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Abstract 
 

Metabolic phenotyping facilitates the analysis of low molecular weight compounds in complex 

biological samples, with resulting metabolite profiles providing a window on endogenous processes 

and xenobiotic exposures. Accurate characterisation of the xenobiotic component of the 

metabolome (the xenometabolome) is particularly valuable when metabolic phenotyping is used for 

epidemiological and clinical population studies where exposure of participants to xenobiotics is 

unknown or difficult to control/estimate. Additionally, as metabolic phenotyping has increasingly 

been incorporated into toxicology and drug metabolism research, phenotyping datasets may be 

exploited to study xenobiotic metabolism at the population level. This thesis describes novel 

analytical and data-driven strategies for broadening xenometabolome coverage to allow effective 

partitioning of endogenous and xenobiotic metabolome signatures.  

The data driven strategy was multi-faceted, involving the generation of a reference database and the 

application of statistical methodologies. The database contains over 100 common xenobiotics 

profiles - generated using established liquid chromatography-mass-spectrometry methods – and 

provided the basis for an empirically derived screen for human urine and blood samples. The 

prevalence of these xenobiotics was explored in an exemplar phenotyping dataset (ALZ; n = 650; 

urine), with 31 xenobiotics detected in an initial screen.  Statistical based methods were tailored to 

extract xenobiotic-related signatures and evaluated using drugs with well-characterised human 

metabolism. 

To complement the data-driven strategies for xenometabolome coverage, a more analytical based 

strategy was additionally developed. A dispersive solid phase extraction sample preparation protocol 

for blood products was optimised, permitting efficient removal of lipids and proteins, with minimal 

effect on low molecular weight metabolites.  The suitability and reproducibility of this method was 

evaluated in two independent blood sample sets (AZstudy12; n=171, MARS; n=285). 

Finally, these analytical and statistical strategies were applied to two existing large-scale 

phenotyping study datasets: AIRWAVE (n = 3000 urine, n=3000 plasma samples) and ALZ (n= 650 

urine, n= 449 serum) and used to explore both xenobiotic and endogenous responses to triclosan 

and polyethylene glycol exposure. Exposure to triclosan highlighted affected pathways relating to 

sulfation, whilst exposure to PEG highlighted a possible perturbation in the glutathione cycle.   

The analytical and statistical strategies described in this thesis allow for a more comprehensive 

xenometabolome characterisation and have been used to uncover previously unreported 

relationships between xenobiotic and endogenous metabolism.  
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Chapter 1  
 

Introduction 
 

1.1 General Introduction 
 

Top-down systems biology approaches that rely on data-driven hypothesis generation have helped 

progress understanding of biological phenomena across a wide variety of research areas. This has 

been particularly apparent in human health research where applications range from personalized 

medicine and patient stratification to population-level molecular epidemiological studies (Nicholson, 

2006, Henderson et al., 2014, Naylor and Chen, 2010, Alyass et al., 2015).  

The ability to characterise complex molecular phenotypes, i.e. the phenotypic endpoints resulting 

from interactions gene-environment interactions (e.g., dietary, lifestyle, environment, gut microbial, 

and genetic factors), has revolutionised areas in clinical care, epidemiology, and toxicology (Dumas 

et al., 2006, Nicholson et al., 2005, Sabeti et al., 2007, Holmes et al., 2008). 

Molecular phenotypes complement traditional chemistry, physiological, environmental, and lifestyle 

measurements to help provide a more holistic view of the individual, with methods that can be 

deployed across large clinical and epidemiological cohorts. The metabolome – the complement of 

low molecular weight compounds in a biological system/tissue/fluid/compartment – is an important 

component of the molecular phenotyping picture, given the ubiquity of metabolism in biochemical 

processes.  

The metabolic phenotype of an individual may therefore serve as a useful and objective 

multiparametric measure of prior environmental/xenobiotic exposures (drugs, environmental 

pollutants, food additives and toxicants) as well as endogenous responses, all played out over the 

genetic background of an individual (Figure 1-1). 
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Figure 1-1 The human metabolome is a nexus for the internal and external environment, and a major 

component of how gene-environment interactions occur.  Adapted from (Athersuch and Keun, 2015). 

 

Methods for characterising the metabolome – now interchangeably called metabolic phenotyping / 

metabolomics / metabonomics / metabolic profiling – can be used to report on the complex 

chemical composition of the metabolome in biological fluids and tissues. This is a vibrant area of 

research, with continual improvements to methods being reported on a regular basis; recent 

developments have been reviewed in a number of different publications (Zhang et al., 2015, 

González-Riano et al., 2020, Trivedi et al., 2017) 

Mass spectrometry (MS) has emerged as one of the most commonly used platforms for metabolic 

phenotyping, on account of the exquisite resolution and sensitivity that modern instrumentation can 

deliver; hyphenation with chromatographic separations such as liquid chromatography or gas 

chromatography provide an additional resolution dimension and richer metabolome dataset for 

analysis. Consequently, mass spectrometry based metabolic phenotyping has become a central pillar 

in studies across the biological sciences, and rapid profiling methods have facilitated their 

application to large cohort studies in clinical and epidemiological studies. In several countries (e.g., 

UK, Australia, Singapore, China), regional and/or national facilities have been established to deliver 

high-throughput, analytical services that can share best practice, develop protocols for wider 

adoption, and anchor efforts to ensure high data quality, and adherence to community guidelines 

for reporting and data sharing. The National Phenome Centre (NPC) was the first of these centres to 
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be created and provides the context for the work presented in this thesis (NPC: 

https://phenomecentre.org/). 

Metabolic phenotypes derived from MS analysis simultaneously capture (responses in) endogenous 

metabolism, as well as those arising from xenobiotics and their metabolites (collectively referred to 

as the xenometabolome (Holmes et al., 2007)). Linkage of these two components of the metabolome 

has the potential to help elucidate underlying mechanisms and identify key environmental 

determinants of disease (Niedzwiecki et al., 2019); the ability to distinguish components of the 

metabolome that are directly related to external chemical exposures, and those that reflect 

endogenous responses, can help reduce the confounding influence of xenobiotics on metabolome-

wide analyses, and aid analyses focused on understanding endogenous metabolic regulation (e.g., 

understanding disease etiology, evaluating therapeutic responses, deriving clinically-relevant 

biomarkers, etc.). 

Xenobiotic signatures in biofluids and tissues are often different to those of endogenous 

metabolites, including their spatial distribution and temporal variation.  Detailed examination of 

these signatures highlights other distinguishing features of the species that comprise these 

signatures, including specific physicochemical properties (e.g., halogen substitution), characteristic 

metabolic fates (e.g., oxidative and conjugative metabolism), and that many xenobiotic exposures 

also occur as mixtures (e.g., co-administration of a drug and formulation-specific excipients), that 

often demonstrate highly correlated excretion kinetics.  

In vitro and in vivo toxicological studies of metabolome responses to xenobiotics commonly partition 

components of the metabolic phenotype that are related to the test compound and its metabolites 

(commonly achieved by direct spectral comparison of pre-dose and post-dose samples to positively 

identify all drug-related compounds) so that they can be excluded from subsequent analysis. In 

uncontrolled population studies where participants may – knowingly or unknowingly – be exposed 

to a wide range of xenobiotics, no such comparator exists, yet these exposures may be of 

importance to data interpretation in these studies.  

Additionally, annotation of xenobiotic signatures can report objectively on individual compliance 

with study protocols, identify outliers, and/or provide population level exposure data. A good 

example of this is given by Loo et al. who developed a xenometabolome screen to identify spectra 

from NMR metabolic phenotyping data, associated with xenobiotics (Loo et al., 2012). Through 

statistical exposure models, they were able to identify signal associated with Acetaminophen and 

ibuprofen in human urine specimens. The results from this demonstrated that the approach was 

feasible in validating self-reported use of these xenobiotic in the urine samples. Studying xenobiotic 
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metabolism through molecular phenotyping can potentially provide insight into the inter-individual 

differences in xenobiotic responses (Holmes et al., 2007) which ultimately, can guide individualised 

drug therapies and drive advances in personalised medicine.  

   

1.2 Scope of the Thesis 
 

The overall aim of the work described in this thesis was to enhance common metabolic phenotyping 

assays and the analysis conducted on the datasets they generate by significantly increasing the 

number of positively identifiable and annotatable metabolic profile features relating to xenobiotics.  

To this end, several different elements were brought together, including rational selection of 

prioritised xenobiotics using available literature data, generation of database-ready mass spectral 

data for authentic chemical standards, development of statistical analysis tools, and interrogation of 

existing large-scale population study data and to validate a platform for the untargeted profiling of 

blood products in large-scale molecular phenotyping studies.  

Five key objectives were identified to address the overall aim of this work; each is briefly outlined 

below, and described in detail in subsequent chapters, as indicated: 

1. Creation of spectral database of common xenobiotic profiles. Chapter 3. 

Pharmaceuticals that are commonly used by the general population – and others compounds of 

specific relevance to the exemplar populations in this work – were identified using publicly 

available/literature resources. These were then analysed using established metabolic 

phenotyping methods to generate a core spectral resource. 

 

2. Identification of predicted xenobiotic metabolite features. Chapter 3. 

Extensive literature searching, and application of software-based methods for plausible 

metabolite prediction were employed to flag and putatively annotate potential xenobiotic-

derived compounds in existing metabolic phenotype data.   

 

3. Development of additional statistically based methods. Chapter 3. 

Discriminatory chemical properties and statistical relationships of xenobiotics were used to 

develop tools for enhanced extraction of xenometabolome signatures in existing metabolic 

phenotyping datasets. 
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4. Improved analytical methods for xenometabolome coverage. Chapter 4. 

An enhanced blood preparation protocol was developed and optimized for the removal of lipids 

and protein with minimal effect on other low molecular weight metabolites.  

 
 

5. Application to real phenotyping studies. Chapter 5. 

Exploration of detectable exemplar xenobiotic exposures in selected large-scale epidemiological 

datasets using existing and the developed RPC methods: 

 
a. Detection of novel and direct xenobiotic metabolites 

b. Cross-correlation of xenobiotic and endogenous metabolic profiles 

c. Annotation and identification of associated metabolites of exposure and xenobiotic co-

exposures 

d. Examination of endogenous metabolism in relation to xenobiotic exposure 

 

Figure 1-2 illustrates the connectivity between the main element of this thesis, showing how the 

empirically-derived, data driven, and laboratory assay development have been separately developed 

and brought together for application on exemplar NPC epidemiological studies. 

 

 
Figure 1-2. A schematic indicating how the various elements of knowledge-based, analytical, and statistical 

method development will integrated and applied to a human molecular epidemiological study during the 
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course of the project.  Highlighted by the green circles, Chapter 3 relates to the Identification and 

prioritization for the acquisition of known xenometabolome components, using authentic chemical standards 

to provide an empirically-derived spectral database, use of literature and software prediction to search for 

xenobiotic metabolites in existing metabolic phenotype datasets, and the development and integration of 

statistical approaches to further identify putative xenobiotic signatures. Chapter 4 relates to the development 

of a lipid removal method to enable analysis of blood samples using an existing and well-characterised 

reversed-phase assay for moderately hydrophobic biospecimen components, and Chapter 5, relates to the 

application of all available strategies to characterise and broaden the coverage of the xenometabaolome in key 

NPC-relevant sample sets. 
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1.3 Thesis Structure 
 

Figure 1-3. Schematic of the thesis structure. 
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Chapter 2  

 

Background Information and Techniques 
for Metabolic Phenotyping 
 

Summary 

 

This chapter describes the theoretical background and analytical techniques/methods used to 

perform the work described in this thesis.  

The main topics are: 

1. Metabolic phenotyping, and its use in epidemiological studies. 

2. Xenobiotic metabolism and the contribution of xenobiotics on the human metabolome, 

3. Common biological sample types and biological samples 

4. Simultaneous capture of endogenous and xenobiotic signatures and the perturbation in 

endogenous metabolism due to these external exposures is discussed.   

5. Design of experiments to support untargeted method development and analytical platforms 

to characterize the metabolome are also discussed.  

6. An overview of data pre-processing methods; these are of critical importance in the 

processing of MS based datasets. This section also includes a summary of data-driven 

methods that can be used in metabolite annotation and identification in/using untargeted 

phenotyping data.  

7. Chapter concludes with a brief summary on metabolite identification. 
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2.1 Epidemiology and Molecular Phenotyping 
 

In recent years, epidemiological studies have regularly incorporated biomarker measurements to 

augment questionnaire data, clinical records, external exposure assessment, and exposure models 

to help understand the relationship between gene, the environment, and disease risk. Such 

measurements can help reduce exposure misclassification and provide individual-level data that can 

help identify and quantify confounding factors that are not well captured by other means (i.e., in 

addition to age, sex, socioeconomic factors, and lifestyle behaviours). 

Genome-wide association studies (GWAS) can often exhibit low explanatory power as a 

consequence of environmental (i.e. non-genetic) factors being responsible for much of the 

attributable disease risk, through initiation and mediation of disease pathways (i.e. gene-

environment interactions) (Adamski, 2012). GWAS typically require very large sample sets and can 

be both expensive and labour intensive to conduct, and ultimately provide information about 

underlying predisposition for disease, with no incorporation of how genotypes are manifest in a real, 

complex environment.  

Phenotypic responses may prove in explore such relations, due to the necessary mediation of most 

biochemical processes by low molecular weight metabolites. The measurement of low molecular 

weight metabolites from complex biofluids and the ubiquitous role metabolism plays in biochemical 

processes is collectively known as metabolic phenotyping. 

Metabolic profiling, metabolomics, and metabonomics are all now variously and interchangeably 

and has been defined as ”the quantitative measurement of the dynamic multiparametric metabolic 

response of living systems to pathophysiological stimuli or genetic modification” (Nicholson et al., 

1999). 

The total complement of these metabolites (typically < 2000 Da) is termed the metabolome, and is a 

reflection of the sum of the metabolic processes in a cell, organ, system etc. (Tweeddale et al., 

1998). The metabolome is a critical component of the wider concept of the human phenome, which 

relates to all outwardly observable characteristics, and is complementary in nature to the genome. 

The field of metabolic profiling has been used to report on the complex chemical compositions of 

not only biological fluids and tissues in mammals, but also application to microbial communities 

(Donia and Fischbach, 2015), plant (Fiehn et al., 2008) and environmental systems (Bundy et al., 

2008). In humans,  its definition has expanded and encompasses not just metabolites related to core 

intracellular and extracellular metabolic processes, but those modified from external exposures such 

as diet (Holmes et al., 2008), xenobiotics (Marotta et al., 2006) , synthetic chemicals (Wishart et al., 
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2012) and microbiome (Nicholson et al., 2005). Exposure of complex mixtures of xenobiotics from 

various sources detected in metabolomic studies is referred to as the xenometabolome (Holmes et 

al., 2007) , and collectively the wider exposome, which is a cumulative measure of all environmental 

exposures associated with biological responses, including lifestyle factors (Wild, 2005, Miller and 

Jones, 2014).  

Typically, metabolomic studies utilise a top-down systems biology approach by describing and 

modelling biochemical networks that are a result of down-stream responses to perturbations in 

biofluids. As interactions and metabolite associations are not known a priori, the depiction of the 

metabolome and the observed phenotype can potentially highlight mechanistic pathways (Nicholson 

et al., 2012). The ability to monitor biochemical changes non-invasively, through typical biofluids 

measured in molecular phenotyping, makes investigations of this nature a highly valuable approach. 

The combination of urine, plasma and tissue metabolic profiling can reveal changes in metabolites to 

different compartments of the body and allows the visualisation of metabolic processes (Waters et 

al., 2001). Furthermore, the collection at specific compartments and time series will give insight into 

disease progression and the longitudinal metabolic trajectory of endogenous or exogenous 

molecules. 

As a result, epidemiologists turn to molecular phenotyping as means for broad phenotypic insight as 

sample cohorts from large scale epidemiological studies generate unprecedented power in 

describing and modelling the biochemical networks that occur in organisms and an understanding of 

factors that underlie population disease demography.  

To meet this need, there is a requirement for analytical techniques and platforms for broad 

metabolome coverage, producing high quality data with fast analysis times. Historically, nuclear 

magnetic resonance spectroscopy (NMR)  has been the platform of choice, however there are 

recognised limitations arising from low sensitivity and chemical specificity (Dona et al., 2014). Mass 

spectrometry has emerged as a complimentary analytical platform for conducting metabolic 

phenotyping, and recently, radical advances in both software and hardware components all for the 

routine collection of high resolution, multidimensional data, with high sensitivity and precision 

across large sample datasets (Lewis et al., 2016). The diversity of chemical species present in biofluid 

samples is a substantial challenge; at present, a multitude of different techniques are required to 

capture metabolites across the vast chemical space of the metabolome (Athersuch, 2012). In 

addition, the deconvolution of chemical signals from spectral data is also vital and requires advanced 

analytics and data pre-processing approaches (Lindon et al., 2004). The challenges involved in 

identifying patterns in metabolites and biochemical pathways, as a result of disease or 
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environmental factors, drive advances in the different key stages in a molecular phenotyping study 

which is summarised in Figure 2-1 and discussed in detail throughout this chapter.  

 

 

Figure 2-1. A typical metabolic phenotyping workflow. 

 

2.2 Xenobiotic Metabolism 
 

The term xenobiotic refers to any chemical substance that is not of an endogenous nature, and 

typically used to refer to drugs, environmental pollutants, contaminants, and other agents. Often, 

xenobiotic exposures result in toxicity, but these adverse effects are often mitigated by 

biotransformations that detoxify and eliminate these compounds. The human body has the ability to 
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metabolize and detoxify a wide range of xenobiotic compounds, with the majority of metabolism 

taking place in the liver (hepatic metabolism) and small intestine (extrahepatic metabolism); a 

combination of functionalization and conjugation reactions, typically result in an increase in the 

water solubility (hydrophilicity) or molecular weight/size which facilitates efficient urinary or biliary 

excretion of xenobiotic metabolites, respectively.  

Reactions that introduce or interconvert functional groups within a molecule are commonly known 

as Phase I reactions and are catalysed by the cytochrome P450 enzymes. The liver is the principal 

site of drug metabolism, with P450 3A4 and P4502C9 metabolism at this site accounting for ~70% of 

the metabolism of pharmaceutical drugs (Furge and Guengerich, 2006). Phase I reactions 

enzymatically modify compounds through hydroxylation, N- and O-dealkylation, epoxidation, and 

heteroatom oxygenation via biochemical reactions such as oxidation, reduction, and hydrolysis.  

The functional groups introduced or uncovered by phase I reactions commonly provide a suitable 

moiety for conjugation reactions, commonly termed phase II reactions. Conjugation reactions such 

as these play an important role in the excretion of drug metabolites in that they radically alter the 

physicochemical properties of the drug (typically through increases in hydrophilicity or molecular 

weight); conjugation of a drug or its metabolite with hydrophilic endogenous molecules, (e.g., 

sulphate or glucuronic acid) is catalysed by phase II drug metabolising enzymes including UPD-

transferase, glutathione-S-transferase, sulfotransferases and N-acetyltransferases. UPD-

glucoronosyltransferase are used in glucuronidation reactions and approximately 40--70% of all 

clinical drugs are subjugated to these reactions (Wells et al., 2004). A third detoxification phase has 

also been documented which involves the transport and elimination of the final xenobiotic 

metabolite. Membrane transporters carry these metabolites across cellular membranes to the 

kidneys where they pass through the renal tubular membranes (which acts as a filter), ultimately 

being excreted through the urine (Kinne-Saffran and Kinne, 1999).  

As such, the human body has a highly developed ability to handle xenobiotics, which are subjected 

to a variety of biotransformation reactions, resulting in elimination through excretion, or to an active 

or inactive metabolite(s). Elimination by metabolism (to active or inactive metabolites/s), can affect 

individuals differently, leading to large differences in xenobiotic and metabolite concentrations in 

biofluids. Currently, the most widely used techniques for studying xenobiotic metabolism and 

affected pathways, are largely based on in vitro incubation assays and in vivo radio-tracing 

experiments (Chen et al., 2007, Mortishire-Smith et al., 2005, Liu and Jia, 2007). In vitro assays use 

cells (primarily liver) from animals or cell lines, which have an infinite lifespan, making it a reliable, 

simple and relatively cheap procedure. However, the metabolites observed may not always translate 
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in vivo due to lack of gene and protein regulation, adsorption, distribution, and elimination (ADME) 

mechanisms, and also the high concentration of xenobiotic exposure to the in vitro assay which is 

not always reflective of the therapeutic dosed amount. Radio-tracing offers a solution, to 

observations in vivo as techniques involves studying the metabolism route of a radiolabelled 

xenobiotic compound. Limitations however are cost, and complexity involved in synthesis, high 

purity needed of the radiolabelled compounds, and containment facilities for use. 

The metabolic fate of drugs can vary widely within population groups depending upon an 

individual’s pathophenotype at the time of administration due to both genetic and environmental 

factors (Maynert, 1961). Phase 1 Reactions that introduce or interconvert functional groups within a 

molecule (e.g., hydroxylation or carboxylation) and are catalysed by the cytochrome P450 enzymes. 

Slight variability in the P450 enzymes, i.e., different isoforms of P450, influence how they interact 

with certain xenobiotics and thus how they are metabolised in the body. The completion of the 

human genome project brought about the importance of individual variation (polymorphism) 

observed with xenobiotic metabolism amongst individuals due to the different isoforms of P450 

(Gardiner and Begg, 2006).  

The gut microflora or microbiome of an individual represents yet another source of variation 

observed between individuals in the population.  Dihydroxylation, decarboxylation, dealkylation, 

dehalogenation, and deamination xenobiotic biotransformation reactions have been reported as gut 

microflora mediated reactions. Endogenous compounds such as p-cresol sulfate and indoxyl sulfate 

have also connection to gut microbes and given that sulfation is a fundamental reaction in Phase II 

drug metabolism, this also has implications for xenobiotic metabolism (Johnson et al., 2012).  

The application of metabolic phenotyping to toxicology and pharmaceutical industries is increasingly 

being incorporated into drug metabolism research, providing an alternative approach to detect new 

and uncommon drug metabolites (Chen et al., 2007, Steuer et al., 2019). For example, the 

Consortium on Metabonomic Toxicology (COMET) generated toxicological databases for the 

screening of candidate drugs and implemented an expert system for toxicity prediction (Lindon et 

al., 2003), which included the need to identify drug related compounds (DRCs).  

Metabolic phenotyping offers an unbiased approach for metabolite identification relating to drug 

exposure and thus may augment the study of xenobiotic absorption, distribution, metabolism, 

excretion and toxicity (ADMET). Without authentic reference materials for xenobiotic metabolites, 

measurements remain semiquantitative in nature (i.e. relative abundance with reference to parent 

compound), but integration of metabolite profiling early in the design stages of clinical drug 
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development is sufficiently useful and has been encouraged by government authorities such as the 

FDA (Ufer et al., 2017).  

 

2.2.1 The xenometabolome 
 

The influence of xenobiotics on the metabolome, sometimes referred to as the xenometabolome, 

(Holmes et al., 2007b), is linked directly to xenobiotic signatures (i.e., xenobiotics and their 

metabolites) and has not been well characterised, particularly in epidemiological studies. 

In large scale population study cohorts, estimates for exposures of individuals to xenobiotics have 

heavily relied upon meta-data provided through questionnaires. As a result, exposure 

misclassification (intentional or unintentional), underreporting and failure to remove outlier samples 

can lead to increased bias and a reduced data set in epidemiological studies. The ability of 

untargeted metabolic phenotyping platforms to capture xenobiotic signatures alongside 

endogenous signatures ascribed as responses to these exposures, potentially allows for biomarker-

based exposure information to be captured and highlights metabolic pathways that may not have 

otherwise been seen through targeted biochemical methodologies. Ultra performance liquid 

chromatography-mass spectrometry (UPLC-MS)-based metabolomics in particular, have successfully 

been applied to numerous xenobiotic studies and have revealed novel metabolites and pathways 

(Johnson et al., 2012). In this thesis, both chemical and statistical methods for the efficient detection 

of xenobiotics and related metabolites, in untargeted metabolome profile data have been developed 

and evaluated in the context of exemplar studies relevant to the MRC-NIHR NPC. 

 

2.3 Biological Samples 
 

Urine and blood products (typically serum or plasma) are frequently the preferred sample type(s) in 

metabolomic research for a number of practical reasons, not least because they can be collected in 

minimally-invasive manner and sample volumes are sufficient to accommodate multiple types of 

analysis and archiving of sample aliquots. Patient compliance for urine and blood sample collection 

is high, and both sample type are sufficiently stable to enable self-collection (urine) or; Taken 

together, these characteristics mean urine and blood products minimal ethical constraints to study 

directors and bio-archive curators (Bouatra et al., 2013, González-Domínguez et al., 2020, Zikuan et 

al., 2019).  
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Metabolites detected in these fluids are subject to fluctuations, which can originate from 

pathophysiological conditions or external exposures to xenobiotics, diet, and environment.  

By utilising knowledge on the biological function of each biofluid and what it pertains to, it is then 

possible to decide on the more appropriate sample type for a particular metabolic investigation.  

On account of their prevalence in large-scale clinical and epidemiological study sample archives, 

urine and blood products (plasma and serum) are the matrices of choice used for methods 

development and application of the analytical strategies described; they are the focus of this thesis. 

It should be noted that the same methodology could be adapted and used for other sample types if 

required. 

