NMDA receptors during aging in healthy volunteers 

and patients with focal epilepsy. Conversely, we observed a reduced NMDA receptor 

opening probability in adults with focal epilepsy and women with Anti-NMDA-

receptor encephalitis. These findings increase our understanding of NMDA receptor 

function in health and disease and may guide the development of future treatment 

strategies. 
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7.1 Methodological considerations 

[18F]GE-179 binds specifically to the phencyclidine site inside the NMDA receptor 

channel (McGinnity et al., 2014). Tracer binding requires the opening of the receptor 

channel complex. NMDA receptor opening is a complicated process that usually 

involves binding of an agonist and co-agonist as well as the removal of the Mg2+ ion 

blocking the channel pore (Mori and Mishina, 1995). This typically occurs during 

simultaneous pre- and postsynaptic activation. In other words, there may far less 

opening of NMDA receptors at rest than during activation, e.g. during a memory task. 

NMDA receptor opening may also be subject to the modulatory effects of co-agonists 

and other receptor types. 

Successful blocking experiments were performed in vivo for GE-179 in rats following 

activation of NMDA receptors using electrical stimulation (Vibholm, Landau, Møller, et 

al., 2020) and for the structural analogues CNS-5161 and GMOM in non-anaesthetised 

rodents (Biegon et al., 2007; van der Doef et al., 2016), confirming the specificity of 

the tracer to the phencyclidine site within the open NMDA receptor ion channel. 

Because anaesthesia is expected to reduce the baseline opening probability of NMDA 

receptors, blocking experiments in anaesthetized rodents were not successful 

(Schoenberger et al., 2017). We found reduced [18F]GE-179 uptake in our study of 

people with Anti-NMDA-receptor antibodies (Project 4). This supports the current 

hypothesis of receptor internalisation caused by Anti-NMDA-receptor antibodies, as 

described in animal studies (Hughes et al., 2010; Moscato et al., 2014; Wright et al., 

2015), and provides further in vivo evidence that GE-179 binding reflects the number 

of activated NMDA receptors. 

These observations are important for the interpretation of [18F]GE-179 binding. Firstly, 

tracer binding does not reflect the number or overall density of NMDA receptors. It is 

a use-dependent measure of receptor opening probability, i.e. the number of 
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activated NMDA receptors. This reflects a compound measure of receptor availability 

on the cell surface and their opening/activation. Secondly, the phencyclidine site is 

present on all types of NMDA receptors. Thus, tracer binding is not specific to any 

receptor subunit composition. The tracer cannot distinguish between synaptic and 

extrasynaptic receptor localisation. Thirdly, our findings were obtained in subjects 

while resting inside the scanner and reflect the baseline opening probability of NMDA 

receptors at rest. Future studies may explore task-specific binding, e.g. during a 

memory task or during electrographic seizures. NMDA receptor opening probability in 

these conditions may differ from activation observed during rest. 

The adoption of [18F]GE-179 PET in a larger number of studies and in clinical routine 

depends not only on tracer availability but also on the methodological set up. We 

simplified kinetic modelling of [18F]GE-179 PET by validating an approach 

independent of arterial sampling. The method still requires the acquisition and 

analysis of serial venous samples. Future refinement might involve the use of a 

simultaneous estimation (SIME) approach that may determine the parent fraction of 

tracer bound in plasma without the need for blood data (Sari et al., 2018). Widespread 

clinical use will also require the development of an automated pipeline that does not 

require manual input, which is currently not feasible due to the requirement to analyse 

blood data. 

