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Abstract—Fog computing is a new computing paradigm that
extends cloud computing to make it more compatible with new
Internet of Things applications. The aim of fog computing is to
make the cloud capable of handling delay-sensitive applications,
improve location-awareness, and reduce the volume of data
sent to data centers for processing. In this paper, we propose a
middleware for resource and load sharing for fog applications.
Initial simulation results for some features of the middleware,
conducted in iFogSim with a medical monitoring application
for electroencephalogram (EEG) signals, are also presented.

Index Terms—fog computing, middleware, clustering, re-
source management, load balancing

I. Introduction
The increasing number of “smart” devices at the net-

work edge presents a challenge for the current cloud
computing architecture. In the current cloud architecture,
end users make use of services by sending data from the
edge through the network core to distant data centres
owned and managed by cloud service providers (Amazon,
Google, Microsoft, IBM etc.). While this model has worked
well so far, the increasing number of smart or IoT devices
at the edge poses challenges to this arrangement. First,
smart devices produce high volumes of data (or Big Data)
[1], that require processing. The processing of data and
acting on the outcome is what makes smart devices smart
[2]. This notwithstanding, the characteristics of smart
devices (small form factors, little or no processing or
storage resources and low power) mean that they cannot
process the data they produce [3]. This leaves the task of
processing Big Data to the cloud.

Moreover, for certain IoT services, processing in the
cloud may not be useful due to performance, legal or
security concerns. Applications in healthcare are a good
example. For emergency applications, the delay in pro-
cessing data in the cloud may be the difference between
a patient receiving the right care or not. Additionally, in
certain jurisdictions, processing personal data in a cloud
data centre in another country or region is prohibited.

To address these challenges, Cisco proposed Fog Com-
puting, as an extension of cloud computing, to complement
the cloud by processing data closer to its source (at the
network edge or core) to improve the user experience for
delay-sensitive applications [4]. Fog Computing makes use

of network devices, servers and other devices close to the
user for the processing of user requests.

Abstraction is one of the key features contributing
to cloud computing’s success [5]. The ability to pool
resources together within and across data centres makes it
possible for the user to experience their expected quality
of experience without any knowledge of disruptions or
failures to nodes in the system. This kind of abstraction
is possible in the cloud because data centres are often
owned and managed by the same cloud service provider.
However, in a fog computing setup, individual fog nodes
may belong to a third party, such as a local ISP, or mobile
carrier. They could be leased out to run a service on
behalf of the cloud to improve the Quality of Service for
users. Two challenges could arise from this. Firstly, the
limited availability of resources on fog nodes means there
must be alternative arrangements in the event of failure.
The alternative cannot be at the cloud layer since this
would defeat the purpose of processing close to the user.
Secondly, since the location of services may change at
any time, users must be able to locate the service they
require when they need it without contacting the cloud
– especially for emergency or delay-sensitive applications.
To address these challenges, a middleware for the fog layer
is proposed. Although middleware has been used in dis-
tributed systems to address the above challenges, its use in
fog computing has not been fully investigated. This paper
presents the design for a middleware for service discovery
and scheduling at the fog layer. Results of simulations
to compare the performance of the middleware’s resource-
sharing feature(clustering) with direct fog/edge processing
and cloud processing are also presented.

II. Related Work
Middleware have been proposed to provide an ab-

straction layer to solve architecture mismatch problems
associated with connecting IoT Systems to the cloud [6].
Middleware hides the complexity and heterogeneity of a
system and makes it easier to develop applications for it
[7]. The papers in [8]–[10] have introduced provisioning
middleware for IoT clouds at the edge similar to fog com-
puting. Their middleware has a distributed architecture



with components in the cloud as well as on gateway devices
close to IoT devices.

The need for some form of middleware/abstraction
layer in fog architectures has been discussed since the
early days of fog computing. In [3], Bonomi proposed a
fog abstraction layer to hide heterogeneity and manage
resources at the fog layer. Nath et al. [11] also identifies
the need for middleware at the fog layer to control network
and other resources on fog nodes. Moreover, Aazam et al.
[12] view the entire fog layer as a middleware for Cloud
Computing. A few proposals for fog middleware have been
made.

