
On the Multi-Resource Flexible Job-Shop Scheduling

Problem with Arbitrary Precedence Graphs

Gregory A. Kasapidisa,f Stéphane Dauzère-Pérèsb,c∗ Dimitris C. Paraskevopoulosd

Panagiotis P. Repoussise Christos D. Tarantilisf

aDepartment of Operations and Supply Chain Management, Management School

University of Liverpool

Liverpool, United Kingdom

E-mail: greg.kasapidis@liverpool.ac.uk

bMines Saint-Etienne, Univ Clermont Auvergne

CNRS, UMR 6158 LIMOS

Gardanne, France

E-mail: dauzere-peres@emse.fr

cDepartment of Accounting and Operations Management

BI Norwegian Business School

Oslo, Norway

dBayes Business School (formerly Cass), City

University of London

London, United Kingdom

Email: Dimitris.Paraskevopoulos@city.ac.uk

eDepartment of Marketing and Communication, School of Business

Athens University of Economics and Business

Athens, Greece

E-mail: prepousi@aueb.gr

fDepartment of Management Science and Technology, School of Business

Athens University of Economics and Business

Athens, Greece

E-mail: tarantil@aueb.gr

∗Corresponding author: Stéphane Dauzère-Pérès.



On the Multi-Resource Flexible Job-Shop Scheduling

Problem with Arbitrary Precedence Graphs

Abstract

This paper aims at linking the work presented in Dauzère-Pérès et al. (1998) and more recently

in Kasapidis et al. (2021) on the multi-resource flexible job-shop scheduling problem with non-linear

routes or equivalently with arbitrary precedence graphs. In particular, we present a Mixed Integer

Linear Programming model and a Constraint Programming model, to formulate the problem. We

also compare the theorems introduced in Dauzère-Pérès et al. (1998) and Kasapidis et al. (2021),

and propose a new theorem extension. Computational experiments were conducted to assess the

efficiency and effectiveness of all propositions. Lastly, the proposed MIP and CP models are tested

on benchmark problems of the literature and comparisons are made with state-of-the-art algorithms.

Keywords: Flexible Job shop scheduling, multiple resources, integer linear programming, con-

straint programming, non-linear precedence constraints, arbitrary precedence graphs

Received: January 2023; accepted: February 2023 by Panos Kouvelis.

1 Introduction

The Flexible Job-shop Scheduling Problem (FJSP) is an extension of the classical job-shop scheduling

problem, where each operation has a subset of machines on which it can be processed. Hence, op-

erations must also be assigned to, and not only sequenced on, machines. Several relevant extensions

of the FJSP have been considered in the literature. In this paper, we are studying the relationships

between the work presented in Dauzère-Pérès et al. (1998) and Kasapidis et al. (2021) on the FJSP

with non-linear routes, also called arbitrary precedence graphs. Next, we focus on the multi-resource

flexible job-shop scheduling problem with arbitrary precedence graphs, that was first introduced in

Dauzère-Pérès et al. (1998). We present a Mixed Integer Linear Program (MILP) and a Constraint

Programming model (CP) for the problem, as well as a thorough computational experimentation.

To our knowledge, the combination of arbitrary precedence graphs and multiple necessary resources

has very rarely been considered in the literature. The FJSP where an arbitrary directed acyclic graph

models general precedence constraints between operations has been named differently in Ivens and

Lambrecht (1996) (assembly and split structures), Dauzère-Pérès et al. (1998) (non-linear routes),

Schutten (1998) (convergent and divergent job routings), Birgin et al. (2015) (sequencing flexibility),

Lunardi et al. (2020) and Kasapidis et al. (2021) (arbitrary precedence constraints). Multiple necessary

resources for an operation in the FJSP are explicitly considered for the first time in Dauzère-Pérès

et al. (1998). Another related extension of the FJSP, where each operations may have multiple modes,

is initially studied in Brucker and Neyer (1998). A mode corresponds to a predefined set of resources

required by an operation. However, considering multiple modes is different than considering multiple

necessary resources as the latter allows more flexibility.

The remainder of this paper is structured as follows. Section 2 provides a detailed description

of the problem, while Section 3 introduces the MILP and the CP models. Section 4 presents some

comparisons among the theorems presented in Dauzère-Pérès et al. (1998) and Kasapidis et al. (2021),

while also proposing a new theorem extension. Section 5 presents and discusses numerical results on

benchmark instances, and Section 6 provides conclusions and some future research prospects.

2



2 Problem Description

In this section we adopt the nomenclature for the FJSP with arbitrary precedence graphs as presented

in Kasapidis et al. (2021) and extend it so as to incorporate multiple resources following Dauzère-Pérès

et al. (1998). The FJSP with arbitrary precedence graphs and multiple resources can be described as

follows: There is a set of jobs J = {1, . . . , l} to be processed on a set of resources R = {1, . . . ,m}.
Every job u ∈ J consists of a set of operations Ou and let set Ω = {1, . . . , n} denote the set of all

operations of the problem, i.e., Ω =
⋃

u∈J Ou. Every operation i ∈ Ω requires a set Gi = {1, . . . , gi}
of different resources, called necessary resources. Every necessary resource j ∈ Gi, must be selected

in a set of available resources Ri,j ∈ R. Note that two sets Ri,j and Ri,j′ such that j ̸= j′ are

not necessarily disjoint. However, the same resource cannot be assigned to operation i for multiple

necessary resources.

