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Abstract

The effective reproduction number R is a prominent statistic for inferring the transmissibility

of infectious diseases and effectiveness of interventions. R purportedly provides an easy-to-

interpret threshold for deducing whether an epidemic will grow (R>1) or decline (R<1). We

posit that this interpretation can be misleading and statistically overconfident when applied

to infections accumulated from groups featuring heterogeneous dynamics. These groups

may be delineated by geography, infectiousness or sociodemographic factors. In these set-

tings, R implicitly weights the dynamics of the groups by their number of circulating infec-

tions. We find that this weighting can cause delayed detection of outbreak resurgence and

premature signalling of epidemic control because it underrepresents the risks from highly

transmissible groups. Applying E-optimal experimental design theory, we develop a weight-

ing algorithm to minimise these issues, yielding the risk averse reproduction number E.

Using simulations, analytic approaches and real-world COVID-19 data stratified at the city

and district level, we show that E meaningfully summarises transmission dynamics across

groups, balancing bias from the averaging underlying R with variance from directly using

local group estimates. An E>1generates timely resurgence signals (upweighting risky

groups), while an E<1ensures local outbreaks are under control. We propose E as an alter-

native to R for informing policy and assessing transmissibility at large scales (e.g., state-

wide or nationally), where R is commonly computed but well-mixed or homogeneity assump-

tions break down.

Author summary

How can we meaningfully summarise the transmission dynamics of an infectious disease?

This question, although fundamental to epidemiology and crucial for informing the

design and implementation of interventions (e.g., quarantines), is still not resolved. Cur-

rent practice is to estimate the effective reproduction number R, which counts the average

number of new infections generated per past infection, at large scales (e.g., nationally). An

estimated R>1 signals epidemic growth. While R is easily interpreted and computed in

real time, it averages infections across diverse locations or socio-demographic groups that

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011332 July 20, 2023 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Parag KV, Obolski U (2023) Risk averse

reproduction numbers improve resurgence

detection. PLoS Comput Biol 19(7): e1011332.

https://doi.org/10.1371/journal.pcbi.1011332

Editor: Mercedes Pascual, University of Chicago,

UNITED STATES

Received: December 10, 2022

Accepted: July 6, 2023

Published: July 20, 2023

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1011332

Copyright: © 2023 Parag, Obolski. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: We provide open-

source software to reproduce all analyses at

https://github.com/kpzoo/risk-averse-R-numbers.

While the main code for generating the figures in

this text is written in MATLAB, we also include

https://orcid.org/0000-0002-7806-3605
https://doi.org/10.1371/journal.pcbi.1011332
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011332&domain=pdf&date_stamp=2023-07-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011332&domain=pdf&date_stamp=2023-07-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011332&domain=pdf&date_stamp=2023-07-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011332&domain=pdf&date_stamp=2023-07-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011332&domain=pdf&date_stamp=2023-07-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011332&domain=pdf&date_stamp=2023-07-20
https://doi.org/10.1371/journal.pcbi.1011332
https://doi.org/10.1371/journal.pcbi.1011332
http://creativecommons.org/licenses/by/4.0/
https://github.com/kpzoo/risk-averse-R-numbers


likely possess different transmission dynamics. We prove that this averaging in R reduces

sensitivity to resurgence, making R>1 slow to reflect realistic epidemic growth. This delay

can substantially misinform policymakers and impede interventions. We apply optimal

design theory to derive the risk averse reproduction number E as an alternative summary

of diverse transmission dynamics. Using mathematical arguments, simulations and

empirical COVID-19 datasets, we show that E>1 is an improved threshold for resurgence,

providing timelier signals for informing policy or interventions and better uncertainty

quantification. Further, E maintains the computability and interpretability of R. We pro-

pose E as meaningful statistic at large scales, where the averaging within R likely misrepre-

sents the diversity of transmission dynamics.

Introduction

The effective reproduction number R, summarises the time-varying transmissibility or spread

of an infectious disease by the average number of secondary infections that it generates per

effective primary infection [1]. A value of R above or below 1 is interpreted as a threshold [2]

signifying, respectively, that the epidemic is growing (spread is supercritical) or under control

(subcritical). This interpretation is widely used, and estimates of R computed at various scales,

ranging from e.g., the district to country level when scale is defined spatially, have yielded valu-

able insights into the transmission dynamics of numerous pathogens including pandemic

influenza, malaria, Ebola virus and SARS-CoV-2 [3–5]. During outbreaks, R is monitored and

reported in real time to assess the effectiveness of interventions [2,6], signal the emergence of

pathogenic variants [7], estimate the probability of sustained outbreaks [8], increase public

awareness [9] and inform public health policymaking [10].

The benefits of R mainly stem from two properties: it is easily interpretable as a threshold

parameter, and it is easily computable in real time, requiring only routine surveillance data

such as epidemic curves of cases [11,12]. However, these must be balanced against its core lim-

itation– R is commonly derived under a well-mixed assumption in which individuals are

homogeneous and have equal probabilities of encountering one another. Generalising this

assumption to account for the fact that realistic contact rates are heterogenous, leading to

assortative and preferential mixing [13], often necessitates some loss in either interpretability

or computability [14]. As examples, we discuss agent-based [15,16] network [17,18] and com-

partmental [19,20] models. These are common and overlapping approaches to including het-

erogeneity in transmissibility that can possess complementary characteristics.

Agent-based and network models explicitly describe individual-level epidemic dynamics

[17]. They incorporate structures and rules that define heterogeneous patterns of connectivity

or mixing among individuals or larger groups such as communities. Although the distinction

can be arbitrary, network models may focus more on capturing interaction patterns while

agent-based models may emphasise individual-level behaviour. Both approaches require

extensive high-resolution data to parametrise connectivity and can become computationally

intractable [21]. Connectivity, and hence transmission heterogeneity, may be directly fit from

contact tracing data or approximated from large-scale mobility and survey datasets [22–24].

Further, these models can allow us to probabilistically infer connectivity by comparing their

outputs to observed data, leading to stratified contact matrices that define the mixing levels

among groups [24–26]. However, there are questions about the interpretability and even exis-

tence of reproduction numbers for agent-based and network models [27–29].

PLOS COMPUTATIONAL BIOLOGY Risk averse reproduction numbers

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011332 July 20, 2023 2 / 25

functions in R to compute E on user-defined

datasets.

Funding: KVP acknowledges funding from the

MRC Centre for Global Infectious Disease Analysis

(reference MR/R015600/1), jointly funded by the

UK Medical Research Council (MRC) and the UK

Foreign, Commonwealth & Development Office

(FCDO), under the MRC/FCDO Concordat

agreement and is also part of the EDCTP2

programme supported by the European Union. UO

was supported by a grant from Tel Aviv University

Center for AI and Data Science 417 (TAD) in

collaboration with Google, as part of the initiative of

AI and DS for social good. The funders had no role

in study design, data collection and analysis,

decision to publish, or manuscript preparation. For

the purpose of open access, the author has applied

a ‘Creative Commons Attribution’ (CC BY) licence

to any Author Accepted Manuscript version arising

from this submission.

