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Abstract
A population-level analysis is proposed to address data sparsity when build-
ing predictive models for engineering infrastructure. Utilizing an interpretable
hierarchical Bayesian approach and operational fleet data, domain expertise
is naturally encoded (and appropriately shared) between different subgroups,
representing (1) use-type, (2) component, or (3) operating condition. Specifi-
cally, domain expertise is exploited to constrain the model via assumptions (and
prior distributions) allowing the methodology to automatically share informa-
tion between similar assets, improving the survival analysis of a truck fleet (15%
and 13% increases in predictive log-likelihood of hazard) and power prediction
in a wind farm (up to 82% reduction in the standard deviation of maximum
output prediction). In each asset management example, a set of correlated
functions is learnt over the fleet, in a combined inference, to learn a popula-
tion model. Parameter estimation is improved when subfleets are allowed to
share correlated information at different levels in the hierarchy; the (averaged)
reduction in standard deviation for interpretable parameters in the survival anal-
ysis is 70%, alongside 32% in wind farm power models. In turn, groups with
incomplete data automatically borrow statistical strength from those that are
data-rich. The statistical correlations enable knowledge transfer via Bayesian
transfer learning, and the correlations can be inspected to inform which assets
share information for which effect (i.e., parameter). Successes in both case stud-
ies demonstrate the wide applicability in practical infrastructure monitoring,
since the approach is naturally adapted between interpretable fleet models of
different in situ examples.

1 INTRODUCTION

Data sparsity can cause significant issues in practical
applications of reliability, performance, and safety assess-
ment. Particularly structural monitoring (Worden &
Manson, 2007), prognostics (O’Connor & Kleyner, 2012),
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or performance and health management (Kim et al.,
2017). In these domains, comprehensive (or high variance;
Paleyes et al., 2020) data are rarely available a priori;
instead, measurements arrive incrementally, through-
out the life cycle of the monitored system (Bull et al.,
2019). For example, the data recorded from the system in
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unusual environments, or following damage, might take
years to collect. Labeling to annotate the measurements
can also be limited or expensive, requiring input from a
domain expert. Such incomplete data motivate sharing
information between similar assets; specifically, whether
systems with comprehensive data (or established models)
can support those with incomplete information.
The concept of knowledge transfer, from one machine

to another, has led to the development of population-
based (Bull et al., 2021; Gardner, Bull, Gosliga, et al., 2021;
Gosliga et al., 2021) or fleet monitoring (Zaccaria et al.,
2018). Initial investigations (mostly) consider the quan-
tification of similarity between systems (Gosliga et al.,
2021) and tools for the transfer of data and/or models from
source to target domains (Bull et al., 2021; Gardner, Bull,
Dervilis, et al., 2021; Michau & Fink, 2019). An alternative
approach is considered here, whereby a combined infer-
ence is made given the measurements from a collected
group of systems (Dhada et al., 2020). Specifically, a set of
correlated, hierarchical models is learnt, given the infor-
mation recorded from the collected population. Two case
studies are presented: survival analysis of an operational
truck fleet and wind-power predictions for an operational
wind farm. Population-level models are learnt using hier-
archical Bayesian modeling (Gelman et al., 2013; Wand,
2009) providing robust predictions and variance reduction
compared to independent models and two benchmarks.
The multitask learning (MTL) approach (Murphy, 2012;
Wand, 2009) automatically shares information between
correlated domains (i.e., subgroups) such that assets with
sparse information borrow statistical strength from those
that are data-rich (via correlated variables).

1.1 Why learn fleet models?

Throughout this work, the term fleet refers to a population
of assets that constitute engineering infrastructure, for
example, civil structures (bridges and roads) or vehicles
(trains in a rail network). The problem setting from each
case study is introduced here to motivate MTL from in situ
fleet data.

1.1.1 Truck fleets

The first example concerns the survival analysis of com-
ponents (alternators and turbochargers) in a fleet of
heavy-duty trucks maintained by Scania CV. The compo-
nents are maintained in a run-to-failure strategy as failure
models are unavailable and it is infeasible for drivers
to sense incipient failure. Nonetheless, the associated
downtime can incur high costs: relating to late goods
delivery, reloading, and towing vehicles to the workshop.

For such components, survival analysis (O’Connor &
Kleyner, 2012) is critical to estimate the time to failure, and
therefore fundamental when designing a maintenance
plan. The analysis considers failure occurrences in the pop-
ulation over some specified time period. The period must
be sufficiently long, such that reliability functions can be
evaluated based on observed failures or drop-outs (Birolini,
2013). Specifically, this work focuses on the hazard func-
tion 𝜆(𝑡)which defines the instantaneous rate of failure—it
is the probability 𝑃(⋅) of a component failing at time 𝑡,
given that it has survived until time 𝑡 (Birolini, 2013),

𝜆(𝑡) =
𝑃(𝑡 ≤ 𝑇 < 𝑡 + 𝑑𝑡|𝑇 ≥ 𝑡)

𝑑𝑡
(1)

here 𝑇 denotes the time of failure. Empirically, this is
calculated as the fraction of trucks that failed to the
number of trucks that survived, in a given time interval.
Importantly, each sample from the reliability function

requires at least one failure in the historical fleet data.
For this reason, if failures are rare in certain subfleets,
the data that represent the corresponding function will
be sparse—Figure 3 visualizes this. If subfleets with more
failures can inform predictions in groups where failures
are rare, this greatly extends the value of the measured
data (and the failure events themselves).

1.1.2 Wind farms

The second case study considers power prediction
for a group of operational wind turbines. Here, the
regression tasks are power curves, which map from wind
speed to power output for a specific turbine (Papatheou
et al., 2017). The associated function can be used as an
indicator of performance and is useful in monitoring pro-
cedures (Rogers et al., 2020). Data-based methods approx-
imate this relationship from operational measurements,
typically recorded using Supervisor Control and Sensory
Data Acquisition (SCADA) systems (Yang et al., 2013).
Various techniques have been proposed to model data that
correspond to normal operation (Carrillo et al., 2013; Lydia
et al., 2014; Thapar et al., 2011). In practice, however, only a
subset ofmeasurements represent this relationship. In par-
ticular, power curtailments will appear as additional func-
tional components; these usually correspond to the output
power being controlled (or otherwise limited) by the opera-
tor. Reasons for this action include adhering to the require-
ments of the electrical grid (Hur & Leithead, 2014; Waite &
Modi, 2016), the mitigation of loading/wake effects (Bon-
tekoning et al., 2017), and restrictions enforced by planning
regulations—such data are presented in Figure 16.
Critically, different turbines experience different con-

ditions (i.e., power curves) at varying intervals. If the
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power of a particular turbine is regularly limited by the
operator (as a result of its location in the farm) measure-
ments collected from this operation become far more
valuable when they can be shared between turbines. In
this case, fleet modeling can be adopted to share (or pool)
information.

1.2 Novelty

In view of these applications, the proposed fleet modeling
approach favors explainability (with some caveats) since
each model is informative.

(1) Rather than black-box, a fleet model is built while
encoding multilevel a priori knowledge of fleet behav-
ior and model constraints, given domain expertise.

(2) The proposed model automatically determines the
level of knowledge transfer between asset groups,
learning the intertask correlations from data and
combining this with a priori engineering knowledge.

(3) In turn, the approach provides formal uncertainty
quantification of the fleet effects (parameters) at var-
ious asset group granularities (system-specific, operat-
ing condition, or population wide).

(4) Each subgroup predictor shares information and the
associated fleetmodel provides new insights, which are
greater than the sum of its parts (single-task learning
[STL]).

Such fleet models are desirable, since they enable
downstream analyses, to determine which groups of
asses share information for which (interpretable) param-
eter; additionally, the model naturally integrates with
experimental design or decision processes; formalizing
the expected optimal action, or the value data collection
activities—these concepts are demonstrated in the second
case study, Section 6.4.
The approach is particularly suited to sparse, incremen-

tal data, that are found in many (practical) monitoring
applications—for example, in the first (survival analysis)
case study, one domain owns a single training observation.

1.3 Layout

The paper layout is as follows. Section 2 summarizes exist-
ing work relating to population monitoring of engineering
systems. Section 3 states the contributions of this work.
Section 4 introduces a general methodology for knowledge
transfer via hierarchical Bayesian modeling. Sections 5
and 6 present the truck fleet and wind farm case studies.
Section 7 offers concluding remarks.

2 RELATEDWORK

A summary of fleet-monitoring literature is provided. The
term knowledge transfer is used generally to refer to meth-
ods that learn from multiple related data sets. Specific
definitions of transfer learning are contentious: This work
followsMurphy (2012), which viewsMTL as the combined
inference of a set of related tasks, while domain adaptation
(DA) is a method of transforming data, such that the same
task can be learnt for multiple domains. Both approaches
are considered as transfer learning—especially when
domains share interpretable, parameterized models.

2.1 Fine-tuning and DA

When monitoring engineering populations, the majority
of literature focuses on transfer learning. Transfer learning
seeks to improve predictions in a target domain given the
information in a (more complete) source domain. Many
examples consider crack detection via image classification
using convolutional neural networks (CNNs). For exam-
ple, Dorafshan et al. (2018), Gao and Mosalam (2018), and
Jang et al. (2019) detect cracks over a number of domains
by fine-tuning the parameters of a CNN trained on a source
domain to aid generalization in the target.
DA is viewed as another variant of transfer learning in

engineering applications (DA) (Li et al., 2019; Wang et al.,
2019; Zhang et al., 2017). These techniques define some
mapping from domain data into a shared space (possibly
one of the original domains) where a single model is used
to make predictions. For example, Michau and Fink (2019)
apply a neural network mapping for DA in the condition
monitoring of a fleet of power plants. DA has also been
investigated by (kernelized) linear projection, discussed
in a structural health monitoring context by Gardner, Liu,
et al. (2020) and Gardner, Fuentes, et al. (2020) consider-
ing methods for knowledge transfer between simulated
source and target structures, as well as a simulated source
and experimental target structure (Gardner et al., 2022).
Damage detectors have also been transferred between
systems via DA in a group of tailplane structures using
ground-test vibration data (Bull et al., 2021). To accommo-
date for class imbalance and data sparsity, often associated
with monitoring data, Poole et al. (2022) introduce statistic
alignment methods for adaptation procedures.