The processing time required to process operation i on a resource k ∈ R is denoted by pi,k. Also, an

operation i is assumed to be completed when the processing on all its assigned resources is completed.

The total processing time of an operation i is denoted by pi. Assuming that α(i, j) ∈ Ri,j denotes

the resource selected as the necessary resource j of operation i, pi can be calculated as follows:

pi = maxj∈Gi pi,α(i,j). Moreover, every operation i may have multiple predecessors and successor

operations that are denoted by sets PJi and SJi, respectively. Furthermore, let i◦u and i∗u denote two

dummy operations that correspond to the first and the last operations of a job u ∈ J .

For the sake of completeness, let sets Pi and Fi denote the sets of all predecessor and successor

operations of operation i. Let also pk(i) and fk(i) denote the immediate resource predecessor and

successor operations of i on resource k ∈
⋃

j∈Gi
Ri,j . Lastly, as in Dauzère-Pérès et al. (1998), we

assume that an operation starts simultaneously on all the resources k ∈ R assigned to the operation,

and that the resources are occupied for the same amount of time. This policy is called “simultaneous

occupation” in this paper.

3 Problem Modeling

In this section, we present two formulations for the problem: A Mixed Integer Linear Programming

(MILP) model in Section 3.1, and a Constraint Programming (CP) model in Section 3.2.

3.1 MILP model

This section introduces a MILP model for the FJSP with arbitrary precedence graphs and multiple

resources with simultaneous occupation constraints. The following variables are considered. Let ti

denote the completion time of operation i ∈ Ω and ti,j the completion time of operation i ∈ Ω on

its jth necessary resource, where j ∈ Gi. Binary variable Yi,j,k is equal to one if resource k ∈ Ri,j

is assigned as the jth necessary resource of operation i and zero otherwise. Binary variable Xi,i′,k is

equal to one if two operations i and i′ are assigned to the same resource k ∈ R and i′ is processed

after i and zero otherwise.

minimizeCmax (1)

3



subject to:∑
k∈Ri,j

Yi,j,k = 1 ∀i ∈ Ω,∀j ∈ Gi (2)

∑
∀j∈Gi

∑
k∈Ri,j

Yi,j,k ≤ 1 ∀i ∈ Ω (3)

pi ≥
∑

k∈Ri,j

Yi,j,kpi,k ∀i ∈ Ω,∀j ∈ Gi (4)

ti ≥ ti′ + pi ∀i ∈ Ω,∀j ∈ Gi, ∀i′ ∈ PJi (5)

ti ≥ ti′ + pi −M(2 +Xi,i′,k − Yi,j,k − Yi′,j′,k) ∀i, i′ ∈ Ω, ∀j ∈ Gi, ∀j′ ∈ Gi′ ,

∀k ∈ Ri,j ∩Ri′,j′ (6)

ti′ ≥ ti + pi′ −M(3−Xi,i′,k − Yi,j,k − Yi′,j′,k) ∀i, i′ ∈ Ω, ∀j ∈ Gi,∀j′ ∈ Gi′ ,

∀k ∈ Ri,j ∩Ri′,j′ (7)

ti ≥ 0 ∀i ∈ Ω (8)

Cmax ≥ ti∗u ∀u ∈ J (9)

Xi,i′,k ∈ {0, 1} ∀i, i′ ∈ Ω,∀k ∈ R (10)

Yi,j,k ∈ {0, 1} ∀i ∈ Ω,∀j ∈ Gi,∀k ∈ Ri,j (11)

As for the classical FJSP, the objective is to minimize the makespan, see (1). Constraints (2) enforce

one available resource k to be used for the processing of the jth necessary resource of operation i.

Constraints (3) ensure that an available resource k cannot be used more than once for the requirements

of operation i. Constraints (4) are responsible for the calculation of the actual time that the execution

of an operation i requires. Constraints (5) ensure that the completion time of every operation i is larger

than the completion time of any predecessor operation j ∈ PJi. Constraints (6) and (7) guarantee

that all operations are processed sequentially by the available resources. Constraints (8) enforce all

completion times to be positive. Constraints (9) are used to calculate the makespan, while Constraints

(10) and (11) set the domain values for the binary variables X and Y , respectively.

3.2 CP formulation

In this section, we present the CP formulation for the FJSP with arbitrary precedence graphs and

multiple resources with simultaneous occupation. The nomenclature of the IBM CP Optimizer is used.

We refer the reader to Kasapidis et al. (2021) for a comprehensive discussion of the key constraint

expressions and variable types supported by the IBM CP Optimizer used to model the FJSP and its

variants.

