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SUMMARY

Dynamic deep learning is considered to simulate the nonlinearmem-
ory process of the human brain during long-term potentiation and
long-term depression. Here, we propose a photoelectrically modu-
lated synaptic transistor based on MXenes that adjusts the nonline-
arity and asymmetry by mixing controllable pulses. According to the
advantage of residual deep learning, the rule of dynamic learning is
thus elaborately developed to improve the accuracy of a highly ho-
mologous database (colorimetric enzyme-linked immunosorbent
assay [c-ELISA]) from 80.9% to 87.2% and realize the fast conver-
gence. Besides, mixed stimulation also remarkably shortens the iter-
ative update time to 11.6 s as a result of the photoelectric effect
accelerating the relaxation of ion migration. Finally, we extend the
dynamic learning strategy to long short-term memory (LSTM) and
standard datasets (Cifar10 and Cifar100), which well proves the
strong robustness of dynamic learning. This work paves the way to-
ward potential synaptic bionic retina for computer-aided detection
in immunology.

INTRODUCTION

The in-memory computing framework as the core part of the synaptic device has

been an exciting subject for machine learning of artificial intelligence. Traditional

computer systems based on von Neumann architecture have the disadvantage of

high energy consumption.1,2 The remarkable intellectual abilities of the human

brain, including learning and memory, stem from an intricate network of almost

100 billion neurons linked together by synapses.3 The adaptive capability of a syn-

apse to modify its connection strength, also known as synaptic plasticity, is crucial

in facilitating learning and memory.4 Additionally, neuronal intrinsic plasticity occurs

simultaneously with synaptic plasticity in all key forms of learning, enabling the brain

to perform intelligent tasks and probabilistic processing with remarkable efficiency

while consuming low energy.5 Furthermore, it is essential to explore and combine

neural devices that conform to the memory rules of the human brain. In order to

achieve multilevel storage and parallel computing in the neural network, synaptic

transistors composed of metal oxide, two-dimensional materials, organics, and pho-

toelectricity materials have been proposed recently for simulating synaptic plas-

ticity.4–7 According to the various mechanisms of nonvolatile devices, floating-

gate transistors (charge trapping), ferroelectric-gate transistors (spontaneous polar-

ization states), electrolyte-gate transistors (ion migration), and optoelectronic tran-

sistors (photogenerated carrier) are applied to the neural computing. Most research

focuses on artificial intelligence of neuromorphic computing about supervised
Cell Reports Physical Science 4, 101481, July 19, 2023 ª 2023 The Authors.
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learning (artificial neural network and convolution neural network) and unsupervised

learning (cluster and self-adaptive organization).5–9

Applying stimulation (electric pulse, optical pulse, or stress) to the pre-synaptic ter-

minal simulates the realization of synaptic plasticity for the bionic nerve. The stability

and controllability of the storage process has to be strengthened, despite the results

of optoelectronic hybrid mode’s significance.10,11 Moreover, the dimension of ma-

terials influences transmission efficiency and data processing when the synaptic de-

vices are integrated for parallel computing. A comprehensive modulation of mixed

photoelectric pulses for long-term depression (LTD) and long-term potentiation

(LTP) has been lacking in recent years.12,13 Furthermore, the fundamental symmetry

and linearity of conductance in the rising and falling stages during the algorithm of

error feedback is also not properly considered for their impact on accuracy, and the

weight updating process is merely simulated in accordance with the fitted LTP/LTD

curves. In previous research, the standard case (LTP/LTD are two straight lines) is

generally adopted as the learning step size in each iterative epoch.14 Afterward,

inspired by the first impression of human cognition, the relationship between

learning efficiency and temporal memory is nonlinear. In other words, a great

amount of accurate information can be retained, and learning is generally particu-

larly efficient in the early stages.8 The difference in conductance (DG) between

two synaptic transistors is normalized to represent the synaptic weight connection

strength of two neural units due to the weight range in the neural algorithm contain-

ing the negative value.7 Consequently, the convex function composed of LTP/LTD

curves can provide a tight connection strength at the initial epoch of training, and

the strength gradually decreases with the increase of the number of iterations.6–9 Ac-

cording to each nonfixed stage on the curve, the proposed dynamic learning rule

provides the mapping relationship between the dynamic learning step and the

epochs. The one-to-one symmetry of conductance in the potentiation and depres-

sion stages, in addition to the nonlinearity, assists the dynamic response of neuro-

morphic computing.13 The iteration direction of synaptic weight is based on the

Manhattan rule in the error backpropagation. Therefore, the updated trend of non-

monotonicity requires strong symmetry of LTD/LTP. The strength of symmetry is

then suggested to be measured by the ratio of DG1/DG2.
15–17 Previous research

has shown that conventional neural networks (such as artificial neural networks

[ANNs] and convolutional neural networks [CNNs]) are unable to accomplish indis-

tinguishable categorization tasks due to degradation, which is also the challenge

in deep neural networks.13–20 The residual learning framework is proposed to

simplify the training of networks that are substantially deeper than those previously

used. The layer as the learning residual function is explicitly redefined by the refer-

ence layer instead of the learning datasets with labels compared with the ANN and

CNN.16 Besides, the differences between various tags are amplified as network

layers increase, making it easier to distinguish between tags with a high level of sim-

ilarity. Further, the immunology colorimetric enzyme-linked immunosorbent assay

(c-ELISA) image data format fully complies with the requirements of high similarity.