 

2.3.1 Urine 
 

Urine is a sterile fluid generated by the kidneys and is comprised of mainly water and low molecular 

metabolites. The kidney’s major role is the regulation of bodily fluids and excretion of water-soluble 

waste products which are a result of metabolic flux and external. In addition, they filter blood of 

toxins and undesirable products of metabolism. As urine is primarily water (approximately 95%), the 

remaining composition belongs to salts and waste products. This is a mixture of urea from amino 

acid metabolism, inorganic salts (sodium and potassium), creatinine from uric acid and muscle 

metabolism, ammonia (which give urine its odour) and water-soluble toxins such as xenobiotics 

(drugs, pesticides and food additives) (Lau et al., 2018). Subsequently, the reabsorption of important 

metabolites back into blood circulation are vital for certain metabolic functions. Influence from 

water consumption, nutrient intake and environmental factors (temperature and physical activity), 

can impact the physical characteristics of urine, such as such as colour, odour, density and pH 

(Bouatra et al., 2013). Imbalances of any of these characteristics may indicate disease, reflects health 

status and contribute to the metabolite presence in urine. Colour of urine is usually a mild yellow but 

can vary due to diet and water consumption. A red colour in urine is an indication of kidney damage 

or sexually transmitted diseases, due to the presence of red blood cells. Turbidity in urine is a result 

of crystalline particulates or protein, usually indicating infections or proteinuria. A sweet smell in 

urine is potentially due to ketones and glucose, which is usually observed with diabetics. As one of 

the main functions of kidneys, is the internal acid-base regulation, the pH of urine is heavily 

influenced, with typical readings of healthy urine in the range of 4.6-8. Urine pH can impact 

xenobiotic metabolism. Ionised substances (acidic or alkaline xenobiotics) will readily dissolve in 

urine for excretion depending on the pH. 
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Urine as a by-product of kidney function, and an end-product of pathological cellular processes, 

provides a highly rich matrix which reflect renal status and more importantly, the biochemical 

dynamics within a mammalian system. As urine is formed outside the body’s circulatory system in 

the bladder, consequently, metabolite concentrations can build over a long period providing a 

cumulative longitudinal sample, which reflects the on-going catabolic processes occurring between 

sampling times. In addition, it is readily available, and least invasive, as it can be collected quite 

easily, therefore making it well suited for urinalysis for medical diagnosis, mapping metabolic 

networks and biomarker discovery in metabolomics (Fernández-Peralbo and Luque de Castro, 2012). 

24hr samples if feasible, should be conducted to reduce variability in metabolic profiles as a result of 

change in microbiota activities. Also, first void and mid-stream urine collection is highly 

recommended to reduce bacterial contaminants. Other analytical advantages urine has over other 

biofluids include is it is mostly free of protein (in human, but high in rodents and mice), and higher 

thermodynamic stability of urinary peptides. Storage of urine samples in polypropylene containers 

are not endowed with special properties or preservatives as seen with blood products. Although 

special surfactants and antibacterial agents such has borate has been reported. Storage of urine at -

80°C immediately after collection and has also been reported to be stable for up to 18 months. 

Collectively, urine biofluids require minimal pre-treatment and sample extraction for any 

subsequent urinalysis. 

 

2.3.2 Blood products 
 

Blood is a complex mixture of cells, enzymes, proteins and inorganic substances, accounting for 

approximately 7-8% of human body weight. The liquid portion of blood is plasma, which makes up 

55% of total whole blood volume. It comprises of primarily water, red blood cells (erythrocytes), 

white blood cells (leukocytes) and platelets (involved in clotting). In addition to transporting 

metabolites, mediators and hormones, plasma is responsible for the transport of oxygen from the 

lungs to bodily tissues, bringing with it, nourishment to maintain cell life and in turn removing 

carbon dioxide and waste products of metabolism which inevitably is excreted by the kidney through 

urine. Blood, once sampled, will clot almost immediately. It clots when a protein in the plasma, 

known as fibrin, traps and enmeshes the red blood cells. Serum is the fluid component of clotted 

blood with the clotting process further releasing proteins like proinflammatory cytokines (Schnabel 

et al., 2010) and low molecular weight metabolites like sphingosine-1-posphate (Yatomi et al., 1997) 

back into the serum. The composition of both plasma and serum is unique in that it contains a 

variety of different low molecular metabolites from biochemical processes; be they, energetic 
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substrates, signalling molecules, proteins peptides and lipids with relative differences observed 

between the two matrices dependent upon factors such as sample collection (Yu et al., 2011) and 

incubation(Liu et al., 2010), but due primarily to the clotting process present in plasma (Beheshti et 

al., 1994).  

Blood products require a certain degree of sample pre-treatment in order to maintain and preserve 

the integrity of the measurement of low molecular weight compounds and the analytical platform 

used. Plasma is obtained by centrifugation of whole blood, and the procedure should be harmonised 

for high precision metabolomic investigations, especially if collected at different times or sampling 

locations. Differences in centrifugation protocols can also lead to differences in metabolic profiles in 

plasma (Lesche et al., 2016). Once centrifuged, it is best sealed in an airtight container after addition 

of an anticoagulant and a preservative. Serum can contain either a coagulation enhancer or no 

additive at all. Plasma requires both an anticoagulant and a preservative. The addition of an 

anticoagulants, such as ethylenediaminetetraacetic (EDTA), citrate, oxalate or Heparin, prevents 

clotting whereas a preservative such as sodium fluoride, inhibits the growth of bacterial 

microorganisms. However, these additives can potentially, interfere with certain analytical 

techniques and prevent measurement of certain endogenous metabolites, for example, certain 

heparin salts have been known to interfere with its endogenous counterpart and EDTA and citrates 

can form inactive complexes with calcium (Barton et al., 2010). In addition to the presence of 

additives for metabolite stability, the other significant factors which can cause fluctuations in 

metabolite concentrations, are storage temperature and the time of storage. Collection of blood at 

room temperature and at ice has shown to be susceptible to variation in the observed metabolic 

profile. It has also been established that plasma is stable in long term storage at -80°C for up to 7 

years (Wagner-Golbs et al., 2019).  

Being a truly systemic sample (due to homeostasis), plasma or serum (which can sometimes be used 

as a proxy for blood itself), can provide a snapshot of global metabolism, at the point of collection 

and so are frequently used in metabolomics (Suarez-Diez et al., 2017). However, studies have 

reported that the choice of blood product can influence the metabolic profile. Certain lipids (LPS, 

LPS,), amino acids (arginine, tryptophan, valine, serine and phenylalanine) and glucose have been 

reported to be higher in serum than plasma, whilst levels of citrate, pyruvate, urate, and lyso-

phosphatidylinositol are higher in plasma (Liu et al., 2018). 

Comprehensive coverage of chemically diverse metabolites present in human blood products 

benefits from the use of multiple extraction methods, each oriented toward a small molecule subset 

generally segregated by polarity and hydrophobicity. Whilst recent developments in LC-MS profiling 
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methodologies have delivered numerous solutions for the analysis of polar molecules (e.g., via HILIC-

MS) and complex lipids, the analysis of moderately hydrophobic and amphipathic molecules in blood 

products (including much of the xenometabolome) by RPC methodology, is complicated by the 

suppressive effects of lipids and proteins on the ionisation of low molecular weight (LMW) 

metabolites. Efficient and inexpensive sample preparation methods, such as Protein precipitation, 

liquid-liquid extraction and solid phase extraction have been developed for the separation of small 

molecules from the remaining sample matrix fit for large scale and high throughput applications.  

 

2.3.3 Other matrices 
 

Urine and blood products are typical sample used in untargeted metabolomics, as it offers a non-

invasive approach with regard to sampling. Although there are other more relevant matrices which 

is more informative and offer greater insight on the study at hand. 

The central nervous system (CNS) comprises essentially of the brain and spinal cord. The fluid that 

encompasses and protects the CNS is the cerebrospinal fluid (CSF). CSF protects the CNS by 

regulating of the intracranial pressure together with cerebral blood flow and excretion of toxic 

products as a result of cerebral metabolism (Di Terlizzi and Platt, 2006). CSF mainly comprises of 

water, inorganic salts, proteins and low molecular weight organic compounds. Although it’s a highly 

invasive technique, via a lumbar puncture, CSF samples are utilised in metabolomic investigation 

involving neurodegenerative diseases due to its close proximity to the brain. (Willkommen et al., 

2018). Sample collection, storage and even preparation are similar to that of blood products, 

however studies show that an initial centrifugation step and specific storage conditions, immediately 

after collection is vital for a cleaner matrix, due to contamination of blood or white blood cells 

(Rosenling et al., 2011).  

Faecal samples offer metabolites which are a final product of cellular and microbial metabolism. It is 

an ongoing process which occurs in the gut or intestinal tracts of mammals. Faecal samples comprise 

of metabolites as a result of microbiota bacteria and unwanted waste products from the digestion 

process and so is largely affected by diet. Studies involving faecal samples have therefore given 

insight into the interactions between diet, human metabolism and host-gut microbiota status in 

relation to health and disease (Jain et al., 2019). As faecal sample are a complex matrices, 

preparation usually involves or a combination of freeze drying, sonication, filtration , solvent 

extraction and derivatisation (Deda et al., 2017).  
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The use of tissue samples in studies, although highly invasive, can often be used, as the origin of 

many disease often stems from the ongoing cellular processes in a tissue sample (Naz et al., 2014). 

Histological comparisons of metabolic profiles between diseased and non-diseased tissue gives has 

the potential to highlight the mechanistic pathways associated with disease which may have not 

otherwise been seen on a systemic level (Wu et al., 2008). Analytical challenges associated with 

sample prep often lies with tissue inhomogeneity, collection, sample quenching and extraction.  

Tissue biopsies are a composition of cells in which the intracellular or extracellular contents can be 

characterised. An example is hepatocytes or liver cells, which in vivo – is the primary site for 

metabolism of drugs. In vitro experiments in metabolomic investigations can be conducted on the 

S9, cytosolic and microsome fraction each with different enzymes and metabolites, and particularly 

used in drug metabolism evaluations (Bale et al., 2016). 

Finally, cells which can be cultured from three sources; Primary cultures, cell lines and Stem cells, are 

particularly useful in characterising the biochemical changes in the intracellular metabolome and 

best indicator of an organism phenotype (Nomura et al., 2011).  Quenching, homogenisation and 

metabolite extraction are typical sample preparation procedures which involves stopping enzymatic 

processes and releasing intracellular contents for analysis. The processes are now automated 

however the reagents used in quenching can potentially introduce contaminant metabolites and 

interfere with subsequent analysis (Zhang et al., 2013).  

 

2.4 Sample Preparation Methods  
 

A primary aim in metabolomic investigations, is the detection of as many metabolites as possible. 

Initial steps in any investigation firstly involves representative portion of sampling, then the use of 

cryogenics for storage (store in -80 °Cor freeze drying), buffering and finally metabolite extraction. 

To span the breadth of chemical diversity present in biofluids, comprehensive metabolome coverage 

can benefit from the use of multiple extraction solutions, each optimised to target a specific subset 

of metabolites, segregated by polarity and hydrophobicity. However, the extracted sample should 

closely represent the levels from the original specimen, thereby ensuring chemical stability and 

minimising the amount of chemical reactivity which can occur as a result of metabolite extraction. In 

addition, the type of sample preparation method needs to also be compatible with the analytical 

platform used for measurement.  
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2.4.1 Filtration  
 

Used with both urine and blood samples, filtration is used as a means to filter suspended particles 

and cellular components, often immediately after some kind of chemical pre-treatment. Filtration 

uses a cellulose membrane (0.2-0.45 µm) accompanied with a sodium azide stabiliser which is 

primarily for preventing bacterial growth during storage. Ultrafiltration utilises special filters of 

various molecular weight – 3kDa,10kDa and 30kDa are commercially available. These filters are 

particularly useful for the removal of proteins and other larger macromolecules (Fernández-Peralbo 

and Luque de Castro, 2012). 

 

2.4.2 Enzymatic hydrolysis 
 

Metabolism is the enzymatic conversion of one chemical compound into another. With certain 

metabolites (endogenous or xenobiotics), can sometimes undergo a chemical change to prevent 

toxicity. Endogenous compounds include naturally compounds such as steroids and hormones, 

which are present in urine and blood as glucuronide and sulphate conjugates (Schiffer et al., 2019). 

Examples of xenobiotics are food additives introduced through diet, and exposure to drugs and 

pesticides. All which can be present as sulphate and glucuronide conjugates in urine and blood. The 

majority of xenobiotic metabolism takes place in the liver (hepatic metabolism) and small intestine 

(extra hepatic metabolism) and is referred to as biotransformation. Enzymes in the liver break down 

drugs to more polar metabolites through oxidation-reduction reactions (Phase 1) and/or conjugation 

reactions (Phase 2). This result in metabolites becoming more polar and easily being excreted 

through the urine. Enzymes such as β-glucuronidase and/or sulfatase are commonly used to 

hydrolyse glucuronide or sulphated compounds back to the native parent drug or metabolite This 

offers a solution where conjugated forms may not be commercially available which can hinder 

metabolic identification efforts. Another reason why hydrolysis is necessary is, conjugated forms 

may not be retained on RP chromatographic systems, which will impact measurement ability of the 

analytical method.  

 

2.4.3 Solvent extraction; protein precipitation (PP) and liquid-liquid extraction (LLE) 
 

Protein precipitation (PP) followed by centrifugation is the minimum and most often sample pre-

treatment method used for either quenching, or the efficient extraction of metabolites, whilst also 
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protein precipitating unwanted protein to biofluids prior to LC-MS analysis. Adequate 

deproteinization with polar organic solvents include, methanol (MeOH), ethanol (EtOH) and 

isopropanol (ISP), and acetonitrile (MeCN) have been used to extract mostly polar metabolites whilst 

non polar solvents, such as hexane, chloroform or methyl tertiary butyl ether are used for mostly 

non-polar metabolites (Raterink et al., 2014).  A combination of both polar and non-polar solvents 

has been reported for lipids, amphipathic and moderately hydrophobic metabolites. Occasionally, 

acids can be added to extractions solvents to enhance and stabilise specific compounds such as acyl-

Coenzyme A compounds (Basu and Blair, 2011), phosphoric acids for Triglycerides (Izzi-Engbeaya et 

al., 2018). A major drawback however is that acids can potentially result in an overall reduction in 

sensitivity and ion suppression. Other protein precipitation conditions which need to be considered 

are mixing times and temperature parameters. Temperature at 4°C  and mixing for 15min minimum 

are sufficient enough to prevent any biological degradation (Bruce et al., 2009). So, although may 

not be suitable to capture low-level metabolites, PP is a simple and fast sample preparation 

technique, which can be beneficial for high throughput offering reasonable metabolome coverage.  

The extraction of samples using a biphasic mixture of water, methanol, chloroform or methyl tert-

butyl ether (MTBE), and the subsequent fractionation to concentrate metabolites into polar and 

lipophilic fractions, have been utilised to enhance metabolite signals. The three commonly used two-

phase liquid extraction for lipid measurements are the Folch, Bligh and Dyer and Matyash methods 

(Folch et al., 1957, Bligh and Dyer, 1959, Matyash et al., 2008). Folch and Bligh and Dyer extractions 

result in an aqueous upper layer containing hydrophilic/polar metabolites and a lower organic layer 

containing mostly of lipophilic species. If the lipid rich organic phase is of interest, this can cause 

sample contamination issues, as retrieval would mean penetrating through the upper aqueous layer. 

The Matyash or MTBE method essentially reverses the aqueous and organic phases, thus eliminating 

this issue, however, has reported to have poorer recoveries for the more polar lipid species (Löfgren 

et al., 2012).  

Irrespective of the extraction method used, complete phase separation is desired to allow efficient 

partitioning and recovery of metabolites. This is usually achieved by conducting sample preparation 

procedures at in-vessel temperatures below 0°C and/or the addition of a high concentration of salt 

to the organic phase (salt-assisted liquid-liquid extraction). The extra steps in the sample preparation 

process for solvent extraction using LLE mean it is not very compatible with high throughput 

workflows, and therefor infrequently employed in metabolic phenotyping investigations.  

Moreover, LLE preparations often exhibit larger sample volumes, poor selectivity, matrix effects, 

require the use of glassware (expensive and/or labour intensive) to accommodate solvent choice, 
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and lower analyte recoveries for polar analytes, when compared to PP and SPE protocols (Fiehn et 

al., 2000) (Kole et al., 2011).  

 

2.4.4 Solid phase extraction (SPE) 
 

The use of a combination of PP with SPE, in the form of a disk, cartridge or 96-well plate, has been 

increasingly used for the preparation of samples in metabolic phenotyping studies. Commonly 

described as off-line SPE, these formats allow for simultaneous protein precipitation and filtration, 

whilst also separating target analytes from interfering biological matrix components and enhancing 

their relative concentrations. In brief, biological samples are loaded onto a sorbent where analytes 

are then retained based on the affinity to the sorbent, usually via van der Waals interactions, or 

dipole-dipole interactions, hydrogen bonding, or electrostatic forces (Dettmer et al., 2007). 

Common sorbents include carbon- or silica-based sorbents (C18 or polymeric silica) and ion-

exchange resins. After retention, analytes are then eluted using solvents of sufficient elution 

strength. SPE can also be specifically used as a clean-up technique for biological extracts. Examples 

include phospholipid removal SPE plates, solid phase microextraction (SPME) and dispersive SPE 

(DSPE).  

Commercial SPE plates such as OSTRO (Waters Corporation), ISOLUTE (Biotage) and PHREE 

(Phenomenex) can be purchased for phospholipid removal; these have fast sample preparation and 

analysis times, are suitable for high through put and in some instances, and often demonstrate 

higher reproducibility than manual PP (Walter et al., 2001). SPME can be used without the use of 

solvent and the fibre component can immediately be used on-line and coupled to a separation 

instrument such as GC or LC (Silva et al., 2011). DSPE is performed by addition of the sample to a 

sorbent material suspended in a liquid solvent, for extraction isolation or clean-up of specific 

analytes from complex matrices. DPSE differs from conventional SPE in that the time-based 

component of the extraction mechanism is removed with interactions occurring at a chemical 

specific on or of rate (i.e. at a certain point in time, a percentage of the analyte is bound to the 

sorbent).  

Typically, a compromise between comprehensive metabolite coverage and selectivity is required 

when selecting a sorbent material and eluting solvent. Although SPE is used quite often for targeted 

metabolome analysis, it is not particularly suitable for untargeted global profiling as there is the 

potential to remove analytes of interest and introduce contaminants (Simón-Manso et al., 2013, 

Armirotti et al., 2014). Recently, mixed-mode cation-exchange materials and polymeric resins with 
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weak/strong cation-exchange or anion-exchange sites, in the same sorbent material and online 

sample extraction have been introduced; these allow for higher analyte recovery on account of 

multiple retention mechanisms and thus may permit broader metabolome coverage in the extracted 

sample.(Mitra, 2003).   

 

 

2.5 Design of Experiments 
 

Appropriate experimental design is critical in any scientific endeavour, including the rational 

optimisation of assay conditions. Design of experiment (DoE) methodologies utilise a statistical 

approach to dealing with the complexity involved in the planning and conducting of analytical 

experiments; DoE is an applied statistical tool that can be used to study and measure the responses 

and interactions from a number of experimental factors simultaneously, resulting in an optimal and 

reliable outcome which is both cost efficient and time saving (Jacyna et al., 2018).  

DoE provides an alternative to traditional One-Variable-At-Time (OVAT) approach (Barrentine, 2014) 

that can be used to establish the relationship between two factors; the levels (independent 

variables) of one factor will vary whilst measuring the changes or responses of the other (dependent 

variable). If multiple factors are involved, isolating those responsible for the observed effect would 

be harder to deduce using this approach. Additionally, the independent variables must cover a 

considerable range to be able to examine the desired effect, resulting in a large number of 

experiments that must be performed. With respect to optimisation of analytical protocols in which 

there are a large number of optimisable parameters, OVAT has clear limitations.  

Initial steps for using a DoE approach is the specification of the factors which are to be studied and 

the levels which make up the factor (e.g., particle concentrations or volume of solvent added); 

preliminary screening tests should be conducted to determine which factors are worth considering 

and the experimental range of the levels which may influence the desired response.  

Once these are set, minimum, target and maximum values are defined across the range in which the 

responses can be / are likely to be observed. The response must reflect the experimental 

observation that is to be studied (e.g., the signal intensity of a metabolite before and after a specific 

intervention), so careful consideration must be taken in determining accurate response parameters. 

Once the two factors have been defined, a model or design is proposed that can potentially solve 

the experimental problem (e.g., optimisation of the experimental factors). 
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If the factors are not well known, screening designs (Figure 2-2) can be implemented to determine 

those that are important, whilst minimising the number of experiments to be conducted (Cavazzuti, 

2014). The most common screening design is the full factorial design (FFD), which can be 2 level or 3 

level. This allows the entire experimental domain to be explored (as specified during the 

specification stages) and incorporates the possibility of interaction between factors.  Another 

method is the D-optimal design and is particularly useful when there are unexplored regions in the 

experimental domain. This happens when experimental parameters are beyond the scope of 

exploration or unfeasible for other reasons. D-optimal designs can be implemented when 

optimisation is to be implemented rather than screening. When factors and responses are fully 

defined with confidence in the experimental ranges specified, optimisation designs (Figure 2-2) 

would be more suited. Another example of an optimisation design is the Central Composite Design 

(CCD). CCD are especially useful in sequential experimentation (statistical design methods to 

improve processes when many factors are be studied). It builds on a 2-level full fractional design by 

adding centre and star (axial) points. This means factors can be set outside their centre settings 

extending their ranges. 

Finally, there is the implementation of statistical models and diagnostics to evaluate the 

performance of the designs in order to retrieve as much information from the obtained data for 

high-quality analysis. The data collected by the experimental design are used to estimate the 

coefficients of the model. The model represents the relationship between the response and the 

factors. PLS analysis is widely used for data analysis for omics data (Xu et al., 2016) and when the 

investigation has multiple responses.  

 

 

Figure 2-2. Common screening and optimisation experimental designs within a DOE protocol.  Screening 

methods include A – full factorial 2 variables by 2 levels, denoted as 22, B – full factorial 2 variables by 3 levels 

denoted as 32, C – D-optimal design (2 variables), D – central composite design. 
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2.6 Data Generation 
 

The ensemble of low molecular weight metabolites present in biofluids reflect the state of important 

life processes and respond to / are influenced by a variety of different stimuli such as underlying 

genetics and environmental factors (age, gender, and socioeconomic status).  

Key metabolites include energy substrates, signalling molecules, amino acids, nucleotides, sugars, 

fatty acids, bile acids, proteins peptides and lipid species, and many others.  

Collectively, the metabolite in a biological sample (the metabolome) represent chemically diverse 

range of compounds with a huge range of physicochemical (e.g. size, shape, pH, stability, 

hydrophobicity, solubility, etc.) (Dettmer et al., 2007). Metabolite concentrations in biofluids and 

tissues often exhibit a large dynamic range that can span several orders of magnitude (Cao et al., 

2020). Furthermore, the combinatorial nature of metabolism means that characterising the 

metabolome therefore represents a substantial analytical challenge, as no single profiling method 

can be comprehensive, and it is not feasible to conduct individual assays for all individual known 

components in such complex biofluids. Consequently, spectroscopic techniques that are well-suited 

to providing a large number of parallel analytical measurements for biofluids have emerged and in 

combination offer broad (but not comprehensive) metabolome coverage. As instrumental 

performance increases so too does the resolution and sensitivity of the metabolome measurements 

that can be made. 

 

2.6.1 Analytical techniques in metabolic phenotyping 
 

The analytical platforms most commonly used in metabolic phenotyping are nuclear magnetic 

resonance (NMR) spectroscopy and mass spectrometry (MS); these provide complementary 

metabolome coverage and are amenable to high throughput analysis. Furthermore, they both 

provide complementary structural information, which is valuable in the annotation of spectra and 

identification of unknown sample components.  If applied appropriately, NMR spectroscopy and MS 

can also provide relative and/or absolute quantitation of metabolites in biological samples. The work 

conducted is in this thesis is specifically UPLC-MS driven; NMR techniques are not included in detail. 
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2.6.1.1 Mass spectrometry 
 

Mass spectrometry is an analytical technique involving the filtering and separation of individual 

components within a sample in an ionised form, thereby measuring its abundance and mass to 

charge ratio. A mass spectrometer can fundamentally be divided into three basic components: ion 

source, mass analyser and ion detector.  

The ion formation process used to convert sample molecules to a charged or ionised form has 

evolved throughout the years and is the first step in MS. Common ionisation techniques in which the 

sample needs to be in the gas phase are electron impact (EI) and Chemical ionisation (CI). Essentially, 

vaporised sample is exposed to a region of high ionised reagent gas. The gas is ionised by a similar 

process to electron ionisation where there is the transfer of a proton from the reagent gas to the 

analyte resulting in the M+1 molecular species. It is considered a soft ionisation technique as it 

produces very little to no fragmentation information. EI is considered a hard ionisation technique 

producing molecular and fragment ions. It is the oldest mode of ionisation which works by 

evaporating a solid deposit on a platinum filament and bombarding with a beam of electrons from a 

hot wire filament, thereby ionising volatile molecules, a technique which is still utilised today (Allison 

S K 1952). The need for ionisation sources that would transfer large non-volatile molecules into the 

gas phase without thermally degrading them was essential and the next logical step. This was the 

development of Fast Atom/Ion Bombardment (FAB) and Thermospray ionisation which was 

eventually superseded by electrospray ionisation (ESI) and Matrix assisted laser 

desorption/ionisation (MALDI). It was achieved by the transfer of analyte species, which is ionised in 

the condensed phase, to the gas phase. Once formed, analytes can be electrostatically directed to a 

mass analyser. This meant ionisation can occur with samples coming from an aqueous nature, 

thereby adding a new dimension to this analytical technique, making it almost routine in many 

scientific disciplines. ESI is commonly employed to LC as it is compatible with fast flow rates whilst 

achieving high sensitivity. Sample (i.e. sample and solvent) is pushed through the orifice of a very 

charged metal capillary. The capillary is held at either a positive or negative charge, thus charging 

the ionised sample at atmospheric pressure. A carrier gas such as Nitrogen, often referred to as a 

Curtain gas, flows over the liquid to help nebulise the sample and evaporate any neutral solvent. The 

sample components emerge in as a Taylor cone, formed by the elongation of the solution at the tip 

of the capillary consisting of droplets with a charge of between 50 to 70% of the Rayleigh limit, 

which is the maximum charge a spherical droplet can hold before columbic repulsion overcomes 

surface tension. As the solvent evaporates, the ions within the initial droplet move closer together 

and approaches this limit (Rayleigh, 1882). Uneven fission occurs which ejects offspring droplets.  
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Ultimately, solvent free ions are produced at are passed through to the mass analyser from 

atmospheric pressure into a vacuum, via the MS aperture, which can be polarised with either a 

positive or negative charge. This can be beneficial for metabolites that have a greater affinity to 

ionise in a specific polarity. Using polarity switching during or after an analytical run can increase 

metabolome coverage. More recently, desorption electrospray ionisation, allows for formation of 

ions at ambient environment outside the MS without the need for any sample preparation (Cooks et 

al., 2006). A somewhat similar approach is used by the DART (direct analysis in real time) method 

(Cody et al., 2005). 