A decision interval variable τi is defined for every operation i ∈ Ω and a decision interval variable

τi,j for every operation i ∈ Ω and necessary resource j ∈ Gi. In addition, the decision interval variable

ϕi,j,k is used to represent the different execution modes of the jth necessary resource of an operation

i on a resource k ∈ Ri,j . Note that the Size attribute of decision interval variables ϕi,j,k ∀i ∈ Ω,

∀j ∈ Gi, ∀k ∈ Ri,j , is not constrained since the resources are occupied for the entire execution of

operation i. The set µi,j = {ϕi,j,k, ∀k ∈ Ri,j} is used to represent all the available execution modes

on the jth necessary resource of operation i. Note that µi,j is the domain set of variable τi,j . Lastly,

a sequence interval decision variable σk is defined per resource k over the set of interval variables

σk = {ϕi,j,k, ∀i ∈ Ω, ∀j ∈ Gi}.

4



minimizeCmax (12)

subject to:

Alternative(τi,j , µi,j) ∀i ∈ Ω, ∀j ∈ Gi (13)

PresenceOf(ϕi,j′,k) + PresenceOf(ϕi,j,k) ≤ 1 ∀i ∈ Ω,∀j, j′ ∈ Gi, j
′ > j,

∀k ∈ Ri,j′ ∩Ri,j , j
′ > j (14)

StartOf(τi,j) = StartOf(τi) ∀i ∈ Ω,∀j ∈ Gi (15)

EndOf(τi) ≥ EndOf(τi,j) ∀i ∈ Ω,∀j ∈ Gi (16)

StartOf(τi) ≥ EndOf(τi′) ∀i ∈ Ω,∀i′ ∈ PJi (17)

SizeOf(ϕi,j,k) ≥ Sizeof(τi) ∀i ∈ Ω, ∀j ∈ Gi,∀k ∈ Ri,j (18)

SizeOf(ϕi,j,k) ≥ pi,k ∀i ∈ Ω, ∀j ∈ Gi,∀k ∈ Ri,j (19)

NoOverlap(σk) ∀k ∈ R (20)

Cmax ≥ EndOf(τi) ∀i ∈ Ω (21)

Objective (12) refers to the minimization of the makespan. Constraints (13) are used to select only

one available resource k per necessary resource j of operation i, while Constraints (14) ensure that

the same resource is not used more than once for the same operation. Constraints (15) ensure that

all the necessary resources are occupied simultaneously as soon as operation i starts. Constraints (16)

are used to calculate the completion time of operation i. Constraints (17) make sure that precedence

relations between operations are respected. Constraints (18) ensure that all the available resources

k ∈ Ri,j , ∀j ∈ Gi are occupied for the entire execution of operation i, while Constraints (19) set a

lower bound for variables ϕi,j,k. Constraints (20) make sure that resources execute only one operation

at a time. Lastly, Constraints (21) calculates the objective.

4 Move Feasibility Check and Evaluation in a Neighborhood-Based

Metaheuristic

A common way to model and solve scheduling problems is through a disjunctive graph D(V,A,E),

where the set of nodes V represent the operations i ∈ Ω, plus the dummy start and finish operations

0 and ∗, while the conjunctive arcs in A model the immediate precedence relationships between

operations in the route of a job, and disjunctive arcs in E link operations that can be assigned to the

same resource k ∈ R.

A solution s of the problem can be represented by a conjunctive graph G(V,A, S) ⊂ D, where S

is obtained by replacing a conjunctive arc (when two operations are assigned to the same resource)

or deleting (if two operations are not assigned to the same resource) each disjunctive arc in set E.

Since the available resources are only capable of processing operations sequentially and operations

are processed only once, any graph G that represents a feasible solution should be a directed acyclic

graph.

A popular and efficient way to solve the FJSP is to use neighborhood-based metaheuristics that

rely on the disjunctive graph model, by performing local “moves” from one conjunctive graph to

another. The first integrated move for the FJSP is proposed in Dauzère-Pérès and Paulli (1997),

5



where operation i is indifferently re-sequenced on the same machine or reassigned to another machine

between two operations v and w sequenced consecutively on a machine. Two critical questions need

to be answered when designing a neighborhood-based solution approach for the FJSP or one of its

extensions: (1) “Is a move feasible?” and (2) “What is the value of the objective function after

performing a move?”. Both questions can be answered by actually performing a move to check its

feasibility and calculate the value of the objective function, i.e., the makespan, which requires to

traverse the directed graph after the move. However, when the number of possible moves to evaluate

is very large, as in the connected neighborhood structure and Tabu Search of Dauzère-Pérès and Paulli

(1997), the resulting computational times are prohibitive. Hence, conditions have been proposed in

the literature to guarantee feasibility and estimate the makespan without actually performing any

move. These conditions rely on the head (length of the longest path from operation 0 to operation i)

ri, the tail (length of the longest path from the end of operation i to operation ∗) qi, the set Pi of all

predecessors in G and the set Si of all successors in G of each operation i ∈ Ω (see e.g. Dauzère-Pérès

and Paulli (1997) for more details).