As themost widely used technique in immunoassays, c-ELISAs based onmicrofluidic

paper-based analytical devices (mPADs) are the gold standard for detecting protein

biomarkers in disease-related clinical samples and can be applied to detect diseases

such as human immunodeficiency virus (HIV), COVID-19, Lyme disease, etc.21,22

Then, in recent years, mPADs as one kind of point-of-care (POC) diagnostics have

received a lot of attention for their ability to perform rapid, real-time on-site testing

in nonlaboratory settings and provide accurate diagnostic results.23,24 Especially,

the c-ELISA produces color signals that are correlated with the specific binding of

the enzyme-labeled antibody to the sensing target molecule, with high color signals
2 Cell Reports Physical Science 4, 101481, July 19, 2023
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representing high concentrations of sensing target molecules. These color signals

can be easily picked up by the naked eye or by smartphones without the need for

more sophisticated equipment.25,26 However, the differences in color signals dis-

played by different concentrations of sensing target molecules are not obvious,

especially at low concentrations.27,28 Therefore, the ability to effectively distinguish

color signal differences of sensing target molecules remains an urgent requirement

to improve the performance of colorimetric mPAD analysis. Consequently, this prob-

lem can be well solved by using a two-dimensional (MXene) synaptic transistor com-

bined with dynamic learning strategies in residual neural networks.

In this article, we for the first time report a deep residual learning strategy based on

dynamic rules and Al/InOx/MXenes/ZrOx-Li/Si/Al structure. The nonlinearity and

symmetry of LTP/LTD trends are successfully modulated by adopting the proposed

three applied pulse modes (type I [electrical stimulation], type II [light stimulation],

and type III [combined stimulation]). Further, we construct datasets by using the

classic rabbit immunoglobulin G (IgG) antigen as the c-ELISA sensing target for

the identification task. The feasibility of combining a dynamic deep neural strategy

with synaptic transistors is explored by analyzing image results of seven different

concentrations of c-ELISA for rabbit IgG. The combined stimulation can obviously

improve the standard accuracy (fixed learning rate) and shorten the update time in

neuromorphic computing. The robustness of dynamic tracking rules under different

training structures (ResNet and LSTM) and different classification tasks (ELISA, Ci-

far10, and Cifar100) are further analyzed to verify the advantages of combined stim-

ulation. Finally, the bionic retina combined with the dynamic neuromorphic residual

deep learning strategy is successfully implemented by adopting a highly homolo-

gous database of immunology. This mainly depends on the high nonlinearity and

symmetry after photoelectric hybrid control, which effectively shortens the number

of neural network training epochs. Meanwhile, the high homology of c-ELISA also

further highlights the advantages of residual deep learning, which well matches

the synaptic plasticity of the device to practical applications.
RESULTS AND DISCUSSION

The connection between synaptic transistor and biological functions

The human brain processes external information mainly through various senses

and perceptions—most behaviors and decisions from neurons and synapses are

based on the visual receptor. Pyramidal cells and the optic nerve are connected

one to one, distinguishing short-wave, middle-wave, and long-wave lights (Fig-

ure 1A). Artificial retina based on the synaptic devices identify RGB values from

a single pixel.29–32 The c-ELISA is the gold standard in immunoassays for the quan-

titative detection of antibodies, antigens, proteins, hormones, etc. (Figure 1B).

Also, c-ELISA can be widely used for rapid antibody screening tests for viruses

(HIV, COVID-19 virus, etc.), autoimmune diseases, progesterone HCG, laboratory

and clinical studies, and other diagnostics. Figure 1C shows the schematic diagram

of a direct c-ELISA performed in a mPAD and the image results of seven rabbit IgG

concentrations (0, 6.7 pM, 67 pM, 670 pM, 6.7 nM, 67 nM, and 670 nM). The spe-

cific experimental steps will be described in the experimental procedures. To

achieve the application of immune protein detection in immunology, the Al/

InOx/MXenes/ZrOx-Li/Si/Al structure is designed to achieve synaptic plasticity

by simulating the internal linkage between the learning speed and non-volatile

conductance through the combined pulse control (Figure 1D). Compared with

the bionic neural network created using the von Neumann architecture and

CMOS (complementary metal oxide semiconductor) process currently available,
Cell Reports Physical Science 4, 101481, July 19, 2023 3



Figure 1. Real application scenarios of neuromorphic computing and the structure and advantage of the proposed synaptic device

(A) Schematic diagram of the visual receptors accepting light stimulation through three kinds of cone cells.

(B) Significance of c-ELISA in immunology and its detection methods.

(C) Schematic diagram of a direct c-ELISA performed in a mPAD and the image results of seven rabbit IgG concentrations (0, 6.7 pM, 67 pM, 670 pM,

6.7 nM, 67 nM, and 670 nM).