2.2 MTL

An alternative view of population-level models considers
MTL. While the multitask approach also assumes that
the predictors (i.e., tasks) are correlated over the fleet,
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824 BULL et al.

the parameters across domains are learnt at the same
time with equal importance. A combined inference allows
domain-specific models to share information between
related tasks, improving the accuracy in domains where
data are limited (Sun et al., 2021).
Examples of MTL are less prevalent when modeling

engineering infrastructure.Wan andNi (2019) successfully
use a Gaussian process (GP) to learn correlations between
tasks in a multioutput regression. The GP is built using a
carefully specified kernel (Bonilla et al., 2007) to capture
the task and intertask relationships. The experiments cap-
ture correlations between temperature/acceleration sens-
ing systems on a single structure (the Canton Tower),
rather than multiple assets in a fleet. Similarly, Li et al.
(2021) apply correlated GPs to address the missing data
problem over multiple sensors of a hydroelectric dam.
The results demonstrate successful knowledge transfer
between measurement channels. Considering aerospace
engines, Seshadri et al. (2020) apply GPs for knowl-
edge transfer between multiple axial measurement planes
when interpolating temperature fields within an aircraft
engine. Sharing information between planes significantly
improves the spatial representation of the response.
Hierarchical Bayesian modeling offers another multi-

task framework. A model is built with a “hierarchy” of
parameters, whereby domain-specific tasks are correlated
via shared latent variables (explained in Section 4). The
approach was introduced to structural monitoring by
Huang et al. (2019) and Huang and Beck (2015), who
utilize hierarchical models to learn multiple, correlated
regression models for modal analysis. A shared sparseness
profile is inferred over all tasks and related measurement
channels, improving damage detection and data recovery
by considering the correlation between damage scenarios
or adjacent sensors on the same structure. Some recent,
related applications include Di Francesco et al. (2021), who
use hierarchical models to build corrosion models given
evidence from multiple locations, and Papadimas and
Dodwell (2021), where the results from a series of mate-
rials experiments (i.e., coupon samples) are combined to
inform the estimation of material properties. Also, Dhada
et al. (2020) implement hierarchical Gaussian mixture
models to cluster simulated data that represent novelty
detection for asset management; the model parameters
are interpretable in terms of the data distribution, rather
than the application domain.

2.3 Wider monitoring methods

It is worth considering more general developments in
the literature, and how they relate to fleet monitoring.
Multitask neural networks, in particular, show promise

when the size (or features) of monitoring data permits
their application; for example, Zhang et al. (2020) design
a deep architecture for guided wave data sets. Similarly,
Tsialiamanis et al. (2022) successfully investigate neural
networks for knowledge transfer by mapping measure-
ments from multiple structures onto a common manifold,
to learn a shared representation.
Recent developments in structural health monitoring,

such as those relating to modal analysis (Perez-Ramirez
et al., 2019), should naturally integrate with a popula-
tion approach—whereby different effects of dynamic
models are learnt at various granularities over the fleet.
Developments in signal processing for complex civil
structures (Amezquita-Sanchez et al., 2017; Li et al., 2017)
might also be utilized to extract features that inform an
appropriate level of information sharing between large in
situ structures.
A primary motivation of this work, however, is to

consider structures/domains with very sparse (or absent)
data—for example, those recently in operation, or new
environmental conditions. In turn, model comparisons
here are limited to parametric (or shallow Sukhija &
Krishnan, 2020) methods of knowledge transfer, cen-
tered around interpretable models—each benchmark is
outlined in Section 4.4. A (general) comparison of fleet
monitoring approaches is provided in Table 1, to motivate
the proposed method (labeled Hierarchical Modeling,
MTL) and its relevance in many engineering applications.

2.4 Bayesian versus “deep” knowledge
transfer

The distinction between hierarchical (Bayesian) and
deep (neural network) approaches to transfer learning is
important. The differences emphasize why, in many appli-
cations, the proposed (hierarchical) method is required for
infrastructure monitoring. Key comparisons from Table 1
are expanded:

(1) Both address relative data sparsity (between domains)
however, the level of sparsity is method dependent:
Generally, deep methods are suited to complex fea-
tures and big data; hierarchical methods are suited to
standard measurements and interpretable models.

(2) Both improve predictions over multiple asset groups;
however, the proposed hierarchical approach pro-
vides uncertainty quantification of the nested sub-
groups, enabling downstream (statistical) analyses—
for example, experimental design or decision processes
(demonstrated in Section 6.4).

(3) Encoding domain (engineering) expertise is natu-
ral for multilevel Bayesian models—for example, the
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BULL et al. 825

TABLE 1 Fleet modeling—A (generalized) comparison of methodologies

Method Single task
learning

Complete
pooling

Fine tuning (neural
nets.)

Domain adaptation Neural Nets. (MTL) Hierarchical
modeling (MTL)

Knowledge
transfer

none Data-level Pretraining on
similar data sets

Data-level
(transformed)

Correlated weights,
shared layers

Correlated
parameters, tied
parameters

Interpretable Model
dependant

Model
dependant

Nonparametric/
black box

Model dependent Nonparametric/
black box

Yes

Task-specific
or shared
models

Task-specific Shared only Task-specific (once
retrained)

Shared only Both Both (natural
interpretation)

Data set size Any (model
dependent)

Any (model
dependent)

Large Model dependent Large Any

knowledge that all turbines in a wind farm have the
samemaximumpower, but the rate at which they limit
to a maximum will depend on turbine location.

(4) Conversely, for neural networks, encoding domain
expertise is difficult since they are nonparametric;
in turn, the inferences (and model constraints) at
different levels of fleet granularity are less intuitive.

3 CONTRIBUTION

The main contributions of this work are twofold: (1) MTL
with hierarchical Bayesian modeling allows information
to be shared between distinct (but related) systems using
operational fleet data (wind turbines and trucks) rather
than multiple sensors on a single structure; (2) various
mixed effects are considered in the hierarchy, such that
certain characteristics (parameters) can be learnt at the
individual, group, or population level. In turn, prior
engineering knowledge can be encoded at different lev-
els in the hierarchy and parameters can be shared for
various (nested) subgroups. The hierarchical models are
easily formulated around interpretable parameters and
the resultant structure allows insightful analyses of the
predicted variables, indicating which groups of systems
share information for which effect.
When MTL for engineered infrastructure, it is crucial to

establish an appropriate level of knowledge transfer (data
pooling) between systems or domains. If information is
inappropriately shared, this can lead to negative transfer,
whereby population models prove worse than conven-
tional (single task) learning. Importantly, the proposed
model automatically determines an appropriate level of
knowledge transfer, by learning the intertask correlations
from the data and combining this with engineering
knowledge—encoded as prior distributions within the
hierarchical structure.
The resultant approach permits formal uncertainty

quantification at various levels of the predictive model,

and, in turn, various granularities of fleet behavior (e.g.,
system-specific, condition-specific, or population-wide).
Multiple levels of uncertainty quantification enable
natural integration with decision processes, or experi-
mental design procedures, considering the whole fleet. In
turn, the model can be used to inform fleet interactions
within a wider asset management program. To highlight
this novelty, the hierarchical model is integrated with a
demonstrative decision process in the second (wind farm)
case study.
Similarly, while the proposed hierarchical model makes

inferences from observations at the subfleet level only
(i.e., task-specific outputs), predictions can be made at
various levels—including larger groups and the aggre-
gated population. Inference of the joint population model
(from task-specific observations) presents the knowledge
transfer mechanism. The resultant structure produces
both shared and task-specific models—this is not true for
any of the benchmarks, which learn one of the two options
(i.e., STL, complete pooling [CP], DA—Section 4.4).

4 HIERARCHICAL BAYESIAN
MODELING FORMTLWITHMIXED
EFFECTS

Consider fleet data, recorded from a population of engi-
neering systems, which are separated into 𝐾 groups or
subfleets. The population data can then be denoted,

{𝐱𝑘, 𝐲𝑘}
𝐾
𝑘=1 =

{
{𝑥𝑖𝑘, 𝑦𝑖𝑘}

𝑁𝑘
𝑖=1

}𝐾
𝑘=1

(2)

where 𝐲𝑘 is target response vector for inputs 𝐱𝑘 and
{𝑥𝑖𝑘, 𝑦𝑖𝑘} are the 𝑖th pair of observations in group 𝑘. There
are 𝑁𝑘 observations in each group and thus

∑𝐾
𝑘=1
𝑁𝑘

observations in total. The aim is to learn a set of 𝐾
predictors, one for each group, related to classification
or regression tasks. Without loss of generality, this work
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826 BULL et al.

focuses on the regression setting, where the tasks satisfy

{𝑦𝑖𝑘 = 𝑓𝑘(𝑥𝑖𝑘) + 𝜖𝑖𝑘}
𝐾

𝑘=1

that is, the output is determined by evaluating one of 𝐾
latent functions with additive noise 𝜖𝑖𝑘. Note, for classi-
fication, logistic regression would involve modifying the
above likelihood for categorization (a Bernoulli distri-
bution) and passing 𝑓𝑘(𝑥𝑖𝑘) through the logit function
to ensure predictions are between zero and one (binary
classification) (Murphy, 2012).
The mapping 𝑓𝑘 is assumed to be correlated between

subfleets. In consequence, the models should be improved
by learning the parameters in a joint inference over the
whole population. In machine learning, this is referred
to as MTL; in statistics, such data are usually modeled
with hierarchical models (Gelman & Hill, 2006; Kreft &
De Leeuw, 1998).

4.1 Hierarchical Bayesian modeling

In practice, while certain subfleets might have rich,
historical data, others (particularly those recently in
operation) will have limited training data. In this setting,
learning separate, independent models for each group
will lead to unreliable predictions. On the other hand, a
single regression of all the data (CP) will result in poor
generalization. Instead, hierarchical models can be used
to learn separate models for each group while encouraging
task parameters to be correlated (Murphy, 2012)— the
established theory is summarized here.
Consider 𝐾 linear regression models,

{
𝐲𝑘 = 𝚽𝑘𝜶𝑘 + 𝝐𝑘

}𝐾
𝑘=1

(3)

where 𝚽𝑘 = [𝟏, 𝐱𝑘] is the 𝑁𝑘 × 2 design matrix; 𝜶𝑘 is the
2 × 1 vector of weights; and the noise vector is 𝑁𝑘 × 1 and
normally distributed1 𝝐𝑘 ∼ N(0, 𝜎2𝑘𝐈). 𝟏 is a vector of ones,
𝐈 is the identity matrix, and N(𝑚, 𝑠) is the normal distribu-
tion withmean𝑚 and (co)variance 𝑠. The likelihood of the
target response vector is then

𝐲𝑘|𝐱𝑘 ∼ N(𝚽𝑘𝜶𝑘, 𝜎2𝑘𝐈) (4)

∴ 𝑦𝑖𝑘|𝑥𝑖𝑘 ∼ N(𝛼(𝑘)1 + 𝛼(𝑘)2 𝑥𝑖𝑘, 𝜎2𝑘)

1 In this first introductory example, the additive noise variance 𝜎2
𝑘
is

observed—in the next example, it is unobserved.