Regarding move feasibility, Remark 1 specifies that the conditions in Dauzère-Pérès et al. (1998)

and Kasapidis et al. (2021), both extended from the ones in Dauzère-Pérès and Paulli (1997), are

equivalent. This is because, since the operation is moved on only one resource at a time in Dauzère-

Pérès et al. (1998), the graph can be seen as an arbitrary precedence graph (or with non-linear routes)

for the arcs associated to the resources that are not reassigned.

Remark 1. Theorem 1 in Kasapidis et al. (2021) is equivalent to Theorem 1 in Dauzère-Pérès et al.

(1998).

Regarding the criterion estimation of a move, Remark 2 specifies that the evaluation in Dauzère-

Pérès et al. (1998) and Kasapidis et al. (2021) are different. While the evaluation in Kasapidis

et al. (2021) is a direct extension for an arbitrary precedence graph of the evaluation proposed in

Dauzère-Pérès and Paulli (1997), the evaluation in Dauzère-Pérès et al. (1998) aims at reducing the

computational effort by avoiding enumerating all paths in graph G. More precisely, the evaluation in

Dauzère-Pérès et al. (1998) only requires to consider the heads and tails of operations.

Remark 2. Theorem 2 in Kasapidis et al. (2021) is not equivalent to Theorem 5 in Dauzère-Pérès

et al. (1998).

Hence, following Remark 2, we propose to further extend Theorem 5 in Dauzère-Pérès and Paulli

(1997), already extended in Kasapidis et al. (2021) for an arbitrary precedence graph, to consider

multiple necessary resources for operations in the FJSP with an arbitrary precedence graph. Theorem

1 below presents the resulting lower bound.

Theorem 1. The makespan after moving operation i between two consecutive operations v and w

in the available resource k ∈ Ri,j , ∀j ∈ Gi, and such that Theorem 1 in Dauzère-Pérès et al. (1998)

holds, is always larger than or equal to:

LB(i, v, w) = max

(
r̂v + pv, max

∀e∈PJi
(re + pe)

)
+ p̃i +max

(
q̂w + pw, max

∀e∈SJi
(qe + pe)

)
, (22)

6



where

r̂v =


rv − rsmi +max

(
max

∀e∈PJsmi

(re + pe) , rpmi + ppmi

)
if i ∈ Pv,

rv if i ̸∈ Pv,

(23)

q̂w =


qw − qpmi +max

(
max

∀e∈SJpmi

(qe + pe) , qsmi + psmi

)
if i ∈ Sw,

qw if i /∈ Sw

(24)

Proof. The proof follows the ones of Theorem 5 in Dauzère-Pérès and Paulli (1997) and Theorem 2

in Kasapidis et al. (2021). The only difference lies in the processing times, which are now calculated

considering multiple resources as shown in Section 2. Note that the processing time p̃i corresponds to

the processing time of operation i after the move, i.e. p̃i = maxj∈Gi pi,α̃(i,j), where α̃(i, j) denotes the

selected necessary resources after the move.

The numerical results of Section 5 show that the evaluation in Dauzère-Pérès et al. (1998) does

not significantly reduce the computational times compared to the evaluation in Theorem 1, although

the accuracy of the former is poorer than the latter.

Another way of evaluation a move, called the Lpath method, is proposed in Dell’Amico and Trubian

(1993) for the classical JSP, i.e. when operations are moved to the same machine in the FJSP. The

Lpath method is extended for the FJSP in González et al. (2015), and for the FJSP with arbitrary

precedence graphs in Kasapidis et al. (2021).

Lastly, note that Dauzère-Pérès et al. (1998) also show that the resulting neighborhood structure

is connected, i.e. it allows an optimal solution to be reached in a finite number of moves.

5 Computational Experiments

In this section, we present and discuss the results of the computational experiments conducted in this

paper. More specifically, Section 5.1 includes the assessment of Theorem 1, Theorem 5 of Dauzère-

Pérès et al. (1998) and the extended Lpath method, while Section 5.2 compares the results of the

proposed MILP and CP models to state-of-the-art results using well-known benchmarks of the litera-

ture.

With regards to implementation, the IBM ILOG CPLEX Solver (v22.1.0), resp. the IBM ILOG

CP Optimizer (v22.1.0), was used for the MILP model, resp. for the CP model. An Intel Core i7-7700

processor and 16.0GB of RAM were used, with a common time limit of 10,800 seconds for both the

MILP and the CP models.

5.1 Move evaluation Assessment

To assess Theorem 1, Theorem 5 of Dauzère-Pérès et al. (1998) and the extended Lpath method, we

used well known benchmark problems of the literature for the FJSP and the FJSP with arbitrary

precedence graphs. Even though these sets of problems do not consider multiple resources, they serve

as a suitable test-bed. In particular, two different sets of experiments are conducted on two different

sets of benchmark problem instances. At first, regarding the problem instances of the FJSP, the

following problem instances were used: DP15a and DP18a from the DPData Benchmark set (see

7



Dauzère-Pérès and Paulli (1997)) as well as Mk6 and Mk10 from the BRData benchmark set (see

Brandimarte (1993)). Secondly, regarding the FJSP with arbitrary precedence graphs, the five largest

available problem instances were used: DAFJS10, DAFJS29, DAFJS30, YFJS19 and YFJS20 from

the DAFJS and YFJS benchmark sets provided in Birgin et al. (2014).

