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Abstract

Objective: Down Syndrome, also known as Trisomy 21, is a
severe genetic disease caused by an extra chromosome 21.
For the detection of Trisomy 21, despite those statistical
methods have been widely used for screening, karyotyp-
ing remains the gold standard and the first level of testing
for diagnosis. Due to karyotyping being a time-consuming
and labour-intensive procedure, Computer Vision method-
ologies have been explored to automate the karyotyping
process for decades. However, few studies have focused
on Down Syndrome detection with the Transformer tech-
nique. This study develops a Down-Syndrome-Detector
(DSD) architecture based on the Transformer structure,
which includes a segmentation module, an alignment mod-
ule, a classification module, and a Down Syndrome in-
dicator. Methods: The segmentation and classification
modules are designed by homogeneous transfer learning
at the model level. Transfer learning techniques enable
a network to share weights learned from the source do-
main (e.g., millions of data in ImageNet) and optimize the
weights with limited labelled data in the target domain
(e.g., less than 6,000 images in BioImLab). The Align-
Module is designed to process the segmentation output to
fit the classification dataset, and the Down Syndrome Indi-
cator identifies a Down Syndrome case from the classifica-
tion output. Results: Experiments are first performed on
two public datasets BioImLab (119 cases) and Advanced
Digital Imaging Research (ADIR, 180 cases). Our perfor-
mance metrics indicate the good ability of segmentation
and classification modules of DSD . Then, the DS detec-
tion performance of DSD is evaluated on a private dataset
consisting of 1084 cells (including 20 DS cells from 2 single-
ton cases): 90.0% and 86.1% for cell-level TPR and TNR;
100% and 96.08% for case-level TPR and TNR, respec-
tively. Conclusion: This study develops a pipeline based
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on the modern Transformer architecture for the detection
of Down Syndrome from original metaphase micrographs.
Both segmentation and classification models developed in
this study are assessed using public datasets with com-
monly used metrics, and both achieved good results. The
DSD proposed in this study reported satisfactory single-
ton case-specific DS detection results. Significance: As
verified by a medical specialist, the developed method may
improve Down Syndrome detection e�ciency by saving hu-
man labor and improving clinical practice.
Keywords: Karyotyping, Down Syndrome, Transformer,
Deep Neural Network.

1 Introduction

Down Syndrome (DS) occurs in approximately one in 700
births worldwide. It was first clinically described by Lang-
don Down in 1866 [1]. The clinical manifestations include
intellectual disabilities, cardiac diseases, physical abnor-
malities, and other abnormalities [2]. First reported as
the underlying genomic abnormality in 1959, DS is a ge-
netic disorder in human chromosomes caused by an extra
copy of genes on chromosome 21. The content of redun-
dant chromosomal is produced in three di↵erent ways [3]
: 95% of DS cases are Trisomy 21 (T21), in which all
cells have three chromosomes 21 instead of two. 2% of
DS cases are called mosaic Down Syndrome, which is di-
agnosed by the mixture of cells, with some having two
chromosomes 21 and some had three. 3% of DS cases are
named Translocation Down Syndrome, caused by a par-
tial copy of chromosome 21, which attaches to another
chromosome. Since there is no cure for DS so far, besides
improving the quality of life through proper care and edu-
cation, the most e�cient way for DS prevention is through
screening or diagnostic tests at an early prenatal age [4].

Statistical methods have been used in the noninvasive
prediction of chromosomal abnormalities for years. These
approaches produced a likelihood percentage of a fetus be-
ing su↵ering a fatal aneuploidy disease [5]. Nicolaides et
al. calculated T21 risks using a multivariate likelihood
approach in 75821 singleton pregnancies in 2005 [6], re-
porting a detection rate of 75% with the false-positive rate
of 1%. These methods compute the patient-specific risk
based on several markers from an antenatal test, such as
crown ramp length and fetal nuchal translucency. Neo-
cleous et al. used a fully connected feedforward artificial
neural network to predict the risk of T21 and other chro-
mosomal aneuploidies in 2016 [5]. The dataset consists of
51,208 singleton pregnancy cases from first-trimester ane-
uploidy screening. The screening report was used as suit-
able markers for aneuploidies risk establishment by nine
parameters, including maternal age, previous pregnancy
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with T21, etc. They achieved a 100.0% detection rate of
T21 with a false positive rate of 3.9%. Feng et al. devised
a nine-layer Convolutional Neural Network (CNN) model
consisting of two merged branches for accurate DS pre-
diction/screening in 2017 [2]. Each branch contains three
convolutional layers, one max-pooling layer, and one input
layer fed with a chromosome single-nucleotide polymor-
phisms (SNPs) map. The SNPs dataset was built from
378 samples collected by Vanderbilt University Medical
Center. Each sample contains the intensity information
of 5458 SNPs in 321 HSA21 coding genes. The proposed
CNN model achieved an average accuracy of 99.3%, a pre-
cision of 99.2%, and a recall of 98.4%, surpassing three
conventional supervised learning algorithms (SVM, Ran-
dom Forest, and Decision Tree) in accuracy (they were all
below 97.1%) on the same dataset.
Most statistical approaches calculate either the appro-