F IGURE 1 DGM of hierarchical linear regression

In a Bayesian manner, one can set a shared hierarchy of
prior distributions over the weights (slope and intercept)
for the groups 𝑘 ∈ {1, … , 𝐾},

{𝜶𝑘}
𝐾
𝑘=1

i.i.d
∼ N

(
𝝁𝛼, diag

{
𝝈2𝛼

})
(5)

𝝁𝛼 ∼ N(𝐦𝛼, diag{𝐬𝛼}) (6)

𝝈𝛼
i.i.d
∼ IG(𝑎, 𝑏) (7)

In words, (5) assumes that the weights {𝜶𝑘}𝐾𝑘=1 are nor-
mally distributed N(⋅) with mean 𝝁𝛼 and covariance2
diag{𝝈2𝛼}. Similarly, (6) states that the prior expectation of
the weights 𝜶𝑘 is normally distributed with mean𝐦𝛼 and
covariance diag{𝐬𝛼}; (7) states that the prior deviation of
the slope and intercept is inverse-Gamma distributed IG(⋅)
with shape and scale parameters 𝑎 and 𝑏 respectively.
Selecting appropriate prior distributions, and their

associated hyperparameters {𝐦𝛼, 𝐬𝛼, 𝑎, 𝑏}, is essential to
the success of hierarchical models. In this work, prior
elicitation is justified by encoding engineering knowl-
edge in each case study as weakly informative pri-
ors (Gelman et al., 2013). The directed graphical model
(DGM) in Figure 1 visualizes the general hierarchical
regression. The nodes show observed/latent variables as
shaded/nonshaded, respectively; arrows show conditional
dependencies, and plates show multiple instances of sub-
scripted nodes.
The 𝐾 weight vectors 𝜶𝑘 are correlated via the com-

mon latent variables {𝝁𝛼, 𝝈2𝛼}, that is, parent nodes in
Figure 1. Note that Equations (5) to (7) encode prior belief
of the independence between latent variables. In thiswork,
this does not restrict the covariance structure of the pos-
terior distribution for {𝜶𝑘}𝐾𝑘=1 since it is approximated
usingMarkov ChainMonte Carlo (MCMC, summarized in
Section 4.3).
Via correlations in the posterior distribution, sparse

domains borrow statistical strength from those that are
data-rich. Crucially, to share information between tasks,
the parent nodes {𝝁𝛼, 𝝈2𝛼} must be inferred from the pop-
ulation data. In this way, the subfleet parameters 𝜶𝑘 are
(indirectly) influenced by the wider population. Consider
that, if {𝝁𝛼, 𝝈2𝛼} were fixed constants, rather than variables

2 The operator diag{𝐚} forms a square diagonal matrix with the elements
from 𝐚 on the main diagonal and zeros elsewhere.
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BULL et al. 827

inferred from data, each model would be conditionally
independent, preventing the flow of information between
domains (Murphy, 2012).

4.2 Mixed-effects modeling

The hierarchical structure allows effects (i.e., interpretable
latent variables) to be learnt at different levels, as well as
“prior” information. Specifically, the parameters of the
model itself (3) can be learnt at the system, subfleet, or pop-
ulation level. The inference of parameters at various levels
of hierarchy, while encoding engineering/domain knowl-
edge at each level, constitutes significant novelty here.
Returning to the regression example (3), consider that

the variance 𝜎2
𝑘
of the noise 𝝐𝑘 is in fact unknown. While

one could learn 𝐾 domain-specific noise variance terms
𝜎2
𝑘
, it is typically assumed that the noise is equivalent

across tasks. Sharing the parameter and inferring it from
the population can significantly reduce the uncertainty
in its prediction. Of course, this assumption should be
justified given an understanding of the problem at hand;
for example, the same sensing system collects all the pop-
ulation data. In terms of notation, (3) remains the same,
however, the domain-specific noise vector 𝝐𝑘 is now dis-
tributed 𝝐𝑘 ∼ N(0, 𝜎2𝐈). The removal of subscript-𝑘 from
the noise variance implies that the size of 𝜎2 remains the
samewhile the number of the subfleets𝐾 increases (unlike
𝜶𝑘). Intuitively, 𝜎2 is now a tied parameter (Murphy, 2012).
Similarly, it makes sense to also infer effects at the

population level, to further reduce model uncertainty.3
Throughout this work, it is assumed that shared effects
also enter the model linearly, for the target response
vector 𝐲𝑘 and inputs 𝐱𝑘,{

𝐲𝑘 = 𝚽𝑘𝜶𝑘
⏟⏟⏟
random

+ 𝚿𝑘𝜷
⏟⏟⏟
fixed

+ 𝝐𝑘

}𝐾
𝑘=1

(8)

where 𝚿𝑘 is some design matrix of inputs, and 𝜷 is
the corresponding vector of weights. Again, there is no
subscript-𝑘 for 𝜷 (like 𝜎2) as it is tied between subfleets.
FollowingKreft andDe Leeuw (1998), the 𝜷 coefficients are
considered fixed effects, as they are learnt at the population
level and shared, while 𝜶𝑘 are random effects, as they vary
between individuals. Intuitively, a model with both fixed
and random effects can be considered a mixed (effects)
model (Gelman et al., 2013; West et al., 2006). Figure 2
shows the modified DGM of the hierarchical regression.
The key differences are nodes outside of the𝐾 plate—these
are the tied parameters, learnt at the population level.

3 For example, the interceptwould be a shared parameter,with zeromean,
in a related linear regression of Hooke’s law for several materials tests.

F IGURE 2 DGM of hierarchical linear regression with mixed
effects

As Gelman et al. (2013) point out, the terms random
and fixed originate from a frequentist perspective and
are somewhat confusing in a Bayesian context where
all parameters are random, or (equivalently) fixed with
unknown values. The terminology is used, however, as
it is intuitive considering engineering applications and
consistent with established literature in modeling panel or
longitudinal data (Gelman & Hill, 2006). One should also
consider that interpreting mixed-effects models remains
challenging, even when models are parameterized. If
the effects are not (linearly) independent, the fixed and
random coefficients can influence each other, making it
difficult to reliably recover their relationships. In turn, the
modeling assumptions must be carefully considered when
emphasizing interpretability.

4.3 Inference

In view of graphical models, the observed variables are
referred to as evidence nodes. For example, the hierarchical
regression in Figure 1 would have the following set of
evidence nodes:

 = {[𝐲𝑘]} (9)

where [𝐲𝑘] is shorthand to denote complete set
{𝐲1, 𝐲2, … , 𝐲𝐾}. On the other hand, the latent variables are
hidden nodes,

 = {[𝜶𝑘], 𝝁𝛼, 𝝈𝛼} (10)

Bayesian inference relies on finding the posterior distribu-
tion of given  , that is, the distribution of the unknown
parameters given the data,

𝑝(|) = 𝑝(, )
𝑝()

=
𝑝([𝐲𝑘, 𝜶𝑘], 𝝁𝛼, 𝝈𝛼)

𝑝(𝐲𝑘)

=
𝑝([𝐲𝑘]|[𝜶𝑘])𝑝([𝜶𝑘]|𝝁𝛼, 𝝈𝛼)𝑝(𝝁𝛼)𝑝(𝝈𝛼)
∫ ∫ ∫ 𝑝([𝐲𝑘, 𝜶𝑘], 𝝁𝛼, 𝝈𝛼) 𝑑𝜶𝑘𝑑𝝁𝛼𝑑𝝈𝛼 (11)
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828 BULL et al.

DGM representations are useful since inference can be
aided by graph-theoretic results. The systematic applica-
tion of graph-theoretic algorithms has led to a number of
probabilistic programming languages—here, models are
implemented in Stan (Carpenter et al., 2017). The parame-
ters are inferred using MCMC, via the no U-turn imple-
mentation of Hamiltonian Monte Carlo (Hoffman et al.,
2014). Throughout, the burn-in period is 1000 iterations
and 2000 iterations are used for inference. Code based on
the first case study is publicly available on GitHub.4

4.4 Engineering applications

In each case study, hierarchical models are formulated
for knowledge transfer between asset models. The first
concerns survival analysis of truck fleets (hazard curves)
and the second concerns power prediction for turbines
(power curves). Engineering expertise is encoded in a
number of ways: to (1) inform prior elicitation, (2) deter-
mine which effects are random or fixed, and (3) formulate
interpretable parameters. In turn, population modeling
offers insights as to which subfleets share information for
which (interpretable) effect.
Importantly, by considering the collected population,

the training data can, in effect, be extended. In turn,
parameter estimation is improved while increasing the
reliability of predictions. There are, of course, important
considerations when building such models—prior elicita-
tion, mixed-effects formulation, negative transfer—these
concepts are discussed throughout.
Throughout, the predictive performance of the mul-

titask methodology (MTL) is compared to three fleet
monitoring benchmarks:

(1) STL: the predictive model learnt from each domain
independently.

(2) CP: the predictivemodel learnt from the collected fleet
data, assuming all data are generated by a single task.

(3) (CRL) Correlation alignment for DA: sequentially
treating each task �̂� as the target domain, and embed-
ding the remaining (source) domains onto the joint
distribution 𝑝(𝐲�̂�, 𝐱�̂�) using CORAL (Sun et al., 2017).
All measurements are treated as one task, and a single
model is learnt, to predict the target test data.

For sensible comparisons, the predictive model is
consistent across all benchmarks—what differs is the
effective presentation of data during inference. Note that
parameter interpretation becomes problematic in domain

4 Rather than the operational data presented here, the code uses simu-
lated data (in view of data sensitivity).

F IGURE 3 Log hazard function data for alternators in the
truck fleet. Training and testing markers are ∙ and ◦, respectively.
Colors correspond to subfleet labels, associated with the task index
𝑘 ∈ {1, 2, … , 8}

adaptation (CRL) since the (source) joint distributions
{𝑝(𝐲𝑘, 𝐱𝑘)}

𝐾
𝑘=1

have been transformed onto the target
(Poole et al., 2022). Once transformed, making predictions
for new source observations is nontrivial. These caveats
highlight a benefit of the proposed methodology; however,
comparisons to CRL are included to emphasize that
adaptation alone is insufficient to treat all fleet monitoring
problems, especially with parameterized models and
sparse data.
By nature of the practical applications (and data

sensitivity) in each case study, validation to a ground
truth for parameters is not feasible; for this reason,
models are compared to the available (response) ground
truth and quantified by the predictive log-likelihood
(e.g., (22)).

