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Abstract—Classical methods of traffic flow prediction with
missing data are generally implemented in two sequential stages:
a) imputing the missing data by certain imputation methods such
as kNN, PPCA based methods etc.; b) using parametric or non-
parametric methods to predict the future traffic flow with the
completed data. However, the errors generated in missing data
imputation stage will be accumulated into prediction stage, and
thus will negatively influence the prediction performance when
missing rate becomes large. To solve this problem, this paper
proposes a Joint Traffic Flow Estimation and Prediction (JT-
FEP) approach, which considers the missing data as additional
unknown network parameters during a deep learning model
training process. By updating missing data and the other network
parameters via backward propagation, the model training error
can generally be evenly distributed across the missing data and
future data, thus reducing the error propagation. We conduct
extensive experiments for two missing patterns i.e. Completely
Missing at Random (CMAR) and Not Missing at Random
(NMAR) with various missing rates. The experimental results
demonstrate the superiority of JTFEP over existing methods.

Index Terms—JTFEP, traffic flow prediction, missing data,
CMAR, NMAR.

I. INTRODUCTION

Traffic flow prediction plays a vital role in Intelligent
Transportation Systems (ITS) and high prediction accuracy
is of great importance. However, missing data is inevitable
due to equipment failure or data loss during transmission.
Most existing traffic prediction models do not consider the
missing data problem, except [1]–[4]. Nassiri et al. in [1]
proposed a model which interpolated the missing points in
the data set with the historical data of adjacent detectors.
Zhang et al. in [2] proposed an improved historical trend
method (IHTM) which used the data of neighbor monitors
in the same period to interpolate data in time and space.
Tensor completion methods such as Tucker Decomposition-
based Completion (TDI) and CP Decomposition-based Com-
pletion (CP-WOPT) have been shown to have advantages in
missing data imputation [3]. Also, Irawati et al. put forward
a method using enhanced OMP for traffic flow reconstruction

by using matrix factorization [4]. The aforementioned traffic
prediction methods with missing data are two-stage methods
which are generally sequentially implemented via two steps:
a) imputing the missing data by certain imputation methods
including Local Least Squares (LLS) [5], Probabilistic Princi-
pal Component Analysis (PPCA) [6], historical trend method
etc.; b) using parametric or non-parametric methods to predict
the future traffic flow with the intact data. The two-stage
methods have the limitation that when missing rate becomes
large, the errors generated in the imputation stage will be
accumulated into prediction models, and thus degrading the
prediction performance.

To tackle the problems, this paper proposes a Joint Traffic
Flow Estimation and Prediction (JTFEP) approach, which
considers missing data in the data set as additional model
parameters during a deep learning model training process.
Hence, missing data can be updated together with the other
model parameters like weights and bias in each training epoch
in JTFEP. Specifically. The main contributions of this paper
are as follows:
(1) We propose a JTFEP method which considers missing data
in the original data set as additional model parameters together
with weights and bias, in order to update missing data via
backward propagation at each iteration. Because of this, the
model training error can be generally distributed across the
missing data and future data, and thus the error propagation
can be reduced.
(2) Extensive experiments have been conducted by using real
traffic data provided by Kaohsiung, Taiwan. The results show
that JTFEP can demonstrate superiority under various missing
rates for two missing patterns: Completely Missing at Random
(CMAR) and Not Missing at Random (NMAR).

II. METHODOLOGY

A. Problem Description

In this research, the goal is to predict the traffic flow in a
certain period of time based on historical traffic information



with missing points. We assume a spatio-temporal setting for
traffic flow data throughout this paper. In general, modern
spatio-temporal data sets collected from detector networks can
be organized as matrix time series. Thus, we define traffic
flow data as a two-dimensional matrix X (N × T ), where
N represents the number of detectors and T represents the
sampling time instants.