Mass analysers disperses ions based on mass to charge (m/z) ratio by focusing all ions to a single 

focal point thereby maximising its transmission. For global profiling applications, mass analysers 

need to be able to; 1) acquire data rapidly over a broad range of m/z and operate at 2) high accuracy 

and 3) high resolution.  The first point satisfies most modern UPLC/MS/MS separations. Increases in 

acquired MS data points which permits better defined LC peak shapes, are observed with most 

modern UPLC/MS/MS systems with accurate quantitation of a chromatographic peak requiring at 

least 10 data points per peak as standard over the spectral range. Time-of-flight (TOF) mass 

analysers can perform up to 500 data points per second over a mass range of 1000 Daltons, and 

even faster when in tandem with a quadrupole.  When coupled to UPLC, peaks can be generated 

with widths of less than a second. This means as the number of data point increases, so too does the 

resolving power and therefore the resolution of an instrument. Resolving power and resolution are 

terms used interchangeably in mass spectrometry, although differ when relating to performance. 

With TOF mass analysers, the resolving power is fixed throughout the m/z range and adopts the 

valley definition which describes the ability of an instrument to distinguish two adjacent ions of 

similar mass taken at 10% of the height of the peaks. Resolution adopts the peak-width 

definition. This is where the resolution of the instrument can be expressed as a function of peak 

width at a percentage of the maximum peak height at a given m/z of a single spectral peak (Urban et 

al., 2014). Mathematically denoted as the mass  and the mass difference  resolvable for 

separation at :  

 

      (2. 1) 

 

This is critical when analysing complex biofluids which contains thousands of metabolites of similar 

mass.  
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Finally, the third point, is mass accuracy, reported in  and is calculated by comparing the 

theoretical ion (exact mass) to an experimentally measured ion (accurate mass). The quotient is 

further multiplied by a constant value of 1000000, providing a more convenient integer to report 

when dealing with instrumentation that can measure at high accuracy. Mass accuracy is therefore 

reported in units of parts per million (ppm): 

 

    (2. 2) 

 

The exact mass provides additional confirmation on the empirical formula of an analyte whereas the 

accurate mass is a measurement of an ions mass to within a specified error. High mass accuracy 

measurement is usually reported to within 5 ppm. Other options for mass analysers include the 

quadrupole and Orbitrap analysers.  

A quadrupole mass analyser comprises of four symmetrically hyperbolic rods arranged in parallel. 

Ion sorting is based on applying, simultaneously, a constant DC voltage and radio frequency (rf) 

electric fields between a pair of rods. Scanning is then accomplished by changing magnitude of the rf 

and DC voltages but keeping ratio constant which results in in the ions undergoing a forward motion. 

As the ratio of voltages are interchanged, specific m/z will be stable and proceed through to the 

detector. When used as a single m/z filter, its offer less resolution than TOF and Orbitrap, and longer 

acquisition times, as measurement involves scanning a specific m/z window over the entire m/z 

range. TOF is most suited for untargeted global profiling and metabolic identification due to their 

higher mass resolving power, and rapid scanning capabilities which result in covering a wider mass 

range with higher mass accuracy. In a TOF, packets of ions are extracted into a flight tube, in short 

ionisation bursts or packets, and subjected to an accelerating voltage (Wolff and Stephens, 1953). 

Orthogonal acceleration is one of many options to create packets of ions, with ion optics producing 

either a transverse (90°) or oblique (3° and 10°) drift trajectory (Guilhaus, 1994). Ions are accelerated 

across identical distances  which result in them having the same kinetic energy , but velocity 

 is dependent on kinetic energy and mass (mass  is a reflection of m/z), and so lighter ions will 

have a greater velocity than heavier ions and therefore a shorter flight time . To increase mass 

resolution, a reflectron is also added to the TOF analyser. The reflectron is a series of lens which are 

held at contact electrostatic fields that reflects the ions back to the detector. The more kinetic 

energy ions have, the deeper they penetrate into the reflectron, therefore taking a longer path to 
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the detector. Ions which are multiply charged will also travel faster than less charged ones. The 

equation below describes the formula for kinetic energy.  

 

      (2. 3) 

Rearranged, 

      (2. 4) 

 

The detector measures the time delay between the formation of the packets to when they strike the 

detector at the end of the flight tube. Combining the very known   with equation X (above), 

yields;  

 

      (2. 5) 

 

Accurate measurement of the flight time (which include time for electronic interfaces), with 

calibration measurements, will correspond to an accurate mass value. Depending on the mass range 

the analyst wishes to observe, the simultaneous observation of acceleration and detection can be 

repeated tens-of-thousands of times per second, which can be sufficiently wide enough to transmit 

and capture low molecular weight compounds. Mass resolution, higher to that observed with TOF’s 

can be achieved with the Orbitrap mass analysers. In an Orbitrap, ions are injected tangentially into 

an electric field generated by electrodes and trapped, essentially taking the ions off-line. Ions cycle 

around and along the electrodes which allows ions of a specific m/z to oscillate at a frequency which 

is inversely proportional to the square root of the m/z. TOF and Orbitrap mass analysers are 

compatible with UPLC, however with an Orbitrap, resolution is inversely proportional to the data 

acquisition rate. This is a factor to be considered for high throughput analysis. Furthermore, to 

having higher data acquisition speeds, developments in TOF analysers have demonstrated higher 

sensitivities and are superior in accurately establishing isotopic abundance patterns, which are vital 

for metabolite identification (Kind and Fiehn, 2006, Rousu et al., 2010). As the combination of high 

resolution and sensitivity is generally required in metabolic phenotyping, mass analyser operating in 

tandem is commonly used in place of single filters. A single Quadrupole’s as a filter, will offer low 
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resolution and therefore less suited for untargeted profiling. However, when in tandem, offer 

greater selectivity and sensitivity, which can be significant in both qualitative and quantitative 

applications. Common configurations are the triple quadrupole (TQ), and the quadrupole-TOF mass 

analysers (Q-TOF). A common method for fragmenting molecules involves the use of collision 

induced dissociation (CID).  The ions are accelerated from one analyser to the collision cell where it 

collides with a neutral gas (often argon or helium). The kinetic energy on impact equals the internal 

energy of the covalent bonds, resulting in vibrations and ultimately cleavage of the bonds which 

produced characteristic molecular fragments in a reproducible manner. Whether it is a TQ or Q-TOF, 

the first quadrupole in the series of analysers, provides pre-selection of molecular ions, that is to be 

passed on for fragmentation. The TQ allows for multiple scanning modes, precursor ion scan, neutral 

loss scan, product ion scan and multiple reaction monitoring. MRM boasts the highest sensitivity and 

wide dynamic range of detection. Here, quadruple 1 (Q1) is fixed to filter a specific precursor ion, 

whilst the second quadrupole (Q2) is used as the collision cell to produce product or daughter ions 

specifically selected by quadrupole 3 (Q3). This is particularly useful in metabolite identification and 

quantitation applications. For routine profiling applications in this thesis, a Q-TOF was used, wherein 

the quadrupole and collision cell were selectively disabled allowing for ions to pass through to the 

TOF mass analyser for measurement.  

 

2.6.1.2 Liquid chromatography 
 

A chromatographic system consists of a moving phase and a stationary phase in contact with each 

other, where a specific sample can be separated into individual parts. Changing the nature of these 

phases can create different forms of chromatography. One form that is finding increasing utility in 

metabolic phenotyping investigations, is liquid chromatography. Its moving phase is a liquid that is 

pumped through a column filled with fine solid particles. The surfaces of these particles are 

chemically treated with an adsorbent material. Silica gel and Alumina are amongst the most popular 

adsorbents used. As the liquid moving phase (mobile phase) is pumped through the column, 

different components of the sample are separated and retained, based on molecular structure 

and/or polarities, to various degrees, depending on their affinity with the stationary phase or mobile 

phase. This leads to a separation of different components making up the sample mixture. The time 

taken for individual components to elute from a column is known as the retention time. 

Liquid chromatography can be utilised in a number of different ways depending on an analytes’ 

physico-chemical properties. The two main types of liquid chromatography which can found and 
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applied to all fields are RPC and Normal phase. Both modes of chromatography are based on 

polarities of the sample and its interaction with the mobile and stationary phases. In RPC mode, the 

mobile phase is either a pure polar solvent or a mixture of various polar solvents while the stationary 

phase is a nonpolar solid or a liquid (Aygun and Ozcimder, 1996). Polar compounds elute first 

followed less polar compounds. In normal phase, a polar mobile phase is chosen, such as n-hexane. 

The stationary phase can either be silica; alumina or modified silica which is generally called bonded 

phases, such as Si-CN or Si-NH2 (Abbott, 1980).  The opposite is observed here where, polar 

compounds will elute later (longer retention times).  Hydrophilic interaction liquid chromatography 

(HILIC) is similar to normal phase with the main difference being the use of water immiscible organic 

solvents as the mobile phase. Polar molecules are well retained and elute in order of increasing 

hydrophilicity (Li and Huang, 2006). Normal phase or HILIC can be run complimentary to RP as polar 

molecules on a RP system will have very fast retention times resulting in co-elution of many peaks, 

running normal phase or HILIC will enable high resolution and separation of these types of 

compounds. Other forms of liquid chromatography include ion exchange and size exclusion 

chromatography. In exchange chromatography consists of two types, cation exchange, in which the 

stationary phase carries a negative charge, and anion exchange in which the stationary phase carries 

a positive charge. Charged molecules in the liquid phase pass through the column until a binding site 

in the stationary phase appears. The molecule will not elute from the column until a solution of 

varying pH or ionic strength is passed through it. Ion exchange chromatography is commonly used in 

the purification of biological materials (Cummins et al., 2011). Size exclusion chromatography, does 

not involve any adsorption and is extremely fast. The technique uses porous gel which allows 

separation of larger molecules which cannot penetrate the pores to elute first. This method is 

common in protein separation and purification (Irvine, 2001). Another separation technique used in 

liquid chromatography can be achieved by switching from an isocratic elution (same eluent 

throughout) to a gradient elution. This is done by mixing two or more different eluents, such that the 

mobile phase composition changes over time. This gradient elution offers the most complete 

separation of the peaks, without taking an inordinate amount of time. A sample containing 

compounds of a wide range of polarities can be separated by a gradient elution in a shorter time 

period without a loss of resolution.  

It is this selectivity, fast analysis times, low solvent consumption and increased sensitivity that liquid 

chromatography has come a long way from its early days as a form of partition chromatography to 

what it is today. The introduction of ultra-performance liquid chromatography (UPLC), which 

permitted the use of smaller column particles in combination with high flow rates to provide fast 
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and efficient separations, has been particularly beneficial in metabolome analysis, and affords vastly 

superior results in a fraction of the analysis time. (Wilson et al., 2005).  

 

2.6.1.3 Hyphenated and parallel analytical platforms 
 

The high sensitivity (ng, pg levels) of MS detection makes it an important method for measuring 

metabolites in complex biofluids. Mass spectrometry for profiling applications typically uses a high-

resolution measurement system, which aids in the high specificity of the technique where the 

accurate molecular mass is well distributed across the detectable range. A high-resolution 

measurement system that enables accurate mass measurements allows for the elemental 

composition of many chemical compounds to be determined and the ability to distinguish between 

isobaric compounds.  

Although the ionisation process required to form ions for mass spectrometry can be susceptible to 

ion suppression or enhancement, these effects can be minimised via the use of chromatographic 

techniques. When hyphenated to a chromatographic technique, the ability to acquire data in three-

dimensions, i.e. retention time, mass to charge and intensity, results in a highly sensitive and 

selective technique which reduces the influence of co-eluting matrix components and therefore 

makes it a complementary platform to NMR.  

Combing strengths from multiple analytical techniques, can aid in structural elucidation, and 

therefore the identification of unknown analytes which creates an opportunity to broaden 

metabolomic research (Whiley et al., 2019, Bhinderwala et al., 2018). The work in this thesis focuses 

on data derived only from UPLC-TOFMS systems (Figure 2-3) which have been set up for 

phenotyping applications at the NPC.  

 



Background Information and Techniques for Metabolic Phenotyping 

 

56 
 

 

Figure 2-3. Typical schematic of a U/HPLC system coupled to Q-TOF mass spectrometer. 

 

2.7 Pre-processing of Spectroscopic Data for Metabolic Phenotyping 
 

2.7.1 Sources of variation 
 

Advances in LC-MS allows for the separation and detection of thousands of metabolites in biofluids. 

The variation in metabolite concentrations and the ubiquitous role metabolism plays in biochemical 

processes are crucial in metabolomics.  

The performance of all analytical devices are prone to the effects of environmental and sample 

conditions, and it is common practice to ensure any drift in performance is characterised so that 

assay quality can be determined, and, where appropriate, adjustment made to ensure data are 

comparable. Compared to other analytical devices, LC-MS instrumentation often exhibits 

considerable systematic over the course of sequential analyses within a batch, and inter-batch 

variability. This variation predominantly affects retention time (drift) and signal intensity 

(sensitivity), discussed below.  

 

2.7.2 Batch effects 
 

Often with metabolomic datasets, studies are split into batches to preserve the integrity of the 

components that make up an LC-MS system, thereby reducing the analytical variation observed with 

the instrumentation.  Whilst cleaning, conditioning, calibration, randomisation of samples and 

limiting the number of samples within an analytical batch can mitigate some of the analytical 

variation observed, the analysis of larger sample batches, will not account for all of it. Analytical 
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variation can arise from a variety of different sources primarily due to sample interaction with the 

analytics of the instrumentation. Such sources include, variation  and gradual contamination of the 

stationary phase, variability in mobile phase preparation, e.g. pH, fluctuations in electrospray 

ionisation and gas flows, aging detector, changes in the  ambient temperature and random 

imprecision in measurement, all of which can result in nonlinear retention time drift, and drift in 

detector response (Podwojski et al., 2009, Watrous et al., 2017). Therefore, there are ways to 

minimise and reduce variation specific to LC-MS.  

 

2.7.2.1 Retention time drift 
 

To account for retention time drift, several software packages exist, and have been implemented for 

pre-processing of untargeted metabolomic LC-MS datasets (Libiseller et al., 2015, Smith et al., 2006, 

Katajamaa and Orešič, 2005, Pluskal et al., 2010, Scheltema et al., 2011, Lommen, 2009). Proprietary 

software like Progenesis QI or open source software like XCMS (Tautenhahn et al., 2008, Smith et al., 

2006), are such packages. Fundamentally, the software is a collection of algorithms that expedite the 

tedious but highly intuitive process of detecting, grouping, and aligning of LC-MS signals (herein 

referred to as features or variables, comprising of retention time, m/z and signal intensity) across 

multiple samples. Simply, peak detection involves locating spectral features that appear to exhibit a 

Gaussian distribution. Peaks over the m/z range are then searched across the chromatographic 

retention time range. All detected spectral features from a selected sample, are used as an 

alignment reference to which all corresponding features from all samples are corrected based on 

similarity in m/z and retention time.  

 

2.7.2.2 Signal drift 
 

Drift in signal intensities require different strategies for correction. This can be addressed at various 

stages of the metabolomic workflow, ranging from how samples are prepared, to during the sample 

acquisition process, and finally on the already acquired data. The spiking of reference or internal 

standards and then normalising to the intensity observed, is common practice in analytical 

experiments and can be used to correct for variability due to analyte loss in sample storage or 

extraction. Internal standards for relative retention time calculations can also reduce the uncertainty 

due to retention time drift and variation. There are limitations however to this method. Standards 

need to not interfere with metabolites and preferably be naturally occurring to be somewhat 
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representative to the class of metabolites which care being studied. Usually, stable isotopes or 

structural analogues are used. However, an untargeted metabolomics experiment can result in the 

detection of thousands of metabolites, the type and number of internal standards used may not be 

representative and spiking many standards to account for this can be expensive and labour intensive 

(Ejigu et al., 2013).  

Recently, the application of a detector gain control which increase gain response based on 

instrument performance have proven successful in achieving robust and reproducible 

measurements on the raw data without the need for post normalization or informatic correction 

(Lewis et al., 2016). The magnitude of the voltage that is applied to the detector in a waters UPLC-

MS, is adjusted accordingly to account for any changes in the background chemical noise acquired 

for each sample in an analytical run. This therefore provides a means to adjust and minimise drift or 

fluctuations which have been affected due to analytical sources of variation. In addition, there is the 

added benefit of correcting signal intensity during sample acquisition which would have otherwise 

been loss and no amount of correction post analysis would have been able to restore. 

Post-acquisition correction for signal drift utilises methods which are feature specific. Such a method 

is the quality control based robust local regression (LOESS) signal correction (Dunn et al., 2011). 

LOESS regression improves the overall precision in the data by eliminating the longitudinal drift 

observed within an analytical batch. LOESS regression applied in this thesis is an adapted version of 

the LOWESS approach proposed by Dunn et al. At each point in the data, a polynomial is fitted to a 

subset of the data using weighted least squares, giving more weight to points near the point whose 

response is being estimated and less weight to points further away. The smoothing parameter then 

determines how much of the data is used to fit each polynomial, in this case, the default window for 

the LOWESS smoother is 11 QC samples. So, for each MS feature, the LOESS estimator is fitted every 

11th QC sample within the analytical batch to avoid overfitting.  In this implementation, the LOWESS 

estimator is a cubic spline function which is fitted to the SR samples. Next, the value for each feature 

in a sample is corrected by dividing the original intensity value to that of the interpolated value given 

by the cubic spline fit at its position in the run order. The same procedure is undertaken with the QC 

samples and then finally the drift in the signal is calculated by taking the ratio between the study and 

the closest QC sample in the analytical sequence. To ensure features detected in the study sample 

are present in the QC sample, a pool of all study samples is usually recommended for this analysis 

thus reflecting the average metabolite concentration and is representative of the entire dataset. 

Pooling of samples from multiple analytical batches may also serve this purpose and can be done in-

house or commercially bought. Commercially available QC samples can be found for matrices like 

urine and blood but can prove difficult for other biofluids. The application of this LOESS regression 
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method and identical QC samples acquired regularly, will not only correct for signal drift within 

batches, but also between batches, allowing multiple batches to be merged, which can often be the 

case for large MS based metabolomic investigations.  

 

2.7.3 Biological variation  
 

Fluctuations in signal intensity can also stem from the complexity of metabolites associated with 

biofluid. Most matrices, such as plasma, serum, and cerebral spinal fluid, are physiologically 

controlled (Knepper et al., 1989). The diversity of urine however can exhibit large biological variation 

and is primarily a result of differences in concentration of metabolites which can be due to several 

factors. Natural differences in abundance between metabolites are common. Signal metabolites and 

metabolites as a result of central metabolism are generally lower or remain constant like Creatinine, 

whereas metabolites such as ATP or P-Cresol are generally larger in magnitude under identical 

experimental conditions. But not only that, certain metabolites can exhibit large fold changes 

between individuals based on physiology, genetics and environment. In urine biofluid, it has been 

reported that there can be a 20-fold change in water dilution (provide there is no renal impairment) 

which would significantly impact the concentration of metabolites (Yamamoto et al., 2019).  In 

addition, there are also disease and pathophysiological factors and exposure confounders such as 

nutrition, medication and diet, that can influence the concentration of metabolites (Tsuchiya et al., 

2003), further complicating interpretation and comparison of samples in an metabolomic 

investigation. The important thing to note however, is that high concentration metabolites are not 

any more intuitive than low concentration metabolites.  

 

2.7.3.1 Creatinine and osmolality normalisation 
 

The most reliable way to account for differences in metabolite concentrations in urine, is the 

collection of a 24hr sample which is planned in the study design (Warrack et al., 2009). This however 

can be a tedious process for both patients and researcher, so one collection submitted to the 

metabolomic study is often the case. As a result, signal variation in the acquired data tends to be 

heteroscedastic in nature, arising from both analytical and biological sources, and so normalisation 

methods can be applied post sample correction, to correct for signal intensity differences and 

stabilise the variance observed (van den Berg et al., 2006). One such way is normalising to the 

endogenous metabolite Creatinine (Alberice et al., 2013). Creatinine in urine takes on the 
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assumption that there is a constant excretion of the metabolite and if a quantitative measurement is 

available, one can normalise by dividing the intensity for each feature to either the intensity of the 

ion relative to Creatinine or to the concentration quantified in NMR. Limitations of this method is 

that the assumption holds through provided there is no kidney impairment associated with the 

study, and creatinine in urine has been shown to have a minor age dependence (Gu et al., 2009).  

Osmolality is another correction used to normalise urine measurements, and is largely unaffected by  

age, gender, diet and general health (Chadha et al., 2001). It is a measure of the concentration of 

solutes in biofluids and so is representative of the total metabolite output observed in urine 

matrices. Often used as the golden standard of estimating urinary concentration, osmolality 

determination is not always available in clinical laboratories, and so other clinical tests, such as 

freezing point depression or specific gravity, are used as an estimate (Chadha et al., 2001). These 

two clinical tests highly correlate to urinary osmolality, and readings are used and normalised in the 

same way as Creatinine measurements.  

 

2.7.3.2 Statistical normalisation 
 

In addition to these methods, are exclusive statistical approaches like MS total useful signal 

(MSTUS), median fold change (MFC) and probabilistic quotient normalisation (PQN). MSTUS forces 

all samples to have an equal total intensity, dividing the intensity of a feature to the sum of all 

features detected in a given sample (Warrack et al., 2009). The methodology is similar to that 

observed in proton NMR-based metabolomic analyses (Craig et al., 2006). Features considered for 

this normalisation must be present in all samples and although works well with the majority of 

stable features, metabolites which are large and variable in intensity, as in the case xenobiotics 

(which are the result of external exposures), can compromise the normalisation. PQN operates 

under the assumption that changes in metabolite concentration, as a result of urinary dilution, 

affects the entire profile whereas biological changes only affect parts of the profile. It was originally 

proposed by Dieterle et al (Dieterle et al., 2006) and applied to NMR data. Briefly, an integral or total 

area normalisation is firstly conducted in order to scale the data to approximately the same 

magnitude. After which, a quotient for each variable, between the reference sample and all study 

samples are calculated. The reference sample is the gold standard reference spectrum, either from a 

database or mean spectrum of all spectra in a study. Next, the median of the quotients is calculated, 

and finally all variables are divided by its specific median. A similar principle was applied to MS data 

but labelled as MFC (Veselkov et al., 2011) and a similar assumption made where peak intensities are 
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directly proportional to metabolite concentrations  so any changes in the  overall profile of a sample, 

either by urinary dilution or fluctuations in the analytics of the instrumentation, would result in the 

same change and is linearly proportional to individual spectral features. For this normalisation, the 

data is rescaled by adjusting the median of the log fold change in peak intensities. As a result, all 

variables are distributed around zero. The major differences however are; a) there is no prior total 

area normalisation; and b) the reference sample can be a random sample selected from the study or 

a calculated median value from all samples for every given feature. Normalising this way, does not 

address or remove analytical drift which is observed with LC-MS acquisition. This can be an issue 

with large analytical batches and so a correction prior to MFC would be required. For all data 

analysis involving urine datasets in this thesis, LOESS regression for analytical drift correction is firstly 

applied, then a filtering protocol for the selection of high quality features which are shown to be 

measure accurately with respect to intensity, i.e. scale with dilution and reproducibility of features in 

the QC sample (measure by relative standard deviation) (Sands et al., 2019), and finally PQN to 

address biological variation.  

 

2.7.4 Feature quality (filtering) 
 

A deficiency of the pre-processing software packages is its inability to perform any advanced feature 

filtering. Filtering aims to reduce the spectral complexity observed with LC-MS data by reducing and 

removing non-relevant features and are usually applied post normalisation to ensure data quality. 

Features which are reported need to be considered as “real”, i.e. features which are of low 

abundance against features which are a result of chemical noise and artefacts from the analytical 

system, or artefacts from the feature extraction process. Open source software such as XCMS 

incorporate basic filtering algorithms such as Minimum fraction filters to look for valid features 

present in a minimum number of samples within a sample group. The downside to this is that 

xenobiotics or metabolites detected in only a handful of samples, maybe filtered out prematurely. 

The Minfrac setting used for all project data in this thesis is set at 0.4. Not all software packages 

utilise a similar algorithm such as Minfrac, and so prospective filtering techniques are needed, i.e., 

the measurement of relative standard deviation (RSD) on each feature via the use of pooled QC 

metrics at repeated injections throughout the analytical run and in addition, a dilution series based 

on these QC samples, as a measurement of correlation to dilution. This method for filtering is 

applied for all datasets used in this thesis (Lewis et al., 2016).  
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2.8 Analysis of Metabolic Phenotyping Data 
 

Metabolic phenotyping platforms ability to measure complex biofluids containing of thousands of 

different metabolites, would typically result in datasets where there are more variables than 

samples (Posma, 2019). As such, computational approaches are required to handle such large 

datasets, but also the correct use of statistical analyses is required to extract meaningful information 

and interpret the results in a biological context. When finding associations between spectral features 

(variables) among all samples (observations), classical univariate tests, such as t-tests or correlation 

analyses can be used.  However, with such an elevated number of features typical of LC-MS based 

analyses, the repetition of any of these univariate tests increases the chance of false positives (FP). 

Although, multiple testing techniques can be used to reduce such issues, multivariate approaches 

can expose shared variable associations and are well suited in molecular phenotyping. The 

application of multivariate analysis accounts for reduction in spectral complexity, compensate for 

multicollinearity and to help visualise and identify patterns and similarities (clustering) between 

observations. 