priate multivariate or posterior probabilities from mark-
ers such as fetus crown ramp length, nuchal translucency,
maternal age, the pregnancy-associated plasma protein-
A, etc [5]. Karyotyping, however, is generally recognized
as the gold standard in diagnosing genetic abnormalities
in fetuses via checking chromosomal abnormalities of nu-
merical (an extra or missing chromosome) or structural
(deletion, translocation, inversion in specific chromosome
segments) [2, 7]
Each human chromosome contains a single deoxyribonu-

cleic acid (DNA) duplex [8] that is only visible during
mitosis or meiosis via techniques such as M-FISH (multi-
colour fluorescence in situ hybridization with five colour
dyes [9]), Q-Band (staining with the fluorescent dye nitro-
gen mustard quinacrine [10]), or G-Band (stained with the
dye of Giemsa [11]). Examples of the chromosome images,
obtained from the three techniques, showing the di↵erent
Band styles, are given in Figure 1.

(a) M-FISH (b) Q-Band (c) G-Band

Figure 1: Examples of chromosomal images obtained by
di↵erent techniques. (a), (b), and (c) are from the dataset
of ADIR, BioImLab, and a private dataset, respectively.

Karyotyping is the process of preparing karyotypes from
photographs of chromosomes to detect the numerical and
structural abnormalities of the cell. It is widely used for
specific cancer diagnoses and prenatal screening of sev-
eral genetic diseases [12]. Since the 1980s, karyotyping
has been carried out for prenatal screening in the first
trimester of gestation by chorionic villus sampling [13].
After the identification of chromosomes in a photomicro-
graph (an example is shown in Figure 1), each chromo-
some is then compared to the idiogram and is assigned
with a label from 1 to 24. The idiogram is the pheno-
typic representation of the chromosomal centromere and
bands. Figure 2 gives an example of an idiogram. It corre-
sponds to the karyotype images obtained by typical stain-
ing techniques of Q-banding, G-banding and R-banding
(the reverse of G-banding) [14]. Initially published as

part of the International System for Human Cytogenetic
Nomenclature (ISCN) in 1971 and most recently revised in
2020 [15], the idiograms demonstrate relative centromere
position and banding patterns for 24 chromosome types by
a series of bands in white and black [16]. Karyotyping is a
time-consuming and labor-intensive task highly dependent
on skilled clinical analysts; therefore, automatic methods
have been researched to reduce the burden [17] [18].

(a) chromosome 13 (b) chromosome 18 (c) chromosome 21

Figure 2: Examples of idiogram.

Computer-aided karyotyping methods involve four
tasks: pre-processing, segmenting a chromosomal micro-
graph into individual chromosomes, classifying each chro-
mosome using one of the 23 class labels, and abnormal de-
tection [19]. Traditional segmenting methods are mainly
based on cut points that extract morphological charac-
ters [7], e.g., OTSU, thresholding, K-means clustering, wa-
tershed. The typical workflow consists of pre-processing
the images, detecting contours, drawing cut lines, and seg-
menting the potential homologous chromosomes. Neural
Network-based automatic chromosome karyotyping can be
traced back to the 1990s. Boaz Lerner investigated a mul-
tilayer perceptron Neural Network for chromosome analy-
sis in 1998 [20], achieving an accuracy of 83.6%, the best
performance at that time.

With the breakthrough of Deep Learning in 2012, char-
acterized by using the deep convolutional network [21],
the e�ciency and accuracy of computer-aided chromosome
karyotyping was dramatically improved. Transformer ar-
chitecture, which has already been dominant in Natural
Language Processing for years, has ushered Computer Vi-
sion into a new phase in 2020 [22–24]. Several researchers
evaluated their methods of chromosome classification or
segmentation on the public chromosome image datasets,
e.g., the Laboratory of Biomedical Imaging from the Uni-
versity of Padova (BioImLab, Q-Band technique [10, 25])
and Advanced Digital Imaging Research from the Univer-
sity of Texas at Austin (ADIR, M-FISH technique [9,26]):

BioImLab: (1) Grisan et al. proposed a space-
variant thresholding scheme to separate chromosomes
in 2009 [10], they obtained 94% correctly segmented
chromosomes; (2) Grisman et al. improved their re-
search by a region-based level set algorithm to deal
with the image background [27], with 98.0% and
81.0% identification accuracy for a single and over-
segmented chromosomes, respectively; (3) Poletti et
al. implemented a thorough analysis of the eleven
thresholding methods, which achieved better perfor-
mance than that in 2012 [28].

ADIR (Advanced Digital Imaging Research):
(1) Schwartzkopf et al. proposed a hypothesis test
strategy based on maximum-likelihood in 2005 [9],
achieving an accuracy of 77% on segmenting touching
chromosomes and 34% on overlapping chromosomes.
(2) Karvelis et al. investigated the watershed trans-
form and gradient paths in 2010 [29]. The proposed
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Figure 3: The overall architecture of Down-Syndrom-Detector.

algorithm achieved a success rate of 90.6% and 80.4%
for touching and overlapping chromosomes, respec-
tively. (3) Pardo et al. studied a fully convolutional
network with a VGG-alike layout for semantic seg-
mentation in 2018 [26], yields 87.41% for average cor-
rect classification ratio. (4) Arora and Tanvi et al.
introduced a novel strategy in 2019 [30], which em-
ploys a Gaussian kernel (energy function) to fit the
foreground and background regions. They validated
their work on 66 images from three m-FISH (ADIR),
Q-Band, and G-Band datasets; each of the datasets
contains 22 images. The accuracy of corrected seg-
mented chromosomes is 96.33%.