To demonstrate the superiority of our method in predicting
traffic flow based on incomplete historical data, we inten-
tionally remove certain amount of data in original data set
as the missing points. From [7], we can know that CMAR
and NMAR missing patterns show different distributions of
missing points in original data set X . Considering the missing
points in the historical data, original data set can be shown as:

X =



X1,1 NA · · · X1,T−1 X1,T

X2,1 X2,2 · · · NA X2,T

NA X3,2 · · · X3,T−1 X3,T

...
...

. . .
...

...
XN−1,1 NA · · · NA XN−1,T

XN,1 XN,2 · · · XN,T−1 NA


(1)

where, NA represents the missing points in the historical data.

B. Missing Data Separation and Initialization

JTFEP needs to consider the missing data as additional
model parameters during the model training process. There-
fore, we need to extract missing data from the original data
set before prediction process. Based on the structure of the
incomplete measured historical data (as shown in (1)), we
separate the original data set into known data set K and
missing data set M . The procedure of missing data separation
is shown as follows:

1) We preset two data sets K and M which are the same
as original data set X .

2) In known data set K, we keep all the known points as
they are and all the missing points are replaced by 0. On
the contrary, in missing data set M , all the known points are
replaced by 0, and we set unknown parameters ai with random
initial values (i = 1, 2, · · · , n) for all the missing points in M ,
where n represents the number of missing points in original
data set. As shown in (2) and (3):

K =



X1,1 0 · · · X1,T−1 X1,T

X2,1 X2,2 · · · 0 X2,T

0 X3,2 · · · X3,T−1 X3,T

...
...

. . .
...

...
XN−1,1 0 · · · 0 XN−1,T

XN,1 XN,2 · · · XN,T−1 0


(2)

M =



0 a2 · · · 0 0
0 0 · · · an−2 0

a1 0 · · · 0 0
...

...
. . .

...
...

0 a3 · · · an−1 0
0 0 · · · 0 an


(3)

In JTFEP, we consider the missing data as additional model
parameters such as weights and bias in model training. Hence,
before training the model, we need to initialize the unknown
parameter ai in the missing data set M . As mentioned, the
procedure of missing data separation and initialization can be
shown in Algorithm 1.

Algorithm 1 Missing Data Separation and Initialization
Input: Original data set X;
Output: Known data set K; Missing data set M ;

1: Set missing data in X;
2: Set K=M=X
3: for i in K, M do
4: for j in Ki, Mi do
5: if Kij , Mij is a missing point then
6: Kij ← 0
7: Mij ←unknown parameters ai
8: else
9: Kij ← Kij

10: Mij ← 0
11: end if
12: end for
13: end for
14: Initialize ai in M ;
15: return K,M ;

C. Methodology

In this study, we use the sum of known data set and missing
data set as the input of LSTM and consider the missing data
set as additional model parameters together with weights and
bias in the model training process. Hence, missing data can be
updated in each training epoch so that the error propagation
can be reduced and the prediction accuracy will be improved.
The structure of JTFEP is shown in Figure 1.

At time t (t = 1, 2, · · · , T ), we use the sum of Kt and Mt

as the input data of the current time, where Kt represents the
t-th column of the known data set K (as shown in (2)) and
Mt represents the t-th column of the missing data set M (as
shown in (3)), the expressions of Kt and Mt are shown as
below.

Kt = [X1,t, 0, X3,t, · · · , XN−2,t, 0, XN,t] (4)

Mt = [0, ai, 0, · · · , 0, ai+1, 0] (5)

We combine the data in the current time and the data in the
memory cell as the input data of JTFEP at time t, which can
be rewritten as Xct, as shown in (6).

Xct = [Xt, ht−1] = [Kt +Mt, ht−1] (6)

where, ht−1 is a w×1 vector which represents the data in the
memory cell of previous time, where w represents the number
of nodes in the output layer.



Fig. 1. Structure of JTFEP

Referring to the structure of LSTM, there are four compo-
nents in the framework of our method which are forget gate,
input gate, cell gate and output gate. The specific architecture
of a JTFEP unit is shown in Figure 2. ht−1 denotes the output
at time t-1, it, ft, ct and ot are input gate, forget gate, cell
gate and output gate at time t, and ht denotes the output at
time t.