The works in [13], [14] present fog middleware architec-
tures. Paper [13] presents Distributed IoT-Fog Architec-
ture for Application Management (DIFAAM) to manage
the life cycle of applications as they are run within the fog
or cloud. Its goal is to ensure that application requirements
would be met by fog devices before assigning tasks to
them. Pore et al. [14] also propose an architecture for fog
and edge middleware. Theirs focuses on task scheduling
and data collection in mobile fog environments.

Works by Nader et al. [15]–[17] present a Service-
Oriented Middleware for fog computing. In [16], a Service-
Oriented Middleware approach is adopted for a smart city.
The middleware abstracts system resources as services
which are made accessible to devices across all layers
of the system. The authors implement their middleware
for a cyber-physical system in [17]. The Service-Oriented
approach makes it possible to add new services after
deployment. Also, a Service Oriented Middleware provides
flexibility for large-scale IoT applications [15].

Paper [18] presents a Fog-based middleware for dis-
tributed cooperative data processing at the fog layer. In
their proposed middleware fog nodes have two modes; they
either work together on a task or work independently.
Their system is implemented in a specific application -
subsurface imaging and monitoring.

Shekhar et al. [19] use middleware for task offloading
in a mobile IoT environment. Their middleware manages
resources across all layers of the fog architecture with
the goal of ensuring that service-level objectives are
met even when edge devices are mobile. Their proposed
solution, however, requires prior knowledge of the user’s
movement which is not practical in real-life scenarios.
Other middleware have been designed for privacy and
security in fog systems [20], [21]

Middleware proposed for fog computing have focused
on specific application scenarios and are mostly unsuitable
for other fog applications. In this paper, a middleware to
provide abstraction, and enable resource sharing and load
balancing at the fog layer is presented.

III. Architecture and Problem Description
The middleware uses the three-layer fog architecture

shown in Fig. 1. The bottom layer or End Devices Layer
has IoT, smart and user devices which produce data and

Fig. 1. Problem Scenario

execute instructions from applications. Devices at this
layer require access to services from a higher layer (fog or
cloud). Also, data produced at this layer vary in volume,
speed, and longevity. These variations have implications
for the nature of the processing required. Additionally,
applications have different Quality of Service requirements
that must be met.

In the scenario presented in Fig. 1, device A3 wants to
access service C which is not available on any device within
the domain it is connected to. The service is however on a
virtual machine on a fog node in a nearby domain (domain
B). How would device A3 access the service from the
fog node without connecting to the cloud? The proposed
approach, using middleware is described in the following:

• Device A3 connects to the fog node closest to it
(Smart Gateway) with a message containing the
service requested (Service C and the parameters or
inputs).

• The Smart Gateway looks up the lists of services
available within its domain and does not find Service
C.

• The Smart Gateway sends a request to the domain
controller for Service C.

• The domain controller looks up services available on
neighbouring domains and finds service C in domain
B. The controller sends a response back to the Smart
Gateway with the address to service C and how to
reach it.

• The Smart Gateway sends a request to the server
requesting access to the server. The server responds
with a service description.

• Smart Gateway changes device C’s message to a
service request to the server and sends outputs back
to device C.



Depending on the performance of application C, IoT
devices may request a better performance (lower latency).
In this case, Smart Gateway may send a request to the
domain controller requesting that Service C be hosted
within the domain. If there are resources available within
the domain to host service C, the domain controller will
send a request to the fog orchestrator (in the cloud) to
send the service to the appropriate device. Alternatively,
if the connection between the Smart Gateway and the
hosting service is still active, the virtual machine can be
migrated from the hosting server to another server in the
Smart Gateway’s domain.

In the above description, the role of the middleware
spreads across the devices at the fog layer. Middleware
is responsible for the interactions between devices in the
same domain. The middleware also converts IoT request
messages (Message-Oriented Communication) into Service
requests (Service-Oriented Communication) between the
Smart Gateway and the Server (fog-fog interaction).

Also, the middleware interacts with the domain con-
troller and keeps a record of services available within its
domain. The record is updated frequently as new services
are introduced within the domain. Within the domain
fog nodes (network devices, servers etc.) host and give up
services based on the availability of resources, demand etc.