In both sets of experiments, the local search procedure of Kasapidis et al. (2021) was used. Each

method was evaluated a total of 20 million times and the results are presented in Tables 1 and 2. The

former includes the results on problem instances of the FJSP, i.e, with linear precedence graphs, while

the latter includes the results on problem instances of the FJSP with arbitrary precedence graphs,

i.e., with non-linear routes.

Both tables share the same structure. The first column includes the name of the method, while

the next three columns denote the number of times when the estimate was larger than, lower than or

equal to the actual makespan of the move, respectively. The fifth column includes the accuracy of the

estimation method, i.e., how frequently the estimation method was able to accurately estimate the

actual makespan of the move. Lastly, the sixth column includes the time in microseconds (µs) that

was required on average for a single evaluation of each method.

Table 1: Accuracy assessment of move evaluations on FJSP instances with linear precedence graphs

Method > Cmax < Cmax Cmax Accuracy (%) Time(µs)

Lpath 185655 580405 19233940 96.17 0.017
Theorem 1 4123396 0 15876604 79.38 0.010
Theorem 5 of Dauzère-Pérès et al. (1998) 11470719 0 8529281 42.65 0.008

Table 2: Accuracy assessment of move evaluations on FJSP instances with arbitrary precedence graphs

Method > Cmax < Cmax Cmax Accuracy (%) Time(µs)

Lpath 703986 438907 18857107 94.29 0.016
Theorem 1 2701880 0 17298120 86.49 0.008
Theorem 5 of Dauzère-Pérès et al. (1998) 10638390 0 9361610 46.81 0.007

Overall, one can observe that Lpath shows high precision for all problems. More specifically, Lpath

estimates the makespan with an accuracy of 96.17% and 94.29% in the case of linear and non-linear

precedence constraints, respectively. Regarding the other move evaluation methods, we can confirm

that both Theorem 1 and Theorem 5 of Dauzère-Pérès et al. (1998) produce valid lower bounds, since

there was no case where the calculated estimate was greater than the actual makespan of a move. We

also notice that the accuracy of both methods is lower compared to Lpath.

More specifically, Theorem 1 has an accuracy of 79.38% and 86.49% for problems with linear and

non-linear precedence constraints, respectively. Whereas Theorem 5 of Dauzère-Pérès et al. (1998)

has an accuracy of 42.65% and 46.81% for problems with linear and non-linear precedence constraints,

respectively. In terms of performance, Lpath is more computationally expensive than Theorem 1 and

Theorem 5 of Dauzère-Pérès et al. (1998). More specifically, in both sets of experiments, Lpath is twice

as time consuming as the other two move evaluation methods. Note that Theorem 5 of Dauzère-Pérès

et al. (1998) is marginally faster compared to Theorem 1. While both Theorem 1 and Theorem 5 of

Dauzère-Pérès et al. (1998) produce valid lower bounds, one could prefer Lpath as it is more accurate

despite the fact that it is more computationally expensive.

8



5.2 Comparison of MILP and CP models

In this section, we assess the performance of the MILP and CP models introduced in Sections 3.1 and

3.2, respectively. We used benchmark problem instances of the literature for the multi-resource FJSP

with arbitrary precedence graphs, in particular the MJS benchmark set introduced in Dauzère-Pérès

et al. (1998). This benchmark set includes a total of 70 instances that can be extended by assuming:

a) Linear precedence graphs and b) A common non-linear precedence graph, resulting in a total of 140

different instances. As there were consistency problems in the data of five instances, only 130 (two

times 65) instances were considered.

Tables 3 and 4 present the numerical results. In both tables, the first column includes the name

of the problem instance, while the second column provides the best known LB. The third column

shows the results of Dauzère-Pérès et al. (1998), while the next two multi-columns provide the results

of the proposed CP and MILP models, respectively. Each multi-column includes: LB, Cmax, the %

optimality gap from the LB and the total elapsed time, respectively.

Overall, the CP model gives the best results compared to both the MILP model and the meta-

heuristic approach of Dauzère-Pérès et al. (1998), although sometimes at the expense of significant

computational times. More specifically, regarding the instances with linear precedence constraints, the

CP model has determined 49 new best solutions and 38 optimal solutions with an average optimality

gap of 31.12%. On the other hand, the MILP model improves five solutions, while solving seven

instances to optimality with an average gap of 33.51%. Note that the MILP cannot produce any

feasible solution on 28 instances of this group. The same behavior is observed on the results regarding

instances with arbitrary precedence constraints. In this case, the CP model gives 65 new best solutions

and solves 56 instances to optimality with an average optimality gap of 1.02%. The MILP model

produces 41 new best solutions and solves 41 instances to optimality with an average optimality gap

of 3.18%. Note that, in this benchmark set, the MILP model cannot find a feasible solution for only

two instances.