Competing interests: We declare no competing

interests.

https://doi.org/10.1371/journal.pcbi.1011332


In contrast, compartmental models, which class or group individuals by their epidemiologi-

cal state (e.g., susceptible or infected) and assume homogeneous transmission in their simplest

formulation, have explicitly defined reproduction numbers [19]. Compartmental models can

be extended to depict more complex interactions by including additional classes, which may

be informed by contact matrices derived from empirical data or from previous agent-based or

network models. This allows compartmental approaches to represent heterogeneous transmis-

sion without incurring as much computational overhead or intractability [19,20]. Unfortu-

nately, these additional classes also require more epidemiological rate or distribution data,

limiting real-time usage and reducing the interpretability of outputs.

An alternative that can reduce the severity of these complexity-interpretability trade-offs is

to model the epidemic as a metapopulation or multitype process, in which local scales are well-

mixed but diverse [30–32]. Global scales then enforce structural heterogeneity [14] and we com-

pose the overall R as a weighted function of the local effective reproduction numbers of each

group, denoted Rj for group j [33]. We use renewal or autoregressive processes (see Methods) to

describe transmission at local scales. These model relationships among routine infection inci-

dence data and the Rj directly and so minimise complexity and computational expense. We con-

sider spatial scales, though analyses often apply to sociodemographic and other types of

heterogeneity equally. In our context, local scales may represent regions and the global scale a

country composed of those regions. While metapopulation approaches have allowed more

informative generalisations of R (e.g., using next generation matrices) [19,34], two key questions

remain understudied and form the focus of this paper.

First, can we derive an alternative global statistic that better captures the salient dynamics

of local scales than R? Standard formulations of R lose sensitivity to key events such as local

resurgences [33], defined as a sustained Rj>1, because these usually initialise in groups with

small incidence, which are down-weighted by R. Second, can we optimally trade-off the uncer-

tainty among estimates at local and global scales? In estimating the dynamics of local groups,

we reduce the data informing each estimate and are subject to bias-variance trade-offs. If we

assess local resurgence using individual Rj estimates, false positives arising from increased

uncertainty are more likely and it is unclear how to combine individual estimates to describe

overall transmissibility. However, if we neglect local heterogeneities and rely on R, we may be

statistically overconfident in our estimates of transmissibility.

Using experimental design theory [35], which provides a framework for optimising and fus-

ing estimates of Rj according to cost functions of interest, we derive the risk averse reproduction
number, E. We prove that E upweights groups with likely resurging dynamics because it opti-

mises a cost function that results in the maximum variance among the Rj estimates being mini-

mised. E solves what is known as an E-optimal design problem (see Methods) [35]. Hence E is

risk averse and formally trades off bias from R with variance from each Rj. We demonstrate,

via analytic arguments, simulations and investigation of empirical COVID-19 datasets from

Israel, Norway, New Zealand, states within the USA and regions of the UK, that E achieves

more meaningful consensus across local-scale dynamics than R, improving uncertainty quan-

tification and resurgence detection without losing either interpretability or computability.

Given its transparent, design-optimal properties, we believe E can help inform policy at large

scales (e.g., state or nationwide) where well-mixed assumptions are invalid.

Results

Pitfalls of standard reproduction numbers

We consider the transmissibility of a pathogen at two scales: a local scale, in which we may

model a well-mixed population (e.g., within specific geographic or sociodemographic groups)
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and a global scale, which integrates the dynamics of p�1 local groups. Our local scale, for

example, may refer to spread at a district level, whereas the corresponding global scale is coun-

trywide and covers all districts that compose that country. We assume that subdivision into

local groups is based on prior knowledge and logistical constraints. We denote the time-vary-

ing reproduction number within local group j as Rj and model the dynamics in this group with

a Poisson (Pois) renewal model (see Methods) [11] as on the left side of Eq (1).

Ij � PoisðRjLjÞ for 1 � j � p;
Xp

j¼1
Ij � Poisð

Xp

j¼1
RjLjÞ ð1Þ

This is a widely used framework for modelling time-varying transmissibility [10], with Ij as

the new infections and Λj as the total infectiousness within group j. Λj measures the circulating

(active) infections as a weighted sum of past infections in group j, with weights set by the gen-

eration time distribution of group j. We allow this distribution, which describes the times

between primary and secondary infections, to vary among the groups [1]. All variables are

functions of time e.g., Ij is explicitly Ij(t), but we disregard time indices to simplify notation.

An outbreak in group j is growing or controlled if the sign of Rj−1 is, respectively, positive or

negative. If a positive sign is sustained, we define group j as being resurgent [33].

We do not directly model inter-group reproduction numbers (e.g., reproduction numbers

for infections arising from individuals in group j emigrating into group i6¼j). These additional

parameters are rarely identifiable from routine surveillance data. However, we can include

their impact by distinguishing local from imported infections without altering our methodol-

ogy [36]. We describe how our formulation includes importations or introductions and

implicitly accounts for interconnectivity in later sections (see Eq (4) and the Methods). More-

over, Eq (1) is widely used in practice [37] to compute R (see below) and we aim to derive sta-

tistics that are comparable to R. We find, when applied to empirical data (see later COVID-19

case studies), that our simple but completely identifiable statistics work well.

This renewal model approach is also commonly applied over global scales (e.g., to compute

national reproduction numbers during the COVID-19 pandemic [37]) by summing infections

from every constituent group. This amounts to a well-mixed assumption at this global scale. If

we define I≝
Pp
j¼1
Ij and L≝

Pp
j¼1
Lj as the new infections and total infectiousness on this

global scale, then the transmission model used is I~Pois(RΛ), with R as the effective reproduc-

tion number on that scale. However, if we instead develop a global model from our local mod-

els, we obtain the right side of Eq (1). This simple observation has an important ramification–

by assuming that this single R summarises global scale dynamics, we make an implicit judg-

ment about the relative importance of the dynamics in different local groups. We can expose

this judgment by simply equating both global models to get Eq (2).

R ¼
Xp

j¼1
wjRj; wj ¼ Ljð

Xp

i¼1
LiÞ

�1
ð2Þ

We see that group j is assigned a weight wj, which is the ratio of active infections in group j
to the total active infections at the global scale. Note that 0�wj�1 and

Pp
j¼1

wj ¼ 1. This

weighting has two key consequences. First, groups with outsized infection loads dominate R.

This means a group with a large Λj and small Rj<1, can mask potentially important resurgent

groups, which likely possess small Λj and Rj>1, until those groups generate an appreciable

number of infections [33]. Consequently, using R may lead to lagging indicators of resurgence

i.e., late warnings. The alternative–to scrutinise each local region for signs of concentrated

upticks in Rj−may also be suboptimal. Higher stochasticity is expected from data at smaller

scales, potentially causing false positive resurgence alarms. This is similar to the classic bias-

variance trade-off commonly encountered in statistical modelling [38].
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Second, R is only fully representative of local dynamics at two boundary conditions–when

the Rj are highly similar and when there is only one active group (i.e., effectively p = 1). The lat-

ter case is trivial, while the former is unlikely because epidemics commonly traverse connected

regions in waves [39] and different groups often possess heterogeneous contact patterns and

risks of infection. These all result in diverse Rj time series and desynchronised epidemic curves

[40]. Hence, we argue that this commonly estimated R [9,10] may neither be sufficient nor rep-

resentative for communicating overall transmission risks or informing policymaking. We bol-

ster our argument by showing that R is also statistically overconfident as a summary statistic

i.e., its estimates have underestimated variance.