IV. Proposed Middleware

Fog nodes may be any device between the cloud and
the end user. Computational resources at different levels
of the network (gateway, access, core) are made available
for pre-processing or semi-processing of IoT data. Different
entities own and manage fog nodes. Also, fog nodes may
be organised into domains or run as stand-alone systems.
Additionally, the computational resources made available
by nodes vary and may be increased or reduced depending
on availability and workload. Consequently, a fog node
may not always have the resources needed to process IoT
data sent to it.

The proposed middleware is hosted on fog nodes and
interacts with Iot devices, the cloud and other fog devices.
Fog nodes may be any device with computational resources
at any level of the network – from consumer devices to
dedicated servers. Consequently, their resources are not
comparable to the large computational resources that are
available in the cloud.

Since fog nodes are managed and owned by different
entities, they may run different operating systems or
platforms and may not be interoperable. The role of the
middleware is to make it possible for heterogeneous fog
nodes to interact with each other for resource sharing to
improve the reliability of the system.

Services are applications or parts of applications which
provide a service to IoT devices. Services perform single
functions and may be chained to form a complete appli-
cation.

Users/IoT devices request services from the cloud or
fog devices. They access services by sending their user ID,
service ID and required data to the nearest fog node. IoT
devices are resource constrained.

The cloud is resource-rich and provides services for end
users and IoT devices. All services are available in the
cloud; however, some services are fully or partially shared
with fog devices to improve their performance.

The proposed middleware is designed for communi-
cation among fog devices at the same level, lower or
upper levels. The interaction between fog nodes is mainly
for information exchange, request forwarding and load
balancing. Fog nodes share data on the services they are
currently hosting and their resource availability. They also
forward IoT requests to other fog nodes for processing
and offload tasks to other fog nodes when overloaded.
Moreover, the middleware is designed to also communicate
with the cloud. Communication with the cloud is for
orchestration, exchanging end-user information, sending
data for further processing, etc. Fog nodes perform various
tasks for the cloud. This is an important distinction
between fog computing and other edge-based paradigms
such as edge computing. In fog computing, fog nodes do
not work independently of the cloud. The role of the
middleware is to interact with the cloud to define and set
up the expected role of the node. The middleware features
a request handler, task scheduler, service registry, service
discovery and communication modules.

Algorithm 1 shows the algorithm for request handling.
Requests from IoT devices are first received at the re-
quest handler. The request handler looks up the service
requested by the IoT device in the service registry. If the
service is hosted on the fog node and the node has the
resources to run it, the data will be processed on the fog
node.

Algorithm 1 Request Handling Algorithm
Require: IoT Request
Ensure: Match Request to Service

1: Retrieve requested service
2: if service is hosted on the fog node then
3: if node can meet the request then
4: Assign task to this node
5: end if
6: else if Service NOT hosted on fog node then
7: Lookup Service in Service Registry
8: if service is in Service Registry AND Host Node is

free then
9: Send request to Host Node

10: else
11: Send Service Lookup Request to Domain Con-

troller
12: end if
13: end if

If the request cannot be processed on the fog node, it



Fig. 2. Architecture used in the simulation

searches for another fog node to send the request to. First,
the handler will look up the service in the Service Registry,
if the service is hosted on a known node (a node listed on
the registry), the request is forwarded to that node.

The middleware maintains a list of services and fog
nodes which are hosting them. The list is updated regu-
larly as services are removed and added regularly by fog
nodes based on demand and availability of resources.

A Service Discovery module searches for new services
when they are requested by IoT devices. New services are
discovered through other fog nodes, a fog controller, or the
cloud. When a fog node receives high volumes of requests
for a service it does not host, it may request to host that
service.

The task scheduler prioritises tasks that are processed
on the fog node. Tasks are prioritised based on QoS
requirements and/or Service Level Agreements. The sched-
uler keeps track of resources available on the node and
allocates tasks to them.

V. Simulation
To test some of the functionalities of the proposed

middleware, we run simulations using iFogSim [22], a
popular java-based simulation tool for fog computing. For
these simulations, we modelled an Electroencephalography
(EEG) application which receives EEG signals from a user,
processes the signals (on fog nodes or in the cloud) and
sends feedback to the user. Fig. 2 shows the setup for the
simulation.