Although [18F]GE-179 has relevant shortcomings, particularly considering the high test-

retest variability of absolute binding (whereas relative binding had a favourable test-

retest performance), there are few viable alternatives. An evaluation of [18F]PK-209, a 

radioligand for the ion channel binding site of NMDA receptors, did not demonstrate 

sufficient reliability or specificity (van der Aart et al., 2018). [11C]HACH242 has been 

evaluated as a radioligand for the GluN2B subunit of NMDA receptor in non-human 

primates but an evaluation in humans has not yet been performed (van der Aart et al., 

2019). 
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7.2 NMDA receptor activation in aging 

We found a higher opening probability of NMDA receptors in grey matter of older 

individuals. This effect was demonstrated both in a multicentre cohort of healthy 

volunteers and in a single-centre cohort of patients with refractory focal epilepsy. The 

annualised rate of increased NMDA receptor activation in people with epilepsy (VT 

increase by 1.4 per 10 years) was almost double that of healthy volunteers (VT increase 

by 0.8 per 10 years), suggesting that epilepsy may lead to accelerated brain aging 

(Galovic, van Dooren, et al., 2019). Aging-related NMDA receptor alterations 

particularly affected areas that may be involved in cognitive processes (Sambataro et 

al., 2010) and those that are susceptible to tau and amyloid-beta deposits in elderly 

individuals (Sepulcre et al., 2016).  

There are several potential explanations for an increased activation of NMDA 

receptors in older individuals. It could be related to an altered NMDA receptor 

subunit composition (Brim et al., 2013; Magnusson, 2000; Magnusson et al., 2002; 

2006; Zamzow et al., 2013) or disturbed glutamate homeostasis (Brothers et al., 2013; 

Farrand et al., 2015; Nickell et al., 2007; Potier et al., 2010; Vatassery et al., 1998). 

Alternatively, it may reflect functional compensation to maintain cognitive function 

during aging despite neuronal or ion-channel loss (Billard et al., 1997; Serra et al., 

1994).  

Further experiments will be required to distinguish between these potential 

explanations. Gene expression patterns of NMDA receptor subunits and glutamate 

transporters during aging could address their differential contribution to altered 

NMDA receptor function. Alternatively, immunohistochemistry in surgical specimen 

from people with epilepsy or post mortem brain samples could be used to address 

the expression of NMDA receptor subunits and glutamate transporters. However, 

these methods cannot directly assess functional alterations of receptors in vivo.  
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A further step in understanding the functional relevance of NMDA receptor alterations 

is to assess their impact on cognition by acquiring [18F]GE-179 PET data in healthy 

aging and in neurodegenerative disorders together with cognitive testing. Alzheimer’s 

disease (Bordji et al., 2010) and other neurodegenerative conditions may be related to 

NMDA receptor dysfunction. Studying people with dementia using [18F]GE-179 PET 

before and after the administration of memantine, an uncompetitive NMDA receptor 

antagonist, will be of interest in future.  

Lastly, our studies were so far restricted to tracer uptake at rest. Activity of NMDA 

receptors may, however, be highly susceptible to stimulation during specific tasks. We 

performed a pilot study of 5 healthy volunteers using a working memory task with 

simultaneous [18F]GE-179 PET and functional MRI. The results of this project are 

currently being analysed. 

 

7.3 NMDA receptor activation in epilepsy 

We found a lower interictal NMDA receptor opening probability in patients with 

longer duration of epilepsy. The spatial distribution of decreased tracer uptake formed 

distinct patterns and differed between temporal and frontal lobe epilepsy. Surgical 

removal of the epileptic focus in the ipsilateral temporal lobe caused a relative 

increase in postsurgical tracer uptake in the contralateral temporal lobe and basal 

ganglia. We also found effects of certain AEDs, lacosamide in particular, on NMDA 

receptors that merit further study. 

Our results argue against traditional models that postulate an increased activation of 

NMDA receptors in people with epilepsy. Our findings rather support more recent 

models that suggest that both an increase or decrease in NMDA receptor function 

may lead to network hyperexcitability. Thus, AEDs should restore the balance of 

NMDA receptor activity. Use-dependent or uncompetitive antagonists may be 

particularly promising in this regard. Excessive blocking of NMDA receptors may in 
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turn exacerbate seizures and cause a number of neuropsychiatric side effects 

(Sveinbjornsdottir et al., 1993). These observations will be relevant for the 

development of treatment strategies for epileptic seizures. 