We analyse the properties of R by computing maximum likelihood estimates (MLEs) and

Fisher information (FI) values. The left side of Eq (3) defines R̂, the MLE of R, in terms of the

MLEs of the Rj of every group. These are R̂j ¼ IjL
�1

j [1] under Eq (1) (see Methods for deriva-

tions). The smallest asymptotic uncertainty around these MLEs (or any consistent Rj estima-

tor) is delineated by the inverse of the FI i.e., larger FI values imply smaller estimate

uncertainties [41]. For the renewal models studied here, we know that FI½Rj� ¼ LjR�1
j [42].

When comparing across scales, it is easier to work under the robust or variance stabilising

transform 2
ffiffiffiffi
Rj

p
, as it yields FI½2

ffiffiffiffi
Rj

p
� ¼ Lj (see [42] and Methods for details). We will often

switch between the FI of Rj and 2
ffiffiffiffi
Rj

p
as needed to clarify comparisons, but ultimately will pro-

vide main results in the standard Rj formulation.

Substituting our FI expressions into Eq (2), we find the global FI linearly sums the local FI

contributions as on the right side of Eq (3) and is an increasing function of p.

R̂ ¼
Xp

j¼1
wjR̂j ¼ IL�1

; FI½2
ffiffiffi
R
p
� ¼

Xp

j¼1
FI½2

ffiffiffiffi
Rj

q
� ¼ L: ð3Þ

Consequently, the uncertainty around R̂ is likely to be substantially smaller than that

around any R̂j. This formulation underestimates overall uncertainty because the FI acts as a

weight that is inversely proportional to the variance of the Rj estimates. Estimates of R are

therefore statistically overconfident as measures of global epidemic transmissibility. We dem-

onstrate this point in later sections via the credible interval widths obtained from simulations.

The goal of our study is to design alternatives to R that attain a better consensus across het-

erogeneous dynamics, with defined properties over diverse locales and without inflated esti-

mate confidence. To achieve these objectives, we must make a principled bias-variance trade-

off among signals fromR and every Rj, deciding how to best emphasise actionable dynamics

from local groups without magnifying noise. We apply optimal design theory to develop new

consensus reproduction numbers with these tailored properties. As we show in the next sec-

tion, this involves optimising the weights multiplying every Rj according to cost functions that

encode the uncertainty properties and trade-offs that we desire globally.

D and E optimal reproduction numbers and their properties

The consensus problem of deriving a statistic that is representative of local dynamics can be

reframed as an optimal design on the weights mapping the Rj to that statistic, based on a cost

function of interest. The uncertainty around estimates of Rj, encoded (inversely) by

FI½Rj� ¼ LjR�1
j , fundamentally relates to key dynamics of the epidemic e.g., resurgence events

likely occur at small Λj and large Rj, minimizing FI[Rj] [33]. Hence, we focus our designs on

the Fisher information matrix FIR of Eq (4), which summarises the uncertainty from all local

Rj estimates. There we replace Λj with a factor αj>0 that redistributes the information across
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the p groups, subject to its sum being equal to Λ (see Eq (3)).

FIR ¼

a1R�1
1

0 0

0 . .
.

0

0 0 apR�1
p

2

6
6
6
4

3

7
7
7
5
; such that

Xp

j¼1
aj ¼ L: ð4Þ

This formulation facilitates the description of several important scenarios. When αj = Λj,

we recover the standard formulation of R (Eq (2)). If we additionally model introductions

among groups using probabilities of transporting active infections as in [43], then αj measures

the active infections that are informative about Rj i.e., all infections that are generated in group

j, including those that are introduced into other groups. This models interconnectedness or

inter-group transmissions [36]. If we assume that infections observed in group j are actually a

random sample from multiple groups drawn from some multinomial distribution, then αj cor-

responds to the fraction of Λ assigned by that distribution to group j. In the Methods we

expand on these points mathematically, showing how Eq (4) and the optimal designs below

are valid (assuming knowledge of the introductions) when the p groups interact.

Since the αj are design variables subject to the conservation constraint in Eq (4), we can

leverage experimental design theory [35,44] to derive novel consensus statistics to replace the

default formulation from Eq (2). We examine A, D and E-optimal designs, which have stan-

dard definitions of how the total uncertainty on our p parameters is optimised. If p = 2, this

uncertainty can be circumscribed by an ellipse in the space spanned by R1 and R2, and designs

have a geometric interpretation as we show in Fig 1. A-optimal designs minimise the bound-

ing box of the ellipse, while D and E-optimal designs minimise its area (or volume, when

extending to higher dimensions) and largest chord respectively [44,45]. These designs yield

optimal versions of Λj,L
∗
j ¼ aj, computed as shown in Eq (5), where tr[.], det[.] and eig[.]

Fig 1. Illustrations of optimal experimental designs and local reproduction number combinations. (A) The

geometric interpretation of A, D and E-optimal designs for the p = 2 parameter scenario. The overall uncertainty of the

parameters is defined by an uncertainty ellipse in the space spanned by possible values of the local reproduction

numbers. The ellipse is centred on the MLEs of the parameters and its shape is determined by the inverse of the FI

around those estimates. Each design minimises a different characteristic of the ellipse. A minimises the bounding box,

D minimises the ellipse area, and E minimises the largest chord (coloured respectively). (B) A ternary plot

demonstrating the trajectories of the consensus statistics D and E as a function of different group reproduction

numbers Rj. These are for p = 3 and constrained so R1+R2+R3 = 3. The colour and contour lines represent E at each

combination of Rj. We see that E is maximised at the edges, when only one Rj is non-zero. D is at the centre of the

triangle, as it is the arithmetic mean of the Rj.

https://doi.org/10.1371/journal.pcbi.1011332.g001
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indicate the trace, determinant and eigenvalue of their input matrix.

L
∗
j jA ¼ max

fajg
tr½FIR�;L

∗
j jD ¼ max

fajg
det½FIR�;L

∗
j jE ¼ max

fajg
min

j
eig½FIR�: ð5Þ

These designs can be done with robust transforms by replacing FIR with FI2
p
R, yielding the

diagonal FI matrix FI2
p
R = diag[α1,. . .,αp]. We then observe that tr½FI2

p
R� ¼

Pp
j¼1
aj ¼ L.

The default allocation of L
∗
j ¼ Lj is hence, trivially, an A-optimal design under this transform.

We compute D and E-optimal designs without transforms because we want to work with Rj

directly. As det½FIR� ¼ ð
Qp

j¼1
R�1

j Þ
Qp

j¼1
aj, with the bracketed term as a constant, we find that,

subject to our constraint, L
∗
j jD ¼ p�1L. This follows from majorization theory and solutions

are adapted from [45,46]. Since FIR is diagonal, its eigenvalues are ajR�1
j and deriving L

∗
j jE

equates to solving for R�1
1
L
∗
1
¼ R�1

2
L
∗
2
¼ � � �R�1

p L
∗
p (see Methods and [45,46] for derivations).

Our E optimal design is then L
∗
j jE ¼ LRjð

Pp
j¼1

RjÞ
�1

.

We formulate the new consensus reproduction numbers, D and E, by substituting the

above optimised L
∗
j into Eq (2) to derive Eq (6), which forms our main result. This corre-

sponds to using optimised weights w∗
j jD ¼ p�1 and w∗

j jE ¼ Rjð
Pp

j¼1
RjÞ
�1

in Eq (2). In Eq (6)

we compute these statistics as convex sums D ¼
Pp

j¼1
ðw∗

j jDÞRj and E ¼
Pp

j¼1
ðw∗

j jEÞRj.

