
Department of Computing
Imperial College London

Auditable and Performant Byzantine
Consensus for Permissioned Ledgers

Alexander Shamis

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of Imperial College London

and the Diploma of Imperial College London

May 2023





To Chelsea, Amelia, Henry, Emma, and Batdog





Abstract

Permissioned ledgers allow users to execute transactions against a data store, and retain proof
of their execution in a replicated ledger. Each replica verifies the transactions’ execution and
ensures that, in perpetuity, a committed transaction cannot be removed from the ledger. Un-
fortunately, this is not guaranteed by today’s permissioned ledgers, which can be re-written
if an arbitrary number of replicas collude. In addition, the transaction throughput of permis-
sioned ledgers is low, hampering real-world deployments, by not taking advantage of multi-core
CPUs and hardware accelerators.

This thesis explores how permissioned ledgers and their consensus protocols can be made
auditable in perpetuity; even when all replicas collude and re-write the ledger. It also addresses
how Byzantine consensus protocols can be changed to increase the execution throughput of
complex transactions. This thesis makes the following contributions:

1. Always auditable Byzantine consensus protocols. We present a permissioned
ledger system that can assign blame to individual replicas regardless of how many of them
misbehave. This is achieved by signing and storing consensus protocol messages in the ledger
and providing clients with signed, universally-verifiable receipts.

2. Performant transaction execution with hardware accelerators. Next, we de-
scribe a cloud-based ML inference service that provides strong integrity guarantees, while stay-
ing compatible with current inference APIs. We change the Byzantine consensus protocol to
execute machine learning (ML) inference computation on GPUs to optimize throughput and
latency of ML inference computation.

3. Parallel transactions execution on multi-core CPUs. Finally, we introduce a
permissioned ledger that executes transactions, in parallel, on multi-core CPUs. We separate
the execution of transactions between the primary and secondary replicas. The primary replica
executes transactions on multiple CPU cores and creates a dependency graph of the transactions
that the backup replicas utilize to execute transactions in parallel.
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Introduction

Storing and retaining information within a software system is the cornerstone of modern com-
puting. Users expect that, when they write data to a storage system, it will be retained in a
pristine manner and can be read back at any time. While accidental failures have become in-
credibly rare, we observe an increasing number of situations where data is changed for malicious
or malignant purposes. The rise of blockchains has arrived at a time when the general public is
beginning to not trust data storage, and blockchains promise to address the issue, re-introducing
and re-invigorating the public’s trust in systems that rely on storing data securely.

1.1 Overview

Blockchains and permissioned ledgers are a decade old technology that has captured the
imagination of industry [178, 249, 97, 87], governments [22, 212, 60, 71], and the public at
large [202, 213]. Blockchains and permissioned ledgers include a replicated and immutable
ledger that contains data that cannot be rewritten or deleted in an undetectable manner. The
ledger is replicated across a large number of machines to ensure resiliency to failures and dishon-
est actors. Ledgers can be verified by ensuring that the cryptographic primitives that connect
the contents of the ledger have not been tampered with. This verification process uses well
known cryptographic operations and can be performed by anyone.

Blockchains are commonly separated into two categories: first are public blockchains where
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anyone can run a replica and send operations that are executed against the current state of the
blockchain. Public blockchains are used in a large number of scenarios, but the most popular use
cases are crypto-currencies [2, 129]; private blockchains, also known as permissioned ledgers or
private ledgers, associate each user to their real world identity. Maintaining real-world identities
allows permissioned ledgers to allow only authorized users that are trusted by the operator to
perform operations against the permissioned ledger. Permissioned ledgers are used in a myriad
of scenarios, including: maintaining records for supply chains [143, 36]; maintaining ownership
of luxury items [225, 12]; or retaining government records [184, 46].

Although blockchains have gained popularity and are deployed in an increasing number of
scenarios, they do not provide the guarantees that users expect. Blockchains are commonly
believed to be immutable, and, as such, users expect that once their transactions are exe-
cuted, the transactions cannot be removed from the blockchain. This, unfortunately, is not
true, as any blockchain’s consensus protocol can be compromised by malicious actors taking
control over a predefined number of replicas, thus allowing the malicious actors to rewrite the
ledger. When the ledger is rewritten, evidence of executed transactions can be removed in
such a way that clients cannot prove that their transaction had been previously executed and
committed by the blockchain.

In addition, the performance of the consensus protocols used by blockchains and permis-
sioned ledgers hampers their usability and utility. Currently, the two most commonly used
blockchains obtain a throughput of fewer than 20 transactions per second [35]. The most com-
monly used permissioned ledger, Hyperledger Fabric, has a peak throughput of 1,207 transac-
tions per second when running a simple benchmark that simulates a bank in which customers
transfer funds between accounts [7]. Permissioned ledgers, even with their higher transaction
throughput, do not provide a platform that is usable in many real-world or academic scenarios.

1.2 Brief evolution of blockchains

As of the writing of this thesis, there are currently hundreds of di�erent blockchain designs
in existence [178, 253, 11, 97, 87, 53, 125, 158, 140]. The proliferation of blockchain systems
gives the impression of a mature eco-system. However, the first blockchain was introduced
less than 15 years ago. The first modern blockchain was proposed in 2008 by an individual or
group of individuals under the pseudonym Satoshi Nakamoto when they published “Bitcoin:
A Peer-to-Peer Electronic Cash System” [178]. The Bitcoin paper is the seminal work on
blockchains and has led to the popularity of blockchain technologies and the crypto-currencies
that many implement [193].

The key technologies that make up Bitcoin existed before Nakamoto’s publication: using
cryptography to hide the identity of a payer or payee was described by Chaum in 1983 [51],
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Figure 1.1: Structure of the Bitcoin blockchain. Copied from [178]

and proof-of-work was introduced by Hashcash in 1997 [18]. Nakamoto’s key contribution was
to bring these disparate ideas together and show their value through a new application, crypto-
currencies. Specifically, the Nakamoto consensus protocol defines the longest chain of blocks
as the valid version of the blockchain. In Bitcoin, blocks are connected by including a hash
of the previous block within the current block creating a chain of blocks. Bitcoin also uses
the proof-of-work consensus protocol, which it leverages to include a financial incentive to stop
bad actors from attempting to alter the blockchain [178]. Figure 1.1 shows the structure of
Bitcoin’s blockchain, including how Bitcoin prunes its Merkle tree to reduce the amount of
data that needs to be stored within a single block.

After the introduction of Bitcoin, the next major milestone for ledger-based technologies
was the introduction of the Ethereum blockchain. The Ethereum project was proposed as a
blockchain that can be programmed, i.e., can execute smart contracts, by Vitalik Buterin in
2014 [86]. Buterin’s primary contribution was the introduction of today’s understanding of
smart contracts and their popularization in the Ethereum virtual machine (EVM) [249]. The
EVM allows users to submit transaction requests that are written in a higher-level language
that compiles into EVM byte code, e.g., Solidity [69]. The design of the EVM guarantees that
there are no memory races or undefined behaviour. This is achieved by limiting the API surface
area so that transaction execution cannot escape the sandbox of the virtual machine. These
safety features have a negative e�ect on performance, resulting in applications that execute
on top of the EVM, having runtime latencies several orders of magnitude higher than if the
same application is written in C++.
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1.2.1 Consensus protocols

The growth of Bitcoin’s popularity has resulted in its low throughput and high latency being
brought to the forefront of blockchain research. Bitcoin and its consensus protocol (proof-of-
work) does not provide the performance its users and the research community target [68]. In ad-
dition, the blockchain community is motivated to show that Bitcoin or an alternative blockchain
could replace Visa, Paypal, or another electronic payment system. To quantify this goal, the
Visa USA website states: “VisaNet handles an average of 150 million transactions every day
and is capable of handling more than 24,000 transactions per second” [241]. This is contrasted
by Bitcoin transaction throughput of a “sustained rate of 7 transactions per second” [248].

The throughput of Bitcoin and other proof-of-work based blockchains is governed by the size
of the data section in a block and the rate at which blocks are created (mined). In the case of
Bitcoin, a block is 1 MB, and a new block is added approximately every 10 minutes. This selec-
tion was made to balance the transaction rate and the time it takes for a block to be considered
stable while preventing malicious actors from overwhelming the system with new blocks [248].
There are many proposals to tune these parameters, but none increase the throughput to the
desired level while maintaining the security properties that the community requires [103, 33, 32].

While tuning proof-of-work was initially done to improve the throughput of Bitcoin and
Ethereum, other researchers attempted to address issues inherit to the consensus protocol.
The primary issue that was identified is the amount of computational power and electricity
required to mine a block — currently, mining consumes more electricity than Finland [233]. As
such, the consensus protocols used in blockchain designs include:

• Proof-of-Work was initially suggested in 1992 as a method to combat email spam. The
proposal requires that a machine, which wants to send an email, solve a cryptographic
problem that is unique to every email. The cryptographic problem involves adding addi-
tional metadata to an email so that when the email’s contents along with the metadata
is hashed, it produces the desired hash value [81]. While this technique never gained
popularity as it was originally intended, it was popularized by Nakamoto in the Bitcoin
paper [178].

• Proof-of-Elapsed-Time (commonly referred to as PoET) was introduced by Intel. Its
key insight is that proof-of-work is a way of demonstrating that a miner has waited a
specific amount of time between creating new blocks. PoET achieves the same e�ect by
using an application that is run within a trusted execution environment (TEE) to ensure
that a specific amount of time has passed [128]. There are advantages and disadvan-
tages to using this technique; ultimately, the vulnerabilities [238] with trusted execution
environments have meant that PoET is not commonly used.
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• Proof-of-Capacity. Similar to PoET, proof-of-capacity was designed as a solution to
address proof-of-work’s electricity consumption. It was introduced in 2015 with the same
goals as proof-of-work but with the caveat that it leverages storage rather than com-
putational power [82]. While proof-of-capacity has not gained popularity or widespread
adoption in industry or academia, it addresses proof-of-work’s electricity usage issue [93].
However, it creates an alternative issue in that nodes need an ever increasing amount of
storage to participate in the consensus protocol.

• Proof-of-Stake is currently an umbrella term that describes a consensus algorithm that
values a miner’s contribution when extending a blockchain based on how much of a
financial stake they currently have in the blockchain. This technique is used in many
scenarios from obtaining consensus when adding a new block to the blockchain [138], to
selecting which nodes perform specific roles within the blockchain [97].

Researchers have also explored alternative techniques to address the current design limita-
tions of blockchain consensus protocols, specifically to provide an alternative method of increas-
ing the transaction throughput without replacing proof-of-work. One such research direction
has focused on o�-Chain payment systems. For example, Teechain describes itself as “the first
high-performance micropayment protocol that supports practical, secure, and e�cient fund
transfers on the current Bitcoin network” and o�ers o�-chain payment system [155]. Teechain
starts two nodes that act as representatives between two parties and creates a fast payment
transfer channel between the nodes. It guarantees security by running nodes inside Intel’s SGX
enclaves allowing users to attest the code that is executed. Nevertheless, even o�-chain pay-
ment systems such as Teechain are unable to achieve the previously mentioned through of Visa.
Teechain reports 2480 tx/s as compared to Visa’s 24,000 tx/s. In addition, Teechain does not
include all transactions executed in the blockchain’s ledger, thus reducing transparency.

Alternatively, the authors of Bitcoin-NG [87] assume that mining solves two di�erent pur-
poses: it is used as a way to propose new transactions that are added to the blockchain; and
decides which node can propose a new block. Bitcoin-NG proposes a separation of the two
concerns such that miners mine blocks as a means to becoming the primary replica during
a 10 minute interval. When a miner wins the race to become the primary replica, they are
allowed to add new blocks at any rate. While this proposal does not fix all of the issues with
Bitcoin, the idea of using proof-of-work to elect leaders has influenced the blockchain consensus
protocol research space.

1.2.2 Byzantine fault tolerant consensus protocols

One of the earlier and more influential works in combining blockchains and a Byzantine fault-
tolerant consensus protocol is ByzCoin [139]. This system claims to be the progression of
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taking a blockchain that uses Practical Byzantine Fault Tolerance (PBFT) [49] and “refine it
into ByzCoin”. ByzCoin (similar to BitCoin-NG) uses proof-of-work to elect a leader and this
leader has the same responsibilities as a leader in PBFT. However, unlike BitCoin-NG, ByzCoin
uses a predefined number of previous leaders as replicas for the PBFT protocol. This group
of replicas is responsible for committing client transactions and ensuring that they appear in
ByzCoin’s ledger. ByzCoin has a quorum of members that collectively sign transactions and
stores these signatures in the ledger allowing the decisions of the PBFT protocol to be verified at
any point in the future. The authors of ByzCoin report that they are able to commit up to 1000
transactions per second with a consensus group of 144 machines. Unfortunately, this transaction
rate is too slow for many practical scenarios including the previously mentioned Visa scenario.

There have been several systems that follow on from ByzCoin of which Algorand [97] has
been one of the more influential. Algorand employs a probabilistic Byzantine agreement pro-
tocol where its key novelty is the selection of nodes that participate in the protocol. The
system separates the consensus protocol into multiple rounds. Algorand randomly and se-
cretly selects the participants for each round of voting and only allows a selected node to cast
a single vote. This secrecy and selection of voting participants allow for a smaller number
of nodes to vote in the consensus rounds while maintaining an acceptable level of security.
This, in part, leads to better performance than comparable systems. Algorand self reports to
be 125 times faster than BitCoin. This, however, is still too slow to meet the performance
requirements of the Visa scenario.

1.3 From public blockchains to permissioned ledgers

Permissioned ledgers commonly use a Byzantine consensus protocol in lieu of proof-of-work,
allowing them to increase the number of transactions that can execute in a second. Access to
the permissioned ledger is controlled and tied to real world identities, thus addressing some of
the privacy issues inherent to public blockchains. Tying a real world identity to a user adds a
real-world trust component into the system. Users trust a subset of the entities running the
blockchain, so that they will not collude with one another and maliciously rewrite the ledger.
This trust is derived from the ability to use a user’s identity in legal contracts and other means
of enforcement within the judicial system.

The first permissioned ledgers were repurposed public blockchains run by organizations
within their secured environments [196]. Permissioned ledgers then evolved by changing their
consensus protocols and adding additional authentication, tying user accounts to a real world
identity. The reason for changing the consensus protocol was to reduce the costs associated
with proof-of-work. The consensus protocol used by the first permissioned ledgers was Practical
Byzantine Fault Tolerance (PBFT) [49] and then newly proposed consensus protocols that



1.4. REAL WORLD CONCERNS 27

better suited the permissioned ledgers were utilized [175, 209]

The subsequent major development for permissioned ledgers was the introduction of frame-
works for building permissioned ledgers [196, 206], with the most popular being IBM’s Hyper-
ledger Fabric. Hyperledger Fabric provides a framework for developers to build applications
that maintain their blockchains. The framework provides support for multiple programming
languages and hides the complexity of creating a blockchain, replacing nodes that host the
application, and distributing the ledger between an evolving set of nodes that may experience
liveness and availability issues.

1.4 Real world concerns

The introduction of frameworks for building permissioned ledgers has resulted in a large number
of organizations and consortiums considering deploying blockchains. However, concerns hinder
their ability to utilize a permissioned ledger some that are technical or non-technical. The
non-technical concerns include the need to map legislation that governs an industry to the
guarantees provided by a permissioned ledger.

1.4.1 Compliance

The need to prove that a group of organizations are in compliance with government regula-
tions has become an emerging area where organizations utilize permissioned ledgers [43, 84].
However, regulations require that organizations secure their systems against all and any mali-
cious behaviour [89, 132]. The regulation then treats malicious behaviour – regardless of who
is responsible – as if it was initiated by the organization a�ected by the malicious actions.
Furthermore, the regulation requires that a senior member of the organization is nominated to
be personally responsible for any misbehaviour.

These substantial penalties have resulted in concerns and hesitancy when deploying per-
missioned ledgers. Specifically, individual organizations are concerned that participation in
a permissioned ledger would result in them being blamed for malicious actions performed by
other organization(s). This fear is due to a fundamental limitation of permissioned ledgers
using Byzantine fault tolerant consensus protocol where if more than 2f replicas are dishonest
the underlying ledger can be rewritten in an undetectable manner.

1.4.2 Performance

The number of transactions a permissioned ledger can execute in a second is an area of concern
for organizations that would like to deploy a blockchain or permissioned ledger [173, 211, 241].
Recent research has addressed many of these throughput issues [199, 262]. However, while
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the research improved the transactional throughput, it focused on increasing the number of
transactions simple transactions that can execute in a second – e.g., transactions that increase
a counter [49] or the Smallbank benchmark [7]. These benchmarks do not represent real-work
workload and executing more complex transactions would result in the permissioned ledger
having unacceptable throughput and latency.

1.4.3 Total order and modern workloads

Permissioned ledgers and Blockchains execute transactions that utilize the CPU. However, many
organizations have workloads that rely on more than just CPUs to power their business. Specif-
ically, organizations that rely on artificial intelligence and machine learning workloads [96, 54]
require GPUs to execute business-critical workloads. We take for granted that the number of
business functions that are powered by machine learning and artificial intelligence will increase,
further increasing the need for GPUs and other accelerators to power these workloads. Record-
ing ML inference results on the ledger only provides value to the end-user when combined
with the CPU-based transactions that caused the ML inference request to be executed along
with any subsequent transactions. In addition, the inability to accelerate these workloads on a
permissioned ledger further raises organizational friction in deploying a permissioned ledger.

1.5 Research motivation
The introduction of permissioned ledger frameworks has simplified building ledger-based ap-
plications. However, there are still limitations that must be addressed. This thesis addresses
the real-world concerns that limit the deployment of permissioned ledgers ( see section 1.4).
Two of these shortcomings are:

• Accountability. The research community commonly accepts that it is impossible to
create a system where tampering with the ledger can be detected in all situations. The
following is commonly accepted as fact: “for all secure BFT protocols designed for 2t+1
replicas communicating over a synchronous network, forensic support is inherently non-
existent; this impossibility result holds for all BFT protocols and even if one has access
to the states of all replicas (including Byzantine ones)” [218]. This assumption implies it
is impossible to audit a ledger and be guaranteed that all actions that deviate from the
correct execution of the protocol are discovered.

• Performance. The work of introducing new consensus protocols is partly to improve the
throughput and latency of permissioned ledgers. Currently, the consensus protocols of
permissioned ledgers rely on transactions being executed sequentially. Sequential execu-
tion of transactions is a bottleneck like executing a single transaction takes a substantial
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amount of time. In addition, sequential execution can severely under-utilize expensive
and scarce computing resources.

1.6 Contributions

This thesis demonstrates that it is possible to build a permissioned ledger that can detect
dishonest behaviour and assign blame to the guilty party while e�ciently executing compu-
tationally expensive workloads, including ML workloads, that utilize the parallelism of both
CPUs and GPUs. The combination of these properties shows a permissioned ledger that can
meet the needs of an organization that would like to deploy a permissioned ledger. Specifically,
the thesis makes the following contributions in the context of three systems:

1.6.1 Accountability

We address accountability in our system, IA-CCF. IA-CCF is a permissioned ledger system
that assigns blame to misbehaving replicas (and the members who control them), even if all
replicas misbehave. It achieves this while permitting changes to the consortium membership
and the replica set. IA-CCF’s accountability guarantees thus improve the trustworthiness of a
permissioned ledger by creating a strong disincentive for misbehaviour.

IA-CCF supports accountability by introducing Ledger PBFT (L-PBFT), a new BFT state
machine replication protocol that stores ordered transactions in the ledger together with pro-
tocol messages from replicas, using the protocol messages to justify the chosen order. L-PBFT
maintains Merkle trees [162] over the ledger and includes the root of the Merkle tree in protocol
messages. Since protocol messages are signed by the replicas, this commits them to the entire
contents of the ledger. IA-CCF issues receipts to clients that provide succinct, universally-
verifiable evidence that a transaction was executed at a given position in the ledger. Receipts
include signed protocol messages from multiple replicas that executed the transaction, thus
binding them to a prefix of the ledger. If clients obtain a sequence of receipts that violate lin-
earizability, anyone can audit the ledger and receipts to assign blame to at least N/3 replicas.
Auditing produces an irrefutable universal proof-of-misbehaviour (uPoM) in the form of con-
tradictory statements signed by the same replica. The uPoM can be used by an enforcer, e.g., a
court, to punish the members responsible for the misbehaving replicas. Since IA-CCF provides
accountability even if all replicas misbehave, the enforcer may have to compel members to pro-
duce a ledger, imposing sanctions otherwise. While this introduces a weak synchrony assump-
tion, the enforcer chooses a conservative timeout to make blaming correct members unlikely.
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1.6.2 Performance

We present our solution to performant Byzantine consensus based ledger in two systems:

We address performant execution of workloads that utilize hardware accelerators, and record
their results on a ledger while utilizing a Byzantine consensus protocol in our system, Drop-
Bear. DropBear is a cloud-based ML inference service that o�ers trustworthy inference deci-
sions over DNN models. DropBear allows model owners to upload ensembles of models that
consist of one or more DNN models, and clients then submit inference requests over these en-
sembles. DropBear introduces an execute-agree-attest strategy that separates the expensive
execution of inference requests from the agreement and attestation of inference results. Infer-
ence requests are first executed in batches by geo-distributed cloud replicas against an ensemble
of models. After execution, a primary replica batches the inference requests again orders them
with respect to model updates and sends batches to a set of backup replicas. The replicas agree
with one another’s inference result subject to the bounds associated with the ensemble. After
2/3 of the replicas have agreed, they attest that the result is within the prescribed bounds.
Through this separation, DropBear can batch inference requests and consensus operations in-
dependently, allowing for a higher degree of parallelism across replicas: batching inference
requests for heavily referenced models [131] into execution batches increases GPU utilization,
and execution batches can span multiple consensus batches; consensus batches are constructed
to better utilize the wide-area network between cloud replicas and reduce the per-batch CPU
overhead of cryptographic operations.

We continue our focus on performant execution of permissioned ledger workload but on
modern CPUs. We present our system, Bunyip, an extension to the IA-CCF auditable per-
missioned ledger’s consensus protocol L-PBFT to allow replicas to execute transactions in
parallel. Bunyip gives the primary replica the responsibility to collect transaction execution
dependency information and then pass the collected information to the backup replicas. Backup
replicas in Bunyip utilize the transaction dependency information to execute transactions in
parallel and at the same time ensure that the dependency information passed to them is correct.
Through parallel execution, Bunyip can execute a large number of independent transactions
in parallel and significantly improve the throughput of transaction execution when executing
more complex transactions.

1.7 Publications and patents
The contents of this thesis are influenced by the following publications:

• IA-CCF: Individual Accountability for Permissioned Ledgers
Alex Shamis, Peter Pietzuch, Burcu Canakci, Miguel Castro, Cédric Fournet, Edward
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Ashton, Amaury Chamayou, Sylvan Clebsch, Antoine Delignat-Lavaud, Matthew Kerner,
Julien Ma�re, Olga Vrousgou, Christoph M. Wintersteiger, Manuel Costa, and Mark
Russinovich
19th USENIX Symposium on Networked Systems Design and Implementation (NSDI),
2022 Renton, WA, USA [214]

• Dropbear: Machine Learning Marketplaces made Trustworthy with Byzantine
Model Agreement
Alex Shamis, Peter Pietzuch, Antoine Delignat-Lavaud, Andrew Paverd, and Manuel
Costa
arXiv preprint, arXiv:2205.15757, May 2022 [215]

• CCF: A framework for building confidential verifiable replicated services
Mark Russinovich, Edward Ashton, Christine Avanessians, Miguel Castro, Amaury
Chamayou, Sylvan Clebsch, Manuel Costa, Cédric Fournet, Matthew Kerner, Sid
Krishna, Julien Ma�re, Thomas Moscibroda, Kartik Nayak, Olya Ohrimenko, Felix
Schuster, Roy Schwartz, Alex Shamis, Olga Vrousgou, Christoph M Wintersteiger
Technical Report, MSR-TR-2019-16, April 2019 [206]

The contents of this thesis is influenced by the following patents:

• Receipts in a Distributed Ledger
Eddy Ashton, Miguel Castro, Amaury Chamayou, Sylvan Clebsch, Antoine Delignat-
Lavaud, Cedric Fournet, Julien Ma�re, Peter Pietzuch, and Alex Shamis
Currently under review

The contents of this thesis have been indirectly influenced by the following publications:

• AMP: Authentication of Media via Provenance
Paul England, Henrique S. Malvar, Eric Horvitz, Jack W. Stokes, Cédric Fournet, Re-
becca Burke-Aguero, Amaury Chamayou, Sylvan Clebsch, Manuel Costa, John Deutscher,
Shabnam Erfani, Matt Gaylor, Andrew Jenks, Kevin Kane, Elissa M. Redmiles, Alex
Shamis, Isha Sharma, Sam Wenker, and Anika Zaman
12th ACM Multimedia Systems Conference (MMSys), 2021 Istanbul, Turkey [85]

• Multi-stakeholder media provenance management to counter synthetic media
risks in news publishing
Jatin Aythora, Rebecca Burke-Agüero, Amaury Chamayou, Sylvan Clebsch, Manuel
Costa, John Deutscher, Nigel Earnshaw, Laura Ellis, Paul England, Cedric Fournet, Matt
Gaylor, Charlie Halford, Eric Horvitz, Andrew Jenks, Kevin Kane, Marc Lavallee, Scott
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Lowenstein, Brian MacCormack, Henrqiue S. Malvar, Sinead O’Brien, J Parnall, Elissa
M. Redmiles, Alex Shamis, Isha Sharma, Jack Stokes, Sam Wenker, and Anika Zaman
International Broadcasting Convention (IBC), 2020 Amsterdam, Netherlands [16]

1.8 Outline
The remainder of this thesis is structured as follows:

Chapter 2 describes the background material on which the concepts in this thesis are built.
We first provide the required description of Byzantine consensus protocols followed by tech-
niques used to audit ledgers. Next, we explain techniques and strategies that have been used
to improve the throughput of permissioned ledgers, specifically those that utilize Byzantine
consensus protocols.

Chapter 3 explores the role of accountability in permissioned ledgers and their consensus
protocols. In this chapter, we argue that setting an arbitrarily limit – after which a permissioned
ledger’s ledger can be rewritten in a non-detectable manner – results in a user never being able to
trust the permissioned ledger. We then describe IA-CCF, a system that co-designs its Byzantine
consensus protocol with the ledger and transaction execution to create a permissioned ledger
that allows clients to assign fine-grain blame to dishonest replicas. We show how an audit
of an IA-CCF permissioned ledger always undercovers malicious actions, even if the ledger is
rewritten, thus allowing clients to trust the ledger.

Chapter 4 explores how permissioned ledgers can fully utilize modern hardware through co-
design of the hardware resource being utilized and the consensus protocol. In this chapter,
we present the permissioned ledger DropBear that, is a cloud-based ML inference service that
o�ers auditable inference decisions using machine learning models. DropBear separates the
execution of inference requests on a GPU for ordering the requests in the consensus protocol
to obtain high utilization of the GPU.

Chapter 5 explores how a Byzantine consensus protocol in a permissioned ledger can fully
utilize modern multi-core CPUs when executing transactions. In this chapter, we present
Bunyip, an extension of the IA-CCF permissioned ledger that utilises all of the replica’s CPU
cores when executing transactions on both the primary and backup replicas. Bunyip captures
and then validates the dependency information between transactions. This ensures that a
Bunyip replica’s CPU cores are fully utilized without compromising the permissioned ledger’s
linearizability property.

Chapter 6 summarises the thesis and discusses directions for future work.
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Background

This chapter provides background into the concepts and materials explored in this thesis. The
chapter is divided into three sections. In the first section, we describe background informa-
tion to understand Byzantine consensus protocols and how they relate to permissioned ledgers.
In the next section, we discuss accountability in distributed systems. We first look at some
seminal work and discuss current proposals for adding accountability to permissioned ledgers.
In the final section, we discuss techniques and methods used to improve the throughput of
Byzantine consensus protocols, focusing on techniques that improve the throughput of trans-
action request execution.

In addition, we present chapter-specific background material in each of the
technical chapters.

2.1 Byzantine consensus protocols

There are several types of consensus protocols used by blockchains and permissioned ledgers.
We give a brief overview of di�erent consensus protocols used in blockchains in Chapter 1. In
this section, we focus on the consensus protocols used in permissioned ledgers.
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2.1.1 Practical byzantine fault tolerance

Lamport, Shostak, and Pease published “The Byzantine Generals Problem” [148], which pre-
sented a challenge to the computer science community. The challenge was to design an algorithm
for a distributed system where replicas within the system may be actively malicious. The chal-
lenge’s goal is to design a distributed system which can make progress (correctly commit and
serialize transactions) when a subset of the replicas are actively malicious. The system must
also define the minimum proportion of replicas which are honest versus those that are malicious.

The first practical solution to the “Byzantine Generals Problem” was proposed by Miguel
Castro and Barbara Liskov in their seminal work Practical Byzantine Fault Tolerance (PBFT)”.
They describe an algorithm that solves the “Byzantine Generals Problem” and define the max-
imum proportion of replicas that can be malicious in their system and prove the correctness
of their approach. They implement a system to study the performance impact of building a
Byzantine fault tolerant system [49].

The algorithm can be divided into two parts: the first is the failure free execution path
where there are 3f + 1 replicas where f or fewer of these replicas may be performing arbitrary
malicious actions. The algorithm works in several stages: in the first stage (request stage), a
client sends a request to all 3f + 1 replicas. In the next stage (pre-prepare stage) the primary
sends a pre-prepare message to all the other replicas, where the message proposes an ordering
for a set of requests. Next, all the replicas, except the primary, send a prepare message to all
the other replicas in the prepare stage. This confirms to all replicas that they agree on which
request(s) to order and how to order them. At this point, an honest replica knows that at least
2f + 1 replicas agree on the request execution order; if not they abort processing the requests.
Finally, in the commit stage, all honest replicas send a commit message to all other replicas to
state that they are aware of at least 2f + 1 replicas that agree on the ordering information sent
in a pre-prepare message. After receiving 2f commit messages and sending its own a replica
considers the requests to be part of the total order, which cannot be reverted, and executes
the requests. This protocol is illustrated in Figure 2.1.

The second part of the PBFT algorithm deals with how an incorrect primary is replaced.
A primary can be considered incorrect for a variety of reasons such as sending inconsistent
requests during the pre-prepare stage, not sending messages, or other reasons described by
Castro and Liskov [49]. The protocol works by rotating deterministically the primary through
all the replicas. It begins when at least a group of 2f + 1 replicas independently decide that
the primary needs to change, and send view-change messages signalling this intention. This
step is shown in Figure 2.2a.

When the prospective new primary receives evidence (view-change messages) that at least
2f + 1 replicas are requesting a new primary, the prospective primary sends a message indi-
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Figure 2.1: Practical Byzantine Fault Tolerance [49].
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(a) PBFT: Collect view change evidence.

Replica 0 = primary v
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(b) PBFT: Send new view message.

Figure 2.2: Practical Byzantine Fault Tolerance view change protocol [47].

cating that it is the new primary (new-view message) with evidence (view-change message),
that at least 2f + 1 replicas are requesting a new primary. If the other replicas are able to
validate said evidence, they consider the prospective primary to be the actual primary. This
is shown in Figure 2.2b.

PBFT and derived approaches are currently the most commonly used consensus protocols
for permissioned ledgers.

2.1.2 Byzantine fault tolerance for permissioned ledgers

There have been a large number of Byzantine fault tolerant protocols proposed since PBFT was
published in 1999. In this section, we provide an overview of Byzantine fault tolerant protocols,
specifically focusing on BFT protocols used by permissioned ledgers.
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Figure 2.3: SBFT Schematic message flow for n=4, f=1, collectors (c)=0 [106]
.

SBFT is a Byzantine consensus protocol that is designed to work as the consensus protocol for
a permissioned ledger that must scale to hundreds of replicas [106]. The protocol uses several
techniques to achieve its performance and scalability goals:

• SBFT defines a replica type called a collector. When a non-collector replica receives a
message as part of the normal progress of the protocol, instead of sending a message to all
the replicas, it sends a single message to the collector replica. The collector replica then
aggregates the responses, waits until it has 2f + 1 matching messages, and then forwards
them to the non-collector replicas. This is done to remove a large number of network
messages from the consensus protocol (removing the all-to-all messaging pattern from
PBFT). However, removing the all-to-all messaging pattern results in the requirement
that SBFT signs more messages than PBFT using MAC based authenticators.

• SBFT addresses the performance impact of the additional asymmetric cryptography by
using threshold signatures [220]. SBFT collectors wait until they gather 2f + 1 relevant
messages and then create a threshold signature which they then send to the other replicas.
This results in the non-collector replicas having to verify only a single threshold signature
versus 2f + 1 signatures if the collector replicas did not use threshold cryptography.

Figure 2.3 shows the message flow of SBFT when there are no failures.

The authors report that SBFT achieves more than 2 times higher throughput and 1.5 times
lower latency in their WAN experiments than PBFT. However, the creation of threshold sig-
natures is computationally expensive, and it is not obvious if threshold cryptography improves
the overall throughput of the system. It is only beneficial if the number of replicas in the
system is large.
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Figure 2.4: HotStu� Schematic message flow for n=4 or f=1

HotStu� is a consensus protocol that is designed to work in permissioned ledger systems
and, similar to SBFT, it is designed to scale out to a large number of replicas [254]. HotStu�
removes the all-to-all messaging pattern of PBFT and utilises threshold cryptography to reduce
the cryptographic cost of signature verification. HotStu�’s key contributions are around fast
changes to the primary.

In HotStu�, every consensus round starts with a possible view-change “any correct leader,
once designated, sends only O(n) authenticators to drive a consensus decision. This includes
the case where a leader is replaced. Consequently, communication costs to reach consensus
after [global stabilization time] is O(n2) authenticators in the worst case of cascading leader
failures”. Figure 2.4 shows the message flow of HotStu� when there are no failures.

HotStu� is shown to have high throughput in a LAN scenario, however, several orders of
magnitude lower throughput in a WAN scenario (see Section 3.6.1). HotStu�’s WAN through-
put issue originates in the blockchains pipelining design. Solutions to this issue have been
proposed [262] and experimental results are shown to resolve the WAN throughput issue. The
authors of HotStu� have announced a follow-up protocol, DiemBFT, but, at the time of writing,
the results for the follow-up work have not been published.