Xiao et al. studied object detection schemes and devel-
oped a DeepACEv2 for chromosome enumeration task in
2020 [31]. The framework adds Hard Negative Anchors
Sampling to extract information from confusing partial
chromosomes and extract unique embeddings proposals
from geometric chromosome information by a Template
Module branch of each proposal. Experiments were im-
plemented on 1375 metaphase images and reported the
Whole Correct Ratio of 71.39% for images. However, their
work was not validated on public datasets such as BioIm-
Lab (with only 163 metaphase images). There was also no
reporting on the results of specific Trisomy such as T21.
Al-Kharraz et al. proposed an automated karyotyping

workflow with Deep Learning in 2020 [32] to recognize
numerical abnormalities of Trisomy 13/21/18/sex chro-
mosome. Their experimental dataset contains 147 non-
overlapped metaphase chromosome images from the Cen-
ter of Excellence in Genomic Medicine Research at King
Abdulaziz University. The network YOLOv2 [33] is used
to classify the individual chromosomes based on network
VGG19 [34]. Twenty-nine metaphase cells were used for
abnormal detection. They reported 96.6% abnormality
detection accuracy, defined as the ratio of the correctly
diagnosed cell number divided by the total cell number.
Al-Kharraz et al. reported the classification results on
the segmentation output of the dataset (CEGMR) with
only non-overlapped images. However, the results on more
challenging datasets such as BioImLab are not given.
Although there have been many successful Transformer

architectures in Computer Vision since 2020 [23] [35] [36],
they have not been used for karyotyping. To the best of
our knowledge, this paper is the first study to adopt the
Transformer architecture for Down Syndrome detection.
The rest of this paper is organized as follows: Section 2
reviews Transformer techniques in Computer Vision; Sec-
tion 3 explains the proposed DS detection workflow and
the transfer learning strategies; Section 4 introduces the
experiment design, datasets, and metrics; Section 5 gives
the results and discussion. Finally, the conclusion is given
in Section 6.

2 Transformer Networks for Com-
puter Vision

Cho and Bengio first proposed the attention mecha-
nism for the neural machine translation task in 2016
by focusing only on the relevant source-target word
[37]. The conditional probability in the decoder is de-
fined as: p(yi|y1, ..., yi�1,x) = g(yi�1, si, ci) where si =
f(si�1, yi�1, ci) is a hidden state for time i in Recurrent
Neural Net (RNN), in which it only calculates a context

vector ci =
TxP
j=1

↵ijhj for each yi, instead of the whole

vector c in RNN. Vaswani et al. devised a new building
block known as (the standard) Transformer in 2017 [22],
which solely uses self-attention layers instead of convolu-
tions layers and RNN architecture. The main ingredients
in the encoder and decoder are the stacked six identical
blocks. Given the queries Q, keys K, and values V with
dimension dk, the attention output is calculated as [22]

Attention(Q,K, V ) = softmax

✓
QKT

p
dk

◆
V (1)

In the field of image classification, Dosovitskiy et al. ap-
plied the position embedded image patches to the Trans-
former [22], and devised a Vision Transformer in 2017 [23].
To supplement the missing information of context, 2D in-
terpolation was performed during position embeddings via
the location of the original images.
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Figure 4: The structure of the Swin Transformer tiny version used in the Classification Module of DSD : The height
and width are halved in the Down Sample operation, while the channel is doubled. The only di↵erence in the Swin
Transformer structure of the Segmentation Module of DSD is that there are 18 blocks in the third stage instead of 6.
The number h⇥ w ⇥ c of the top indicates the output dimension in the corresponding step.

Carion et al. proposed the DETR method with Trans-
formers for object detection tasks [24], using the parallel
Transformer [23] and bipartite matching to output the fi-
nal predictions set in parallel. A traditional CNN back-
bone learns the 2D representations (e.g., ResNet 50 [38]),
then flattens with positional embeddings, and is finally
inputted into a Transformer encoder to output the predic-
tion as an object or ‘no object’ with a shared Feed Forward
Network. DETR does not require post-processing such as
Non-Maximum Suppression, which is obligatory for mod-
ern detectors (e.g., Faster R-CNN [39]), and reports com-
parable results to the baseline Faster R-CNN, especially
on large objects. However, DETR requires much more
training time than traditional CNN architecture to con-
verge [24].

Zhu et al. improved DETR as Deformable DETR to ad-
dress the issue of slow convergence and limited resolution
for feature space by using a deformable attention module
to replace the attention module in DETR [40]. Four-scale
feature maps are used as input to aggregate multiscale
feature maps in the encoder. An embedding is added for
each scale level. This process is similarly implemented via
Feature Pyramid Network alike structure, which benefits
modern detectors. In the decoder, the (multi-scale) de-
formable attention is the core of Deformable DETR, which
focuses on a small set around a reference point.