D ¼
1

p

Xp

j¼1
Rj;E ¼

Xp

j¼1
R2

j

� � Xp

j¼1
Rj

� ��1

: ð6Þ

We refer to D as the mean reproduction number because it is the first moment or arithmetic

mean of the effective reproduction numbers of each group i.e., it weights the dynamics of each

group equally. This construction ensures that the overall uncertainty volume over the estimates

of every Rj is minimised. We define E as a risk averse reproduction number, and derive it as the

ratio of the second to first raw moment of the group reproduction numbers. This is also

known as the contraharmonic mean. E weights each group reproduction number by the frac-

tion of the total reproduction number sum attributable to that group. This weighting empha-

sises groups with large Rj, which are considered to be high risk. While D and E do not

explicitly include Λj as in R, both are still informed by the active infections because the Λj

(which are proportional to the FI) control the variance of the Rj estimates. This variance or

uncertainty propagates into D̂ and Ê as in Eq (6) (also see Methods).

All three statistics possess important similarities that define them as proxies for reproduc-

tion numbers. Because they are all convex sums of the local Rj, the value of each statistic lies

inside a simplex with vertices at the Rj. At the boundary conditions of one dominant group

(i.e., essentially p = 1) or of highly similar group dynamics (i.e., the Rj are roughly the same

over time) this simplex collapses and we find R = D = E. Moreover, if all the Rj = 1, then R = D
= E = 1, signifying convergence to the reproduction number threshold. Thus, D and E are

alternative strategies to R for combining local reproduction numbers with different properties

that may offer benefits when making decisions at large scales. We visualise how these statistics

determine our global estimate of transmissibility via the simplex in Fig 1. Although we present

several reproduction number formulae for comparison, E and its risk averse properties form

the main interest of this work.

We refer to E as risk averse because it ensures that the most uncertain Rj is upweighted as

compared to the standard formulation of R in Eq (2). This protects against known losses of

sensitivity to resurgent dynamics [33] that occur due to averaging across groups, because the

FI is expected to be smallest for resurgent groups. As opposed to simply interrogating the indi-

vidual Rj estimates to identify resurgent groups, E weights those groups, while also accounting
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for the uncertainty in their estimates, to obtain a consensus on overall epidemic transmissibil-

ity risk. Consequently, E reduces false positives that may occur due to the noise in individual

resurgent groups and provides a framework for interpreting situations where some groups

may be concurrently resurgent while others are under control. We illustrate these points in

Fig 2 below and explore their ramifications in the next section.

Fig 2. Relative sensitivity of E and R to resurgence dynamics. By sampling from the posterior gamma distributions of [11],

we simulate p = 2 local groups, varying the values of R1, while keeping R2 at mean value of 1. We plot sensitivities to

resurgence of the effective, R, and risk averse, E, reproduction numbers relative to the maximum local reproduction number

R1. These are indicated by the values of P(X>1) for X = R, E and R1 (solid blue, red, and black, respectively). (A) and (B) show

these resurgence probabilities on left y-axes over a range of mean R1 values for scenarios with small (A) and large (B) numbers

of active group 1 infections, Λ1. We can assess resurgence sensitivity by how quickly P(X>1) rises and describe the impact of

active infections in group 2 using r ¼ L2

L1
. We find that E balances the sensitivity between R1 and R. The latter loses sensitivity

as the active infections in group 2 become larger relative to that of group 1 (i.e., as r increases). This occurs despite group 2

having stable infection counts. We plot the standard deviation of the reproduction number estimates on right-y axes as σ(X)

for X = R, E and R1 (dotted blue, red, and black, respectively). We observe that the local R1 is noisiest (largest uncertainty),

while R has the smallest uncertainty (overconfidence). E again, achieves a useful balance.

https://doi.org/10.1371/journal.pcbi.1011332.g002
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In Fig 2 we apply the renewal model framework from [11,33], which is based on Eq (1) but

models estimates of the local reproduction numbers according to the posterior gamma (Gam) dis-

tribution Rj � GamðIj;L
�1

j ). This yields a mean estimate of Rj that is equal to the MLE R̂j ¼

IjL
�1

j with standard deviation σðRjÞ ¼ I0:5
j L

�1

j . We consider two local groups (p = 2) and compute

the probabilities of resurgence P(X>1) for X = R1, R and E for scenarios that likely represent a

resurgence (i.e., small Λ1 and increasing I1 with the second group stable at Λ2 = I2). In these cases,

E is able to signal resurgence substantially earlier than R but is distinct from simply observing

dynamics in the resurging group 1, where R1 = max Rj. We confirm this by noting that σ(R1) is

appreciably larger than σ(E), the standard deviation from E. Hence responding to R1 is maximally

sensitive but also magnifies noise. In contrast R is overconfident, with usually a much smaller σ(R).

Risk averse E is more representative of key transmission dynamics

We test our D and E reproduction numbers against R on epidemics that are simulated from

renewal models with Ebola virus generation times from [47] in Figs 3 and 4. We also compute

max Rj to benchmark how a naive risk averse statistic derived from observing individual

groups performs. We consider p = 3 groups with various true Rj dynamics (black, dashed) that

fluctuate across controlled and resurgent stages. We use the EpiFilter package [48], which

applies Bayesian smoothing algorithms, to obtain local estimates (blue) from the incidence

curves Ij. Similarly, we estimate the overall R (blue) from the total incidence
P3

j¼1
Ij, which is

how this statistic is evaluated in practice. We infer D (green) and E (red) by sampling from

posterior distributions of local Rj estimates and combining them according to Eq (6). Taking

maxima across these local samples gives max Rj (cyan). All estimates include 95% equal tailed

Bayesian credible intervals, and we use default EpiFilter settings.

The simulations in Fig 3 examine abrupt changes in transmissibility. Disease transmission

in every group is first controlled. Infections then either resurge (j = 1,3) or are driven towards

elimination (j = 2). Because of its weighting by active infections, R proposes a false, lengthy

period of subcritical spread at t�70, even though the majority of groups have Rj>1. This

causes R to be slow to indicate resurgences at t�100 and t�220. In contrast, E is quick to signal

resurgence at t�220, without losing the capacity to indicate that the epidemic is under control

at t�140. D largely interpolates between R and E, showing the mean of all the Rj and serves as

a null model. As expected from the theory, R is overconfident about its transmissibility esti-

mates, which is apparent from its narrow credible intervals. In contrast, max Rj is very noisy,

with considerably larger credible intervals limiting its use.

We further investigate fluctuating but anti-synchronised epidemics (j = 1,2) against the

backdrop of a much larger monotonically increasing and then decreasing outbreak (j = 3) in

Fig 4. The two out-of-phase groups approximately average to a constant value in both their

incident infections and Rj. Consequently, we infer a mostly monotonic R and D, with R being

overconfident in its assessment of transmissibility. In contrast, estimates of E highlight the

transmission potential from the fluctuating but smaller epidemics within other groups, while

incorporating their uncertainties. It recognises the overall risk across 170�t�270 posed by

groups with fluctuating infections. Additionally, E rapidly signals the transmissibility risk that

dominates from t>270, which is only indicated by R after a substantial delay. The max Rj sta-

tistic is again the most uncertain and prone to false positives.