Wireless Body Area networks make long-term physio-
logical monitoring possible outside of the hospital [23].
Wireless Electroencephalography(WESN) provides the
possibility for early detection, monitoring and treatment
of diseases such as epilepsy, Parkinson’s and Alzheimer’s.
The WESN is made of an array of EEG sensing nodes each
of which consists of an electrode array, signal processing
unit and a transceiver for communication. Amplitude
integrated EEG may be useful in monitoring infants

Fig. 3. Application Model for the simulation

to predict the possibility of future or subsequent brain
damage [24]. We modelled an EEG application with three
modules (a client module, pre-processing and diagnosis).
The EEG sensor generates signals up to 200Hz which is
within the range for EEG signals monitoring. As EEG
data is often noisy and often affected by artefacts on the
patient or the environment, pre-processing is necessary to
remove the noise from the signal [25]. Signals are cleaned
and filtered by the client and pre-processing module before
being analysed by the diagnosis module.

To evaluate the performance of the application with
the introduction of clustering, simulations were run for
three scenarios. In the first scenario, modules are hosted
on a single fog node (with no collaboration with other
fog nodes). In the second scenario, the user request is
forwarded to another fog device with more resources. The
third scenario runs the application completely in the cloud.
Data is sent from one node to another after processing and
the feedback or actuation signal is sent back to the user.
The Sensor and Display may be an EEG device and mobile
phone attached to the patient or user. Fig. 3 shows the
application design.

VI. Results and Discussion

Delay: Fig. 4 illustrates the delay for the EEG appli-
cation as the number of users per fog node increases for
the three scenarios. As data must travel across multiple
nodes, and with increasing network latency towards the
cloud, the cloud-based scenario has the highest latency.
Also, processing on the fog node closest to the user has
a lower latency compared to processing on another fog
in the same cluster. However, when the number of users
increased to 5, processing on another fog node in the same
cluster produced a higher latency since that device had
more processing resources compared to the fog device that
first received the request. With higher computational and
storage resources, the third-party fog node provides better
latency because the delay from scheduling the request is
higher than the propagation delay. The delay involved in
processing for multiple users on the closest edge device



Fig. 4. Comparison of application loop latency for the three scenarios

Fig. 5. Comparison of network usage for the three scenarios

grew higher than the network delay from forwarding to
another device in the same cluster.

Network usage: The network usage for the application
in the three scenarios is shown in fig. 5. Network usage
increases significantly when processing is done in the
cloud. As a result of traversing multiple nodes and links
and the increased latency link to the cloud, network
usage in the cloud scenario is much greater compared to
processing on fog nodes. This also shows the scalability
of processing at the fog layer [22]. Moreover, the usage
for processing on a fog node within the same cluster is
processing on the node closest to the user. Consequently,
as IoT requests from users increase, increasing the number
of fog nodes available to process the requests, and load
sharing among fog devices, would ensure applications
remain reliable without resorting to forwarding to the
cloud.

Energy Consumed: Fig. 6 shows the energy consumption
of the different devices in the simulation and the data
centre for five users. The energy usage for fog devices
is the same when requests are run at the fog layer, but
reduces to the same level as the proxy when requests are
run in the cloud. When processing is done in the cloud,
the energy usage of fog nodes is the same as that of the

Fig. 6. Comparison of energy consumption for devices in each
scenario

proxy since they all act as network devices to only forward
data to nodes above or below them. Energy consumed by
user devices remains the same for all scenarios because
they process the client module of the application in all
scenarios. The cloud data centre’s consumption remains
significantly higher because of the number of resources
available and the high energy use even when running on
idle power. It increases further when the processing is done
in the cloud.

VII. Conclusion and Future Work

Fog Computing makes resources available for processing
user requests close to the network edge where the data is
produced. Fog reduces the latency of IoT applications and
reduces the load on the cloud by processing data closer
to the user instead of in the cloud. We have presented a
middleware to enable the abstraction of resources at the
fog layer and make applications more reliable. Results from
initial simulations show that the pooling of resources at
the fog layer can improve the reliability of applications
as user requests increase. In the future, we will be
investigating other aspects of the middleware related to
the communication of nodes and the scheduling of multiple
tasks with different requirements.
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