Sun et al. developed a Sparse R-CNN by learning a
fixed sparse (e.g., 100) proposal set to refine the dense
object candidates (up to hundreds of thousands bound-
ing box proposals) [41]. Given an input image, the region
proposal boxes and proposal features are learned from the
dynamic head to output the predicted object location and
class label. Each proposal box corresponds to a proposal
feature extracted individually by implementing the RoI
Align operation in the dynamic head. A bipartite match-
ing loss optimizes the predictions with a ground truth la-
bel. The proposed Sparse R-CNN illustrates performance
on par with the well-established detector baselines on the
COCO dataset.

Liu et al. proposed a Swin Transformer to bridge the
gap of a unified backbone in both vision and language
tasks [36]. A hierarchical Transformer architecture on the
basis of the scheme of shifted windows is proposed, limit-
ing the computation within a small patch instead of the
whole feature map. The patches are split from hierarchi-
cal scale features and gradually merge between neighbours
in deeper layers. By replacing the backbone (e.g., ResNet
50) in typical object detection/segmentation frameworks

(e.g., Mask R-CNN) with the proposed Swin Transformer
blocks, Liu et al. reported state-of-the-art performance of
image detection/segmentation task on ImageNet.

Previous studies on Transformer have focused on generic
datasets (e.g., ImageNet, COCO). However, the di↵er-
ences in image styles and feature distributions between
generic and medical-specific datasets (e.g., chromosome
images) are valuable and can be further explored. This
study explores them by predicting Down syndrome with a
transfer learning strategy.

3 Methods

An overview of the proposed Down-Syndrome-Detector
(DSD) workflow is given in Figure 3. From left to right:
(1) The first (blue) component is the Segmentation Mod-
ule of DSD which recognizes each potential chromosome
instance from a whole microscopical image and draws a
bounding box and masks for each chromosome. The in-
stance number of ground truth is 46 for a normal cell and
47 for a DS cell. (2) The second (red) part is the Align
Module of DSD which firstly rotates a chromosome image
vertical, then removes the area outside the chromosome
border. (3) The third (green) constituent is the Classifi-
cation Module of DSD which identifies the belonging cat-
egory of the input chromosome image, which is one of 24.
(4) The last (orange) part is the Down Syndrome Indica-
tor module of DSD which detects a DS case by counting
the number of chromosome 21 via:

I =

8
>><

>>:

1, if
N�NT

NT
< F, when NT > 0

0, if
N�NT

NT
> F, or NT = 0

(2)

where I is the DS indicator for a singleton case consisting
of N cells. A cell with more than two chromosomes 21 is
identified as a T21 cell. NT is the number of T21 cells.
F is the DS Indicator Factor . In general, a singleton case
contains around ten cells. In particular case, only one cell
is available.

In our proposed DSD , Swin Transformer is used as the
backbone module of the segmentation and the classifi-
cation module [36]. The attention mechanism in Swin
Transformer enables the network to add more weights
to the context of interest, achieving higher performance
and lower parameter cost. Figure 4 gives the structure
of the Swin Transformer. First, an input image of size
224⇥224⇥3 is partitioned into patch tokens of resolution

4



h0 ⇥ w0 ⇥ c0 with patch size 4 ⇥ 4 and c0 = 96, where
h0 = 224

4 , w0 = 224
4 . Both c0 and patch size 4 ⇥ 4 are

recommanded values for the tiny version of Swin Trans-
former [36]. The patches then go through four similar
stages in turn, with output channels of 192, 384, 768, and
768. Finally, a Fully Connected layer maps the feature
map to a 24-dimensional class prediction.

Figure 5: The structure of Swin block. The activation after
the Linear layer is GELU.

Figure 5 gives the structure of the Swin block used in
the stage 1 to stage 4 in Figure 4. As a comparison,
Multihead Self-Attention (MSA) [22] calculates the rela-
tionship between a patch and all other patches, whereas
Attn1 performs Window-based Multihead Self-Attention
(W-MSA) [36] only between local windows for faster per-
formance. Attn2 is an upgrade operation of Attn1, which
strengthens the connection between these non-overlapping
windows by shifting the windows down one pixel to the
right. Assuming that an image is partitioned into h ⇥ w
non-overlapping patch tokens and each window contains
M ⇥ M tokens, MSA and W-MSA are computed as fol-
lows [36]:

⌦(MSA) = 4hwC2 + 2(hw)2C

⌦(W-MSA) = 4hwC2 + 2M2hwC
(3)

Humans can transfer knowledge from one domain to an-
other. For example, it is much easier for someone to ride
a motorbike if he or she has previously learned to cycle.
In Deep Learning, homogeneous transfer learning refers
to the techniques of improving the model performance
on a limited dataset (target domain) by using a learned
model on a source domain that consists of su�cient data,
to make accurate classification results on the target do-
main [42] [43]. Previous studies categorize transfer learn-
ing into rational-based, data-based (instance-based and
feature-based), and model-based (parameter-based) ap-
proaches.
Parameter sharing is an intuitive strategy of the model-

based approaches which focuses on sharing the parameters
between a source domain and a target domain. In this
work, the hierarchical Vision Transformer model based on
the blocks of Figure 5, i.e., Swin Transformer [36], is used
as a backbone to extract features from an input image,
then the features are used for instance segmentation or
chromosome classification, as shown in Figure 3. The ini-
tial parameters are the weights which pre-trained on the
source domain (ImageNet [44]), and then the feature rep-
resentations are further learned from the target domain

(BioImLab) as follows:

At = As +Ac (4)

where A are the attention parameters in equation 1. The
subscripts t, s, and c denote the parameters from the tar-
get domain, the source domain, and the di↵erence between
them, respectively. The Ac also contains parameters from
the fully connected layer with an output dimension of 24,
which is the number of chromosome categories. It is worth
mentioning that in addition to the Swin Transformer back-
bone, Segmentation Module of DSD includes two other
components: the region proposal network for predicting
bounding boxes and the RoI alignment module for pre-
dicting masks. The parameter optimization methods of
these two components are similar to those of the back-
bone.