Empirical application to COVID-19 across 20 cities in Israel

We compare our consensus statistics with the standard reproduction number on empirical

data from the Delta strain outbreak of COVID-19 in Israel across May–December 2021. This
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Fig 3. Consensus statistics for resurging and controlled epidemics. We simulate local epidemics Ij(t) (dark green)

across time t using renewal models with Ebola virus generation times from [47] and true local reproduction numbers

with step-changing profiles (dashed black). Estimates of these are in (A)–(C) as R̂^
jðtÞ together with 95% credible

intervals (blue curves with shaded regions). (D) provides consensus and summary statistic estimates (also with 95%

credible intervals), which we calculate by combining the R̂^
jðtÞ. Variations in the standard reproduction number R̂^ðtÞ

are also reflected in the total incidence
P3

j¼1
IjðtÞ. Risk averse Ê^ðtÞ and mean D̂^ðtÞ reproduction numbers do not signal

subcritical spread at t�70 (unlike R̂^ðtÞ) and Ê^ðtÞ is most sensitive to resurgence signals. The statistic max R̂^
jðtÞ is risk

averse but magnifies noise. We use EpiFilter [48] to estimate all reproduction numbers.

https://doi.org/10.1371/journal.pcbi.1011332.g003
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Fig 4. Consensus statistics for fluctuating and monotonic epidemic dynamics. We simulate local epidemics Ij(t)
over time t from renewal models with Ebola virus generation times as in [47] and true local reproduction numbers

with either sinusoidal or monotonically increasing and then decreasing profiles (dashed black). Estimates of these are

in (A)–(C) as R̂^
jðtÞ together with 95% credible intervals. (D) plots consensus and summary statistics (also with 95%

credible intervals), which we compute by combining those R̂^
jðtÞ. Variations in the standard reproduction number R̂^ðtÞ

are also reflected in the total incidence
P3

j¼1
IjðtÞ. Both R̂^ðtÞ and the mean D̂^ðtÞ reproduction number do not average
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dataset provides a convenient case study because daily positive tests results are available from

different cities in Israel and both non-pharmaceutical interventions and restrictions were mild

during this period. The main intervention deployed, which was highly successful at reducing

cases, was the booster vaccine campaign [49,50]. This campaign started July 30 and gradually

extended to all ages across August. We examine COVID-19 incidence curves from [51] by

date of test for the p = 20 cities with the most cases of this wave. These cities account for 49%

of the entire caseload in Israel and are plotted in log scale in Fig 5.

We estimate the standard, maximum group, mean and risk averse reproduction numbers

(labelled as X̂ðtÞ) and the probability of resurgence at any time (PðX̂ðtÞ > 1Þ) as in above sec-

tions but with the serial interval distribution in [52], which is consistent with the Israel-specific

Delta wave parameters estimated in [50]. We assume case reporting is stable (i.e., any under-

reporting is constant) and that serial intervals provide good approximations for the generation

times. These assumptions are reasonable given high fidelity surveillance in Israel during this

wave and are consistent with the analyses of [49,50]. As we only focus on relative trends, we

make no further corrections to the dataset but note that accounting for issues such as testing

delays generally cause incidence curves to be back-shifted and increase uncertainty, but neces-

sitate auxiliary data [53,54].

Fig 5 demonstrates that D, R and E all agree that the wave was curbed across the booster

period and that the epidemic was controlled. The max Rj is overly sensitive to worst case local

dynamics and signals false or early resurgences across October-November. There is substantial

disagreement among the statistics prior to the booster campaign. The standard R̂ suggests that

the wave is under control in May due to decreasing total COVID-19 incidence. However, the

risk averse E (and to an extent D) highlights potential resurgence and may have contributed

evidence to support starting the booster campaign earlier (see Fig A of the S1 Appendix for

prospective E and R estimates at key timepoints during that period). The max Rj statistic is too

susceptible to noise to provide actionable information.

E also better aligns with the emergence of the Delta strain or variant, which is signalled by R̂
with substantial delay. Given that counterfactual analyses from [49] showed that the success of

the campaign was strongly dependent on the timing of its implementation, this earlier signal-

ling of resurgence could have important ramifications as part of policy response. Using either

mean and more conservative statistics (see later figures for visualisation), we find E signals

resurgence and supports starting the booster campaign between 2–12 days earlier than R (cor-

responding to the 8–20 June 2021). The convergence of D, R and E across September follows

as the epidemic curves of many cities became synchronised and shows that E also recognises

periods when dynamics are homogeneous. E, via its optimised design, uses the epidemic data

to dynamically balance between averaging and emphasising heterogeneous group dynamics.

We present a similar analysis on COVID-19 data from Norway that yields qualitatively consis-

tent conclusions in Fig B of the S1 Appendix.

Improved resurgence detection for multiple COVID-19 datasets

We quantify the risk averse behaviour of E in realistic epidemic scenarios by examining its per-

formance on 6 empirical COVID-19 datasets. These include the Israel data above and epi-

demic curves from districts in Norway (also explored in Fig B of the S1 Appendix) and New

over the fluctuating transmissibility of resurging groups but the risk averse Ê^ðtÞ is sensitive to these potentially

important signals. Only R̂^ðtÞ deems the epidemic to be controlled around t�200. The max R̂^
jðtÞ statistic is risk averse

but very sensitive to local estimate uncertainties. We use EpiFilter [48] to estimate all reproduction numbers.

https://doi.org/10.1371/journal.pcbi.1011332.g004
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Fig 5. Risk averse reproduction numbers for COVID-19 in Israel. We plot the cases by date of positive test (and in

log scale) in (A) for p = 20 cities in Israel during the Delta wave of COVID-19 from [51]. These constitute 49% of all

cases in Israel (summed incidence in black) and have been smoothed with a weekly moving average. We infer the

standard, R̂^ðtÞ, maximum group, max R̂^
jðtÞ, mean, D̂^ðtÞ, and risk averse, Ê^ðtÞ, reproduction numbers (with 95%

credible intervals) using EpiFilter [48] in (B) under the serial interval distribution estimated in [52]. We also plot the

proportion of cases attributable to the Delta strain from [50] (black, dot-dashed). We assume perfect reporting and that

generation times are well approximated by the serial intervals. (C) integrates the posterior estimates from (B) into

resurgence probabilities PðX̂^ðtÞ > 1Þ. While all reproduction numbers indicate effectiveness of the vaccination

campaign in curbing spread, R̂^ðtÞ is the slowest to signal resurgence across June, at which point the Delta strain has a

70% share in all cases. Ê^ðtÞ is more aligned with signalling Delta emergence but avoids the inflated uncertainty of max

R̂^
jðtÞ.

https://doi.org/10.1371/journal.pcbi.1011332.g005
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Zealand, regions in the US states of New York and Illinois and local UK authorities. We plot

group level and total incidence for all datasets in Fig A of the S1 Appendix. We select the top

20 groups by infection counts for each dataset (or all groups when fewer than 20). All curves

present cases by date of test (data sourced from [51,55–59]) after weekly smoothing and

include resurgences that started locally before propagating. We estimate R (blue) and E (red)

for all datasets (retrospectively), under the serial interval distribution from [52] and plot our

results in Fig 6 together with total incidence (black). We indicate some key resurgence periods

with vertical lines. We analyse these periods prospectively in Fig 7.