IBFT is the Istanbul Byzantine fault tolerant consensus protocol, a version of which is used
by Consensys Quorum and Hyperledger Besu [210, 175]. The protocol is heavily inspired by
PBFT and has a nearly identical failure free path and a simplified view-change protocol. The
primary change implemented by IBFT is its ability to change the set of replicas used by the
consensus protocol. The selection of a new primary is done randomly, unlike PBFT, which
selects deterministically in a round-robin fashion.
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Figure 2.5: Hyperledger Fabric transaction flow. Copied from [11]

The design changes of IBFT have created controversy with claims that the protocol is
unsafe [209], resulting in Hyperledger Besu using IBFT version 2, unlike Consensys Quorum
that uses the original protocol. However, as neither of the versions of IBFT has been published
in a peer reviewed venues, it is di�cult to draw a conclusion on the safety or correctness of either
version of the IBFT consensus protocol. While, publication does not guarantee correctness,
publication in a reputable journal provides assurance that subject matter experts examined the
protocol and believe it is complete and correct.

2.1.3 Alternative consensus protocols for permissioned ledgers

There are several permissioned ledgers that do not utilize Byzantine fault tolerant consensus
protocols and instead rely on a crash fault tolerant consensus protocol for consensus but harden
the permissioned ledger in other ways. Commonly, these crash fault tolerant consensus protocols
are hardened through the introduction of trusted execution environments [206, 133, 29].

Hyperledger Fabric [11] introduces the execute-order-validate architecture for permissioned
ledgers. The architecture is shown in Figure 2.5 and separates the execution and commitment
of a transaction into four phases.

1. Execute. A client begins its interaction with Hyperledger Fabric by creating a trans-
action and sending it to a subset of the replicas. The replicas execute the transaction,
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produce a read and write set, and send the read/write set, along with a signed endorse-
ment, to the client.

2. Order. After the client has received the required number of endorsements, the transac-
tion, along with the read/write set and endorsements, are ready for ordering. The ordering
phase creates a total order of transactions that have been executed and endorsed. The
total order can be created by replicas running any consensus protocol, however, at the
time of writing, the latest release of Hyperledger Fabric only implements a crash-fault
replication protocol (Raft) [185, 186]. The use of Raft results in questionable security
properties for Hyperledger Fabric, and this is acknowledged by Hyperledger Fabric’s of-
ficial documentation: “Raft is the first step toward Fabric’s development of a byzantine
fault tolerant (BFT)” [88]. At the time of writing, the creation of a version of Hyperledger
that uses PBFT is under development.

3. Validate. After a transaction is ordered, it is validated. The validation phase ensures
that any transaction inserted into the total order has a valid read and write set produced
during the execute phase and that there are no conflicts, which would invalidate the earlier
execution of the transaction. In addition, the endorsements are re-checked to ensure that
they are produced by replicas that are still active.

4. Update State. In the final phase, the state of Hyperledger Fabric’s key-value store is
updated with transactions that have been successfully validated.

The separation of execution and ordering allows Hyperledger Fabric to scale independently
the number of replicas used for any of the previously mentioned functions. However, this
independent scaling comes with a performance penalty (see Section 3.6.1).

Confidentual Consortum Framework (CCF) [206] is a permissioned ledger framework that
provides similar functionality as Hyperledger Fabric. It utilises the Raft consensus protocol to
obtain a total order over executed transaction requests, however, CCF protects its replicas
against attackers by moving the execution of each replica into a trusted execution environment
(TEE). A TEE is a hardened section of the CPU that provides integrity and privacy over
applications it executes. CCF uses Intel SGX [206] TEE. CCF’s reliance on general-purpose
TEEs means that the service’s security is completely undermined if the TEE is compromised.

In this thesis, we assert that TEEs, which allow general purpose computation, are not a
practical solution for building permissioned ledgers. In the event that a vulnerability in the
TEE is discovered [238, 245], all work that was performed within the time window in which
the vulnerability existed cannot be trusted.
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2.1.4 Conclusions

In this section, we reviewed the consensus protocols commonly used in permissioned ledgers.
The majority of these protocols have evolved from PBFT and thus set a threshold on the
number of replicas that can be compromised before the permissioned ledger is controlled by an
adversary. While this threshold (f) is scientifically justified within all consensus protocols, for a
permissioned ledger, it is an arbitrary threshold with no justification why only f replicas can be
compromised and not f+1. We assert that any practical permissioned ledger requires a mecha-
nism that provides guarantees when any number, or all, of the replicas have been compromised.

2.2 Accountability

In the previous section, we explored the consensus protocols used in permissioned ledgers and
their fundamental inability to ensure a permissioned ledger’s safety. We now look at alternative
safety guarantees that a permissioned ledger could provide.

We explore accountability as it allows us to build on one of the distinguishing features of
permissioned ledgers. All entities that are part of a permissioned ledger are tied to their real
world identity. Thus, if malicious behaviour could be detected, even if it cannot be prevented,
the malicious entity can be made accountable and face consequences. In this thesis, we con-
jecture that if a malicious actor is accountable for their actions, they will not act maliciously
if the consequences are of an appropriate severity.

2.2.1 PeerReview: practical accountability for distributed systems

The popularization of distributed systems brought with it concerns that replicas in a system
could be running on machines that are controlled by a malicious actor. These concerns in part
are addressed by the work on Byzantine fault tolerance, however, Byzantine fault tolerance is
unable to provide any guarantees if more than f replicas are malicious (see Section 2.1.1). This
gap was initially addressed by Andreas Haeberlen, Petr Kuznetsov, and Peter Druschel in their
work “PeerReview: Practical Accountability for Distributed Systems” [111].

The goal of PeerReview is to blame replicas that act maliciously either by violating correct-
ness or liveness. PeerReview is a distributed system in which each replica runs a deterministic
state machine. PeerReview validates if a replica acted correctly by re-executing the state ma-
chine with known good inputs and checking that the expected output is produced. Each replica
maintains a tamper-evident ledger containing all the network messages that it received and sent
and the commitment (signature using a private key over the ledger) of said replica to the sent
and received messages. Each replica includes a hash of the ledger in each message. In addition,
the replica signs the message, that ties the replica’s ledger to every previously sent message.
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PeerReview checks for liveness by requiring that all replicas send a signed response message
acknowledging any message that they received. The response message is also added to each
replica’s ledger. PeerReview then introduces the role of a witness. Each witness is associated
with a number of replicas and is responsible for validating the correctness and liveness of every
replica by occasionally replaying the replica’s ledger.

The key drawback of the PeerReview method of accountability is the cryptographic over-
head of signing and verifying messages. To alleviate some of the performance impact of the
cryptography required to show that a replica behaved correctly or demonstrated dishonest be-
haviour, Haeberlen et al. introduced a technique for creating a snapshot of a replica’s state.
This snapshotting technique can be used to verify that the replica acts correctly without having
to replay the entire ledger in a limited set of scenarios [110]. However, as we show later in this
thesis, applying these techniques to a permissioned ledger results in the transaction throughput
and latency of the permissioned ledger being severally degraded (see Section 3.6.1).

2.2.2 Accountability in permissioned ledgers

Designing a distributed ledger that is auditable after its consensus protocol’s threshold failure
limit has been exceeded is a new area of focus for the research community. The straw-man
approach has been for systems to produce transaction execution receipts that are signed by all
replicas and send them to clients as proof that a transaction executed [5]. This approach is not
practical for the following reasons: It adds additional asymmetric cryptography to the protocol
which results in a significant performance degradation; second, it does not address the real
world problem of replicas being added and removed from a running system (reconfiguration).

In the remainder of this section, we look at the work that considers accountability in per-
missioned ledgers. Note that the described work was done in parallel to the work presented
in this thesis.

BFT Protocol Forensics is a study of the auditability (forensics) of multiple Byzantine
fault tolerant consensus protocols. The purpose of the study is to identify which consensus
protocols can be extended so that, if replicas retain their consensus protocol messages, or
other trivial changes are made, some auditability properties exist. The authors define a ledger
as auditable if a third party can review the ledger and correctly determine which replicas
performed a dishonest action.

Their results are presented in Table 2.1. Unfortunately, BFT Protocol Forensics does not
consider auditability when changing the active replica set nor does it find any BFT protocols
that provide forensic properties if 2f + 1 or more replicas are malicious.

Polygraph proposes a new “accountable Byzantine consensus algorithm” which is designed to
detect if there are more than N/3 malicious replicas [55]. The Polygraph consensus protocol
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Symbol Interpretation
f maximum number of faults for obtaining agreement and

termination
k the number of di�erent honest replicas’ transcripts needed

to guarantee a proof of culpability
d the number of Byzantine replicas that can be held culpable

in case of an agreement violation

Protocols Forensic
Support

Parameters
m k d

PBFT-PK
HotStu� Strong 2f 1 f + 1
VABA [3]

PBFT-MAC None f + 1 2f 0
Algorand

Table 2.1: Summary of results: the forensic support values of d are the largest possible and
n = 3f + 1. Copied from [217]

is a multi-phase protocol where:

1. A replica sends what it believes to be the current state of the system to all other replicas.

2. Replicas then wait to receive at least one message from another replica or a timeout to
occur.

3. If a replica receives the state from the current primary replica, it adopts said state.

4. Finally, a replica checks if it received N≠f≠1 messages that agree on a state and, if
so this state is adopted, otherwise the replica repeats the above process but rotates its
understanding regarding which replica is the primary.

Polygraph, similar to consensus protocols analyzed in BFT Protocol Forensics, does not
consider reconfiguration and, as such, is not a practical real world solution nor can it detect
if there are more than 2f malicious replicas.

ZLB builds on top of Polygraph to define a blockchain and a consensus protocol that can,
in a specific set of scenarios, replace malicious replicas [201]. This system, however, only
allows for the trading of cryptocurrency, which is done to simplify the detection and rollback
of malicious transactions.
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The Byzantine consensus protocol is given the responsibility to detect if a replica behaved
in a dishonest manner, however, rather than reporting said replica the protocol automatically
attempts to replace it. ZLB does support reconfiguration and is therefore the most practical
of the previously mentioned solutions, but it can only reconfigure correctly if there are at most
2f dishonest replicas. This makes it vulnerable to a patient adversary, which could wait until
it has compromised at least 2f + 1 replicas before performing any malicious actions.

2.2.3 Conclusions

The promise of accountability stems from the expectation that dishonest entities will be deterred
from acting dishonestly if they are guaranteed to be caught and face the consequences of their
actions. Unfortunately, accountability-based systems that could be used in permissioned ledgers
have shortcomings, making them impractical. PeerReview and its derived work degrades the
performance of permissioned ledgers to such an extreme that this technique is impractical.
Other accountability-based protocols which have been specialized for permissioned ledgers, can
be compromised in such a way that a dishonest actor can perform undetectable malicious
actions and avoid consequences.

2.3 Scaling Byzantine consensus protocol performance

In this section, we move our focus to another issue that limits the practical usage of permissioned
ledgers: their transaction execution throughput and latency. The throughput and latency of
transaction request execution of permissioned ledgers is primarily governed by a permissioned
ledger’s consensus protocol. This concern has been addressed by a large number of systems
and by the research that backs them. In this section, we look at how previous work improves
transaction throughput and latency of permissioned ledgers.

We explore several families of techniques that have been employed to improve transaction
throughput and latency. It is important to note that our focus is on improving transaction
execution throughput and latency rather than increasing the number of transactions the system
can order. In that, we do not look at systems such as Pompē [262], Narwhal and Tusk [67], or
leaderless BFT consensus protocols [83, 63], which improve the rate at which transactions are
ordered but do not contribute to improving transaction execution.

2.3.1 Byzantine fault tolerant sharding

In parallel to designing blockchains and permissioned ledgers that use Byzantine fault tolerance
as their consensus protocol the research community is exploring sharding blockchains and per-
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Figure 2.6: OmniLedger Commit Protocol. Copied from [140]

missioned ledgers, using a Byzantine fault tolerant consensus protocol to combine the shards,
thus maintaining a consistent view over the entire system.

A Secure Sharding Protocol For Open Blockchains by Saxena et al. introduces ELAS-
TICO, “the first candidate for a secure sharding protocol with presence of Byzantine adver-
saries” [158]. The authors assign replicas to committees where each committee is responsible
for a disjoint part of the blockchain. Each committee executes transactions in their part of the
blockchain and, when all the committees finish executing the transactions assigned to them, a
final committee combines the results. As the first sharded blockchain, ELASTICO introduces
several commonly used techniques including: employing epochs for executing transactions; how
transactions are assigned to committees; and requiring potential committee members to com-
plete a proof-of-work puzzle before they are allowed into the committee.

ELASTICO has several flaws in its design that have been recognized by later work including
that the identity of the committee members is known before they join, allowing an adversary
more time to launch an attack. Follow-up work addresses this issue by using verifiable random
functions [165] for committee election, in a similar way to Algorand (see Section 1.2.2).

Chainspace [6] removes the need to have a single committee, which ultimately manages a
transaction after it is executed by multiple shards. Figure 2.7 is a diagram representing
Chainspace’s architecture.

The primary contribution of Chainspace is a “distributed atomic commit protocol” that
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Figure 2.7: Chainspace Architecture Overview. Copied from [6]

“combines two primitive protocols: Byzantine Agreement and atomic commit”. A visual exam-
ple of the protocol can be seen in Figure 2.8. It involves the following steps:

1. The client produces a transaction and divides it into parts which each shard can execute
independently.

2. Each shard executes the sub-transaction that it was assigned. As part of execution,
Byzantine agreement is run between the nodes in a shard.

3. Nodes then send cross shard messages propagating their results along with proof that
Byzantine agreement ran and agreement was reached.

4. Once a shard receives enough proof that the other shards have successfully or unsuc-
cessfully reached agreement, the shard in question performs another round of Byzantine
agreement over these results and either commits or abandons the state reached in Item 2.

5. Shards then send the result of their execution to the client and to other shards that need
to create new objects as a result of transaction execution.
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Figure 2.8: Chainspace Commit Protocol. Copied from [6]

6. Finally, another round of Byzantine agreement is run to create the new objects described
in Item 5.

The performance of Chainspace is unfortunately lackluster: authors report transaction
throughput in the hundreds of transactions per second and the transaction latency in the
tens of seconds. However, they show results that exhibit near linear scaling in transaction
throughput when adding more shards. The authors conclude that their performance is limited
by the performance of their Byzantine fault tolerance consensus protocol implementation.

OmniLedger [140] utilises a commit protocol that requires clients to act as the coordinator
for their own transactions. The protocol involves the client sending a sub-transaction to one or
more shards and receiving cryptographically verifiable proof of the result of the transactions’
execution from each shard. This proof includes evidence of which objects were locked as part of
the sub-transaction. After a client obtains said proof, it sends it along with a sub-transaction to
other shards, where the sub-transaction depends on the locked objects as input. Finally, after
completing the second set of sub-transactions a client receives proof of their execution, which
is used as proof to unlock the locked objects and mutate them as necessary. The protocol
is illustrated in Figure 2.6.

The authors’ argument to justify using an untrusted client as the transaction coordinator is
that the client can only lock objects that they own. If they never unlock an object, the client
only acts in its own disinterest. This, unfortunately, means that transactions in the system are
limited to transferring crypto-currency between accounts.

2.3.2 Byzantine fault tolerance and database sharding

An alternative to designing a new transaction protocol for sharded permissioned ledgers is to
reuse techniques that solve similar problems in adjacent fields, relational-database sharding.



2.3. SCALING BYZANTINE CONSENSUS PROTOCOL PERFORMANCE 47

Figure 2.9: Towards Scaling Blockchain Systems via Sharding. Copied from [68]

This approach is explored by Dang et al. in their work “Towards Scaling Blockchain Systems
via Sharding” [68]. Figure 2.9 shows an overview of the system. Data is stored in shards, which
maintain data consistency and integrity via the PBFT consensus protocol. In addition, a
collection of transaction coordinator machines (Reference Committee) that also run a BFT
protocol are responsible for coordinating both the two phase commit and the two phase locking
protocols, both of which are an integral part of the transaction protocol.

At a high level the transaction protocol is divided into the following parts:

1. A client sends a Begin Transaction request to the Reference Committee.

2. The Reference Committee executes the transactions and sends the sub-transactions to the
appropriate shards.

3. Next, the Reference Committee waits for the appropriate proofs of execution, created
after the shards execute the sub-transaction. The proofs contain either a commit or
abort decision.

4. Finally, the Reference Committee either performs the commit or abort operation on the
global state of the system.

Dang et al. divide their work into three distinct parts: “(i) optimizations that improve the
performance of the consensus protocol running within each individual shard, (ii) an e�cient
shard formation protocol, and (iii) a secure distributed transaction protocol that handles cross-
shard, distributed transactions.”. However, there are several areas of concern:

1. The optimizations to the consensus protocol involve reducing the number of messages that
PBFT must send to reach agreement. This is implemented by utilizing TEEs and builds
on the work by Behl et al. “Hybrids on Steroids: SGX-Based High Performance BFT” [30].
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Relying on TEEs for safety is concerning, as even a single TEE being compromised would
result in the system losing its safety properties.

2. The system moves nodes between shards to ensure that an attacker is unable to pool its
resources and compromise a single shard. The claim that this technique is e�ective is in
itself suspect as a patient attacker can compromise a replica and wait for it to be moved
into a target shard. This is a well known attack vector, and multiple blockchains, e.g.,
Algorand, optimize their design to avoid this issue.

The performance of this and other sharded systems does not meet expectations and the
reported throughput is lower than comparable systems that are not sharded, e.g., Hyperledger
Fabric [101]. While this result is unexpected, it is not possible to know if this is a problem
with the design or implementation.

2.3.3 Transaction execution in Byzantine fault tolerant systems

Practical Byzantine fault tolerance and the majority of related BFT protocols work by agreeing
on an order of execution and then sequentially executing the ordered transaction requests. This
may result in under-utilization of a replica’s resources, because only a single CPU core is used
to execute transactions. In addition, if a transaction’s execution utilises an accelerator, e.g., a
GPU, this resource will be under-utilized if the accelerator is designed to execute highly parallel
workloads or multiple workloads in parallel. In this section, we review several BFT systems
that attempt to improve the performance of single replica transaction throughput.

High throughput Byzantine fault tolerance [142] introduces the CBASE Byzantine fault
tolerant system, which parallelizes transactions within the bounds of state-machine replica-
tion. The system introduces an extra stage in the Byzantine fault tolerant consensus protocol
pipeline, in which a replica that is ready to execute a batch of transactions runs an application
called a parallelizer. The parallelizer determines which transactions can be run in parallel.
The replica uses the parallelizers’ output to execute multiple transactions in parallel while
maintaining the same linearizability property as if all transactions were run sequentially.

The parallelizer takes as input the ordered transactions and, by understanding the semantics
of the application built on top of the BFT consensus protocol, it can decide which transactions
can be executed concurrently. Unfortunately, this level of understanding is not always guar-
anteed to be correct and if the parallelizer mistakenly believes two transactions can run in
parallel, CBASE’s linearizability is compromised.

All about Eve: Execute-Verify Replication for Multi-Core Servers [135] introduces
the execute-verify model for parallelizing request execution. The execute-verify model requires
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the developer to build an oracle that, when provided with multiple requests, calculates the
dependencies between them. Eve’s workflow is as follows:

1. As in PBFT, the primary creates a batch of transaction requests and sends a pre-prepare
message containing these requests to all the backups.

2. The primary and backups execute the requests in parallel, using the oracle to determine
which requests can be executed concurrently.

3. The replicas update their state as part of the request execution and compare the result.

4. If the replicas do not agree on the result, the execution is rolled back and the requests
are executed sequentially.

There are several issues that arise from Eve’s design. First, the oracle is a best e�ort
technique and for some workloads it may not be possible to write a high quality oracle. Second,
users are now required to write a new oracle for every application. Finally, it is possible for a
Byzantine primary to force sequential execution without being detected.

The key advantage of Eve over CBASE is that the oracle unlike the parallelizer can in-
correctly select which transactions can run in parallel without compromising the system’s
linearizability.

Rex: Replication at the Speed of Multi-core [109] proposes an automated way of tracking
transaction dependencies, however, it only considers crash faults. Rex works by tracking lock
acquisition on the primary and then sending the lock acquisition order to backup replicas so
that the backups know the dependency between requests before executing them. Rex has
the following workflow:

1. Clients send requests to the primary and the primary executes requests across multiple
threads.

2. While the primary executes requests, it tracks which locks each request obtains.

3. The primary sends the lock acquisition information when it replicates requests to backups.

4. Backups execute requests in parallel using the lock acquisition information to ensure the
system’s linearizability properties are maintained.

Block-STM: Scaling Blockchain Execution by Turning Ordering Curse to a Per-
formance Blessing [94] describes an extension to the Aptos Blockchain [10] that enables the
blockchain’s consensus protocol to execute some transactions in parallel. The Aptos blockchain,
similar to other systems that utilize Byzantine consensus, elects a primary replica that orders
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Figure 2.10: Transaction execution logic for a single group of ordered transactions.

transactions. The consensus protocol batches the ordered transactions into groups. Replicas in
Block-STM sequentially consider a group of transactions and attempt to execute transactions
in parallel. The system tracks conflicts that occur when transactions execute in parallel and
aborts transactions that experience a conflict with another transaction. In addition, Block-
STM ensures that transactions commit in an order that is serializable to the order defined
by the primary replica. We show a simplified workflow of how Block-STM executes a group
of transactions in fig. 2.10. While, Block-STM introduces and borrows many techniques from
transactional memory research to reduce conflicts between transactions many conflicts still oc-
cur, requiring transactions to be re-executed and this re-execution wastes compute resources
and introduces latency.

Rex, Eve, and CBASE make steps towards executing requests in parallel on backup repli-
cas. However, none of these systems provides a technique to detect automatically and safely
transaction dependencies and utilize this information to enable parallel execution of requests in
all Byzantine environments. Block-STM is able to automatically and safely ensure transactions
in a block will always commit. However, this safety guarantee comes at the cost of wasted
resources and increased latency – up to 30% increase in latency – than executing transactions
sequentially for workloads that have a large number of conflicting transactions [94].

2.3.4 Conclusions

The transaction throughput and latency of permissioned ledgers are directly connected to their
consensus protocols. There have been many attempts to improve the transaction throughput
and latency of Byzantine fault tolerant consensus protocols. In this section, we explored tech-
niques that are designed to address these performance concerns. However, they either cannot
fully utilize the multiple cores on a replica’s CPU or are dependent on approximating which
transactions can be run in parallel.



2.4. SUMMARY 51

2.4 Summary
In this chapter, we explored the background materials on accountability and the performance
of distributed ledgers and their consensus protocols. We began by looking at how consensus
protocols are used in distributed ledgers, starting with Castro and Liskov’s Practical Byzan-
tine Fault Tolerance (PBFT) [48], the seminal work for Byzantine fault tolerant consensus
protocols. We then explored more recent consensus protocols used in permissioned ledgers.
However, we concluded that the consensus protocols do not provide the safety required for
permissioned ledgers, as they only retain their safety properties when fewer than an arbitrary
number of replicas are malicious.

We continued by looking for an alternative to ensuring the safety of permissioned ledgers by
exploring accountability in Byzantine fault tolerant consensus protocols. We first considered
the work for accountability in distributed systems by Haeberlen et al. [111] and then progressed
to accountability in permissioned ledgers. We then concluded that while the current work on
accountability in permissioned ledgers provides stronger guarantees than only utilizing Byzan-
tine consensus protocols, the techniques that are employed to obtain accountability still fail
after an arbitrary number of replicas have been compromised.

Finally, we shifted our focus to transaction throughput and latency, which fully utilises
modern hardware. We explored techniques that are used to increase transaction throughput,
including several permissioned ledger sharding techniques. Next, we explored techniques used
in Byzantine fault tolerant consensus protocols to improve the transaction execution through-
put. We observed how these techniques are not practical for permissioned ledgers as either
they require oracles that attempt to predict if two transactions would conflict before the trans-
actions are executed, or they do not provide any safety guarantees in an environment with
malicious actors.
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In this chapter, we explore accountability in permissioned ledgers. We address the issue that
accountability in permissioned ledgers only functions correctly if less than an arbitrary number
of replicas are dishonest.

We present IA-CCF, a new permissioned ledger that provides individual accountability. It
can assign blame to individual members that operate misbehaving replicas regardless of the
number of misbehaving replicas or members. IA-CCF achieves this by signing and logging
BFT protocol messages in the ledger, and by using Merkle trees to provide clients with suc-
cinct, universally-verifiable receipts as evidence of successful transaction execution. Anyone can
audit the ledger against a set of receipts to discover inconsistencies and identify replicas that
signed contradictory statements. IA-CCF also supports changes to consortium membership
and replicas by tracking signing keys using a sub-ledger of governance transactions.

In the context of describing IA-CCF, we show a design for an individually accountable per-
missioned ledger that retains its accountability property regardless of the number of replicas
that become malicious. In addition, this chapter addresses a subset of the previously described
concerns – see section 1.4.1 – that are raised by organizations that are evaluating utilizing
a permissioned ledger.
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3.1 Introduction

As discussed in Section 2.2, BFT protocols ensure safety (linearizability [118]) and liveness,
but they can only do this if fewer than 1/3 of N replicas misbehave. With more misbehaving
replicas, current permissioned ledger systems can no longer be trusted. When safety violations
are detected, blame is shared.

Current systems try to avoid this problem by increasing replication [139, 107, 253]. Adding
replicas does not help if they are controlled by the same consortium members and thus do not
behave independently. Increasing the number of consortium members, however, is challenging
or even infeasible in practice. For example, the Diem Association [77] had 26 members, which
prevented it from o�ering a service with more than 26 independent replicas; other consortia are
smaller, which results in fewer independent replicas [191, 17, 127]. Even for large consortia with
reputable companies, a persistent attacker may slowly compromise N/3 replicas over time, e.g.,
by exploiting lax security practices, bribing members’ employees or exploiting software vulner-
abilities. Without accountability after a service compromise, there is also no perceived reputa-
tional loss that would incentivize members to prevent or disclose these incidents [120, 99, 42].

Prior work explores accountability for various types of distributed systems [257, 111, 110,
5, 152]. PeerReview [111] makes general message passing systems accountable. As we show in
Section 3.6, applying such a general approach to a permissioned ledger system incurs high over-
head: all messages must be signed, and auditing is expensive, because it correlates logs across
many replicas. More recent work [219, 55, 201, 39] investigates accountability in BFT proto-
cols and blockchains. These proposals, however, o�er no guarantees when 2/3 or more replicas
misbehave, because misbehaving replicas may rewrite the ledger history without detection.

In this chapter, we describe Individual Accountability for CCF (IA-CCF), a BFT permis-
sioned ledger system that identifies misbehaving replicas and assigns blame to the individual
members that operate them, even if all replicas misbehave. Individual accountability provides
strong disincentives for misbehaviour.

IA-CCF is a prototype that extends CCF [206] with support for BFT and individual account-
ability, while retaining the same user programming model, key-value store, transaction execu-
tion engine, and model of governance for changes to the consortium membership and replica set.

IA-CCF supports individual accountability by introducing Ledger PBFT (L-PBFT), a new
BFT state machine replication protocol that stores ordered transactions in the ledger together
with the protocol messages from replicas that justify the execution order. L-PBFT main-
tains Merkle trees [163] over the ledger, and includes the roots of the trees in protocol mes-
sages. Since protocol messages are signed by the replicas, this commits them to the entire
contents of the ledger.

IA-CCF then issues receipts to clients that provide succinct, universally-verifiable evidence
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that a transaction executed at a given position in the ledger. Receipts include signed proto-
col messages from multiple replicas that executed the transaction, thus binding them to a
prefix of the ledger.

Given a collection of receipts that violates linearizability, anyone can audit the ledger against
the receipts to assign blame to at least N/3 replicas. Auditing produces an irrefutable univer-
sal proof-of-misbehaviour (uPoM) in the form of contradictory statements signed by the same
replica. The uPoM can be used by an enforcer, e.g., a court, to punish the members responsible
for the misbehaving replicas. To provide accountability when all replicas misbehave, the en-
forcer may have to compel members to produce a ledger, imposing sanctions otherwise. While
this formally adds a weak synchrony assumption, the enforcer chooses a conservative timeout
to make blaming correct members unlikely in practice.

As an example of auditing, a client Alice may have a receipt for a transaction that executed
at index i in the ledger and deposited $1 million into client Bob’s account. If Bob obtains
the receipt from Alice and another receipt for a balance query transaction executed at index j

(j > i) that does not show the balance, he may conduct an audit: he engages an enforcer to
obtain the relevant ledger fragment, and replays the transactions between i and j to check for
consistency with his receipts. If Bob is right, auditing produces a uPoM for at least N/3 replicas,
which Bob sends to the enforcer to punish the consortium members responsible for the replicas.

To support changes to the consortium membership, IA-CCF uses governance transactions
that alter the set of replicas and consortium members [206]. Governance transactions complicate
receipt verification and auditing because they change the signing keys that must be considered.
IA-CCF, therefore, records governance transactions in the ledger, which allows clients, replicas,
and auditors to determine the set of valid signing keys. Clients do not need to keep the
full ledger, but only receipts of governance transactions. Since governance transactions are
relatively rare, this governance sub-ledger is significantly smaller than the full ledger.

Our IA-CCF prototype provides individual accountability without compromising on
throughput or latency: it implements a commitment scheme for transaction batches
with only a single signature per replica. This enables clients to receive results with
receipts after only two network round-trips. Our evaluation shows that IA-CCF can
execute over 47,000 tx/s with low latency.

The contributions of IA-CCF and the chapter structure are:

1. L-PBFT, a BFT state machine replication protocol that orders and stores transactions to-
gether with the protocol messages justifying the execution order in a ledger (Section 3.3.1,
Section 3.3.2);

2. universally-verifiable client receipts that are generated e�ciently with the ledger (Sec-
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Figure 3.1: IA-CCF permissioned ledger system

tion 3.3.3);

3. an e�cient auditing approach using the ledger and associated checkpoints, which produces
short proofs-of-misbehaviour (Section 3.4); and

4. a governance mechanism for changing members and replica sets, allowing auditing to
assign blame even after members have left (Section 3.5).

3.2 Overview of IA-CCF

Figure 3.1 shows IA-CCF’s design. An IA-CCF deployment provides a service, with a well
known name, to clients, which are identified by their signing keys. Clients send requests to
execute transactions by calling stored procedures that define the service logic. Transactions
are executed by replicas against a strictly-serializable key-value store that supports roll-back
at transaction granularity. A transaction request t reads and/or writes multiple key-value pairs
and produces a transaction result o.

Consortium members, also identified by their signing keys, own the service. They may be
added or removed over the service lifetime. For this, members issue governance transactions,
which change the consortium membership, add or remove replicas, and update stored proce-
dures. The first governance transaction, the genesis transaction gt, defines the initial members
and replicas. Its hash is the service name.

1 Ledger PBFT (L-PBFT) is a BFT state machine replication protocol used by replicas to
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order transactions. L-PBFT is based on PBFT [49]. It provides linearizability and liveness if
at most f = ÁN/3Ë ≠ 1 out of N replicas fail in a partially-synchronous environment [80].

2 Ledger. L-PBFT maintains an append-only ledger, which stores each transaction request t

and result o at a ledger index i. Since the consortium membership and the replica set are
dynamic, the ledger also records governance transactions. They form a governance sub-ledger,
which can be used to learn the public signing keys of active replicas and members at any index i.

To assign blame, the ledger also includes evidence that a transaction batch was committed
by a quorum of replicas. This evidence consists of at least N≠f signed L-PBFT protocol
messages for a batch. Finally, the ledger stores periodic checkpoints of the key-value store,
allowing its state to be reconstructed by replaying the ledger from a checkpoint cp.

All entries in the ledger are bound by Merkle trees. Protocol messages for a transaction
batch contain the roots of the Merkle trees. This commits replicas to the whole ledger while
allowing succinct existence proofs for entries.

3 Receipts are created by replicas and returned to clients. They bind request execution to
members via the replicas’ signatures over Merkle tree roots that contains the executed request
and the ledger’s history. If two or more receipts are inconsistent with any linearizable execution,
at least f+1 replicas must have signed contradictory statements and can thus be assigned blame.

More precisely, a receipt R for Èt, i, oÍ states that request t was executed at index i and pro-
duced result o. The receipt consists of N≠f protocol messages for t’s batch, signed by di�erent
replicas, and a path from a Merkle tree root to the leaf that contains an entry for Èt, i, oÍ.

Clients may obtain receipts from a reply to a request they sent, from replicas, or from
other clients. To validate a receipt, clients must check its signatures using the signing keys
determined by the governance sub-ledger. A receipt therefore includes the ledger index of the
last governance transaction, and clients must obtain the receipt of this governance transaction
and all those preceding it. Clients cache governance transaction receipts and fetch missing
ones from replicas.

4 Auditing returns a universal proof-of-misbehavior (uPoM) if clients obtain receipts that
are inconsistent with a linearizable execution. IA-CCF’s ledger is universally-verifiable, i.e.,
anyone can act as an auditor : they replay the ledger, check consistency with receipts, and
potentially generate a uPoM.

Since all consortium members and replicas may misbehave, an enforcer, e.g., a court, must
compel members to produce a ledger copy for auditing, sanctioning non-compliance. The
enforcer also punishes members based on uPoMs. It is unreasonable to assume that courts
could run the service or audit long executions. Therefore, IA-CCF only requires enforcers to
re-execute transactions between two consecutive checkpoints to verify a uPoM in the worst case.
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Figure 3.2: L-PBFT protocol with early execution and receipts

After a client passes a sequence of receipts and the governance sub-ledger to the auditor, the
auditor confirms the receipts’ validity by calculating a Merkle tree root and verifying the replica
signatures. It then asks the enforcer to obtain the ledger fragment corresponding to the receipts
from the replicas. The auditor checks the validity of the checkpoint cp referenced by the oldest
receipt. It then replays the ledger from cp, re-executing transaction requests while checking
for consistency with receipts (including governance transaction receipts). If an inconsistency
is found at index i, the auditor creates a uPoM Èi, F , cp, RÍ with a ledger fragment F , the
checkpoint cp, and the inconsistent receipt R. The uPoM is then forwarded to the enforcer,
which imposes penalties on the consortium members blamed.

Threat model. We assume a strong attacker that can compromise replicas, clients, auditors,
and members to make them behave arbitrarily, but cannot break the cryptographic primitives.
We trust the enforcer to assign blame to replicas and the members that operate them only when
it verifies a valid uPoM or fails to obtain data for auditing. IA-CCF provides linearizability
and liveness if fewer than 1/3 of the replicas are compromised [49]. With any number of
compromised replicas, clients, auditors, and members, IA-CCF never punishes members that
operate only correct replicas unless they fail to provide data for auditing. However, when 1/3
or more replicas are dishonest IA-CCF does not provide a liveness guarantee.