(D) Schematics illustrate the biological synapse and the Al/InOx/MXenes/ZrOx-Li/Si/Al synaptic transistor.

(E) Transfer characteristics with and without Li+ ion doping transistors.

(F) Competitive indicators of synaptic transistor for STP/LTP level, update interval time, and symmetry.
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synaptic devices offer more efficient parallel processing speeds and lower energy

consumption when dealing with complex tasks. The two-dimensional material de-

pends on the short ion transport distance, excellent electron transport dynamics,

and photoelectric response to compose the part of synaptic transistors.33

Compared with the organic materials and metal-oxide materials as the partial

structure of synaptic transistors, two-dimensional materials have the advantage

of simple technology, high product yield, fast electronic transmission speed, and

stability in environmental change.34–36 The clear layered structure is observed by
4 Cell Reports Physical Science 4, 101481, July 19, 2023
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scanning electron microscopy (SEM) (Figure S1). The X-ray diffraction spectrum for

Ti3C2Tx MXenes presents a small peak of 6.4�, typical of MXenes (Figure S2). The Ti

2p X-ray photoelectron spectroscopy spectra of MXene demonstrate the apparent

peaks of TiO2 (2p3/2) and TiO2 (2p1/2) due to the oxidation during the InOx fabri-

cation process (Figure S3). In previous studies, optoelectronic synaptic transistors

have had the advantages of large bandwidth, low energy consumption, and ultra-

fast signal transmission for ANNs and retina. For the weight update process that

has been widely employed in previous studies, neural computing adopts one of

the LTP/LTD curves through the light stimulated or electrically stimulated pulses.

To tackle the limitations of the nonlinearity extracted from conductance and the

single update rule adopted, the double dynamic update rule is developed accord-

ing to the DG when the pre-terminal is stimulated by electric pulse and mixed

pulse. The schematic diagram of the synaptic transistor and synapse demonstrates

the gate electrode as the pre-synaptic terminal and the drain electrode as the

postsynaptic terminal. The transmission of information in the synapse is that the

chemical signals are converted into electrical signals when the synaptic vesicles

release neurotransmitters.33,34 To verify the synaptic plasticity, the transfer charac-

teristic curves with Li+ doped into the ZrOx layer (5% doping concentration)

demonstrate the large hysteresis of typical synaptic characteristics (Figure 1E),

and this phenomenon benefits from achieving multilevel storage. Furthermore,

the transfer characteristics of an undoped transistor have no evident hysteresis,

clarifying that Li+ ion migration changes the channel conductance. To briefly

explain the transformation from short-term potentiation (STP) to LTP and the dy-

namic update decision, the schematic diagram shows the mechanism when an

electric pulse and an optical pulse are applied to the gate and channel, respec-

tively. When a positive voltage is applied to the pre-synaptic terminal, Li+ ions

with a large diffusion coefficient and small atomic radius will migrate from the

ZrOx layer to the MXenes and semiconductor layer with the increase of voltage

amplitude. For applying the optical pulse at the channel (photon radiation: VO +

h n /V2+
O +2 e�), the oxygen vacancies in the metal-oxide network generate the

electron-hole pairs (Figure S4). The competitive advantages of this work are the

update interval and the symmetry of LTP and LTD.4–8,11–20 Figure 1F summarizes

the competitive indicators just mentioned in the past 4 years and concludes

that energy consumption can be saved and synaptic plasticity can be

improved.5,7,8,12,14,15,17

Electric pulse and light pulse make devices produce synaptic plasticity and

biological characteristics

To verify the synaptic plasticity of the transistor, the nonvolatile conductance is re-

corded when optical and electrical pulses are applied to the channel and the pre-

synaptic terminal, respectively.35 The paired-pulse facilitation (PPF) preliminarily

shows short-term synaptic plasticity, which is the basic function of a biological syn-

apse for processing temporal information (Figure 2A). The interval time (Dt) be-

tween pulses increases from 20 to 1,000 ms and the amplitude of electric pulses

from 0.5 to 1.5 V with each increase of 0.25 V. The expression of the PPF index de-

pends on the ratio of the first and second peak values (A2/A1) of the excitatory

postsynaptic current (EPSC). The PPF fitting curves include the initial constants

(C0, C1, and C2) and the relaxation times (t1 and t2) that describe the convergence

rate and downward trend (Figure S5B). The highest PPF index of Dt = 20 ms is at-

tained by the appropriate voltage stimulation (1 V), and the parameters of the

fitting curve are about C0 = 1, C1 = 35%, C2 = 48%, t1 = 35 ms, and t2 =

35 ms. Similarly, the PPF index curve (C0 = 1, C1 = 28%, C2 = 36%, t1 = 22 ms,

and t2 = 56 ms) stimulated by blue light also shows synaptic plasticity when the
Cell Reports Physical Science 4, 101481, July 19, 2023 5



Figure 2. Synaptic plasticity and nonvolatility after pulse stimulation with different parameters

(A) PPF index versus interval time Dt under various voltage amplitude (0.50, 0.75, 1, 1.25, and 1.50 V). Inset: definitions of A2 and A1 with two successional

50 ms pulses.