Fig. 2. Specific architecture of a JTFEP unit

Based on the architecture of JTFEP, the specific calculation
process of forward propagation is shown below.
In forget gate:

ft = s(Wf ·Xct + bf ) (7)

where, s(x) is the Sigmoid function, ft is the output of forget
gate, Wf is the weight allocated for forget gate, bf is the bias

allocated for forget gate.
In input gate:

it = s(Wi ·Xct + bi) (8)

where, it is the output of input gate, Wi is the weight allocated
for input gate, bi is the bias allocated for cell gate.
In cell gate:

gt = tanh(Wg ·Xct + bg) (9)

st = gt · it + st−1 · ft (10)

where, tanh(x) is the tanh function, gt is the output of cell
gate, Wg is the weight allocated for cell gate, bg is the bias
allocated for cell gate.
In output gate:

ot = s(Wo ·Xct + bo) (11)

ht = st · ot (12)

where, ot is the output of output gate, Wo is the weight
allocated for output gate, bo is the bias allocated for output
gate, ht are predicted data.

After achieving the output value ht, we set a loss function L
to calculate the loss between prediction results and real traffic
flow. The expression of loss function is shown in (13).

L =
1

n
·

n∑
i=1

(ht(i)− yp(i))
2 (13)

where yp are real traffic flow data.
Based on the loss value achieving from the forward propa-

gation, we can update missing data set Mt, weights and bias
through gradient descent (SGD) optimizer in the backward
propagation of JTFEP. The procedure of updating the model
parameters is shown below.

1) Partial derivatives of JTFEP model parameters: Based on
the loss value achieving from (13), we can calculate the partial
derivative of missing data set Mt. Because we regard the input
data of JTFEP as the sum of known data set Kt and missing
data set Mt, so that the two data sets are linear superposition
relationship. That is, the partial derivatives of the two data sets
are equal which keep the same as that of Xct. According to
the forward propagation of JTFEP, the partial derivative of Xct

can be the sum of partial derivatives of prediction loss over
Xct in the four gates. Hence, the partial derivative of missing
data set Mt can be calculated by (14) and (15).

∂L

∂Mt
=

∂L

∂Kt
=

∂L

∂Xct
(14)

∂L

∂Xct
=

∂L

∂ft
· ∂ft
∂Xct

+
∂L

∂it
· ∂it
∂Xct

+
∂L

∂gt
· ∂gt
∂Xct

+
∂L

∂ot
· ∂ot
∂Xct

(15)
The partial derivatives of weights allocated for forget gate,

input gate, cell gate and output gate can be calculated through
the chain rule of derivative, as shown below:

∂L

∂Wf
=

∂L

∂ft
· ∂ft
∂Wf · (Kt +Mt)

· ∂Wf · (Kt +Mt)

∂Wf
(16)



∂L

∂Wi
=

∂L

∂it
· ∂it
∂Wi · (Kt +Mt)

· ∂Wi · (Kt +Mt)

∂Wi
(17)

∂L

∂Wg
=

∂L

∂gt
· ∂gt
∂Wg · (Kt +Mt)

· ∂Wg · (Kt +Mt)

∂Wg
(18)

∂L

∂Wo
=

∂L

∂ot
· ∂ot
∂Wo · (Kt +Mt)

· ∂Wo · (Kt +Mt)

∂Wo
(19)

Similarly, the partial derivatives of loss over bias allocated
for the four gates are shown as follows.

∂L

∂bf
=

∂L

∂ft
· ∂ft
∂bf

(20)

∂L

∂bi
=

∂L

∂it
· ∂it
∂bi

(21)

∂L

∂bg
=

∂L

∂gt
· ∂gt
∂bg

(22)

∂L

∂bo
=

∂L

∂ot
· ∂ot
∂bo

(23)

2) Update of model parameters: Based on the partial deriva-
tives of missing data set, weights and bias, we update these
model parameters in each training epoch. In this study, we
use two different learning rates to update model parameters
because missing data set and weights have different orders of
magnitude. That is, we allocate one learning rate l1 for the
update of missing data set and another learning rate l2 for the
update of weights and bias.