3.3 L-PBFT protocol and receipts

Next, we describe how L-PBFT maintains a ledger with transactions and evidence (Sec-
tion 3.3.1), and how it handles view changes (Section 3.3.2). We then explain how evidence is
used to create receipts (Section 3.3.3) and introduce performance optimizations (Section 3.3.4).
For ease of presentation, we first assume a fixed replica set; we add dynamic membership
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Algorithm 3.1: Ledger Practical Byzantine Fault Tolerance
1 on receiveTransactionRequest(t = Èrequest, a, c, H(gt), miÍ‡c)
2 Pre: verify(t)
3 T Ω T fi {t}

4 on sendPrePrepare()
5 Pre: isPrimary() · ready · |T | > 0 · hasEvidence(M, v, s ≠ P)
6 B Ω [] ; G Ω {}

7 foreach t œ T do
8 B Ω B || H(t) ; Èi, oÍ Ω execute(kv, t); G Ω G||Èt, i, oÍ

9 ÈEs≠P , Ps≠P , Ks≠P Í Ω getEvidence(M, v, s ≠ P)
10 L Ω L || Ps≠P || Ks≠P ; M Ω M ||Ps≠P || Ks≠P

11 K[v, s] ΩcreateNonce(); M̄ Ω getRoot(M); Ḡ Ω getRoot(G)
12 pp = Èpre-prepare, v, s, M̄ , Ḡ, H(K[v, s]), Es≠P Í‡r

13 L Ω L || pp || G; M Ω M || pp; M Ω M fi {pp}; T Ω {}; s Ω s + 1
14 sendToAllReplicas(pp || B)
15 on receivePrePrepare(pp = Èpre-prepare, v, s

Õ
, M̄ , Ḡ, H(k), EsÕ≠P Í‡r , B)

16 Pre: isBackup() · verify(pp) · ready · s
Õ = s · K[v, s] = nil · hasRequests(T , B) ·

hasEvidence(M, s
Õ
≠ P, EsÕ≠P )

17 M Ω M fi {pp}; G Ω {}

18 foreach h œ B do
19 t Ω removeTx(h, T ); Èi, oÍ Ω execute(kv, t);G Ω G||Èt, i, oÍ

20 ÈEs≠P , Ps≠P , Ks≠P Í Ω getEvidence(M, v, s ≠ P, Es≠P )
21 L Ω L || Ps≠P || Ks≠P ; M Ω M ||Ps≠P || Ks≠P ;
22 if getRoot(M) ”= M̄ or getRoot(G) ”= Ḡ then
23 undo(pp, kv, M, B, T , L); return
24 L Ω L || pp ||G; M Ω M || pp; K[v, s] ΩcreateNonce()
25 p = Èprepare, r, H(K[v, s]), H(pp)Í‡r

26 sendToAllReplicas(p); M Ω M fi {p}; s Ω s + 1
27 on receivePrepare(p = Èprepare, r

Õ
, H(krÕ), H(pp)Í‡rÕ )

28 Pre: verify(p)
29 M Ω M fi {p}

30 on batchPrepared(pp = Èpre-prepare, v, s
Õ
, M̄ , Ḡ, H(kp), EsÕ≠P Í‡p)

31 Pre: prepared(pp, M) · ÷Èprepare, r
Õ
, H(K[v, s

Õ]), H(pp)Í‡rÕ œ M

32 c = Ècommit, v, s
Õ
, r, K[v, s

Õ]Í
33 sendToAllReplicas(c); M Ω M fi {c}

34 foreach Èt, i, oÍ œgetTxForBatch(L, v, s
Õ) do

35 sendReplyToClient(t, Èreply, v, s
Õ
, r, ‡r, K[v, s

Õ]Í)
36 if shouldSendReceipt(r, t) then
37 S ΩgetMerklePath(G, i)
38 sendReceiptToClient(t, Èreplyx, v, s

Õ
, M̄ , H(kp), EsÕ≠P , H(t), i, o, SÍ)

39 on receiveCommit(c = Ècommit, v, s
Õ
, r

Õ
, krÍ)

40 Pre: verify(c)
41 M Ω M fi {c}

in Section 3.5.

3.3.1 Protocol description

To support auditing, a BFT state machine replication protocol, such as PBFT [49], must
integrate with a ledger: it must ensure that replicas agree on a ledger with both transactions
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(requests and results) and protocol messages. It must also handle non-determinism to enable
replaying the ledger. L-PBFT addresses this issue by agreeing on non-deterministic inputs [50]
and using early execution: it requires the primary replica to propose a transaction result, which
the backup replicas must agree on for the batch to commit. L-PBFT then maintains Merkle
trees over all ledger entries and puts the trees’ roots in protocol message, which ensures that
all replicas agree on a serial history of the ledger.

Figure 3.2 gives an overview of L-PBFT with early execution: first clients send transaction
requests to all replicas. The primary orders the requests, groups them into batches and performs
early execution. It then sends a pre-prepare message to the backups, which includes the request
batch and the execution results. Upon receiving the pre-prepare, the backups execute the requests
and confirm that the results match the primary’s. If so, they send a prepare message to all other
replicas. After a replica receives a pre-prepare and N≠f≠1 matching prepare messages for the
same sequence number s and view v, the batch is prepared at the replica at v with s if all
batches with lower sequence numbers have also prepared. A replica then sends a reply to the
clients and commit messages to the other replicas. We say that a batch is committed at sequence
number s if it has been prepared by N≠f replicas in the same view. A client has received a
complete response when it has a receipt consisting of replies from N≠f replicas.

A naive approach would require each replica to sign two protocol messages, i.e., the pre-
prepare/prepare and the commit message, for each committed batch. Instead, L-PBFT uses a
novel nonce commitment scheme, in which replicas only sign the pre-prepare/prepare messages
after including a hashed nonce. Instead of signing the commit, a replica includes the unhashed
nonce. This e�ectively halves the signatures that replicas emit to commit batches successfully.

Algorithm 3.1 presents the pseudocode of L-PBFT. The replica state includes: the current
view v and batch sequence number s; a set of transaction requests T waiting to be ordered; a
message store M; a nonce store K; a boolean ready indicating if the replica can send/accept
pre-prepare messages; a replica identifier r; the key-value store kv; the ledger L; and the Merkle
tree M that binds the ledger entries.

In receiveTransactionRequest (line 1), a replica adds a request message to T , where a identifies
the invoked stored procedure and its arguments, c is the client identifier, H(gt) is the genesis
transaction hash, mi is the minimum index after which the request can be added to the ledger,
and ‡c is the client signature. ‡c and H(gt) ensure that requests cannot be forged or moved to
a di�erent ledger, and mi allows clients to create an ordering dependency between the request
and a previously executed transaction.

The function sendPrePrepare (line 4) uses early execution to include the execution result in
the batch’s Merkle tree root. The primary p = v mod N collects a batch of transaction requests,
executes them, and appends them to a new Merkle tree G. Then, the primary retrieves the com-
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mitment evidence Ps≠P and Ks≠P for the batch at s≠P from the message store M and appends
it to the ledger. Es≠P is a bitmap that records the replicas that supplied commitment evidence.

Next, the primary creates the pre-prepare message with the hash of a fresh nonce K[v, s],
the root of the Merkle trees, M̄ and Ḡ, and signs it. G is a Merkle tree that contains all
Èt, i, oÍ entries in a batch. The complete pre-prepare message has two extra fields: ig, the index
of the last governance transaction, which allows clients to verify receipts with a changing
set of replicas (see Section 3.5.2); and dC , a digest of the key-value store state at the last
checkpoint, which enables auditing from a checkpoint without replaying the ledger from the
start (see Section 3.4).

By signing M̄ , the primary commits to the contents of the ledger, including the commitment
evidence for s≠P that it retrieved and added to the ledger. It is important for the primary to
order the evidence to ensure that replicas agree on the ledger: if replicas added their own evi-
dence to the ledger when they received prepare and commit messages, their ledgers could diverge.
The commitment evidence Ps≠P contains N≠f≠1 prepare messages for sequence number s≠P

and view v that match the pre-prepare at sequence number s≠P in the ledger. Ks≠P are the N≠f

nonces with hashes in the pre-prepare/prepare messages in Ps≠P . This evidence is su�cient to
prove to a third party that the batch at s≠P prepared at N≠f replicas and therefore committed
with s. The pre-prepare message along with the leaves of G are then added to the ledger.

The primary communicates its ordering decision by sending the pre-prepare message to all
replicas, together with a list B of the hashes of transaction requests in execution order. The
requests are sent separately by the clients, and the commitment evidence for s≠P is not included
in the message. The pre-prepare messages are of a constant size except for a bitmap in which
each bit represents a replica. Our implementation uses 8 bytes in the Es≠P bitmap to support
up to 64 replicas, making the pre-prepare messages e�ectively O(1).

Figure 3.3 gives an example of the ledger state after this step. For each transaction in the
batch, the primary adds a ledger entry in the order executed. The entry for Ti has the form
Èt, i, oÍ where o includes the reply sent to the client and the hash of the transaction’s write-
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set; pps is the pre-prepare for s, and Ps≠P and Ks≠P are evidence that the batch at sequence
number s≠P committed. L-PBFT pipelines the ordering of up to P Ø 1 concurrent batches
to improve performance. Therefore, the commitment evidence lags P behind s, because it is
unavailable when the primary sends the pre-prepare for s. Theorem A.1.2 in Appendix A shows
that early execution maintains linearizability.

When a backup replica receives the pre-prepare (line 15), it rejects the message if it already
sent a prepare for the same view and sequence number (K[v, s] ”= nil). Otherwise, it checks if it
already has the requests and commitment evidence referenced by the pre-prepare. Replicas store
received requests, prepare, and commit messages in non-volatile storage (M) until they receive (or
send) a corresponding pre-prepare. To reduce network load, the primary does not resend requests
or messages used as commitment evidence. If the backup is missing messages, it requests that
the primary retransmit them, because a correct primary is guaranteed to have them.

The backup then executes the requests in the order prescribed by the primary, and adds the
resulting transaction entries to a new Merkle tree G (line 19). Then, it adds the same Ps≠P and
Ks≠P as the primary to the ledger. At this point, the ledger at the backup should be identical to
the one at the primary just before the pre-prepare message is added. The backup checks that the
roots of its Merkle trees match M̄ and Ḡ in the pre-prepare, respectively. If not, the message is re-
jected, the entries for batch s are removed from the ledger, and the transactions are rolled back.
Otherwise, the backup adds the pre-prepare to the ledger, followed by the leaves of the Merkle
tree G, and sends a matching prepare message with the format Èprepare, r, H(K[v, s]), H(pp)Í‡r ,
where H(K[v, s]) commits a fresh nonce, and H(pp) is the pre-prepare’s hash.

If a non-deterministic input is required during the execution of a transaction, L-PBFT
nodes first agrees on the non-deterministic input values and then uses the inputs within the
transaction execution [50]. Line 22 ensures that a backup’s execution of batch B and its ledger
are identical to those of the primary by comparing the Merkle roots Ḡ and M̄ . If this check
fails, the backup rolls back execution and attempts to view change (Section 3.3.2). This way
divergent execution due to bugs, i.e., failing to identify non-deterministic inputs, can a�ect
liveness but not diverge the ledger.

In batchPrepared (line 30), the nonce commitment and early execution allow replicas
to return replies to clients in two message round trips without signing reply or commit
messages. When the batch prepares at replica r, it sends a commit message with the
format Ècommit, v, sÕ, r, K[v, sÕ]Í where K[v, sÕ] is the nonce the replica committed to in the
pre-prepare/prepare messages that it sent for v and sÕ. Since the nonce K[v, sÕ] is revealed to
clients and replicas only when a replica prepares the batch having a pre-prepare/prepare
message and the corresponding nonce can prove to a third party that the replica prepared
the batch at v and sÕ (see Appendix A, Theorem A.1.3).
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Algorithm 3.2: View Changes in L-PBFT
1 on sendViewChange()
2 Pre: primaryAppearsFaulty(v)
3 PP = getPLastPrepared(msgs(L) fi M)
4 v = v + 1; ready Ω false; vc = Èview-change, v, r, PPÍ‡r

5 sendToAllReplicas(vc); M Ω M fi {vc}

6 on receiveViewChange(vc = Èview-change, v
Õ
, r

Õ
, PPÍ‡r )

7 Pre: v
Õ
>= v · verify(vc) · hasPrepares(msgs(L) fi M, getLast(PP))

8 M Ω M fi {vc}

9 if |getViewChanges(M, v
Õ)| > f · v

Õ
> v then

10 v = v
Õ
≠ 1; setPrimaryApearsFaulty()

11 sendViewChange()
12 on sendNewView(v)
13 Pre: isPrimary(v) · ¬ready · |getViewChanges(M, v)| > N ≠ f

14 ÈM̄, Evc, hvc, PPovÍ = processViewChanges(getViewChanges(M, v))
15 nv = Ènew-view, v, M̄ , Evc, hvcÍ‡r ; L Ω L || nv; M Ω M || nv

16 sendToAllReplicas(nv)
17 resendPreparesInNewView(PPov); ready Ω true
18 on receiveNewView(nv = Ènew-view, v, M̄ , Evc, hvcÍ‡rÕ , PPnv)
19 Pre: isPrimary(r

Õ
, v) · hasRequests(T , PPnv) · hasEvidence(M, PPnv)

· r
Õ
”= r · ¬ready · |getViewChanges(M, Evc, hvc)| > N ≠ f

20 ÈM̄ Õ, PP
Õ
ovÍ = processViewChanges(getViewChanges(M, Evc, hvc))

21 if M̄ Õ = M̄ then
22 L Ω L || nv; M Ω M || nv

23 if ready Ω processPreparesInNewView(PPnv, PP
Õ
ov) then return

24 undo(nv, s, M, L)

Finally, a replica r commits a prepared batch v, sÕ after it receives N≠f commit messages,
including its own. The nonce hashes in the commit messages must match the ones in the
pre-prepare/prepare messages.

We prove that L-PBFT produces a linearizable execution order in Appendix A, Theo-
rem A.1.4.

3.3.2 View changes

During the L-PBFT protocol execution, the primary may misbehave or be slow, which requires
a view change. The change of the primary must be done in a manner that does not preclude
auditing, which is a new requirement that goes beyond PBFT’s view change protocol. L-PBFT
view changes are auditable and must provide proof that a batch’s re-execution produces the
same result as the original execution.

L-PBFT addresses this as follows: it sends the evidence that batches prepared during view
changes and includes the Merkle tree root Ḡ of a batch and its execution in the pre-prepare
message, which ensures that batches are re-executed consistently. During a view change, each
replica sends a view-change message with information about prepared requests. The primary
for a new view vÕ sends a new-view message backed by N≠f view-change messages for vÕ. For
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each sequence number with a prepared batch in the view-change messages, the primary picks the
batch that prepared with the largest view and proposes it in vÕ. Since all committed requests
have also prepared, this ensures linearizability with batch execution ordered by the sequence
numbers at which batches committed.

Algorithm 3.2 formalizes the pseudocode for view changes. If the primary for view v appears
faulty or slow, a replica sends a view-change message, Èview-change, v + 1, r, PPÍ‡r , to all other
replicas (line 1), where PP contains the last P pre-prepare messages that prepared locally (line 3).
Only the last message in PP is required to provide linearizability, because it includes the Merkle
tree roots M̄ and Ḡ that determine the ledger contents up to that point. The other pre-prepare
messages are used during auditing to verify that replicas reported the batches they prepared
in view-change (Section 3.4).

When replicas receive a view-change message (line 6), before processing it, they fetch missing
prepare messages from the sender to prove that the last pre-prepare in PP has prepared. When
replicas increment v, they set ready to false (lines 4 and 11), which ensures that they do not
send or accept pre-prepare messages until they have completed the new-view.

After accepting N≠f view-change messages for the new view (line 12), the new primary calls
processViewChanges, which picks the view-change message vclp with the last prepared pre-prepare
message pplp from those with the largest view number. It then updates the ledger to match
the Merkle roots in pplp by fetching missing ledger entries from replicas that sent matching
prepare messages. Since at least f+1 of those are correct, this is always possible. The primary
checks that all messages in PP of vclp appear at the right ledger positions; if not, it discards
vclp and re-tries (omitted from Algorithm 3.2).

Next the primary resets the ledger to slp≠P , because the batches up to this point are
guaranteed to have committed. It saves all the request batches and commitment evidence for
sequence numbers between slp≠P and slp and returns it in PPov. This is needed to resend
pre-prepare messages for the prepared batches in the new view. The function ends by adding an
entry with the N≠f view-change messages that it accepted to the ledger in order of increasing
replica identifier; hvc is the hash of that entry and Evc is a bitmap with the replicas that sent
the messages. It returns the root of the Merkle tree M̄ , Evc, hvc, and PPov (line 14). The
primary appends the new-view to the ledger, sends it to all replicas, resends the prepared batches
in pre-prepare messages in the new view, and adds them to the ledger.

When backups receive the new-view (line 18), they obtain missing view-change messages,
requests and evidence that it references, and call processViewChanges. If it returns a Merkle
tree root equal to the one in new-view, they accept the message, add it to the ledger, and process
the pre-prepare messages PPnv. If these match the batches and evidence in PP

Õ
ov for the same

sequence numbers, they are added to the ledger; otherwise, all changes are undone.
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Algorithm 3.3: Verifying Receipts
1 on verifyReceipt(Èt, i, oÍ, Èv, s, M̄ , H(kp), Es≠P , ig, dC), ‡p, Es, �s, Ks, SÍ)
2 ḠÕ Ω pathHash (Èt, i, oÍ)
3 foreach Gi œ S do
4 ḠÕ Ω pathHash (ḠÕ, Gi)
5 pp = Èpre-prepare, v, s, M̄ , ḠÕ, H(kp), Es≠P , ig, dCÍ

6 if not checkSignature (‡p, pp) then return false
7 foreach r œ Es do
8 if r = p · H(Ks[p]) ”= H(kp) then return false
9 if r ”= p· not checkSignature (�s[r], Èprepare, r, H(Ks[r]), H(pp‡p)Í) then return false

10 return true

3.3.3 Receipts

To allow third parties to audit the ledger against the transaction results returned to clients,
L-PBFT returns receipts, which are statements signed by N≠f replicas that a transaction
request t executed at index i and produced a result o. L-PBFT exploits the per batch Merkle
tree G together with the nonce commitment scheme (Section 3.3.1) to avoid having replicas
sign the reply for each request.

Creating receipts. When a transaction batch described by pre-prepare pp prepares at replica r,
view v and sequence number sÕ (Algorithm 3.1, line 30), it sends Èreply, v, sÕ, r, ‡r, K[v, sÕ]Í to
every client with a transaction in the batch. (If the client has multiple transactions in the
batch, only one reply is sent.) By revealing the nonces, the replicas provide the client with
proof that they claimed to have prepared the batch without a signed reply.

Only a designated replica, chosen based on t, sends the result and the rest of the receipt to
the client (line 36). The replica computes a list of sibling hashes S along the path from the leaf
to the root of the per-batch Merkle tree G. For the example of Ti in Figure 3.3, S consists of
the digest of Ti≠1 and G1, which is su�cient to recompute Ḡ given Ti. It then sends the client
Èreplyx, v, sÕ, M̄ , H(kp), EsÕ≠P , ig, dC , H(t), i, o, SÍ, where ig and dC are used for auditing.

Verifying receipts. The client waits for N≠f replicas to send reply messages with the same
v and s, and for a replyx message with the same v and s. It then recreates the pre-prepare and
prepare messages (Algorithm 3.3, line 6), with the information in replyx and the hashes of the
nonces, and verifies the signatures. (We describe how to determine N and verify signatures
under dynamic membership in Section 3.5.2.) This step is shared across all transaction requests
that the client may have sent in the batch.

IA-CCF uses the Merkle tree G to bind signatures in pre-prepare and prepare messages to
transactions in the batch, enabling replicas to produce a single signature per batch. In the
example in Figure 3.3, the client checks if Ḡ = H(H(H(Ti≠1)||H(Èt, i, oÍ))||G1)) (lines 2–4). If
the hashes match, the client has a valid receipt, i.e., a statement signed by N≠f replicas that a
request t executed at index i and produced a result o; otherwise (or if the client does not receive



66 3.3. L-PBFT PROTOCOL AND RECEIPTS

replies before a timeout), it retransmits the request and selects a di�erent replica to send back
replyx. (The application is responsible for ensuring exactly-once semantics if needed.)

Clients store the receipt for Èt, i, oÍ as Èv, s, M̄ , H(kp), Es≠P , ig, dC , ‡p, Es, �s, Ks, SÍ where
�s is a list of the signatures in prepare messages, Ks is a list of nonces, and Es is a bitmap
indicating the replicas with entries in �s, and Ks, sorted in increasing order of replica identi-
fier. All receipt components, including common hashes in S, are shared across requests in
the same batch.

Clients must store the receipts together with the transaction request and the corresponding
result to resolve future disputes. This is not a burden because receipts are concise: all compo-
nents have constant size, except |S|, whose number of entries is logarithmic in the number of
requests in a batch; �s and Ks have up to N≠f entries. In addition, most intermediate hashes
in S can be shared across collections of receipts. We explored using signature aggregation [37]
to reduce the size of �s, but, for realistic consortia sizes, verifying the signatures becomes more
expensive than our current implementation.

3.3.4 Performance optimizations

L-PBFT includes several optimizations to improve transaction and auditing throughput:

Checkpoints in L-PBFT allow new replicas to start processing requests without having to
replay the ledger from the start (Section 3.5.1); slow replicas to be brought up-to-date us-
ing a recent checkpoint; and auditing to start from a checkpoint instead of the beginning of
the ledger (Section 3.4.1).

Checkpoints include the key-value store and the Merkle tree M ’s newest leaf, root, and
the connecting branches. Replicas create a checkpoint cps when they execute a batch with
sequence number s such that s mod C = 0. The primary adds a batch to the ledger at
sequence number s+C with a special checkpoint transaction, which records the checkpoint
digest. C is chosen to give replicas enough time to complete a checkpoint without delaying
L-PBFT execution. Backups only accept the pre-prepare for s+C if they compute the same
checkpoint digest for sequence number s.

When a replica fetches checkpoint cps, it also retrieves the ledger up to s. It does not need
to replay the ledger or check all signatures (with the exception of governance transactions;
Section 3.5.2). Instead, it checks the signatures in checkpoint receipts and that the ledger
contents between consecutive checkpoints are consistent with the Merkle tree roots in the
corresponding receipts. This is done from the start of the ledger until s+C.

Cryptography. L-PBFT reduces the impact of cryptographic operations. Signature verifica-
tion is parallelized for messages received from replicas and clients [56, 31] to improve through-
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put and scalability. All messages are sent over encrypted and authenticated connections, even
signed messages. This mitigates denial-of-service attacks that consume replica resources ver-
ifying signatures [56].

To further improve performance, backups overlap the execution of request batches with
the validation of pre-prepare signatures. They only send the prepare after both completed.
Since pre-prepare messages are received over authenticated connections, this always succeeds
for correct primaries.

3.4 Auditing and enforcement

In this section, we describe how auditing produces universal proofs-of-misbehaviour (uPoMs)
when linearizability is violated (Section 3.4.1), and the role of the enforcer in obtaining ledgers
for auditing and punishing the members responsible for misbehaving replicas (Section 3.4.2).
We first focus on the simpler case of auditing without governance transactions; Section 3.5
describes governance transactions and their impact on auditing.

3.4.1 Auditing

An audit is triggered when someone, usually a client, obtains a sequence of transaction re-
ceipts that violate linearizability, i.e., when no linearizable execution of the stored procedures
that define the transactions can produce the sequence of receipts. The mechanism to detect
linearizability violations is application dependent. It involves clients, which interact through
a sequence of transactions, exchanging receipts and using the application semantics to reason
about the correctness of the receipt sequence.

The goal of auditing is to detect dishonest behaviour regardless of the number of misbehaving
replicas, i.e., it must find proof of misbehaviour even if all replicas collude and rewrite the ledger.
IA-CCF therefore provides proof of transaction execution in both the ledger and receipts—even
if the ledger is rewritten, the misbehaving replicas are unable to alter the receipts.

An audit can be performed by anyone, and begins when an auditor receives a collection of
receipts. Next, the auditor requests a checkpoint and a ledger fragment that contains the section
of the ledger spanning the receipts. Any honest replica that signed the receipts is guaranteed
to have the checkpoint and ledger fragment. When the auditor receives the requested data, it
verifies the ledger structure by checking the protocol messages and their order, and validating
any signatures in the ledger—but it does not re-execute transactions. Then, the auditor checks
that the transactions referenced by the receipts are present at the right positions in the ledger.

If the above steps have not discovered misbehaviour, there remains the possibility that at
least N ≠ f of the replicas colluded and agreed on an incorrect execution result. Therefore, the
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Algorithm 3.4: Ledger Auditing (simplified)
1 on audit(R = {ÈÈt0, i0, o0Í, x0Í, . . . , ÈÈtk, ik, okÍ, xkÍ})
2 auditReceipts(R)
3 C0, sC0 , L ΩgetCheckpointAndLedger(x0, xk)
4 verifyReceiptsInLedger(R, L)
5 replayLedger(C0, sC0 , L)
6 on auditReceipts(R = {ÈÈt0, i0, o0Í, x0Í, . . . , ÈÈtk, ik, okÍ, xkÍ})
7 foreach ÈÈti, ii, oiÍ, xiÍ œ R do
8 if not verifyReceipt(Èti, ii, oiÍ, xi) then return invalidReceipt
9 on getCheckpointAndLedger(x0, xk)

10 for C0, sC0 , L, r ΩenforcerGetLedgerPackage(xo, xk) do
11 uPoM Ω nil
12 foreach s œ sC0 , ..., seqno(xk + P ) do
13 if not isBatchWellformed(L, s) then
14 F ΩcreateLedgerFragment(nil, s, L)
15 uPoM Ω Ènil, F , rÍ; send(uPoM); return
16 if uPoM = nil then return C0, sC0 , L

17 on verifyReceiptsInLedger(R, L)
18 foreach ÈÈti, ii, oiÍ, xi = Èv, s, H(kp), . . . Ks, SÍÍ œ R do
19 if not isReceiptInBatch(xi, L) then
20 F ΩcreateLedgerFragment(nil, s, L)
21 uPoM Ω ÈF , ÈÈti, ii, oiÍ, xiÍÍ; send(uPoM); return
22 on replayLedger(C0, sC0 , L)
23 scp Ω sC0 ; cp Ω C0; kv Ω loadCheckpoint(sC0 , C0)
24 foreach s œ sC0 , ..., seqno(xk) do
25 foreach Èti, ii, oiÍ œ s do
26 L, kv ΩreplayRequest(L, kv, ti)
27 if not verifyReplay(L, kv, Èti, ii, oiÍ) then
28 F ΩcreateLedgerFragment(scp, s, L)
29 uPoM Ω Èii, F , cpÍ; send(uPoM); return
30 if s mod C = 0 then
31 scp Ω s; cp Ω createCheckpoint(kv)

auditor loads the checkpoint and replays the transactions from the ledger fragment to check if
execution results are correct. Throughout this process, if dishonest behaviour is uncovered, the
auditor can produce a universally-verifiable proof that at least f+1 replicas misbehaved.

More formally, Algorithm 3.4 presents the pseudocode for the auditing process. First, the
auditor receives an ordered set of receipts R = {ÈÈt0, i0, o0Í, x0Í, . . . , ÈÈtk, ik, okÍ, xkÍ} where
k Ø 1 and ’l œ [0, k) : sl Æ sl+1. Here, si is the sequence number that is specified in xi.
The auditor invokes auditReceipts (line 2) to check if the receipts are valid and the minimum
index requirements have been satisfied. If there is a receipt that violates the requirement in
the request, all replicas that have signed the receipt can be blamed.

After that, the auditor must obtain a ledger fragment and checkpoint that are complete
in relation to R (line 3). We formally define completeness in Appendix B, but intuitively
the ledger fragment must be (i) well-formed; (ii) include all batches and evidence between
sequence numbers sC0 and sk where sC0 is the sequence number of the checkpoint transaction
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that is linked in the first receipt; and (iii) include view-change messages for all views in R. The
transaction and checkpoint at sC0 must match the checkpoint linked in the first receipt. A
ledger fragment is valid if it can be produced by a sequence of correct primaries in a sequence
of views where there are at most f Byzantine failures. It is well-formed if it is valid, or if it
would be valid if not for the incorrect execution of some transactions and/or checkpoints. A
correct replica always maintains a well-formed ledger.

In getCheckpointAndLedger (line 3), the auditor, with the help of an enforcer, obtains ledger
fragments and checkpoints from replicas that signed the latest receipt with the highest view
number in R (line 10). The auditor checks if responses are complete in relation to the receipts.
If a ledger fragment is not well-formed or misses the required view-change messages, the auditor
can blame the responding replica. Below, we assume that the responses contain no invalid
signatures, we show in Appendix B how the auditor handles that case.

If the batch at sC0 is not a checkpoint or the checkpoint digest does not match the first
receipt, the auditor can assign blame to the intersection of replicas that have signed the batch
at sC0 + C and the first receipt, as the checkpoint reference in a receipt must always link to the
last committed checkpoint. If the fragment is not long enough to include the sequence number
in one of the receipts, there must be misbehaviour during a view change. The auditor can then
blame at least f+1 misbehaving replicas: the intersection of the replicas that participated in a
view change and that also signed the receipt. A correctness proof and the details of obtaining a
complete ledger fragment and checkpoint are described in Appendix B, Lemmas B.1.1 and B.1.3.

After obtaining a well-formed ledger, in verifyReceiptsInLedger (line 4), the auditor compares
the receipts with the ledger. If a receipt ÈÈtk, ik, okÍ, xkÍ does not match the batch at sk in
the ledger fragment, we show in Theorem B.1.2 that the auditor can assign blame to f+1
misbehaving replicas. In summary, there are three cases: (i) the pre-prepare with sequence
number sk in L has a view number vl = vk; (ii) vl > vk; or (iii) vl < vk. In case (i), the ledger
fragment contains evidence that the batch with sequence number sk has prepared at N≠f

replicas. Since at least f+1 of the replicas that have prepared the batch also signed the receipt,
they can be blamed. In case (ii), since vl > vk, there must be at least N≠f view-change messages
from di�erent replicas that transition to a view greater than vk in the ledger fragment but claim
not to have prepared the batch in the receipt in view vk. Since there are at least f+1 of those
replicas that also signed the receipt, they can be blamed. In case (iii), since vk > vl and the
ledger fragment is complete in relation to the receipt, there must be at least N≠f view-change
messages from di�erent replicas that transition to a view greater than vl in the ledger fragment.
Similarly, the intersection of those replicas and the ones that signed the receipt can be blamed.

Since N≠f or more replicas may have misbehaved, it is necessary to replay transaction
execution to check if the results are correct. The auditor does not need to understand the
semantics of the service; it can retrieve the code of the stored procedures from C0. The auditor
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sets the service state to the checkpoint value and replays transactions. If replaying a transaction
fails to match the result in the ledger, the auditor can assign blame to any replica that signed
the batch that contains the transaction. This is shown in replayLedger (line 5).

3.4.2 Enforcement

Since IA-CCF provides individual accountability even if all replicas and members misbehave,
there must be an enforcer outside of the system to obtain checkpoints and ledger fragments
for auditing, and to punish members responsible for misbehaving replicas. For example, con-
sortium members may sign a binding contract to establish penalties if a uPoM proves that one
of their replicas misbehaved, or if they fail to produce checkpoints and ledgers for auditing by
an agreed deadline. These penalties may be imposed by the enforcer via arbitration [23] or
a court of law [24].

The enforcer receives a set of receipts R from the auditor (Algorithm 3.4, line 10). It then
verifies that the receipts are valid, and requests all of the replicas that signed the latest receipt
with the highest view for a ledger fragment that is complete in relation to R.

Correct replicas respond to the enforcer quickly. If the enforcer does not receive a response
from a replica within a reasonable duration, e.g., within minutes, it contacts the controlling
consortium member to obtain the checkpoint and ledger. If the member fails to provide this
information by an agreed deadline, e.g., within days, it is punished according to the contract.
This is important to ensure that misbehaving members cannot escape punishment by failing to
produce information for auditing. However, it introduces a weak synchrony assumption that
may lead to the punishment of honest but slow members. We expect that the deadline is chosen
conservatively to make this unlikely in practice. After the deadline elapses, the enforcer either
returns to the auditor f+1 responses, or it penalizes f+1 unresponsive replicas.

The enforcer also punishes members if a uPoM proves that one of their replicas misbehaved.
When it receives a uPoM, it checks its validity by carrying out an audit, as described in
Section 3.4.1, but the ledger fragment size and the number of transactions to replay is bounded
by the transactions between two consecutive checkpoints. Furthermore, if there are fewer than
N ≠ f misbehaving replicas, the uPoM does not require the enforcer to replay transactions. If
the uPoM is incorrect, the enforcer punishes the auditor; otherwise, it punishes the members
responsible for at least f+1 misbehaving replicas.

In practice, we envision the power of the enforcer being derived from the legally binding
consortium membership bylaws signed by all members when they join the consortium [149, 190].
Further, we expect the load placed on the enforcer to be small, because auditing is rare—IA-
CCF provides linearizability with up to f misbehaving replicas and the enforcer penalizes
entities that request information for auditing and fail to produce a valid, minimal uPoM.
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3.5 Reconfiguration and auditing

In this section, we describe how IA-CCF can change the consortium membership and the active
replica set (Section 3.5.1). We explain how this impacts receipt validation (Section 3.5.2) and
auditing (Section 3.5.3).

3.5.1 Reconfiguration

An IA-CCF deployment must handle changes to the active member and replica set while sup-
porting auditing, regardless of how many replicas misbehave. For this, IA-CCF maintains gov-
ernance data in the form of a configuration, which includes the public signing keys for members
and replicas and an endorsement of each replica’s signing key signed by the member responsible.

Changing the configuration enables members to change the active replica set. This is ini-
tiated by a referendum: members propose an updated configuration followed by the other
members voting on the proposal. The number of votes required to pass the proposal is part
of the service’s state.

When voting on proposals, members must ensure the integrity of the service, e.g., disal-
lowing an individual member from controlling too many replicas. Members are also limited
to adding or removing at most f replicas, which ensures that the configuration change does
not a�ect the service’s liveness.

A referendum is carried out through governance transactions: a member proposes a new
configuration by sending a propose transaction request. This is followed by members sending
vote requests. Upon executing the final vote transaction required for a referendum to pass at se-
quence number s, the primary ends the current batch, and initiates the reconfiguration process.