 

2.8.1 Univariate data analysis 
 

2.8.1.1 Two sample t-tests 
 

The two-sample t-test is a bivariate analysis with the ability to differentiate the means between two 

groups of sample data. It is different to a one sample t-test which compares the mean of the entire 

population to that of a theoretical value. The two-sample t-test can be either paired or unpaired. An 

unpaired test involves comparing means from two independent samples sets, whilst a paired t-test 

compares means of two related groups of sample sets. The dataset will dictate the appropriate t-test 

method, as certain methods come with certain assumptions. Traditional two sample t-test assumes 

data is continuous, normally distributed and with equal variances. Welch’s t-test is appropriate for 

unequal variance but still assumes a normal distribution. The Wilcoxon-Mann-Whitney ranks the 

data prior to calculation of the t-test. It therefor allows for non-normally distributed datasets. The 

absolute value of the calculated t-test statistic using either of these methods, can then be used to 

determine if the difference is significant. If the level of significance or p-value used for the t-test is 

smaller than the cut off value, then it fulfils the hypothesis that there is no significant difference 

between the specified groups. 
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2.8.1.2 Correlation 
 

Correlation is a bivariate analysis and a measure of the strength and direction of the relationship 

between two continuous variables. It is a widely used inferential statistical procedure used in 

multiple disciplines. Correlation is a measurement of the covariance. Covariance relates to how 

variables change with each other and uses only the sign to indicate the direction of the relationship. 

If the covariance is positive in a bivariate analysis, it means both variables increase together. If 

negative, it means as one variable increases, the other decreases. Correlation gives more 

information than covariance by also describing the strength of the association by the magnitude of 

the correlation.  A high positive correlation indicates a strong relationship between two variables. A 

high negative correlation indicates a scenario where the variables move in opposite direction and so 

the increase in variable 1, is associated with a strong decrease in variable 2. The number associated 

with the correlation statistic is referred to as the correlation coefficient and is a result of specific 

correlation method. Popular methods are the Pearson and Spearman methods (Mukaka, 2012). The 

correct usage of correlation coefficient type depends on the types of variables being studied. 

Pearson correlation coefficient measure the linear relationship between two variables and assumes 

that both variables follow a normal distribution. For a correlation between variables  and , the 

correlation coefficient, denoted by , has the following formula for a Pearson correlation: 

 

    (2. 6) 

 

where  and  are the values of x and y for the ith individual. The method is not robust to outlier 

samples and can falsely give a high correlation. A spearman rank correlation, however, does not 

carry any assumptions on the normality of data and is more robust to outlier samples. The method is 

used when changes between two variables occur at the same relative direction, but are not 

necessarily linear, i.e. when variables have a monotonic relationship. Unlike Pearson, the Spearman 

correlation coefficient is calculated based on ranked values of the variables rather than on the raw 

data and can be used for both continuous and ordinal variables. Briefly, every sample within the 

variable is given a rank score (e.g. 1 is the highest rank and 10 is the lowest rank based on a 10-

sample dataset), next, the difference between each rank for that observation is subtracted and 
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squared. The addition of these squared values, denoted by , is calculation for the Spearman 

correlation coefficient in the formula:  

 

     (2. 7) 

 

Relationships using correlation coefficients determines associations not causal relationships. In the 

context of metabolomics, high pair-wise metabolite correlations may reflect metabolites that 

potentially belong to the same pathway of a metabolic network (Fiehn et al., 2000). Chemometric 

methods have been developed, such as statistical total correlation spectroscopy (STOCSY), which 

takes advantage of the multicollinearity and high correlation that maybe observed between spectral 

features arising from the same pathway, molecules with a common structure, and xenobiotics and 

direct metabolites (Cloarec et al., 2005, Crockford et al., 2008, Holmes et al., 2007). Statistical 

heterospectroscopy (SHY) extends this approach to provide correlation linkage across datasets 

produced by two different analytical spectroscopic platforms (Crockford et al., 2008). 

 

2.8.1.3 Linear regression 
 

A simple linear regression model assumes a linear relationship between one predictor input variable 

(independent) to a specific response or outcome (dependent), with both being a continuous numeric 

value. When there is more than one input variable, linear regression then models the relationship 

between the multiple variables to their outcomes. This is known as multiple linear regression (MLR).  

The fundamental equation of a standard generalised linear model with one variable is denoted by 

the following equation; 

 

      (2. 8) 
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And with multiple variables; 

 

    (2. 9) 

 

Where  is the response variable and  are the predictor variables. The equation assigns regression 

coefficients, denoted by the Greek letter beta β, and represents the strength and influence of each 

variable to the response variable. In order to produce (or train) an equation and fit a regression line 

to the data, the most common method used is ordinary least squares or least squares regression. 

The method works by implementing a line (linear model) or regression plane (multiple regression 

model) that best fits the data. The algorithm is mathematically described as the minimum or least 

sum of squared residuals and as a result, fits a line that constitutes the smallest vertical distance, 

also referred to as errors or residuals, between each observation to the regression line or plane. 

Now that a model is constructed based on the data, we can use this model to make predictions on 

the response variable based on values of the predictor variables with new observations. In addition 

to predicator variables, are confounders. These are variables that share an association with both the 

response and predictor variables. Failure to identify these variables can distort the influence of the 

other predictor variables to the model. Age and gender are frequent confounders.  

 

2.8.1.4 Logistic regression 
 

Logistic regression (LR) (Cramer, 2002) is another regression type that utilises discriminant 

algorithms i.e. two classes or groups. LR utilises a classification algorithm by predicting the 

probability of a particular outcome where the response variable is binary or dichotomous, given a 

set of predictor variables. It therefore differs from linear models which assumes that the response Y 

is continuous, and predictions of the Y output is numeric ranging from negative to positive infinity. 

With logistic regression, the probability of an outcome is confined to values between zero and one 

and fits a line that best separates the two classes.  However, if a linear model was projected onto a 

dataset with a binary outcome, it would be difficult to interpret. In addition, outlying samples can 

significantly skew regression lines. A way around this is the use of a transformation logistic (or logit) 

function that coverts Y to lie on the interval -infinity to infinity, also called the log(Odds): 
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    (2. 10) 

 is the expected probability that an outcome is present and so can be read as the ratio of the 

probability that an observation falls into a particular class, (y), divided by the probability that the 

same observation is not a member of the class, (y). Log transformation of the Odds, therefore, 

turns the Y variable from binary to continuous and is modelled to resemble a multiple linear 

regression equation: 

 

   (2. 11) 

 

 through to  are the predictor variable and   through to  are the regression coefficients. As 

the y-axis now ranges from +infinity to -infinity, the use of residuals and least squares, as seen in 

linear models, cannot possibly apply. Instead, LR uses maximum likelihood. The process that starts 

off with a candidate log(Odds) line, where each observation has a specific log(Odds) value. 

Transformation back to probabilities, occurs via the following equation: 

 

     (2. 12) 

 

Graphically, the line takes a sigmoid shape. The likelihood (y-axis) for each observation can now be 

extrapolated from the sigmoid line, log transformed and added (likelihood =  (y), if it belongs to the 

class, and likelihood = (y), if it doesn’t). The sum is the overall log-likelihood of the original 

candidate log(Odds) line. This is an iterative process where the algorithm projects another log(Odds) 

line, but pivoted in a way where the loglikelihood is higher in magnitude. The optimal logistic 

regression line is one where the loglikelihood value is the highest, i.e. the line with the maximum 

likelihood estimation and therefore the best fit. 
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2.8.2 Statistical significance 
 

Statistical significance tests the likelihood that a measurement or result is not attributed to chance. 

Utilizing the concept of a “null hypothesis”, if true, then no difference or association is observed in 

the desired statistic. In the context of a correlation analysis between two variables, a correlation 

coefficient gives an indication of the relationship between two variables (direction and strength) and 

whether the relationship observed in the sample data is strong enough to model in the larger 

population. Therefore, the reliability of the model is dependent upon not only the correlation 

coefficient, but also the number paired data points in the sample. Testing the significance of the 

correlation coefficient takes into account both points. So, although the relative correlation 

coefficient maybe low in magnitude, a larger sample size may result in a correlation to still be 

statistically significant. Similarly, in regression models, especially with multiple predictor variables 

statistical significance can evaluate if the coefficients of certain predictor variables are statistically 

significant in relation to the response variable. It can therefore be used as a means of variable 

selection (Balding, 2006, Sterne and Davey Smith, 2001).  

Whether its correlation or regression, statistical significance can be undertaken by estimating the p-

values or the probability values of the coefficients. The p-value tests the null hypothesis that a 

coefficient is significantly different from zero. If a p-value is low, i.e. less than the stated significance 

level (α) e.g. 0.05, it indicates that there is enough evidence to reject the null hypothesis and the 

measured variable has an effect. Conversely, a larger p-value for a variable has no effect. In a 

correlation analysis, if p-value is less than or equal to α, the correlation is different from zero and is 

statistically significant. If the p-value is more than α, then one cannot conclude that the correlation is 

different from zero and is therefore not statistically significant. Using p-values for regression 

coefficients implies all variables in a model to be treated individually (univariate) in relation to the 

outcome, and only the significant variables are included into the final regression model. Indeed, as 

the number of variables increase in a univariate analysis (correlation and regression) or multivariate 

analysis (regression), the higher the chance that certain variables maybe deemed significant by 

chance, resulting in false positives. The significance of the p-value in this instance is therefore 

representative of the Type 1 error, which is a false rejection of the null hypothesis, and therefore 

equates to the probability of a wrongful significant correlation or wrongful inclusion of variables into 

the regression model, when in actual fact it’s true.  

To account for this, p-values can be “adjusted” with multiple testing correction methods, including 

the Bonferroni correction (Dunn, 1961, Armstrong et al., 2011) and the Benjamini correction 

(Benjamini and Hochberg, 1995). The probability of making at least one Type 1 error is referred to as 
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the familywise error rate (FWER). Bonferroni correction attempts to compensate for this. There are 

two methods which can be employed for Bonferroni correction. Assuming, α = 0.05, Bonferroni 

correction can firstly divide α by the number of tests (n) being performed, thereby ensuring FWER 

never exceeds 0.05, or secondly, multiplying the p-value by n, thereby reducing the number of 

variables which will be statistically significant. Both methods within Bonferroni are extremely 

stringent when compared to Benjamini-Hochberg (BH) correction. BH attempts to decrease the false 

discovery rate (FDR), and its analog the q-value (Storey, 2002), by avoiding all Type I errors. It works 

by firstly sorting the p-values in descending order of magnitude. The largest value remains 

unchanged, while the second largest is adjusted by multiplying by n/(n-1), the third largest by n/(n-2) 

and so on. In summary, corrections based on FWER provide a strong control of the number of false 

positives but are not really adapted for a high number of tests as they then have low statistical 

power. Corrections based on FDR are more powerful but offer a weaker control of the number of 

false positives.   

Another method to test if an estimate of correlation or regression coefficient is robust and reliable is 

to set up a confidence interval. This can be used as an alternative to testing a null hypothesis, as 

described above. Confidence intervals gives an indication of the range a true value for a given 

statistic would lie, within a certain degree of probability which is defined (du Prel et al., 2009). A 

confidence interval of 95%, which is commonly cited, indicates the true value a measurement lies 

when performed 95 out of 100 times. As the confidence interval relates to the number of 

observations and standard deviation in a study, a narrow interval would imply a robust 

measurement with low variation. An interval range that does not include zero would therefore mean 

more confidence in the measurement. Finally, a higher probability confidence interval covers a 

larger range, e.g. 99% confidence interval is wider than a 95% confidence interval. Estimation of 

confidence intervals by bootstrapping has shown to have an number of advantages over 

conventional methods (Wood, 2004) without having to make assumptions on normality and other 

parametric tests.  

 

2.8.3 Multivariate data analysis 
 

Generally, split into unsupervised and supervised approaches, an unsupervised multivariate method 

provides an overview of data without any a priori information on the samples. A widely used method 

is Principal Components Analysis (PCA).  In contrast, a supervised method aims to predict a specific 

outcome based on class information which is available or defined by a set of input variables. Partial 
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Least Squares (PLS) (Wold et al., 2001) analysis and orthogonal projection to latent structures 

(OPLS)(Trygg and Wold, 2002) are typical supervised approaches used for exploratory purposes 

(Figure 2-5). However, for any of these approaches to be fruitful, standardization of the data is 

generally required prior to any multivariate based analyses. 

 

2.8.3.1 Multivariate standardisation 
 

Pre-processing metabolomic data before any multivariate analysis is integral as the analysis involves 

the combination of variables of widely different magnitudes and feature to feature variation. There 

therefore are several pre-processing feature-wise normalisation methods to transform the 

numerical intensities to some common scale, so that the comparisons are easily interpretable and 

more meaningful. Firstly, phenotyping data is presented as a data matrix with the dimension’s m/z, 

retention time and intensity. High resolution spectra will display the m/z values into equidistant 

intervals depending on the resolution of the mass spectrometer. This is referred to as binning and is 

all-purpose to allow for fast data pre-processing and processing (Tautenhahn et al., 2008).  

Mean centring is as pre-treatment method whereby the mean of each variable is subtracted from all 

samples in the data, thus removing large offsets when investigating both low- and high-level 

metabolites. This results in the data to be oriented around zero and not the actual mean of the 

metabolite levels, thereby focusing on the actual fluctuating part of the data (Bro and Smilde, 2003). 

When there is emphasis on the moderate to low level metabolites, centring is often combined with a 

scaling pre-processing method. Unit variance and Pareto scaling (van den Berg et al., 2006) are such 

methods which focus on these metabolites by correcting for metabolic variances using the standard 

deviations of peak intensities. Unit variance is where every peak intensity is divided by the standard 

deviation of all intensities for that given feature. The combination of mean-centering and variance 

scaling is termed auto-scaling and is recommended if measured variables in a dataset are of differing 

units. Auto-scaling however has the potential to enhance variation associated with noise variables. 

Pareto scaling is less stringent than unit variance and is therefore more popular in metabolomics. 

Peak intensities are divided by the square root of the standard deviation and so is less susceptible to 

over manipulation of the data.  Another option is transformation of the data by reducing the relative 

distances between feature intensities to be more equal and at the same time, correct for 

heteroscedasticity (Kvalheim et al., 1994). Taking the square root (power transformation) or the 

logarithm (log transformation) of peak intensities, will transform data which are heavily skewed to 

be more gaussian or follow a normal distribution. This can then allow the use of parametric method 
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s which are frequently used and well understood to be applied even when the data is not normally 

distributed pre-transformation. The log transformation however is unable to handle zero values.  

 

2.8.3.2 Hierarchical cluster analysis (HCA) 
 

Hierarchical cluster analysis is one of a number of clustering algorithms (others include k-means and 

mean-shift), that is used to highlight similarity (typically pair-wise) between subsets within a larger 

population (Xu and Wunsch, 2010). HCA is an unsupervised technique that can be applied in two 

ways: agglomerative and divisive (Tong et al., 2003, Fukusaki and Kobayashi, 2005). Divisive analysis 

utilises a top-down approach, where all groups originate from one cluster, and then iteratively splits 

into smaller clusters. Agglomerative, is a bottom-up approach, where all observations start in its own 

cluster, and iteratively merges pairs of nearby observations into clusters, until all clusters have been 

merged into a single cluster. The end result from both approaches is usually depicted as a 

hierarchical tree or dendrogram, illustrating the relationship of clusters based on similarity (Figure 

2-4). A dendrogram, consists of stacked branches, called “clades”, that break down into smaller 

branches. At the end of a clade, are “leaves”. In the agglomerative HCA, working from the bottom-

up, the arrangement of the clades tells which leaves are the most similar and the height of the clade, 

indicates how similar or different each clade is to one another. Thus, the greater the height, the 

greater the difference. Defining the distance between observations and the distance between 

clusters is necessary in HCA. Linking pairs of observations that are in close proximity, is based on the 

linkage criterion used. Common methods are Euclidean distance or Manhattan distance. Common 

cluster linkages include, Single linkage, Average linkage Complete linkage and Ward’s linkage. In this 

thesis, Euclidian distances were used as a measure of distances between observations and Ward’s 

linkage as a measure of distances between clusters. The Ward method is based on a sum of squared 

errors rationale that only works for Euclidean distance between observations. 
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Figure 2-4. Typical example of a dendrogram used for Hierarchical clustering analysis. 

 

2.8.3.3 Principal component analysis (PCA) 
 

PCA is considered is an unsupervised multivariate technique that is widely used in metabolic 

phenotyping (Worley and Powers, 2013). It is used explore any general trends, clustering and 

outliers. Multiple principal components make up the model, and so the number of components 

reflect the greatest sources of variance present in the dataset with no consideration to any response 

variables. Divided into multiple principal components (PC) or sometimes called latent variables, the 

first PC explains the greatest variation in the data and each successive PC is independent and 

orthogonal to the one prior, explaining a different source of variation. A PCA scores plot can 

therefore be used to highlight patterns or relationships between different observations. In addition, 

a loadings plot can be viewed in which the loadings relate to the weights of each original variable (or 

spectral features) in the PC, by explaining the variables responsible for the observed variance in the 

scores plot.  

 

2.8.3.4 Partial least squares (PLS) and orthogonal projection to latent structures (OPLS) 
analysis 
 

PLS, an extension of PCA, and aims to model and predict relationships between an X data matrix 

consisting of independent variables (or predictors) and Y matrix of response dependent variables 

thereby linking the points. So, whilst PCA finds a subspace that explains the maximum variation in X, 

PLS captures the variance in X whilst also maximising the covariance between the scores in X and Y 

by creating a subspace which is a good representation of the relationship between X and Y. It is 

therefore both exploratory and predictive in nature. Classification with PLS is known as PLS-DA (PLS-
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Discriminant analysis) explores the maximum co-variance between the X and Y variable, where Y can 

be categorical. OPLS-DA is a variant of PLS-DA which seeks to maximize, and capture confounding co-

variance observed in X but is independent of Y. It uses an orthogonal signal correction filter (Wold et 

al., 1998) for maximum separation between the two groups, guided by known class information. 

Systematic variation that may otherwise confound the interpretation of the resulting PLS model is 

therefore removed, allowing OPLS to be an efficient tool with handling datasets with strongly 

collinear X predictors (or multicollinearity). As not all systematic variation in X is related to Y, an 

OPLS model is effective in separating the systematic variation into two parts; a.) the predictive or 

shared variation between X and Y and, b.) the orthogonal variation Y-uncorrelated variation in X and 

conversely the X-uncorrelated variation in Y. Simply, OPLS aims to condense all the predictive 

variance into the first component, and any subsequent components explain orthogonal (unrelated) 

variance. So, in theory, the addition of many components in the model is possible (as you would for 

regular PLS), but interpretation of the first component is the most important. Prediction power 

between PLS and OPLS have been shown to be similar (Kemsley and Tapp, 2009, Trygg and Wold, 

2002). Generated from OPLS-DA models are the S-plots, which have been frequently used in 

metabolomic applications for biomarker identification (Wu et al., 2018, Liu et al., 2020, Banoei et al., 

2019, Madala et al., 2012). As proposed by Wiklund et al. (Wiklund et al., 2008), S-plots were used in 

several areas of this work to identify discriminating features from OPLS-DA models. The S-plots are a 

scatter plot of the loadings that models the covariance (p) and correlation (pcorr) between the 

metabolite features and their modelled class designation. The covariance and correlation are plotted 

on opposite axis, resulting in features forming an “S” shape, thereby sending the most discriminant 

features to opposite quadrants of the plot.    
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Figure 2-5. Comparison of the 2-component scores plots produced by PCA (A), PLS-DA(B) and OPLS-DA(C) 

using an exemplar RPC profiling experiment. 
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2.8.4 Resampling and regularisation 
 

Classification problems potentially arise in phenotyping data as there are often in most cases more 

variables as there is samples. Poor modelling can result in scenarios where a model classifies the 

training data well but poorly with future data, resulting in what is called overfitting (Hawkins, 2004). 

Overfitting occurs when a training model incorporates all the data, which includes noise, random 

fluctuations, and outliers. The result however is a model which fits the data too well, incorporating 

all but then failing with new data. Multicollinearity is a common contributor to overfitting. The 

estimation of coefficients from regression models, heavily relies on the independence of the 

predictor variables. As the number of variables increase, there often is a chance of multicollinearity 

between variables occurring. Multicollinearity between variables can lead to incorrect interpretation 

of coefficients (Vatcheva et al., 2016) as regression lines becomes highly sensitive to deviations in 

the residuals resulting in large variance and a poor regression estimate. Resampling and 

regularisation are therefore important steps in addressing and minimising overfitting and thereby 

improving model performance. 

 

2.8.4.1 Resampling 
 

Resampling are methods in statistics which repeatedly draw samples from a population in order to 

estimate the precision of a specific statistic. One such method is cross validation. Cross validation 

(CV) is a powerful way prevent against overfitting (Vatcheva et al., 2016) whilst simultaneously 

optimising tuning parameters associated with the training model. The simplest and often most used 

CV method is randomly splitting the initial dataset into a training (or calibration) and test (or 

validation) set. This will give some idea if overfitting has occurred and determine how robust the 

model is and better approximate the ability of the model to perform on new data. K-fold cross 

validation is another method that splits the data into blocks or folds and depending on the number 

of folds (e.g. 4 folds or 10 folds), a minimum of one fold is left out as a test set and the remaining 

used to train the algorithm. Multivariate models such as PLS and OPLS are prone to overfitting, by 

separating classes even though there is no real difference between them (Westerhuis et al., 2008). 

Cross validation is therefore critical in ensuring model reliability and quality. In this thesis, SIMCA is 

used for all PLS-DA models. Quality assessment are measured through statistical parameters; R2Y 

and Q2Y. R2Y, although not a cross validation parameter, is reported as a measure of how well the 

model fits the data, i.e. the explained variation (Wold et al., 2001). It increases with the number of 

components in the model, eventually approaching 1, where an R2 of 1 perfectly describes the 
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variation in the model. To guard against overfitting, the Q2Y is determined. The Q2 statistic is a 

measure of the predictive power of the model and is estimated through cross validation. The data is 

essentially divided into 7 parts, where 1/7th of the data is randomly selected and used as a testing 

set. Generally, the larger the Q2 the more confidence a model will be able to predict new data.  

Permutation testing is another resampling technique used to ensure the validity of classification 

models. Random permutations in the Y response are generated to which individuals are randomly 

assigned to different classes and modelled. The theory is that now that they have been incorrectly 

classified, the result should be a poor model and an ineffective class prediction. Repetition of the 

permutation is carried out resulting in a distribution of Q2 values and since the groups are selected 

randomly, the assumption is that no difference exists between them. When plotted, a line of best fit 

is regressed from the Q2 of the original model through the distribution of permuted Q2 values 

where it interacts with the Y intercept to give the mean of the distribution. A reliable model 

(samples not used in permutation) should lie outside the 95% confidence interval (p<0.05) of such a 

distribution and the difference is statistically significant to the randomly permuted class labels 

indicating high validity of the model.  

Like permutation testing, bootstrapping is a resampling method that builds a bootstrap distribution 

by resampling the observed data. It is a technique that independently draws sub-samples of the 

same sample size, with replacement, from the original dataset and then makes an inference on the 

measured statistic. As this is also a form of inferential statistics, the result is a calculation of the 

distribution of estimated values that would be expected if drawn from the original population, 

resulting in a confidence interval (Efron and Tibshirani, 1993).    

 

2.8.4.2 Regularisation 
 

Regularisation deals with multicollinearity by intentionally introducing some bias and thus reducing 

variance. Regularisation methods also has the added benefit of filtering noise variables and prevent 

therefore preventing overfitting. Both linear regression and LR allows for easy regularization to 

prevent and is another preventative measure against overfitting. It works by penalising the 

magnitude of the logistic/linear regression coefficients as well as minimising the error between 

predicted and actual observations. The outcome is to shrink the beta coefficient towards zero for 

unimportant variables thus being removed from model and reducing model complexity. There are 

three methods, Ridge (Hoerl and Kennard, 1970), LASSO (Tibshirani, 1996) and Elastic net (Zou and 

Hastie, 2005), and the difference lie in the application of the penalty to the coefficients. Ridge uses a 
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L2 regularization which adds a penalty term, Lambda (λ) which controls the importance of the 

regularization parameter. 

 

   (2. 13) 

 

In the ridge function λ is denoted by alpha (α) and this controls the magnitude of the penalty on the 

coefficients, i.e. the higher the value of alpha, the bigger the penalty, and so the smaller the 

coefficients. Ridge regression won’t remove any variables but minimises or shrinks the beta 

coefficient, thus all features remain in the model thereby reducing its complexity. This has added 

benefit of prevention of over fitting and works well with highly correlated features.     

Least Absolute Shrinkage and Selection operator (LASSO), utilise similar concepts to that of Ridge but 

instead adds a L1 penalty term equivalent to the absolute value of the magnitude of the coefficients.  

 

   (2. 14) 

 

Similarly, λ is equal to α in LASSO. L1 regularisation will shrink certain coefficients to zero, thereby 

removing variables entirely.  

Elastic net (EN) regression incorporates penalties from both L1 and L2 regularisation.  

 

   (2. 15) 

 

If α is set to 0, the penalty assimilates the Ridge L1 term and if α is set to 1, the penalty will be the 

LASSO L2 term. Therefore, for EN, the α and λ parameter must be optimised, usually via methods 

like cross validation. It’s especially useful when multiple variables correlate with one another. EN will 

group the strongly correlated variables and if any one variable has a strong association with the 

dependent variable, all will be included in the model. In this scenario, LASSO will include only the 

one variable, whereas EN will likely include all. Regularization using LASSO or EN has therefore 
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“built-in” variable selection, whereas Ridge would require other means like resampling and/or 

significance tests for variable selection.   

 

2.8.5 Performance assessment of linear and classification models  
 

In linear models, the optimal fitted line is one that minimises the total variance and can be 

expressed by the goodness-of-fit statistic, R2. However, if the model has too many variables, it can 

be heavily influenced by the random noise and be incorporated into the model, thus leading to 

overfitting. The R squared adjusted is then a better measure of the performance of the model as it 

considers the number of predictor variables used in the model. The adjusted R2 will only increase if a 

new variable improves the model more by random chance. Root mean square error (RMSE) is also 

another statistic used to valuate model fit and is the square root of the standard deviation of the 

residuals (Heinze et al., 2018). RMSE is a measure of the spread of the data points surrounding the 

regression line and therefore how close observed values are to the predicted values. A lower RMSE 

indicates a better fit.  