(B) EPSC triggered by 19 single pulses with different durations (20, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, and

500 ms) at VDS = 0.5 V

(C) Extracted stable conductance for various pulse widths and the ratio of stimulated conductance over initial conductance (AF/AO).

(D) EPSC stimulated by five continuous electric pulses (1 V, 40 ms) with different frequencies (1, 2, 5, and 10 Hz).

(E) Relaxation process of EPSC stimulated by the different numbers of red, green, and blue pulses (10, 20, and 30).

(F) Time constant extracted from the natural forgetting process.

(G) EPSC triggered by two mixed pulses (0.5 V + blue and 1 V + red), which means the electric pulse combined with the optical pulse.

(H) LTP stimulated by ten groups of light pulses that involved red, green, and blue optical pulses, respectively.

(I) Errors of conductance under electric and combined pulses modulated (after 30 and 300 min).

(J) Three 5 3 5 matrices for demonstrating the change of conductance of the cycle of 1 and 3 combined pulses.

(K) Maintain ratio and stabilization time for 1 and 3 cycles.
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photoelectric effect occurs in the channel (Figure S5A). Further, the conversion

from short-term to long-term synaptic plasticity is obtained by increasing the elec-

tric pulse width to 500 ms (Figure 2B). The 19 initial conductance values increased

from 14.9 nA (Figure S6). This phenomenon is attributed to the Li+ ion migration in

the ZrOx and MXene layers, leading to multiple conductance states.36 With the

width increasing linearly, the changing trend of 19 levels tends to be linear,

proving that the conductance is precisely programmed by the electrical pulse

width (Figure 2C). The (ZrOx/MXenes) without Li doping has no STP-LTP response

of synaptic plasticity according to the EPSCs. This phenomenon further proves that

the Li+ ion plays an irreplaceable role in the channel conductance update for neu-

romorphic computing and that common ZrOx gate dielectrics are not adequate for

a large retention range (Figure S7). Further, to verify the low energy consumption

of the synaptic device, the energy consumption per spike of syanptic transistor is

calculated by the equation E = Ipeak 3 t 3 V = 80.19 pJ (Figure S8). Ipeak is the

maximum value (80.19 nA) of the generated EPSC curve, t is the spike duration

(20 ms), and V is the voltage applied to the drain electrode (0.05 V). Similarly, pulse

frequency (1, 2, 5, and 10 Hz) also affects the conductance observed from the

EPSC curves. Five consecutive pulses stimulated these curves with the same pa-

rameters (1 V and 40 ms), except for frequency (Figure 2D). The inset of Figure

2 demonstrates the obvious multiconductance and stable nonvolatile value within

6 s. On the other hand, to research the optically controlled synaptic plasticity,

three wavelengths of light (red, green, and blue) are applied to the InOx and

MXene layers. Compared with electrical plasticity, the photocurrent can also be

accumulated through the superposition of the number of pulses. The main photo-

electric response of MXene under the light with three wavelengths (red = 680 nm,

green = 540 nm, and blue = 490 nm) causes a long relaxation time (Figure 2E).

Light with a small wavelength carries strong photon energy, which excites a high

photocurrent. Analysis of the relaxation process based on the time constant

(t10 = 1:91; t20 = 1:08; t30 = 1:08Þ illustrates that the fastest decay rate belongs

to red light (Figure 2F). This phenomenon provides potential feasibility for com-

bined pulse stimulation, which means that optical pulses and electric pulses are

used alternately during conductance updates.37 According to previous research,

one of the drawbacks of the synaptic transistor (memory) is conductance decay.

There is always a trade-off between computing speed and accuracy. In short, if

the computing speed is fast, then extensive decay will significantly increase the er-

ror. The combined pulses are adopted to shorten the decay process and maintain

the conductance state to solve this bottleneck. The first step is to apply an electri-

cal pulse (0.5 V) to the pre-synaptic terminal, and then an optical pulse (blue) is

applied to the channel (Figure 2J). Maintaining the peak conductance value can

be observed from the EPSC trend compared with the red pulse. The benefit is

to accelerate the conductance update speed greatly. Afterward, the same pulse

combination rule is extended to red, green, and blue pulses, with the electric pulse

amplitude being 0.5 V (Figure 2H). After ten cycles of combined pulses, the

conductance values of the three conditions for adding red, green, and blue pulses

are 11.5, 13.2, and 16.3 ns, respectively. In addition, as a synaptic device for neu-

romorphic computing, nonvolatile conductance is also a necessary factor.38 To

demonstrate all aspects of stability, the conductance errors are counted in three

states (10, 30, and 120 min later) after stimulation by ten combined pulses (Fig-

ure 2I). The error range for combined pulses floats between 0.7 and 1.2, satisfying

the storage and computing requirements for the neural network. Similarly,

the conductance controlled by the gate can hold relatively stable after 10, 30,

and 120 min as a result of a 0.25%–0.60% error range. To demonstrate the

high level of stability, the variances between the initial conductance and
Cell Reports Physical Science 4, 101481, July 19, 2023 7
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the conductance maintained after 300 and 600 min are compared, and the

results indicate that the majority of errors are below 0.5% (Figure S9). Due to all

results of Figure 2, the Al/InOx/MXenes/ZrOx-Li/Si/Al synaptic transistor has a va-

riety of stable modulation modes. To further verify the feasibility of large-scale

integration, the combined pulse update rule applied in a single device is extended

to the 5 3 5 matrix (Figure 2J). The electric pulse amplitude in all combined pulses

is 0.5 V, and the pulse width is 50 ms. When the combined pulses are the electric

pulse and blue pulse, the ratio of the peak value over the stable value reaches

91%, and the relaxation time is shorter than the other combinations (Figure 2K).