5 TRUCK-FLEET SURVIVAL ANALYSIS

The hazard data for truck fleet alternators are shown in
Figure 3. Herein, this work considers the log-hazard, since
it is easier to visualize. There are 437 observations in total,
split into a 75% training set and 25% test set. The data are
z-score normalized in view of data sensitivity and certain
(specific) details are omitted. The observations represent
the complete monitoring data set, since no observations
we lost via normalization, truncation, or censorship. It
is clarified that normalization affects the direct interpre-
tation of the parameters. In practice, however, one can
recover interpretable values by transforming back into the
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BULL et al. 829

original space. Here, for the purpose of discussion, the
relative parameter values and their relationships remain
interpretable. To generate the hazard data, the total time
in service for all assets was divided into intervals of 1
day; for each day, the ratio of the number of components
that failed to the number that survived (so far) is cal-
culated. The choice of interval length is dependent on
the application—here 1 day is sufficient compared to the
maintenance horizon.
The subfleets were manually labeled in collabora-

tion with the engineers at Scania. Colors correspond
to different subpopulations, where the total num-
ber of groups (and, therefore, hazard functions) is
𝐾 = 8. Note that certain domains are more sparse
than others, with the most extreme case being 𝑘 = 8,
owning a single observation. The population model
will look to utilize data-rich domains with more infor-
mation (𝑘 ∈ {1, 2, 3}) to support the sparse domains
(𝑘 ∈ {5, 6, 7, 8}). The number of task-wise observations is as
follows:

𝑵𝟏 𝑵𝟐 𝑵𝟑 𝑵𝟒 𝑵𝟓 𝑵𝟔 𝑵𝟕 𝑵𝟖
∑𝑲
𝒌=𝟏
𝑵𝒌

180 108 70 49 15 7 7 1 437

5.1 Task regression formulation

When analyzing survival data, it is convenient to assume
the survival time 𝑇 is parametrically distributed since
the parameters are interpretable and formulate a specific
hazard function. A straightforward example is presented
when 𝑇 is exponentially distributed, leading to a constant
hazard (Rodrıguez, 2010).
Rather than constant, Figure 3 shows the log-hazard

is near-linear for a large proportion of the input domain,
with a notable nonlinear effect at low 𝑡 values (early hours
in service). Therefore, it is assumed the best (parametric)
approximation of the marginal 𝑝(𝑇 = 𝑡) is the Gompertz
distribution (G) for each subfleet (Rodrıguez, 2010),

𝑝(𝑇 = 𝑡) = G(𝑡 ; 𝛾, 𝜙)

= (𝛾𝑒𝜙𝑡) exp

{
−
𝛾

𝜙
(𝑒𝜙𝑡 − 1)

}
(12)

This is convenient, since (12) is formulated such that
log-hazard is linear in time 𝑡,

log 𝜆G(𝑡) = log 𝛾 + 𝜙𝑡

= 𝛼1 + 𝛼2𝑡 (13)

Since only hazard data were available, tasks are fit directly
to (13) rather than the distribution over the time at failure
(12). The correct likelihood, however, should consider
the distribution (12) as the tasks directly—this avoids
assumptions of a Gaussian likelihood for the log-hazard.
Instead, the (log) hazard uncertainty would be naturally
represented by the variance of 𝛾 and 𝜙. Unfortunately,
this was not possible here in view of data availability. For
a better interpretation of the parameters in practice, and
agreement with Kolmogorov’s axioms, the likelihood of
the population model should represent the time-at-failure
𝑇 directly.
Considering the data in Figure 3, a weighted sum of

𝐻 B-spline bases functions 𝑏ℎ(𝑡) is included to model
the (nonparametric) discrepancy between the linear Gom-
pertz hazard and the empirical data,

log 𝜆(𝑡) = 𝛼1 + 𝛼2𝑡 +

𝐻∑
ℎ=1

𝛽ℎ𝑏ℎ(𝑡) (14)

= log 𝜆G(𝑡) +

𝐻∑
ℎ=1

𝛽ℎ𝑏ℎ(𝑡)

Cubic B-splines (Appendix A) are selected as they are
smooth with compact support, resulting in a sparse design
matrix for the 𝛽ℎ terms.5 This property is suitable since the
nonlinear response acts in specific (compact) regions of the
input. In effect, (14) defines a semiparametric (or a partially
linear) regression (Wand, 2009) with kernel smoothing to
approximate the hazard functions for each subfleet.

5.2 Mixed-effects formulation

From Figure 3, one observes the underlying linear trend
{𝛼1 + 𝛼2𝑡} is varying between subfleets while the non-
linear effect

∑𝐻
ℎ=1
𝛽ℎ𝑏ℎ(𝑡) appears consistent over the

population. In other words, while the data are poorly
described by a (linear) Gompertz hazard function, the
(nonparametric) discrepancy remains consistent.
Therefore, the associated spline weights 𝜷 = {𝛽ℎ}𝐻ℎ=1 are

assumed to be fixed effects and learnt at the population
level. On the other hand, task-specific linear weights are
inferred, which are correlated via common latent variables
(random effects) 𝜶𝑘 = {𝛼

(𝑘)
1
, 𝛼
(𝑘)
2
}.

5 An appropriate number of splines 𝐻 will be determined through cross-
validation.𝐻 is treated deterministically to simplify implementation and
improve stability since the uncertainty of𝐻 is less informative compared
to more interpretable parameters
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830 BULL et al.

The mixed effect model can now be expressed in the
general notation from (8),{

𝐲𝑘 = 𝚽𝑘𝜶𝑘
⏟⏟⏟
random

+ 𝚿𝑘𝜷
⏟⏟⏟
fixed

+ 𝝐𝑘

}𝐾
𝑘=1

Specifically, for each subfleet 𝑘: 𝐲𝑘 is the output of the
log-hazard (14) with additive noise 𝝐𝑘; 𝐱𝑘 are the inputs
corresponding to time 𝑡; 𝜶𝑘 is the varying linear weight
vector with design matrix 𝚽𝑘 = [𝟏, 𝐱𝑘]; and 𝜷 is the
tied/fixed weight vector, with a design matrix of splines,

𝚿𝑘 =
[
𝑏1(𝐱𝑘), 𝑏2(𝐱𝑘), … , 𝑏𝐻(𝐱𝑘)

]
(15)

The resultant graphical model corresponds to Figure 2
and the likelihood of the response is,

𝑦𝑖𝑘|𝑥𝑖𝑘, 𝜽𝑘 ∼
N

(
𝛼
(𝑘)
1
+ 𝛼

(𝑘)
2
𝑥𝑖𝑘 +

𝐻∑
ℎ=1

𝛽ℎ𝑏ℎ(𝑥𝑖𝑘), 𝜎
2

)
(16)

where 𝜽𝑘 = {𝜶𝑘, 𝜷, 𝝁𝛼, 𝝈𝛼, 𝜎} is the set of parameters
indexed to task 𝑘.

5.3 Weakly informative priors

Primarily considering 𝜶𝑘, it is possible to encode prior
knowledge of the expected functions, since the linear com-
ponent corresponds to aGompertz survivalmodel (13). It is
acknowledged that, in this case, the specific hyperparam-
eter values are less meaningful as the data are normalized;
however, their interpretation remains relevant.
Specifically, 𝜶𝑘 is distributed according to Equations (5)

to (7), with hyperparameters,

𝐦𝛼 = [0, 1.5]
⊤, 𝐬𝛼 = [2, 0.5]

⊤ (17)

𝑎 = 1, 𝑏 = 1 (18)

The first element of 𝐦𝛼 corresponds to the intercept
and postulates the baseline log-hazard.6 (This is 0 since
the data are centered). The second element of 𝐦𝛼 is
the expected slope of the log-hazard. (Set to 1.5 as one
expects hazard to increase exponentially under the Gom-
pertz model with a gradient > 1 when normalized). The
𝐬𝛼 values indicate a weakly informative prior under the
ranges imposed by z-score normalization. Similarly, the
𝑎, 𝑏 values encourage correlation between subfleet mod-
els, such that the prior mode of the standard deviation of
the generating distribution of 𝜶𝑘 is 𝑏∕(𝑎 + 1) = 1∕2 (this

6 Or the exponentiated initial rate-of-failure.

intentionally overestimates the deviation 𝝈𝛼 between sub-
fleets, such that the population model weakly constrains
𝜶𝑘).
The shared prior over the variance of the additive noise

𝝐𝑘 is set to,

𝜎 ∼ IG(3, 0.8) (19)

whose mode is at 0.2, indicating that the standard devi-
ation of the noise is expected to be significantly less
(around five times) than that of the output, that is, a high
signal-to-noise ratio.
Following a standard approach (Gelman et al., 2013)

the basis function model can be centered around the
linear component (log 𝜆G(𝑡)) via specification of the 𝜷
prior. Specifically, one can postulate a shrinkage prior
with a high density at zero, to (effectively) exclude basis
functions by encouraging their expected posterior weights
to be near-zero—while also having heavy tails to avoid
over-shrinkage. A standard hierarchical prior is used
(Tipping, 2001), which exhibits these desired properties,

𝛽ℎ ∼ N(0, 𝜎2ℎ), 𝜎2
ℎ
∼ IG(𝑣, 𝑣) (20)

where 𝑣 is some small nonzero value—in this case
𝑣 = 10−3.
To summarize, without any data, the prior postulates

that the underlying log-hazard is expected to be linear,
corresponding to a Gompertz survival model (13). The
discrepancy between this simple (parameterized) behavior
and the data will be modeled by nonparametric splines,
resulting in a semiparametric regression (14) for each task.
Figure 4 visualizes the implications of themodel and prior,
which shows the posterior predictive distribution inferred
from the most data-rich domain only (𝑘 = 1, STL). This
experiment is used to validate an appropriate number
of splines for the population model, which is found to
be 𝐻 = 5 through 20-fold cross-validation, presented in
Appendix B. It is intuitive to note, the same independence
can, in effect, be achieved for parameters with hierarchical
priors (i.e., 𝜶𝑘) by letting the variance of their generating
distribution become very large (Gardner, Fuentes, et al.,
2020) (i.e., 𝝈𝛼 → ∞).
Following Section 4.3, and collecting all task parameters

𝚯 = {[𝜶𝑘], 𝜷, 𝝁𝛼, 𝝈𝛼, 𝜎}, the posterior distribution can be
written,

𝑝(𝚯|[𝐲𝑘]) = 𝑝([𝐲𝑘], 𝚯)
𝑝([𝐲𝑘])

=
𝑝([𝐲𝑘] ∣ 𝚯)𝑝(𝚯)

∫ 𝑝([𝐲𝑘], 𝚯)𝑑𝚯 (21)
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BULL et al. 831

F IGURE 4 Basis function model for the data-rich domain
(𝑘 = 1). The parametric Gompertz component (13) is the dashed
line and the posterior mean of the semiparametric model (14),
including splines, is the solid line

where 𝑝([𝐲𝑘] ∣ 𝚯) is indexed by (16) and the joint prior
𝑝(𝚯) is defined by (17) to (20). MCMC is used for inference
since (21) is intractable.
Having conditioned on the training data [𝐲𝑘], predic-

tions can be made for the unobserved response 𝐲∗
𝑘
at 𝐱∗

𝑘
using the posterior predictive distribution,

𝑝(𝐲∗
𝑘
∣ 𝐱∗
𝑘
, [𝐲𝑘]) = ∫ 𝑝(𝐲∗

𝑘
∣ 𝐱∗
𝑘
, 𝚯)𝑝(𝚯 ∣ [𝐲𝑘])𝑑𝚯 (22)

(Conditioning on 𝐱∗
𝑘
is included here to emphasize

prediction.)