A reconfiguration first adds evidence for the referendum to the ledger. This is done as part of
the old configuration by the primary sending P pre-prepare messages without batched requests,
called the end-of-configuration batches. The pre-prepare message for the end-of-configuration
batch at sequence number s+P contains evidence that the batch at s committed (Section 3.3).
In addition, these pre-prepare messages include an extra field: the committed Merkle root, which
is the root of the Merkle tree at s. This evidence is required for auditing: it commits the replicas
that signed the P th end-of-configuration batch to triggering the reconfiguration. Similarly, the
signatures of the replicas that prepared the P th end-of-configuration batch must be included
in the ledger in the same configuration. Following the first P end-of-configuration batches,
the primary pre-prepares another set of P end-of-configuration batches. The configuration
change takes e�ect at s+2P .

The replicas in the new configuration create a checkpoint of the key-value store at sequence
number s+2P . The primary creates a pre-prepare for the checkpoint at s+2P+1, followed by
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P start-of-configuration pre-prepare messages with empty request batches. This ensures that
a correct replica commits the checkpoint transaction before other transactions are executed
in the new configuration. If any of the end/start-of-configuration batches correspond to a
checkpoint sequence number, the checkpoint is skipped. Therefore, the checkpoint digests dc

in the pre-prepare messages always refer to checkpoints in the same configuration.

A newly added replica first obtains the ledger and a recent checkpoint, and replays the ledger
from that checkpoint (Section 3.3.4). Replicas that are no longer part of the new configuration
retire after sending the pre-prepare for s+2P . Removed members and replicas should delete
their private signing keys to provide forward security. This prevents them from being blamed
for future compromises as once a member or replica has been removed there are no valid uses for
the private signing keys. Additionally, the removed members and replicas retain their own and
other members and replicas public keys to allow them to authenticate transactions in the ledger.

3.5.2 Governance sub-ledger and receipts

When a client verifies a receipt, it must know which replicas were active when the receipt was
created. IA-CCF addresses this with the help of the governance sub-ledger.

Governance transactions are recorded in the ledger and used by auditors to determine the
active configuration. Clients, however, do not have a copy of the ledger, but need to verify
receipt signatures. To do this, they store receipts for all governance transactions and, for each
reconfiguration, they also store the receipts for the P th end-of-configuration batch. We refer
to this as the receipts of the governance sub-ledger. A client checks that a transaction receipt
for index i is valid by considering the governance sub-ledger from the genesis transaction gt up
to i. The client verifies the governance receipts, and if successful, the replica signing keys at
index i are used to validate the receipt (Section 3.3).

This raises the challenge of how a client determines that it has all required governance re-
ceipts. IA-CCF includes the ledger index of the last governance transaction in each pre-prepare
message and receipt (ig). A client can request missing receipts from replicas by traversing the se-
quence of governance receipts. It verifies received receipts incrementally and caches them locally.

With reconfiguration, the definition of a valid receipt is extended: a valid receipt R must
include valid governance receipts from gt up to the configuration that produced R.

3.5.3 Auditing

Reconfiguration introduces several new tasks for the auditor: it must consider the governance
sub-ledger with receipts; validate that reconfigurations were executed correctly; and ensure
that that only one configuration was active for any given index or sequence number. Next,
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we provide a summary of the required changes to the auditing process; a detailed correctness
proof is included in Appendix B.2.

A client initiates an audit by sending inconsistent receipts and the supporting governance
receipts to an auditor. The auditor replays these governance transactions to determine the
signing keys required to verify each client receipt. After verifying the receipts, the auditor
requests a ledger fragment and checkpoint from the enforcer.

The auditor may uncover that multiple configurations were active for a given index or
sequence number, this can happen when misbehaving replicas fork or rewrite the ledger. We
call this a fork in governance. If the auditor finds a fork, there are two P th end-of-configuration
batch receipts with the same preceding configuration that are not equivalent: they are at
di�erent indices or sequence numbers, or their pre-prepare messages do not contain the same
committed Merkle root, i.e., they are not preceded by the same governance transactions. In
this case, the auditor assigns blame to the replicas that signed both receipts, as a correct
replica that prepares a P th end-of-configuration batch commits the final vote transaction that
triggers reconfiguration.

If the enforcer cannot obtain the required information for a valid receipt R from the sequence
of provided receipts, there must be misbehaving replicas. In addition to the misbehaviour
described in Section 3.4.1, the misbehaving replicas may have created a fork in governance or
incorrectly prepared the P th end-of-configuration batch that succeeds the configuration that
produced the receipt R (see Lemmas B.2.2 and B.2.5).

Another possibility is that the configuration that produced a receipt R for a sequence num-
ber s may not match the configuration that prepared the batch at s in a well-formed ledger frag-
ment. In this case, blame is again assigned to the replicas that signed R and prepared the P th

end-of-configuration batch that succeeds the configuration that produced R (see Lemma B.2.3).

After assigning blame, the auditor sends a uPoM to the enforcer with the supporting gov-
ernance receipts.

3.6 Evaluation

We evaluate IA-CCF to understand the cost of providing receipts (Section 3.6.1),
its scalability (Section 3.6.2), the overheads of receipt validation (Section 3.6.3),
and auditing (Section 3.6.5). We finish with a performance breakdown of IA-CCF’s
design features (Section 3.6.8).

Testbeds. Our experimental setup consists of three environments: (a) a dedicated cluster
with 16 machines, each with an 8-core 3.7-Ghz Intel E-2288G CPU with 16 GB of RAM and a
40 Gbps network with full bi-section bandwidth; (b) a LAN environment in the Azure cloud,



74 3.6. EVALUATION

Table 3.1: Size of ledger entries (SmallBank)

Ledger entry type Size (bytes)
f = 1 f = 3

Transaction (SmallBank) 216–358
Pre-prepare 277
Prepare Evidence 298 995
Nonces 32 64

with Fsv2-series VMs with 16-core 2.7-GHz Intel Xeon 8168 CPUs and 7 Gbps network links;
and (c) a WAN environment with the same VMs across 3 Azure regions (US East, US West 2,
US South Central). All machines run Ubuntu Linux 18.04.4 LTS.

Implementation. Our IA-CCF prototype is based on CCF v0.13.2 [169] and has approxi-
mately 40,000 lines of C++ code. It uses the formally-verified Merkle trees and SHA functions
of EverCrypt [197], the MbedTLS library [161] for client connections, and secp256k1 [250] for
all secure signatures. Replicas create secure communication channels using a Di�e–Hellman
key exchange.

Pipelining batch execution (P in Algorithm 3.1) improves IA-CCF’s throughput. We use
P=2 for the LAN and P=6 for the WAN, with maximum batch sizes of 300 and 800 requests,
respectively. Checkpoints are created every 10K or 4K sequence numbers in the LAN and
WAN environments, respectively.

Benchmarks. We use the SmallBank benchmark [7], which models a bank with 500,000 cus-
tomer accounts. Clients randomly execute 5 transaction types: deposit, transfer, and withdraw
funds; check account balances; and amalgamate accounts. The size of the ledger entries is
shown in Table 3.1 where only the Prepare Evidence and Nonces entries depend on f .

Since IA-CCF’s design targets accountability with more than f failures, we omit results
from experiments with fewer failures. In such cases, IA-CCF’s performance matches that of
prior work, because it uses well-established BFT techniques, such as view changes, sending
messages via authenticated channels and client-signed requests [31, 56]. Instead, we consider
the performance of receipt validation (Section 3.6.3) and auditing (Section 3.6.5), which are
new contributions of IA-CCF.

Transaction throughput is measured at the primary replica and latency at the clients. All
experiments are compute-bound. Results are averaged over 5 runs, with min/max error bars.

Baselines. We compare against four baselines: IA-CCF-PeerReview, which uses PeerReview
for accountability [111], i.e., replicas sign all messages and send signed acknowledgements for
all messages; IA-CCF-NoReceipt, an IA-CCF variant that produces a ledger but no receipts;
HotStu� [253], a state-of-the-art BFT protocol, which is at the core of the Diem permissioned
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Figure 3.4: Transaction throughput/latency (f=1, dedicated cluster)

Table 3.2: Request latency under low load (WAN)

average 99th percentile network
latency latency round trips

IA-CCF 183 ms 194 ms 2
HotStu� 340 ms 393 ms 4.5

ledger system [10]; and Hyperledger Fabric (v. 2.2) [11], a popular open-source permissioned
ledger system. We compare against Fabric’s latest major release that does not include a BFT
consensus protocol [88] and only tolerates crash failures using Raft [187].

3.6.1 Transaction throughput and latency

We explore the throughput and latency of transaction execution with 4 replicas (f=1) in the
dedicated cluster, comparing IA-CCF, IA-CCF-NoReceipt, IA-CCF-PeerReview, and Fabric.

Figure 3.4 shows a throughput/latency plot as transaction load increases. IA-CCF achieves
47,841 tx/s while maintaining latencies below 70 ms. As the load increases, queueing delays
increase latency. IA-CCF-NoReceipt’s throughput is 51,209 tx/s, which is only 3% higher than
IA-CCF, demonstrating the low cost of receipts.

IA-CCF-PeerReview exhibits an order of magnitude lower throughput because all messages
must be signed, e.g., a replica must sign a reply message for each transaction in a batch. This
causes IA-CCF-PeerReview to perform two orders of magnitude more asymmetric cryptographic
operations than IA-CCF.

Fabric’s throughput is only 1,222 tx/s, with a latency of 1.9 s. This is substantially worse than
IA-CCF, despite not using a BFT protocol. Our analysis reveals two reasons: Fabric’s execute-
order-validate model requires that replicas issue a signature for each executed transaction, while
IA-CCF replicas only require one signature per batch; and Fabric su�ers from documented
ine�ciencies related to its key-value store implementation [177].
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Figure 3.5: Transaction throughput vs. replica count (WAN)

3.6.2 Scalability

Next we consider the e�ect on transaction throughput when increasing the number of IA-
CCF replicas in the Azure WAN environment, spanning multiple regions to reduce correlated
failures [25]. We compare against IA-CCF deployed in the Azure LAN environment, IA-CCF-

PeerReview, and HotStu�, a BFT consensus protocol without a ledger or key-value store.

Figure 3.5 shows that, as expected, IA-CCF’s throughput decreases with more replicas be-
cause more signatures are verified by each replica. Since each replica has a fixed number of
threads for checking signed pre-prepare/prepare messages in parallel, throughput decreases when
the replica count exceeds the number of hardware threads, which is only 16 in this deployment.
IA-CCF is only marginally a�ected by the higher WAN latencies due to its use of pipelining,
as shown by the comparison to the LAN deployment.

HotStu� [255] achieves a throughput of 5,862 tx/s in the WAN environment, which is worse
than its reported LAN throughput [261]. While it degrades slowly with more replicas, even
with 64 replicas its throughput remains 71% lower than that of IA-CCF. The throughput of
IA-CCF-PeerReview is even lower since it performs more cryptographic operations.

We also measure the request latency of HotStu� and IA-CCF under low load. As reported
in Table 3.2, HotStu�’s request latency is approximately twice that of IA-CCF’s. For both
systems, request latency is dominated by the number of network round trips and clients receive
transaction results with receipts in only two round trips in IA-CCF.

3.6.3 Receipt validation

We measure the time required to verify receipts, which depends on (i) the length of the path in
the Merkle tree G and (ii) the number of signatures to be checked. Since the number of leaves
in G is bounded by the batch size, the path length remains small: verification takes 2.1 µs and
2.3 µs for batches of 300 and 800 requests, respectively. The overall cost is dominated by the
signature verification, which takes 18 ms and 52 ms for f=1 and f=3, respectively.
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Figure 3.6: Transaction throughput/latency when varying the number of accounts and check-
point interval (f=1, dedicated cluster)

3.6.4 Governance sub-ledger

Next, we consider the size of the governance sub-ledger, which is stored by clients. The sub-
ledger is a collection of receipts for every transaction that has updated the governance of an
IA-CCF deployment. A receipt’s size is 623 bytes or 1,565 bytes for f=1 or f=3, respectively.
In addition, the client must store the governance request and the corresponding response,
which have variable size. We expect governance operations to be rare. Therefore, storing and
verifying governance sub-ledger receipts has low overhead.
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3.6.5 Ledger auditing

We want to understand auditing performance. For the SmallBank workload, we compare ex-
ecution time to auditing time. When measuring throughput at f=1, auditing is 23% faster
than execution, because there is no network overhead, message signing, or ledger writes. In
each batch, IA-CCF only verifies 2f+1 rather than up to 3f+1 signatures. For f=4, the per-
formance gap increases to 67%, as more replicas add communication and cryptographic load
during execution. We observe that the bottleneck for auditing is verification of client request
signatures, which can be trivially parallelized.

3.6.6 Key-value store

We explore the performance impact of varying the number of entries in the key-value store by
varying the number of SmallBank accounts. Figure 3.7 shows a throughput vs. latency plot.
As expected, throughput decreases when the number of entries in the key-value store increases.
CCF’s implementation [206] of the key-value store uses a CHAMP map [224], whose access
time grows logarithmically with the number of items.

3.6.7 Checkpointing

We also explore the e�ect of checkpointing on performance. We vary the size of the key-value
store and the checkpoint interval for the SmallBank workload. Figure 3.6 shows the results as
throughput vs. latency plots. As expected, the checkpoint overhead increases with the size of
the key-value store and the checkpoint frequency, but the overhead is low for checkpoint intervals
between 10 and 100,000 (approximately 1 to 10 minutes). The checkpoint interval impacts the
overhead to check uPoMs at the enforcer. We expect checkpointing every 10 minutes to be
acceptable in practice; it requires the enforcer to replay at most 10 minutes of transactions.
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Table 3.3: Breakdown of IA-CCF features (f=1, dedicated cluster)

Variant Throughput (tx/s)
(a) Full IA-CCF 47,841
(b) IA-CCF-NoReceipt 51,209
(c) + without checkpoints 51,288
(d) + small key-value store 53,759
(e) + without signed client requests 111,926
(f) + with MACs only 128,921
(g) + without ledger 131,959
(h) + with empty requests 299,321

HotStu� (with empty requests) 307,997
Pompē (with empty requests) 465,646

3.6.8 Overhead breakdown

To provide a permissioned ledger with individual accountability, IA-CCF implements func-
tionality that goes beyond traditional BFT consensus protocols, e.g., generating receipts. We
now explore the impact of implementing this functionality on IA-CCF’s throughput in the
dedicated cluster.

We compare several variants of IA-CCF, each limiting functionality further: (a) IA-CCF;
(b) IA-CCF-NoReceipt, i.e., without creating receipts; (c) without creating checkpoints; (d) with
a small key-value store, i.e., the key-value store fits in the CPU cache; (e) without signed
client requests; (f) using only MACs for message authentication between replicas; (g) without
a ledger; and (h) with empty requests, i.e., without the overhead of executing transactions
against the key-value store.

Table 3.3 shows that (a)–(d) have comparable throughput, but not verifying client signa-
tures (e) doubles throughput. Only using MACs instead of signatures (f) or removing the
ledger altogether (g) does not increase throughput substantially, but removing the overhead of
executing transactions against the key-value store (h) again doubles throughput.

For context, we compare with two Byzantine consensus protocols with similar functionality
to (h) above, HotStu� [253] and Pompē [262, 261]. HotStu�’s throughput is 307,997 tx/s, but
with higher latency (Section 3.6.2). By separating request ordering and consensus, Pompē

achieves a throughput of 465,646 tx/s, also with worse latency (IA-CCF’s 12 ms to Pompē’s
73 ms). IA-CCF could utilize Pompē’s techniques for increased throughput by sacrificing its
two round-trip latency.

These breakdown results show that IA-CCF’s overhead comes primarily from the crypto-
graphic operations required for verifying client requests, followed by the transactional key-value
store, rather than the consensus protocol or the mechanisms specific to providing individual
accountability.
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3.7 Related work

Permissioned ledgers. Many permissioned ledger systems [124, 200, 10, 11] rely on BFT
consensus protocols to order transactions. Hyperledger Besu [124] and Quorum [200] use vari-
ants of PBFT [175, 210], which do not retain proof of a replica’s operations, and therefore
cannot assign blame. Diem [10] uses the DiemBFT [27] consensus protocol, which is based on
HotStu� [253] and also lacks accountability features.

The IA-CCF prototype is built on top of CCF [206], an open source [168] distributed
ledger framework deployed in the Azure cloud [167], which utilises trusted execution environ-
ments (TEEs) [61, 134] to harden replicas. Russinovich et al. [206] describe CCF’s programming
model, receipts, governance, and replication protocols. While CCF enables auditing and can
recover a ledger when all replicas crash, it relies on the security of TEEs, and its auditing does
not guarantee individual accountability.

Byzantine consensus [49, 56, 141] distributes trust. Recent work on BFT protocols has fo-
cused on improving guarantees [63, 171, 15] or performance for particular use cases [223, 262].
SBFT [107] and HotStu� [253] scale to hundreds of replicas using threshold cryptography,
which prevents blame assignment. For permissioned ledgers, scaling to many replicas with-
out growing the consortium size does not improve trustworthiness, and consortia typically
cannot grow arbitrarily.

Other work has explored misbehaviour and its impact on Byzantine consensus. BFT2F [153]
formalizes safety and liveness guarantees after more than f replicas are compromised. It pro-
vides PBFT’s guarantees with up to f failures and provides fork* consistency with up to 2f

failures. For permissioned ledgers, fork* consistency is not su�cient, because it is susceptible
to double-spending attacks.

Depot [159] issues proofs-of-misbehaviour after observing misbehaviour, but it adopts even-
tual consistency, which is incompatible with permissioned ledgers. Pompē [262] prevents dis-
honest primaries from controlling the ordering of requests. It does not address scenarios in
which there are more than f dishonest replicas though.

Accountability. PeerReview [111] ensures that distributed nodes remain accountable for
their actions. As shown in Section 3.6.1, PeerReview incurs a high overhead when applied to a
permissioned ledger. In contrast, IA-CCF introduces mechanisms specific to BFT state machine
replication, such as a shared ledger with a Merkle tree, to improve both regular transaction
execution and auditing.

Accountable virtual machines [110] carries out auditing through spot checking of check-
points, but has the same performance overheads as PeerReview for ledgers. SNP [264] is a
networking-specific implementation of accountability, o�ering provenance for routing decisions.
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Such specializations improve performance in particular domains, but are not directly appli-
cable to permissioned ledgers.

BAR [5] and Prosecutor [259] incentivize replicas to act honestly by having honest replicas
penalize misbehaviour. This weaker model allows BAR to tolerate more than 1/3 faulty replicas,
while Prosecutor uses these incentives to improve performance. If these incentives fail [122],
however, replicas share the blame.

Accountability with more than f+1 misbehaving replicas has been discussed before [39, 41,
117]. BFT Protocol Forensics [219] and Polygraph [55] propose a ledger auditing mechanism,
but assume that fewer than N≠f replicas misbehave. They also do not support changing
replica sets. ZLB [201] and Tendermint [39] support changes to the replica set but also assume
that fewer than N≠f replicas misbehave.

3.8 Summary
This chapter presented IA-CCF, the first permissioned ledger that provides individual account-
ability and is not subject to an arbitrary failure limit after that the permissioned ledger does
not provide accountability.

We first presented a definition of individual accountability describing how individual ac-
countability di�ers from accountability.

Next, we described IA-CCF. First, we presented an overview of IA-CCF and the major
components of the permissioned ledger. Next, we described L-PBFT, the Byzantine fault
tolerant consensus protocol of IA-CCF, including the protocol messages sent by the consensus
protocol when ordering requests and changing the primary replica. This explanation detailed
how IA-CCF’s ledger is created and how receipts are sent to clients. Finally, we provided a
correctness argument for the linearizability of L-PBFT.

Next, we explored auditing the permissioned ledger. We explored how an IA-CCF auditor
can find misbehaviour in an IA-CCF ledger, and create a concise uPoM, that is then passed to
an enforcer so they can apply any relevant penalties. Next, we introduced IA-CCF’s governance
protocol that changes the active replica set and showed how during reconfiguration IA-CCF
maintains its individual accountability property. Finally, we presented a proof showing that an
auditor can always find misbehaviour within an instance of the IA-CCF permissioned ledger.

Finally, we looked at the performance of our IA-CCF prototype. We first examined the
throughput and latency of IA-CCF in both a LAN and WAN environments. Next, we focused
on understanding how the components of IA-CCF a�ect the permissioned ledger’s overall per-
formance.
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This chapter presents DropBear, the first cloud-based machine learning (ML) inference service
that provides clients with strong integrity guarantees, while staying compatible with current
inference APIs. DropBear replicates model updates and inference computation among GPU
nodes that belong to di�erent cloud providers and provides clients with inference certificates
that prove agreement for specific model versions.

In the context of DropBear, we look at how hardware accelerators can be used e�ciently
within a permissioned ledger that utilises a Byzantine fault tolerant consensus protocol. We
design the DropBear permissioned ledger such that it reaches agreement even when there are
honest but di�ering inference results due to heterogeneity of contributing models or di�erences
in the hardware and software on each node. To improve performance, DropBear batches infer-
ence and consensus operations independently: it first performs the inference computation across
an ensemble of models and reaches agreement, before ordering requests and model updates.

This chapter further contributes to addressing concerns of organizations that utilize permis-
sioned ledgers – see section 1.4.3 – by exploring performant execution of ML workloads with
accelerators on a permissioned ledger that combine ML and CPU based workloads.
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4.1 Introduction

In the previous chapter, we considered the design and evaluation of a permissioned ledger that
is auditable regardless of how many replicas are dishonest. We showed that, by co-designing
the ledger, Byzantine consensus protocol, and receipts it is possible to make a ledger that
provides individual accountability and order a large number of transaction requests. However,
a limitation of the previous work is that we only consider the ordering and execution of simple
transaction requests, we did not consider the execution of complex transactions.

In this chapter, we explore how permissioned ledgers with a Byzantine consensus protocol
can be used to execute complex transaction requests. Specifically, we look at how a permissioned
ledger can utilize highly parallel accelerators (GPUs) to build machine learning (ML) inference
applications which require the execution of long running inference requests (Ø 1 ms).

ML inference, particularly those obtaining inference decisions from a deep neural net-
works (DNNs), used by a large number of applications, and this number is only expected
to grow [92, 181, 144, 136]. The resource-intensive nature of DNN inference computation has
led to cloud providers o�ering cloud-based ML inference services, such as Azure Machine Learn-
ing [166], AWS AI Services [9], and Google Cloud Inference [100]. These services expose simple
APIs that allow users to upload a single ML model, or an ensemble of models, which com-
bines inference results from multiple models to reach higher accuracy [208], to be hosted on the
provider’s infrastructure. Clients then submit inference requests over these models, which are
executed by cloud nodes with GPUs or other hardware accelerators.

While cloud-based inference services are popular, they require owners of ML models and
clients submitting inference requests to trust the cloud provider. In many applications that
use ML inference for decision-making, this a�ects the trustworthiness of the application. For
example, ML inference is used by the insurance industry to decide if an insurance application
is underwritten [113, 4, 160], or in contentious domains, such as, by courts to aid in sentencing
within the criminal justice system [59, 119, 146] where the reasoning for selecting a specific
ML model that contributes to a sentencing must be recorded. A malicious cloud provider or
a rogue employee may tamper with inference computation to save on computational resources
(resulting in lost accuracy) or deliberately change the outcome from a downstream application
that depends on inference results.

It is challenging for clients to validate the correctness of inference results. The numeric
values of inference results depend on the used models versions and the employed hardware and
software, e.g., the type of GPUs [247], their floating-point accuracy and implementation [70],
and other optimizations in the inference software stack [52, 66, 204, 207]. Moreover, if model
owners use an ensemble of DNN models, correctness also depends on the service correctly
aggregating results [246, 79, 26]. In practice, if clients want to establish correctness, they
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must redo the inference computation and reproduce the result in independent failure domains,
defeating the purpose of executing inference requests within a single cloud.

Cloud deployments of ML inference services are often motivated by performance and scal-
ability requirements. Typical applications such as fraud detection routinely handle hundreds
of transactions per seconds, and may experience large peaks or periodic usage increases during
business hours. Dynamic cloud scaling avoids the ine�ective over-provisioning of dedicated
resources. The security properties of IA-CCF would provide an ideal solution to the issue
encountered by clients want a trustworthy inference decision, however, the system’s focus on
ordering simple transaction request would result in poor performance (see Section 4.7.3).

In this chapter we describe DropBear, a cloud-based permissioned ledger that o�ers trust-
worthy inference decisions over DNN models. DropBear allows model owners to upload ensem-
bles of models that consists of one or more DNN models, and clients then submit inference
requests over these ensembles. The ledger allows for combining di�erent types of transactions
– executed on the CPU and GPU – enabling a ledger to contain the transaction that resulted
in a specific model being loaded and used to execute ML workloads. DropBear makes the
following contributions:

(1) DropBear realizes a trustworthy inference service in which inference results do not
depend on the correct execution of any individual cloud node. The key idea is to replicate
model updates and the inference computation across multiple nodes in di�erent clouds, which
must reach agreement on inference results. To support ensemble training, agreement is defined
subject to acceptable bounds on the results when nodes execute di�erent models from the
ensemble and combine the results. This limits possible divergence if a dishonest node provides
incorrect results. Consensus among the nodes regarding model versions and inference results is
reached using a Byzantine agreement protocol (L-PBFT). Allowing model versions to be totally
ordered with other transactions that resulted in the specific version of a model being selected.

(2) DropBear follows an execute-agree-attest strategy that separates the expensive execution
of inference requests from the agreement and attestation of inference results. Inference requests
are first executed in batches by geo-distributed cloud nodes against an ensemble of models. After
execution, a primary node batches the inference requests again, orders them with respect to
model updates, and sends batches to a set of backup nodes. The nodes agree with the one-
another’s inference result subject to the bounds associated with the ensemble. After 2/3 of
nodes have agreed, they attest that the result is within the prescribed bounds. Recording the
results in the ledger allows for follow-up transactions – some of which may not be ML based
– to be linearized with the inference execution.

Through this separation, DropBear can batch inference requests and consensus operations
independently, allowing for a higher degree of parallelism across nodes: batching inference
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Figure 4.1: Cloud-based ML inference service. A client sends an inference request of a sailboat
and receives an inference result, which was executed on the cloud nodes. It also shows a model
owner who uploads an ML model to cloud storage and then the inference scheduler directs
which nodes load the new model before it is sent to the nodes.

requests for heavily referenced models [131] into execution batches increases GPU utilisation,
and execution batches can span multiple consensus batches; consensus batches are constructed
to better utilize the wide-area network between cloud nodes and reduce the per-batch CPU
overhead of cryptographic operations.

(3) Despite using multiple cloud nodes to reach consensus about inference results, DropBear
maintains an inference API with a single endpoint that remains compatible with current cloud-
based APIs [166, 8, 100]. Clients receive inference results together with an inference certifi-
cate, which is a universally-verifiable proof that su�cient nodes executed the inference request
and agreed on the specific result for a given version of an ensemble of models. The inference
certificate is created by an inference proxy, which combines cryptographically-signed Merkle
trees of inference results and consensus messages.

Note that the inference proxy need not be trusted: clients can easily check the inference
certificate’s correctness by verifying that the content of the inference certificate is signed by
the service and the certificate contains the client’s inference request.

4.2 Trust in cloud-based machine learning inference

Next we introduce cloud-based ML inference services (Section 4.2.1), describe their security
challenges (Section 4.2.2) and introduce our threat model (Section 4.2.3).
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4.2.1 Cloud-based machine learning inference services

All major cloud providers o�er ML inference services, e.g., Azure Machine Learning [166], AWS
AI and ML services [9], and Google Cloud Inference [100]. They host trained ML models and
expose APIs through which clients can submit inference requests. Organizations move to cloud-
hosted ML inference for a multitude of reasons, including cost savings, access to the latest GPU
hardware, and fast scale out for inference workloads [45, 9].

Many of these models are trained using deep learning, which is an unsupervised learning
technique that creates deep neural network (DNN) models [98]. Such models have shown great
success in diverse areas, image detection and classification, natural language processing, and
fraud detection. Inference computation over DNN models is resource-intensive as it requires
performing a large number of floating point operations, many of which can run in parallel.
Therefore, recent inference systems, such as NVIDIA Triton Inference Server [236], ONNX
Runtime [76], and TensorFlow Server [232], execute inference requests on GPUs [1], TPUs [131],
or multi-core CPUs, selecting the hardware for which the DNN model was optimized.

In many application domains, the accuracy of DNN inference results can be enhanced by
using ensemble learning [208], i.e., combining the results of several trained models to produce a
new result with better accuracy than of the input models. Ensemble learning has been shown
to avoid overfitting, allows models to be trained on more narrow datasets, and reduces the
impact of individual models making incorrect inference decisions [78, 195, 208].

Figure 4.1 gives an overview of a cloud-based ML inference service [137]. The service
exposes an API that is used by model owners and clients: model owners upload one or more
models, which may form an ensemble, and are typically expressed in a standardized format,
such as ONNX [20] or NNEF [73]. The models are then deployed on cloud nodes with hardware
accelerators such as GPUs. The nodes execute inference requests submitted by clients using
an inference engine implementation.

Clients must be authorized to use the service, and they submit inference requests through
an application protocol, e.g., HTTP. An inference request specifies the ensemble model to use
and the input data for the inference, e.g., an image. The inference request is accepted by an
inference scheduler, which forwards the request to a cloud node for execution. For an ensemble
of models, the scheduler collects the results from multiple nodes, applies an ensemble learning
technique to produce an aggregated result, and returns it to the client.

4.2.2 Trust requirements

A client’s confidence that an inference request was executed correctly is crucial when using ML
inference in applications. This confidence can be gained by recording the reason for using an ML
model and the inference results on the same ledger. This applies to many application domains:
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Electronic trading. ML methods have been used by banks and hedge funds as part of
automated trading strategies [19, 13], and in new types of FinTech scenarios [44, 263, 240].
There are several concerns when using ML inference here: (i) as the trading strategy depends on
the inference results, results must not be tampered with by rogue employees e.g., for financial
gain; and (ii) government regulators require financial firms to maintain compliance records.
When ML inference is used, a trustworthy record of the inference requests is necessary and the
reason for selecting a specific model must be selected.

Medical diagnosis. An emerging area for ML inference is the image-based diagnosis of medical
conditions, e.g., cancer, using ML models [228, 150, 222]. Given the high accuracy demands
in this domain [154, 157, 244], diagnoses from a single model are often insu�cient, requiring
results from ensembles that combine models with di�erent strengths [216, 192, 14]. In addition,
ML-based diagnosis must be accountable: an organization that creates a diagnosis shown to be
incorrect would be incentivized to disavow the incorrect results to protect against reputational,
financial, or criminal claims. Finally, a patients diagnosis and treatment should be recorded on
a ledger to show that a ML created diagnosis was property considered.

Government services increasingly rely on ML models as part of citizen-facing services. For
example, the US Internal Revenue Service (IRS) uses ML models to combat tax evasion by
discovering discrepancies in tax returns [90, 28]. Using automated AI methods has proven
problematic though—court rulings stated that such methods may be “insu�ciently clear and
verifiable” [182]. While government organizations benefit from the cost savings of cloud-based
services, they must demonstrate trustworthy execution. Retaining why the inference result is
utilised demonstrates to courts that decisions taken based on ML inference have not been
tampered with [58].

4.2.3 Threat model

In our threat model, model owners and clients do not trust all nodes that constitute the ML
inference service: a client expects that an inference result sent by any single node may be
incorrect. The client, however, trusts the model owner and, by extension, that the originally
provided models are correct.

An attacker’s goal is to tamper with inference results without clients detecting the malicious
behaviour. The attacker may be a rogue employee of a cloud provider, who already has physical
or remote access to the nodes, or external to the cloud provider, after having penetrated its
defenses. We assume that the adversary can compromise at a fraction of the cloud nodes,
despite physical or software protections within a cloud environment. After compromising the
nodes, they can direct and coordinate the nodes’ behaviour.

Nodes may be distributed across multiple independent cloud environments, e.g., multiple
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cloud providers or geographically distinct locations that constitute independent failure domains.
Each node has its own identity, e.g., a public and private cryptography key pair, and the attacker
is unable to obtain an honest node’s private key. Nodes can establish secure communication
channels, which cannot be tampered if both nodes are honest. We assume that clients and
model owners have also verifiable identities [194, 189]. The inference service can authenticate
them and create secure channels.

4.3 Trustworthy machine learning inference

We discuss how to establish trustworthiness in an ML inference service (Section 4.3.1) and
formalize the definition of a trustworthy service based on agreement (Section 4.3.2).

4.3.1 Establishing trustworthiness

Intuitively, a trustworthy inference result is a result that a client has obtained by correctly
executing an inference request against an ML model. Clients can obtain trustworthy inference
results in two ways: (1) a result obtained from a trusted node, which executes the inference
computation correctly; and (2) a collection of results from multiple nodes, with the client
trusting the collective agreement across the results.

Trusted node. When a trustworthy node executes the inference request, the node must
demonstrate its trustworthiness to the client. This can be achieved when the client controls
the node, which is not possible in a cloud environment.

Alternatively, the inference computation can be protected by the hardware through a trusted
execution environment (TEE) [242, 61]. A TEE leverages a root of trust from the hardware
to shield the execution of sensitive computation and its data from the rest of the environment,
including higher privileged software layers. While TEEs can be used to make ML computa-
tion trustworthy [102, 179, 180, 151], past TEE implementations have been shown to exhibit
exploitable security vulnerabilities [40, 176, 239, 183].

Trusted agreement. If a single node cannot be trusted, a trustworthy service can be con-
structed from a collection of nodes that collectively agree on an inference result. As long
as a su�ciently large quorum of trustworthy nodes have agreed, the agreed results can be
considered trustworthy.

Byzantine consensus protocols such as PBFT [49] obtain agreement on an execution result
from a set of nodes, even if some nodes are malicious. A trustworthy ML service, that maintains
a ledger, could thus rely on the agreement of a set of nodes, distributed across multiple cloud
providers, using Byzantine consensus. No individual untrustworthy cloud provider would then
be able to convince the client to accept an incorrect inference result.
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4.3.2 Trustworthy inference through agreement

We formalize the problem of providing a trustworthy ML inference result as follows. We assume
that a client submits an inference request against a set of models m1 . . . mk that form an
ensemble m œ E . The inference request r is served by a distributed ML inference service with
nodes N . For a given model m œ E and a node i œ N , let qm

i : Rum ‘æ Rvm denote the
implementation of the inference computation at node i for model m, where input and output
tensors are encoded into flattened arrays. (We require the input and output dimensions um

and vm to be the same at every node.)

The client obtains a set of inference results from N = |N | nodes, of which at most f nodes
may return an untrustworthy result. Therefore the client can construct a trustworthy inference
result as long as it obtains at least f+1 results that the f+1 nodes have agreed on, when this
quorum of nodes includes at least one trustworthy node. If there are less trustworthy nodes,
ledger auditing ensures that only untrustworthy nodes are blamed for their misbehaviour.