Typical performance parameters for binary classifier measurements such as LR, are assessed by 

different methods to that of linear models. Popular methods are the use of a confusion matrix 

(Figure 2-6) and Receiver Operating Characteristic (ROC) curves (Figure 2-7) (Tharwat, 2018). The 

confusion matrix (or contingency table) assesses the model’s accuracy and misclassification error. It 

is also another means to detect and avoid overfitting. Figure 2-6 is an example of a 2 x 2 confusion 

matrix.  
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Figure 2-6. Example of a confusion matrix used in classification models. 

 

And the accuracy of the model is calculated with the following formula: 

 

  (2. 16) 

 

To evaluate the effectiveness of the LR model, probabilities from the model are converted into 

classifications by setting a threshold, e.g. if a threshold of 0.5 is set, then any observation with a 

probability higher than 0.5, then belongs to one group and conversely any observation below 0.5, 

belongs to the other group. Using this model and with new data, if an observation is classified as 

positive, and in fact it is, then its labelled as a true positive. If classified incorrectly, then it’s a false 

negative and therefore a type II error. The inverse being, a negative observation that’s classified as 

negative will be a true negative, but if classified as positive, then is a false positive and therefore a 

type I error. As different threshold is set, so too are different confusion matrices constructed. To 
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decide the optimum threshold value, a model’s sensitivity and specificity are generated, and when 

plotted is also referred to as a ROC curve. 

The Receiver Operating Characteristic (ROC) summarises the performance and the discrimination 

ability of a logistic model, by optimising the trade-off between the true positive rate (TPR), 

sensitivity, and false positive rate (FPR), 1-specificity.  

 

  (2. 17) 

 

  (2. 18) 

 

Sensitivity is defined as the number of observations with a fitted predictive probability above a 

specific threshold and specificity is number of observations with a fitted predictive probability below 

the threshold. The direction of the threshold, either higher or lower, will ultimately determine if new 

data will fall in either the true-positive or false-positive distributions, thereby influencing the 

sensitivity and or specificity. Therein lies the trade of in choosing the optimum threshold. However, 

if translated to a ROC curve, the optimum threshold produces no false positives. The x-axis of the 

ROC curve is the specificity and the y-axis the sensitivity. Construction of the ROC curve is 

undertaken by plotting the sensitivity and specificity points for a given threshold from the confusion 

matrices. The area under the ROC curve (AUC) can then be used to determine the overall accuracy of 

the model. The higher the AUC, this is observed by how close the curve is to the left top left-hand 

corner of the graph, the better the prediction power of the model. 
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Figure 2-7. Typical example of the area under the ROC curve.  The top left corner of the ROC figure is the 

point where sensitivity and specifcity is 100% i.e. True positve and true negative are 100% . The closer the blue 

curved line or ROC curve is to the top left corner, the better the model is at distinguishing between two 

classes. The optimum threshold (red point), is the point that best discriminates between the two classes. The 

closer the curve is to the center diagonal orange line, the worst the model is at distinguishing between two 

classes.  

 

Assessment metrics, such as accuracy from the confusion matrices, are sensitive to class imbalance. 

ROC curves however are insensitive and robust to any class imbalance, as ROC depends on the true 

and false positive rates irrespective of the actual classes in the data. However, for a better estimate 

of the accuracy, a threshold is determined which can be computed in several ways. One way is the 

point on the curve which is closest to the TPR of 1 and FPR of 0. Another option, which is what is 

used in the R software for ROC curves produced in this thesis, is the average of the “minimum value 

that gives the least number of false positives” and “maximum value that gives the least amount of 

false negatives”. If there is a class imbalance observed in the population, this can result in 

inequivalent false positive and false negative predictions. To address this, weight can be added in 

the code to correct for this inconsistency. This can often be the case, when interrogating xenobiotic 

exposure from an untargeted investigation as case control sample numbers can differ. The threshold 

from the ROC curves can subsequently be inputted back into the confusion matrix. This serves as a 
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correction for any class imbalance that may exist in the data, and the accuracy calculated from the 

confusion matrix should equate to the accuracy calculated from the ROC curve.  

 

2.9 Metabolite Identification 
 

Mass spectrometry has been widely used in untargeted metabolomics for a long period but 

metabolite identification continues to represent one of the most significant challenges in the 

workflow (Wishart, 2011). Putative annotations of spectral features of interest can be obtained by 

comparing these data to on-line spectral databases such as PubChem (Kim et al., 2018), HMDB 

(Wishart et al., 2017) and Metlin (Guijas et al., 2018). Despite providing highly accurate 

measurements (to within a few ppm), high-resolution MS measurements, may result in multiple 

putative candidates based on m/z alone. Additionally, isomers and isobaric compounds exhibit 

identical/very similar MS profiles (Creek et al., 2014) and are therefore impossible/challenging to 

distinguish.  

Furthermore, as multiple ionisation products are commonly observed in MS based analyses 

(multimers, adducts, multiply charged ions, isotopes, and fragments), the formation of the molecular 

ion, may not necessarily be observed. The molecular ion peak corresponds to any molecule that has 

not undergone fragmentation. It can be considered reflective of the molecular weight of the 

compound but with a charge, i.e. M+H in positive mode and M-H in negative mode. Note, it is 

different to the base peak, which is the largest peak in the spectrum. In an MS/MS experiment, a 

fragment could potentially be the base peak. The molecular ion is therefore used as a reference 

point in identifying neutral losses and fragment ions. Thus, an understanding of the mass spectrum 

and the various ion types produced, in relation to the candidate metabolite, is therefore generally 

required.  

Complementary analytical techniques such as NMR, or liquid chromatography, can also aid 

metabolite identification efforts, notwithstanding the additional resources that may be required 

(instrumentation, analyst, sample). Additional measurements can provide evidence for the true 

identity and annotation of an unknown target analyte. 

Common practice for metabolite identification in LC-MS based metabolomics, requires acquisition of 

reference standards ascertained from the putative candidates and analysed under the identical 

experimental conditions  (Kind and Fiehn, 2010). It is however important to define the distinction 

between putative “annotation” and “identification” of metabolites.  
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The annotation procedure, as defined by Metabolomics Standards Initiative (Sumner et al., 2007), 

relies on a positive comparison of two or more physicochemical properties of a given feature to 

spectral databases; whereas a true identification procedure involves comparative analysis of each 

detected feature with an authentic chemical standard measured on the same analytical platform. 

The latter however is clearly unfeasible for routine high-throughput analysis due to availability and 

cost of chemical standards but is still a necessary requirement for biomarker annotation validation.  

The confidence of the metabolite identification described in this thesis refers to the identification 

levels as stated by the metabolomics standards initiative (MSI). The levels are as follows;  

 MSI level 1  

Identification based on comparison of experimental spectral data to authentic chemical 

standard analysed with the same analytical conditions;   

 MSI level 2 

Corresponds to putative annotation based on spectral similarity with public/commercial 

spectral libraries;  

 MSI level 3  

Assignment to a class of metabolites;  

 MSI level 4  

An unknown metabolite which could still be determined based on in silico fragmentation. 
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Chapter 3  

 

Knowledge-based and data-driven 
extraction of xenometabolome signatures 
from large-scale metabolic phenotyping 
data 
 

Summary 

The efficiency and coverage of xenometabolome annotation in human metabolic phenotyping 

datasets has historically been relatively limited. This chapter describes the development of two 

complementary approaches aimed at improving routine spectral assignment of xenobiotics in 

biofluid spectra.  A workflow was developed to generate an extensible reference standard database 

for xenobiotics, to support rapid annotation in metabolic phenotyping datasets analysed by RPC-

UPLC-MS (ESI +/-). To accomplish this, a literature search and analysis of key public data was 

conducted to prioritise those compounds known to prevalent in the UK population, thus making use 

of what is already known about common, deliberate xenobiotic exposures. This chapter also 

describes the refinement of univariate and multivariate statistical methods for the annotation of 

xenobiotics and related metabolites, making explicit use of the key chemical and biochemical 

features and relationships that commonly exist within and between these compounds.  

The statistical methods employed were: 

1. Correlation analysis between the intensity pattern of the MS feature corresponding to APAP, 

to the intensity pattern of all other features in the dataset. 

2. Correlation analysis using a newly developed i-STOCSY tool to annotate metabolites of 

memantine 

3. Logistic regression (univariate and multivariate) to annotate metabolites of donepezil 

4. PLS models to annotate metabolites of amlodipine  

These approaches were then used to explore exemplar population study data.   
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Aim and Objectives 

 

The central aim of this work was to develop strategies to identify xenometabolome signatures from 

large scale metabolic phenotyping datasets. To address this central aim, two specific objectives were 

identified and form the focus of the work described in this chapter.  

1. Databasing of standards. Identification of commonly used pharmaceuticals in the general 

population, and others of specific relevance to the exemplar populations associated with 

this study, and generation of a database for supporting rapid annotation in NPC assays 

2. Utilizing statistically based methods to identify xenobiotic signatures, consistent with 

exposure, in existing metabolic phenotype data. 

 

 

3.1 Introduction 
 

In the United Kingdom (UK), pharmaceutical medicines are legally classified into three categories: i) 

over the counter (OTC); ii) pharmacy only (P); iii) prescription only medicines (POMs). Pharmacy only 

(P) medication can only be found in a pharmacy under the supervision of a pharmacist. This means, 

medications “behind the counter”, and are not available freely without the approval of a pharmacist 

depending. The creation of medical institutions such as NHS have led individuals to be become 

reliant upon them for medical advice and was not until the early 2000 that government bodies 

encouraged self-care. This was carried out by creating NHS walk in centres but more importantly, 

expanding medications which were once POMs to P (Rutter, 2012). The Medicines and Healthcare 

Regulatory Agency (MHRA) facilitated this process, by establishing proper protocols and consultation 

periods. The first of which being ibuprofen, which was classified as P status in 1983. POMs, need to 

be prescribed by a doctor or a qualified healthcare professional and can only be collected at 

pharmacies.  

Since 1983, in the UK, 150 medications have been made available OTC, no longer requiring a 

prescription. OTC medication or General sales list medicines (GSL) are used to treat minor ailments 

and so does not require the supervision of a pharmacist and are subject to less regulation. They can 

be found in pharmacies or in local supermarkets. OTC drugs are available freely to individuals 

allowing for self-management and treatment of symptoms to minor ailments and illnesses. The 

Proprietary Association of Great Britain (PAGB), which are a UK trade association representing all 

OTC medicines and food ailments, quotes the value of the UK OTC market to be at £2.5 billion. 964 
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million packs of OTC medication were sold to individuals for self-care and treatment 

(www.pagb.co.uk/about/otcmarket). In comparison to the 1 billion in prescription medications, nine 

out of ten general practitioners believe that self-care is based on a continuum ranging from minor 

ailments, based on an individual’s discretion, to the more series illnesses which requires the aid of 

healthcare professionals (www.pagb.co.uk/selfcare/home). Popular categories of OTC medication 

include painkillers, cough/cold and skin treatments (www.pagb.co.uk/publications/directory. Kidney 

Research UK additionally included the categories; non-steroidal anti-inflammatory medications, 

heartburn/acid reflux and antihistamines.  

A statistical survey conducted by the Health and Social Care Information Centre (HSCIC) in 2013, 

revealed that £15 billion was the total drug cost in hospitals and the pharmaceutical community in 

the England (Croft, 2014). The survey was conducted between 2012 and 2013 and reflected both 

individuals within the healthcare (NHS) system, but of that of the general population. More recently 

in 2018, the Prescription cost analysis England 2018 report stated that the bill for prescriptions 

dispensed amounted to £8.8 billion (https://files.digital.nhs.uk/E5/A014A5/PCA-eng-2018-

report.pdf).  

A core drug list of the most commonly prescribed drug groups in England was published, ranking 

proton pump inhibitors (omeprazole, lansoprazole), statins (simvastatin, atorvastatin, pravastatin), 

paracetamol, beta-blockers (bisoprolol, atenolol, propranolol) and calcium-channel blockers 

(amlodipine, felodipine, diltiazem, nifedipine, lercanidipine) in the top five categories (Audi et al., 

2018).  

Accordingly, the HSCIC survey responses largely reflect population usage of OTC pharmaceuticals, 

and therefore and therefore represents a useful guide for prioritising efforts to characterise 

xenometabolome exposures according to expected prevalence.  

The work presented in this chapter focused on increasing the number of positively identified and 

confidently annotated features related to xenobiotics in metabolic phenotyping data. To provide a 

solid basis for this work, rational selection of prioritised therapeutic medications was conducted 

using the HSCIC survey data, allowing prioritisation of compounds to for the development of a mass 

spectrometry-based authentic reference standards database, and attendant workflow.  
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3.2 Hypothesis 
 

This chapter aims to broaden substantially the coverage of the xenometabolome through the 

construction of a xenobiotic reference standard database (knowledge-driven strategy) and the 

development of statical based methodologies (data-driven strategy) to further reveal additional 

xenobiotic metabolites using targets from the database or, from compliance/questionnaire 

metadata. These methods and workflows will be applied to existing human cohort study data to 

establish the prevalence and variation of these xenobiotic metabolites. Combined, these strategies 

will provide novel methodologies for high throughput xenometabolome analysis in population 

(epidemiological/clinical) sample sets, and provide greater coverage of xenobiotics for existing 

studies, permitting improved detection of non-compliant participants, and better confounder data. 

 

3.3 Methods 
 

A list of therapeutic drugs which are commonly administered in the United Kingdom was compiled. 

In brief, xenobiotics commonly administered in the UK were identified using the 2013 HSCIC survey 

and various other literature sources. The top 25 medications were used to initially populate the 

database ( 

 

 

 

Table 3-1). A secondary approach to increase xenobiotic annotations, was to integrate statistical 

based methods to extract unknown xenobiotic signatures. Both univariate and multivariate methods 

were explored and applied using an exemplar large-scale population study. 

 

3.3.1 Materials 
 

LC/MS grade water was obtained from fisher scientific (Fisher scientific, USA). 96-well plates were 

from Eppendorf (Hamburg, Germany) and well plate cap mats were from VWR (Leicestershire, UK). 

5mL Cyrotube were purchased from Brook life sciences (Fluid X., Brook Life sciences, UK)   
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Table 3-1. Priority drugs that are commonly prescribed, prevalent, or otherwise in use within the UK.  The 

list was compiled based on the comprehensive literature search described in the introduction. This list includes 

known/predicted major metabolites, where available from literature. Acquisition of the top 25 chemical 

reference standards for un-metabolised xenobiotic was initially used to populate the database, as indicated in 

the table below. 

Xenobiotic 
Number of known 

reported metabolites 
Source Use Reference 

Caffeine 14 Food/OTC 
Supplement used 

for energy 
(Andrews et al., 2007). 

Nicotine/Cotini

ne 
8 OTC 

Widely used 

stimulant in 

smoking 

(Baskin et al., 1998) 

Aspirin  6 OTC 
Reduce pain, anti-

inflammatory  
(Hutt et al., 1986) 

Theobromine 5 Prescription/Food 

Stimulant and 

metabolite of 

caffeine 

(de Sena et al., 2011) 

Theophylline 5 Prescription/Food 

phosphodiesterase 

inhibiting drug 

used in therapy for 

respiratory 

diseases. Also, 

metabolite of 

caffeine 

(Dubuis et al., 2014) 

Simvastatin 5 Prescription 
Statin used to 

lower cholesterol 

(Prueksaritanont et al., 

1997) 
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Xenobiotic 
Number of known 

reported metabolites 
Source Use Reference 

Levothyroxine 4 Prescription 

Used to treat 

thyroid hormone 

deficiency, 

(Ianiro et al., 2014) 

Acetaminophen 10 Prescription/OTC Pain relief 
(Johnson and Plumb, 

2005) 

Ibuprofen 4 Prescription/OTC 
Non-steroidal anti-

inflammatory 
(Clayton et al., 1998) 

Omeprazole 3 Prescription 

Treatment for 

indigestion, 

heartburn and acid 

reflux 

(Kobayashi et al., 1992) 

Ramipril 5 Prescription 
Lowers blood 

pressure 
(Verho et al., 1995) 

Amlodipine 7 Prescription 
Lowers blood 

pressure 
(Zhu et al., 2014) 

Salbutamol 5 Prescription 

Relieve symptoms 

of asthma and 

chronic obstructive 

pulmonary disease 

(COPD) 

(Dominguez-Romero et 

al., 2013) 

Lansoprazole 5 Prescription 

Treat indigestion, 

heartburn, acid 

reflux and 

gastroesophageal-

reflux-disease 

(GORD). Also 

stomach ulcers 

(Song et al., 2008) 
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Xenobiotic 
Number of known 

reported metabolites 
Source Use Reference 

Atorvastatin 5 Prescription 
Statin used to 

lower cholesterol 
(Macwan et al., 2011) 

Metformin - Prescription 

lowers blood sugar 

levels (Type II 

diabetics) 

(Liu and Coleman, 2009) 

Cholecalciferol 2 Prescription 

Fat-soluble vitamin 

(d3) that helps 

your body absorb 

calcium and 

phosphorus 

(Holick et al., 1972) 

Bendroflumethi

azide 
- Prescription 

Diuretic, used to 

treat high blood 

pressure 

(Beermann et al., 1977) 

Bisoprolol 4 Prescription 
Treat high blood 

pressure 
(Horikiri et al., 1998) 

Citalopram 7 Prescription Antidepressant 
(Dalgaard and Larsen, 

1999) 

Codeine 6 Prescription/OTC 
Opiate used to 

treat pain 
(Frost et al., 2015) 

Amoxicillin 3 Prescription 

Antibiotic used to 

treat bacterial 

infection 

(Haginaka and Wakai, 

1987) 

Furosemide 2 Prescription Diuretic 
(Baranowska et al., 

2010) 

Amitriptyline 7 Prescription Antidepressant (Breyer-Pfaff, 2004) 

Warfarin 4 Prescription 
Anticoagulant/blo

od thinner 
(Locatelli et al., 2005) 
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3.3.2 Acquisition and analysis of authentic xenobiotic reference standards 
 

Reference standards and actual pharmaceutical formulations were acquired from various vendors 

(refer to Appendix 1). Preparation, acquisition and data extraction are in conjunction with ongoing 

protocols set in place for reference standard acquisition at the NPC and is described below.  

Reference standards of xenobiotics were made in a qualitative manner by taking a fixed equal 

amount (if solid) or droplet (if liquid) into a clean 5mL cryotube and made to volume with ultrapure 

water. To handle the high volume of reference standards, certain measures were undertaken to 

account for differences in concentration between the reference standards. A 1000 µL aliquot was 

transferred to a 96-well deep well plate, and a further dilution of 1:10 (100 µL standard: 900 µL 

water), 1:100 (10 µL standard: 990 µL water) and 1:1000 (1 µL standard: 999 µL water) (v/v) was 

then subsequently prepared into additional 96 well plates.  

An aliquot of a reference standard mixture was added to each well as an internal standard for 

chromatographic retention time(s). The reference standards correspond to a working concentration 

of the method reference mixture (MR) used for reversed phase profiling urine studies conducted at 

the NPC (Lewis et al., 2016). All individual standards and standard mixtures were frozen at -80°C. The 

1:100 dilution plate was firstly acquired using reversed phase (RPC) separation on an Acquity UPLC 

system hyphenated with Xevo G2-S Q-TOF (Waters Corp., Milford MA, USA) -RPC-UPLC-MS, for the 

high-resolution detection of all observable chemical species. RPC was performed using an ACQUITY 

UPLC HSS T3 1.8µm, 2.1 x 150mm column with chromatographic conditions identical to that stated 

by Lewis et al. (Lewis et al., 2016). Mass spectral data was acquired under both electrospray positive 

ion and negative ion conditions, in continuum mode with two injections per well. One injection was 

at a low collision energy (4V) and the other utilising a collision energy ramp (10-30V). Within each 

injection, three interleaved full MS scans (0.05 second scan rate) were acquired for the m/z range 

between 50 and 1200 Da. 

 

3.3.3 Population study used for xenobiotic exploration 
 

An exemplar study were used for xenobiotic exploration; the Alzheimer’s Disease Multimodal 

Biomarkers study (ALZ) (Lovestone et al., 2009). ALZ is a nested case-control study of Alzheimer’s 
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disease consisting of 650 urine samples. Urine samples were prepared and analysed (by myself) 

according to established protocols for urine phenotyping (Lewis et al., 2016) as previously described, 

by RPC- UPLC-MS in both positive and negative ion mode. The dataset acquired from RPC- UPLC-MS 

(positive ion mode) was used for statistical based exploration of xenobiotics.  

Drug compliance metadata (records or known therapeutic drug use) were available for the ALZ 

dataset. With this information, several different statistical methods were used to identify signals 

relating to exposure from the xenobiotics reported, i.e. i-STOCSY and logistic regression. Prior to any 

statistical evaluation, a csv was constructed, indicating the samples with a known exposure, denoted 

by “1”, and the remaining samples in the dataset, denoted by “0”, for all reported medications.  

 

3.3.4 Pre-processing ALZ study data and reference standard data 
 

Reference standard data was firstly denoised using a compression/archival tool, and centroided for 

peak detection using Waters software (MassLynx, Water Corporation). Within the archival tool, 

the processing options involved enabling noise reduction with the following parameters specified for 

RPC based analysis; threshold = 15, MS Resolution = set at the instrument resolution setting, Low 

Drift FWHM = 2, High Drift FWHM = 10, and Chromatographic Peak width = 0.02. Centroiding of the 

standard data was undertaken using the “Accurate Mass measure” tool located within the Masslynx 

software. Peak detection was set automatically with default values. Finally, all denoised and 

centroided data files were converted to the open NetCDF format.  

There was no denoising or centroiding of the ALZ study data as all samples were already acquired in 

centroid mode. Mass spectral data files in .RAW format (Waters Corporation, USA) were converted 

to the open mzML format using the ProteoWizard msconvert tool (Chambers et al., 2012). During 

this conversion, all signals with an absolute intensity of less than 100 counts were removed.  

Mass spectral peak picking (centwave), integration and grouping were performed on the converted 

NetCDF reference standards data and mzML ALZ study data using XCMS. The XCMS parameters for 

project data are part of the NPC workflow for project data acquisition and were processed by NPC 

informaticians. The XCMS parameters for reference standard acquisition were selected based of 

these parameters, with slight modifications on those which would have the biggest impact to feature 

selection. Both project and reference standard parameters are summarised in Table 3-2. Of the 

centwave peak picking parameters, “ppm” and “snthreshold” were kept identical. The “peakwidth” 

and “prefilter” parameters were altered to a slightly wider range for standards due to the qualitative 
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way in which the standards were prepared. This preparation may result in broad saturated peaks, so 

the wider range would result in the integration of these peaks. The same qualitative approach may 

also result in lower signals for standards, so to account for this, the “noise” parameter was set at a 

slightly lower setting. 

 

Table 3-2. XCMS parameters for NPC project data and reference standard RPC-UPLC-MS acquisitions 

(positive and negative ion mode). 

Parameter Project study data Reference standard 

ppm 25 25 

peakwidth 1.5 to 5 2 to 8 

snthreshold 10 10 

noise 600 300 

prefilter 4-1000 8 to 3000 

mzdiff 0.001 0.001 

mzCenterFun wMean wMean 

integrate 2 2 

minSamples 10 10 

bw 3 3 

binSize 0.01 0.01 

 

The grouping function for both the reference standards and ALZ study data acquisitions were 

performed using the density  method with a retention time window of 2 seconds and mass to charge 

(m/z) window of 0.001 Da. This grouping function was used as it, is a particularly faster process than 

its counterpart the “nearest” function, which matches features between samples one at a time and 

is therefore a slower approach, especially with regards to larger study sizes. The density function 

also can incorporate a minfrac filtering capability (Forsberg et al., 2018), which is necessary 

parameter for filtering purposes for project data (Refer to section 2.7.4). The sample groups 

argument was setup so that selection of features had to be present in either 40% of the SR or 40 % 
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of all remaining study samples (minFrac setting of 0.4). No retention time correction was performed, 

and the final “fillChromPeaks” method was applied with default parameters. 

For the ALZ dataset, additional noise filtering protocols were implemented via the use of a pooled 

QC sample or Study Reference (SR), prepared by pooling together an aliquot of all study samples 

that represents the physical average. The quality control processes including the preparation of the 

SR sample and implementation of a dilution series for filtering purposes has already been previously 

described and established (Lewis et al., 2016, Dona et al., 2014). To account for the observed 

variable dilution with urine biofluids, probabilistic quotient normalization (PQN) was applied to the 

filtered dataset. The final result is feature matrix in the form of a .csv file, that summarizes all 

distinct signals (i.e. retention time, mass to charge (m/z) and intensities after normalization for all 

samples) captured by RPC-UPLC-MS in both polarities and meeting the filtering and QC criteria.  

 

3.3.5 Construction of a reference standard database to facilitate xenobiotic identification 
 

Electrospray ionisation mass spectra of individual compound typically contain multiple ionisation 

products that relate to a single molecule, including isotopes, adducts, multimers, neutral losses and 

in-source fragments; empirically-derived reference spectra obtained using a given analytical protocol 

may better reflect the features recorded for these compounds in real biological samples, compared 

with spectra predicted from in silico models.   

An in-house script (written in R) was used to automate the following series of processes: i) features 

considered unique to the selected reference standard were extracted by comparing the standards 

against the standard acquired before and the standard acquired after in the analytical run; lower 

and upper signal intensity thresholds were set at 1 x 105 and 2.3 x 107, respectively; ii) features that 

fell within this range a minimum of two out of three times (from the three MS scans) were recorded; 

iii) features meeting these criteria were output to an RDA file (R specific encoded information e.g. 

the objects, variables etc) and used to create two-dimensional (2D) plots of retention time vs m/z for 

the unique features. Both low and high energy collision acquisitions were incorporated into this 

workflow. 