Fig 6. Transmissibility estimates for COVID-19 in 6 empirical datasets. We estimate the standard, R̂^ðtÞ (blue) and risk

averse, Ê^ðtÞ (red) reproduction numbers (with 95% credible intervals) using EpiFilter [48] on COVID-19 data describing

epidemics in 6 diverse locations (see panel titles). We use the serial interval distribution in [52] and demarcate key periods of

resurgence with vertical dashed lines. We investigate these periods in detail in Fig 7. Black curves show the shape of the total

incidence in the case studies for context. Fig A of the S1 Appendix plots the group level incidence, which often feature

heterogeneous patterns.

https://doi.org/10.1371/journal.pcbi.1011332.g006
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There we sequentially re-compute our estimates over time and test the resurgence detection

ability of both X = R and X = E. Estimates at any timepoint in Fig 7 are informed by data up to

that time only, illustrating the resurgence signals we would have inferred if our time series

ended at that timepoint. We can decide if reproduction numbers have signalled resurgence in

multiple ways. The simplest compares mean estimates X̂ to 1 or resurgence probabilities

PðX̂ðtÞ > 1Þ to 0.5. While we do not show these explicitly, these differences are visible from

Fig 6 and are substantial, often of the order of 1–2 weeks. For example, the relative delay of R

Fig 7. Resurgence signals from transmissibility estimates for COVID-19 in 6 empirical datasets. We compute sequential

estimates of standard, R̂^ðtÞ (blue) and risk averse, Ê^ðtÞ (red) reproduction numbers across the periods delimited in Fig 6 and using

the same serial intervals and data described above. These estimates are prospective i.e., at any timepoint they assume that the time

series ends at that point (see Fig A of the S1 Appendix for more examples). Consequently, these estimates simulate the sequential

signals that would have been available about resurgence as incidence data accumulated in real time. Solid lines show lower 95%

credible intervals from both X̂^ðtÞ relative to a threshold of 1 (solid black, coloured circle intersections). Dashed lines compare

PðX̂^ðtÞ > 1Þ to a probability of 0.95 (dashed black, coloured square intersections). These are conservative metrics.

https://doi.org/10.1371/journal.pcbi.1011332.g007
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in signifying resurgence in the Israel study is 12 days. However, as our estimates possess uncer-

tainty, we may prefer to indicate resurgence more conservatively by finding when the lower

limit of the 95% credible interval of X̂ crosses 1 or when PðX̂ðtÞ > 1Þ � 0:95 [33].

Fig 7 plots these estimates. Delays in resurgence detection signals from R (blue) relative to

those from E (red) are visible from the separation of the coloured circles and squares. We find

that, except for the null case of the UK regions, where local epidemics are synchronised (see

Fig A of the S1 Appendix), E always provides earlier resurgence signals, confirming its risk

averse nature. In the cases of New York, Illinois and New Zealand R fails, across the 2-week

period analysed, to ever indicate resurgence. For Israel the lag between signals from R and E is

2 days. The converse occurs if assessing subcritical spread as E is slower than R to fall below 1

when groups show appreciable heterogeneity (while not explicitly shown we can see this in

Fig 6). This also confirms the risk averse properties of E. We provide general mathematical

arguments for why E has these properties in the S1 Appendix.

Discussion

The value of reproduction numbers or similar measures of transmissibility (e.g., growth rates

[12]) as statistics for providing actionable information about the state of an epidemic, lies in

their ability to accurately identify changepoints between subcritical and supercritical spread

[60]. However, the meaning of a changepoint across scales is ambiguous and understudied.

For example, if we have p local groups, how many need to resurge before we decide the epi-

demic has become supercritical? Is it a changepoint if these groups resurge at different times?

A related question is, if those local groups are heterogeneous, is there any meaning in an over-

all average [27] such as the standard effective reproduction number R? Here we have explored

such questions and their implications for describing epidemics at large scales.

We modelled epidemics at two scales: a local scale, over which the well-mixed assumption

likely holds, and a global scale, where this assumption is almost surely invalid. Reproduction

numbers are commonly computed and reported at global scales. Using this framework, we

analysed how changepoints in local reproduction numbers, Rj, influence the properties of

global statistics. We showed that, due to its weighting of each Rj by the infections circulating in

that group, Ljð
Pp

j¼1
LjÞ

�1
, R is generally controlled by the dynamics of the groups with the

most extant infections. This causes loss of sensitivity to resurgent changepoints (which may

often occur at small Λj) and means that estimates of R are usually overconfident or over-

smoothed (Eq (3)). We attempted to counter these undesirable properties by applying experi-

mental design theory to develop algorithms that optimise the weights on the Rj.

We derived a novel reproduction number, E, by selecting weightings on the Rj that mini-

mise the maximum uncertainty from Rj estimates. Consequently, E upweights more uncertain

estimates (often associated with resurgent groups [33]) and incorporates the local circulating

infections according to their impact on overall estimate uncertainty. This prevents estimate

overconfidence and presents a principled method for combining the local Rj changepoints. An

E>1 ensures resurging groups are emphasised without being overly sensitive to individual

group noise (Fig 2), while E<1 indicates that groups are under control with high likelihood.

Interestingly, E weights each Rj by its transmissibility ratio, Rjð
Pp

j¼1
RjÞ
�1

, which results in a

formula (Eq (6)) that seems consistent with that derived from network epidemic models when

individuals have heterogeneous contact rates [27].

Eq (6), which is the contraharmonic mean of local reproduction numbers, also suggests

that E will have general risk averse properties. This follows as contraharmonic means are

known to behave as envelope detectors [61] i.e., they detect peaks in waveforms. E also has
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some resurgence prediction qualities as its weights Rjð
Pp

j¼1
RjÞ
�1

correlate (in rank) with what

the weights Ljð
Pp

j¼1
LjÞ

�1
in R would converge to if resurgence occurs. We detailed these gen-

eral properties of E in the S1 Appendix. We further illustrated and validated these properties

using multiple simulated and empirical datasets (Figs 3–7). There we demonstrated how E
provides a better consensus than R of local group dynamics (converging to R when transmis-

sion is homogeneous) but is not as vulnerable to noise as the maximum local statistic max Rj.

We found that the earlier resurgence detection provided by E could be substantial, leading R
by up to 2 weeks in several case studies.

This earlier resurgence signalling of E may be important given the sensitivity of the cost

and effectiveness of many epidemic control actions to their implementation times [49,62] and

the growing evidence supporting earlier but data-driven intervention choices [63,64]. If earlier

resurgence signals are ignored, then eventually Ljð
Pp

j¼1
LjÞ

�1
will approach Rjð

Pp
j¼1

RjÞ
�1

and

R will gradually indicate that supercritical spread has occurred. Due to its risk averse proper-

ties, E will also signal subcritical spread at global scales when there is a higher likelihood of

groups being under control. This may be more conservative than R but avoids premature

relaxations of interventions, which have been correlated with more costly and less effective exit

strategies [65]. However, all these benefits depend on socio-political and other factors as repro-

duction numbers are one of many metrics informing public health decisions.