To define which inference results are in agreement with each other, we introduce two param-
eters: (i) a model-specific metric ”m : Rvm ‘æ R that represents a meaningful distance between
two results; and (ii) a similarity threshold ‘m that determines which results are su�ciently close
to be considered in agreement. Both are provided by the trusted model owner when submit-
ting E ; a client may decide to select a di�erent similarity threshold ‘m to limit the maximum
influence of incorrect or malicious nodes according to their own preferences.

As a default, the model-specific metric ”m can be defined to be Euclidean distance ”m(x, y) =Òqvm

i=1(xi ≠ yi)2. For simple models, such as classifiers that return a vector of probabilities for
all possible classes, this measure su�ces to exclude misclassifications; for more complex models,
such as ones that return higher dimensional results, it is more appropriate to use a di�erent
distance measure such as Hausdor� [123] or complex wavelet similarity [243], which are more
robust to semantically irrelevant di�erences.

The distance metric ”m, together with the threshold ‘m, can now be used to define the
inference results that are in agreement. We denote 2N the powerset of N , i.e., the set of all
subsets of N , and [2N ]f = {C œ 2N

| |C| Ø N ≠ f} its restriction to subsets with at most
f nodes removed. Given a request r œ Rum and subset X œ 2N , we also define the diameter
�m(r, X ) of the inference result set of X as:

�m(r, X ) = max
i,jœX

”m

1
qm

i (r), qm
j (r)

2

The set of results from trustworthy nodes within the threshold ‘m is:

Qm(r) = arg max
X œ[2N ]f

{|X | | �m(r, X ) Æ ‘m}
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API function Description
get API endpoints() Obtains API endpoint and public node keys from

trusted discovery service.æ ([API URL], [pub key])
load ensemble(ensemble, Uploads models that define ensemble with access

control list and distance function.[model URL], dist fn, acl)

activate ensemble(ensemble) Activates ensemble.

retire ensemble(ensemble) Retires ensemble.

request inf(ensemble, input, ‘) Executes request against ensemble; return results,
certificate, and distance function.æ ([inf res], inf cert, dist fn)

verify cert(inf req, [inf res], Verifies validity of inference certificate.inf cert, [pub key]) æ bool

Table 4.1: DropBear API

This definition selects the largest subset of at least N ≠ f nodes whose diameter is within
the threshold, rather than the one with minimal diameter overall (which may unnecessarily
exclude legitimate results). While f +1 nodes may be enough for agreement, it would make the
definition more brittle, as there could be two sets of equal size (greater than f + 1) of diameter
smaller than ‘m if all malicious nodes skew their result towards a honest outlier. Qm(r) may
also fail to yield a trustworthy subset if honest nodes are too inconsistent and the client may
consider whether a larger ‘m is acceptable.

Note that Qm(r) only contains the set of nodes that produce a trustworthy result with
respect to ”m and ‘m. In addition, clients may also expect the service to return a single
aggregate inference result based on {qm

i (r), i œ Qm(r)}, e.g., using an average or computed
”m-center approximations.

4.4 DropBear API

The API in Table 4.1 shows the interface through which model owners and clients interact
with an instance of DropBear. It supports the management of ensembles of models and the
execution of trustworthy inference requests.

Both model owners and clients must obtain an API endpoint to communicate with a Drop-
Bear deployment. The get API endpoints call contacts a trusted discovery service at a well-
known location and returns a list of URL endpoints (API URL) together with their public keys.
These identify the set of N nodes, of which up to f may not be trustworthy, that are distributed
across multiple cloud providers and constitute the DropBear service. API requests can be sent
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1 API_URLs , pub_keys = get_API_endpoint ()
2 dist_fn = lambda results ,dist =0.2: max(filter(lambda set:max(set

)-min(set)<dist , powerset ( results )), key=len)
3 model_URLs = ["https ://[ ...]/ resnet101 .onnx", ...]
4 load_ensemble("ResNet", model_URLs , [c0 , c1], dist_fn )
5 activate_ensemble("ResNet")
6 ...
7 [ inf_res ], inf_cert , _ = request_inf("ResNet", data)
8 verify_cert(inf_req , [ inf_res ], inf_cert , pub_keys )
9 ...

10 retire_ensemble("ResNet")

Listing 4.1: Example use of DropBear API

to any of the returned URL endpoints.

Model owners provide and maintain the ensembles of models, which includes a distance
function that removes potentially dishonest inference results from the ensemble results. They
add or update ensembles using the load ensemble call, which includes an ensemble name,
a list of URLs ([model URL]) that store the models in the ensemble in ONNX format [20],
an access control list (acl) with clients that may issue inference requests, and a distance
function (dist fn). The distance function takes a set of inference results and returns those
which it deems to be trustworthy (see Qm(r) in Section 4.3.2).

Before clients can issue inference requests against a new ensemble, the model owner must
activate it – to allow time for the model to be loaded from cloud storage into GPU memory
– with the activate ensemble call; it is deactivated using the retire ensemble call. List-
ing 4.1 gives an example how a model owner loads an ensemble called ResNet, accessible by
two clients (lines 2–4). The ensemble uses a distance function that returns the largest set of
results where all results are within a threshold of 0.2 (line 2). The model owner activates the
ensemble (line 5) and eventually retires it (line 10).

The distance function (line 2) assumes a classification model that returns a confidence score
for each label. A distance function for a top-1 accuracy classifier for the ImageNet models, whose
inference results return confidence scores for 1000 labels, would return the group of inference
results whose Euclidean distance is 0.2 of each other; an agreement function for a medical image
classification request would return inference results whose Hausdor� distance [156] is within 0.2.

Clients issue inference requests against an ensemble using the request inf call (line 7) and
can pass a similarity threshold ‘ to the distance function (see ‘m in Section 4.3.2); if ‘ is left
blank, the default specified by the model owner is used. After executing the inference request,
DropBear returns multiple inference results ([inf res]) and an inference certificate inf cert.
The inference results are the output from nodes that executed the inference request. The
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inference certificate provides a proof that multiple nodes agreed on the outcome of the inference
execution, and the client must verify it together with the results by calling verify cert (line 8).
If the client believes that the results it received are dishonest, the client triggers an audit.

The function verify cert checks the signatures of nodes over the inference results and
their signatures over the results from other nodes (see Section 4.5.4). A node’s signature over
another node’s result shows their belief that the other node’s result is trustworthy, which we
refer to as an attestation. The function first checks that at least N≠f nodes returned inference
results. It then validates that each inference result is signed by the node that produced it. For
every signed result, the function checks that at least f+1 attestations with valid signatures
exist. This ensures that every result is attested by at least one trustworthy node, i.e., more
than f nodes attested the results.

4.5 DropBear design

Next we describe DropBear’s design (Section 4.5.1) and explain how it provides trustworthy in-
ference results using its execute (Section 4.5.2), agree (Section 4.5.3), and attest (Section 4.5.4)
strategy. We finish with a discussion (Section 4.5.5).

4.5.1 Overview

As shown in Figure 4.2, a DropBear deployment consists of N nodes, which are distributed
across multiple cloud providers. To provide a trustworthy ML inference service (see Sec-
tion 4.3.2), each node manages models from ensembles and executes inference requests against
them. The results provided by di�erent nodes must then agree with each other. Agreement can
only be achieved if inference requests are ordered consistently with respect to model updates,
otherwise nodes may execute inference requests against di�erent versions of the same model.
Finally, the agreement must be attested to prove it to the client.

The design of DropBear realizes the above functionality by following an execute/agree/attest
strategy, which separates (i) the execution of inference requests and model updates from (ii) the
agreement and ordering of the results; and (iii) their attestation for the client. By separating
these phases, it becomes possible to achieve higher request throughput, because operations
can be batched independently per phase. First requests are grouped into execution batches,
which are executed in parallel on all N nodes; and then results are collected and grouped
again into agreement batches, which agree on a trustworthy result using a Byzantine consensus
protocol. DropBear selects the maximum execution batch size based on the level of GPU
parallelism; and the maximum agreement batch size based on the network latencies between
nodes. We experimentally demonstrate the performance benefit of decoupling execution from
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Figure 4.2: DropBear design

agreement in Section 4.7.3.

A DropBear node is identified uniquely by its public/private signing keys. Clients use
a trusted discovery service 1 to learn about node identities. They can then send API
requests to any node. A node receives requests through its inference proxy 2 , which acts
as an endpoint for the DropBear API (see Section 4.4) and hides the distributed nature of
the service. A node uses its public key to establish a secure TLS communication channel with
the client and authenticates it.

The inference proxy forwards requests to the inference engines 3 of other nodes. The
inference engine batches requests and uses a GPU inference library to execute batches on GPUs.
After execution, the agreement coordinator 4 agrees on the order of inference requests and
ensemble updates, and on their execution results through Byzantine consensus. Finally, the
inference proxy attests the result by constructing an inference certificate 5 The inference
certificate includes appropriate attestations that prove the result’s trustworthiness.

A DropBear deployment also provides individual accountability to reduce the likelihood of
malicious nodes returning dishonest results. This is realized as DropBear is a permissioned
ledger and every node retains a ledger of the protocol messages which are committed by
the service.
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4.5.2 Execute

After receiving an API call (see Table 4.1), the inference proxy orchestrates the
execution of the request and forwards it to all other nodes. Requests for loading
ensembles (load ensemble) and executing inference requests (request inf) are then
executed by the inference engine on each node, as described below; requests for
activating/retiring ensembles (activate/retire ensemble) are directly ordered by
the agreement coordinator (see Section 4.5.3).

Loading ensembles. After receiving a load ensemble request, an inference engine loads
one or more models from the ensemble into GPU memory, which makes them available for
inference execution. The models are retrieved from the specified remote URLs and cached
locally by the node.

Each node must decide which models from an ensemble to load. If the number of models
in the ensemble, |E|, is larger than N , nodes load disjoint partitions of models; otherwise,
some models are replicated across nodes. The inference engine selects deterministically which
c = ÁN/|E|Ë models to load. The ordered list of models in the ensemble is divided into c-
sized groups, and inference engines are assigned groups based on a total order imposed by
the nodes’ public keys.

Executing inference requests. The inference engine executes inference requests in batches
by grouping them into execution batches that refer to the same model. There is a trade-o�
when setting the maximum batch size: while larger batches help exploit GPU parallelism,
they increase latency, consume more GPU memory and may become bottlenecked by PCIe
bandwidth. The actual used batch size also depends on the number of concurrently submitted
inference requests that refer to the same model. We explore the impact of the maximum
execution batch size on performance in Section 4.7.3.

DropBear guarantees that inference requests are always executed against the latest acti-
vated model version. This model, however, is only determined at agreement time after requests
have been ordered (see Section 4.5.3)—at execution time, multiple model versions belonging
to the same ensemble may exist. To overcome this problem, the inference engine executes
such inference requests against all versions. This ensures that, even if a new ensemble version
is activated before the inference request has been ordered, the request had been executed
against that version.

4.5.3 Agree

Parallel batches execute across all nodes, and nodes must agree on the order of inference re-
quests and ensemble activations/retirements to return consistent and trustworthy results to the
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client. DropBear uses a Byzantine consensus protocol (PBFT [49]) to order requests, which can
mitigate f untrustworthy nodes that return incorrect results. The inference results produced
by executing the ordered requests are used to establish trusted agreement (see Section 4.3.1),
which distributes trust among nodes in multiple cloud environments.

DropBear utilises the PBFT protocol to choose a primary node, which is determined based
on a monotonically increasing counter called view v. The agreement coordinator on the primary
node is responsible for ordering inference requests relative to ensemble updates. It creates
agreement batches and assigns a monotonically increasing sequence number n to each batch.
Each agreement batch contains an ordered list of inference requests and ensemble updates.

Ordering requests. The primary node’s agreement coordinator proposes an agreement batch,
which contains an ordered list of requests O. It then includes the agreement batch in a PRE-
PREPARE message with the following format: ÈPRE-PREPARE, v, n, H(O), RrÍ‡. The message
specifies which node’s agreement coordinator created the ordering by including the view v and
records the agreement batch’s sequence number n and its hash H(O). It also includes Rr,
which is the root of a Merkle tree R that is constructed by the agreement coordinator over
the the inference requests and results. As will be explained in Section 4.5.4, the signed Merkle
tree root is used as an optimization to reduce the number of signatures that must be verified.
Finally, ‡ is a signature over the whole message. The PRE-PREPARE message, R, and O are
sent to the agreement coordinators on all other nodes, which act as backup nodes.

When a backup node’s agreement coordinator receives the primary’s agreement batch, it
constructs its own agreement batch and sends it in a PREPARE message to all other nodes. This
enables the nodes to obtain the required number of results to check that they are trustworthy.
The PREPARE message has the following format: ÈPREPARE, v, n, j, i, RrÍ‡i

. It also includes Rr,
which is the root of a Merkle tree whose leaves are the batch’s inference requests, results, and
hashes of the model used to create the inference results. The PREPARE also includes ordering
information, but the agreement coordinator removes the need to include O by including j, a
hash of the PRE-PREPARE message. Finally, the message contains i, the public key of the node
that created the message, and is signed by public key ‡i. Again, the agreement coordinator
sends the PREPARE message and R to all other agreement coordinators.

When ordering the agreement batches, the agreement coordinator on the primary node con-
siders each request in the batch and updates its state: for an activate ensemble request, the
active version of the ensemble is updated; a retire ensemble request deactivates all versions
of the ensemble, reclaiming used GPU memory; for a req inference request, the agreement
coordinator considers all inference results that were previously produced for di�erent versions
of the ensemble. Since the inference request has now been ordered with respect to previous
activate ensemble requests, the agreement coordinator only retains the result for the cur-
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rently active version of the ensemble.

The agreement batch size that achieves the best performance depends on the properties
of the WAN between the nodes. A larger batch size reduces the impact of the WAN latency
between nodes, but it increases the request latency that clients experience. The agreement
batch size grows linearly with the size of the inference results, as they are included in the
batch. Inference results can be large, e.g., a single ResNet model may return a 4000 byte
inference result. Our experimental results show that, if the agreement batch size is chosen
correctly, the WAN latency does not limited overall request throughput (see Section 4.7.6).

Achieving agreement. When a backup node’s agreement coordinator receives the primary’s
agreement batch, it applies the ordering information by considering each request in the batch
and either selecting the appropriate inference result or updating its state. Since it sends its
inference results in an agreement batch to the other node’s agreement coordinators, every
agreement coordinator will receive the N≠f inference results required to produce a trustworthy
inference result (see Section 4.3.2).

To produce a trustworthy inference result, the agreement coordinator applies the distance
function after it has obtained N≠f inference results. The distance function is provided by the
model owner as part of the load ensemble request (see Table 4.1). From the N≠f inference
results, the function removes ones that are not subject to the agreement bounds specified by
the model owner. For each request in the agreement batch, the agreement coordinator applies
the distance function of the active version of the ensemble at the time when the request was
ordered. Note that the distance function is executed within a sandbox, isolating it from the
node’s execution and bounding its resources.

4.5.4 Attest

After getting a set of trustworthy inference results, the inference proxy must prove the re-
sults’ trustworthiness to the client. A client requires that at least one trustworthy node has
attested the results. DropBear thus provides the client with f+1 attestations of which at
least one is trustworthy.

An attestation is created by the agreement coordinator, which signs the inference results
that it obtained after applying the distance function. The results are signed by the node’s
private key and are broadcast to all other agreement coordinators. Based on this, an inference
proxy can construct an inference certificate, which shows that at least f+1 nodes have agreed
and attested at least N≠f results.

Attesting results. For an agreement coordinator to create an attestation, it must obtain
N≠f inference results. To proof to the client that the results were produced on multiple nodes,
they must be signed with the private keys of these nodes. However, instead of signing all
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inference results in the agreement batch separately, the agreement coordinator constructs a
Merkle tree R where each leaf is an inference request and result. This allows the agreement
coordinator to sign the root of the Merkle tree Rr once. By including the Merkle authentication
path in the inference certificate, the signature is linked to the inference result.

A node’s agreement coordinator waits until it has received N≠f agreement batches before
attesting their trustworthiness (see Section 4.5.3). It then attests agreement batches by signing
a hash of the results within the batch and sending it in a COMMIT message to all other agreement
coordinators. The COMMIT message has the format: ÈCOMMIT, v, n, j, i, ArÍ‡i

. As before,
including the root of a Merkle tree A avoids the need to sign each attestation, because the
leaves are the hashes of the inference requests and results being attested. If the agreement
coordinator attests all the results in an agreement batch, it includes Rr from the agreement
batch in A instead of adding individual results. The agreement coordinator sends the COMMIT
message and A to all other agreement coordinators.

If an agreement coordinator receives an attestation for an inference result that it has not
obtained, it requests that the sender forward the missing inference result and PREPARE message.
The agreement coordinator waits for a response before it considers the attestation as having
been received and ready to use. An agreement coordinator considers requests ordered after it
has received N≠f≠1 COMMIT messages.

Ledger. DropBear enables auditing and individual accountability by maintaining a ledger
like IA-CCF (see Section 3.3.1). Each node writes the PRE-PREPARE, PREPARE, and COMMIT
messages to the ledger at the time when a node either sends or receives a valid PRE-PREPARE
message. We extend the definition of the PRE-PRPEARE message to include En≠P where, E is a
bitmap describing which node’s PREPARE and COMMIT messages are stored in the ledger and
P is the maximum number of concurrent batches that may be in-progress and uncommitted.
In addition, every node will write the req inference once they have been ordered by a node’s
consensus protocol during the agree stage (see Section 4.5.3).

Creating inference certificates. After having obtained N≠f attestations, an inference
proxy can create an inference certificate, which has the following format: Èv, n, H(O), S, P , DÍ.
It contains S, the signatures over the PRE-PREPARE, PREPARE, and COMMIT messages; P ,
the authentication paths from the Merkle tree R; and D, the authentication paths over the
attestations A. After the inference certificate has been created, the inference proxy forwards
it, together with the inference results, to the client.

As mentioned in Section 4.4, the client can now verify the inference certificate and results
using the verify cert function. Algorithm 4.1 provides the functions’s pseudocode. First,
the client checks that the nodes signed their own inference results. It confirms that at least
N≠f results were returned (line 2) and iterates through the inference results (line 4): it obtains
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Algorithm 4.1: Verify inference certificate (where public keys K are obtained from
the discovery service.)

1 on verify cert(Èv, n, H(O), S, P , DÍ, R, r, K, f)
2 if |R| < N ≠ f then return False

3 hpp Ω H(ÈPRE-PREPARE v, n, H(O), Rir
ÍSi

)

4 foreach i, Ri œ R do
5 Mr Ωget merkle root(i, P , r, Ri)
6 if ¬ verify sig(v, n, H(O), Mr, i, hpp, Si, Ki) then return False

7 attestationsRi Ω get attestations (D, Ri)

8 if |attestationsRi | Æ f then return False

9 foreach Èi, MpathÍ œ attestsationsRi do
10 Mr Ωget merkle root(Mpath, r, Ri)
11 if ¬ verify sig(v, n, Mr, i, hpp, Si, Ki) then return False

12 return True

the root of the Merkle tree R using the authentication path provided in P (line 5), and uses
this information to verify the node’s signature over its result (line 6).

The client then confirms that the results were attested by at least one trustworthy node. It
ensures that a minimum number of nodes have attested each result (line 8). For each attesta-
tion (line 9), it reconstructs the root of each node’s Merkle tree over their attestations (line 10)
and verifies the signatures (line 11).

4.5.5 Discussion

Security analysis. We discuss how the trustworthiness of inference results is guaranteed
by DropBear’s design.

Untrustworthy inference proxy. When malicious inference proxy receives a request from a
client, it either: (i) forwards the request to a subset of the nodes, which means that the
trustworthy nodes forward the request to one another [48, 57]; or (ii) does not forward the
request, thus not returning a valid inference certificate to the client. After a timeout, the
client sends the request to another inference proxy. After at most f+1 tries, the client will
find a trustworthy inference proxy.

Untrustworthy nodes attempt to tamper with the ordering and execution of requests. Since the
PBFT protocol orders requests, the produced results are from models in the same version of an
ensemble. If the primary node stops ordering requests, it is re-assigned through PBFT’s view
change protocol. The current primary is determined based on the monotonically-increasing
view v, which increments each time the primary node is changed. To decide on the primary
node, the nodes’ public keys are ordered lexicographically, and the pth node from the list is
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chosen as the primary where p = v mod N . A view change is triggered by backup nodes if
they do not receive N≠f attestations within a timeout after receiving the request.

Attacking accuracy. Untrustworthy nodes may try to undermine the accuracy of the results
returned from an ensemble (see Section 4.7.7). For example, a malicious node may slightly
perturb the generated results to reduce overall ensemble accuracy [256]. The distance function,
however, mitigates this issue by bounding the maximum tolerated divergence between models.
In addition, more important models may be replicated by DropBear, or the model owner may
choose to include only models in the ensemble that do not dominate accuracy.

Result aggregation. By design, DropBear does not aggregate the results from the models in
the ensemble but leaves this task to the client, because the inference proxy cannot be trusted
to aggregate results correctly. Instead, DropBear could be extended to provide trustworthy
aggregated results by obtaining an aggregation function �m from the model owner. It would
then add an extra consensus round in its agree phase that would ensure that f + 1 nodes
agree over the value of �m(Qm(r)).

Non-determinism. We assume that the execution of an inference request on the same GPU
hardware against the same model returns the same result. However, if the same inference
request is executed on di�erent hardware, the results may di�er. A model owner who is aware
that inference computation will execute on heterogenous hardware may write a distance function
that accounts for these di�erences.

State. DropBear maintains state information about a number of parameters including: the
actively loaded ensembles; a mapping of the model owner to the ensemble they own; the users
that may send inference requests to an ensemble; etc. As DropBear is built upon IA-CCF,
all state is maintained in the IA-CCF key-value store (see Section 3.2). In addition, the cloud
providers running the DropBear instance may define a number of stored procedures which
clients and model owners may invoke. When invoked a stored procedures may update the
data in the key-value store.

Active nodes. As DropBear extends the IA-CCF permissioned ledger, DropBear follows the
same procedure to change the set of active nodes. The cloud providers running the DropBear
service act as the members and submit the required governance requests and votes to add or
remove nodes (see Section 3.5).

Note that a DropBear governance proposal request to add a new node must include the
model of the proposed node’s GPU, inference framework, and any other information that could
a�ect an inference result (see Section 4.1). This information is required to ensure consistent
playback during an audit (see Section 4.6.2).
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4.6 Individual accountability

In the previous section, we described DropBear’s design and explained how it provides trust-
worthy inference results using the execute-agree-attest strategy. In this section, we build on
this design to show how DropBear can be made auditable and provide individual accountability.

4.6.1 Extended protocol messages

In the previous section we presented a simplification of the PRE-PREPARE, PREPARE, and COM-
MIT messages. We extend the three messages with the parameters of PRE-PREPARE, PREPARE,
and COMMIT messages from L-PBFT (see Section 3.2), such that each message contains the
superset of the parameters. This provides DropBear with the same individual accountabil-
ity properties as IA-CCF.

This changes DropBear protocol message to utilize the same PRE-PREPARE and PREPARE
messages as L-PBFT except that DropBear’s consensus PRE-PREPARE and PREPARE messages
include Rr which is the root of the node’s per batch Merkle tree whose leaves are the batch’s
inference requests and results. In addition, DropBear extends L-PBFT’s COMMIT message to
include Ar which is the root of a Merkle tree A whose leaves are the hashes of the inference
requests and results being attested by the node sending the COMMIT message.

DropBear’s VIEW-CHANGE and NEW-VIEW messages are copied from L-PBFT and the pa-
rameters are not modified.

4.6.2 Auditing

Auditing a DropBear ledger follows a similar pattern to auditing an IA-CCF ledger. Audits
are triggered when an entity, usually a client, obtains an inference result with a valid infer-
ence certificate that they believe could not have been produced if the inference request was
correctly executed against the models in the currently active ensemble. For example, if an
insurance policy is approved that should not have been approved (see 4.1). There are two
such scenarios when audits are triggered: (i) the client believes a dishonest inference result was
produced or; alternatively (ii), the client believes that there is no valid set of load ensemble,
activate ensemble, and retire ensemble requests that could result in the inference request
being executed against the models specified in the inference certificate. In both scenarios, the
audit begins with the client passing the inference result and certificate that it believes to be
dishonest to the model owner. The model owner – as the entity that uploaded the ensemble
to the DropBear service – decides if it wants to perform an audit. This decision is made based
on abnormalities observed in the inference requests, either by inference results observed on the
ledger or complaints o�ered raised by clients. The model owner utilises the receipts that it has
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collected when it sent load ensemble, activate ensemble, and retire ensemble requests
along with the client’s inference certificate to make its decision.

Linearizability violation. The first step in auditing an inference result and the accompanying
inference certificate is deciding if the correct models were used to produce the inference result.
The model owner checks which ensemble should be active by examining the receipts that it
obtained when sending activate ensemble requests. The model owner examines the sequence
number assigned to the executed activated ensemble requests to determine which models
should be active. If the model owner determines that incorrect models were used to produce
an inference result, the model owner performs an audit akin to that of IA-CCF.

To assign blame for violating linearizability, an audit of a DropBear ledger follows the au-
diting steps described in Section 3.4.1. In brief, an overview of auditing a DropBear ledger
is as follows:

1. The auditor obtains the appropriate checkpoint and ledger from one of the replicas along
with a receipt for the activate ensemble with the highest sequence number that is lower
than that of the suspected malicious inference certificate, i.e., the activate ensemble
request that activated the ensemble against which the inference request that is suspected
to be malicious was executed.

2. The auditor loads the checkpoint and re-executes the load ensemble,
activate ensemble, and retire ensemble requests in the ledger. The auditor does not
need to replay the request inf entries as any correct execution of the requests cannot
a�ect the state of the permissioned ledger (key-value store).

3. While re-executing the model update requests the auditor ensures that they were sent by
model owners that have the appropriate permission.

If the above detects a linearizability violation, a uPoM is created. The uPoM is sent to
the enforcer who punishes the dishonest replicas.

Invalid inference result. If a linearizability violation is not detected, it is possible that the
malicious behaviour is the malicious execution of the inference request. To verify the inference
execution the auditor re-executes the inference request. To ensure the correct re-execution of
the inference results the auditor is required to obtain a computer that has the same GPU as
the node which executed the request.

If the result from the re-execution does not match that of the inference certificate, a uPoM is
created and sent to the enforcer to provide individual accountability. Individual accountability
acts as a disincentive for cloud providers that attempt to gain value from returning incorrect
results or as an incentive to secure the service provided to the model owner.
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4.7 Evaluation

We evaluate DropBear to explore the cost of providing trustworthy ML inference (Section 4.7.2),
the impact of separating execution and agreement batching (Section 4.7.3), the impact of model
agreement (Section 4.7.4), the impact of ensemble updates (Section 4.7.5), and DropBear’s scal-
ability (Section 4.7.6). We finish by considering the impact of untrustworthy nodes on ensemble
accuracy (Section 4.7.7) and of the sizes of inference requests and results (Section 4.7.8).

4.7.1 Experimental setup

We implement DropBear in approximately 5,000 lines of C++ code. It uses the ONNX Run-
time (v1.8.1) [76] as part of its inference engine to execute inference requests on GPUs, Ev-
erCrypt’s SHA functions [197], the MerkleCPP library [164], the MbedTLS library for client
connections [161], and secp256k1 for all signatures [250].

Testbeds. Our experimental setup consists of three environments: (a) cluster—a dedicated
5-machine cluster, each with an 8-core 3.7-Ghz Intel E-2288G CPU with 16 GB of RAM and
a 40 Gbps network with full bi-section bandwidth; (b) cloud/single-site—a single datacenter
cluster in the Azure cloud (East US) with NC12s v3 VMs, each with a 12-core 2.60-Ghz Intel
E5-2690 CPU with 224 GB of RAM and 2 NVIDIA v100 GPUs with 16 GB of RAM; and
(c) cloud/multi-site—a WAN configuration using the same VMs across 3 Azure regions (East
US, East US 2, US South Central). All machines run Ubuntu Linux 18.04.6 LTS.

We set the execution batch size to 4, as larger batch sizes do not improve performance with
our GPUs. In the single-site environments, we use an agreement batch size of 25 with a batch
pipeline of 2; in cloud/multi-site, we use a batch size of 50 with a pipeline of 4.

Workloads. To emulate a realistic distribution of diverse DNN models in a cloud-based
inference service, we use 42 ImageNet models taken from the ONNX and PyTorch model
zoos [188, 198], as listed in Table 4.2, which categories the models into model families. These
models vary in size from several to hundreds of MBs, covering various complexities and depths.
We update all models to accept batches of inference requests. We employ a set of 1000 images
taken from the ImageNet validation dataset [205] as input to inference requests.

4.7.2 Inference throughput and latency

We begin by evaluating the impact on throughput and latency when providing trustworthy in-
ference requests using DropBear. We compare against two state-of-the-art distributed inference
systems, which do not support trustworthy inference: (i) Clockwork [108] focuses on predictable
inference latencies; and (ii) INFaaS [203] selects models based on the SLOs of inference requests.
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Model family #Vars Model family #Vars
ResNet [115, 116] 17 SqueezeNet [126] 3
VGG [221] 10 AlexNet [145] 1
DenseNet [121] 5 GoogleNet [229] 1
Inception [230] 1 MnasNet [231] 2
ResNext [251] 2

Table 4.2: DNN models and variants used in evaluation

Figure 4.3: Request throughput versus latency (All systems use 15 ResNet50 instances. Clock-
work and INFaaS use 1 worker node and the reported latency as their target SLO. DropBear
is deployed with f=1 with all ensembles on all nodes.)

Similar to the authors of Clockwork, we were unable to obtain the resources to deploy prior
systems. Clockwork requires more GPU memory (32 GB) than is available to us; INFaaS only
supports AWS. Since the hardware configurations from the respective papers (Clockwork: Dell
PowerEdge R740 servers with 32 CPU cores, 32 GB RAM, and 2 NVIDIA V100 GPUs; In-
FaaS: AWS m5.24xlarge and p3.2xlarge VMs) are similar to ours, we include their results
for comparison.

We consider two request workloads for DropBear: inference only consists of inference re-
quests; inference+updates also includes around 8% of model updates. Clockwork and INFaaS
do not perform model updates.

Figure 4.3 shows a throughput vs. latency plot. DropBear’s peak throughput with pure
inference requests is 1005 request/s at a latency of 489 ms and 988 request/s at latency 487 ms
in the cloud/multi-site configuration. When it also updates models, ordering updates with
inference requests, the throughput drops to 822 request/s with an average latency of 451 ms
and 810 request/s at latency 422 ms in the cloud/multi-site configuration. We observe that
DropBear’s throughput is bounded by the request execution on the GPU, based on the number
of requests included in an execution batch and the consumed PCIe bandwidth when models
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Execution batch size
1 2 4 8 16

#
E

ns
em

bl
es 10 321 592 877 888 -

20 350 583 817 785 -
30 280 533 721 - -
42 289 471 633 - -

(a) inference+updates

Execution batch size
1 2 4 8 16

#
E

ns
em

bl
es 10 302 521 844 924 904

20 333 564 818 900 -
30 278 495 735 722 -
42 291 489 681 696 -

(b) inference

Table 4.3: Batch sizes and ensemble counts (“-” denotes a GPU out-of-memory error.)

are loaded (see Section 4.7.3). The increase in latency arises from the cryptography operations
to verify inference requests and produce inference certificates.

In comparison, Clockwork achieves a peak throughput of 801 requests/s with a latency of
50 ms without guaranteeing the trustworthiness of results. Clockwork is unable to increase
throughput beyond this point, even when its SLO budget is increased 10 times to 500 ms.
INFaaS obtains a comparable throughput of 739 requests/s with 500 ms latency.

Despite the additional communication and cryptographic overhead that DropBear’s exe-
cute/agree/attest strategy introduces, it manages to achieve higher throughput. This is due to
the fact that the bottleneck becomes the expensive GPU inference computation, which e�ec-
tively hides the additional cost of trustworthy agreement. DropBear’s slightly higher through-
put can be explained by the systems’ di�erent design goals: Clockwork makes a throughput
trade-o� to increase latency predictability and does not use multiple threads to send inference
requests to the same GPU; INFaaS trades o� throughput to obtain the highest inference accu-
racy within a time budget and uses the Triton Inference server to execute inference requests.

To put DropBear’s peak throughput into perspective, we use a micro-benchmark to measure
the maximum throughput of inference requests that the ONNX Runtime inference library [76]
can achieve on a single Azure NC12s v3 node. We find that, with pure inference requests,
DropBear’s throughput reported above is within 4% of this maximum. This demonstrates that
the DropBear’s performance is limited by the GPU computation performed by a state-of-the-
art inference library such as ONNX Runtime.

4.7.3 Impact of batching

We explore the impact of the execution phase in DropBear’s execute/agree/attest strategy
under di�erent workloads.

First, we measure throughput and latency when varying the number of distinct ensembles
(10, 20, 30, 42) over which inference requests are served. Figure 4.4 shows that DropBear
achieves a throughput of 831 and 698 requests/s with 10 ensembles and 42 ensembles, respec-
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Figure 4.4: Varying ensemble count (f=1 on cloud/single-site.)

Figure 4.5: Comparison with agree/execute strategy (f=1 on cloud/single-site.)

tively, while the latency stays below 700 ms. The throughput with more ensembles decreases
because a higher number of ensembles means that there are fewer opportunities to create large
execution batches that refer to the same model.

We confirm this explanation by investigating how the maximum execution batch size and
the ensemble count a�ects throughout. We considers two request workloads, pure inference
requests (inference) and with 8% updates (inference+updates). Table 4.3 shows that, with
inference requests and model updates, batch sizes of 4 and 8 do not change throughput much,
but a batch size of 4 allows DropBear to support more loaded ensembles due to GPU memory
constraints. For that reason, we use a batch size of 4 in our cloud/single-site experiments.

With pure inference requests, DropBear’s throughput improves when increasing the execu-
tion batch size. This result is consistent with findings for other inference services [108, 203, 236].
The impact of loading models means that the PCIe bus becomes saturated, delaying the transfer
of requests to the GPU, thus mitigating the benefit of a larger execution batch size.

Second, we examine the impact of separating execution and agreement batches in Drop-
Bear’s design. For this, we implement a DropBear variant that executes inference requests
during the agreement phase of the Byzantine consensus protocol (agree/execute). In this ap-
proach, the consensus protocol first orders requests into agreement batches and then executes
inference requests.

Figure 4.5 shows a throughput vs. latency plot of DropBear with agree/execute for di�er-
ent ensemble counts. Here, the peak throughput is 246 request/s, compared to DropBear’s
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Figure 4.6: Model replication vs. agreement (f=1 on cloud/single-site.)