We update Mt through gradient descent method, as shown
below:

Mt,i+1 = Mt,i − l1 · ∂L

∂Mt,i
= Mt,i − l1 · ∂L

∂Xct,i
(24)

where, Mt,i+1 represents the updated Mt using in the (i+1)-th
epoch, Mti is the Mt using in the i-th epoch, Xct,i represents
the input Xct in the i-th epoch.

Also, we update the weights and bias by the following
equations:

Wi+1 = Wi − l2 · ∂L

∂Wi
(25)

bi+1 = bi − l2 · ∂L
∂bi

(26)

where, Wi+1 and bi+1 are weights and bias allocated for each
gates in the (i+1)-th epoch and Wi and bi using in the i-th
epoch.

And then we use the updated model parameters achieved
from model training to predict the traffic flow in the future time
series. We summarize the procedure of JTFEP in Alogrithm
2.

Algorithm 2 Procedure of JTFEP
Input: Original data set X which contains missing data,

sampling from T time instants;
Output: Predicted data, P ;

1: Separate X to known data set K, missing data set M via
2: (2) and (3).
3: Initialize missing data set M .
4: Set epochs = m.
5: Set l1 = 0.1, l2 = 0.01.
6: Initialize weights and bias allocated for four gates.
7: for i = 0 to m do
8: for t = 1 to T do
9: Xt = Kt + Mt.

10: Get Yp from forward propagation of JTFEP via
11: (6) to (12).
12: Get loss based on Yp and Xt via (13).
13: Calculate partial derivatives of model parameters
14: via (14) to (23).
15: Update Mt through via (24), then using the
16: updated Mt in the next training epoch.
17: end for
18: Update weights and bias via (25) and (26).
19: end for
20: Get predicted data P based on updated model parameters.
21: return P ;

III. EXPERIMENTS

A. Data Description

In this section, we evaluate the prediction performance of
the JTFEP model on a real-world data set: Kaohsiung data
set. This data set consists of traffic flow data from 33 road
detectors in Kaohsiung Taiwan. We select the 33 detectors
from six main roads which are Zhong Zheng Road, Kai xuan
Road, Ming Quan Road, Ming Zu Road, San Duo Road and
Wu Fu Road, The locations of detectors are shown in Figure
3.

Fig. 3. Locations of selected detectors



Each detector provides the traffic flow data from 10:00-
22:00 with a 5-minute resolution (12 time intervals per hour).
We organize the raw data set into a time series matrix and set
the missing points according to the missing rates and missing
patterns. In experiment steps, 80 percent of the data is used
as the training set and the remaining 20 percent is used as the
test set.

B. Evaluation Metrics

We use two metrics to evaluate the prediction performance
of the JTFEP model:

(1) Root Mean Square Error (RMSE):

RMSE =

√√√√ 1

n
·

n∑
i=1

(yr(i)− yp(i))2 (27)

(2) Mean Absolute Error (MAE)

MAE =
1

n
·

n∑
i=1

|yr(i)− yp(i)| (28)

where n represents the length of prediction results, yp are
prediction results and yr are real data.

C. Baseline Methods

We compare the performance of the JTFEP model with the
following baseline methods:

(1) K-Nearest Neighbor (kNN) [8] with LSTM, which firstly
uses kNN model to impute the missing points in the original
data set, then predicts traffic flow in the future time series with
LSTM based on the intact data.

(2) Multiple Imputation by Chained Equations (MICE)
Imputation [9] with LSTM. This method is divided into two
steps. The first step is iteratively imputing each incomplete
variable by regressing on the rest of other covariates. The
second step is using LSTM to predict the future traffic flow
based on the data after imputation.

(3) Historical Average (HA) [10] with LSTM, which firstly
uses the average traffic flow in the historical periods as the
interpolated data of missing points in the original data set,
then uses LSTM to predict traffic flow based on the data after
imputation.