5.4 Results

To motivate sharing information within the fleet, the
regression tasks for each subfleet are initially learnt
independently. This corresponds to learning separate
(task-specific) parameters, which are independent, pre-
venting the flow of information via correlated variables or
tied parameters. The separated models can be visualized
by removing the 𝐾 plate from the DGM in Figure 2, while
including 𝑘-subscripts for 𝜎2 and 𝜷. Figure 5 presents
these updates.
Figure 6 shows the resulting domain-wise regres-

sion (i.e., STL). The posterior-predictive distributions
𝑝(𝐲∗

𝑘
|𝐱∗
𝑘
, 𝐱𝑘, 𝐲𝑘)make sense under themodel/prior formu-

lation, however, independent models fail to consider that
valuable information might be shared between the task

F IGURE 5 DGM for independent linear models

TABLE 2 Out-of-sample (average) predictive log-likelihood for
25% test data: log 𝑝(𝐲∗

𝑘
|𝐱∗
𝑘
)

model 𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6 𝑘 = 7 
CP −24.13 0.84 −4.49 −4.02 −2.41 −2.77 −6.50 −43.49
CRL 79.29 49.50 20.07 11.38 4.24 2.94 5.47 172.88
STL 150.24 94.24 57.66 47.04 8.51 −3.17 0.95 355.47
MTL 166.18 98.23 64.78 58.09 25.7 10.17 −13.58 409.57

relationships. In turn, the posterior predictive distribution
presents large uncertainty, especially in sparse domains.
Hierarchical modeling is now utilized to learn the

parameters in a combined inference from the popula-
tion data. The mean and standard deviation of samples
drawn from the MTL posterior predictive distribution
are shown in Figure 7. Visually, the predictive distri-
butions 𝑝(𝐲∗

𝑘
|𝐱∗
𝑘
, {𝐱𝑘, 𝐲𝑘}

𝐾
𝑘=1
) better represent belief of

the underlying task functions by leveraging informa-
tion between domains. In particular, information from
data-rich domains (𝑘 ∈ {1, 2, 3, 4}) informs the (fixed)
nonlinear effect.
The predictive (log) likelihood for out-of-sample test

data (25%) is evaluated for a large number of trials (100)
via bootstrap sampling (Murphy, 2012). The combined
population log-likelihood  increases significantly, from
355 to 410, highlighting improvements following inference
at the fleet level. Table 2 presents the relative changes for
each task, where CRL is CORAL for joint adaptation.7
Compared to STL there is a relative improvement in all
domains (other than 𝑘 = 7) especially those domains with
sparse training data. In particular, leveraging information
enables more reliable extrapolation to late hours in service
where the test data are likely to be sparse. It is believed
that the likelihood decrease occurs in domain 𝑘 = 7, since
the subfleet labeling may be unreliable—the hazard data
could in fact represent more than one group when observ-
ing Figure 3. Improvements to the labeling procedure are
discussed as future work, Section 7.

7 Domain 𝑘 = 8 is excluded since there is only one observation in the
historical fleet data.
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832 BULL et al.

F IGURE 6 Posterior predictive distribution 𝑝(𝐲∗
𝑘
|𝐱∗
𝑘
, 𝐱𝑘, 𝐲𝑘): the mean and three-sigma deviation for 𝐾 independent regression models

F IGURE 7 Posterior predictive distribution
𝑝(𝐲∗

𝑘
|𝐱∗
𝑘
, {𝐱𝑘, 𝐲𝑘}

𝐾
𝑘=1
): the mean and three-sigma deviation for

multitask learning with mixed effects

CP and CRL benchmarks behave as expected. CP
presents the lowest overall log-likelihood , which makes
sense considering the disparity between tasks. CRL suc-
cessfully improves from CP by transforming the source
data (all remaining domains) into the target 𝑘, especially
when 𝑘 = 7. However, the total likelihood remains lower
than STL,which indicates a high risk of negative transfer—
in fact, CRL improves predictions in only 𝑘 = {6, 7}.
Reductions in the posterior variance of the parameters

via MTL are also considered, compared to STL. Figures 8
and 9 show the posterior distribution of the slope and
intercepts, respectively: These parameters correspond
to the random (linear) effect of the Gompertz model

𝛼1 + 𝛼2𝑡 (13). Variance reductions are most significant in
sparse domains (bottom row) and less significant in the
data-rich domains (top row). This follows intuition since
the population model allows sparse domains to borrow
information via the shared parent nodes {𝝁𝛼, 𝝈2𝛼}while the
data-rich domains are largely unaffected. Quantitatively,
the average reduction in standard deviation for the (inter-
pretable) linear weights is 90% and 73% for the slopes and
intercepts, respectively.
Figure 10 shows the posterior distribution of the fixed

weights 𝜷. Under the prior specification, these weights
adaptively deviate from zero to model the discrepancy
from the linear effect in sparse/compact regions of the
input (via nonparametric splines). Building on intuition,
by tying these parameters, the expected values shift
toward the expectation of the data-rich, independent mod-
els (𝑘 ∈ {1, 2, 3, 4}). In other words, in the population-level
inference, the fixed effect is learnt from the domains,
which have data to describe it.
Likewise, Figure 11 shows improvements in the esti-

mate of 𝜎(𝑘) when tying the noise effect. The posterior
variance is reduced, while the expected values indicate a
lower noise variance. This should be expected since by
pooling the data to learn 𝜎(𝑘) the training set is effectively
extended; in turn, the posterior moves further away from
the weakly informative prior (19).

5.5 Modeling additional failures and
the risk of negative transfer

The assumptions that select the tied parameters are
critical—this caveat is widely acknowledged. If any
assumptions prove inappropriate or nongeneral, the
multitask learner can risk negative transfer, whereby
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BULL et al. 833

F IGURE 8 Variance reduction in the posterior distribution of the intercept parameters 𝛼(𝑘)1 for alternator components. Independent
models (hollow) compared to population-level modeling (shaded)

F IGURE 9 Variance reduction in the posterior distribution of the slope parameters 𝛼(𝑘)2 for alternator components. Independent models
(hollow) compared to population-level modeling (shaded)

predictions are worse than conventional (i.e., single-task)
learning—that is, in this case, independent models. In
a probabilistic setting, negative transfer manifests as
inappropriate intertask correlations; to control these
dependencies one could utilize shrinkage (Gelman & Hill,
2006) or automatic relevance determination (Tipping,
2001) (between tasks) to protect against such issues; these
ideas are suggested for future work.
To highlight concerns of negative transfer, the empirical

hazard data are considered from another component in
the same fleet of vehicles, turbochargers. The survival
data are presented Figure 12, which are calculated fol-
lowing the same procedure as the alternators. Critically,
manually labeling the alternator data is problematic, since

it becomes infeasible to categorize observations as the
generating functions become more compact, or toward
the end of the operational life. The associated unlabeled
data are highlighted with small ◦markers in Figure 12.
There are various options when considering these data.

One could treat the observations as a single (pooled) sub-
fleet or task, with a large expected variance; alternatively,
the labels themselves could be treated as an additional
latent variable, such that categorization into task groups is
unsupervised. Here, the unlabeled data are removed dur-
ing preprocessing, since modeling them is out of the scope
of this work; alternative solutions are proposed in the
concluding remarks, Section 7. The resulting turbocharger
data set has 287 (normalized) observations over six tasks,
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834 BULL et al.

F IGURE 10 Posterior distribution of the weight parameters
𝜷(𝑘) = {𝛽

(𝑘)

ℎ
}𝐻
ℎ=1

. Comparison between the tied population-level
parameters (grey shaded) and independent models (hollow) for
each domain 𝑘 ∈ {1, … , 8}. Zoomed sections for ℎ = 1 and 5 are
provided in Appendix D

such that 𝑘 ∈ {1, 2, … , 6}, and the number of observations
in each domain is as follows:

𝑵𝟏 𝑵𝟐 𝑵𝟑 𝑵𝟒 𝑵𝟓 𝑵𝟔
∑𝑲
𝒌=𝟏
𝑵𝒌

112 60 32 28 25 30 287

As before, the data are split into 75% training and 25%
test sets.
From Figure 12, one observes that the turbocharger

hazard data are similar to Figure 3 (alternators). Since
the components operate within the same fleet of vehicles,
it is assumed that information can be shared between
the associated predictors by extending the task-set in the
hierarchical model. A naïve approach assumes the same
formulation of mixed effects, and simply extends the total
number of tasks such that 𝐾 = 14 (i.e., 8 + 6) then infers

F IGURE 11 Posterior distribution of the noise parameter 𝜎(𝑘).
Comparison between the tied population-level parameters (gray
shaded) and independent models (hollow) for each domain
𝑘 ∈ {1, … , 8}

F IGURE 1 2 Log hazard data for turbochargers in the truck
fleet. Training and testing markers are ∙ and ◦, respectively. Colors
correspond to subfleet labels

the parameters from both alternator and turbocharger
hazard data. Appendix E presents the posterior predictive
distribution of such a model. While the model interpolates
well, the extrapolation behavior8 is problematic for later

8 At the population level, this is not extrapolation, since the response at
late hours in service is learnt from the alternator domain.
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BULL et al. 835

F IGURE 13 DGM of hierarchical linear regression with mixed
effects. Introducing a higher level group, such that the total number
of tasks is 𝐿 × 𝐾𝑙

hours in service. This is because the model assumes that
the discrepancy (from the Gompertz model) is equivalent
for both components, as the nonparametric weights 𝜷
remain tied over all tasks. The unlabeled data are evidence
that this assumption is inappropriate, as the model would
generalize poorly to these data, plotted in Appendix E. The
resultantmodelwould have a high risk of negative transfer.
Instead, the mixed effect model is reformulated,

whereby a separate, nonparametric discrepancy {𝜷𝑙}𝐿𝑙=1 is
learnt for the alternator (𝑙 = 1) and turbocharger (𝑙 = 2)
tasks—introducing two higher level subgroups, such that
𝐿 = 2. As before, the parameters of the linear component
remain correlated via the shared parent nodes, allowing
knowledge transfer between all 14 tasks (both alternators
and turbochargers). In turn, the model and prior now
postulate a varying underlying linear trend for all tasks
(the Gompertz model); however, the discrepancy from
this behavior is component-specific (a separate 𝜷𝑙 for
each component). The modifications can be visualized by
updating the DGM from Figure 2 to include higher level
subgroups 𝑙 ∈ {1, 2}, presented in Figure 13, where 𝑙 = 1
alternators or 𝑙 = 2 turbochargers.
A key difference is the new 𝐿-plate and the associ-

ated subscripts: 𝐾𝑙 is the number of subfleets for each
component, such that 𝐾1 = 8 (alternators) or 𝐾2 = 6 (tur-
bochargers); while 𝜷𝑙 indicates a separate (independent)
weight vector for each component. The collected tasks
become