4 Experiments

This research investigates the performance of:

Segmentation Module of DSD on two public datasets
of BioImLab and ADIR. In addition to Swin Trans-
former, three popular CNN architectures with seg-
mentation/detection baselines (Faster R-CNN, Mask
R-CNN, and RetinaNet) are evaluated for comparison
with two modern transformer models (Deformable
DETR, Sparse R-CNN). The results are given in Sec-
tion 5.1.

Classification Module of DSD on BioImlab and a pri-
vate dataset. First, Section 5.2 gives the 24-class clas-
sification performance. Then, Section 5.3.1 explores
the DS detection capability. The classification base-
lines of two popular CNN architectures (ResNet 50
and SE-ResNeXt 50 [45]) are evaluated for compari-
son.

Down-Syndrome-Detector workflow on a private
dataset with 20 real DS cells from two singletons. The
results are given in Section 5.3.2

Experiments are conducted under a server that equips four
GPUs of NVIDIA GeForce RTX 2080 Ti and is installed
with an Ubuntu OS with version 20.04.3 LTS.

4.1 Datasets and Trisomy 21 data

An original metaphase microphotograph is used for seg-
mentation, and then the chromosomes isolated from it are
used for classification. A karyotype image includes all the
chromosomes that have been sorted and arranged orderly.
For a normal cell, there are 46 chromosomes. This study
tags image samples from segmentation and classification
datasets with an identical cell ID if they come from the
same human cell.

Three datasets are used in this study, and examples are
given in Figure 1: (1) BioImLab is a publicly available
Q-Band chromosome dataset containing images from 163
cells for segmentation (metaphase images) and classifica-
tion (karyotype and individual chromosome images). (2)
ADIR is also publicly available and shares 200 M-FISH
metaphase images, in which 17 images are reported as ‘dif-
ficult to karyotype’. (3) The private dataset is provided by
a company in Suzhou, China, and contains images from
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1084 cells. Of these, 243 metaphase images are used to
evaluate the DS detection performance of the DSD work-
flow, and the remaining images from 841 cells are used for
segmentation and classification training and testing.
Since both public datasets do not contain DS cases and

the private dataset contains only two, 25% of the cells are
randomly selected from the classification dataset, and a
chromosome 21 is copied to constitute an additional chro-
mosome 21. For obtaining the T21 cells in the segmenta-
tion test set, one chromosome 21 is randomly selected from
the karyotype image corresponding to the T21 cells in the
classification test set and pasted into the corresponding
microscope image. Both the segmentation and the clas-
sification dataset are empirically split into three subsets,
i.e., the training set (85%), the validation set (5%), and
the test set (10%). The numbers of samples in each subset
are listed as follows:

Table 1: Number of samples in the sub-sets.
sub-set ADIR BioImLab Private
training 153 95 714
validating 9 8 42
testing 18 16 (4) 85 (21)

for DSD 0 0 243 (20)
total 180 119 1084

The numbers in parentheses are the number of T21
cells, and each T21 cell contains 47 chromosomes.
The T21 cells in the BioImLab test set are No. 18,
44, 65, and 89.

Note that 243 cells from 53 singleton cases in the private
dataset are used to evaluate the DS detection performance
of DSD , of which 20 real DS cells are from two singleton
cases.

4.2 Metrics

The metrics of Precision, True Positive Rate (TPR, Re-
call), True Negative Rate (TNR), and Intersection over
Union (IoU) are defined as:

Precision = TP/(TP + FP )

TPR = TP/(TP + FN)

TNR = TN/(TN + FP )

IoU =
overlapping pixel0s number

union pixel0s number

where TP, FP, TN, and FN represent True Positive, False
Positive, True Negative, and False Negative, respectively.
False Positive Rate (FPR) = 1 - TNR.
Given a P-R curve which demonstrates the relation-

ship between Precision (P) and Recall (R), mean Aver-
age Precision (mAP) is calculated as the area under the
P-R curve. The metric mAP is widely used to evalu-
ate the model performance in object detection/segmen-
tation tasks [46] [47]. AP50 and AP75 denote mAP at
IoU level of > 0.5 and > 0.75. APs and APm represent
object pixels < 322 and 322 < object pixels < 962, respec-
tively [47]. AP50, AP75, APs, and APm reflect segmen-
tation quality more comprehensively and are widely used
to evaluate the Deep Learning models’ performance [48].
In medical imaging, the TNR index is important because
it relates to the chance of misclassifying an abnormal case
as a normal case, which can lead to missed treatment.