In contrast, a previous study from our group in patients with epilepsy and frequent 

epileptic discharges on EEG showed an increase of tracer binding in a subset of 

patients. This may relate to an increased release of glutamate during epileptic 

discharges that may, in turn, activate NMDA receptors. 

Future research should focus on the process of epileptogenesis which has been 

related to NMDA receptor abnormalities in animal studies (McNamara et al., 1988). 

We will study people at risk of developing epilepsy after ischemic stroke or traumatic 

brain injury as part of this ongoing project. They will receive a [18F]GE-179 PET scan 

shortly after the insult and a follow up scan after two years. These ongoing studies 

may be a first step to develop biomarkers of epileptogenesis and may inform the 

investigation of antiepileptogenic or disease-modifying treatments. 

We also found previously unrecognised effects of certain AEDs on NMDA receptor 

function. These findings provide support for future Pharmaco-PET studies, that could 

measure NMDA receptor activation before and after treatment with specific AEDs. 

Such studies could reveal direct or indirect effects in vivo that may be difficult to 

assess in vitro. 

The increase of contralateral tracer uptake after unilateral removal of the epileptic 

focus in the temporal lobe should be studied in a larger cohort. This effect could 

relate either to compensation, restitution of normal contralateral function, or both. In 

our small cohort, we did not see a clear effect of post-surgical outcome on tracer 

binding. A larger study should determine whether postsurgical [18F]GE-179 is a 

predictor of surgical outcome. In this regard, it also remains to be determined whether 

[18F]GE-179 PET may qualify as a biomarker of ongoing epileptogenesis or 

ictogenesis. This would require a properly powered longitudinal study that may be 

difficult to perform. Nevertheless. such a biomarker would be helpful for treatment 
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decisions, i.e. starting people on AEDs after a first seizure or withdrawal of AEDs after 

successful surgery. 

 

7.4 NMDA receptor activation in Anti-NMDA-receptor 

encephalitis 

We found a reduced opening probability of NMDA receptors in patients with 

detectable Anti-GluN1 antibodies after hospitalisation for Anti-NMDA-receptor 

encephalitis. The findings were most prominent in anatomical areas associated with 

cognitive processes and psychosis. One recovered case without detectable antibodies 

in serum had normal brain tracer uptake. 

Our results provide a first in vivo human confirmation of the proposed receptor 

phenomena induced by Anti-GluN1 antibodies. We also observed that a mean 30% 

reduction of NMDA receptor activation at rest can persist for months after discharge 

from hospital and may be well compensated, causing only minimal symptoms. 

Future studies will need to expand on these findings in larger cohorts of patients with 

Anti-NMDA-receptor encephalitis by including serum and CSF antibody titres and 

detailed cognitive testing. Longitudinal scanning may also be helpful to characterise 

receptor phenomena during the course of the disease and to relate them with 

response to treatment and the risk of relapses.  

It will be of interest to scan patients during their peak clinical symptoms. However, this 

may prove difficult because more severely affected patients are unlikely to tolerate a 

long PET scan and the results may be confounded by concomitant medication, e.g. 

antipsychotics or anaesthetics. 
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7.5 Overall conclusion 

[18F]GE-179 PET provides unprecedented insights into in vivo functional alterations of 

NMDA receptors. It may increase our knowledge on receptor phenomena in health 

and disease and may generate novel hypothesis for the development of treatment 

strategies. It could also be used to assess direct or indirect effects of medication on 

NMDA receptors or to non-invasively monitor disease activity. 

Several questions were raised in this thesis that merit further evaluation. The 

development of entirely computational fully automated and non-invasive methods for 

the quantification of radioligand binding will be helpful to adopt novel tracers in 

clinical routine. It should be determined whether the effects of aging on NMDA 

receptors relate to cognitive decline or promote neurodegeneration and whether they 

can be mitigated by pharmaceuticals targeting of glutamate transporters or NMDA 

receptors. The bi-directional role of NMDA receptors in epilepsy may need to be re-

evaluated and could lead to novel therapeutic strategies. Lastly, the development of 

uncompetitive agonists could represent a well-tolerated treatment for a number of 

disorders with disturbed NMDA receptor function. 
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