854 requests/s. This 3◊ performance reduction stems from two issues. The first issue is that
the agree/execute strategy results in lower GPU utilization. While it can exploit larger agree-
ment batches (3 versus 2) to mitigate this, this still fails to remove all idle periods of the GPU.
Even when we turn o� execution batches, DropBear still achieves 316 requests/s.

The second issue is that the lack of batching during inference execution with agree/execute.
When inference requests are executed out-of-order within an agreement batch, thus allowing
batching, there are fewer opportunities to batch inference requests, because agreement batches
contain fewer executable requests (25 in cloud/single-site; 50 in our cloud/multi-site configura-
tion). Instead, with the execute/agree/attest strategy, the execution batch size is bounded only
by the number of concurrent inference requests submitted by clients.

4.7.4 Model replication vs. agreement

Next, we consider the overhead that DropBear’s agreement approach introduces using a distance
function. We compare against a variant of DropBear that only replicates the same sample
model on multiple nodes without agreement.

Figure 4.6 shows a throughput/latency plot when the models in the ensemble are either
replicated or use the agreement approach. With replication, we see a maximum throughput of
837 requests/s with 10 ensembles and 683 requests/s with 42 ensembles and latency of 561 ms
and 646 ms, respectively. While using the agreement approach, we observe a peak throughput
of 831 and 698 requests/s with 10 ensembles and 42 ensembles, and latency of 606 ms and
700 ms, respectively. We observe that the agreement approach increases latency by 8% under
heavy client load, while under low load latency only increases 2%. This disparity is due to the
computational requirements of the distance function.

4.7.5 Updating ensembles

We explore how model updates a�ect concurrently executing inference requests. In
this experiment, we slowly increase the percentage of clients that issue load ensemble
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Figure 4.7: Concurrent model updates (f=1 on cloud/single-site.)

and activate ensemble requests. We consider two configurations with 10 and
30 deployed ensembles, respectively.

Figure 4.7 shows that, with 30 ensembles, there is a gentle decline in the number of executed
inference requests as the percentage of ensemble updates increases. This is due to three factors,
which grow with the number of concurrent ensemble updates: (i) the network bandwidth used
to copy models from remote storage; (ii) the PCIe utilization when models are copied to the
GPU; and (iii) the overhead of executing inference requests against multiple models when a
new model update has been loaded but not yet activated. These three factors reduce the
throughput from 743 requests/s, when no ensembles are updated, to 440 requests/s with 40%
of ensemble updates. When more than 34% of requests are model updates, the model updates
begin queueing at the GPUs, which reduces the impact on inference requests, as can be seen
from the change in slope.

With fewer loaded ensembles (10), we observe a faster degradation in the rate of inference re-
quests until 25% of requests are model updates. This is due to the greater likelihood of inference
requests being executed against an updating ensemble, thus requiring to execute multiple infer-
ence requests against the current and new model. This decline abates when 34% of requests are
ensemble updates due to queuing, as DropBear only allows one concurrent update per ensemble.

4.7.6 Scalability

It is possible to scale DropBear linearly by load-balancing requests between multiple inde-
pendent deployments of DropBear. This has no impact on clients, because the execution of
inference requests is stateless on the nodes. Each ensemble must be assigned to one deploy-
ment, otherwise the serializability of ensemble updates cannot be guaranteed. An individual
deployment can also be scaled up by using larger VMs sizes for the nodes, e.g., with more GPUs.

In a single DropBear deployment, if we increase the number of nodes, the deployment
can mitigate against more untrustworthy nodes f . We conduct an experiment that explores
how scalable DropBear’s design is with more nodes. We deploy nodes in our cloud/multi-site

configuration across 3 Azure regions and change the node count from 4 to 16, thus increasing
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(a) inference (b) inference+update

Figure 4.8: Increasing node count (f=1 to 5 on cloud/multi-site.)

f from 1 to 5. We locate the primary node in US South Central, forcing worst-case round-trip
network latencies of 32 ms.

First, we explore how the throughput with di�erent ensemble counts is a�ected when in-
creasing the node count. Figure 4.8a shows that, with 4 nodes distributed across the 3 Azure
regions, the throughput of 849 requests/s is similar to the previous cloud/single-site experi-
ment (see Figure 4.4). With 16 nodes, we see a throughput degradation to 784 requests/s
when 10 ensembles are loaded. Adding more nodes increases the message and cryptographic
overheads due to the extra signatures and Merkle tree roots that must be verified for every
agreement batch. The throughput degradation with 30 and 42 loaded ensembles is similar.
The reduced throughput with more ensembles is also caused by the less e�ective batching—the
same as in the cloud/single-site experiments (see Section 4.7.3).

Next, we investigate how the workload mix of inference and update requests a�ects through-
put with more nodes. Figure 4.8b shows DropBear throughput in the cloud/multi-site config-
uration with clients that issue load ensemble and activate ensemble requests. When 4%
of clients update ensembles, the inference request decreases from 777 to 728 requests/s as f

increases from 1 to 5. While the throughput decreases from 726 to 670 requests/s when 8% of
clients update ensembles. Increasing the number of ensemble updates results in higher PCIe
utilization forcing inference requests to queue when being transferred to the GPU.

4.7.7 Untrustworthy nodes

We examine how untrustworthy nodes a�ect the accuracy of an inference result in an ensemble.
For this, we use the ImageNet1000 (mini) [74] dataset as input for 2 ensembles, each with
4 models: ensemble A contains ResNet152, VGG19, DenseNet-201, and ResNeXt101; and
ensemble B contains GoogleNet, ResNet18, MnasNet0.5, and VGG11. We combine the results
returned when executing an inference request: for each result, we take the label with the highest
confidence and check if more than f models made the same prediction. When all nodes are
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Dishonest result Accuracy
VGG19 76.9%
DenseNet-201 75.9%
ResNet152 75.8%
ResNeXt101 75.3%

(a) ensemble A

Dishonest result Accuracy
VGG11 66.3%
ResNet18 65.4%
GoogleNet 65.1%
MnasNet 63.0%

(b) ensemble B

Table 4.4: Ensemble inference accuracy with untrustworthy nodes (The top-1 accuracy when
f=1 and 1 untrustworthy node returns a dishonest model result.)

(a) Increasing request size (b) Increasing response size

Figure 4.9: Inference request/result size (f=1 on cluster.)

trustworthy, ensemble A has an accuracy of 79.9% and ensemble B has an accuracy 70.0%. Here
the ensemble training technique improves accuracy up to 7.5pp compared to a single model.

We now consider when an untrustworthy node returns a dishonest result. Table 4.4 shows
that, with one untrustworthy node, ensemble A achieves a maximum accuracy of 76.9% and
minimum accuracy of 75.3%—a reduction in accuracy by up to 4.6pp; ensemble B has an
accuracy range of 66.3% to 63.0% (reduced by up to 7pp). With the evaluated models, an
untrustworthy node thus reduces accuracy up to 2pp when compared to replicating a single
model. We observe that DropBear provides a significant improvement to accuracy over repli-
cation when returning all honest inference results and only a small accuracy reduction when
a dishonest result is returned. Further, DropBear can utilize techniques such as proactive
recovery [50] to bound the time a node returns dishonest results.

4.7.8 Size of inference requests and results

To understand how DropBear is impacted by sizes of requests and responses, we measure
throughput after replacing GPU inference execution with a randomly sampled response. Gen-
erally, models that operate on larger inputs/outputs are more complex and thus would be GPU
bottlenecked (see Section 4.7.2).

First, we vary the compressed request size from 16 bytes to 800 KB, with a fixed response



4.8. RELATED WORK 111

size of 4000 bytes. Note that DropBear clients compress images using the lowest level of
zlib [75] compression. We find that the average compressed image size from ImageNet1000
(mini) [74] is 80 KB.

Figure 4.9a shows that a peak throughput of 45,765 requests/s is achieved with 16-byte
requests. With 1 KB and 10 KB requests, throughput reduces to 43,335 requests/s and 33,149
requests/s, respectively, with larger requests halving throughput as the request size doubles.
The typical ImageNet size of 80 KB (blue line) achieves 1581 requests/s.

On small inputs, the overhead of verifying inference request signatures becomes the bot-
tleneck. When compressed requests are larger than 100 KB, the bottleneck shifts to creating
and verifying the Merkle trees over the requests/responses (see Section 4.5.3). This cost could
be reduced by splitting the inputs into smaller chunks in the Merkle tree and computing their
hashes in parallel across a larger number of threads.

In Figure 4.9b, we vary the inference result from 16 bytes to 800 KB, with the representative
compressed request size of 80 KB. We observe that peak throughput is obtained when results
are between 16 bytes and 10 KB, with typical ResNet output of 4 KB marked as a red line. For
results over 50 KB, throughput halves as the size doubles. Similar to the previous experiment,
DropBear remains CPU bound on signature verification when the results are small, and the
bottleneck shifts to Merkle tree computation for result sizes larger than 10 KB.

4.8 Related work

Distributed ML inference. Clipper [64] provided one of the first abstraction layers on top
of multiple inference serving frameworks. INFaaS [203] allows users to specify a minimal confi-
dence and time budget and selects an appropriate model against which the inference requests
are executed. Clockwork [108] make the latency of inference execution predictable. None of
these systems assume untrustworthy nodes that may interfere with the returned result. Model-
Switch [260] selects models that reduce inference confidence to maintain a request latency SLO.
Tolerance Tiers [114] provides an API that allows users to decide if a simpler model should be
used when an SLO is violated. DropBear focuses on trustworthy inference, but it could use
SLO-aware policies for model selection from an ensemble.

TensorFlow serving [232], Triton inference serving [236], and TorchServe [234] provide de-
velopers a mechanism to host models built in popular ML frameworks. These systems simplify
inference serving in real-world deployments. The concept of a cloud-hosted ML inference service
was introduced by Kim et al. [137]. Inference-as-a-service products, e.g., AWS SageMaker [8],
AI Platform [100], and Azure ML [166], have been deployed by all major cloud providers.

Secure ML inference. Securely obtaining inference results has been studied before. Bost et
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al. [38] and SecureML [174] use privacy-preserving techniques to execute particular ML inference
workloads, but they cannot provide a general trustworthy ML inference in the cloud. CrypT-
Flow [147] and CrypTFlow2 [64] obtain cryptographically secure inference results through
multi-party and two-party computation. While they manage to secure larger models, such as
ResNet, their performance precludes practical cloud deployments: they require over a minute
to compute a single ResNet50 inference result.

Slalom [235] and Privado [102] exploit trusted execution environment (TEEs) [61] to produce
trustworthy inference. Therefore, they rely on the security of TEEs, which have su�ered from
successful attacks [40, 176, 239, 183]. In addition, these solutions are restricted to CPU-
based inference, which increases latencies by several orders of magnitude compared to GPUs.
Graviton [242] proposes a novel TEE abstraction that encompasses a GPU, but it requires
hardware changes, which are unavailable today.

Byzantine ML. To our knowledge, there are no ML inference systems that assume Byzantine
node behaviour. Byzantine failures have been shown to be catastrophic for ML training [105],
and researchers have investigated the impact of Byzantine adversaries on distributed optimiza-
tion [72]. Krum [34] and trimmed mean [252] create Byzantine-resilient algorithms for dis-
tributed stochastic gradient descent (SGD), which provides a mechanism for protecting against
some Byzantine failures in large-scale machine learning. It can be paired with DropBear to
mitigate malicious nodes during training and inference serving.

4.9 Summary

This chapter presented DropBear, the first cloud-based ML inference service that provides
clients with strong integrity guarantees, while staying compatible with current inference APIs.

We first surveyed the field of cloud-based ML inference services. We then looked at the
evolution of ML inference from providing ML models to end-users progressing to hosted services
that receive inference requests via request messages that are executed against a ML model. We
then explored the security implications that exist when a single cloud-hosted service is placed
in a position of trust, i.e., the cloud hosted infrastructure is used to execute inference requests.
This security concern led us to explore scenarios in which the end-user cannot trust the inference
results produced on a virtual machine hosted by a cloud provider.

Next, we looked at use-cases for trustworthy ML inference and discussed the merit of using
a trusted node versus a Byzantine consensus protocol to obtain agreement. Upon showing
the drawbacks of utilizing trusted hardware, we defined trustworthy inference via a Byzantine
agreement for a trustworthy inference service. Next, we showed the API for a trustworthy
inference service that utilised Byzantine agreement and presented an overview of the system
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model for such a service.

We then described DropBear, our solution to the trustworthy inference problem. We ex-
plained that, to obtain high performance, DropBear’s Byzantine consensus protocol implements
an execute-agree-attest strategy that separates the expensive execution of inference requests
from the agreement and attestation of inference results. This allows DropBear to implement
a separate batching and execution strategy for hardware accelerators (e.g., GPUs) that are
required during execution and the batching strategy for the Byzantine consensus protocol that
optimizes for WANs. We then showed that a permissioned ledger that uses the execute-agree-
attest execution strategy can provide individual accountability.

Finally, we evaluated the execute-agree-attest strategy and the performance claims made
throughout the chapter. We showed how the execute-agree-attest strategy compares to a naive
execution strategy and that a permissioned ledger can fully utilize a GPU when a proper
execution strategy is employed by its consensus protocol.
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This chapter describes Bunyip, the first permissioned ledger that allows transaction requests
to be executed in parallel on both the primary and backup replicas. Bunyip’s Byzantine con-
sensus protocol separates the execution of transaction requests into two phases: requests are
first executed on the primary, where the dependencies between transaction request execution
are calculated; backup replicas use this dependency information to execute transaction re-
quests in parallel. This ensures that Bunyip provides the same linearizability guarantees as
a Byzantine fault tolerant consensus protocol that executes transaction requests sequentially
e.g., IA-CCF (see Chapter 3).

In the context of Bunyip, we continue our exploration of performant transaction execu-
tion. We focus on parallelizing the execution of transaction requests, which have a high CPU
overhead but where requests are not always dependent on the result of the previously exe-
cuted transaction. We show that Bunyip, which provides the abstraction of a single large
machine that executes transactions sequentially, can address the complexity of writing per-
missioned ledger applications while fully utilizing modern multi-threaded CPUs to execute
transactions requests concurrently and address the practical concerns of executing complex
transactions – see section 1.4.2.
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5.1 Introduction

In this chapter, we continue our exploration into improving the performance of permissioned
ledgers. We retain our focus on improving the performance of transaction request execution.
In the previous chapter, we explored how permissioned ledgers that utilize Byzantine fault tol-
erance can improve request transaction execution with hardware accelerators. We now move
our focus to improve the performance of transaction execution when the execution solely uses
the CPU.

CPU centric transaction execution is the most common type employed by Byzantine con-
sensus protocols. Previous work, has not addressed how non-conflicting transactions can be
discovered, such that, they can be executed in parallel on all replicas (see Section 2.3). Ex-
isting work considers sharded execution, but each shard still executes requests sequentially.
Alternatively, some attempts were made to decide which transactions a replica can execute
in parallel, however, they depend on the developer building oracle services that guess which
transactions can be parallelized (see Section 2.3.3). The limitations of either sharded execution
or oracles are a barrier that makes increasing transaction execution throughput in permis-
sioned ledgers unpractical.

In this chapter, we describe Bunyip, a permissioned ledger built on top of IA-CCF that ad-
dresses the problem of slow transaction request execution. Bunyip is an individually accountable
permissioned ledger. Bunyip implements L-PBFT, receipts, ledger, and a governance protocol
thus retaining the safety and liveness properties of IA-CCF. However, Bunyip changes the in-
terface through which users and members interact with the service so that users need only to
communicate with a single replica. Bunyip makes the following research contributions:

(1) We propose and describe a simple API that provides the abstraction of single threaded
transaction execution. The service, however, executes transaction requests in parallel. Bunyip
is able to execute transaction requests in parallel on all replicas. This transaction API does
not require the developer to understand the parallelism employed by the replicas.

(2) We describe a method of automatically detecting conflicts between the execution of trans-
action requests. Unlike previous solutions, Bunyip does not require the developer to write code
beyond their application to predict if two transactions may conflict. This removes the need to
create an oracle that predicts which transactions can be executed in parallel (see Section 2.3.3).

Bunyip detects transaction conflicts by tracking all reads and writes to a key-value store.
After the transactions successfully committed, Bunyip determines the most recently committed
transaction after which the committed transaction must execute. Bunyip uses this transaction
execution dependency information to create groups of transactions that can execute in parallel.
These groups as designed to allow backup replicas to detect if a misbehaving primary has put
transactions into an execution group that conflict with one another.
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(3) Next, we show how a permissioned ledger that utilises a Byzantine fault tolerant con-
sensus protocol can utilize the automatically generated transaction conflict information to par-
allelize transaction execution on all replicas. Bunyip expands the IA-CCF permissioned ledger,
utilizing the primary replica’s early-execution to calculate transaction conflicts within a batch.
The primary replica then sends the conflict information to the backup replicas, allowing them
to execute groups of non-conflicting transactions in parallel.

In addition to the research contributions, Bunyip generalizes DropBear’s inference proxy
to enable transaction requests to be sent to a single replica. This removes the requirement
for a client to implement a networking library to communicate with Bunyip. Instead of the
networking library, the client can utilize open-source tools, such as, Curl [65].

5.2 Motivation

Computational workloads have steadily increased in complexity surpassing the rate at which a
single CPU core can execute [237]. Historically, this has been solved by CPUs becoming faster
and able to process more operations per second [95]. This was the era in which PBFT [49]
was proposed. PBFT, and its derivative proposals, depend on state machine replication where
replicas independently execute a batch of transactions and agree on the result. This determinist
execution was, done in part, by sequentially executing transactions on a single CPU core.

Within the last decade, the speed of a single CPU core has stopped increasing. CPU
manufacturers have alternatively included multiple cores onto a single CPU [227]. This resulted
in Byzantine consensus protocols not taking advantage of multi-core CPUs.

5.2.1 Applications

Modern distributed systems run complex user applications. In contrast, permissioned ledgers
and blockchains primarily run simple applications, such as transferring funds and tokens [178].
One key factor that stops permissioned ledgers from being adopted as a platform to run com-
plex workloads is the performance of transaction execution. Applications that a performant
permissioned ledger could handle include:

Transparent supply chain. Distribution and inventory tracking is recognized as a target
application for ledger-based platforms [91, 21]. However, many of the e�orts to build ledger-
based systems that record supply chain events have been hampered by performance issues [112].

Customer relationship management. Sales, recruitment, and other departments in pri-
vate, public, and governmental organizations maintain a central database to record interac-
tions. These databases process a large number of computationally inexpensive transactions.
However, mixed in with the computationally inexpensive transactions are online analytic pro-
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cessing transactions (OLAP). OLTP transactions may access a large amount of data with which
to perform computationally expensive operations. Modern databases utilize multi-core CPUs
to accelerate OLAP workloads [170].

Medical records. Medical record databases store patient data which, similarly, to customer
relationship management data, is often updated and processed by analytics transactions. The
medical record databases performance is commonly accelerated by parallelizing transaction
execution on multiple CPU cores.

5.2.2 Threat model

Bunyip inherits the IA-CCF threat model (see Section 3.2). We assume an attacker that can
compromise replicas, clients, auditors, and members to make them behave arbitrarily, but
cannot break the cryptographic primitives. We trust the enforcer to assign blame to replicas
and the members that operate them only when it verifies a valid uPoM or fails to obtain
data for auditing. Bunyip provides linearizability and liveness if fewer than 1/3 of the replicas
are compromised [49].

5.3 Bunyip API

Bunyip, as IA-CCF, has members and clients who have di�erent responsibilities. Members
are responsible for running replicas, changing the members and replica set, and the stored
procedures that can be evoked by clients (see Section 3.2). Both model owners and clients
must obtain an API endpoint to communicate with a Bunyip deployment. Bunyip utilises
the same procedure as DropBear to obtain an endpoint URL (see Section 4.4). Members and
clients call the get API endpoints function, which contacts a trusted discovery service at a
well-known location and returns a list of URL endpoints (API URL) together with their public
keys. These identify the currently active set of N replicas that make the Bunyip service. API
requests can be sent to any of the returned URL endpoints, but, unlike IA-CCF, Bunyip API
requests are only sent to one endpoint.

Stored procedures. Interactions with Bunyip are all performed by members or clients execut-
ing stored procedures. To execute a stored procedure, a member or client creates a transaction
request that includes all the input parameters required by the target stored procedure. In
addition, the transaction request also includes the stored procedure’s identifier. The transac-
tion request is serialized into a well known format, e.g., JSON, and signed with the member or
client’s private key. Next, the member or client must determine how to send the serialized trans-
action request to the deployed Bunyip instance. The client proxy’s URL endpoint (API URL) is
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API function Description
start tx() Begins a new transaction.

commit tx(response) Commits the active transaction and if successful
serializes response and sends the serialized value
to the client.

abort tx() Aborts the active transaction.

kv get value(key) æ value Reads the key-value store value at key (key) within
the scope of the active transaction.

kv set value(key, value) Set value (value) for key-value store key (key)
within the scope of the active transaction.

kv has value(key) æ bool Check if key-value store key (key) is set.

Table 5.1: Bunyip stored procedure API

1 def add_to_key (usr_num , usr_key , alt_key ):
2 try:
3 start_tx ()
4 if not kv_has_value ( usr_key ):
5 return_value = usr_num
6 else:
7 return_value = int( kv_get_value ( alt_key )) + usr_num
8 kv_set_value (usr_key , return_value )
9 commit_tx ( return_value )

10 except:
11 abort_tx ()

Listing 5.1: Example use of Bunyip stored procedure

obtained by the member or client from the list of API URLs returned by the discovery service.
The serialized transaction request is then sent to the client proxy at one of the API URL URLs.

After a client proxy deployed by an instance of Bunyip receives a transaction request, the
client proxy forwards the transaction request to all the replicas. The replicas then execute the
stored procedure. As Bunyip utilises L-PBFT a replica executes a transaction request after the
request has been included in a batch (see Section 3.3.1).

Listing 5.1 shows a stored procedure that may be executed by a Bunyip replica where the
stored procedure add to key is called with 3 parameters that must be included in the seri-
alized transaction request (line 1). The stored procedure utilises the function call start tx
from the Bunyip stored procedure API (Table 5.1) to start a transaction (line 3) and then
uses the kv has value function to check if the key-value store has the key usr key (line 4). If
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usr key does not exist in the key-value store return value is set to usr num (line 5) otherwise
return value is the sum of usr num and a value from the key-value store (line 7). Finally,
kv set value sets the key usr key to return value (line 8) and the transaction is commit-
ted and, if the transaction successfully commits, the variable return value is sent back to
the client (line 9). If an exception is thrown, the transaction is aborted when the function
abort tx is called (line 11).

Opacity. The L-PBFT consensus protocol implements a replicated state machine. A key
requirement of replicated state machines is that all replicas have identical transaction execution.
This is required for all transactions regardless if they successfully commit or eventually abort.

Bunyip reduces the burden placed on members who write Bunyip stored procedures by
including opacity in the transaction engine. Opacity [104] is a property that provides strict
serializability for all transactions, regardless if they commit successfully or abort. This sim-
plification can be seen in Listing 5.1 as no application logic is required to check that usr key
and alt key are from the same snapshot. Without opacity, some transactions that read an
inconsistent snapshot could raise an error when performing the integer conversion on line 7.

5.4 Bunyip design

In this section, we describe Bunyip’s design (Section 5.4.1) and explain the process the primary
replica follows to create groups of transactions, which can be executed in parallel without
compromising linearizability (Section 5.4.2), and how the backup replicas execute these groups
and then confirm that no transactions within the group conflict with one another (Section 5.4.3).
Next, we describe how a client receives a response and receipt via the client proxy (Section 5.4.4).
We finish with a discussion of Bunyip (Section 5.4.5).

5.4.1 Overview

As shown in Figure 5.1, a deployment of Bunyip consists of N replicas distributed across mul-
tiple data centres connected by a WAN connection. Bunyip extends IA-CCF, and as such a
deployment provides a service to clients. Clients send requests to execute transactions by calling
stored procedures that define the service logic. Transactions are executed by replicas against a
strictly-serializable key-value store that supports roll-back at transaction granularity. A trans-
action request reads and/or writes multiple key-value pairs and produces a transaction result.

A Bunyip deployment is managed by a consortium of members. A member operates a
subset of replicas and is permitted to issue governance transaction requests that change the
consortium membership, add or remove replicas, or update the stored procedures.
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Figure 5.1: Bunyip architecture overview

Bunyip di�ers from IA-CCF by implementing a client proxy on every replica. The client
proxy allows a client or member to send a transaction request to a single replica and the client
proxy forwards the transaction request to all replicas in the deployment. After the transaction
request is executed and committed, the client proxy collects the replies, collates the replies into
a receipt, and sends the receipt along with the response message to the sender of the transaction
request. Importantly, Bunyip executes groups of transaction requests in parallel on both the
primary and backup replicas. If a replica’s client proxy is compromised a client can resend their
transaction to another replica’s client proxy, where the request would be sent at most 2f + 1
times to find an honest and healthy proxy. We discuss the security concerns of the inference
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proxy, that matches the concerns of the client proxy, in section 4.5.5.

A Bunyip replica is identified uniquely by its public/private signing keys. Clients use a
trusted discovery service 1 to learn about node identities. They can then send transaction
requests to any replica. A replica receives transaction requests through its client proxy 2 ,
which acts as an endpoint for Bunyip and hides the distributed nature of the service. A
client proxy deployed on a replica uses the replica’s public key to establish a secure TLS
communication channel with the client and authenticates it.

After receiving a transaction request, the client proxy forwards the transaction request to
all replicas. The Tx engine 3 selects transaction requests from those forwarded by the client
proxy to the replica. After selecting the batches, the Tx engine executes the requests in parallel,
creating a total order of executed and committed transaction requests. After execution, the
Tx engine considers the dependencies of the executed transaction requests and creates groups
of transaction requests that can be executed in parallel. The batch information along with
which groups of transaction requests can be executed in parallel is replicated to the Tx engine
on the backup replicas. The Tx engine on the backup replicas 4 executes the groups of
request transactions in parallel and after execution, the backup replica verifies that none of
the transaction requests within a group have a dependency on one another. Finally, after all
the transaction requests in a batch have been executed the batch is passed to the consensus
protocol 5 which executes the prepare and reply & commit phases of the L-PBFT consensus
protocol (see Section 3.3.1). During L-PBFT’s reply & commit phase, the replicas send the
reply and replyx message to the replica hosting the client proxy that received the transaction
request from the client or member. The client proxy that received the reply and replyx messages
converts them to a single transaction response message and a receipt (see Section 3.3.3). The
transaction response and receipt are sent to the client. The client then validates the receipts
and confirms the validity of the transaction response before acting on the information provided
in the transaction response message.

5.4.2 Primary execution

The execution of a transaction request begins with a member or client contacting the discovery
service to obtain the URLs and public keys of all the client proxies. The member or client then
creates the transaction request and forwards it to a client proxy. After receiving a transaction
request, the client proxy forwards the transaction requests to all replicas. Just as with L-
PBFT, the transaction request on the primary replica joins a pool of requests that are ready
to be ordered and executed. Eventually, the primary replica’s Tx engine selects the transaction
request to be included in a batch. After the primary replica selects a collection of transaction
requests to be ordered and executed within a batch, it executes the selected transaction requests.
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Algorithm 5.1: Verify parallel execution

1 on execute transaction request(tx request)
2 stored proc id, params Ωget execution info (tx request)
3 committed kv store Ω get committed kv store()
4 tx kv = committed kv store
5 tx Ω create tx()
6 execute stored procedure(stored proc id, params, tx, tx kv)
7 lock kv updates()
8 committed kv store Ω get committed kv store()
9 foreach kv pair œ get read kv pairs(tx kv) do

10 if get key read version(kv pair) ”=
get key version(kv pair.key, committed kv store) then

11 unlock kv updates()
12 return Conflict
13 unlock kv updates()
14 return Success

Algorithm 5.1 shows this execution.

Committed key-value store. Each replica maintains multiple versions of the key-value
store, where a new version is added after a transaction has committed. In addition, each key
is versioned and any update to the key-value pair increments the version of the key, however,
a key is incremented at most once within a transaction. This key-value store is known as the
committed key-value store.

Batch execution. The primary replica executes multiple transaction requests in parallel
(multiple threads) and ensures that the execution of every transaction request is isolated from
the execution of any other transaction request. This protection is achieved by the primary
replica creating a copy of the most up to date version of the key-value store against which a
transaction is executed (Tx key-value store). This is shown in Algorithm 5.1, lines 2–3. The
transaction invokes a stored procedure, which is executed utilizing the Tx key-value store. The
stored procedure’s execution updates any number of key-value pairs by updating, creating,
or deleting them (line 5). A sample stored procedure that may be invoked by a transaction
is shown in Listing 5.1.

After a transaction completes its execution the primary replica’s Tx engine determines if the
transaction execution conflicts with the most up-to-date version of the key-value store. This
is done by the Tx engine on the primary replica preventing new versions of the committed
key-value store from being added (line 6). The primary replica’s Tx engine checks if any of the
keys accessed in the Tx key-value store had their version increased in the committed key-value
store (lines 8–9) since the Tx key-value store was created as a copy of the committed key-value
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Algorithm 5.2: Create execution groups (where B is the ordered list of transactions
(tx) within a batch)

1 on create execution group(B, G)
2 C Ω {}

3 start tx id = get first tx id(B)
4 foreach tx œ B do
5 tx id =get tx id(tx)
6 kv seen tx id = get max seen tx id(tx)
7 if start tx id Ø kv seen tx id then
8 G = G + {C}

9 C Ω {}

10 start tx id = tx id
11 C Ω C + tx id
12 G = G + {C}

store. If the Tx engine discovers that the committed key-value store and the Tx key-value store
updated the same keys, the transaction is considered to have a conflict (line 11). The conflicted
transaction is then re-executed with a new copy of the Tx key-value store. This process is
repeated until there is no longer a conflict. If there are no conflicts, the transaction execution
has been completed successfully (line 13).

A transaction that is determined to not conflict with the most recent version of the commit-
ted key-value store’s state is ordered within the batch, and the key-value store updates made by
the transaction are reflected in the committed key-value store. The primary replica’s Tx engine
is responsible for setting the order of transactions within the batch which the Tx engine does by
assigning a monotonically increasing number (tx id) to the committed transaction. Next, the
Tx engine updates the key-value store using the committed transaction’s Tx key-value store.
The Tx engine iterates through the transaction’s updated key-value pairs and updates the last
accessed parameter for each key-value pair in the committed key-value store with the tx id of
the transaction. If the transaction committed successfully, i.e., it did not abort, the values of
the key-value pair in the committed key-value store are also updated along with the version
of the key. After the updates to the committed key-value are complete, other updates to the
committed key-value store are no longer prevented.

Execution groups. After all the transaction requests within a batch have been executed, the
primary replica’s Tx engine creates groups of transactions that the Tx engine on the backup
replicas can execute in parallel (multiple threads). Algorithm 5.2 shows how the groups of
transactions, within a batch, which can be executed in parallel, are created. The process of cre-
ating groups of transactions begins by iterating through the transaction (tx) within a batch (B)
and is shown on line 4. When considering a transaction the Tx engine calls get max seen tx id
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to determine the highest tx id (kv seen tx id) of the last transaction to access the key-value
pairs read, written, or updated by transaction tx (line 6). kv seen tx id is then compared to
the start tx id (line 3) to determine if one of the transactions (tx) depends on a key-value pair
created by a transaction in the current group C (line 7). If transaction tx does depend on a
transaction in the current group the transactions in the current group C are added to a list
of execution groups G and the current group C is reset (lines 8–10). Then, regardless if the
execution group is reset or not, tx is added to the current group C, which may at this point be
empty (line 11). The above iteration continues for every transaction in B.

After creating the transaction groups G, the Tx engine on the primary replica extends L-
PBFT’s pre-prepare message by including the hash of G. The primary replica’s Tx engine then
sends the extended pre-prepare message and G to the Tx engines on the backup replicas.

5.4.3 Backup execution

After a backup replica receives a batch of transaction requests, which include the primary
replica Tx engine’s assertion of which transaction requests can be executed in parallel without
compromising the system’s linearizability, the backup replica’s Tx engine executes the trans-
actions. During execution, the backup replica’s Tx engine verifies that executing transactions
in their execution groups does not violate linearizability.

Batch execution. When the backup replica’s Tx engine receives a batch of transaction re-
quests, it executes them in a similar manner to the primary replica’s Tx engine. The transaction
groups are executed in the order specified by the primary replica’s Tx engine and all the trans-
actions from a transaction group must have been committed before the next transactions in
the next transaction group begin executing. The transaction on the backup replicas follows
the same pattern as the primary replica in that, each time a transaction is created, it is as-
signed a copy of the key-value store and all access by the transaction is to the copied key-value
(transaction key-value store).

The backup replica’s Tx engine monitors transaction request execution to ensure that trans-
actions commit or abort. If a transaction execution results in the transaction key-value store
conflicting with the committed key-value store, the Tx engine considers the execution groups
sent by the primary replica’s Tx engine to be malicious. This malicious behaviour results
in the consensus protocol on the backup replica utilizing L-PBFT’s view-change protocol to
change the primary replica.

Verifying execution groups. After all the transaction requests within a batch have executed,
the backup replica’s Tx engine verifies that the execution groups sent by the primary replica’s
Tx engine do not create a linearizability violation. Algorithm 5.3 shows how the execution
groups associated with a batch are validated to be correct.
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Algorithm 5.3: Verify an execution group is valid

1 on verify execution group(G)
2 foreach C œ G do
3 start tx id = get first tx id(G)
4 foreach tx œ C do
5 kv seen tx id = get max seen tx id(tx)
6 if kv seen tx id Ø start tx id then
7 return false
8 return true

The Tx engine begins verifying that the transaction groups are correct by iterating through
all the transactions within the batch (lines 2, 4). The iteration occurs in the order in which
the primary replica’s Tx engine committed the transaction requests. While iterating through
the transactions the backup replica’s Tx engine considers each group (line 4) and determines
start tx id, the tx id of the first transaction in the group (line 3). The tx id of the first
transaction of the execution group is compared to the highest tx id (kv seen tx id) of the
transaction, which was the last to access the key-value pairs read, updated, or modified during
the execution of the transaction tx (lines 5–6). If tx does access a key that is also accessed by
another transaction within the same execution group, i.e., kv seen tx id Ø start tx id, then
the execution groups were created by a dishonest primary replica (line 7). Otherwise, the Tx
engine continues to iterate through the transactions, ensuring that they do not access a key
that was accessed by a transaction within the same transaction group.

Upon not finding any conflicts, the backup replica’s Tx engine informs the replica’s consensus
protocol that the pre-prepare message was executed correctly. The consensus protocol is then
given the responsibility to commit the batch described in the pre-prepare message sent by the
Primary replica’s Tx engine.