⎧⎪⎨⎪⎩
{
𝐲𝑘𝑙 = 𝚽𝑘𝑙𝜶𝑘

⏟⏟⏟
random

+𝚿𝑘𝑙𝜷𝑙
⏟⏟⏟
fixed

+𝝐𝑘𝑙

}𝐾𝑙
𝑘=1

⎫⎪⎬⎪⎭
𝐿

𝑙=1

(23)

In turn, the likelihood of the response is modified,

𝑦𝑖𝑘𝑙|𝑥𝑖𝑘𝑙, 𝜽𝑘𝑙 ∼
N

(
𝛼
(𝑘𝑙)
1
+ 𝛼

(𝑘𝑙)
2
𝑥𝑖𝑘𝑙 +

𝐻∑
ℎ=1

𝛽
(𝑙)

ℎ
𝑏ℎ(𝑥𝑖𝑘𝑙), 𝜎

2

)
(24)

TABLE 3 Out-of-sample (average) predictive log-likelihood for
25% test data, log 𝑝(𝐲∗

𝑘𝑙
|𝐱∗
𝑘𝑙
). Here, 𝑙 corresponds to the component

label (alternator 𝑙 = 1 or turbocharger 𝑙 = 2) while 𝑘 is the subfleet
label for each component. (The complete log-likelihood considers
all groups and components ).
Alternators: 𝒍 = 𝟏
Model 𝒌 = 𝟏 𝒌 = 𝟐 𝒌 = 𝟑 𝒌 = 𝟒 𝒌 = 𝟓 𝒌 = 𝟔 𝒌 = 𝟕

CP −24.13 0.84 −4.49 −4.02 −2.41 −2.77 −6.50
CRL 79.29 49.50 20.07 11.38 4.24 2.94 5.47
STL 150.24 94.24 57.66 47.04 8.51 −3.17 0.95
MTL 164.54 96.98 62.79 57.51 24.7 11.12 −9.13
Turbochargers: 𝒍 = 𝟐
Model 𝒌 = 𝟏 𝒌 = 𝟐 𝒌 = 𝟑 𝒌 = 𝟒 𝒌 = 𝟓 𝒌 = 𝟔 

CP −9.85 0.35 −1.16 −0.23 −0.46 −4.00 −58.83
CRL 46.96 23.27 15.13 8.39 9.85 10.64 287.12
STL 90.37 48.35 21.63 17.13 13.73 23.74 570.41
MTL 81.34 53.14 35.97 23.94 11.2 32.17 646.28

where 𝜽𝑘,𝑙 = {𝜶𝑘,𝑙, 𝜷𝑙, 𝝁𝛼, 𝝈𝛼, 𝜎} is the parameter set
indexed to group 𝑘 and component 𝑙. Figure 14 plots the
mean and standard deviation of samples drawn from
the posterior distribution of the extended population
model (compared to independent turbocharger models).
By specifying component-specific weights 𝜷𝑙 the repre-
sentation of uncertainty improves when extrapolating
in the turbocharger domain. Reductions in the posterior
predictive distribution are also observed 𝑝(𝐲∗

𝑘𝑙
|𝐱∗
𝑘𝑙
) (ignor-

ing other conditionals) for alternator tasks (𝑙 = 1) since
the population data have been extended for the linear
component. Likewise, variance reductions are observed
in the posterior distributions of the intercept and slope,
visualized in Appendix F. Quantitatively, the average
reduction in standard deviation for the (interpretable)
linear weights is 51% and 67% for the (turbocharger) slopes
and intercepts, respectively.
Fleet-level inference improves the (bootstrapped) pre-

dictive log-likelihood from 570 to 646, compared to STL,
highlighting improvements in predictive capability for the
combined fleet over both components. The task-wise pre-
dictive likelihood is presented in Table 3 for the alternator
(𝑙 = 1) and turbocharger (𝑙 = 2) domains, compared to
the same benchmarks. Note, however, that the likelihood
fails to increase from STL for certain alternator tasks
(𝑘 = 1 or 5) reiterating the risk of negative transfer in
the extended model. Ideally, the data set should be much
larger to determine if negative transfer has occurred and
whether the current assumptions are appropriate. As
before, while CRL improves on CP the adaption approach
is not suitable for the task set, and predictions remain
worse than STL. The sparsity of measurements prohibits
reliable transformations of the source data into the target
domain.
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836 BULL et al.

F IGURE 14 Posterior predictive distribution, the mean and three-sigma deviation for: (top) 𝐾 independent regression models of
turbocharger hazard 𝑝(𝐲∗

𝑘𝑙
|𝐱∗
𝑘𝑙
, 𝐱𝑘𝑙, 𝐲𝑘𝑙), (bottom) multitask learning with mixed effects for all turbocharger and alternator tasks

𝑝(𝐲∗
𝑘𝑙
|𝐱∗
𝑘𝑙
, {{𝐱𝑘𝑙, 𝐲𝑘𝑙}

𝐾𝑙
𝑘=1
}𝐿
𝑙=1
)

(a) (b)

F IGURE 15 Pearson correlation coefficient of the conditional posterior distribution for the linear coefficients 𝜶𝑘 (slopes and intercepts).
Purple lines separate the alternator tasks (up to 8) and turbocharger tasks (up to 6)

Figure 15 is insightful since it informs which corre-
lations in the hierarchy transfer or share information
between the subfleet (𝑘) or component (𝑙) groups. The
heat-map corresponds to the Pearson correlation coeffi-
cient of the posterior distribution between variables that

share parent nodes in the graphical model (i.e. 𝜶𝑘𝑙)—these
correlations enable MTL. Intuitively, Figure 15a shows
increased correlation between the intercepts of the same
component, with two clear blocks of 8 × 8 (alternators)
and 6 × 6 (turbochargers). The intercept correlation
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BULL et al. 837

structure is interpretable since components of the same
type are likely to have a correlated baseline hazard.
The slope correlation structure in Figure 15b is more

descriptive. In the top left block, the alternators are less
correlated as domains become more sparse (from 1 → 8);
this makes sense since the level of correlation is reduced
where there are fewer data to support task correlation.
The effect is most obvious for 𝑘 = 8 (alternators), which
only has a single training point. In both Figure 15a and
b, the structured covariance of 𝜶𝑘𝑙 highlights how inter-
task correlation contributes to variance reduction in the
fleet model.

5.6 Practical implications

In the field, use-type labels could be used to make sub-
fleet (rather than global) predictions, which has major
implications when informing efficiency or safety-critical
interactions with the fleet. For example, task-specific esti-
mations of remaining useful life would be associated with
less uncertainty, and the hierarchical model allows both
population estimates (from the generating distributions)
and task-specific estimates. These multilevel predictions
present a key contribution of this work; in turn, a multi-
level decision process could be designed for more reliable
interactions with the fleet—such as vehicle servicing or
component replacement. A hypothetical decision process
is demonstrated in the next case study.

6 WIND FARM POWER PREDICTION

To demonstrate the wide applicability of hierarchical
models, power prediction is presented for a wind farm
case study. Figure 16 shows power curve data, including
curtailments, provided by Visualwind and recorded from
three operational turbines. The turbines are the same
make and model but in different locations. As before,
the data are normalized in view of data sensitivity and
certain (specific) details are omitted—the same comments
regarding interpretability, data truncation, and censorship
apply. The work in Bull et al. (2021) demonstrates a
suitable method to represent similar normal and curtailed
functions in a combined model; however, each function
𝑓𝑘 is assumed independent—in turn, there is no knowl-
edge transfer between task parameters. Here, knowledge
transfer is enabled by correlating the regression models in
a hierarchical formulation.
There are 10,581 observations in total. The data were

labeled in weekly subsets, according to turbine 𝑘 ∈ {1, 2, 3}
and operational condition (normal or curtailed) 𝑙 ∈ {1, 2}.
Each point corresponds to a 10-min average of power 𝑦𝑖𝑘𝑙

F IGURE 16 Power-curve data from three 𝑘 ∈ {1, 2, 3} wind
turbines of the same make and model. Relationships correspond to
normal 𝑙 = 1 and ideal 𝑙 = 2 operation

and wind speed 𝑥𝑖𝑘𝑙. The first turbine has 2 weeks of data,
the second has 4 weeks, and the third has 11.5 weeks.
Missing values and very sparse outliers were removed
from the data set (using the local outlier factor algorithm;
Breunig et al., 2000). Since the first turbine presents a
normal power curve only (𝑙 = 1) there is a total of five
tasks,

∑𝐿
𝑙=1
𝐾𝑙 = 𝐾1 + 𝐾2 = 3 + 2 = 5. As before, specific

tasks have less data than others, with the number of
observations per group as follows:

𝑵𝟏𝒍 𝑵𝟐𝒍 𝑵𝟑𝒍
∑𝑲𝒍
𝒌=𝟏

Normal (𝑙 = 1) 1075 1869 5845 8789
Curtailed (𝑙 = 2) - 637 1155 1792

The proportions of training data are listed below. The
observations remain ordered to test generalization to
measurements from later operational life.

𝒌 = 𝟏 𝒌 = 𝟐 𝒌 = 𝟑

90% 66% 66%

The splits are intentionally inconsistent, to allow a com-
bined inference to leverage information from the data-rich
tasks (with historical data) to support sparse tasks (systems
recently in operation). In particular, referring to Figure 16,
the normal data from the first turbine (𝑘 = 1, 𝑙 = 1: dark
blue) should support the sparse normal tasks (𝑘 ∈ {2, 3}:
dark orange and green); while the data-rich curtailment
from the third turbine (light green) should support the
curtailed relationship of the second turbine (light orange).
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838 BULL et al.

6.1 Task regression formulation

A standard power curve model assumes segmented linear
regression (Lydia et al., 2014). A similar formulation is
adopted here,

𝑃(𝑥𝑖) =

⎧⎪⎪⎨⎪⎪⎩

0 𝑥𝑖 < 𝑝

𝑚1(𝑥𝑖 − 𝑝) 𝑝 < 𝑥𝑖 < 𝑞

𝑚2(𝑥𝑖 − 𝑞) + 𝑚1(𝑞 − 𝑝) 𝑞 < 𝑥𝑖 < 𝑟

𝑃𝑚 𝑥𝑖 > 𝑟

𝑚2 ≜ 𝑃𝑚 −𝑚1(𝑞 − 𝑝)
(𝑟 − 𝑞)

(25)

Although simple, (25) presents interpretable parameters—
visualized in Appendix C. 𝑝 is the cut-in speed and 𝑟 is
the rated speed (for normal operation); the change point
𝑞 corresponds to the initiation of the limit to maximum
power 𝑃𝑚 (where 𝑝 < 𝑞 < 𝑟). The gradients 𝑚1 and 𝑚2
approximate the near-linear response between 𝑝-𝑞 and
𝑞-𝑟, respectively. The second change point and gradient
{𝑞,𝑚2} enable soft curtailments, rather than a hard limit
at maximum power 𝑃𝑚.