The short relaxation time enormously curtails the interval between each weight up-

date for the neural network.39 Every two 5 3 5 matrices demonstrate the conduc-

tance distribution in two states (after one cycle and three cycles), and one cycle

represents the complete stimulus of the combined pulses. In addition, the conduc-

tance value after receiving circulatory stimulation can still maintain 99% of the sta-

ble value within 30 s. Therefore, the above results provide novel and efficient rules

for simulating the weight updating process in the neural network.

Simulated weight update process relies on potentiation and depression under

three modes of stimulation

Replacing the weight matrix in a neural network with a synaptic device matrix is

indispensable for developing neural morphological electronics.40 The update rules

of the simulated weight matrix apply the periodic trend of LTP/LTD in the synaptic

transistor. The mode of pulses applied for three types (type I, type II, and type III)

are positive pulse/negative pulse, optical pulse/negative pulse, and combined

pulse/combined pulse, respectively (Figure 3A). The parameters extracted by

LTP/LTD curves and applied to the neural calculation are Gmax/Gmin, nonlinearity,

cycle-to-cycle error, and symmetry. Then, the modification of Gmax/Gmin and

nonlinearity by electric pulse amplitude and pulse number in type I is researched.

When the number of pulses is 100, the number of conductance updates increases,

resulting in a larger ratio of Gmax/Gmin. Further, when the voltage amplitude in-

creases from 0.5 to 1.25 V in a step of 0.25 V, the number of pulses required be-

comes small and makes the conductance reach relative saturation, resulting in the

curve fitting into a convex function gradually (Figure 3B). The range and resolution

of the weight update process depend on the Gmax/Gmin ratio, the learning step

size of each epoch depends on the nonlinearity and symmetry of LTP/LTD, and

the stability of training and testing depends on the cycle-to-cycle error.41 Above,

all factors together affect the final classification accuracy. The cyclic stability of

LTP/LTD is verified by alternately applying the positive (0.5 V, 40 ms) and negative

(�0.5 V, 40 ms) electric pulses to the pre-synaptic terminal. With the increase in the

number of pulses (20, 30, 40, and 100), the cycle-to-cycle errors rise to 1.31%,

1.56%, 1.36%, and 1.33% after ten cycles, respectively (Figure 3C). The errors

floating within a specific limit show the robust stability of LTP/LTD, which benefits

the training and test process. During the update process, three update modes are

proposed to demonstrate the influence of the electric pulse and optical pulse on

parameters extracted from the LTP/LTD curve. Then, the modification of Gmax/

Gmin and nonlinearity by electric pulse amplitude and pulse number in type I is re-

searched. When the number of pulses is 100, the number of conductance updates

increases, resulting in a larger ratio of Gmax/Gmin. Moreover, the DG between the

two synaptic transistors (G+ and G�) is used to represent the weight range (�1 to 1)

in the algorithm (Figure 3D). Notably, the left and right parts of the curve need to

match the symmetry because the rising and falling stages of conductance should

have one-to-one correspondence.42 To explore the regulation of the optical pulse

on nonlinearity and symmetry, type II and type III are developed. The curvature of
8 Cell Reports Physical Science 4, 101481, July 19, 2023



Figure 3. Nonlinearity and symmetry in trends of LTP/LTD are regulated by three types of pulses

(A) Illustration of three types (type I, type II, and type III): positive pulse/negative pulse, optical pulse/negative pulse, and combined pulse/combined

pulse.

(B) LTP/LTD curves for various electric pulse numbers under the incremental pulse amplitude from 0.50 to 1.25 V

(C) Conductance cycle-to-cycle error for different pulse numbers.

(D) Synaptic weight update rule of two synaptic transistors (G+ and G�) for the above three types.

(E) Change trend of DG in LTP and LTD stages under electrical stimulation.

(F) Type III: the LTD/LTD stimulated by combined pulses.

(G) Change trend of DG in LTP/LTD stages of type III.

(H) Combined pulse stimulation can regulate the nonlinearity and symmetry of LTP/LTD.

(I) Nonlinearity, symmetry, and update intervals for the type I, type II, and type III.
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the fitting curve determines the sign and magnitude of the nonlinearity. The

nonlinearity and DG affect the learning step of each training, which is also called

the learning rate (Figure 3E).42,43 The convex function (positive nonlinearity) causes

the dynamic change of the learning step to weaken gradually. On the contrary, the

concave function (negative nonlinearity) gradually enhances the learning step size.