5.4.4 Client response

Bunyip’s consensus protocol is an extension of L-PBFT (see Section 3.3.1). The consensus
protocol’s responsibility is to order and execute requests, create a ledger, and ensure liveness
when there are f or fewer dishonest replicas. However, unlike in IA-CCF, Bunyip’s consensus
protocol does not directly respond to the client. Rather, Bunyip utilises the client proxy as the
communication endpoint with the client. The client proxy enables clients to use common tools,
such as Curl, to send transaction requests to Bunyip, a common request by potential users.

Ordering requests. After the backup replica’s Tx engine completes executing the transaction
requests within a batch and ensures that the execution matches that of the primary replica, the
Tx engine passes the batch information to the consensus protocol. The consensus protocol on
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the backup replicas generated prepare messages with the same format as the prepare messages
generated by IA-CCF replicas (see Section 3.3.1). The backup replica’s consensus protocol,
which is an implementation of the L-PBFT consensus protocol, sends the prepare messages to
the consensus protocol on all other replicas.

When a replica’s consensus protocol has received a pre-prepare message and at least N ≠

f ≠ 1 prepare messages for a batch (where one of the messages was created by the replica),
the consensus protocol considers itself to have prepared for the sequence number and view of
the batch (see Section 3.3.1). The consensus protocol of a prepared replica creates a commit
message with the sequence number and view of prepared batch.

The replica’s consensus protocol then sends the commit message to all other replicas. After
a replica has created its own commit message for a batch and received commit messages from
N ≠ f ≠ 1 distinct replicas for the same batch, the batch is considered to be committed.
After the batch has committed and if the replica is the primary, its Tx engine is ready to
create the next batch. Alternatively, the Tx engine on the backup replicas can start executing
the next pending batch.

Client proxy. The reply messages follow a similar pattern to L-PBFT, however, they are not
directly sent to the client. A Bunyip replica’s consensus protocol creates a reply message at
the same time as it creates a commit message. The consensus protocol sends the reply or replyx
message to the client proxy on the replica that received the request message from the client.

After receiving a replyx message and N ≠ f reply messages, the client proxy converts the
messages into a receipt (see Section 3.3.3). The receipt and the payload from one of the reply
messages are sent to the client by the client proxy. The client is responsible for verifying the
receipt by ensuring that it is signed by N ≠ f valid replicas before acting on the information
within the payload of the reply message.

5.4.5 Discussion

Linearizability. Bunyip modifications to the L-PBFT consensus protocol and parallel ex-
ecution do not a�ect the consensus protocol’s linearizability property. As described in this
section, parallel transaction execution provides the same linearizability property as sequen-
tial transaction execution.

In addition, parallel execution requires that the pre-prepare message includes a single ad-
ditional hash. This cannot a�ect linearizability. Thus, the modifications to L-PBFT do not
a�ect the linearizability property.

View changes. Bunyip implements the same view-change protocol as L-PBFT, maintaining
the same safety and liveness properties. The Bunyip consensus protocol only modifies how



128 5.4. BUNYIP DESIGN

transaction requests are executed. Both protocols do not execute transaction requests in parallel
to performing view change operations and both protocols delay any view changes related to
decisions while transaction requests from a batch are being executed. We postulate that the
delay introduced from a replica waiting for transaction execution to complete is not significant
to users. The delay would be several orders of magnitude smaller than the time required for a
view-change to complete, during which no new transactions are executed.

Opacity. Transactions in Bunyip provide snapshot isolation irrespective if the transaction
commits, aborts, or conflicts with another transaction. This property is known as opacity [104].
Bunyip provides opacity, because the Tx engine makes a copy of the most recently committed
key-value store for every transaction. The copy of the key-value store is only read or updated
within the context of a single transaction.

Dishonest client proxy. When a malicious client proxy receives a transaction request from a
client, it either: (i) forwards the transaction request to a subset of the replicas, and if one of the
replicas is honest the replica will forward the transaction request to all the other replicas [48, 57];
or (ii) does not forward the transaction request, thus not returning a valid receipt to the client.
After a timeout, the client sends the transaction request to another client proxy. After at most
f+1 attempts, the client will find an honest client proxy.

This defense against a dishonest client proxy is the same strategy used to protect against
an untrustworthy inference proxy (see Section 4.5.5).

Optimizations. In this section, we presented the parallel execution protocol. However, there
are several optimizations that may reduce the number of transactions that the protocol considers
to conflict and must be placed into separate execution groups.

Last access. The parallel execution protocol described in Sections 5.4.2 and 5.4.3 extends the
IA-CCF key-value store to track the identifier of the last transaction to access a key. Tracking
only the last accessed transaction results in two transactions that read but do not update the
same key-value pair to be considered conflicting. Thus, an optimization to parallel execution is
for every key-value pair to track the transactions that last read and update the value at a key.

Execution threads. Bunyip allows for transactions to execute on multiple threads. If the re-
striction is made that a transaction executes on a statically allocated number of threads it is
possible to implement the following optimization. Each transaction request is associated with
a statically allocated thread ID and both the primary and backup replicas execute the trans-
action requests that are assigned the same thread ID on the same physical thread. Ensuring
transactions execute on the same thread on both the primary and backup replicas means that
two transactions that execute on the same thread cannot conflict with one another.

This optimization is implemented by tracking which threads last updated a key-value pair
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Table 5.2: Size of ledger entries (SmallBank and TPC-C)

Ledger entry type Size (bytes)
f = 1 f = 3

Transaction (SmallBank) 216–358
Transaction (TPC-C) 224–356
Pre-prepare 285
Prepare Evidence 298 995
Nonces 32 64

in the key-value store. If a transaction updates a key-value pair that was last updated by a
transaction executing on the same thread, Bunyip would not consider there to be a conflict,
and the two transactions would not need to be executed in di�erent execution groups.

5.5 Evaluation

We evaluate Bunyip to understand the impact of parallelizing transaction execution (Sec-
tion 5.5.1), the impact of transaction complexity on parallelizing transaction execution (Sec-
tion 5.5.2), its scalability (Section 5.5.3), and the network overhead of sending transaction
execution groups (Section 5.5.3).

Testbeds. Our experimental setup consists of one environment: a dedicated cluster with
16 machines, each with an 8-core 3.7-Ghz Intel E-2288G CPU with 16 GB of RAM and a
40 Gbps network with full bi-section bandwidth. All machines run Ubuntu Linux 18.04.4 LTS.

Implementation. Our Bunyip prototype is based on IA-CCF, which is based on
CCF v0.13.2 [169]. Our prototype was implemented in approximately 1000 lines of C++
code. It uses the formally-verified Merkle trees and SHA functions of EverCrypt [197], the
MbedTLS library [161] for client connections, and secp256k1 [250] for all secure signatures.
Replicas create secure communication channels using a Di�e–Hellman key exchange.

Pipelining batch execution (P in Algorithm 3.1) improves Bunyip’s throughput. We use
P=2 with maximum batch sizes of 300 requests, respectively. Checkpoints are created ev-
ery 100,000 batches.

Benchmarks. We use two benchmarks in our evaluation:

SmallBank [7] models a bank with 500,000 customer accounts. Clients randomly execute
5 transaction types: deposit, transfer, and withdraw funds; check account balances; and amal-
gamate accounts. The size of the ledger entries is shown in Table 5.2 where only the Prepare
Evidence and Nonces entries depend on f .

TPC-C [62] models a wholesale supplier in a generic industry that manages, sells, or distributes
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Figure 5.2: Executed new order transaction per second throughput/latency (f=1, TPC-C)

one or more products. We built our implementation of the TPC-C benchmarks by modifying
the Implementation by Evan Jones [130]. We use a database with 10 warehouses to facilitate a
larger number of conflicting transactions. We report “new order” transactions which represent
approximately 45% of the transaction mix as specified by the benchmark. We run the full mix
and report on the performance of the successfully committed “new order” transactions.

Since Bunyip’s does not change IA-CCF view change protocol, we omit results from ex-
periments with failures.

Transaction throughput is measured at the primary replica and latency at the clients. All
experiments are compute-bound. Results are averaged over 5 runs, with min/max error bars.

5.5.1 Transaction throughput

We begin by evaluating the impact on throughput and latency of executing transactions in
parallel. We look at 4 configurations of Bunyip where we limit the maximum number of
transactions that can be executed in parallel. The 4 configurations that are considered allow
1, 2, 3, or 6 transactions to execute in parallel, and the results are shown in Figure 5.3. All 4
configurations execute the TPC-C benchmark and the experiments are executed on our testbed.

We start by looking at our baseline. When at most 1 transaction is allowed to execute in
parallel, our implementation of Bunyip is equivalent to our implementation of IA-CCF. The
baseline configuration obtains a peak throughput of 9,245 executed new order transactions
per second.

Next, we increase the number of hardware threads that may execute transactions within
a transaction group. When 2 threads are available the peak throughput increases approxi-
mately 17% to 11,183 new order transactions per second. With 3 threads available to exe-
cute transactions, throughput increases to 11,896, a further 6% increase over executing with
2 available transactions.

We observe that, beyond 3 threads, the addition of extra threads yields minimal to no
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Figure 5.3: Transaction throughput/latency (f=1, SmallBank)

gain in transaction throughput. As such, when 6 threads are available, there is only a 1%
throughput increase from 3 threads.

This shows that allowing both the primary and backup replicas to execute transactions
in parallel provides a considerable improvement in performance. We can see that through-
put improves over 23% when 6 threads are available to execute transactions as compared to
our baseline of IA-CCF.

5.5.2 Transaction execution complexity

Next, we consider the impact of the total execution time of a transaction request and how this
a�ects the benefit of parallel transaction execution. We compare the execution of the longer
running OLTP TPC-C transactions to the short execution of SmallBank transactions.

Figure 5.3 shows the results when running Bunyip with the SmallBank benchmark. In this
experiment, we consider 3 configurations that allow 1, 3, or 6 transactions to execute in parallel.

We start by considering our baseline, when at most 1 transaction is allowed to execute
in parallel. The baseline configuration obtains a peak throughput of 47,411 transactions per
second. In comparison, when 3 threads are available, the peak throughput is 49,859 transactions
per second and, with 6 threads, the peak throughput is 50,160 transactions per second.

We now compare the transaction execution throughput when running SmallBank to the
computationally more expensive transaction execution of TPC-C (Section 5.5.1). When running
the SmallBank benchmark, we increase the number of available threads from 1 to 6 and observe
that the number of executed transactions increases by 6%. When comparing this result to TPC-
C, the increase of transaction execution is 23% when the available threads changes from 1 to
6. We conclude that parallel execution provides greater benefits when the system executes
computationally expensive transactions.
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Figure 5.4: New order transaction throughput vs replica count (TPC-C)

5.5.3 Scalability

Now, we consider if the throughput improvement shown in Section 5.5.1 holds when the number
of replicas onto which an instance of Bunyip has deployed increases. In this experiment, we
use the TPC-C benchmark and consider 4 configurations that allow 1, 2, 3, or 6 transactions
to execute in parallel on deployments where f ranges from 1 to 4.

The results are shown in Figure 5.4. We observe that, when f is 1, there is a 23% per-
formance improvement when increasing the number of threads on which transactions can be
executed from 1 to 6 (see Section 5.5.1). When the instance of Bunyip is run with f set to 4,
this ratio becomes 25%. This improvement is explained by the variance in the results produced
on our experimental setup.

Thus, we conclude that parallel execution on both the primary and backup replicas improves
throughput, even as we increase the number of replicas.

5.5.4 Network overhead

Finally, we attempt to understand the network overhead created by sending the execution group
information by the primary replica to the backup replicas. The primary replica sends execute
group information as an array of 16-bit integers. Such that, every integer in the execution
group array is an index into the ordered list of the hashes of the transaction requests sent by
the primary replica to the backup replicas (see B in Algorithm 3.1). This means that, when
no transactions conflict, there are no entries in the array and the maximum number of entries
in the array is the number of entries in B.

When executing TPC-C and SmallBank with a client load that obtains peak throughput,
Bunyip observes that, on average, 4.5% and 0.1% of all transaction requests within a batch
conflict, respectively. This results in the primary replica sending the transaction group informa-



5.6. RELATED WORK 133

Table 5.3: Size of execution group array with a maximum batch size of 300 transaction requests

Conflict rate (workload) Size (bytes)
0% 0
50% 298
100% 598
4.5% (TPC-C) 26
0.1% (SmallBank) 2

tion G (see Section 5.4.2) of 26 bytes and 2 bytes for the TPC-C and the SmallBank workload,
respectively. This is minimal overhead for both the LAN and WAN scenarios.

5.6 Related work

Sharding. OmniLedger [140] creates multiple shards that store user data. The system allows
clients to act as transaction coordinators when executing transactions across multiple shards.
However, OmniLedger only allows users to execute transactions that transfer coins (UTXO),
and a client can only coordinate a transaction where the client transfers their own funds.
Basil [226] similarly requires clients to act as coordinators but allows clients to execute gen-
eral purpose ACID transactions. Both of these systems pass the computationally expensive
transaction execution process to the clients.

Chainspace [6] and RapidChain [258] allocate multiple shards which both store data and
execute transactions. The systems require multiple rounds of the BFT consensus protocols
to commit a transaction. The replicas that spend a considerable amount of time executing
transactions could be optimized with the parallel execution techniques presented in this design.

Oracle based multi-threading. All about Eve [135] and CBASE [142] require the user to
write an oracle that predicts which transactions can and cannot be executed in parallel. If
the oracle service utilized by CBASE incorrectly states that 2 transactions can be executed in
parallel, system linearizability may be compromised. Alternatively, Eve is able to detect if two
transactions are incorrectly executed in parallel. In such a scenario, Eve re-executes the transac-
tions sequentially. Both systems require that a client knows if two transactions’ execution would
conflict before the transaction is executed. These types of predictions are often inaccurate.

Crash fault multi-threading. Rex [109] introduces an automated way of tracking transaction
dependencies. However, it only considers crash fault failures and does not provide a technique
to detect if the transaction dependency information sent by the primary is correct and honest.

Multi-threading with transaction re-execution. Block-STM allows for replicas to execute
transactions in parallel and relies on aborting transactions and re-executing them when they
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do not commit in the total ordered provided by the primary. While many techniques are
employed to reduce the number of times a transaction is re-executed when a large number of
transaction execution conflicts occur, a significant performance overhead is introduced by this
technique. The authors of Block-STM report that they observed a 30% increase in latency
when executing transactions that have a high rate of contention when compared to executing
the same transactions sequentially.

5.7 Summary
This chapter presented Bunyip, the first permissioned ledger that utilises a Byzantine consen-
sus protocol that allows parallel execution of transaction requests on both the primary and
backup replicas.

We first presented the motivation for executing requests in parallel on the primary and
backup replicas. Next, we described the Bunyip API. We started by describing the steps
required for a client or member to discover the location of the Bunyip replicas and their keys.
Then we described how a client or member invokes a stored procedure by sending a request
message to a client proxy on one of the replicas.

We continued to explore the system’s API by looking at how stored procedures are written
and then described a sample stored procedure. We concluded the exploration of the Bunyip
API with a discussion of the importance of opacity when writing Bunyip stored procedures.

We next introduced the design of Bunyip. We started with an overview, exploring all
the major system components. We then explained how the primary executes requests and
constructs groups of transaction requests that can be executed in parallel.

After that, we covered how the backup replica executes the transaction requests in parallel
using the transaction group information provided by the primary. We completed our explo-
ration of parallel execution on the backup replica by looking at the algorithm that is used
to verify that the parallel execution on a backup replica did not potentially compromise the
system’s linearizability.

Finally, we explored the performance impact of adding parallel execution to both the pri-
mary and backup replicas. We first considered the throughput and latency of transaction execu-
tion when running computationally expensive workloads with an increasing number of threads
executing transaction requests. We continued exploring transaction execution throughput and
latency by executing a computationally inexpensive workload. We then looked at the impact on
transaction throughput when increasing the number of replicas within a Bunyip deployment.
We finished our performance evaluation by exploring the network overhead on the primary
replica and creating transaction execution groups.
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Conclusions

Permissioned ledgers have become the best choice for building trustworthy distributed systems.
They bring together several key technologies, which are missing in other less secure distributed
systems. Permissioned ledgers allow multiple organizations to come together and perform
mutually verifiable computations where the organizations verify each other’s work to reach an
agreement on transaction execution. Permissioned ledgers can guarantee liveness and safety
when a limited number of organizations hosting replicas misbehave. In addition, they provide a
persistent ledger that is replicated across multiple replicas controlled by multiple organizations.

The trustworthiness of permissioned ledgers extends further than just tolerating a limiting
number of misbehaving replicas. Permissioned ledgers also support auditing. Auditing allows
a user to replay the ledger and detect if a number of the replicas misbehaved and compromised
the safety of the ledger. Auditing is further enhanced by a permissioned ledger issuing client
receipts, allowing clients to prove that their transaction was executed. When coupled together
auditing the ledger and receipts ensures that a permissioned ledger becomes accountable when
the system’s safety property is compromised.

Unfortunately, permissioned ledgers are missing several key features. Accountability within
the scope of a permissioned ledger is not able to act as a deterrent for misbehaviour, because
it is possible to compromise more than a threshold of replicas to rewrite the ledger and hide
misbehaviour. Thus, permissioned ledgers are susceptible to patient attackers. In addition,
even if misbehaviour is detected in a large number of circumstances, it is not possible to know
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which replicas misbehaved.

Another common issue that arises when deploying permissioned ledgers in production en-
vironments is their performance when executing transactions. Permissioned ledgers commonly
use Byzantine fault tolerant consensus protocols to order and execute transaction requests.
Practical Byzantine fault tolerance was designed in an era of single-core CPUs where perfor-
mance improvements could be obtained by the passage of time and Moore’s law. Today’s servers
and applications depend on multi-core CPUs and other hardware accelerators to execute client
workloads. The Byzantine consensus protocols used in permissioned ledgers are unable to take
full advantage of these multi-core CPUs and accelerators.

6.1 Thesis summary

This thesis began with an introduction and motivation for building “Auditable and Performant
Byzantine Consensus for Permissioned Ledgers”. The first chapter was a brief history of public
blockchains. After that, we introduced the consensus protocols used by public blockchains and
explained how they began to include Byzantine fault tolerant consensus protocols. We contin-
ued the introduction by discussing the evolution of public blockchains and how they inspired
permissioned ledgers and provided a discussion on the evolution of permissioned ledgers.

Chapter 2 provided the background on the research contributions of the thesis. In this
chapter, we considered some seminal works and considered work from both academia and
industry whose ideas and considerations had an impact on the content of this thesis. We
further divided the chapter into three sections to complement the contribution of this thesis.

The background chapter first looked at Byzantine consensus protocols. We first explored
Practical Byzantine fault tolerance (PBFT), the seminal work for Byzantine fault tolerant con-
sensus protocols. We then surveyed Byzantine consensus protocols used by permissioned ledgers
and then focused on notable permissioned ledgers and explored their consensus protocols, some
of which cannot tolerate Byzantine faults.

Next, we looked at accountability in distributed systems and permissioned ledgers. As
with Byzantine consensus protocols we began by discussing PeerReview, a seminal work in dis-
tributed systems accountability. We then considered accountability for permissioned ledgers —
the accountability properties of well known permissioned ledgers and consensus protocols. Next,
we examined recent work on adding accountability to newly designed permissioned ledgers.

In the final section of the background chapter, we described techniques that have been
used to improve transaction execution in Byzantine consensus protocols, permissioned ledgers,
and other state-machine replication protocols. In this background section, we focused on the
sharding of Byzantine consensus protocols and how introducing independent shards can im-
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prove transaction throughput. Next, we looked at work that considered how database sharding
techniques can be used to improve transaction throughput in a permissioned ledger. Finally, we
considered systems that consider how a replica in a Byzantine consensus protocol can execute
transactions in parallel. We observed that many systems depend on oracle services, which pre-
dict which transactions may conflict with one another. Finally, we discussed crash-fault tolerant
systems, which allow parallel transaction execution on both the primary and backup replicas.

In Chapter 3, we explored accountability in a permissioned ledger and how members that
run replicas within a permissioned ledger can always be made accountable for their replica’s mis-
behaviour if a permissioned ledger’s safety is compromised. To explore this problem space, we
introduced IA-CCF, a permissioned ledger that provides accountability regardless of the number
of replicas that misbehave. Our goal in building IA-CCF was to provide a platform to explore
permissioned ledger accountability and understand the performance impact of accountability.

We started our exploration of accountability in permissioned ledgers by specifying the re-
quirements of such a system. The key requirement we identified for accountability to be a
deterrent for misbehaviour is that at least f + 1 replicas must be identifiable by an auditor
if the permissioned ledger’s safety was compromised. This led to our secondary requirement:
we must support accountability regardless of how many replicas misbehave and replicas and
members can be added or removed from the permissioned ledger.

We presented our research contribution by looking at L-PBFT, the Byzantine consensus
protocol used by IA-CCF. We described the consensus protocol, the protocol messages, and
how L-PBFT builds the ledger and generates receipts that are sent to the IA-CCF users. In
addition, we explained the changes L-PBFT makes to view-changes and a series of optimization
designed to ensure that IA-CCF has high transaction throughput.

After we described the consensus protocol and other components in IA-CCF we moved our
focus to how the IA-CCF ledger can be audited. We explained how it is possible to audit
the ledger regardless of the number of replicas that misbehave. After this, we showed how an
external enforcement entity could be provided with proof of which specific replicas misbehaved
so that the members that control those replicas can be held accountable. We continued this
exploration of auditing by describing a reconfiguration protocol and how the aforementioned
accountability properties continued to hold. In addition, we provided a proof that the described
auditability properties are enforced with and without governance in Appendix B.

We concluded the chapter with a performance evaluation of IA-CCF. We demonstrated that
our prototype obtains high throughput and low latency, and, in comparison with related work,
IA-CCF obtained higher transaction throughput with lower transaction request latency when
measured from the perspective of the client.

In the previous chapter, we showed how to build an auditable permissioned ledger that has
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a high transaction throughput. However, the workloads with which IA-CCF and other per-
missioned ledgers are benchmarked are not representatives of real-world workloads. Thus, this
thesis focused on making auditable permissioned ledgers performant for real-world workloads.

Chapter 4 considered the execution of workloads that require the assistance of a hardware
accelerator to obtain high throughput. We focused on deep neural network (DNN) inference
workloads that are executed with a GPU. We realized our ideas as part of the DropBear sys-
tem, which provides trustworthy results for inference requests and obtains high performance by
e�ciently utilizing GPUs as part of transaction request execution in DropBear’s Byzantine
consensus protocol.

We began the chapter by providing an introduction to cloud based systems that execute
inference requests on trained models and the trust issues that arise when a user does not con-
trol the infrastructure on which their inference requests are executed. The chapter continued
to provide examples of workloads that require trustworthy inference followed by the threat
model for DropBear.

After defining the threat model and providing examples of customers that would benefit
from trustworthy inference, the chapter continued to defined trustworthy inference. We first
described how trustworthy inference is best obtained by utilizing a Byzantine consensus proto-
col. Next, we provided a precise mathematical definition of trustworthy inference. We started
to make this mathematical definition more practical by describing the DropBear API and how
it realizes the definition.

Next, we provided a system overview and described the execute-agree-attest execution model
used to accelerate ML inference calculation in a permissioned ledger that implements a Byzan-
tine consensus protocol. We described how the replicas first execute the inference request wait-
ing for the GPU to return the inference results before scheduling the executed inference request
for consensus protocol ordering. Critically, we discussed how separating execution and ordering
allows DropBear to use di�erent batch sizes for inference execution and the batching of proto-
col requests. We concluded the system description by explaining how inference certificates are
generated, verified, and how they show the inference results and endorsements from N≠f nodes.

The chapter continued with an explanation, of how to audit the DropBear permissioned
ledger and explored the permissioned ledger’s performance. We looked at how DropBear
throughput and latency compared to untrustworthy inference as a service systems. After con-
sider several configurations of DropBear, we concluded the chapter by describing how the
auditability ideas explored in IA-CCF are translated to DropBear.

This thesis then continued to explore di�erent types of accelerators that are utilized by users.
We moved our focus to how modern multi-core CPUs can be fully utilized by Byzantine fault
tolerant consensus protocols employed by permissioned ledgers. We started our exploration
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by looking at the historical reasoning behind why CPUs with more than one core were not
considered when Byzantine fault tolerant protocols were designed. Then, we considered the
workloads that would benefit from utilizing multi-core CPUs

After a motivating example, we considered an API that exposes users to capabilities that
allow parallel execution of requests, thus making the exploitation of the multi-core CPUs trans-
parent to users. While exploring such an API, we saw that a key-value store can o�er user
opacity. We also observed that users would not need to define which transactions can exe-
cute in parallel.

Next, we looked at the design of Bunyip, specifically focusing on executing transaction
requests in parallel on both the primary and backup replicas. First, we described the pri-
mary replica’s execution and how groups of transactions that can be executed in parallel are
formed. This was followed up with the description of backup replicas executing said groups
and validating that the parallel execution could not have resulted in the system violating its
linearizability property.

We concluded the chapter with the evaluation of the Bunyip prototype. First, we con-
sidered the throughput and latency of Bunyip transaction requests when running the TPC-C
benchmark. This was followed by comparing TPC-C execution to SmallBank execution to un-
derstand the impact of transaction complexity on throughput when transactions are executed
in parallel. Finally, we explained the e�ect of increasing the replica count and the amount of
additional data that must be transmitted by the primary replica when it sends the parallel
execution group information.

6.2 Future work

This thesis considers and contributes to several topics required for building “Auditable and
Performant Byzantine Consensus for Permissioned Ledgers”, but there is still more work that
remains open for further study.

Ledger packing. In Chapter 3 of this thesis, we describe how a permissioned ledger can
ensure that, through a combination of the ledger and receipts, misbehaviour can be detected
and punished. However, it is possible for dishonest members or clients to make this impractical
and a�ect the liveness of auditing. Auditing the ledger requires re-executing a number of
transactions between two receipts and, if the members or clients execute an extremely large
number of transactions between the two receipts, re-execution can become impractical.

There are several techniques that could address this issue: (a) introduce a mechanism
where there is a cost to executing a transaction. This cost can be financial or require that
a time interval has passed, for example, solving a proof-of-work challenge, however, a proof-
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of-work solution would raise numerous additional concerns (see 1.2.1); (b) have a bound on
the number of transactions that can be executed within a time window. We leave the details
of the solution for future work.

In addition to ledger packing Chapter 3, does not consider the performance of ledger auditing
beyond sequentially reading and verifying the read content. One simple technique would be to
distribute cryptographic operations across multiple CPU cores. In addition, it is possible to
divide the ledger into sections, where each section exists between two checkpoints. This would
allow for validating ledger subsections in parallel.

Alternative accelerators. In chapters 4 and 5, we explored and provided solutions to how a
permissioned ledger can utilize the hardware resources of CPUs and GPUs. However, there are
accelerators that have not been covered in this thesis, including FPGAs, and custom ASICs. We
expect that the techniques explored in this these to generalize to other hardware accelerators,
but, we leave testing this hypotheses for future work.

A limitation of DropBear is that we assume that it is possible to know all possible states
used when executing a request before it is ordered. While this is not a limitation for machine
learning inference workloads, for other workloads this could result in excessive computation.
We leave exploring workloads that could be used with DropBear outside of machine learning
inference to future work.

Forcing sequential transaction execution. In Chapter 5, the primary replica is responsible
for selecting the order in which transactions are executed. A dishonest primary replica could
select an ordering of transaction requests that decreases the number of transactions that can
be executed in parallel. One possible solution is to take away the ability of the primary replica
to order transactions, as done in Pompē [262]. We leave this problem open for future work.

Resolving dishonest ledger state. In chapters 3, 4, and 5, we explored and discussed
how clients, members, and the auditor participates in uncovering and assigning blame to dis-
honest replicas. However, this thesis does not address the process and techniques required
to bring the ledger to a healthy state that reflects the assigned punishments after dishonest
behaviour is discovered. We leave the problem of modifying the ledger, so that it returns to
a healthy state, to future work.
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ix A
Proof of L-PBFT Linearizability

We present a correctness proof for L-PBFT. In particular, we show that early execution (The-
orem A.1.2) and the nonce commitment scheme (Theorem A.1.3) are equivalent to their coun-
terpart features in PBFT. In Theorem A.1.4, we show linearizability of L-PBFT.

A.1 Correctness proof

Lemma A.1.1 (Rollback). Any honest L-PBFT replica can roll back a su�x of the sequence
of previously executed transaction batches.

Proof. L-PBFT’s state is distributed across several entities: a key-value store kv; a Merkle
tree M ; a ledger L; a set of requests waiting to be ordered T ; a message store M; and a nonce
store K. Therefore, to roll back a batch of transactions, it must be possible to roll back all of
these entities.

Key-value store kv. The key-value store maintains a roll back transaction log. This enables
transactions to be rolled back at a single transaction granularity. Thus, the last executed batch
of transactions can be rolled back.

Merkle tree M . When a new node is added to L-PBFT’s Merkle tree, it becomes the right-
most leaf of the tree. The value of a node in the tree is never updated, and a node can only be
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deleted if it is the right-most node in the tree. Thus, during roll back, it is possible to remove
the nodes from the right of the tree that represent the last batch of executed transactions (in
reverse order).

Ledger L. The ledger is represented by a file written to the disk by each replica. L-PBFT
stores the index of all entries written to the ledger. To roll back the last executed batch, a
L-PBFT replica truncates the ledger file to just before the first entry of the batch.

Transaction store T . It is not necessary to undo changes to the transaction store. Transaction
requests that are removed can be retransmitted by the client or other replicas if needed.

Message store M, nonce store K. All items in the transaction and nonce stores are indexed
by sequence number and view. Since roll back occurs only during a view change, and each item
is associated with a view, it is not necessary to modify the message and nonce stores, because
honest replicas never send more than one item of a given type for the same sequence number
and view.

Therefore, it is possible to roll back a su�x of the sequence of transaction batches executed
by L-PBFT replicas.

Lemma A.1.2 (Early execution). L-PBFT’s early execution and PBFT execution agree on all
committed transactions.

Proof. In both PBFT and L-PBFT, the primary determines the order of request execution by
ordering requests into batches and assigning numbers to batches in pre-prepare messages. In
PBFT, requests are executed after commit and clients only accept results after transactions
commit. In L-PBFT, requests are executed earlier, before the request even prepare, but the
replicas only reply to clients after they prepare the requests and clients wait for matching
replies from N≠f replicas. This ensures that they only obtain the transaction results after
they commit as in PBFT.

As in PBFT, a faulty primary may cause requests for which pre-prepares are sent not to
commit. L-PBFT deals with this case by rolling back early execution (see Theorem A.1.1).

Lemma A.1.3 (Nonce commitment). The nonce commitment scheme is equivalent to replicas
signing commit messages.

Proof. L-PBFT, like PBFT, signs pre-prepare and prepare messages. Unlike PBFT, L-PBFT
does not sign commit messages. Replicas sample a fresh random nonce for each pre-prepare or
prepare message with sequence number s at view v, and add a hash of this nonce to the signed
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payloads. Later in the protocol, replicas include the nonce in the commit message, instead of
an extra signature.

We show that this provides the same standard cryptographic security as the signature
scheme (namely, resistance to existential forgery against chosen-message attacks) as long as
the cryptographic hash function is second pre-image resistant on random inputs. Since the
addition of a nonce to the signed payloads is injective, a forgery of a L-PBFT authenticator for
a pre-prepare or prepare message yields a forgery against the signature scheme. A forgery of an
authenticator for a commit message, i.e., a value with the same hash as a fresh random nonce
that has not yet been revealed, is a second pre-image collision.

Theorem A.1.4. L-PBFT is linearizable.

Proof. L-PBFT changes the PBFT algorithm by adding early execution and the nonce commit-
ment scheme. Lemmas A.1.2 and A.1.3 show that these preserve the behaviour of PBFT.
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ix B
Proof of Auditing Correctness

First, we present the correctness proof for auditing without governance transactions and re-
configuration (Appendix B.1). Then, we extend the proof to include governance transactions
and reconfiguration (Appendix B.2).

B.1 Correctness of auditing without reconfiguration

We begin with a description of terminology and notation. In Appendix B.1.1 and Lemma B.1.1,
we then prove that, given a set of receipts, the auditor, with the help of the enforcer, can obtain
a ledger package that is complete in relation to the receipts (or assign blame to f+1 misbehav-
ing or slow replicas). A complete ledger package contains all evidence that is necessary for the
auditor to assign blame to misbehaving replicas if the receipts reflect any linearizability viola-
tion. In Appendix B.1.2 and Lemma B.1.2, we show that, if a receipt does not appear correctly
in a ledger package that is complete in relation to it, the auditor can assign blame to at least
f+1 misbehaving replicas. In Appendix B.1.3 and Lemma B.1.3, using the previous lemmas,
we first prove that the auditor can assign blame correctly if it is given a set of receipts that
reflects a serializability violation. Finally, Theorem B.1.4 proves that, if a set of receipts reflects
any linearizability violation, the auditor can assign blame to f+1 misbehaving or slow replicas.

Minimum ledger index. Each client transaction request includes a field that specifies the
minimum ledger index that it can be executed at. Correct replicas do not order a transaction t
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at ledger index i, unless i Ø mi where mi is the minimum index value of t. Correct clients set
the minimum index of a transaction to at least Mi+1 where Mi is the largest value of the ledger
index that they know of from the receipts that they have collected. The minimum index value
is used to capture transaction dependencies e�ciently and to reduce the amount of information
that needs to be stored and transmitted to audit linearizability violations.

Ledger well-formedness and validity. A ledger fragment is valid if it can be produced by
a sequence of correct primaries when there are at most f misbehaving replicas.

A ledger fragment is well-formed if either (i) it is valid, or (ii) it would be valid if not for
the incorrect execution of one or more transactions, one or more incorrect checkpoint digests,
or one or more invalid signatures or nonces.

A well-formed ledger matches the structural specifications of the L-PBFT protocol, i.e.,

• it specifies a serial ordering of transactions/entries, which respects their minimum ledger
indices; and

• it includes evidence, and checkpoints at the required places.

A valid ledger is always well-formed, but a well-formed ledger can be invalid. A correct
replica will never have a malformed ledger fragment, because replicas check the well-formedness
of ledgers that they fetch. A correct replica may have an invalid ledger fragment. A ledger
fragment can be well-formed but invalid only if there have at some point existed more than
N≠f≠1 misbehaving replicas.

Notation. Given a receipt ÈÈtj, ij, ojÍ, xjÍ, we denote Ètj, ij, ojÍ by tioj. Unless explicitly
defined otherwise, sj refers to the sequence number in xj of the receipt Ètioj, xjÍ.