5 Results and Discussion

5.1 Segmentation

The results of all models trained with both transfer learn-
ing strategy and scratch are given in Table 2, from which
we found: (1) All models significantly perform better with
a transfer learning strategy (in upper lines) than without
(in lower lines). (2) Among 20 evaluation indicators, in-
cluding with/without transfer learning, two datasets, and
five metrics, Swin Transformer outperformed the other
models on ten indicators. Its performance is worse than
the best results by no more than 1.0% on the other seven
indicators. The results indicate the stability and good
performance of the Swin Transformer model.

The validation curves of the training process are shown
in Figure 6. It is found in Figure 6: (1) The curve of
the BioImLab dataset is smoother than that of the ADIR
dataset. The results for each model on the BioImLab
dataset are at least 10% higher than those on the ADIR,
whether pre-trained or trained from scratch. These indi-
cate that the BioImLab data are easier to train. (2) The
red curves (Swin Transformer) in (a), (b), (c), and (d)
are higher than the other five curves, indicating that Swin
Transformer has the best performance and is the most sta-
ble. (3) Comparing the segmentation performance with
and without transfer learning, the models with transfer
learning (a and b) outperform the models without trans-
fer learning (c and d) by more than 5%.

 
 

 

(a) pre-trained on BioImLab (b) pre-trained on ADIR

(c) scratch trained on BioImLab (d) scratch trained on ADIR

Figure 6: Training curves of segmentation models on two
datasets: the model names are represented in the same
way as in Table 2. The horizontal axis is the number of
training epochs, and the vertical axis is the mAP result
of the model on that epoch. ‘pre-trained’ denotes trained
with transfer learning technique.

5.2 Classification on 24 Categories

The confusion matrix in Figure 7 depicts the overall per-
formance of the Classification Module of DSD in identi-
fying the 24 categories. It is found that the module can
correctly classify most chromosomes, suggesting the pos-
sibility of diagnosing other trisomy syndromes, such as
T18 and T13. Specifically, the accuracy, precision, and
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Table 2: Detection performance on BioImLab and ADIR with six models.
ADIR (%) BioImLab (%) Param

(M)
Time
(sec.)model mAP AP50 AP75 APs APm mAP AP50 AP75 APs APm

faster
68.5 96.3 81.6 69.3 69.0 79.8 98.6 94.5 80.7 74.6

41.12 18
55.5 87.6 64.2 58.6 40.1 66.4 92.4 79.3 68.9 32.6

mrcnn
68.8 96.3 83.3 69.3 69.9 79.6 97.8 95.7 80.6 72.3

43.75 21
58.5 89.3 67.7 61.5 43.1 69.3 94.2 80.9 71.6 31.4

retina
67.9 94.2 78.3 68.8 66.4 79.1 95.5 91.6 80.5 68.5

36.1 19
55.4 88.1 60.8 58.7 32.0 66.7 91.0 77.5 70.3 30.2

defor
69.5 96.4 84.2 70.3 67.2 80.6 98.0 94.3 81.6 69.9

40.8 33
50.5 74.5 57.3 54.3 39.9 52.0 72.4 65.6 56.2 24.5

spar
64.3 92.2 73.5 67.0 56.4 78.3 95.6 91.4 80.1 63.7

106.0 23
55.8 82.6 65.2 58.5 46.5 65.2 84.8 77.6 70.0 50.3

swin

69.2 95.5 80.1 69.5 69.5 79.6 97.6 94.1 80.6 75.0

68.69 22
(-0.3) (-0.9) (-4.1) (-0.8) (-0.4) (-1.0) (-1.0) (-1.6) (-1.0) (+0.4)
59.8 91.4 68.0 61.7 52.8 71.6 95.9 87.0 73.3 45.3
(+1.3) (+2.1) (+0.3) (+0.2) (+6.3) (+2.3) (+1.7) (+6.1) (+1.7) (-5.0)

Model name faster, mrcnn, retina, defor, spar, and swin denotes Faster R-CNN, Mask R-CNN, RetinaNet, De-
formable DETR (the version with iterative bounding box, refinement, and two-stage mechanism), Spars R-CNN
(the version 300 proposals), and Swin Transformer (the version Small), respectively. The results in the upper lines
for each model are obtained by transfer learning strategy. The results in lower lines are obtained by models trained
from scratch. The underlined numbers are the best results in the upper lines. The numbers in bold and numbers
in italic are the best and second best results in lower lines. The numbers inside the brackets are the deviation
between the best and Swin Transformer results; the red number indicates the deviation is a minus value.
Param and Time denote the number of parameters and inference time, respectively. The inference time is tested
with 16 images from the BioImLab dataset, each image in a size of 768⇥ 576 pixels.

recall for classifying 24 types were 95.27%, 94.86%, and
98.38%, respectively, on BioImLab; and 95.90%, 95.83%,
and 97.81%, respectively, on the private dataset.

(a) BioImLab (b) Private dataset

Figure 7: Confusion matrices for 24 categories by the Clas-
sification Module of DSD . The total number of each au-
tosome (chromosomes 1 to 22) is 32 and 170 in BioImLab
and private datasets, respectively. Except for chromosome
21, which is 36 and 191. The number of Y chromosomes
is 7 (7 males) and 62 (62 males) in BioImLab and private
datasets, and the number of X chromosomes is 25 (9 fe-
males and 7 males) and 108 (23 females and 62 males).