Note that, in this experiment, the addition of arbitrary precedence constraints induces a significant

reduction of the average optimality gaps of both the CP and MILP models. This may be related to the

fact that, when arbitrary precedence graphs are included, less operation sequences compete in parallel

over the available resources at the same time, which typically leads to a reduction of the complexity

of the problem.

6 Conclusions

The multi-resource Flexible Job-shop Scheduling Problem with arbitrary precedence graphs, also called

non-linear routes, is considered in this paper. The theorems that were introduced in Dauzère-Pérès

et al. (1998) and more recently in Kasapidis et al. (2021) are compared, and the extension to multiple

resources is studied. In particular, a MILP model and a CP model are proposed, and computational

results are discussed. They show that the CP model is more effective, although time-consuming for

some instances, and that Theorem 1 proposed in this paper is more effective than Theorem 5 of

Dauzère-Pérès et al. (1998).

In terms of future research, it is worth studying the policies discussed in Dauzère-Pérès and

Pavageau (2003), where all resources assigned to an operation may not be simultaneously occupied,

instead, an operation may not start or end simultaneously on all its assigned resources.

9



Table 3: Results on the MJS benchmark set with Linear Precedence Constraints

DP CP MILP
Instance Best LB Cmax LB Cmax Gap(%) Time(s) LB Cmax Gap(%) Time(s)
mjs01 361 361* 361 361* 0.00 17 354 361* 0.00 10800
mjs02 381 384 381 381* 0.00 25 380 381* 0.00 10800
mjs03 376 378 376 376* 0.00 51 364 381 1.33 10800
mjs04 391 394 391 391* 0.00 34 391 391* 0.00 640
mjs05 623 643 623 623* 0.00 659 572 659 5.78 10800
mjs06 547 585 547 547* 0.00 1171 487 570 4.20 10800
mjs07 610 644 610 610* 0.00 10553 520 625 2.46 10800
mjs08 552 575 552 552* 0.00 1424 511 585 5.98 10800
mjs09 563 568 563 563* 0.00 104 549 585 3.91 10800
mjs10 454 928 444 828 82.30 10800 454 998 119.73 10800
mjs11 487 1057 487 901 85.01 10800 444 - - 10800
mjs12 446 859 446 790 77.11 10800 446 926 107.60 10800
mjs13 434 827 434 791 82.26 10800 419 889 104.84 10800
mjs14 552 946 552 910 64.86 10800 460 1045 89.31 10800
mjs15 655 1469 655 1292 97.25 10800 655 - - 10800
mjs16 581 1312 581 1198 106.20 10800 566 - - 10800
mjs17 647 1572 647 1407 117.47 10800 614 - - 10800
mjs18 668 1544 668 1396 108.98 10800 655 - - 10800
mjs19 674 1572 674 1321 95.99 10800 642 - - 10800
mjs20 500 1033 500 902 80.40 10800 499 1156 131.20 10800
mjs21 438 916 438 836 90.87 10800 419 1021 133.11 10800
mjs22 467 924 467 865 85.22 10800 444 1176 151.82 10800
mjs23 475 957 475 849 78.74 10800 452 - - 10800
mjs24 433 918 419 790 82.44 10800 433 1025 136.72 10800
mjs25 653 1513 653 1315 101.38 10800 613 - - 10800
mjs26 620 1481 620 1203 94.03 10800 567 - - 10800
mjs27 633 1566 633 1327 109.64 10800 612 - - 10800
mjs28 610 1395 610 1325 117.21 10800 601 - - 10800
mjs29 690 1336 690 1215 76.09 10800 638 1760 155.07 10800
mjs30 216 218 216 216* 0.00 50 216 227 5.09 10800
mjs31 218 218* 218 218* 0.00 18 218 220 0.92 10800
mjs32 216 219 216 216* 0.00 429 210 236 9.26 10800
mjs33 217 224 217 217* 0.00 99 211 230 5.99 10800
mjs34 213 213* 213 213* 0.00 8 213 217 1.88 10800
mjs35 265 265* 265 265* 0.00 4 265 265* 0.00 1401
mjs36 223 225 223 223* 0.00 27 219 226 1.35 10800
mjs37 202 207 202 202* 0.00 64 189 220 8.91 10800
mjs38 241 241* 241 241* 0.00 5 241 246 2.07 10800
mjs39 210 210* 210 210* 0.00 56 210 217 3.33 10800
mjs40 241 241* 241 241* 0.00 3 241 241* 0.00 1339
mjs41 210 218 210 210* 0.00 680 204 232 10.48 10800
mjs42 250 250* 250 250* 0.00 2 250 250* 0.00 1836
mjs43 219 219* 219 219* 0.00 6 219 219* 0.00 814
mjs44 252 258 252 252* 0.00 8 252 253 0.40 10800
mjs45 294 296 294 294* 0.00 73 294 318 8.16 10800
mjs46 296 300 296 296* 0.00 556 292 356 20.27 10800
mjs47 330 333 330 330* 0.00 109 330 - - 10800
mjs48 315 327 315 315* 0.00 164 299 - - 10800
mjs49 356 356* 356 356* 0.00 8 356 - - 10800
mjs50 279 327 279 326 16.85 10800 279 - - 10800
mjs51 289 373 289 367 26.99 10800 277 - - 10800
mjs52 286 317 286 317 10.84 10800 286 - - 10800
mjs53 267 353 267 353 32.21 10800 266 - - 10800
mjs54 241 311 241 299 24.07 10800 235 - - 10800
mjs56 380 508 380 534 40.53 10800 372 - - 10800
mjs59 346 490 346 476 37.57 10800 345 - - 10800
mjs60 246 268 246 246* 0.00 301 243 - - 10800
mjs61 301 303 301 301* 0.00 101 301 - - 10800
mjs62 284 284* 284 284* 0.00 63 284 298 4.93 10800
mjs63 286 289 286 286* 0.00 44 286 297 3.85 10800
mjs64 240 240* 240 240* 0.00 61 240 - - 10800
mjs65 375 381 375 375* 0.00 357 368 - - 10800
mjs66 423 423* 423 423* 0.00 796 423 - - 10800
mjs67 400 408 400 400* 0.00 1000 399 - - 10800
mjs68 382 400 382 382* 0.00 1189 381 - - 10800