However, in the standard case, the learning step of the primary function (nonline-

arity = 1) is a fixed value. Besides, the DG in the potentiation and depression pro-

cess is analyzed to measure the signal-to-noise ratio (SNR) and learning step size

for synaptic transistors (Figure S10). To explore the regulation of the optical pulse

on nonlinearity and symmetry, type II and type III are developed. As depicted in

Figure 3F, 20 optical pulses (red, green, and blue) are adopted in the potentiation

stage, and 20 negative electric pulses (�0.5 V) are adopted in the depression
Cell Reports Physical Science 4, 101481, July 19, 2023 9



Figure 4. Residual neural network combines with dynamic update process to achieve immunological classification

(A) Block diagram of feedforward for the dynamic neuromorphic deep residual learning.

(B) Standard and dynamic learning rule based on Embinghaus memory.

(C) Image database of ELISA of seven rabbit IgG concentrations (0, 6.7 pM, 67 pM, 670 pM, 6.7 nM, 67 nM, and 670 nM).

(D) Trend of normalized dynamic learning step with the number of iterations.

(E) 7 3 128 wt matrix connects the last output layers.
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Figure 4. Continued

(F) Accuracy of standard and dynamic conditions for three modulation modes.

(G) Update time during the ResNet neural network training process for type I, type II, and type III.

(H) Verification of the robustness of dynamic learning rules, which extend to the ResNet-ELISA, ResNet-Cifar10, ResNet-Cifar100, and LSTM-ELISA,

respectively.
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stage. Compared with type I, the symmetry defined as the ratio of DG1/DG2 is

greatly improved in type II. DG1 is the difference between the potentiation and

depression stages (Gn
LTP and Gn

LTD) at the same level, and DG2 is the difference be-

tween the two adjacent levels (Gn and Gn-1) of conductance. Furthermore, type III

fundamentally solves the problem of insufficient symmetry based on the advan-

tage of shortening the relaxation time.44 Therefore, the three kinds of type III,

which are composed of three optical pulses (red, green, and blue) and the same

electrical pulse (0.5 V for LTP and �0.5 V for LTD), all have the excellent perfor-

mance of symmetry as the result of the ratio of all DG1/DG2 floats within 2.1% (Fig-

ure 3G). To match higher learning efficiency in the ResNet (residual

network) algorithm, the number of conductances that can be effectively utilized

(Nseff) and the nonlinearity from 16 LTP/LTD curves are researched (Figure S7).

Moreover, the DG between the two synaptic transistors (G+ and G�) is used to

represent the weight range (�1 to 1) in the algorithm (Figure 3E). Notably, the

left and right parts of the curve need to match the symmetry because the rising

and falling stages of conductance should have one-to-one correspondence. To

explore the regulation of optical pulse on nonlinearity and symmetry, type II and

type III are developed (Figure 3H). To clearly show the modulation of three modes

for updating rules, the parameters, including the nonlinearity, symmetry, and up-

date interval, are analyzed to highlight the prominent advantage of applying

type III (Figure 3I). Consequently, the ResNet of the neural network based on

the dynamic learning rate according to the nonlinearity, symmetry, and update in-

terval of the update rule is proposed for the classification task. To match the higher

learning efficiency in the ResNet algorithm, the Nseff and nonlinearity from 16 LTP/

LTD curves are researched (Figure S11).
Matching appropriate networks to enhance artificial intelligence application

To track the problem of deeper neural networks being more difficult to train, the

ResNet with the residual learning framework is proposed to simplify the training of

networks and gain accuracy from considerably increased depth. The degradation

in the convergence process indicates that not all systems are similarly easy to opti-

mize and can be solved by a deep residual learning framework (Figure 4A). The

building block demonstrates that feedforward neural networks with shortcut con-

nections can realize the formulation. Moreover, a backward neural network up-

dates the synaptic weight layers with a dynamic learning rate according to the pa-

rameters extracted from the LTP/LTD curves.45–47 Inspired by the Embinghaus

memory map, dynamic learning rules are more in line with the memory behavior

of biological synapses (Figure 4B). The ResNet contains a dynamic algorithm adop-

ted to execute the classification task of ELISA for rabbit IgG. The collected data

include the seven concentrations 0, 6.7 pM, 67 pM, 670 pM, 6.7 nM, 67 nM,

and 670 nM (Figure 4C). The error of feedback part in the algorithm is based on

the update rules measured by type III (electric pulse combined with blue light

pulse). Compared with the standard case (lr = 0.1), the classification accuracy for

seven rabbit IgGs is improved from 80.9% to 87.2% after 100 wt iterations. The in-

fluence of different colors of light in type III on the dynamic learning step shows

the regulation ability of light (Figure 4D). Inspired by the first impression of human

brain cognition, the dynamic learning rate makes the update step in the initial
Cell Reports Physical Science 4, 101481, July 19, 2023 11
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epoch larger than in the later epoch of the training process because the LTP/LTD

curve trend is a convex function.48–52 Each output in the last layer is connected to

128 neurons, so Figure 4E shows the iterative updated 7 3 128 wt matrix. The

complex disordered weight matrix proves that the weight value gradually differen-

tiates into two extreme values (Gmax and Gmin) by relying on the Manhattan rule. To

analyze the modulation effects of the three modes, the standard accuracy and dy-

namic accuracy under seven conditions (type I, type II_red, type II_green, type

II_blue, type III_red, type III_green, and type III_blue are displayed (Figure 4F).