While E is a promising addition to the suite of infectious disease outbreak statistics, it is not

perfect. First, its formulation depends on Poisson noise models (Eq (1)). While such models

are commonly applied [10], in some cases they may only offer simplistic representations of the

stochasticity of epidemics. Although E will likely maintain its risk averse properties due to its

contraharmonic formulation, its optimality is unknown for general stochastic descriptions.

Second, we defined resurgence and control indicators based on the reproduction number

threshold value of 1. This definition is almost universal but other measures (e.g., the early

warning signals of [66]) may circumvent some problems that R presents as a statistic for

informing decision-making in real time. In some instances, the disease under study may be

uncontrollable (e.g., if it possesses long incubation periods and substantial pre-symptomatic

spread [67]) and no metric (including E) will be able to meaningfully inform health policy.

Third, E requires infection time and incidence data (or proxies [54]) at the resolution of the

local scale. While this is becoming the norm with steadily improving surveillance [68], it is not

guaranteed and may be scarce for emerging infectious diseases. In this scenario, R is still

directly computable from global scale data but the same data resolution limits that prevent

inferring E here will also preclude any other finer-scale analysis. Last, the added value of E in

informing real-time decision-making depends on the quality of data. Practical biases such as

delays in ascertaining cases can hinder timely responses to transmission changepoints [53].

This bottleneck is fundamental and will equally limit R and other statistics. However, in these

scenarios, E may still be of use retrospectively.

Overall, we propose E as a consensus statistic that better encapsulates salient dynamics

across heterogeneous groups without losing the interpretability or computability of R. With

late responses to epidemic resurgence often associated with larger epidemic burden [62],

increasing interest in early warning signals [66] and reproduction numbers commonly being

computed on vast scales in real time [9], the risk averse properties of E may be impactful. Pub-

lic health policymaking is a complex process combining inputs from diverse data and models

spanning epidemiology, economics and behavioural science. Given this complexity, we think

that statistics designed with optimal and deliberate properties, such as E, can facilitate more

transparent and robust data-driven decision-making.
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Methods

Renewal models and estimation statistics

The renewal model [1] is a popular approach for tracking dynamics of infectious diseases [10].

It describes how the number of new or incident infections at time t, I(t), depends on the effec-

tive reproduction number at that time, R(t), and the total infectiousness Λ(t) as in Eq (7),

assuming that infectious individuals mix homogeneously. We commonly define time in days,

but the model may be applied at other timescales (e.g., weeks).

IðtÞ � PoisðRðtÞLðtÞÞ;LðtÞ ¼
Xt�1

s¼1
oðt � sÞIðsÞ: ð7Þ

Here Pois indicates a Poisson noise distribution and Λ(t) defines the active or circulating

infections as the convolution of earlier infections with the generation time distribution of the

disease. This distribution defines the time interval between primary and secondary infections

[1] so that ω(t−s) is the probability of this interval being of length t−s. We assume that we have

access to good estimates of the generation time distribution and infections [11].

Eq (7) has been applied to model many epidemics across a wide range of scales spanning

from small communities to entire countries. Its major use has been to facilitate the inference

of the time-varying R(t). Fluctuations in estimates of R(t) are frequently associated with inter-

ventions or other epidemiologically important events such as the emergence of novel patho-

genic variants. We can derive the key statistics of these R(t) estimates from the log-likelihood

function of R(t), ℓ, which follows from the Poisson formulation of Eq (7) as in Eq (8). Here z

(t) collects all terms that are independent of R(t).

� ¼ log PðIðtÞjRðtÞÞ ¼ IðtÞlog RðtÞ � RðtÞLðtÞ þ zðtÞ: ð8Þ

We can construct the maximum likelihood estimate (MLE) of R(t), denoted R̂ðtÞ, by solving
@�
@RðtÞ ¼ 0 to obtain the left expression of Eq (9). This estimator is asymptotically unbiased. The

(expected) Fisher information (FI), FI[R(t)], defines the best achievable precision (i.e., the

smallest variance) around the MLE [69], and is computed from Eq (8) as E � @2�
@RðtÞ2

h i
[69,70],

with E[.] as an expectation over the incidence data. This gives
E½IðtÞ�
RðtÞ2

. Substituting E[I(t)] = Λ(t)R
(t) from Eq (7) produces the expression in the middle of Eq (9).

R̂ tð Þ ¼
IðtÞ
LðtÞ

; FI RðtÞ½ � ¼
LðtÞ
RðtÞ

; FI 2
ffiffiffiffiffiffiffiffiffi
RðtÞ

ph i
¼ L tð Þ: ð9Þ

The FI depends on the unknown R(t). We can remove this dependence by applying a robust

or variance stabilising transform [45,71]. We can derive this by using the FI change of variables

formula as in [42,70]. We consequently obtain the right equation in Eq (9), under the square

root transform 2
ffiffiffiffiffiffiffiffiffi
RðtÞ

p
. In the main text we often use this transformed FI to make compari-

sons clearer but present all key results in the standard R(t) formulation.

While we have outlined the core of renewal model estimation, most practical studies tend

to apply Bayesian methodology [10]. Accordingly, we explain the two approaches used in this

paper. The first follows [11] and assumes some gamma (Gam) conjugate prior distribution

over R(t), leading to the posterior estimate of R(t) being described as Gam(I(t),Λ(t)−1) (where

we ignore prior hyperparameters). The mean of this posterior is R̂ðtÞ and its variance is the

inverse of FI[R(t)] evaluated at R̂ðtÞ. This formulation holds for group reproduction numbers

Rj(t) as well, which have posteriors Gam(Ij(t),Λj(t)−1). This methodology has been applied to

estimate real-time resurgence probabilities [33]. We use it to generate Fig 2.
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The second approach is EpiFilter [48], which combines the statistical benefits of two popu-

lar R(t) estimation methods–EpiEstim [11] and the Wallinga-Teunis approach [40]–within a

Bayesian smoothing algorithm [72] to derive optimal estimates in a minimum mean squared

error sense. We apply EpiFilter to obtain all effective reproduction number estimates with

their 95% equal-tailed Bayesian credible intervals in Figs 3–5. This assumes a random walk

prior distribution on R(t) and sequentially computes estimates via forward-backward algo-

rithms [72]. We run EpiFilter at default settings.

It outputs posterior PðRjðtÞjIT1 Þ for group j with IT
1

as the incidence curve I(t): 1�t�T. This

provides retrospective analysis of reproduction numbers, using all the information up to pres-

ent time T. If we set T to earlier timepoints we can recover past, real-time estimates that reflect

the information available up to that timepoint. We compute these real-time estimates at key

timepoints for the Israel case study in Fig A of the S1 Appendix. We construct our consensus

posterior distributions PðXðtÞjIT
1
Þ, with X as D, R, max Rj, or E (see the next section) by sam-

pling from all PðRjðtÞjIT1 Þ and applying appropriate weightings. Resurgence probabilities are

evaluated as PðXðtÞ > 1jIT
1
Þ ¼

R1
1
PðXðtÞjIT

1
Þ dX.

Optimal experimental design and consensus metrics

In the above section we outlined how to model and estimate R(t) across time. However, this

assumes that all individuals mix randomly. This rarely occurs and realistic epidemic patterns

are better described with hierarchical modelling approaches as in [14]. We investigated such a

model at a local and global scale in the main text. There we assumed that p local groups do

obey a well-mixed assumption and have local reproduction numbers, Rj(t) for group j that all

conform to Eqs (7–9). We additionally modelled a global scale, as in Eqs (1–3) that combines

the heterogeneous dynamics of the groups. We drop explicit time indices and note that this

formulation, which considers weighted means of the Rj, requires a p×p FI matrix to describe

estimate uncertainty as in Eq (4). We now explain how the consensus statistics, D and E,

emerge as optimal designs of this matrix.