We say that a replica has “signed a receipt” if its signature is recorded in the receipt in the
pre-prepare/prepare signatures’ fields (‡p or in q

s).

Receipt validity. A receipt is valid if it is verifiable by Algorithm 3.3.

Preparement evidence for a batch. The preparement evidence for a batch is N≠f signed
pre-prepare/prepare messages for the batch, i.e., P in Section 3.3.

Checkpoint sequence numbers. Let Ètioj, xjÍ be a valid receipt, dCj
be the checkpoint

digest in xj, and C be the checkpoint interval. Anyone can calculate the sequence number at
which the digest of the checkpoint is expected to be equal to dCj

as follows: checkpoints are
always taken at sequence numbers that are multiples of C and the digest in the receipt refers to
the digest at the sequence number of the penultimate checkpoint transaction before sj (except
the first C transactions, which have the digest at genesis). So given sj, the sequence number
with the corresponding checkpoint digest, scp, can be calculated as
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scp =

Y
_]

_[

0 if sj < C

C
1
Á

sj

C Ë ≠ 2
2

otherwise.

Note that the value of the digest itself is recorded in the last checkpoint transaction before
sj (except the first C transactions), i.e., the checkpoint transaction that follows the one at
scp. That checkpoint transaction is at

Y
_]

_[

0 if sj < C

scp + C otherwise.

We assume that the genesis transaction gt is at sequence number 0.

Fetching checkpoints. Slow replicas can be brought up to date by fetching checkpoints and
ledger fragments. When a correct replica fetches a checkpoint at sequence number s, it retrieves
the ledger up to s + C + P . It first verifies the signatures in the evidence for the checkpoint
transactions at s and s + P . Note that the replicas that signed the checkpoint transaction at
s vouch for the validity of the ledger fragment between s ≠ C and s, whereas the replicas that
signed the checkpoint transaction at s + C vouch for the digest of the checkpoint at s.

A correct replica, then, verifies that the digest of the checkpoint that it fetched matches the
value recorded at s + C. It also checks, for each checkpoint transaction at sequence number
sÕ in the ledger, that the ledger’s Merkle root at sÕ matches the root in the evidence for the
transaction at sÕ. Finally, the replica replays the ledger fragment between s + 1 and s + C.

As noted previously, a correct replica may have a well-formed ledger fragment that includes
invalid signatures as replicas do not verify all signatures in the ledger fragments that they fetch.
Therefore, when contacted for an audit, a correct replica never returns a ledger fragment that it
fetched with a checkpoint at sequence number s, without including the checkpoint transaction
at s + C and the evidence for that transaction.

B.1.1 Obtaining the ledger

Ledger package. A ledger package from a replica consists of one to four components:

1. a ledger fragment F that contains entries that locally prepared at the replica;

2. an optional su�x U that contains entries that were preprepared atomically after a view-
change but not yet prepared at the replica;

3. an optional message box E that contains some of the messages from the replica’s message
box M; and
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4. an optional checkpoint cp.

Complete ledger package. Let R be a set of valid receipts; smax be the maximum sequence
number in R; smin be the sequence number of the checkpoint whose digest is expected to equal
the checkpoint digest in the receipt with the smallest sequence number in R (smin can be
calculated as described in the previous section); vmin and vmax be the minimum and maximum
view numbers in the receipts in R, respectively.

A ledger package is complete in relation to R if all of the following are true:

• F + U is well-formed;

• if smin = 0, cp contains the checkpoint at genesis (empty); otherwise, the digest of cp is
equal to the one in the second checkpoint transaction in F + U ;

• F includes at least one set of view-change and new-view messages for a view less than or
equal to vmin + 1 (vmin requirement), and one set of view-change and new-view messages
for a view greater than or equal to vmax (vmax requirement);

• All signatures in F + U and E are valid.

and one of the following is true:

• F includes entries between smin and smax + P ;

• F includes entries between smin and smax + c where c œ [0, P ). E contains P ≠ c valid
preparement evidence for entries from smax ≠ c to smax; or

• F includes entries between smin and e = max(smin, smax ≠ c) where c œ [1, P ]. E contains
valid preparement evidence for entries from max(smin, e ≠ P ) to e. The su�x U contains
entries between e + 1 and smax that are preprepared but not prepared in some view
vÕ

Ø vmax and E contains preparement evidence from a view < vÕ for entries between e+1
and smax.

Lemma B.1.1 (Obtaining a complete ledger package). Given a set of valid receipts R, an
auditor can either obtain a ledger package that is complete in relation to R, or assign blame to
at least f + 1 misbehaving or slow replicas.

Proof. Select from the receipts in R, the receipts with the highest view number vmax. Then,
from those receipts select the receipts with the highest sequence number. Finally, among those,
let Rv max be the receipt with the highest index number. (We assume there is no tie; otherwise,
the auditor assigns blame to the replicas that signed both tied receipts.)
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The enforcer asks all replicas that signed Rv max for a ledger package that is complete in
relation to R. We assume that correct replicas or members respond to the enforcer before the
agreed deadline. Once the enforcer has responses from f + 1 replicas, it relays the responses to
the auditor; otherwise at the deadline, the enforcer assigns blame to at least f + 1 misbehaving
or slow replicas.

We show that a correct replica can either respond with: a ledger package that is complete in
relation to R or a ledger package with which the auditor can assign blame to f +1 misbehaving
replicas. Therefore, after checking f + 1 responses, the auditor either finds a complete ledger
package, or assigns blame to f + 1 misbehaving replicas.

Note that a correct replica that is contacted by the enforcer can always satisfy the first three
conditions of completeness: (1) correct replicas always maintain well-formed ledgers and they
record/can recalculate checkpoints; (2) the vmin requirement can always trivially be satisfied
by including the set of view-change and new-view messages for view 0 in F . In practice, for
e�ciency, correct replicas would satisfy this requirement by including the set of view-change and
new-view messages for some view vÕ, where vÕ is the latest possible in [0, vmin + 1]; and (3) since
the replicas that are asked are the replicas that signed Rv max, they must have view-change and
new-view messages for view vmax. Therefore, any replica that returns a ledger package that
violates any of the first three conditions can be assigned blame.

The fourth condition of completeness requires that all signatures and the matching nonces
in the ledger package are correct. Let ÈF , U , E , cpÍ be a ledger package returned by a replica. If
U or E contains a message or transaction with an invalid signature, the auditor can assign blame
to the replica. E contains messages from the replica’s message box and U contains batches that
pre-prepared at the replica. A correct replica never considers a message or pre-prepares a batch
that includes an invalid signature. Otherwise, let sw be a sequence number where there is a
transaction or message with an invalid signature. The auditor can look for the first checkpoint
transaction that follows sw that has no invalid signatures in its evidence. If one exists, the
auditor can assing blame to all N ≠ f replicas that signed that checkpoint transaction. If no
such checkpoint transaction exists, the auditor can assign blame to the responding replica, since
a correct replica never returns a ledger fragment that it has fetched with a checkpoint without
including the committed checkpoint transaction that records that checkpoint’s digest. So given
a ledger package from a replica, the auditor can always verify all signatures and nonces in the
package or assign blame to the responding replica or N ≠f misbehaving replicas. So below, for
brevity, we can assume that the ledger package that a replica returns has no invalid signatures
or nonces.

Additionally, for a correct replica that is contacted by the enforcer, one of the following
must hold:
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• The correct replica has locally prepared entries up to at least smax: In this case,
the replica can form a complete ledger package that includes either:

(i) a well-formed ledger fragment F that contains entries from smin to smax + P ; or

(ii) a well-formed F that contains entries from smin to smax + c where c œ [0, P ), and E

that contains P ≠ c valid preparement evidence for entries from smax ≠ c to smax.

• The correct replica has not locally prepared entries up to smax and it has
locally prepared entries up to e = smax ≠ c where c Ø 1: In this case, (1) a correct
replica can include entries between smin and e in a well-formed ledger fragment F , and it
can include the necessary preparement evidence in E (if smin Æ e); and (2) if the replica
has any batches that it has preprepared but not prepared due to a view-change, it can
include the related view-change and new-view messages in F and the batches in U . Let
p be the last sequence number for which there is a batch in F + U . If p > e, the correct
replica can include the preparement evidence for entries between e + 1 and p in E as well.
A correct replica can form a ledger package as described above. If p Ø smax, the ledger
package is complete, and the replica can return it.

Otherwise, p < smax. Let Rs max be the receipt in R with the largest sequence number
smax and let vs max be the view number in Rs max. Note that vs max Æ vmax by definition,
and in the correct replicas’ ledger, there must exist at least one set of view-change and
new-view messages for a view vÕ > vs max such that none of the view-change messages
include a pre-prepare message for any batch at smax. The correct replica can return a
ledger package that contains these view-change and new-view messages. The auditor can
use the returned ledger package to assign blame to the intersection of replicas that signed
Rs max and that sent the set of view-change messages for vÕ, as these replicas have prepared
a batch at smax but did not report it during the view change.

Thus, for each of the f + 1 responses, either the response is complete in relation to R,
or the auditor can assign blame to the misbehaving responder, or at least f + 1 misbehaving
replicas.

By definition of completeness, if a ledger package is complete in relation to a set of valid
receipts R, it is complete in relation to any subset of R.

Finding preparement evidence. For a batch at sr, the auditor can find the preparement
evidence for the batch as follows:

• if F contains an entry at sr + P , it is collected from there;

• if F contains the entry at sr but not at sr + P , it is collected from E ; and
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• if F does not contain an entry at sr but U contains an entry at sr, it is also collected
from E , albeit it is for the same batch from a prior view.

B.1.2 Incompatibility

Let R = Ètior, xrÍ be a valid receipt at sequence number sr. Let ÈF , U , E , cpÍ be a ledger
package that is complete in relation to R. Let Bl be the batch that is at sr in F + U . R is
incompatible with Bl if any of the following hold:

• tr does not appear in Bl;

• it does not appear in the irth position; or

• or is di�erent.

Lemma B.1.2 (Receipt-ledger incompatibility). Let R = Ètior, xrÍ be a valid transaction receipt
for sequence number sr. Let ÈF , U , E , cpÍ be a ledger package that is complete in relation to R.
Let Bl be the batch in the package at sr. If R is incompatible with Bl, the auditor can assign
blame to at least f + 1 misbehaving replicas.

Proof. The auditor can calculate the set of replicas that signed Bl using the preparement
evidence that can be found as described above. These replicas are called El.

Let Er be the set of replicas that have signed the receipt. Let vr be the view number in the
receipt and vl be the view number in the preparement evidence of Bl.

• vr = vl: Correct replicas never sign pre-prepare or prepare messages for di�erent batches in
the same view. Therefore, the auditor can assign blame to the replicas in the intersection
of Er and El, and |Er fl El| Ø f + 1.

• vl > vr: Correct replicas include the pre-prepare messages for the last P prepared batches
in their view-change messages until the batches commit or a di�erent batch is prepared
at the sequence number. A correct primary always re-preprepares the latest batch that it
finds in the set of N ≠f view-change messages that it receives. Thus, there exists at least
one view vc œ [vr + 1, vl] where zero of the N ≠ f view-change messages for vc contain
a pre-prepare message for the batch at sequence number sr that is referenced in R. The
ledger package is complete in relation to R, so F includes at least one set of view-change
and new-view messages for a view less than or equal to vr + 1 (the vmin requirement). It
must also include the set of view-change and new-view messages for vc as vl Ø vc Ø vr +1.

Let Ec be the set of replicas that have sent the view-change messages to the primary for
view vc. The auditor can assign blame to the replicas that are in the intersection of Er

and Ec and |Er fl Ec| Ø f + 1.
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• vl < vr: There exists at least one view vc œ [vl +1, vr] where zero of the N ≠f view-change
messages for vc contains a pre-prepare message for the batch at sequence number sr that
is referenced in R. The ledger package is complete in relation to R so F includes at least
one set of view-change and new-view messages for a view greater than or equal to vr, so
it must include the set of view-change and new-view messages for vc as vl + 1 Æ vc Æ vr

(the vmax requirement). Similar to previous case afterwards.

B.1.3 Violations

Ordering receipts. Given a set of valid receipts, the auditor can order them lexicographically
based on the corresponding (sequence number, index number, view number) tuples. (We can
assume that there is no tie; otherwise, the auditor assigns blame to the replicas that signed
both tied receipts.) We say that a receipt R1 is earlier/later than a receipt R2, if it is ordered
before/after R2 with this scheme, respectively. For example, the earliest receipt in a set of valid
receipts is the one with the lowest view number, among those with the lowest index number,
among those with the lowest sequence number.

Lemma B.1.3 (Serializability violations). Let R = {(tio0, x0), ..., (tiok, xk))} be a set of valid
receipts that violates serializability. Then, the auditor can assign blame to at least f + 1 mis-
behaving or slow replicas.

Proof. First, the auditor can obtain a ledger package ÈF , U , cp, EÍ that is complete in relation to
R; otherwise, it can assign blame to at least f +1 misbehaving or slow replicas by Lemma B.1.1.
Note that, as the ledger package is complete in relation to R, it is complete in relation to any
receipt Rj œ R.

Since the receipts in R violate serializability, no serial execution of t0, ..., tk can produce
io0, ..., iok. F + U is well-formed, so there are two options for its validity:

Valid ledger. F + U is a valid ledger, so every transaction in it is ordered and executed
serially. However, the receipts in R violate serializability. Therefore, there must exist at least
one receipt Ètiow, xwÍ œ R that is incompatible with the batch at sw in F +U . By Lemma B.1.2,
the auditor can assign blame to at least f + 1 misbehaving replicas.

Invalid ledger. F + U is a well-formed but invalid ledger. So there exists at least one
transaction tw (which does not have to be in R) that was executed incorrectly in some batch
sw, or one checkpoint that was created incorrectly.

The auditor can order R as described above. Let Re be the earliest receipt in R. Let dC0 be
the checkpoint digest in Re. Let sC0 be the sequence number with the expected checkpoint digest
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dC0 , calculated by the auditor using se and the checkpoint interval C as previously described.
If sCO

= 0, but the digest in Re is not equal to the digest in the genesis transaction, the auditor
can assign blame to all replicas that signed Re. Otherwise, the ledger package is complete with
respect to Re, and F + U is thus well-formed, so: (i) the entry at sC0 in F + U is a checkpoint
transaction; and (ii) the checkpoint transaction in sCO

+ C exists as sC0 < sCO
+ C < se and

contains the digest of cp. If the digest of cp in the ledger package is not dC0 , the auditor can
assign blame to the replicas that signed both the checkpoint transaction at sCO

+ C and Re.
The digest in that checkpoint transaction is for the previous checkpoint and the batches before
the previous checkpoint have already committed since C > P .

Otherwise, the auditor replays the ledger starting from the checkpoint transaction at sC0 ,
creating checkpoints at checkpoint sequence numbers. Doing so, the auditor either obtains
Ètw, iw, oaÍ ”= Ètw, iw, owÍ or finds that an incorrect checkpoint digest is recorded at sw. In either
case, the auditor can assign blame to all replicas that signed for the batch at sw.

Theorem B.1.4 (Linearizability violations). Let R be a set of receipts that violate lineariz-
ability. Then, the auditor can assign blame to at least f + 1 misbehaving or slow replicas.

Proof. If the receipts also violate serializability, the auditor can assign blame to at least f + 1
misbehaving or slow replicas by Lemma B.1.3.

Otherwise, since the receipts violate linearizability but not serializability, the ordering of
the transactions in R must violate the real-time ordering of the transactions. So there exists at
least two transactions, ta and tb, in R such that the receipt for tioa was received by the client
before tb was sent, but ia Ø ib. tb was sent after Ètioa, xaÍ was received, so a correct client sets
the minimum index l of tiob to at least ia + 1. Since ib Æ ia, the auditor can assign blame to
all replicas who have sent the receipt for tiob.

B.2 Correctness of auditing with reconfiguration

In this section, we first summarize how reconfiguration happens, introduce new terminology,
and update prior terminology. Then, in Lemma B.2.1, we prove that, if the auditor detects a
fork in governance, it can assign blame to f + 1 misbehaving replicas. In Appendix B.2.1, we
update the prior discussion on obtaining a complete ledger package. In Appendix B.2.2 and
Lemma B.2.3, we prove that, if a receipt and the corresponding batch in a ledger package are
prepared in di�erent configurations, the auditor can assign blame to f +1 misbehaving replicas.
In Appendix B.2.3, using Lemma B.2.3, we update the prior lemma about incompatibility.
Finally, Appendix B.2.4 updates the prior proofs on violations, and in Theorem B.2.6, we
prove the correctness of auditing in the complete IA-CCF ledger system.
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Summary of reconfiguration. A correct primary ends the batch it is working on once it
executes a governance transaction. Therefore, each batch includes at most one governance
transaction and ig in a receipt refers to the last governance transaction executed before the
transaction in the receipt. The final vote transaction that is necessary to pass a referendum
triggers the configuration change. 2P end-of-config batches follow the final vote before the con-
figuration change. The governance sub-ledger consists of batches and evidence for all governance
transactions. It also includes, for each configuration, the P th and 2P th end-of-config batches,
which commit the final vote transaction that triggers reconfiguration and the P th end-of-config
batch respectively. The P th end-of-config batch links to the final vote transaction, because its
pre-prepare message includes the Merkle root of the batch that includes the final vote transaction.

Updates to well-formedness and validity. A ledger fragment is valid if it can be produced
by a sequence of correct primaries in a sequence of configurations where in each configuration
there are at most f failures.

In addition to the previous structural specifications, governance changes are serialized and
include the required end-of-config and start-of-config messages.

Note that correct replicas check the validity of the governance sub-ledger fragments that
they fetch, so their governance sub-ledgers are valid, in addition to well-formed.

Configuration number. The configuration number of a configuration C is the distance that
it is from the configuration at the genesis. The genesis has configuration number 0. A config-
uration that follows the genesis configuration has number 1 and so on.

Supporting governance chain of a receipt. Every receipt R includes the index of the
latest governance transaction. A correct client makes sure that it has a matching chain of
valid governance transaction receipts for each receipt that it has. This includes the receipts
for all governance transactions from the genesis up to the latest governance transaction, and
the receipt for the P th end-of-config batch for each configuration change. The supporting
governance chain of a receipt R is the sequence of governance-related receipts that starts from
the genesis transaction receipt and ends with the P th end-of-config batch receipt before the
configuration that signed R takes e�ect.

A supporting governance chain of a receipt matches a governance sub-ledger if each receipt
in the chain is compatible with the governance sub-ledger. (For end-of-config batches, com-
patibility considers committed Merkle roots as well.) Similarly, a supporting governance chain
can be a prefix of a governance sub-ledger.

Updates to receipt validity. A receipt is valid if it is verifiable by Algorithm 3.3, and it
is attached a valid supporting governance chain.

Updates to calculating checkpoint sequence numbers. If a sequence number that is
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multiple of the checkpoint interval C falls into an end-of-config/start-of-config sequence, check-
pointing is skipped. A checkpoint is taken at the beginning of each new configuration, and the
digest of the first checkpoint in a configuration is included in the first checkpoint transaction,
as opposed to the one that follows (this is similar to genesis).

Let Ètioj, xjÍ be a valid receipt and sfv be sequence number of the final vote transaction
for the last configuration change in the supporting governance chain of the receipt. The first
checkpoint of the configuration that prepared the receipt is expected at sfcp = sfv + 2P + 1.
(Except the genesis configuration, for which sfcp = 0.)

So given sj, the sequence number scp of the checkpoint whose digest is in xj can be cal-
culated with

scp =

Y
_]

_[

sfcp if sj < sfcp + C

C
1
Á

sj≠sfcp
C Ë ≠ 2

2
otherwise.

Updates to fetching checkpoints. Following a configuration change, a correct new replica
fetches the checkpoint at the penultimate checkpoint sequence number sÕ in the previous con-
figuration (or the first checkpoint sequence number if there is only one). It also retrieves
the full ledger. It replays the ledger from sÕ before creating a checkpoint at the beginning
of the configuration.

Equivalence of P th end-of-config batches. Two P th end-of-config batches are equiva-
lent if they:

(i) are at the same index and sequence number; and

(ii) are preceded by the same valid governance sub-ledger (their pre-prepares include the same
committed Merkle root).

Two receipts for P th end-of-config batches are equivalent if the batches specified in them
are equivalent.

Governance fork. There is a fork in governance if there is a fork in the governance sub-ledger.
That is, there are at least two P th end-of-config batches for the same configuration number that
belong in valid governance sub-ledgers, but that are not equivalent.

We say that there is a fork between two valid supporting governance chains if there are
receipts for two P th end-of-config batches for the same configuration number that are not
equivalent.

We say that there is a fork between a valid supporting governance chain and a valid gov-
ernance sub-ledger, if for the same configuration number, the P th end-of-config batch specified
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by the receipt in the chain is not equivalent to the P th end-of-config batch in the sub-ledger.

Lemma B.2.1 (Governance fork). If there is a fork in governance, the auditor can assign
blame to at least f + 1 misbehaving replicas.

Proof. If there is a fork in governance, there are at least two P th end-of-config batches for the
same configuration number that are not equivalent, namely P1 and P2.

A correct replica only prepares a P th end-of-config batch at sequence number s once the
final vote transaction that passes the referendum is committed at sequence number s≠P . Thus,
all governance transactions preceding it are committed too. This final vote transaction triggers
the configuration change.

So the auditor can assign blame to the replicas that prepared both P1 and P2, because a
correct replica that prepares one will never prepare another non-equivalent P th end-of-config
batch in the same configuration number.

Longest supporting governance chain. Let R be a set of valid receipts. If there is a fork
between the supporting governance chains of the receipts in R, the auditor can assign blame
to at least f + 1 misbehaving replicas by Lemma B.2.1. So the auditor can always obtain
a longest supporting governance chain for the receipts in R. This chain is the union of all
supporting chains for receipts in R.

Onwards, we assume that, given any set of valid receipts, the supporting governance chains
are fork-free with each other and that there is a longest supporting governance chain; otherwise,
the auditor can assign blame to f + 1 misbehaving replicas by Lemma B.2.1.

Transaction receipts. Onwards, we assume that a receipt is for a transaction and not for
end-of-config/start-of-config batches. If the receipts for end-of-config/start-of-config indicate
a fork in governance, misbehaving replicas can be blamed using Lemma B.2.1; otherwise, the
end-of-config/start-of-config batches do not have any usage and do not a�ect the key-value
store, so do not a�ect linearizability.

B.2.1 Updates to obtaining the ledger

Updated ledger package. A ledger package includes an additional required field:

• the committed governance sub-ledger N of the replica.

Updated definition of completeness. Let R be a set of valid receipts. Define smax, vmin, vmax

as previously. Calculate smin using the receipt with the smallest configuration number, among
those with the smallest sequence number in R. Let ng max be the longest supporting gover-
nance chain in R.
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A ledger package is complete in relation to R if, in addition to the prior conditions about
well-formedness, length, and vmin/vmax requirements:

• ng max is a prefix of N (i.e. the package is obtained from a replica in a configuration which
is equal to or succeeds all configurations in R);

• N is valid; and

• N matches F .

The condition for the checkpoint cp is updated as follows:

• if smin is calculated as the first checkpoint transaction in a configuration (or zero), the
digest of cp is equal to the one in the checkpoint transaction at smin; otherwise, the digest
of cp is equal to the one in the second checkpoint transaction in F + U .

Lemma B.2.2 (Obtaining a complete ledger package with reconfiguration). Given a set of
valid receipts R, an auditor can either obtain a ledger package that is complete in relation to
R, or assign blame to at least f + 1 misbehaving or slow replicas.

Proof. As mentioned before, we assume that there is no fork between the supporting gover-
nance chains of the receipts in R. Let Rg max be the receipt with the highest index number,
among those with the highest sequence number, among those with the highest view number,
among those with the longest supporting governance chain in R. Let ng max be the supporting
governance chain of Rg max.

We assume that there is a reliable mechanism to look up the most recent system config-
uration. Using this mechanism, the auditor looks up the most recent committed governance
sub-ledger and the set of replicas that signed the first checkpoint transaction of the most recent
configuration. If there is a fork between ng max and the governance sub-ledger that is looked-up,
the auditor can assign blame to at least f +1 misbehaving replicas by Lemma B.2.1; otherwise,
the auditor checks whether the sub-ledger that is looked up is longer than ng max. If so, the
enforcer asks all the replicas that signed the first checkpoint transaction of the most recent
configuration for a ledger package; otherwise, the replicas that have signed Rg max are asked.

As in Lemma B.1.1, the enforcer asks replicas for a ledger package that is complete in
relation to R. At the deadline, the enforcer relays the responses to the auditor. There are at
least f + 1 responses, or the enforcer can assign blame to f + 1 misbehaving or slow replicas.

As before, we show that a correct replica can either respond with: a ledger package that
is complete in relation to R, or a ledger package with which the auditor can assign blame to
f + 1 misbehaving replicas.
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First, note that a correct replica that is contacted by the enforcer can always satisfy the
updated completeness conditions (related to N ), because the replica is part of the most recent
configuration and the conditions all pertain to keeping a valid governance sub-ledger. Of the
conditions described previously, the well-formedness and vmin conditions can be satisfied, and
invalid signatures in the package can be handled, just as in Lemma B.1.1. Since the replicas
that are asked are not necessarily the replicas that signed the receipt with the highest view in
R, it is possible that they cannot satisfy the vmax requirement even if they are correct.

So, for a correct replica that is contacted by the enforcer one of the following must hold:

• The replica cannot satisfy the vmax requirement: Let Rv max be the latest receipt
when the receipts are ordered lexycographically by (view number, configuration number,
sequence number, index number). Let nv max be the supporting governance chain of Rv max.
If there is a fork between nv max and the committed sub-ledger N of the replica, the replica
can return its governance sub-ledger and the auditor can assign blame to at least f + 1
misbehaving replicas by Lemma B.2.1. Otherwise, nv max must be a prefix of N since the
enforcer asks replicas from the most recent configuration. There are two possibilities for
the relationship between nv max and N :

1. N = nv max. So Rg max = Rv max.Therefore, the correct replica signed Rv max. Any
correct replica that signed Rv max has the view-change and new-view messages for
vmax, so this case is a contradiction.

2. N is longer than nv max. Let Pv max +1 be the P th end-of-config batch that ends
Rv max’s configuration C. Since the replica is correct and cannot satisfy the vmax

requirement, Pv max +1 must be prepared in a view < vmax. Any correct replica that
prepared Pv max +1 must have committed a final vote transaction that triggers the
configuration change in their ledger in a view less than vmax. Since correct replicas
never reset their ledger by more than P sequence numbers, they do not pre-prepare
any batch with view vmax in C. So, the auditor can assign blame to the intersection
of replicas that signed Rv max and prepared Pv max +1.

• The replica can satisfy the vmax requirement: If, additionally, the replica has pre-
pared (or pre-prepared with view changes) batches up to at least smax, it can return a
ledger package that is complete in relation to R just as in Lemma B.1.1.

Otherwise, let Rs max be the receipt with the largest sequence number smax. Let ns max

be the supporting governance chain of Rs max. If there is a fork between ns max and the
replica’s N , the replica can return N and the auditor can assign blame to at least f + 1
misbehaving replicas by Lemma B.2.1. Otherwise, ns max must be a prefix of N since the
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replicas asked by the enforcer are from the most recent configuration. Again, there are
two possibilities:

1. N is longer than ns max: Let Ps max +1 be the P th end-of-config batch that ends
Rs max’s configuration. Since the replica is correct and cannot satisfy the smax re-
quirement, Ps max +1 must be prepared at a sequence number less than smax. Any
correct replica that prepared Ps max +1 must have committed a final vote transaction
that triggers the configuration change at latest at sequence number smax ≠ (P + 1).
Since a correct replica never resets its ledger by more than P sequence numbers,
the auditor can assign blame to the replicas that signed both Rs max and prepared
Ps max +1.

2. N = ns max: The group of replicas asked by the enforcer are from the same configu-
ration that signed Rs max, which is the most recent configuration. Since the replica is
correct and from the most recent configuration vs max Æ vmax by definition. In F , as
before, there must exist at least one set of view-change and new-view messages for a
view vÕ > vs max such that none of the view-change messages includes a pre-prepare for
any batch at smax. Note that the configuration of the replicas that have sent these
view-change messages must be the same as the configuration that signed the receipt,
as that is the most recent configuration in the system. So just as in Lemma B.1.1,
the auditor can assign blame to the replicas that signed both Rs max and that sent
the set of view-change messages for vÕ.

So, for each of the f + 1 responses, either the response is complete in relation to R, or the
auditor can assign blame to the responder, or at least f + 1 misbehaving replicas.

B.2.2 Mismatching configurations

Lemma B.2.3 (Receipt-ledger configuration mismatch). Let R = Ètior, xrÍ be a valid receipt
that was produced in a configuration Cr. Let Bl be the batch that is at sr in a ledger package
that is complete in relation to R. Let Cl be the configuration of the replicas that signed Bl. If
Cr ”= Cl, the auditor can assign blame to at least f + 1 misbehaving replicas.

Proof. Since R is a valid receipt, it has a valid supporting governance chain. Since the ledger
package is complete, it includes a valid governance sub-ledger N that leads to Cl, which is
fork-free with the supporting governance chain of R.

One of the following must hold:

• Cr < Cl: Cr precedes Cl: Let Pr+1 be the P th end-of-config batch that ends the configu-
ration Cr. This batch and its evidence is included in N . Since the package is complete,
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N is consistent with the ledger fragment in the package. Since that ledger fragment is
well-formed and Bl is at sr, Pr+1 is at the latest at sequence number sr ≠ (P + 1). Any
replica that prepared Pr+1 must have committed a final vote transaction that triggers the
configuration change at the latest at sequence number sr ≠ (2P + 1). A correct replica
that has prepared a batch at sr in Cr never resets its ledger to earlier than sr ≠ P even
with view changes. So the auditor can assign blame to the replicas that both prepared
Pr+1 and signed R.

• Cr > Cl: Cr succeeds Cl: We show that this case is impossible given that R is valid,
and there is no fork between its supporting governance chain and N . Since the ledger
package is complete in relation to R, N includes the P th end-of-config batch leading to
Cr and it matches the well-formed ledger fragment in the package. Since Bl is at sr, that
batch can at earliest be at sequence number sr + P . So there cannot be a valid receipt
produced in Cr at sr.

B.2.3 Updates to incompatibility

Lemma B.2.4 (Receipt-ledger incompatibility with reconfiguration). Let R = Ètior, xrÍ be a
valid transaction receipt at sequence number sr. Let ÈF , U , E , cp, N Í be a ledger package that is
complete in relation to R. Let Bl be the batch in the package at sr. If R is incompatible with
Bl, the auditor can assign blame to at least f + 1 misbehaving replicas.

Proof. Define El, Er, vl, vr as in Lemma B.1.2. Note that we can assume that both the receipt
and Bl are prepared by the same configuration C; if not, the auditor can assign blame to f + 1
misbehaving replicas by Lemma B.2.3.

• vr = vl: Same as Lemma B.1.2.

• vl > vr: Calculate Ec as described in Lemma B.1.2. If the replicas in Ec are also from the
configuration C, the auditor can assign blame just as in Lemma B.1.2; otherwise, if the
replicas in Ec are from a preceding configuration, the first checkpoint transaction of C is
at the latest at sequence number sr ≠ (P + 1) since Bl is prepared by C and F + U is
well-formed. Furthermore, that checkpoint transaction is prepared in a view vÕ > vr. A
correct replica never signs the receipt at sr in a view vr and then resets its ledger by more
than P sequence numbers while view changing to vÕ. So, the auditor can assign blame to
the replicas that signed both that checkpoint transaction and the receipt.

• vl < vr: Calculate Ec as described in Lemma B.1.2. If the replicas in Ec are also from
the configuration C, the auditor can assign blame just as in Lemma B.1.2; otherwise the
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replicas in Ec are from a configuration that succeeds C. In this case, the P th end-of-config
batch that ends the configuration C is at the earliest at sequence number sr + P , since
Bl is prepared by C and F + U is well-formed. Furthermore, that batch is prepared in
a view vÕ < vr. A correct replica that prepares that P th end-of-config batch commits to
the configuration change; it never resets its ledger to earlier than sr and signs R. So, the
auditor can assign blame to the replicas that signed both that end-of-config batch and
the receipt.

B.2.4 Updates to violations

Lemma B.2.5 (Serializability violations with reconfiguration). Let
R = {(tio0, x0), ..., (tiok, xk))} be a set of receipts that violates serializability. Then, the
auditor can assign blame to at least f + 1 misbehaving or slow replicas.

Proof. First, the auditor can obtain a ledger package ÈF , U , cp, E , N Í that is complete in relation
to R; otherwise, IA-CCF can assign blame to at least f + 1 misbehaving or slow replicas by
Lemma B.2.2.

Just as in Lemma B.1.3, since the receipts in R violate serializability, no serial execution of
t0, ..., tk can produce io0, ..., iok. F is well-formed, so there are two options for its validity:

Valid ledger. Similar to Lemma B.1.3. By Lemma B.2.4, the auditor can assign blame to at
least f + 1 misbehaving replicas.

Invalid ledger. Assume that receipts are ordered lexicographically based on the corresponding
(sequence number, configuration number, index number, view number) tuples. (We can assume
that there is no tie; otherwise the auditor can assign blame to the replicas that signed both
tied receipts.)

Let Re be the earliest receipt in the ordered R. Let dC0 be the digest in Re. Let sC0 be
the sequence number with the expected checkpoint digest dC0 . sC0 can be calculated by the
auditor using se, the checkpoint interval C, and the supporting governance chain. (Note that
sC0 is equal to smin that is calculated while obtaining the ledger.)

We can assume that the batch at se is prepared by the same configuration that sent the
receipt; otherwise the auditor can assign blame to f + 1 misbehaving replicas by Lemma B.2.3.
We also know that the supporting governance chain of Re matches F + U and that F + U is
well-formed. So, the checkpoint transactions at sC0 (and sC0 + C if it exists) are prepared by
the same configuration as Re by definition of sC0 . So, if the digest at sC0 is not dC0 , the auditor
can assign blame to f + 1 misbehaving replicas similar to Lemma B.1.3.
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Since the supporting governance chains of all receipts match the ledger fragment by defini-
tion of completeness, the auditor can determine the correct stored procedures for each trans-
action to replay the ledger as in Lemma B.1.3.

Theorem B.2.6 (Linearizability violations with reconfiguration). Let R be a set of receipts
that violate linearizability. Then, the auditor can assign blame to at least f + 1 misbehaving
or slow replicas.

Proof. If the receipts also violate serializability, the auditor can assign blame to at least f + 1
misbehaving or slow replicas by Lemma B.2.5; otherwise, the minimum ledger index argument
in the proof of Theorem B.1.4 holds.
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