Retention time, m/z for the molecular ion, one adduct, and a minimum of one fragment ion (in-

source fragment) were manually curated and tabulated, alongside descriptor columns to link 

compounds/data to their physical/digital location, as well as to relevant entries in on-line spectral 

databases. 
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Identifications of xenobiotics using the database was exemplified in ALZ. Features corresponding to 

the spectral information from the database (molecular ion, adduct and in-source fragment) were 

targeted by implementing a peak fitting algorithm (peakPanthR -

https://www.bioconductor.org/packages/release/bioc/html/peakPantheR.html) to the raw data for 

peak integration and identification. Detection was based on peaks above a certain threshold and 

with a minimum signal to noise ratio (S/NR) ≥ 5, which is a conservative criterion for defining the 

limit of detection (Armbruster and Pry, 2008). The analytical specificity was also considered and 

intended as a method specific measure of observed interferences and confirmation that the correct 

peak was integrated. Of the xenobiotics detected in ALZ, population prevalence was calculated as 

the proportion of samples exhibiting the xenobiotic as a percentage of the total study samples. 

 

3.3.6 Developments of data driven statistical methods to highlight xenobiotic exposure in 
ALZ 
 

3.3.6.1 Outlier detection 
 

Certain outlier samples from previous studies revealed a pattern of xenobiotic presence within the 

larger dataset that was considered as the foundation for a possible strategy in identifying other 

xenobiotics. This pattern may be described as the presence of a minority of samples within the 

dataset that demonstrates an intensity for a given feature, that greatly differs from its main 

distribution. A script was written in the R language that assisted with the detection of features with 

this pattern. The function of the script is outlined below. 

For each feature group in the pre-processed dataset: 

 

1. Median and standard deviation feature intensity values were calculated for all samples 

within the experiment. 

2. The maximum feature intensity was calculated. 

3. The difference in feature intensity between the observed maximum and median value was 

expressed in number of standard deviations (SD). 

4. All features within the dataset were then ranked by the calculated difference in 

descending order, highlighting the features responsible for having the greatest difference 

to lowest difference in the number of SD’s between the median and max values. 
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5. A plot for each feature is generated and colour coded. It displays the feature rank and 

sample that is responsible for the greatest difference between the median and study 

samples (Figure 3-1). 

 

 

Figure 3-1. Output from the outlier sample script on an exemplar dataset.  The figure is illustrating an outlier 

study sample for a single spectral feature with a significantly elevated feature intensity when compared to the 

median feature intensity across all study sample values (orange scatter points). In this instance, the outlying 

feature measurement was validated as biochemically relevant (not an artefact of data pre-processing or 

technical error) due to the elevated levels observed in the study reference samples (represented by the cyan 

coloured scatter points). 

 

3.3.6.2 Intrasample and intersample correlation of mass spectral features 
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A correlation-based approach similar to STOCSY (Chapter 2) was used to identify chemicals that are 

metabolically and structurally associated with features of interest (herein referred to as “driver” 

feature, a term taken from STOCSY).  

The correlation is carried out in two parts and highlights two aspects in relation to the driver:  

 Structural correlates, from an intrasample correlation  

 Biological correlates, from an intersample correlation  

An intrasample correlation highlights only correlated features above an empirical correlation 

coefficient threshold of 0.8 or higher and restricted to a retention time window within 0.02 minutes 

of the driver. The analysis is undertaken using a sample with the highest measured signal for the 

driver (provided signal saturation was not observed). The Pearson method was used as its more 

suitable for identifying linear relationships between features within a sample. A two-dimension (2D) 

pseudo spectral peak is subsequently produced via an in-house R script, that allows peak shape to be 

further examined. The intersample correlation analysis (using spearman correlation as the default) 

involves all study samples from ALZ, where correlations are undertaken between the intensity 

pattern of the driver feature, to the intensity pattern of all remaining features. Embedded in the R 

script used to carry out the intersample correlation analysis, is the ability to evaluate feature 

distribution and intensity threshold settings. If the feature of interest exhibits a multimodal 

distribution in the data, multi-component Gaussian mixture models (GMMs) can be specified, 

placing clusters across the distributions. Once fitted, conversion of the distributions to probability 

distribution functions (PDF’s), can be obtained, and any sample with a probability (prn) of more than 

0.90, assumes the classification for a specific distribution. The modality of the distribution observed 

in the dataset for a feature, can be an indication of exposure, which is further explored in chapter. 

Another feature of the code is multiple testing correction. Multiple testing correction (False 

Discovery Rate – Benjamini and Hochberg procedure) was applied, with a significance level cut-off of 

padj≤0.05, highlighting only statistically significant features.  

The utility of this two-correlation analysis was exemplified using the driver feature that correspond 

to the molecular parent ion (M+H) of a prevalent xenobiotic, Acetaminophen (APAP). The metabolic 

fate for APAP has been extensively studied and well documented. The four main APAP metabolites 

(Figure 3-2) commonly observed in urine include, glucuronide, sulfate, cysteine and N-acetyl 

cysteine conjugates (Johnson and Plumb, 2005). Reference standards for APAP and the four 

metabolites have been prepared and analysed according to the databasing protocol stated in this 

chapter. 
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Figure 3-2. Known metabolites of acetaminophen observed in human urine (Johnson and Plumb, 2005). 

 

3.3.6.3 i-STOCSY 
 

Another correlation-based analysis was explored using a newly developed i-STOCSY tool (Zenodo 

DOI: https://doi.org/10.5281/zenodo.3886468, available from: 

https://github.com/phenomecentre/ISTOCSY). Briefly, it functions in the exact same way as the 

intersample correlation analysis, where a threshold value can also be inputted, but does not 

examine feature distribution or apply multiple testing. This tool can be accessed via a graphical 

interface that allows the driver feature to be selected interactively, yielding a rapid display of related 

correlation plots.  

The compliance dataset and the ALZ profiling dataset were together uploaded, and the i-STOCSY tool 

was used to find correlations between the variables (MS features) from the profiling dataset, and 

variables (which are the medications) from the compliance dataset, based on matching samples 

(Figure 3-3). All figures produced are interactive and correlated features are coloured by the 

strength of the correlation. As this was an ALZ study, there were many patients on the ALZ drug 

memantine (MEM) (n=78), and therefore this medication was used to exemplify the i-STOCSY 
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application. A correlation coefficient above 0.7 (Spearman) was set and the driver was the variable 

corresponding to MEM.  

 

Figure 3-3. Typical example of the initial graphical interface of the i-STOCSY tool.  The bottom figure is a 

scatter plot representing all drugs reported from patients (compliance) in the ALZ study. The tool automatically 

assigns each drug as either 1 or 0 (y -axis). The x-axis is the drug ID number. The top figure is a m/z (y-axis) vs 

retention time (x-axis) output from the ALZ profiling dataset. Correlations can be carried out by essentially 

clicking on the scatter points in either the top (RPC-UPLC-MS ESI+ urine profiling dataset) or bottom 

(compliance medication dataset) figures. 

 

MEM has been reported to undergo metabolism via hydroxylation, N-oxidation and glucuronide 

conjugation (P S et al., 2014) as illustrated in Figure 3-4. Unfortunately, no reference standard was 

available for purchase.  
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Figure 3-4. Known metabolites of memantine observed in human urine  (P S et al., 2014). 

 

3.3.6.4 Logistic regression  
 

The medication donepezil was used to exemplify the logistic regression application. A total of 68 

subjects reported use of the ALZ drug, donepezil hydrochloride (DNP – marketed under the brand 

name Aricept). DNP (chemical name 2-[((1-benzylpiperidin-4-yl)methyl)]-5,6-dimethoxy-2,3-

dihydoinden-1-one monohydrochloride), is an acetylcholinesterase inhibitor used in the 

management of dementia in Alzheimer’s disease and its metabolic fate has been extensively studied 

in humans (Sugimoto et al., 1990). Typical metabolic products of DNP found in urine are summarised 

in Figure 3-5.The 68 samples with a known exposure to DNP (based on the compliance meta-data) 

was assigned as the “high” exposure group (defined as 1 – case)  and a random subset of an equal 

number of samples (n=68) was assigned as the “low” exposure group (defined as 0 – control). 
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Figure 3-5. Known metabolites of donepezil observed in urine (human and animals) (Matsui et al., 1999). 

 

Logistic regression (LogReg) was used to identify other spectral features (model variables) with the 

strongest associations to DNP. As summarised in Chapter 2, LogReg is a prediction mathematical 

modelling approach that is used to describe the relationship of several predictor variables X1, X2, …, 

Xn to a dichotomous dependent variable Y. The two exposure groups were further partitioned into 

training and test sets where selection of discriminant variables was conducted on the training set 

and the performance validated on the test set. From the zero group, 80% of the samples were 

assigned to a training set. Similarly, 80% of samples from the high group were selected and assigned 

to the same training set to maintain the same ratio between zero and high groups in the training and 

test sets. The remaining 20% of samples from each group were combined and assigned to the test 

set. The 80:20 split, incorporated a Euclidean distance metric and was undertaken using the DUPLEX 

algorithm in the “prospectr” package (Ramirez-Lopez, 2020) (version 0.2.0) in R.  

Both univariate and multivariate LogReg models were calculated on the training set to predict 

case/control status. Multivariate models, notably Ridge, LASSO and Elastic Net (EN), were 

investigated to see how metabolites together relate to DNP exposure, whereas univariate models 

described the contribution for each feature individually. In the ridge model, the most important 

regression coefficients were found by bootstrapping and resampling the data with 500 iterations. 

This produced confidence intervals for the regression coefficient of each feature, and feature 

selection was based on intervals which did not include zero. LASSO and EN models have implicit 
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variable selection as part of the regularization, therefore the important variables are those with non-

zero coefficients as these can be directly derived from the model. The regularization parameters 

alpha and lambda were either set at a default value or tuned depending on the regularization model. 

In Ridge models, alpha is set as zero whereas for LASSO, alpha is 1. Lambda for both models are 

tuned using 10-fold cross-validation. With EN models, both alpha and lambda were tuned using the 

“caret” package (Kuhn,M. 2008) in R. This involved a grid of lambda (0.1 to 10, with 100 intervals) 

and alpha (0 to 1, 10 intervals) for which the optimal model was estimated using 10-fold cross-

validation. As these penalised regression methods are multivariate, data was centred, and unit 

variance scaled prior to regression. 

For the univariate logistic regression models, False Discovery Rate (Benjamini and Hochberg 

procedure) was used to adjust for multiple testing and applied on p-values (pad) derived from the 

model. Feature selection was then based on a cut-off, (padj)<0.05, defining statistical significance. Of 

these significant features, three different training set models were produced:  

 Univariate Model 1: A model that uses all significant features; 

 

 Univariate Model 2: A model that includes only the significant features that correspond to 

the [M+H]+ ion of a reported metabolite (within 3ppm);   

 
 Univariate Model 3: A model where all significant features were subjected to a backward 

elimination procedure. Backwards elimination iteratively removes one variable at a time and 

recalculates the model, it stops when no increase in the performance is observed following 

the removal of more variables. The Akaike information criterion (AIC) was used to select the 

optimal model, where a lower AIC is optimal. 

 
 

In total there are 3 univariate models and 3 multivariate models. The accuracy, calculated from a 

confusion matrix and the AUC (area under the curve) from Receiver operating characteristic (ROC), 

was used to assess the predictive ability from each of the six models on a new set of data, i.e. the 

test set. A ROC curve was generated by plotting the true positive rate (TPR; sensitivity) against the 

false positive rate (FPR: 1-specificity) at various default threshold settings. The accuracy gives an 

indication of how much a model is capable of distinguishing between classes. A model with good 

predictive ability should have an accuracy and AUC closer to 1. A reference standard for DNP has 

been prepared and analysed according to the databasing protocol stated in this chapter. 
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3.3.6.5 PLS regression and discriminant models 
 

The medication amlodipine was used to exemplify the PLS applications. A reference standard has 

been acquired for amlodipine and is part of the xenobiotic database, as such, retention time and 

main ion type are known. Based on this information, the distribution of the feature corresponding to 

amlodipine observed in the ALZ dataset, was assessed using the method described for the 

intersample correlation. PLS-R modelling was used to identify statistically significant covariation 

between a set (X) of independent variables (MS features) and the corresponding (Y) response 

(feature corresponding to the molecular ion of amlodipine). All study samples were used for PLS-R. 

For the PLS-DA model, samples were split into two exposure groups based on the feature 

distribution assessed for amlodipine. Two PLS-DA models were evaluated, one where exposure 

groups were unbalanced (therefore using all study samples in the dataset), and a second model 

where exposure groups were balanced. The models were performed using SIMCA (Version 15 

Sartorius Stedim Biotech, Malmö, Sweden). After mean centering and Pareto scaling of the variables, 

the quality of the OPLS-DA models were validated by a seven-fold internal cross validation, 

assessment of the variance (R2Y) and predictive ability (Q2Y) of the model, and permutation tests 

(n=999). The appropriate number of components were selected for each model in order to optimise 

model quality without over-fitting. Discriminant features were evaluated based on variable 

importance for the projection (VIP) values greater than 2. 

In a recent publication on amlodipine metabolism analysed by LC-MS/MS, metabolites observed in 

urine included a ketone metabolite, oxidised metabolite, oxidised metabolite which has undergone 

glucuronidation and, a carboxylic acid metabolite, as illustrated in Figure 3-6 (van der Hooft et al., 

2016). 
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Figure 3-6. Known metabolites of amlodipine observed in human urine (van der Hooft et al., 2016). 

 

3.4 Results and Discussion 
 

3.4.1 Application of the xenobiotic database for rapid annotation in ALZ 
 

A total of 25 chemical reference standards was initially acquired to populate the xenobiotic database 

since the start of this thesis. There are currently 41 reference standards and 57 pharmaceutical 

medications have undergone the acquisition and processing workflow stated in the methods. 35 of 

the reference standards showed evidence of a peak, and a molecular ion corresponding to the 

xenobiotic. The xenobiotic database was constructed as illustrated in the screenshot displayed in 

Figure 3-8. Examples of the 2D plots is illustrated in Figure 3-7 using the reference standards APAP, 

Lansoprazole and Escitalopram. From the database, a total of 31 xenobiotics were detected in the 

ALZ dataset, based on comparison of retention time and spectral data, and their approximate 

population prevalence estimated (Figure 3-9). Detected xenobiotics from the ALZ dataset were 

based on peaks targeted by peakpantheR, and above an arbitrary intensity threshold. The threshold 

was specific to each compound and had to demonstrate a minimum signal to noise (S/N) > 5, and an 

elution time of within 15 seconds (as defined by peakPantheR) when compared to the reference 

standard. Of the xenobiotics detected in ALZ, population prevalence was calculated as the 

proportion of samples exhibiting the xenobiotic as a percentage of the total study samples in ALZ. Of 
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the 35 refence standards detected by RPC-UPLC-MS methods, 31 xenobiotics were detected in the 

ALZ urine dataset. 

 

 

Figure 3-7. Example of the 2D outputs obtained for unique features detected by the reference standard 

workflow for databasing described in section 3.3.5. The x-axis on these 2D outputs represents the retention 

time (min) and the y-axis represents the m/z. The scatter points are the unique features detected by the 

workflow and are coloured by intensity (yellow – low intensity to purple – high intensity).   

(A) acetaminophen at a low collision energy; 

(B) acetaminophen at a high collision energy; 

(C) first acquisition instance of lansoprazole was too dilute, and so needed re-acquisition; 

(D) second acquisition of lansoprazole at the higher concentration (1:10 dilution); 

(E) first acquisition of escitalopram at a concentration above the threshold range; 

(F) second acquisition of escitalopram at a lower concentration (1:1000 dilution). 
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Figure 3-8. Screenshot of the constructed xenobiotic reference standard database. 

 

 

Figure 3-9. A horizontal bar chart representing the reported prevalence of xenobiotics detected in the ALZ 

cohort from data acquired by RPC-UPLC-MS (positive and negative ion mode).  Detected xenobiotics from the 

ALZ dataset were based on peaks targeted by peakpantheR, and above an arbitrary intensity threshold. The 

threshold was specific to each compound and had to demonstrate a minimum signal to noise (S/N) > 5, and an 

elution time of within 15 seconds (as defined by peakPantheR) when compared to the reference standard. Of 
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the xenobiotics detected in ALZ, population prevalence was calculated as the proportion of samples exhibiting 

the xenobiotic as a percentage of the total study samples in ALZ. 31 xenobiotics were detected.    

 

3.4.2 Statistically based methods to identify xenobiotic signatures 
 

3.4.2.1 Outlier detection  
 

An approach was undertaken to identify features with characteristic distributions across the sample 

set that are likely to reflect exposure in a minority of individuals (i.e. a potential exposure pattern for 

xenobiotics in a small proportion of volunteers, or non-compliant study participants). The first five 

ranked features (in the ALZ cohort) from this approach related to xenobiotics which were then later 

identified with reference standards. 

Of the first five features, four different features indicated one specific outlier sample at the same 

retention time. Examining the spectrum for this sample, revealed a polymeric pattern, which is easily 

recognisable in UPLC-MS as polyethylene glycol (PEG), appearing as an envelope of repeating signals 

separated by approximately 44.026 Da (Figure 3-10.A). The PEG form was later identified as 

PEG3350 via a reference standard (As part of the investigation in Chapter 5, PEG forms which are 

commercially available were purchased and analysed by RPC-UPLC-MS, positive and negative ion 

mode). PEG3350 is frequently used as an excipient in many liquid and solid medicinal formulations 

(Stone et al., 2019).  

The second ranked feature (Figure 3-10.B), after the PEG features (the 5th ranked feature), was 

initially putatively annotated (MSI level 2) as flucloxacillin (FLX). The putative annotation was 

undertaken using on-line spectral libraries, such as PubChem (Kim et al., 2018), HMDB (Wishart et 

al., 2017) and Metlin (Guijas et al., 2018). In this instance, the HMDB database indicated FLX as a 

potential suspect based on matches (within 3ppm) of this particular feature, to the theoretical 

molecular ion of FLX (454Da) and two fragment ions (160Da and 295Da) under positive ionisation 

conditions (Larmene-Beld et al., 2014). Additional evidence further confirming a positive assignment 

to FLX, was the presence in the mass spectrum of an isotopic distribution associated with halogen 

atoms, specifically chlorine. A reference standard was later purchased, and subjected to the protocol 

of refence standard acquisition, confirming its identity.    

The presence of the outlying features associated with these two xenobiotics, was corroborated by an 

observed effect on the average pooled sample (SR), resulting in its elevation from the median of the 

study sample distribution. The calculation utilising the median is more effective than using the 
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average (mean), as the median is robust to the presence of these outlier samples and thus better 

represents the amount observed in the remainder of the population. That being said, as samples 

with the exposure feature increases in number, the median becomes less representative of the 

other samples in the study, and so we are less able to use the resulting pattern to identify potential 

drug exposures. Therefore, this works best for less common xenobiotics and affected samples being 

in the minority. In addition, these datasets here were processed with XCMS which incorporates 

algorithms such as minimum fraction filters to look for valid features present in a minimum number 

of samples within a sample group. With ALZ, a minfrac setting of 0.4 was set, as per NPC protocol for 

phenotyping data. This means the feature must be present in at least 40% of samples to be included 

for the final dataset. Ideally a dataset with no in-built filtering function would work best for this 

scenario, however if a setting like this was applied to a typical metabolomic dataset, the end result 

could computationally be problematic. 

 

Figure 3-10. Two examples of samples (from urine ALZ RPC-UPLC-MS positive ion mode data) flagged from 

the outlier script.  The two samples have an elevated amount of a feature and are ranked based on the 

greatest difference (number of standard deviations) between median value of all study samples and a sample 

with the highest recorded intensity. A. Feature is ranked number five and corresponds to the xenobiotic 

flucloxacillin.  B. Feature is ranked number one and corresponds to PEG3350.  
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3.4.2.2 Intrasample and intersample correlation analysis; 
 

A two-correlation analysis was undertaken to find features that correlate to the molecular ion 

[M+H]+ corresponding to APAP-unmetabolised. The retention time of the ion was confirmed by 

comparison to the reference standard. The intrasample correlation successfully highlighted 

correlates which were structural, i.e. isotopes, adducts or in-source fragments (Figure 3-11.C). For 

the intersample correlation analysis, when all study samples were used for the correlation, a high 

number of features were observed to be statistically significant, making interpretation extremely 

difficult. The high multicollinearity between features, which are typical of UPLC-MS datasets is the 

most likely reason for this. Assessment of the APAP-unmetabolised molecular ion in the ALZ dataset 

revealed a bimodal distribution as illustrated in Figure 3-11.B.  

The intersample correlation was therefore carried out on the samples that occupied Distribution 2 

(pr2), i.e. any sample with pr2 > 0.90, as indicated by the green vertical dotted line in Figure 3-11.B. 

The samples with pr2 > 0.90, exhibited a detectable level of APAP-unmetabolised, i.e. a minimum 

S/NR ≥ 10 in the correct elution region. The LOD was not evaluated for APAP-unmetabolised, 

however it does seem that the samples within distribution 1 (pr1-red) exhibited negligible levels. The 

intersample correlation revealed several statistically significant correlated feature clusters as 

illustrated in Figure 3-11.A. The blue scatter points represent all statistically significant features 

(padj≤0.05), whereas the green represent features which are statistically significant and have 

correlation coefficients greater than 0.9. The predicted [M+H]+  for reported metabolites of APAP 

were detected with statistically significant correlations (spearman, padj<0.05) to the APAP-

unmetabolised driver (Table 3-3). A hydroxyl sulfate conjugate was additionally annotated based on 

a predicted molecular ion match to within 5 ppm. 
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Figure 3-11. Two- dimensional representation of the intersample corelation analysis (A), feature distribution 

assessment (B), and intrasample correlation analysis (C).  (A) A retention time (min) by  m/z plot representing 

a  Correlation analysis of the intensity pattern for the molecular ion corresponding to APAP-unmetabolised 

across all samples from distribution 2, to the intensity pattern observed for all other features in the dataset. 

Statistically significant Spearman correlations (padj<0.05) was coloured by the blue scatter points. The green 

scatter points represent padj<0.05, and correlation coefficient > 0.9. The greyed-out scatter points represent 

all features detected in the ALZ dataset. (B) Gaussian mixture models (GMM’s) were fitted to the log(base10) 

MS intensity distribution of APAP-unmetabolised in ALZ urine data, and the PDF’s for each gaussians 

(distribution) were obtained. Any sample with pr > 0.90, or a log10 signal greater than the green dotted 

vertical line, was used for the intersample correlation analysis. (C) For the intrasample correlation analysis, an 

empirically derived value of >0.8 correlation was used to select only strongly correlated features restricted to 

0.02 minutes of a specified retention time. Within (C), is a representation of the  pseudo spectrum of all 

features with a correlation coefficient  >0.8, and  the extracted ion chromatograms for the same correlated 

features at the specified retention time (noted as scan number). 
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Table 3-3. APAP and metabolites, based on authentic reference standards, reported metabolites from literature, and prediction from the intersample correlation 

analysis. 

Compound 
RT (min)           

measured 

[M+H]+  

(measured) 

Intersample 

correlation 

Identification/ 

Putative annotation 

Reference standard                  

RT (min) 

[M+H]+     

(theoretical) 

ppm 

error 

APAP (driver) 2.58 152.0702 1* APAP-unmetabolised 2.58 152.0712 6.58 

M1 2.3 232.0276 0.89* APAP Sulfate 2.31 232.028 1.72 

M2 2.13 168.0661 0.72* APAP hydroxyl Sulfate - 168.0655 3.57 

M3 1.95 328.1023 0.87* APAP Glucuronide 1.95 328.1032 2.74 

M4 2.25 271.0747 0.69* APAP Cysteine 2.29 271.0753 2.21 

M5 3.23 313.0849 0.68* APAP Mercapturic Acid 3.23 313.0858 2.87 

*padj<0.05  
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3.4.2.3 Correlation analysis using i-STOCSY 
 

Another correlation-based analysis was explored using i-STOCSY, where the correlation was 

undertaken between samples from the compliance dataset, and matching samples from the RPC-

UPLC-MS (positive ion mode) profiling dataset. The driver used, was selected from the compliance 

dataset, and corresponded to the xenobiotic MEM. Correlated features, as indicated in Figure 

3-12.A1, corresponded to the accurate theoretical [M+H]+ of reported metabolites to within 3ppm. 

Features at m/z 196.1692, match the accurate mass of the M+H ion for N-oxidation and 

hydroxylation metabolites. There are many retention time clusters present, each corresponding to 

different isomeric formations of the hydroxylated/N-oxidation metabolite. Other features include an 

ion at m/z 356.2065 which potentially corresponds to the glucuronide metabolite of MEM, and two 

RT clusters with a m/z of 373.2002, which corresponds to a hydroxylated glucuronide of MEM. The 

heat map (Figure 3-12.A2) was particularly useful for identifying structural correlates within a 

feature cluster. Although hydroxylation and glucuronidation are common metabolic products of 

xenobiotic metabolism, the discovery of a hydroxylated glucuronide using i-STOCSY, to my 

knowledge has never been reported in human urine. Interestingly, Meantime has been reported to 

undergo very little metabolism, with the majority of an administered does being excreted 

unchanged in urine. MEM-unmetabolised was not observed in this dataset, indicating either other 

metabolites would be a better exposure marker than the unemtabolised compound, or it may have 

been filtered during pre-processing.    
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Figure 3-12. i-STOCSY outputs expressed as a scatter plot and heatmap for amlodipine.(A1) Represents all 

features in ALZ that correlate to the driver MEM. An empirically derived value of >0.8 correlation was used to 

select only strongly correlated features. Putative annotations were made from these features. Features at m/z 

196.1692, correspond to N-oxidation and hydroxylation metabolites, a feature at m/z 356.2065 corresponds to 

the glucuronide metabolite of MEM, and two RT clusters with a m/z of 373.2002, corresponds to a 

hydroxylated glucuronide of MEM. (A2) is heatmap of all features above the 0.6 empirical correlation value, 

and in addition to the driver feature, represents the correlations observed to one another. This was 

particularly useful to identify structural correlates.  