5.3 Down Syndrome Detection

5.3.1 Capability of the Classification Module of
DSD

To evaluate the DS recognition capability of the Classi-
fication Module of DSD , Swin Transformer is compared
with two popular baseline models: ResNet 50 (Res) and
SE-ResNeXt 50 (SE), using a 50-layer version. The re-
sults of the three models on the classification test set are
shown in Table 3: (1) The columns of ‘No. 21’ are the
result of predicting chromosome 21 out of 740 samples.

That is: the true positive samples are only those that are
correctly predicted as chromosome 21, ignoring the predic-
tions of other chromosome categories and classifying them
as true negative. (2) The columns for ‘Down Syndrome’
are predicted from T21 cells, each containing more than
two chromosomes 21. It is found in Table 3:

On BioImLab (upper rows of each model), Classifica-
tion Module of DSD with Swin Transformer (Swin)
correctly predicted all chromosome 21 and DS cases
(bold numbers in table 3), the other two models only
reported full scores for TPR.

On the private dataset (bottom rows of each model),
most of the metrics are worse than on BioImLab for
all models, except for the five metrics of ResNet 50
(red numbers in table 3). It indicates that Q-band
images are easier to be recognized for all three classi-
fication models.
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Figure 8: The Sensitive Curve of di↵erent DS Indicator
Factor Values (F). The TPR is mostly high because the
test set is composed of unbalanced samples, containing
only two positive cases out of 53.

Table 3: Results of DS detection on the classification test
set.

model
on Classification Test set (%)

NO. 21 Down Syndrome
Acc Preci TPR TNR Acc Preci TPR TNR

Res
99.86 97.30 100 99.86 93.75 80.00 100 91.67
99.77 97.89 97.38 99.89 95.29 86.96 95.24 95.31

SE
99.86 97.30 100 99.86 93.75 80.00 100 91.67
99.67 95.41 97.91 99.76 91.76 76.92 95.24 90.62

Swin
100 100 100 100 100 100 100 100
99.80 98.41 97.38 99.92 96.47 90.91 95.24 96.88

The results of each model’s top and bottom row are
from BioImLab and private datasets, respectively. For
the private test set, the number of T21 cases and the
number of total cases is 21 and 85, respectively, which is
approximately 5.3 times that of BioImLab (4 T21 cases
out of 16 test set cases).

5.3.2 Capability of the Combined DSD Workflow

The inputs of the DSD workflow are 243 metaphase micro-
graphs from 53 singleton cases. The images are processed
according to the process shown in Fig. 3. To pick the ap-
propriate F value in Equation 2 for higher performance,
the sensitivity curve in Figure 8 depicts the relationship
between TRP and TNR for di↵erent values of F. It is found
that the highest performance of TPR (1.0) and FPR (0.39)
was achieved when F = 0.3.
Figure 9 gives examples of the DSD workflow: original

metaphase micrograph (a is a manufactured T21 cell from
BioImLab, b is a true T21 cell from the private dataset),
the segmentation output (c and d), the predicted kary-
otype image by DSD (e and f), and the ground truth kary-
otype image (g and h). The predicted chromosome 21 is
placed in the green box at the bottom left of the predicted
karyotype image (e and f). It is found that chromosome 21
is smaller than most other chromosomes, and DSD prefers
to identify these small chromosomes as chromosome 21.
While this leads to a higher prediction of false positives,
it reduces the prediction of false negatives. False nega-
tives mean that abnormal cases are incorrectly diagnosed
as normal and are likely to miss treatment opportunities.

Table 4 gives the DS detection performance of the seg-
mentation output for the segmentation test set on the pri-
vate dataset. The k-fold validation is implemented with

(a) original image of BioImLab (b) original image of private

dataset

(c) segmentation of BioImLab (d) segmentation of private

dataset

(e) prediction of BioImLab (f) prediction of private dataset

(g) karyotype of BioImLab (h) karyotype of private dataset

Figure 9: Examples from cell 65 of BioImLab and cell 16
of singleton case 49 of the private dataset. (a) and (b)
are the original micrographs. Chromosome 21 is labeled
in green and red boxes. The chromosome in the red box in
(a) is pasted from the karyotype image of the same cell. (c)
and (d) are the outputs predicted by Segmentation Module
of DSD . (e) and (f) are karyotype images predicted by
Classification Module of DSD from (c) and (d). (g) and
(h) are the corresponding ground truth karyotype images.
Letters a, b, c, and F are used to distinguish chromosome
21, and F is an incorrect prediction.
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k = 5 as follows: (1) All the 841 cases are separated into
ten folds, each containing 84 cases except the last one con-
taining 85 cases. (2) Five folds are randomly selected as
a testing set, respectively, with the rest consists the train-
ing set. (3) The mean and standard deviation values are
calculated. It can be found from Table 4 that:

The DSD with the Swin Transformer (Swin) as the
backbone performs best. It outperforms the other two
models in most metrics except the TPR of 243 cells
(red numbers). TPR (Recall) and TNR all surpassed
96% (underlined numbers) for DS detection of single-
ton cases. In particular, the TPR reached 100%.

For all models, the accuracy, TPR, and TNR are
higher for singleton-level than for cell-level. This is
more favourable in clinical practice, where DS is di-
agnosed by singleton cases rather than cells.

In both table 3 and 4, the Swin Transformer performs
better than the other two CNN-based strong baseline
models (ResNet 50 and SE-ResNeXt 50). It may be
attributed to the attention mechanism of the Trans-
former structure.