10



Table 4: Results on the MJS benchmark set with Arbitrary Precedence Constraints

DP CP MILP
Instance Best LB Cmax LB Cmax Gap(%) Time(s) LB Cmax Gap(%) Time(s)
mjs01 1052 1136 1052 1052* 0.00 0 1052 1052* 0.00 2
mjs02 1104 1160 1104 1104* 0.00 6 1104 1104* 0.00 5
mjs03 1133 1166 1133 1133* 0.00 1 1133 1133* 0.00 9
mjs04 1086 1097 1086 1086* 0.00 4 1086 1086* 0.00 14
mjs05 1761 1809 1761 1761* 0.00 21 1761 1761* 0.00 50
mjs06 1648 1712 1648 1648* 0.00 13 1648 1648* 0.00 52
mjs07 1828 1841 1828 1828* 0.00 39 1828 1828* 0.00 198
mjs08 1627 1693 1627 1627* 0.00 71 1627 1627* 0.00 148
mjs09 1557 1585 1557 1557* 0.00 20 1557 1557* 0.00 40
mjs10 1610 1739 1610 1610* 0.00 1658 1549 1631 1.30 10800
mjs11 1637 1817 1637 1637* 0.00 3472 1495 1697 3.67 10800
mjs12 1560 1759 1560 1560* 0.00 1074 1453 1595 2.24 10800
mjs13 1518 1709 1518 1518* 0.00 682 1437 1571 3.49 10800
mjs14 1658 1898 1658 1658* 0.00 305 1641 1658* 0.00 10800
mjs15 2184 2679 2182 2450 12.28 10800 2184 2641 20.92 10800
mjs16 2096 2458 2096 2193 4.63 10800 1998 2369 13.02 10800
mjs17 2221 2679 2221 2454 10.49 10800 2166 2624 18.14 10800
mjs18 2302 2755 2302 2415 4.91 10800 2199 2563 11.34 10800
mjs19 2275 2832 2275 2402 5.58 10800 2211 2592 13.93 10800
mjs20 1704 1951 1704 1704* 0.00 1404 1571 1809 6.16 10800
mjs21 1486 1649 1486 1486* 0.00 639 1411 1543 3.84 10800
mjs22 1573 1670 1573 1573* 0.00 930 1500 1598 1.59 10800
mjs23 1541 1773 1541 1541* 0.00 923 1448 1608 4.35 10800
mjs24 1448 1634 1448 1448* 0.00 713 1348 1525 5.32 10800
mjs25 2233 2771 2233 2379 6.54 10800 2138 2542 13.84 10800
mjs26 2061 2359 2061 2204 6.94 10800 2023 2429 17.86 10800
mjs27 2214 2703 2214 2386 7.77 10800 2168 2594 17.16 10800
mjs28 2132 2540 2132 2279 6.89 10800 2072 2585 21.25 10800
mjs29 2267 2452 2267 2267* 0.00 7948 2081 2415 6.53 10800
mjs30 710 721 710 710* 0.00 2 710 710* 0.00 73
mjs31 746 772 746 746* 0.00 2 746 746* 0.00 189
mjs32 722 743 722 722* 0.00 3 722 722* 0.00 75
mjs33 710 730 710 710* 0.00 0 710 710* 0.00 50
mjs34 697 760 697 697* 0.00 1 697 697* 0.00 403
mjs35 842 849 842 842* 0.00 0 842 842* 0.00 35
mjs36 673 690 673 673* 0.00 2 673 673* 0.00 137
mjs37 626 687 626 626* 0.00 2 626 626* 0.00 493
mjs38 754 774 754 754* 0.00 2 754 754* 0.00 66
mjs39 682 695 682 682* 0.00 2 682 682* 0.00 147
mjs40 688 698 688 688* 0.00 1 688 688* 0.00 250
mjs41 725 750 725 725* 0.00 1 725 725* 0.00 37
mjs42 757 773 757 757* 0.00 1 757 757* 0.00 163
mjs43 630 687 630 630* 0.00 0 630 630* 0.00 28
mjs44 750 828 750 750* 0.00 2 750 750* 0.00 53
mjs45 966 986 966 966* 0.00 12 966 966* 0.00 3555
mjs46 1010 1034 1010 1010* 0.00 4 1010 1010* 0.00 8999
mjs47 1018 1059 1018 1018* 0.00 1 1018 1018* 0.00 303
mjs48 1074 1128 1074 1074* 0.00 9 1074 1074* 0.00 5812
mjs49 1202 1251 1202 1202* 0.00 3 1202 1202* 0.00 241
mjs50 849 949 849 849* 0.00 10 849 849* 0.00 8700
mjs51 919 1049 919 919* 0.00 309 919 922 0.33 10800
mjs52 880 948 880 880* 0.00 6 880 880* 0.00 675
mjs53 911 1018 911 911* 0.00 60 906 1038 13.94 10800
mjs54 832 945 832 832* 0.00 78 818 833 0.12 10800
mjs56 1257 1417 1257 1257* 0.00 33 1257 - - 10800
mjs59 1273 1440 1273 1273* 0.00 153 1273 - - 10800
mjs60 773 846 773 773* 0.00 15 773 773* 0.00 369
mjs61 1003 1015 1003 1003* 0.00 22 1003 1003* 0.00 3225
mjs62 931 979 931 931* 0.00 3 931 931* 0.00 163
mjs63 1056 1164 1056 1056* 0.00 3 1056 1056* 0.00 82
mjs64 823 828 823 823* 0.00 3 822 823* 0.00 270
mjs65 1277 1322 1277 1277* 0.00 1 1277 1277* 0.00 3436
mjs66 1461 1501 1461 1461* 0.00 1 1461 1461* 0.00 3288
mjs67 1370 1459 1370 1370* 0.00 89 1370 1370* 0.00 2812
mjs68 1398 1513 1398 1398* 0.00 29 1398 1398* 0.00 9013