 

3.4.2.4 Logistic regression 
 

The number of significant features and accuracy for all models are summarised in Table 3-4. ROC 

curves can be found in Appendix 1. A total of 189 features were statistically significant (padj < 0.05) 
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from univariate LogReg. From these features, the molecular ion for DNP-unmetabolised, and all 

reported metabolites, could be accounted for based on the theoretical [M+H]+ ion that would be 

observed (Table 3-5). As no reference standard for the DNP metabolites are available for purchase, 

only a MSI level 3 putative annotation could be made (due to comparison of certain spectral ions to 

online databases and literature). The training set was used to fit three different univariate models 

(Univariate 1, Univariate 2 and Univariate 3) which was then implemented on the test set. The use of 

an automated algorithm to decide which features to include in the model (Univariate 3), 

demonstrated the poorest accuracy. The selection of all variables (Univariate 1) or selection of 

variables based on knowledge of DNP metabolism (Univariate 2) produced better models for DNP 

prediction with the latter being the most accurate. In multivariate LogReg regression, the results 

from the Ridge model, even after bootstrapping the regression coefficients, produced a large 

number of variables (n=11106), which complicated interpretation and feature selection. The LASSO 

model produced only two features, one was identified as the molecular ion of the DNP 

unmetabolised form, and the other putatively annotated as an in-source fragment ion of an O-

demethylation product of DNP. In the EN model, 26 out of the 42 features corresponded to an ion 

associated with a metabolite of DNP. EN produced the best accuracy from the three multivariate 

models. 

 

Table 3-4. Summarises the number of features that are statistically significant from both univariate and 

multivariate logistic regression models.  The accuracy of these discriminant features to predict with new data 

was validated on the test set. The accuracy was determined using a confusion matrix and with ROC curve 

(AUC). 

Model Number of 

Features 

Sensitivity Specificity Accuracy: AUC Accuracy: Confusion 

Matrix 

Univariate 1 189 0.77 0.69 0.73 0.73 

Univariate 2 13 0.77 0.85 0.81 0.81 

Univariate 3 16 0.69 0.62 0.65 0.65 

Ridge 11106 0.61 0.77 0.67 0.65 

LASSO 2 0.69 0.85 0.78 0.77 

EN 43 0.69 0.92 0.79 0.81 
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Table 3-5. Donepezil and annotated metabolites which were significant from the univariate and multivariate 

LogReg models.  The observed ions are all within 7ppm of the theoretical ion.  

Proposed Annotation Formula [M+H]
+
 

(theoretical) 

[M+H]
+ 

(measured) 

ppm error 

DNP-unmetabolised C24H29NO3 380.2226 380.2214 3.15 

O-demethylation (isomer 1 and 2) C23H27NO3 366.2069 366.2043 7.10 

O-demethylation glucuronide 

(isomer 1 and 2) 

C29H35NO9 542.2390 542.2385 0.92 

N-oxidation C24H29NO4 396.2175 396.2173 0.50 

N-dealkylation C17H23NO3 290.1756 290.1749 6.89 

Mono hydroxylated metabolite C24H29NO4 396.2175 396.2173 0.50 

 

The application of LogReg, was therefore successful in identifying features that best predict 

xenobiotic exposure (DNP), most of which corresponded to known metabolites from literature. The 

univariate LogReg model that used substantive knowledge of DNP metabolism produced the best 

model, however, is only applicable if metabolites are known. If the aim is to uncover new 

metabolites or even metabolites which are affected from endogenous pathways, then all features 

need to be examined. In addition to seeing how features together relate to an exposure, 

multivariate models can be investigated to mitigate the problem of multicollinearity and decrease 

model complexity, i.e., by exerting a penalty, as in the case of Ridge, LASSO and EN. Ridge will keep 

all variables (features) in the model, however the variables with a minor contribution to the 

outcome will have their coefficients closer to zero. Bootstrapping and resampling for an estimation 

of the regression coefficients did indeed reduced the number of variables in the model, however, 

was still difficult to interpret. LASSO and EN both have implicit variable selection, with the latter 

being less stringent. The EN model was a good compromise between Ridge and LASSO. The EN 

model predicted the best out of the three multivariate models, having the highest accuracy as 

estimated from the ROC curves. LogReg was successful in not only identifying the parent xenobiotic, 

but also known direct metabolites which are supported by the literature. Features not related to 

direct metabolism of DNP were also observed to be significant, suggesting that there is scope for this 

strategy to highlight other affected metabolites. 
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3.4.2.5 PLS regression and discriminant models 
 

PLS regression and classification models were used to identify features relating to amlodipine 

exposure. A PLS-R model was firstly built and is based on the Y variable or output being continuous, 

i.e., the Y variable corresponds to the intensity profile for the molecular ion of amlodipine 

(amlodipine-unmetabolised) measured from all study samples. By contrast, PLS-DA models were also 

evaluated. As this is a discriminant analysis requiring groups or classes of samples, samples were 

classified into exposure groups based on the feature distribution assessment (as highlighted from 

the intersample correlation analysis). amlodipine-unmetabolised, like APAP, also exhibited a bimodal 

distribution in the data as illustrated in Figure 3-13. GMMs were implemented again, and samples 

occupying the green distribution, i.e., pr2 > 0.90 or log10 signal greater than the vertical green 

dotted line, exhibited a feature corresponding to amlodipine-unmetabolised, with a minimum S/NR 

≥ 10 eluting at an identical retention time to the reference standard from the database. A PLS-DA 

model was built, where samples were classified into two exposure groups, i.e., distribution 1 is the 

zero-low exposure group, and distribution 2 is the high exposure group. However, there were only 

52 samples that occupied this high exposure group and 509 samples that occupied the low zero-low 

exposure group, so there could be an issue of bias related to unbalanced groups in a PLS-DA model. 

Therefore, a random equivalent number of samples were selected from the zero-low exposure 

group (pr1 > 0.90 or less than the red vertical dotted line), and a secondary PLS-DA model with 

balanced groups was constructed. PLS loading plots were used to illustrate the findings and loadings 

highlighted in blue, exhibited VIP values ≥ 2 (Figure 3-14). The same features validated across all 

three PLS models. The R2Y and Q2Y values obtained with six calculated components were, 0.95 and 

0.84 for the PLS-R model, 0.94 and 0.78 for the PLS-DA model (unbalanced), and 0.99 and 0.86 for 

the PLS-DA model (balanced), respectively. Permutation testing indicated low variability and an 

excellent predictive ability. The predicted [M+H]+ for the reported metabolites of Amlodipine (which 

are represented by the red coloured circles), as well as ionisation products for these features, were 

the main features with VIP values ≥ 2 from the PLS loading plots. amlodipine-unmetabolised would 

be considered a MSI level 1 identification as there is reference standard, the other four metabolites 

would only be considered a MSI level 4 annotation. However, the mass spectrum of Amlodipine 

clearly shows two peaks indicative of an isotopic distribution pattern for a compound containing a 

single chlorine atom. This isotopic pattern was also observed for all the annotated metabolites which 

further adds confidence to their assignments. The oxidised-carboxylic acid metabolite was the most 

intense of all the annotated metabolites and was the most discriminant of all features (furthest away 

in the loadings plot). This agrees with the findings of Van der hooft et al. (van der Hooft et al., 2016), 
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as they reported the same observation, indicating that it may be a better marker for exposure than 

the parent compound.  

 

 

Figure 3-13. Gaussian mixture models (GMM’s) fitted to the MS intensity distribution density plot of 

amlodipine-unmetabolised from ALZ urine data (RPC-UPLC-MS in positive ion mode).  GMM’s were fitted, 

and the PDF’s for each gaussians were obtained, dividing the data to a High exposure group (Distribution 2, pr2 

– green), and a Zero exposure group, (Distribution 1, pr1 -red). Any sample with pr1>0.90, or a log10 signal less 

than the red dotted line, assumed the classification of zero exposure, and any sample with pr2>0.90, or log10 

signal more than the dotted green line, assumed the classification of high exposure.  
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Figure 3-14. Six-component PLS loading plots showing the separation and discriminating features from the 

RPC-UPLC-MS (positive ion mode) profile observed between the  high and zero-low exposure groups (with 

loadings coloured in blue exhibiting a VIP > 2) relating to the xenobiotic amlodipine.  Loadings coloured in 

red are the molecular ions for reported metabolites of amlodipine, and loadings coloured in green are all 

remaining features in the dataset with VIP values < 2. Validation plots displaying 999 permutation tests are 

alongside the corresponding PLS models. 

(A) The explained variance (R2Y) was 0.95 and predictive ability was 0.84 for PLS-R model, where the Y variable 

is continuous, and is the intensity profile of the molecular ion corresponding to amlodipine-unmetabolised; 

(B) The explained variance (R2Y) was 0.94 and predictive ability was 0.78 for PLS-DA model (unbalanced), 

where the Y variable is categorical (i.e., 0 for control and 1 for case). Sample groups were classified and 

assessed based on the distribution of the molecular ion corresponding to amlodipine-unmetabolised. The 

control group consisted of 509 samples from the zero-low exposure group, and case group consisted of 52 

samples from the high exposure group; 
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(C) The explained variance (R2Y) was 0.99 and predictive ability was 0.86 for PLS-DA model (balanced), where 

the Y variable is categorical (i.e., 0 for control and 1 for case). Sample groups were classified and assessed 

based on the distribution of the molecular ion corresponding to amlodipine-unmetabolised. The control group 

consisted of 52 samples randomly selected from the low-zero exposure group, and case group consisted of all 

52 samples from the high exposure group. 

All three models highlighted approximately the same statically significant features (VIP > 2) relating to 

amlodipine exposure. 

 

3.5 Results Summary 
 

The aim of the work described in this chapter was to develop and apply strategies that could 

increase the number of identified and annotated xenobiotic-related features in UPLC-MS based 

metabolic phenotyping datasets.  

This main aim was successfully addressed in two ways; i) the construction of a reference standard 

database for xenobiotic spectra, based on knowledge of those prevalent in the UK; ii) extraction of 

xenobiotic signatures using statistical methods that made use of characteristic chemical and 

biochemical relationships between metabolites.  

For the knowledge driven strategy, in place, is now a reference standard database and workflow 

for reference standard acquisition.  

Originally 25 xenobiotics were used to populate the database (Table 3-1). Also listed in the table 

were reported metabolites observed in human biofluids, and if available, were additionally 

purchased as they may potentially provide a better marker for exposure. There are currently 41 

reference standards which have undergone the acquisition and processing workflow. There were 

also 57 pharmaceutical medications which were profiled and subjected to the same workflow.  

Profiling these medications highlighted common excipients used in these formulations, which should 

also be regarded as a separate exposure, like the excipient polyethylene glycol (PEG) 400. This 

excipient along with 30 xenobiotics were identified in the ALZ urine study and their population 

prevalence estimated. Caffeine, PEG-400 and Prednisolone were observed to be highly prevalent 

within this population.  
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In addition to the knowledge driven strategy were data-driven strategies using three main 

statistical methods; correlation (inter/intra correlation and i-STOCSY), regression (PLS and logistic), 

and a method exploring unknown outlying signals.  

For each method, an exemplar xenobiotic was used to explore the feasibility of each statistical 

method to discover additional metabolic feature associations. Xenobiotics were chosen based on 

prevalence in the population (APAP), known reported metabolites detected in urine from the 

literature, and medications specific to the ALZ study (amlodipine, DNP and MEM).  

Workflows to carry out inter/intra correlation were implemented using custom scripts written in R. 

This correlation method was successfully exemplified using the xenobiotic APAP, in which all known 

reported metabolites commonly observed in urine demonstrated statically significant correlations 

(padj < 0.05).   Another correlation-based tool, i-STOCSY, was additionally explored using the 

xenobiotic Memantine. A hydroxylated glucuronide was putatively annotated and was a novel 

finding. Also, unmetabolised Memantine was not detected in the urine and therefore would not be 

the best marker for exposure when screening for this xenobiotic in future urine studies. 

Stemming from this analysis, were workflows to examine feature distribution and exposure groups 

using Gaussian mixture models (GMMs) and Probability density functions (PDFs). This permitted the 

population distribution of a xenobiotic exposure to be evaluated in more detail, thereby allowing 

more discriminant-based methods to be explored, such as logistic regression and PLS-DA models. 

The logistic regression method was exemplified using the xenobiotic DNP of which six different 

models (a mixture of univariate and multivariate) were explored. The univariate model that 

incorporated all statically significant variables, and the EN multivariate model, produced the best 

classifiers based on ROC curve metrics. All known reported metabolites were putatively accounted 

for, as well others. This suggests that these models are useful for uncovering unknown xenobiotic 

metabolites, or endogenous responses.   

Another multivariate statical approach which was also investigated was PLS (which included 

regression and discriminant analysis) and exemplified using the xenobiotic amlodipine. Like 

memantine, the amlodipine carboxylic acid metabolite was the more appropriate marker for 

exposure than the unmetabolised form in the urine. This metabolite was therefore targeted in the 

ALZ study and used as a proxy for exposure for prevalence estimation. 

Finally, an approach linking outlier samples to xenobiotic exposures was explored. The script was 

successful in enhancing xenobiotic coverage, with MSI level one identifications of PEG 3350, which is 

a common laxative, and the antibiotic flucloxacillin. 
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3.6 Significance of Findings 
 

The work presented in this chapter is useful in three main ways:  

1. The construction of a xenobiotic database which can aid in metabolic identification efforts.   

2. Spectral features relating to identified xenobiotic exposures can be readily partitioned from 

endogenous features, to better inform interpretation and reduce confounding in 

metabolomic investigations. This will also help with exposure misclassification, so that 

stratification of samples groups can be undertaken more accurately.    

3. Aids population-level exploration of exposure to sufficiently abundant xenobiotic 

compounds, and exploration of the variation in the metabolism of these compounds 

between individuals.  

 

3.7 General Discussion 
 

The Identification of commonly used pharmaceuticals and xenobiotics in the general population, 

allowed the generation of a database to supporting rapid annotation in NPC assays. Often is the 

case, running a reference standard on the instrumentation used to acquire biological samples, is the 

simplest approach and precludes the need for any statistical based approaches. It reflects almost 

identical conditions in instrumentation used in the profiling analysis with method specific retention 

times and assay specific adducts and isotopic distributions. However, many prescription medications 

are considered a controlled substance and are not available for research purposes. In addition, 

reference materials for metabolites of common xenobiotics, are not usually supplied by typical 

vendors and may require chemical synthesis. Synthesis of reference materials can often be time 

consuming and expensive. If compliance/questionnaire metadata for the study was not available, 

the construction of the database was therefore inevitable, as UPLC-MS signals for xenobiotics from 

the database were used as a starting point for any statistical based exploration in the exemplar ALZ 

dataset, to uncover metabolites related to exposure.  

There are other means which can be utilised to annotate xenobiotic metabolites. In some instances, 

elemental composition can be derived directly from the MS data, and if MSMS is available, 

fragmentation can aid in structural elucidation efforts.  Matching the MS or MSMS profile with 

online spectral databases is yet another means to annotate metabolites. Advances have been made 

with structural elucidators from online databases which can generate a more refined list of in-silico 

chemical structures (Blaženović et al., 2018). However, these approaches can still result in many 
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possible candidates, and are limited to what is present in the database, meaning novel metabolites 

may be missed. Drug screening using high resolution mass spectrometry instrumentation in 

toxicological applications have utilised an alternative technique known as suspect screening. In these 

applications, xenobiotics are identified based on predicted or intrinsic properties, such as accurate 

mass, isotopic distribution and a theoretical fragmentation profile. These groups have demonstrated 

high accuracy in xenobiotic detection and applicability to xenobiotics where reference standards are 

not available, such as synthetic drugs of abuse. Lastly, the structure elucidation of an unknown 

xenobiotic feature can be greatly facilitated by combining or even direct linking of two analytical 

platforms, such as NMR and LC-MS (Zani and Carroll, 2017, Wolfender et al., 2019, Koehn and 

Carter, 2005, Posma et al., 2017). LC-NMR-MS instruments are now available that combines the 

unique information from NMR (e.g. chemical shifts) with MS (e.g. accurate mass and fragmentation 

data). Workflows for the purification and desalting of a urine matrix used as a proxy for systemic 

human and gut microbial metabolism have enabled both NMR and MS profiles to be captured 

resulting in greater confidence for a particular metabolic assignment (Whiley et al., 2019). However, 

this avenue of metabolite ID may also fall short, due to the large volumes needed for the pipeline. 

Although it has proven highly applicable to endogenous metabolites, less prevalent xenobiotics may 

not be in a sufficient concentration to be detected by less sensitive techniques such as NMR.In this 

chapter, prior to any statistical approach, an efficient way to classify samples into exposure groups 

was needed. Either through known information, such as compliance data, or through measurement 

of an exposure marker. Assessment of the MS feature corresponding to a xenobiotic, highlighted 

patterns in the data, which could be linked to exposure. Xenobiotic related feature often exhibited a 

multimodal distribution allowing samples to be classified into different exposure group (for instance, 

a low and high exposure group). The application of GMMs provided an efficient way to classify 

samples based on their distribution in the data. This classification method, therefore allowed 

statistical techniques such as correlation, logistic regression and PLS to be employed, which 

successfully identified additional features which were subsequently connected to known reported 

metabolites. There were other significant features from each statistical method which were not 

annotated, which could potentially reflect new xenobiotic related metabolites, co-exposures, or 

even affected endogenous metabolites, which demonstrates the strength untargeted metabolic 

phenotyping platforms to capture xenobiotic signatures alongside endogenous signatures. 

Multivariate unsupervised techniques, such as PCA or supervised techniques such as PLS-DA or 

orthogonal PLS (and variants such as OPLS), are widely used to analyse metabolomic data (Worley 

and Powers, 2013, Alonso et al., 2015, Ren et al., 2015). Outliers are normally detected using 

multivariate analysis such as PCA and can be the main cause of the underlying variance described by 



Knowledge-based and data-driven extraction of xenometabolome signatures from large-scale metabolic phenotyping data 

 

122 
 

the first principal component (Ulaszewska et al., 2019, Tzoulaki et al., 2014). Removing these 

outlying samples from further analysis is often the case, as they can be mainly attributed to 

analytical issues.  

However, the work presented in this chapter demonstrates that outlier samples can be linked to 

xenobiotic exposure and are not necessarily a result of analytical issues. If exposure related, or even 

a result of biological variation, consideration is needed before removing samples from a study as 

they can underline issues in the experimental design and potentially be of value. The putative 

annotation of Flucloxacillin using this outlier method, highlighted the unique isotopic pattern 

observed in MS data associated with chlorinated compounds. Mass defect and isotope filtering 

algorithms have been successfully implemented to identify xenobiotic and metabolites exhibiting 

this pattern, presenting another avenue of research which can be explored (Zhang et al., 2009, 

Rathahao-Paris et al., 2014).  

These “outlying” signals can also be removed during sample pre-processing. As part of the NPC pre-

processing (XCMS) workflow of UPLC-MS data, minimum fraction (minfrac) filtering can result in data 

that is biased towards the consensus metabolome. The parameter is usually set at 0.4 for all NPC 

project data. This means, that during the feature grouping stage of the workflow, for a feature to be 

qualified and included in the final dataset, it needs to be detected in at least 40% of all samples. 

There is therefore a good chance that less prevalent xenobiotic signals maybe filtered out, thereby 

demonstrating a limitation of applying any statistical method in extracting out signals relating to 

xenobiotics from these metabolomic studies.  The minfrac setting can be adapted to a smaller 

setting but only to a certain extent. The smaller the setting, the more computational processing is 

required, which can be an issue with large (>1000 samples) studies. Another limitation which can 

construed from this line of thought is related to sample size in general. If the exposure feature is not 

detected in many samples, further annotations relating to metabolites will not be possible, and 

putative annotations will heavily rely on literature and online spectral databases.  There also needs 

to be some level of diversity of the xenobiotic intensity measurements. Correlation and regression 

will not work if the measurement of a specific feature’s intensity does not fluctuate in a significant 

number of samples. The xenobiotic therefore needs to be moderately prevalent. 

Compared to traditional univariate statistical methods, multivariate techniques can be better suited 

to handle high dimensional data, especially when there are strong inter-correlations 

(multicollinearity) between features, which care typical of UPLC-MS datasets. Regularised methods, 

such as Ridge, LASSO and EN, are alternative multivariate methods that can also deal with 

multicollinearity by imposing a penalty to regression coefficients (Full details in Chapter 2). 
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Multivariate Logistic regression using regularised methods, have also been implemented in 

metabolomic investigations (Yang et al., 2018, Yun et al., 2019, Goutman et al., 2020), however to 

my knowledge has not been implemented to specifically study xenobiotic metabolism. Both PLS and 

logistic regression (using regularisation) multivariate methods were explored in this chapter to study 

the metabolism of exemplar xenobiotics. Both were successful in highlighting associated features 

corresponding to reported metabolites.  

A univariate application of logistic regression and correlation analyses (with multiple correction) was 

also successful in identifying a number of xenobiotic metabolites consistent with the literature. 

Regardless of the type of statistical method, a key observation was that metabolites in some cases 

maybe a better marker for exposure than the unmetabolised xenobiotic (as observed with MEM and 

amlodipine).  

These methods and modelling approaches were specifically chosen due to ease of interpretation. 

When the xenometabolome was initially defined by Elaine Holmes, that work used STOCSY to 

identify signals directly linked to xenobiotic signatures from a given exposure using NMR. Correlation 

therefore formed the basis of the statistical approaches investigated throughout Chapter 3. 

Correlation can be considered a central part of statistics and quite a simple way to determine how 

two variables co-relate when measurements are continuous.  The classification of samples into 

different exposure groups then invited other methods to be explored where variables can be 

categorical or binary. These included logistic regression and/or PLS-DA models. With these 

regression models, we can do more elegant statistics where different strata or groupings of people, 

factors of influence, for example gender or age, smokers, can be taken into account. These methods 

allow one to incorporate and accommodate these influences into the model and therefore control 

these potentially confounding variables. If we can account for these by stripping them away and 

removing their contribution, focus can be placed more on the biology. 

The classification models discussed in the thesis use a form of regression to build a model, where if a 

new sample was introduced, we can confidently classify it into a particular group. Now this 

classification can be implemented using those same input variables used to make the model (in our 

case the features that best predict exposure) in a number of different ways. In a recent study, PLS-

DA was compared with artificial neural networks (ANN) (Mendez et al., 2020). ANN takes into 

account the non-linear latent structure observed when handling biological data. The study 

demonstrated that it was possible to transfer the PLS-DA workflow to this ANN’s, highlighting the 

same significant metabolites. The limitation of the ANN method is that they can be hard to interpret, 

which is why the methods investigated in this chapter were specifically chosen. With PLS models, 



Knowledge-based and data-driven extraction of xenometabolome signatures from large-scale metabolic phenotyping data 

 

124 
 

loadings (weights) or pcorr (weights scaled as correlation coefficients) can be used to describe the 

contribution a variable may have to the model; Beta coefficient in regression models (linear and 

logistic) represents the strength and influence each variable has to the response variable; the use of 

regularised methods such as Ridge, LASSO and EN, imposes a penalty to regression coefficients, 

thereby highlighting the important variables in the model; and finally the use of p-values and 

multiple testing to account for false positives in univariate testing, thereby making feature selection 

simple. The relative ease of interpreting these models where why these specific statistical methods 

were selected to explore xenobiotic metabolism in profiling datasets.    

Looking forward, making a note of the xenobiotic metabolites which are prevalent in specific 

biofluids, can be beneficial when targeting specific exposure markers in future studies. As 

demonstrated in this chapter (MEM and amlodipine in urine), the unmetabolised xenobiotic may not 

necessarily be the best marker for exposure. 

 Furthermore, as instrument conditions have remained the same since the very first project 

conducted at the NPC, the application of the database using the peakpantheR tool, could also be 

implemented to annotate xenobiotics on past project data. Due to the success of annotating 

metabolites from the database, the workflow for xenobiotic reference standard acquisition has now 

been implemented to the other profiling assays conducted at the NPC (HILIC systems for polar 

metabolites and RPC specifically geared to lipophilic species.). Similarly, the statistical approaches to 

further annotate xenobiotic metabolites can also extend to these profiling assays if ever the need 

requires it. The use of i-STOCSY in conjunction with compliance meta data provided with the ALZ 

cohort was successful in identifying metabolic features relating to exposure without the need of a 

specific driver feature MS feature. This success has now eventuated into a MRes project to further 

increase xenobiotic annotations in profiling cohorts.   

Returning to the original hypothesis, construction of a reference standard database (analysis by RPC-

UPLC-MS), and the development of statistical based methods, collectively increased coverage and 

characterisation of xenometabolome components in existing phenotyping datasets.   

 

3.8 Conclusion 
 

The developments described here have the potential to provide a richer set of annotated features 

with an exogenous origin, for existing and future studies.  
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The novelty of this chapter is therefore due to the strategies developed to partition signals relating 

to xenobiotics. There is novelty in the reference standard databasing workflow which permits the 

analysis and processing of a high number of standards with little manual assessment. There is also 

novelty in the strategies involved in partitioning xenobiotic signals statistically from endogenous 

signals (which includes the evaluation of feature distribution, and classification into exposure 

groups).  Instead of dedicating a study to xenobiotic metabolism which can require quite a 

substantial investment (method development, time, cost etc), there is some novelty in how 

metabolomic datasets were retrospectively interrogated thereby demonstrating that these 

dedicated studies many not be necessary as the responses from exposures may already exist from 

these datasets.  