6.2 Mixed effects and prior formulation

From knowledge of turbine operation, the expected power
before cut-in should be zero for all turbines (i.e., a fixed
effect). The cut-in speed 𝑝 is also tied as a fixed effect and
learnt at the population level since all turbines have the
same design. Similarly, the max power 𝑃𝑚 is tied between
operational labels 𝑙 ∈ {1, 2} such that one parameter is
learnt for the normal tasks (𝑙 = 1) and one for the curtailed
tasks (𝑙 = 2). Conversely, the change points {𝑞, 𝑟} and gra-
dients {𝑚1,𝑚2} are assumed to be correlated between all
tasks, that is, correlated via shared parent nodes. In turn,
one would expect the curtailed relationships (𝑙 = 2) to be
more correlated (and share more information) than the
normal relationships (𝑙 = 1) and vice versa.
The (expected) tasks are summarized as segmented

mixed effects,{{
�̂�
(𝑘𝑙)
𝑖
= ⋯

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 𝑥𝑖 < 𝑝

𝑚
(𝑘𝑙)
1
(𝑥𝑖 − 𝑝) 𝑝 < 𝑥𝑖 < 𝑞

(𝑘𝑙)

𝑚
(𝑘𝑙)
2
(𝑥𝑖 − 𝑞

(𝑘𝑙)) + 𝑚
(𝑘𝑙)
1
(𝑞(𝑘𝑙) − 𝑝) 𝑞(𝑘𝑙) < 𝑥𝑖 < 𝑟

(𝑘𝑙)

𝑃
(𝑙)
𝑚 𝑞(𝑘𝑙) < 𝑥𝑖 < 𝑟

(𝑘𝑙)

⋯
}𝐾𝑙
𝑘=1

}𝐿
𝑙=1

(26)

𝑚
(𝑘𝑙)
2

≜ 𝑃
(𝑙)
𝑚 − 𝑚

(𝑘𝑙)
1
(𝑞(𝑘𝑙) − 𝑝)

(𝑟(𝑘𝑙) − 𝑞(𝑘𝑙))
(27)

where the fixed effects are green and the random effects
are purple. Each segment of the regression could be
presented in a similar formulation to (23) such that each
component is a standard varying intercepts/slope model
(Gelman et al., 2013). Matrix notation is avoided, however,
to present the model (and priors) around parameters
{𝑃𝑚,𝑚1,𝑚2, 𝑝, 𝑞, 𝑟}. The likelihood of the response can be
specified using (27),

𝑦𝑖𝑘𝑙|𝑥𝑖𝑘𝑙, 𝜽𝑘𝑙 ∼ N(�̂�(𝑘𝑙)𝑖 , 𝜎2) (28)

where 𝜽𝑘𝑙 = {𝑃
(𝑙)
𝑚 ,𝑚

(𝑘𝑙)
1
, 𝑝, 𝑞(𝑘𝑙), 𝑟(𝑘𝑙)} is the parameter set

indexed to turbine 𝑘 and curtailment 𝑙.
Given their interpretability, weakly informative priors

are postulated for each parameter. For the change points,

𝑝 ∼N(𝜇𝑝, 𝜎2𝑐𝑝), 𝑞(𝑘𝑙) ∼ N(𝜇𝑞, 𝜎2𝑐𝑝), 𝑟(𝑘𝑙) ∼ N(𝜇𝑟, 𝜎2𝑐𝑝)

𝜇𝑝 ∼ N(0.2, 0.5), 𝜇𝑞 ∼ N(0.4, 0.5), 𝜇𝑟 ∼ N(0.6, 0.5)

𝜎𝑐𝑝 ∼ IG(1, 1) (29)

These priors reflect that change points are expected to
occur at regular intervals across the input domain with
relatively high variance (relative to a normalized scale).
The priors for gradient and maximum power are

𝑚
(𝑘𝑙)
1
∼ N(𝜇𝑚1, 𝜎

2
𝑚1
)

𝜇𝑚1 ∼ N(2.5, 0.5), 𝜎𝑚1∼IG(1, 1) (30)

𝑃
(1)
𝑚 ∼ N(1, 0.1), 𝑃

(2)
𝑚 ∼ N(0.8, 0.1) (31)

These distributions postulate the expected gradient 𝑚2
in a normalized space; unit max power 𝑃(1)𝑚 for normal
operation; and a typical 80% curtailment (Bull et al., 2021)
for the limited output 𝑃(2)𝑚 . No prior is required for 𝑚2
since it is specified by {𝑃𝑚,𝑚1, 𝑝, 𝑞, 𝑟} in (27). As with
the truck-fleet example, the IG(1, 1) distributions weakly
encourage intertask correlations, such that the prior
intentionally overestimates the deviation between task
parameters. Similarly, the posterior can be specified using
(21), where 𝑝([𝐲𝑘] ∣ 𝚯) is indexed by (28) and the joint
prior 𝑝(𝚯) is defined using (29) to (31). As before, this is
intractable and inferred with MCMC.
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BULL et al. 839

F IGURE 17 Posterior predictive distribution, the mean, and three-sigma deviation for: (light shading, dashed line) 𝐾 independent
power curve models 𝑝(𝐲∗

𝑘𝑙
|𝐱∗
𝑘𝑙
, 𝐱𝑘𝑙, 𝐲𝑘𝑙). (dark shading, solid line) multitask learning with mixed effects 𝑝(𝐲∗𝑘𝑙|𝐱∗𝑘𝑙, {{𝐱𝑘𝑙, 𝐲𝑘𝑙}𝐾𝑙𝑘=1}𝐿𝑙=1)

TABLE 4 Predictive log-likelihood log 𝑝(𝐲∗
𝑘𝑙
|𝐱∗
𝑘𝑙
). Here 𝑙 corresponds to the operating condition (normal 𝑙 = 1, or curtailed 𝑙 = 2) while 𝑘

is turbine identifier.

Method 𝑘 = 1, 𝑙 = 1 𝑘 = 2, 𝑙 = 1 𝑘 = 3, 𝑙 = 1 𝑘 = 2, 𝑙 = 2 𝑘 = 3, 𝑙 = 2 
CP −168 1555 4681 594 452 7114
CRL 52 1451 3359 282 −6 5138
STL 202 1619 5147 538 722 8229
MTL 218 1599 5206 549 686 8258

6.3 Results

Figure 17 shows posterior predictive distribution from
fleet-level inference—compared to independent STL
models, plotted with light shading. Intuitively, variance
reduction is most obvious for sparse or poorly described
domains (orange and dark green). There is an overall
increase in the predictive likelihood when fleet modeling,
compared to STL, from 8229 to 8258. Table 4 quantifies
changes in task-wise predictions compared to the bench-
marks: There is a likelihood increase in all domains other
than (𝑘 = 2, 𝑙 = 1) and (𝑘 = 3, 𝑙 = 2). It is believed that
reductions occur since the model is constrained such that,
to maximise the overall likelihood, the performance in
data-rich domains is reduced in a trade-off. In other words,
the prior belief is best suited to data-rich tasks—when
the prior becomes more informed by data, it becomes less
suitable in data-rich domains; instead, the prior represents
the population. (Consider that the overall likelihood 
increases, despite task-wise fluctuations.) To combat this,
uninformative priors should be considered (Gelman et al.,
2013); these are discussed in Section 7.
CRL performs less competitively in the wind turbine

example since the measurement distributions shift signif-
icantly between each task, training, and testing (testing
data correspond to following weeks). In particular, when
the source data represent a more complete power curve,

the alignment with sparse domains becomes partial, and
CRL can produce unreasonable embeddings.
Figure 18 shows the posterior distribution of the param-

eters inferred at the independent and fleet level. The cut-in
speed 𝑞moves toward an average of the independent mod-
els, with reduced variance; this should be expected since 𝑞
becomes tied as a population estimate. The change points
𝑞 cluster intuitively, such that the normal and curtailed
tasks form two groups (dark and light shades). The esti-
mated 𝑟 parameters are significantly improved through
partial pooling—in particular, the green and orange
domains shift much further from the weakly informative
prior. There is a notable reduction in the variance across
all tasks for the slope estimate 𝑚2. The average reduction
in standard deviation across these parameters is 25%.
Figure 19 presents insights relating to maximum power

estimates𝑃𝑚. The tied parameter for the normalmaximum
𝑃
(𝑘,1)
𝑚 moves toward the data-rich estimate (blue) while the
curtailed maximum 𝑃(𝑘,2)𝑚 moves toward an average of the
relevant tasks (where 𝑙 = 2). In both operating conditions,
parameter tying enables the move from vague posteriors
to distributions with clear expected values. The average
reduction in standard deviation for the normal maximum
is 82%, alongside 37% for the curtailed maximum.
Finally, Figure 20 plots the Pearson correlation coeffi-

cient of the pair-wise conditionals of 𝑞 between tasks. (𝑞
is presented since it is the most structured/insightful.) It
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840 BULL et al.

F IGURE 18 Changes in the posterior distribution: the cut-in speed 𝑝, initiation of curtailment 𝑞, rated speed 𝑟, and linear slope𝑚1.
Independent models (hollow) compared to population-level modeling (shaded). When the parameter is tied (or fixed) the distributions are
black

F IGURE 19 Changes in the posterior distribution of the
independent models (hollow) compared to population-level
modeling (shaded)

F IGURE 20 Pearson correlation coefficient of the conditional
posterior distribution for the rated wind speed 𝑞, tick labels
correspond to (𝑘, 𝑙). Purple lines separate the normal (𝑙 = 1) from
the curtailed task parameters (𝑙 = 2)

is clear that, by moving to a hierarchical model, the cor-
relation between related tasks is appropriately captured,
with two distinct blocks associated with the normal and
curtailed groups.