For convenience, we reproduce the FI matrix FIX and the weighting for some reproduction

number or consensus statistic X in Eq (10). X can be D or E, and we apply a constraint on fac-

tors αj such that
Pp

j¼1
aj ¼

Pp
j¼1
Lj ¼ L. When all the αj = Λj, we obtain the global effective

reproduction number, now denoted R. The total information of our model is Λ.

FIX ¼

a1R�1
1

0 0

0 . .
.

0

0 0 apR�1
p

2

6
6
6
4

3

7
7
7
5
;X ¼

Xp

j¼1

aj
Pp

j¼1
aj

 !

Rj: ð10Þ

The mean reproduction number D is derived as the D-optimal design of FIX. This maxi-

mises the determinant of this matrix, which is ð
Qp

j¼1
R�1

j Þ
Qp

j¼1
aj. As the first term is indepen-

dent of the weights, we simply need to maximise
Qp

j¼1
aj subject to a constraint on

Pp
j¼1
aj.

This is known as an isoperimetric constraint and is solved when the factors are equalised i.e.,

a∗j ¼
1

pL [35,45]. Substitution of this optimal design leads to an equal weighting wj ¼
a∗j
L
¼ 1

p in

Eq (10) and we get the formulation in Eq (6).

The risk averse reproduction number E is accordingly the solution to the E-optimal design

of FIX. This maximises the minimum eigenvalue of FIX (i.e., minimises the maximum estimate

uncertainty). Because FIX is diagonal we must maximise the minimum diagonal element ajR�1
j

subject to the constraint on
Pp

j¼1
aj. This has a known solution because the objective function
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minj ajR�1
j is Schur concave. This objective function is maximised when a∗j Rj is constant for all

j (under our constraint) and yields a∗j ¼ LRjð
Pp

j¼1
RjÞ
�1

, which follows from majorization

theory. More details can be found in [45,46]. Substituting this optimal design into Eq (10)

yields the weight wj ¼
a∗j
L
¼

RjPp

j¼1
Rj

and we recover the result in Eq (6).

We infer the mean and risk averse reproduction numbers by combining estimates of the

group reproduction numbers, Rj, generated from EpiFilter. We achieve this by sampling from

the posterior distributions of these local estimates PðRjðtÞjIT1 Þ to construct consensus posteri-

ors PðXðtÞjIT
1
Þ for D and E in a Monte Carlo manner according to Eq (6). This involves com-

puting the arithmetic and contraharmonic means of the samples at each time point. The

contraharmonic mean is the ratio of the second to first raw moments of its inputs. We also use

as a reference, the simple statistic max Rj, which involves taking maxima over the group sam-

ples. These consensus estimates underlie the plots in Figs 3–6.

Importantly, we observe that as both D and E are means, they have two key properties that

define them as reproduction numbers. First, when all the local Rj = a then R = D = E =a. Sec-

ond, if we reduce transmissibility globally by 1

a (i.e., every Rj is scaled by 1

a, with a>1) then all

three statistics are also reduced by 1

a. These properties ensure that our consensus statistics have

the same interpretability as R. Specifically, D and E have a threshold around 1 and their esti-

mated values reflect changes resulting from public health interventions, more transmissible

variants (if instead the Rj scale up by a) and population behaviours.

Optimal experimental design with interconnected groups

Our framework above does not explicitly consider connections among the groups. Here we

outline how our optimal designs can remain valid under models of realistic interconnections.

Let ρx!j be the probability of an infection being introduced into a sink group j from source

group x as in [43] with ρx!x as the probability of remaining within the source group. For p
groups, the renewal process that describes the incidence of new infections in group j is

Ij � Poisð
Pp

x¼1
rx!jLxRxÞ, ignoring explicit time indices. Consequently, Ij contains informa-

tion about the Rx. If we assume that introductions have the infectiousness of their source

group and that we know the source group of the introductions, then the informative compo-

nent of Ij is then Ij|Rx~Pois(ρx!jΛxRx) (via a Bernoulli thinning of Poisson distributions).

Using earlier results, the Fisher information that Ij contains about Rx is rx!jLxR�1
x . We may

collect the information about Rx available from all the infection data by summing these terms

as
Pp

j¼1
IjjRx � PoisðLxRxÞ. This follows from the infinite divisibility property of the Poisson

formulation and as
Pm

j¼1
rx!j ¼ 1. Consequently, the total Fisher information about Rx from

all the incidence data is FI½Rx� ¼ LxR�1
x . This yields the same Fisher matrix as in Eq (4). Con-

sequently, our D- and E-optimal designs and other results are unchanged and valid under this

formulation, which assumes that introductions have the infectiousness of their source group.

This assumption holds for example when transmission heterogeneity arises from regional

pathogenic variants, with variants forming groups with distinct Rx.

The converse, where introductions have the reproduction number of their sink group leads

to Ij � Poisð
Pp

x¼1
rx!jLjRjÞ. If we let

Pp
x¼1
rx!j ¼ aj, we get a diagonal Fisher matrix but now

with terms FI½Rx� ¼ axLxR�1
x . This fits our framework in (see Eq (10)) if we constrain the sum

of all the axΛx = ax to still be Λ. Sink-based reproduction numbers may occur, for example, if

groups demarcate areas with different population density or contact patterns and have distinct

Rx (that is acquired on entering that group). Both source and sink assumptions require
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knowledge of the introductions or their ρx!j values. When the ρx!j are unknown or cannot be

estimated, an alternative is to treat the introductions as input data as in [36].

This requires that we redefine the total infectiousness of group j as Lj ¼
Ps�1

u¼1
wðuÞ�

ðIjðt � uÞ þMjðt � uÞÞ with Ij as the local infections of group j and Mj counting introductions

into that group. As Λj is treated as known we do not depart the framework of the main text

and we recover our optimal designs (albeit with this redefined Λj). This convergence of results

emerges because once we can ascertain the source and sink of infections, we can correctly

assign them to their respective Rx and construct a diagonal Fisher matrix. Other models of

interconnectivity which instead propose inter-group reproduction numbers (e.g., [73]) do not

directly fit our framework or possess non-diagonal Fisher information matrices and can be

over-parametrised or non-identifiable without additional data or constraints.

Supporting information

S1 Appendix. This provides mathematical details on real-time estimates of reproduction

numbers and on general risk averse properties of E. Additionally it contains Figs A-C. Fig

A: Real-time analysis of COVID-19 Delta strain dynamics in Israel. We repeat the analysis

from Fig 5 but truncate to key points in the epidemic time series to show real-time or prospec-

tive estimates of transmissibility using data up to those truncation points only. Fig B: Risk

averse reproduction numbers for COVID-19 in Norway. We perform a similar analysis to

Fig 5 but for COVID-19 waves in Norway and compare transmissibility estimates to interven-

tion times. Fig C: Incidence curves for 6 empirical COVID-19 datasets. We plot new infections

for every dataset analysed in Figs 6 and 7, showing the epidemic curves by group and in total.

(PDF)
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