11



Acknowledgments

We would like to thank the editors of the journal for offering us this opportunity to show the link and

future research prospects between Dauzère-Pérès et al. (1998) and Kasapidis et al. (2021).

References

Birgin, E.G., Feofiloff, P., Fernandes, C.G., De Melo, E.L., Oshiro, M.T., Ronconi, D.P., 2014. A MILP model

for an extended version of the flexible job shop problem. Optimization Letters 8, 1417–1431.

Birgin, E.G., Ferreira, J.E., Ronconi, D.P., 2015. List scheduling and beam search methods for the flexible

job shop scheduling problem with sequencing flexibility. European Journal of Operational Research 247,

421–440.

Brandimarte, P., 1993. Routing and scheduling in a flexible job shop by tabu search. Annals of Operations

Research 41, 157–183.

Brucker, P., Neyer, J., 1998. Tabu-search for the multi-mode job-shop problem. Operations-Research-Spektrum

20, 21–28.

Dauzère-Pérès, S., Paulli, J., 1997. An integrated approach for modeling and solving the general multiprocessor

job-shop scheduling problem using tabu search. Annals of Operations Research 70, 281–306.

Dauzère-Pérès, S., Pavageau, C., 2003. Extensions of an integrated approach for multi-resource shop scheduling.

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 33, 207–213.

Dauzère-Pérès, S., Roux, W., Lasserre, J.B., 1998. Multi-resource shop scheduling with resource flexibility.

European Journal of Operational Research 107, 289–305.

Dell’Amico, M., Trubian, M., 1993. Applying tabu search to the job-shop scheduling problem. Annals of

Operations Research 41, 231–252.

González, M.A., Vela, C.R., Varela, R., 2015. Scatter search with path relinking for the flexible job shop

scheduling problem. European Journal of Operational Research 245, 35–45.

Ivens, P., Lambrecht, M., 1996. Extending the shifting bottleneck procedure to real-life applications. European

Journal of Operational Research 90, 252–268.

Kasapidis, G.A., Paraskevopoulos, D.C., Repoussis, P.P., Tarantilis, C.D., 2021. Flexible job shop scheduling

problems with arbitrary precedence graphs. Production and Operations Management 30, 4044–4068.

Lunardi, W.T., Birgin, E.G., Laborie, P., Ronconi, D.P., Voos, H., 2020. Mixed integer linear programming

and constraint programming models for the online printing shop scheduling problem. Computers and

Operations Research 123, 105020.

Schutten, J.M., 1998. Practical job shop scheduling. Annals of Operations Research 83, 161–177.

12


	Introduction
	Problem Description
	Problem Modeling
	MILP model
	CP formulation

	Move Feasibility Check and Evaluation in a Neighborhood-Based Metaheuristic
	Computational Experiments
	Move evaluation Assessment
	Comparison of MILP and CP models

	Conclusions