(4) K-Nearest Neighbor (kNN) with Support Vector Regres-
sion (SVR) [11]. SVR is a model which uses historical data
to train the model and obtains the relationship between the
input and output, and then predicts the future traffic data by
the trained model. This baseline method firstly uses kNN to
impute the missing data in the original data set, then predicts
the future traffic flow according to the interpolated data.

(5) K-Nearest Neighbor (kNN) with Autoregressive Inte-
grated Moving Average model (ARIMA) [12], which firstly
uses kNN model to impute the missing points in the original
data set, then uses ARIMA to realize traffic flow prediction
based on the intact data.

D. Experimental Results

To evaluate the performance of JTFEP, missing data are
intentionally generated with different missing rates that ranges
from 0 to 0.4 at every 0.05 increment as usual. Also, we test
the prediction accuracy for two missing patterns which are
Completely Missing at Random (CMAR) and Not Missing at
Random (NMAR) respectively.
(1) CMAR

CMAR may occur due to a prolonged physical damage,
malfunction of the communication device or temporal detector
deployment. For CMAR missing pattern, all the missing data
are independently and uniformly distributed over the spatio-
temporal domain. In this part, we simply remove a certain
amount of observed entries randomly from the observed data
set.

We conduct extensive experiments and apply the mean value
of RMSE and MAE to compare the prediction performance of
these prediction methods, as shown below.

Fig. 4. RMSE of different methods for CMAR missing pattern

Fig. 5. MAE of different methods for CMAR missing pattern

Figure 5 and Figure 6 show the prediction performance of
JTFEP and baseline methods respectively for CMAR missing
pattern. As can be seen, the proposed JTFEP clearly out-
performs the other methods under all selected missing rates
from 0 to 0.4. The results also reveal that both RMSE and
MAE increase for all methods with the increase of missing



rate while the change amplitude of JTFEP is the smallest,
and the superiority of the JTFEP becomes more visible when
the missing rate gets larger. Meanwhile, our results suggest
that for CMAR missing pattern, JTFEP method inherits the
advantages compared with the other baseline methods.
(2) NMAR

NMAR is often caused by a long time malfunction of loop
detectors [6]. For NMAR missing pattern, the occurrence of
missing data is scattered and simultaneous over different roads.
That is, in the two-dimensional matrix of traffic flow data, the
distribution of missing data is fixed and continuous in both
time series and temporal series.

Fig. 6. RMSE of different methods for NMAR pattern

Fig. 7. MAE of different methods for NMAR pattern

From Figure 8 and Figure 9, it can be seen that JTFEP
has advantages over the baseline methods basically under all
missing rates ranging from 0 to 0.4. Both RMSE and MAE
of JTFEP increase slowly with the missing rate from 0.05 to
0.2, but the increase rates of the two metrics become sharper
when the missing rate is up to 0.2, and the increase reaches
the maximum when the missing rate exceeds 0.35. Basically,
JTFEP gets the best prediction performance compared with
baseline methods for NMAR missing pattern.

IV. CONCLUSION

This paper proposes JTFEP for traffic flow prediction with
missing data which considers the missing points in the original

data as additional model parameters during a deep learning
model training process, so that missing data can be updated in
each training epoch together with weights and bias. We com-
pare the prediction accuracy of JTFEP for CMAR and NMAR
missing patterns with baseline methods: kNN with LSTM,
MICE Imputation with LSTM, HA with LSTM, kNN with
SVR and kNN with ARIMA. Through extensive experiments,
we find that JTFEP has superiority over baseline methods for
the two missing patterns, especially when the missing rate is
high. Basically, JTFEP performs better than the LSTM based
two-stage method or model driven model such as ARIMA
under the missing rate ranging from 0 to 0.4 for CMAR and
NMAR missing patterns.

Future works can extend the framework to other deep
learning models such as Graph Convolution Network (GCN)
model and Gated Recurrent Unit (GRU) model, thus the
prediction accuracy can be improved when the missing data
rate is high.
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