In the results of DS Detection from Segment out-
put, the low precision of all models is partly due to
the fact that there are only 20 DS cells out of 243
cells (2 out of 53 singleton cases). Further discussion
will be taken with the table 5 in the next paragraph.

Table 5 gives the DS prediction results for the cells in-
cluded in the DS cases detected by DSD with Swin in
Table 4. Two of the four singleton cases are correctly pre-
dicted (bold), and the other two are incorrect (red). It is
found that correctly detecting DS singleton cases is chal-
lenging if the number of cells contained in the singleton is
too small (no more than three).

Table 5: Prediction of DS singleton cases.
Singleton

ID
Total T21 Normal Factor

3 1 1 0 0
16 3 3 0 0
49 10 8 2 0.25
53 10 10 0 0

The numbers in the middle three columns are the num-
ber of cells. The Factor is calculated as N�NT

NT
, where

N and NT are the total number of cells and the num-
ber of T21 cells, respectively, in the singleton case.

To illustrate which region contributes more to the iden-
tification of chromosome 21, Figure 10 and Figure 11 visu-
alize the features in di↵erent colors by using Grad Cam++
[49]. Compared to ResNet 50 and SE-ResNeXt 50, Swin
Transformer focuses more on the dark regions of chromo-
somes, which are the banded regions of chromosomes and
are crucial for classifying classes of chromosomes.

(a)

21a

(b) (c) (d) (e)

21b

(f) (g) (h)

(i) 21c (j) (k) (l) (m)

21x

(n) (o) (p)

Figure 10: Feature visualization of chromosome 21 of
BioImLab case 65. From left to right, four images in
a group are the input chromosome image (a,e,i,m), fea-
ture visualization from ResNet 50 (b,f,j,n), SE-ResNeXt
50 (c,g,k,o), and Swin Transformer (d,h,l,p). 21a, 21b,
and 21c are the correctly predicted chromosome 21. 21x
is the misclassified one.

(a)

21a

(b) (c) (d) (e)

21b

(f) (g) (h)

(i) 21c (j) (k) (l)

Figure 11: Feature visualization of chromosome 21 of the
private dataset case 824. As in Figure 10, the images are
also from input (a,e,c), ResNet 50 (b,f,j), SE-ResNeXt 50
(c,g,k), and Swin Transformer (d,h,l) of each group. 21a,
21b, and 21c are all correctly predicted as chromosome 21.

6 Conclusions

This work is the first to propose an integrated work-
flow (DSD) via the transfer learning strategy and modern
Transformer technique to predict the DS cases from the
original metaphase micrographs. Experiments to assess
the ability of Segmentation Module of DSD and Clas-
sification Module of DSD are performed on two public
datasets and evaluated by several commonly used metrics,
which makes it more feasible to compare this work with
future studies. On a private dataset containing 20 real
DS cells from two singleton cases, DSD reported satisfac-
tory TPR and TNR for detecting DS. Although the True
Negative Rate is high (96.08%), the precision of positive
samples is low (50%), which may be due to (1) the weak
ability to distinguish those chromosomes that are similar
in size to chromosome 21. (2) Lack of a su�cient number
of cells in singletons cases. These issues should be fur-
ther investigated in future work. A medical specialist in
clinical cytogenetics verifies that the study’s findings may
improve Down Syndrome detection e�ciency by saving hu-
man labour and enhancing clinical practice. The medical
specialist claims a semi-automatic process of Down Syn-
drome Detection with a singleton case with ten cells costs
more than 400 seconds. Here, a semi-automatic process
means the process by a specialist with a software system.
An experiment based on the proposed architecture is de-
signed, which runs on a laptop with a GPU 1660ti. In the
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Table 4: Results of T21 detection on classification set and DS detection on segmentation output.

model
T21 Detection on DS Detection from Segment output (%)

classification set (%) of 243 cells of 53 singleton cases
Acc P TPR TNR Acc P TPR TNR Acc P TPR TNR

Res
0.9955
0.0007

0.9422
0.0189

0.9571
0.0248

0.9973
0.0010

0.7333
0.0766

0.2328
0.0516

0.8800
0.0509

0.7202
0.0866

0.9283
0.0452

0.4254
0.1983

1.0000
0.0000

0.9255
0.0471

SE
0.9804
0.0187

0.8291
0.1338

0.5976
0.4499

0.9978
0.0014

0.7876
0.1213

0.3227
0.3496

0.5200
0.4057

0.8117
0.1655

0.9245
0.0358

0.1358
0.1203

0.4000
0.3741

0.9451
0.0486

Swin
0.9976
0.0010

0.9664
0.0213

0.9785
0.0139

0.9984
0.0010

0.8272
0.0135

0.3113
0.0172

0.9000
0.0000

0.8206
0.0147

0.9661
0.0184

0.5800
0.2135

1.0000
0.0000

0.9647
0.0192

Acc and P are short for Accuracy and Precision, respectively. The bold numbers are the best values in the column.
The number of cells in each singleton case varies from one to ten. The upper and lower values of each model’s row
are the mean and standard deviation, respectively.

experiment, our system completes a detection on a single-
ton case with ten cells within less than 100 seconds, which
is one-quarter of the time needed by the semi-automatic
method.
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