On the one hand, the dynamic accuracy is higher than the standard accuracy in

type III modulation due to the nonlinearity and excellent symmetry. On the other

hand, the small update interval in type III shortens the whole iteration update time

for the training process.49–58 As shown in Figure 4G, the update times for red,

green, and blue modes of type III are 11.6, 18.4, and 27.4 s, respectively. Conse-

quently, the ResNet combined with characteristics can improve the classification

compared with the standard situation and reduce the update time when the mod-

ulation mode type III is adopted. Furthermore, to verify the robustness of the dy-

namic learning rules in a similar deep neural network, the accuracy of different al-

gorithm structures in identifying different classification tasks is compared

(Figure 4H). The four neural networks and corresponding tasks are ResNet-

ELISA, ResNet-Cifar10, ResNet-Cifar100, and LSTM-ELISA. Figure S12 demon-

strates the operation speeds of Resnet-ELISA, Resnet-Cifar100, and the LSTM-

ELISA through detailed training epochs. The recognition rate is not significantly

affected by the initial weight when the random floating value is smaller than the

learning step in a random process (Figure S13). The database of Cifar10 and Ci-

far100 and the results of verifying robustness explicitly demonstrate the feasibility

of a dynamic learning rate (Figure S14). The obvious result is that the above neural

networks with dynamic learning rate strength enhance the classification ability (the

average improved accuracy is 6.8%).

In conclusion, this work demonstrates the Al/InOx/MXenes/ZrOx-Li/Si/Al structure

as bionic retina and proposes a dynamic learning strategy for the recognition of

ELISA_IgG in immunology. PPF, STP/LTP, and EPSC are the basic information

flows, as is the typical manifestation of synaptic plasticity. Here, we analyze the dy-

namic learning rate, the update interval, and the learning accuracy rate according

to various LTP/LTD curves that were regulated separately by three modulation

modes (type I, type II, and type III). The synaptic devices stimulated by type III

have high linearity and symmetry, which are necessary to reduce the number of

training epochs in the neural network. At the same time, the fast conductance re-

covery trend can reduce the interval of each calculation. Moreover, the rabbit IgG

of ELISA is used to demonstrate the detection potential in immunology and other

neural networks (LSTM) composed of the Cifar10 and Cifar100 database are then

developed to verify the robustness and feasibility of dynamic learning rule. The

synaptic transistor based on two-dimensional materials and a dynamic learning

strategy enriches the weight update process of neural morphological systems

and further develops bionic retina to successfully complete complex visual percep-

tion tasks.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will be ful-

filled by the lead contact, Chun Zhao (chun.zhao@xjtlu.edu.cn).
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Materials availability

This study did not generate new unique materials. The full details of the experiments

and materials are provided in the experimental procedures.

Data and code availability

This study did not generate any new code. The authors declare that the data sup-

porting the findings of this study are available within the article and the supple-

mental information.

Synthesis of transistors

The ZrOx precursor solution was obtained by dissolving 1.5 M aluminum nitrate hy-

drate (Zr(NO3)2$xH2O) in 20 mL 2-methoxy ethanol (2-Me). ZrOx-Li precursor solu-

tion was obtained by mixing 1.5 M aluminum nitrate hydrate (Zr(NO3)2$xH2O) and

0.15 M indium nitrate hydrate with 20 mL deionized water. The InOx precursor solu-

tion was obtained by dissolving indium nitrate hydrate (In(NO3)3$xH2O) into 20 mL

deionized water. All solutions were vigorously stirred under atmospheric conditions

for 5 h and filtered before spin coating using 0.25 mmpolytetrafluoroethylene (PTFE)

syringe filters, respectively. To prepare MXenes, first, 2 g lithium fluoride (LiF) with

99.99% metal basis from Aladdin and 40 mL hydrochloric acid (HCl) with a concen-

tration of 36%–38% from Sinopharm Chemical Reagent were mixed and stirred in a

PTFE beaker for 30 min. Next, 2 g titanium aluminum carbide MAX (MAX-Ti3AlC2)

with a purity of 98% from 11 Technology was gradually added to the beaker under

continuous stirring, and the reaction temperature was maintained at 35�C for 24 h in

a fume hood. After the reaction was completed, the resulting solution was centri-

fuged for 10 min at 3,500 rpm, and the supernatant was discarded. Then, 40 mL de-

ionized (DI) water was added to the sediment in the centrifuge tubes, and the tubes

were manually shaken to mix the sediment with the DI water. The mixture was further

ultrasonicated for 15 min using a high-power ultrasonic machine with 750 W output.