6.4 Practical implications: Decision
analysis

In practice, probabilistic predictions from the power
model can be used to support decisions at any level
of the hierarchy, including the population level. For
example, population-level decisions are useful if the
operator does not wish to commit to interacting with a
specific turbine.
Consider a decision problem, whereby an operator

must commit to delivering a minimum power in some
upcoming time window. This involves decision making
under uncertainty, and the formal (statistical) proce-
dure to identify the expected optimal action requires a
probabilistic quantification of wind speed and power
output. The latter can be achieved by sampling from the
posterior predictive distribution at the population level,
that is, 𝑝(𝐲∗ ∣ 𝐱∗, 𝜽𝑙), where 𝜽𝑙 = {𝑃

(𝑙)
𝑚 ,𝑚

(𝑙)
1
, 𝑝, 𝑞(𝑙), 𝑟(𝑙)}

is sampled directly from the generating distributions.
Figure 21 is an example of such a prediction for a given
wind speed.
Predictions at this level of the hierarchy are useful since

they assume the operator cannot commit to a specific
turbine (at this stage). Such predictions would not be
available from domain-specific (independent) models;
conversely, CP (or domain adapted) predictions would
not formally consider the additional variability associated
with nonspecific turbine identity.
In this example, the operator has three options, each

associated with a payout (positive utility) upon successful
delivery of power and a penalty fine (negative utility) if
the turbine generates insufficient power—these values
are presented in Table 5. A prior probabilistic model of
(normalized) wind speed 𝐱𝑝𝑟 is shown in Figure 22, as
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BULL et al. 841

F IGURE 2 1 Samples from the posterior predictive
distribution of normalized power, at an arbitrary input of
normalized wind speed = 0.5

TABLE 5 Financial outcomes of decision analysis

Power level Payout Penalty fine
𝐿0: 0.0 0.0 −0.0
𝐿1: 0.5 0.3 −0.3
𝐿2: 0.75 0.75 −1.0

F IGURE 22 The prior distribution of normalized wind speed

described by,

𝐱𝑝𝑟 ∼ Beta(4, 2) (32)

(In practice, this information would likely come from a
forecasting model.)
Figure 23 shows the decision-event tree representation

of the problem. Here, the square (decision) node 𝑃𝐿 is
associated with the available power commitments in
Table 5, such that 𝑃𝐿 = {𝐿0, 𝐿1, 𝐿2}. The circular (proba-
bilistic) node (𝐲∗ ∣ 𝐱𝑝𝑟) is the probabilistic prediction of
power, given the prior model of wind speed. Finally, the

F IGURE 2 3 Decision-event tree representation of power-level
decision analysis

triangular (utility) node shows the expected consequence
of the decision.
For each instance, the expected optimal action 𝑃∗

𝐿
∈

{𝐿0, 𝐿1, 𝐿2} and associated expected utility𝐸[𝑢(𝐱𝑝𝑟, 𝑃∗𝐿)] are
calculated,

𝑃∗
𝐿
= argmax𝑃𝐿E[𝑢(𝐱𝑝𝑟, 𝑃𝐿)] (33)

E[𝑢(𝐱𝑝𝑟, 𝑃∗𝐿)] = E[pay𝑃∗
𝐿
] − E[penalty𝑃∗

𝐿
] (34)

where

E[pay𝑃𝐿 ] = 𝑃(𝐲∗ ≥ 𝑃𝐿) × payout𝑃𝐿 (35)

E[penalty𝑃𝐿 ] = 𝑃(𝐲∗ < 𝑃𝐿) × penaltyfine𝑃𝐿 (36)

This information can then be used to rank decision alter-
natives (Schlaifer & Raiffa, 1961). For example, in the prior
decision tree (Figure 23) the path associated with the high-
est power level𝐿2 is optimal (i.e.,𝑃∗𝐿 = 𝐿2)—thiswas found
to have the highest expected utility of 0.33, compared with
0.0 for 𝐿0, and 0.246 for 𝐿1.
A further application quantifies the expected value of

data collection activities. Figure 24 extends the problem in
Figure 23 to include another decision𝑀: whether to mea-
surewind speed (𝑚) or not (�̄�). In the casewheremeasure-
ments are taken, predictions can be made using the new
data 𝐱𝑚. A so-called preposterior decision analysis (Berger,
2013; Jordaan, 2005) can be completed, by sampling from
the prior model to generate hypothetical measurements.
When assuming perfect data, whereby each measure-

ment removes all uncertainty from wind speed (32),
the expected (preposterior) utility is 0.566. The differ-
ence in expected utility—with (𝑚) or without (�̄�) wind
measurement—is the expected value of the data 𝐱𝑚 in
the context of solving the decision problem. This expected
value of perfect information (VoPI) can be estimated using
Monte Carlo sampling,

𝑉𝑜𝑃𝐼 =
1

𝑁

𝑁∑
𝑖=1

(
𝐸[𝑢(𝐱𝑚, 𝑃

∗
𝐿
)]
)
− 𝐸[𝑢(𝐱𝑝𝑟, 𝑃

∗
𝐿
)] (37)

Here, the VoPI is 0.236. The results are presented in
Figure 25, which shows a histogram of expected utilities
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842 BULL et al.

F IGURE 24 Decision-event tree representation of the value of information analysis

F IGURE 2 5 Expected utilities associated with hypothesized
wind speed measurements. The expected VoPI is shown as the
difference between expected utilities with (𝐸[𝑢𝑝𝑟𝑒𝑝𝑜𝑠𝑡]) and without
(𝐸[𝑢𝑝𝑟𝑖𝑜𝑟]) the wind speed data

associated with each of the hypothesized, perfect mea-
surements (samples from the prior model). The mean of
these values 𝐸[𝑢𝑝𝑟𝑒𝑝𝑜𝑠𝑡] is labeled next to the dotted line.
The expected utility without the data 𝐸[𝑢𝑝𝑟] is labeled as
a dashed line, and the difference (37) is the expected value
of the data.
To summarize, hierarchical Bayesian modeling has

provided a full quantification of uncertainty, reflective
of different asset subgroups and classes. In turn, the
model enables a formal downstream analysis of variable
interactions and integration with a utility-based deci-
sion process (demonstrated here). The implications are
significant since various concepts can be quantified, for
example, the expected optimal action or the value of data
collection activities.

7 CONCLUDING REMARKS

Hierarchical Bayesian modeling with mixed effects is
demonstrated as an effective method of sharing informa-
tion between models of fleets of assets in engineering.
Parameter estimation and predictive capabilities are
improved (for the combined fleet) in two case studies,
utilizing the same flexible MTL framework. Important
considerations are discussed when formulating each
population model: prior elicitation, mixed-effects formu-
lation, and negative transfer—these concepts are critical
to the success of population-level inference.
The proposed hierarchical methodology is desirable

since it enables downstream analyses of the fleet model.
The method is used to determine which asset models are
correlated for which interpretable parameter, at various
groupings (e.g., operating condition, system-specific,
population-wide). The multivariate (and multilevel)
uncertainty quantification enabled by the model is then
propagated through a demonstrative decision analysis
for the second case study, to consistently and coherently
identify expected optimal actions. The expected value of
data collection is also quantified, in the context of the
decision problem and the underlying model.
The first application concerns the survival analysis of

turbocharger and alternator components in an operational
fleet of trucks (maintained by Scania). A semiparametric
hazard curve model is improved through partial pooling
and parameter tying (15% and 13% increases in predictive
log-likelihood) where selected parameters are inferred at
the population level, rather than vehicle subgroups. The
method builds on engineering intuition since correlations
in the hierarchy can be inspected to determine which
groups of vehicles or components are correlated for
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BULL et al. 843

which effects in the survival model (i.e., interpretable
parameters).
The second study presents power prediction for a

group of wind turbines. The SCADA monitoring data
were provided by Visualwind, measured from the same
model of turbine in different locations. Correlated power
curve models are learnt as a segmented (piece-wise)
linear regression, described by interpretable parameters.
By moving to a population-level inference, parameter
estimation is improved, as well as model generalization
(for the combined population estimates). In particular, the
estimation of maximum power is significantly improved
for turbines with fewer data and recently in operation (up
to 82% reduction in the standard deviation of maximum
output prediction).
The success of thesemodels depends on the reliability of

the domain knowledge encoded in the prior distributions.
In this case, priors were postulated as weakly informative,
since interpretable parameters and domain expertise
allowed sensible prior elicitation. In turn, an appropriate
level of knowledge transfer could be determined auto-
matically, given the model and the data, reducing the risk
of negative transfer. When such elicitation is infeasible,
future work should consider the use of uninformative
priors (Gelman, 2006), especially for the (variance) param-
eters that control the level of correlation between tasks.
Future work should consider an objective method to

categorize subfleet data in a practical setting; this might
include clustering assets from specification or operations
data. The labeling of data into distinct tasks can be non-
trivial in an engineering setting and requires investigation.
An interpretable, MTL procedure could also be devel-
oped around other modes of learning, such as dynamic
classification (Rafiei & Adeli, 2017), ensemble learning
(Alam et al., 2020), fuzzy methods (Adeli & Hung, 1995),
or reinforcement learning (Wilson et al., 2007)—to inves-
tigate more complex feature types, decision problems, and
larger data sets. Finally, extending the multilevel model
to capture parameter relationships over the fleet should
prove insightful; for example, if the coefficients of the
power model were regressed on spatial/temporal inputs
for the wind farm, one could simulate (sample) more
varied hypothetical members of the population at certain
locations or timescales.
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APPENDIX A: B-SPLINES
Assuming uniform knot locations 𝑥ℎ+𝑘 = 𝑥ℎ + 𝛿𝑘, cubic B-splines are defined as the following piece-wise cubic
polynomial Gelman et al. (2013):

𝑏ℎ(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

6
𝑢3 𝑥 ∈ (𝑥ℎ, 𝑥ℎ+1), 𝑢 = (𝑥 − 𝑥ℎ)∕𝛿
1

6
(1 + 3𝑢 + 3𝑢2 − 3𝑢3) 𝑥 ∈ (𝑥ℎ+1, 𝑥ℎ+2), 𝑢 = (𝑥 − 𝑥ℎ+1)∕𝛿
1

6
(4 − 6𝑢2 + 3𝑢3) 𝑥 ∈ (𝑥ℎ+2, 𝑥ℎ+3), 𝑢 = (𝑥 − 𝑥ℎ+2)∕𝛿
1

6
(1 − 3𝑢 + 3𝑢2 − 𝑢3) 𝑥 ∈ (𝑥ℎ+3, 𝑥ℎ+4), 𝑢 = (𝑥 − 𝑥ℎ+3)∕𝛿

0 otherwise

(A.1)
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APPENDIX B: CROSS-VALIDATION SCANIA
Figure B.1

F IGURE B . 1 Validation of an appropriate number of splines using the Bayesian information criterion (BIC) and 20-fold
cross-validation. The best model𝐻 = 5 is highlighted with a red marker

APPENDIX C: SEGMENTED (PIECE-WISE) POWER CURVEMODEL
Figure C.1

F IGURE C . 1 The segmented linear power curve model, indicating interpretable parameters {𝑝, 𝑞, 𝑟, 𝑃𝑚}
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APPENDIX D: ZOOMED SPLINEWEIGHTS
Figure D.1

F IGURE D. 1 Zoomed sections of the posterior distribution of the spline weights 𝛽(𝑘)
ℎ

(those that deviate from zero ℎ ∈ {1, 5})

APPENDIX E: TURBOCHARGERMODEL: CONSISTENTMODEL FORMULATION
Figure E.1

F IGURE E . 1 Posterior predictive distribution 𝑝(𝐲∗
𝑘
|𝐱∗
𝑘
, {𝐱𝑘, 𝐲𝑘}

𝐾
𝑘=1
): the mean and three-sigma deviation for multitask learning with

mixed effects
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APPENDIX F: TURBOCHARGERMODEL: VARIANCE REDUCTION PLOTS
Figure F.1

F IGURE F. 1 Variance reduction in the posterior distribution of the intercept 𝛼(𝑘)1 and slope 𝛼(𝑘)2 parameters for turbocharger
components. Independent models (hollow)/population level modeling (shaded)
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