These centrifugation and ultrasonication steps were repeated until the pH of the su-

pernatant reached 5. Subsequently, 40 mL ethanol (CH3CH2OH) with a purity of

99.7% from Sinopharm Chemical Reagent was added to the centrifuge tubes, and

the mixture was ultrasonicated for 1.5 h using an intercalator function. Then, the

mixture was centrifuged at 10,000 rpm for 10 min, and 20 mL DI water was added

to the sediment. The mixture was further ultrasonicated for 20 min and then centri-

fuged again at 3,500 rpm for 3 min to obtain a black-brown few-layer dispersion with

a concentration of approximately 5 mg mL�1. Finally, the MXene dispersion was

stored in an argon atmosphere, and the storage time was limited to 14 days.

Fabrication of synaptic transistors

First, a heavily doped Si (n++) substrate was cleaned by DI water and dried under N2

flow. Afterward, the processed substrate was further treated by plasma for 15 min to

make the film surface hydrophilic. The ZrOx and ZrOx-Li films were spin cast with precur-

sor solution at 4,500 rpm for 30 s and then annealed for 80 min at 250�C in air atmo-

sphere. Then, the MXene solution was diluted to 1 mg/mL and spin coated at

3,000 rpm for 20 s on the surfaces of the ZrOx and ZrOx-Li films. Substrates with solution

film were then oxidized at 80�C for 1 min on a hotplate in air conditions. The InOx film

was spin cast with precursor solution at 3,500 rpm for 30 s and then annealed for 1 h at

200�C in air atmosphere. The 30-nm-thick Al source/drain (S/D) electrodes were fabri-

cated by thermal evaporation through the shadow mask.

ELISA detection

Rabbit IgG is themost commonmodel sensing target in c-ELISAs, and a schematic of

the direct c-ELISA protocol for rabbit IgG on our multiwell mPAD is shown in
Cell Reports Physical Science 4, 101481, July 19, 2023 13
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Figure 1B. Typically, a direct c-ELISA is carried out in six steps: (1) biofunctionalizing

the test zone using periodate potassium; (2) immobilizing the rabbit IgG antigen on

the test zone; (3) blocking the test zone to prevent nonspecific adsorption of rabbit

IgG proteins; (4) labeling the immobilized rabbit IgG antigen with ALP-conjugated

anti-rabbit IgG antibody; (5) washing away the unbound antibody using PBS buffer;

and (6) adding the BCIP/NBT substrate.
Characterization

A semiconductor parameter analyzer (Agilent B1500) with transistor characterization

software under atmospheric conditions was operated to test the electrical properties

of the Al/InOx/MXenes/ZrOx-Li/Si/Al synaptic transistor. In order to measure the

EPSC and LTD/LTP current flowing between the S/D electrodes, a 0.1 V steady

voltage bias was applied to the postsynaptic terminal (Vpost).
59,60 The chemical com-

positions of dielectric and semiconductor layers were measured by X-ray photoelec-

tric spectroscopy (XPS). The crystallization and structural information of the thin films

was displayed using X-ray diffraction (XRD; BRUKER D8 ADVANCE) with Cu Ka radi-

ation (l = 1.542 Å).
ResNet simulation

We use the ResNet as the base model. After we convert the image data into RGB

three-channel matrix data, we could directly pass them into the residual block. The

residual block is the main component of ResNet. Compared with the ordinary neu-

ral network structure, the residual block could not only perform weighted opera-

tions through the convolution layer and activation function mechanism to extract

features but could also retain the initial information of the input data and fuse it

with the obtained feature information. Two residual blocks and one linear layer

are used in our model. The input image data are passed through two residual

blocks to complete the feature extraction and then passed to the linear layer to

complete the final classification task. Usually, this is a complete ResNet workflow,

and we use a dynamic learning rate in the training step. After each training of the

network, different learning steps are used to update the network parameters ac-

cording to the change direction of the loss.55–60

The calculated conductance of synaptic transistors in the crossbar array was

applied with the positive synaptic weight value. The measurement of the neuro-

computing in ResNet includes negative values.50 Subsequently, the synaptic

weight (W = G+ – G�) was expressed as the difference between the state of two

synaptic devices (expressed as G+ and G�) between each conductance value.

The initial weights were set up randomly to fluctuate near 0, and the value be-

tween Gmin and Gmax was normalized to (�1,1). The actual changed value of

weight updating depends on the difference between the conductance state of

two synaptic devices (G+ and G�), which is extracted from the LTP/LTD curve.

The change of single synaptic weight is defined as the DG in two synaptic transis-

tors. When sgn(DW) >0, the formula W [ = G+ [-G� Y will be used, and when

sgn(DW) <0, W Y = G+ Y-G� [ will be used.

In order to make the model converge earlier, we use two functions to adjust the

learning rate dynamically. After each round of training, we conducted a round of

tests to test the model’s performance. If the error of classification of the current

round is smaller than that of the previous round, we use the function [e* (e + 1)]½

to appropriately increase the learning rate, where e is the number of training rounds

to adjust the value of the learning rate. If the classification error of the current round
14 Cell Reports Physical Science 4, 101481, July 19, 2023
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is more significant than that of the previous round, we use the function e*1/(e + 1) to

reduce the learning rate appropriately.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.xcrp.
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