For the purposes of most phenotyping studies, being able to separate out contributions / 

components of the metabolome that are directly related to (i.e. biomarkers of) chemical exposures 

can help limit their confounding influence on metabolome-wide analyses, and increase the efficiency 

of analyses focused on understanding endogenous metabolic regulation. Additionally, annotation of 

xenobiotic signatures can report objectively on individual compliance with study protocols, identify 

outliers, provide population-level exposure data and lead to discovery of new metabolites. Looking 

forward, these insights into the metabolism of xenobiotics have influenced how xenobiotics are 

being discovered, developed and administered (Wishart, 2016).  
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Chapter 4  

 

Enhanced RPC-UPLC-MS profiling of the 
human blood metabolome using an 
optimised dispersive SPE protocol 
 

Summary 

Comprehensive coverage of chemically diverse metabolites present in human blood products 

benefits from the use of multiple methods, each oriented toward a small molecule subset generally 

segregated by polarity and hydrophobicity. Whilst recent developments in LC-MS profiling 

methodologies have delivered numerous solutions for the analysis of polar molecules (e.g. via HILIC-

MS) and complex lipids, the analysis of moderately hydrophobic and amphipathic molecules in blood 

products (which includes much of the xenometabolome) is better suited to RPC methodology. The 

approach, however, is complicated by the suppressive effects of lipids on the ionisation of small 

molecule metabolites. A dispersive solid phase extraction (DSPE) protocol was developed to 

specifically remove lipids and protein efficiently, with minimal effect on other low molecular weight 

metabolites. The protocol therefore enables RPC-UPLC-MS blood profiling of the xenometabolome, 

with the added benefit of measuring a broader range of moderately hydrophobic endogenous 

metabolites. This was approached in three stages: optimisation, validation and application. 

Optimisation involved careful assessment and evaluation on the different components involved in 

DSPE (sorbent, solvent, and sorbent-solvent volume and concentration). Validation then assessed 

the reproducibility and recovery of measured small molecule metabolites using the final optimised 

sample extraction procedure and compares the method to conventional LLE methods and SPE 

protocols for lipid removal. Finally, an application was conducted to evaluate the performance of the 

protocol using two exemplar profiling studies. The DSPE method provided a straightforward and 

reproducible approach which enabled the use of uncompromised RPC-UPLC-MS to complement the 

coverage provided by HILIC and lipid analyses. Additional advantages include reduced cost and 

increased robustness when compared to liquid-liquid extraction (LLE) methods and conventional 

commercially available SPE sample clean-up protocols. 
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Aim and Objectives 

The central aim of the work presented in this chapter was to develop an analytical strategy, to 

measure xenometabolome components in blood products. The strategy was undertaken with the 

development and optimisation of a DSPE blood preparation protocol to specifically removing lipids 

and protein efficiently and inexpensively, with minimal effect on other LMW metabolites.  

Development of the protocol was divided into three stages. 

1. Optimisation 

  Sorbent and solvent specification 

 Optimisation of sorbent-solvent conditions using Design-of-experiment (DOE)  

2. Validation 

 Method reproducibility and precision  

 Assessment of recovery after DSPE; small molecule profile and targeted xenobiotics  

 Comparison of LLE methods and the DSPE protocol performance 

 Comparison of commercially available SPE phospholipid clean-up plates to DSPE 

protocol  

3. Application 

 Method performance evaluated on plasma profiling study (MARS cohort) 

 Method performance evaluated on serum profiling study (AZ Study 12 cohort) 

 

4.1 Introduction 
 

Metabolic phenotyping or metabolomics has been used to report on the complex chemical 

compositions of biological fluids and tissues in mammals, as well as in microbial communities (Donia 

and Fischbach, 2015), plants (Fiehn et al., 2008) and environmental systems (Bundy et al., 2008). In 

humans, its definition has expanded to now encompass metabolites (the metabolome) reflecting 

intracellular and extracellular processes, as well as metabolites introduced and modified from 

external exposures such as diet (Holmes et al., 2008), xenobiotics (Marotta et al., 2006) , synthetic 

chemicals (Wishart et al., 2012) and the microbiome (Nicholson et al., 2005). Being minimally 

invasive in terms of accessibility, urine, and blood biofluids are frequently used in metabolomic 

research as they reflect import life processes and responses to environmental factors. Low molecular 

weight (LMW) metabolites represent a broad continuum of physiochemical and exposure-based 

metabolites with physiological concentrations spanning several orders of magnitude which help 
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shape the phenotype of an individual. Plasma and serum, both of which are frequently used in 

metabolomics (Suarez-Diez et al., 2017) and as a proxy for blood itself, generally require sample pre-

treatment in order to maintain and preserve the integrity of the analytical platform used. Both 

plasma and serum contain a unique variety of different LMW metabolites (e.g. energetic substrates 

and signalling molecules, proteins, peptides, lipids and lipoproteins. Relative differences are 

observed between the two matrices dependent upon factors such as sample collection (Yu et al., 

2011), incubation(Liu et al., 2010), and due primarily to the clotting process present in plasma 

(Beheshti et al., 1994). Being a truly systemic sample (under homeostatic control), blood products 

can provide a snapshot of global metabolism at the point of collection, making them widely used in 

metabolomic studies. However, the diverse range of metabolites, represents an analytical challenge, 

as no single profiling method is yet comprehensive and so measurement of blood metabolites 

requires multiple complementary analytical techniques using multi technological platforms.  

Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) are two common 

profiling platforms used in metabolomic studies (Johnson and Gonzalez, 2012). NMR benefits from 

high analytical reproducibility and robustness, with biological samples making minimal contact with 

operational components due to the instrumental configuration, thereby minimising any risk of 

sample contamination or carry-over. The technique however is limited in that all signals from 

complex blood mixtures, are observed in the one spectrum and so high quantities of a particular 

analyte could potentially mask low level metabolites. MS for profiling applications offers a 

complementary approach to account for the poor sensitivity. The use of high-resolution 

measurement systems (e.g., time-of-flight mass analyser) allows high specificity of the technique 

where the accurate molecular mass is well distributed across the detectable range. Gas 

chromatography mass spectrometry (GC-MS) is a well-established platform in metabolomics, 

particularly in the analysis of volatile and non-polar compounds. Fragmentation of these species 

following the ionisation process, eliminates the need for further tandem MS (Papadimitropoulos et 

al., 2018) and as a result, spectra attained is highly reproduceable and independent of matrix effects 

leading to the creation of large spectral libraries (NIST11) to be available for metabolite annotation 

(Stein, 2012). In addition, head space GC-MS sampling allows for cleaner extract, free of interference 

from polar metabolites and has been successfully applied to a number of metabolomic applications 

(Silva et al., 2011). However, high throughput applications of blood products require an efficient 

extraction procedure which is both time and cost effective with minimum sample preparation, and 

as very few metabolites are truly volatile, a derivatisation step is usually required in GC-MS based 

analysis to make these metabolites thermally stable, introducing an extra step in sample preparation 

process which is generally not a concern for liquid chromatography (LC) MS applications. LC-MS 
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boasts a broad metabolite coverage, utilising different column chemistries (Haggarty and Burgess, 

2017) and ionisation sources (Lei et al., 2011). Developments in the retention mechanism in columns 

combined with the use of smaller column particles and high flow rates (ultra-performance liquid 

chromatography) provide fast and efficient separations, particularly beneficial in metabolome 

analysis, and affords vastly superior results in a fraction of the analysis time when compared to 

conventional HPLC systems (Wilson et al., 2005). Recently, we have developed a refined UPLC-MS 

platform capable of achieving robust and reproducible measurements in the raw data with minimal 

need for post normalization or informatic correction (Lewis et al., 2016).   

Reversed-phase chromatography (RPC) with separation based on the hydrophobicity and length of 

fatty acyl chain moieties (Ovcacikova et al., 2016), is well suited to the analysis of serum, consisting 

of more than 70% non-polar lipid classes (Ovcacikova et al., 2016), making it a popular separation 

technique in lipidomics (Psychogios et al., 2011). Polar and ionic metabolites (some amino acids and 

organic acids) requires a different separation mechanism for detection, notably hydrophilic 

interaction liquid chromatography (HILIC) (Cai and Li, 2016), and ion-pairing chromatography 

(Coulier et al., 2006). To better accommodate lipids in global profiling analyses, the established 

standard is to design methods which measure smaller molecules and cleanly elute lipids, either 

allowing their additional measurement (Dunn et al., 2011), or simply preventing their problematic 

accumulation (Sarafian et al., 2015). However, where the target metabolite range is broad, the use 

of polar solvents to extract and solubilise polar metabolites can lead to poor recoveries of lipophilic 

species (Dunn et al., 2011). To span the breadth of chemical diversity present in blood products, 

comprehensive metabolome coverage can benefit from the use of multiple extraction procedures, 

each optimised to target a specific subset of metabolites. Within our laboratory, we have adopted 

such an approach, with methodologies for blood profiling that target polar metabolites using HILIC, 

and lipids using RPC (Izzi-Engbeaya et al., 2018). However, a major gap exists in the analysis of 

moderately hydrophobic and amphipathic molecules in blood products which can encompass much 

of the xenometabalome and the wider exposome (metabolites introduced and modified from 

external exposures). As molecules that fall within this category, exhibits a certain degree of 

hydrophobicity, RPC methodologies are better suited (Ordóñez et al., 2018, Lundgren and DePierre, 

1990, Holcapek et al., 2008). RPC has been frequently used in metabolomic based analysis of 

biofluids due to a high level of analytical performance it can attain, i.e. superior peak shape, stable 

retention times and high speed of equilibration, across a broad range of analytes (Psychogios et al., 

2011). RPC is therefore well suited for the analysis of moderately hydrophobic and amphipathic 

molecules which encompasses much of the metabolome and xenometabolome. With RPC however, 

comes chromatographic challenges, complicated by the suppressive effects of the existing lipid 
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species present, on the ionisation of other LMW metabolites and the unpredictable manner in which 

lipid accumulate and elute from the column (Want et al., 2006, Dunn et al., 2011, Michopoulos et al., 

2009, Rico et al., 2014).   

As the focus of this work is on the analysis of moderately hydrophobic and amphipathic small 

molecules, the removal of lipids may be better suited during sample preparation. Protein 

precipitation (PP) followed by centrifugation, is the minimum and most often sample pre-treatment 

method used to blood products prior to LC-MS. Adequate blood deproteinization with organic 

solvents such as methanol (MeOH), ethanol (EtOH) and isopropanol (ISP),  and acetonitrile (MeCN) 

have been reported to be the most effective (Raterink et al., 2014). Extraction selectivity of 

metabolites will differ based on the solvent used, and the overall extraction efficiency can be 

assessed using performance criteria such as instrumental stability (column lifetime and retention 

time), relative standard deviation for intensities (reproducibility) of all detected metabolite features 

and total number of extracted features (Polson et al., 2003, Want et al., 2006, Bruce et al., 2009). 

Biphasic extractions, or liquid-liquid extractions (LLE) are popular techniques used in the analysis of 

lipids on blood products (Li et al., 2014). Originally proposed by Folch (Folch et al., 1957), and later 

revised by Bligh-Dyer (Bligh and Dyer, 1959), the procedure predominantly uses a specific 

composition of methanol, water and chloroform. The Matyash method (Matyash et al., 2008) uses 

methyl tert-butyl ether (MTBE) in place of chloroform, which offers a safer alternative. Additionally, 

the extraction results in the organic layer forming above the aqueous hydrophilic layer (as opposed 

to forming on the bottom, as observed with Folch and Bligh-Dyer), which decreases risk of cross 

contamination between the organic and aqueous phases during sample preparation.  Furthermore, 

integration of robotics and automated systems allows for high-throughput analysis (Patterson et al., 

2015).  

Whatever the LLE method, the use of an aqueous and an immiscible organic solvent, allows 

measurement of lipids from the organic fraction. The analysis of the hydrophilic fractions can 

additionally be used to measure polar metabolites however, this rarely appears to be the case. 

Rather, solid phase extraction (SPE) plates are often used to remove lipids. Examples which are 

commercially available include, Ostro™ (Waters), ISOLUTE ™ (Biotage) and Phree™ (Phenomenex). 

The extraction mechanism utilises a combination of PP and extraction on a C18 sorbent. SPE to 

remove phospholipids has observed to be better suited for targeted analyses, and unfavourable in 

untargeted metabolomics, with the potential risk of removing wanted metabolic features and 

potentially introducing contaminants (Armirotti et al., 2014, Simón-Manso et al., 2013). Both LLE and 

SPE have demonstrated less measurement variation of metabolic features but require additional 
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steps during sample preparation (for instance, washing of sorbent with multiple solvents) which can 

be disadvantageous for global metabolic profiling (Yang et al., 2013).  

In this chapter, a novel method using dispersive-SPE (DSPE) on blood products, was developed, 

validated, and applied as an alternative to LLE and SPE for phospholipid removal, for small molecule 

analysis. Originally designed as a clean-up technique for pesticide residue in produce (Anastassiades 

et al., 2003), the technique was implemented in a similar fashion, but instead, was used as a means 

to remove lipophilic species from blood products. In a DSPE preparation, sample is added to a 

sorbent material which is suspended in a liquid solvent. Based on the properties of the sorbent and 

solvent, certain components in the sample will therefore have an affinity for either one. C18 packing 

material was used as the sorbent in this application of DSPE to remove nonpolar interferences 

(lipids). The interaction between sample and components of the DSPE, occurs at a chemical specific 

on or of rate, i.e. at a certain point in time a percentage is bound to the sorbent and percentage is 

remains in the solvent. Equilibrium is reached quickly, reducing time significantly when compared to 

conventional SPE and LLE protocols (Islas et al., 2017).  

Development of the DSPE protocol was split into three design stages: 1) optimisation, 2.) validation 

and 3.) application. Optimisation involved assessment of the sorbent and solvent, followed by the 

implementation of DOE to provide a more systematic approach to optimise the sorbent-solvent, or 

slurry, conditions. Validation then involved using the optimised protocol to determine method 

reproducibility, recovery, and comparison to other sample preparation procedures such as SPE and 

LLE. Finally, the application of the DSPE protocol to two exemplar profiling studies, will demonstrate 

the methods suitability to explore the metabolome and xenometabolome, with both endogenous 

metabolites and known xenobiotics being annotated. 

 

4.2 Hypothesis 
 

The hypothesis of this chapter is that DSPE will remove lipids and protein efficiently and 

inexpensively from blood products, with minimal effect on a specific subset of small molecule 

metabolites to enable large scale (i.e. fast, simple and reliable) RPC-UPLC-MS profiling. The DSPE 

blood sample preparation technique will provide a better alternative for the simultaneous capture of 

small molecules and removal of lipophilic species, than commercial SPE lipid removal plates and 

conventional LLE methods.  
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4.3 Methods 
 

4.3.1 Representative biological samples for development and testing 
 

Plasma was used as a proxy for all blood products and for the entirety of the optimisation 

experiments. EDTA anticoagulated human plasma, consisting of six individual donors, was purchased 

from Sera laboratories international (West Sussex, U.K) and was subsequently used in all parts of the 

development. The samples were sub aliquoted in 1 mL tubes and stored at -80°C. These samples 

were labelled as Development set samples or Devset-plasma. A pool of urine samples was also 

required for development and testing. It consisted of six individual donors of mixed genders and 

collected at multiple collection time points. No screening of contaminants was undertaken prior to 

pooling. A total of 200mL was collected and pooled as described by Lewis et al. These samples were 

labelled as Devset-urine. The volume of plasma and urine needed for any part of the development 

was calculated prior to the experiment and the appropriate number of aliquots thawed when 

needed for DSPE optimisation and validation. 

 

4.3.2 Reagents 
 

Organic solvents used for extraction and optimisation were HPLC grade and purchased from Sigma-

Aldrich (Dorset, U.K.). All Reference standards used for various parts of the optimisation were 

purchased from Sigma-Aldrich (Dorset, U.K.), Avanti Polar Lipids (Alabaster, Alabama) and Qmx 

(Essex, U.K.). For instrumentation, LC/MS graded solvents and formic acid was purchased from 

Sigma-Aldrich (Dorset, U.K.). Solvents and acids used for the various extractions, MECN, IPA, MeOH, 

Formic acid, chloroform and MTBE were obtained from Honeywell solvents (Seelze, Germany). 

 

4.3.3 DSPE materials 
 

DSPE materials for optimisation, validation and application stages were obtained from numerous 

suppliers. High strength silica-bound C18 “HSS-T3” was obtained from Waters Corp. (Manchester, 

UK). Fully endcapped C18 (ENDCAPPED), non-endcapped C18 (NON.ENDCAPPED), and a commercial 

Lipid removal agent (LRA) were obtained from Sigma-Aldrich (Dorset, U.K.). Sepra C18 was obtained 

from Phenomenex (Torrance, USA). These materials were assessed as sorbents for DSPE, and its 

properties summarised in Table 4-1. 
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Before use, each material was washed to remove unwanted contaminants coating the sorbent and 

condition the sorbent. Washing of the DSPE sorbent with mixtures of H2O and IPA, firstly at 4:1 

(v/v), then at 1:4 (v/v) were initially undertaken to minimise contaminants that maybe introduced 

from the outer coating of the particle. The sorbent was then further washed with a mixture 1:1 (v/v) 

mixture of I and MeOH, with the supernatant (after centrifugation) being dispensed into a 300 mL 

glass PYREX dish and left overnight for complete evaporation of solvent. Dry sorbent is then placed 

in an airtight, moisture free glass container ready for use. Prior to any extraction in subsequent 

experiments, the appropriate amount of dry sorbent is weighed, given the number of samples, and 

equilibrated at least once with the organic solvent. 

 

Table 4-1. Physical properties of the sorbents, HSST3, C18 Fully endcapped (ENDCAPPED), C18 Fully non-

endcapped (NON.ENDCAPPED), a generic Lipid removal agent (LRA), and Sepra C18, material, evaluated for 

the DSPE protocol.  

Property HSST3 LRA 
ENDCAPPED/ 

NON.ENDCAPPED 
Sepra 

Surface Area (m2/g) 230 400 400 500 

Particle Size (µm) 1.8 40 63 50 

Pore Diameter (Å) 100 90 90 65 

Carbon load (%) 11 11 15 17 

 

 

4.3.4 Sample preparation 
 

Sample extraction in all three design stages, unless stated otherwise, follows the DSPE procedure 

summarised in Figure 4-1. As both slurry concentration and volume had yet to be optimised, a 

maximum slurry concentration at 20 mg/mL of sorbent was implemented, as this was practical in 

terms of handling and sample preparation. Any concentration above 20 mg/mL produced a dense 

mixture that did not homogenise well. For slurry volume, a 1:3 proportion sample:solvent ratio was 

used, as this sample to solvent ratio has been reported to be sufficient for protein removal (Sarafian 

et al., 2014, Polson et al., 2003). Solvents used in the extraction were kept at -20°C. To ensure a 
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homogenous mixture of slurry, the container holding the slurry (a 50mL centrifuge tube), was 

vortexed at every instance prior to sample addition. For example, experiments conducted within the 

optimisation phase involved the slurry to be made 20mL at a time in a 50mL centrifuge tube, so a 

20mg/mL slurry concentration equates to 400mg of sorbent in 20mL of solvent. Next, the sample-

slurry mixture is vortexed and incubated for 2 hours at 4°C. The sample is then centrifuged for 10 

minutes at 3214 x g and 50% of the total supernatant is collected and dried under a gentle flow of 

Nitrogen. After drying, the sample was then resuspended with water, and in half the sample volume 

to account for the fact that only 50% of supernatant was recovered. This ensures no dilution of the 

sample is undertaken (Method 1). Certain experiments also warranted lipid analysis (Method 2) 

and/or a SHAM sample (Method 3) to be prepared. A SHAM sample is when there is no DSPE 

treatment, i.e. sorbent free solvent is added to sample. In many experiments of the development, it 

was used as a control to test a particular treatment against.  

 

 

Figure 4-1. Summary of the DSPE sample preparation protocol used in the development and validation 

stages of the experimental design. 
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4.3.5 UPLC-MS  
 

The method for lipid removal from blood products was developed to enable reversed phase 

chromatography using a hyphenated ultra-performance liquid chromatography, together with a 

high-resolution orthogonal acceleration time-of-flight mass spectrometry system (RPC-UPLC-MS). 

This analytical method complements the already existing urine reversed phase method, thereby 

adopting identical instrumental conditions. The stationary phase and mobile phase conditions are 

methods previously adapted from those described by Want et al. (Want et al., 2010) and Wong et al. 

(Wong et al., 2008), and then optimised for large scale application by Lewis et al. (Lewis et al., 2016). 

Mass spectral acquisitions were measured in the range of 50 to 1200 m/z and collected in both 

electrospray positive and negative ion modes. Analysis of polar small molecules was performed 

using HILIC methodology previously described by Lewis et al. 2016 (HILIC-UPLC-MS) in positive ion 

mode, and the analysis of lipids was performed using a lipid specific RPC method (LIPID-UPLC-MS) in 

positive ion mode as described (Izzi-Engbeaya et al., 2018). 

 

4.3.6 Data pre-processing  
 

Raw UPLC-MS data was firstly converted into mzNLD format for pre-processing using Nonlinear 

Dynamics pre-processing software, Progenesis QI 2.1 (Waters Corp., Manchester, UK), for peak 

detection, alignment and grouping. The minimum chromatographic peak width was set at 0.02 min 

in accordance with peak shapes observed using RPC methodology. Next, features from a selected 

sample in the dataset were used as the alignment reference to which all corresponding features 

from all samples are corrected. Experiments conducted in the optimisation and validation stages 

used a randomly selected sample for the alignment reference.  

For the studies in the application stage, a randomly selected study reference (SR) sample is used as 

the alignment reference. The SR is a pool of all samples in the study and is the primary QC sample 

used for data quality purposes in NPC projects. A peak picking algorithm then generates and 

implements an aggregate map from the aligned runs of each sample, across the dataset. Finally, 

integration of the features in each acquisition was generated to create a data table output.  

A series of QC measures were put in place, to all data succeeding pre-processing by Progenesis, 

ensuring high data quality and reduced bias, i.e. run order correction, feature filtering, and study 

sample randomisation. The studies exemplified in the application stage of the design incorporates all 

three QC measures. Run order correction by the LOWESS approach proposed by Dunn et al (Dunn et 
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al., 2011) was applied using replicate SR samples injected throughout the analytical acquisition. 

Feature filtering is based on two criteria, 1.) the precision of individual features (%RSD < 30) 

detected in replicate SR and 2.) the correlation to dilution (Pearson correlation with r= 0.7 threshold) 

of features, via serial dilution (Dilution series) of the SR.  

The preparation of the dilution series was conducted differently to that stated in Lewis et al., as 

early experiments indicated a disruption to protein precipitation when sample was diluted prior to 

sample extraction and especially solvent compositions involving methanol. Full details explaining this 

disruption to protein precipitation is in section 4.3.8.4. Nevertheless, the outcome was that serial 

dilution was undertaken on the sample post-extraction, rather than pre-extraction. These measures 

are implemented using code written in Python (Sands et al., 2019), and in accordance to NPC 

protocols for project population studies (Lewis et al., 2016).  

Data quality measures conducted in the optimisation and validation stages, adopted a similar 

approach, including the use of replicate samples for precision measurements and run order 

correction purposes (where the number of replicates is specified for each experiment), dilution 

series, and experimental sample randomisation. In addition to these QC measures, a third filtering 

method (blank filtering), was implemented, by substituting water for a given experimental condition 

(Broadhurst et al., 2018). Here, the mean intensity for each feature detected in the blank (n=3) is 

calculated (meanblank). Then, the median intensity for all features from all samples is calculated 

(medianall). Any feature where meanblank is greater than 5% of medianall, is subsequently removed. 

Several different experiments within this chapter involves comparison between different extraction 

conditions (e.g., different solvents or sorbents). For most experimental conditions tested, unless 

stated otherwise, Individual dilution series and blank samples were prepared. Where the total 

number of features for a given experimental condition was evaluated, individual dilution series and 

blank samples were used for feature filtering (alongside %RSD < 30 calculated between replicates). 

When comparison between different experimental conditions were undertaken using multivariate 

methods, features included in the final dataset had to pass all three filtering criteria for at least one 

of the conditions. This resulted in one feature matrix which could then be inputted into the 

multivariate software. Run order correction and all feature filtering QC measures were implemented 

using custom scripts written in the R language. Normalisation using Probabilistic quotient 

normalisation (PQN) was undertaken when specified. 
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4.3.7 Multivariate analysis (optimisation and validation) 
 

For multivariate data analysis, all feature matrices were exported to SIMCA (Version 15 Sartorius 

Stedim Biotech, Malmö, Sweden). Principal component analysis (PCA) and partial least squares-

discriminant analysis (OPLS-DA) via orthogonal projection to latent structures were carried out on 

the filtered features. The quality of the OPLS-DA models were validated by a seven-fold internal 

cross validation, assessment of the variance (R2Y) and predictive ability (Q2Y) of the model, and 

permutation tests (n=999). The appropriate number of components were selected for each model in 

order to optimise model quality without over-fitting. Discriminant features were evaluated based on 

variable importance for the projection (VIP) values greater than 1.5. Log transformation and pareto 

scaling were carried out on the filtered features prior to multivariate analysis.  

 

4.3.8 Optimisation 
 

4.3.8.1 Sorbent assessment 
 

HSST3 (Waters Corp., Manchester, UK) and three different sorbent materials from Sigma-Aldrich 

(Dorset, U.K.); C18 Fully endcapped (ENDCAPPED), C18 Fully non-endcapped (NON.ENDCAPPED), and a 

proprietary Lipid removal agent (LRA), were assessed as sorbents for DSPE. The experiment was 

undertaken in two parts, utilising both Devset-urine and Devset-plasma.  

In the first experiment, a 100 µL Devset-plasma sample was added to a 300 µL slurry of a 20mg/mL 

sorbent made in MeOH and prepared in three replicates. This was repeated for all sorbents. These 

samples were subjected to Method 1 followed by Method 2 and acquired by the NPC lipid profiling 

method (LIPID-UPLC-MS) in positive ion mode. This was to understand the capacity of lipid removal 

using these sorbents. Assessment was based on a thorough evaluation of the total ion 

chromatogram (TIC) produced from each sorbent extraction.  

The second experiment utilised Devset-urine samples and subjected to the same experimental 

conditions as previously but acquired by RPC-UPLC-MS in positive ion mode (Method 1 only). Urine 

has been extensively studied at the NPC, with approximately 200 metabolite annotations. From the 

literature, approximately 4500 metabolites have been documented in urine, many of which are end 

products originating from metabolised nutrients and drugs. At this stage of the development, urine 

was therefore a better matrix than blood, to assess the effects DSPE treatment could have on a 

greater range of metabolites.  
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SHAM samples (Method 3, followed by Method 1 and 2) were included for both the first and second 

experiment and used as a reference to compare the effect of DSPE treatment. Feature filtering was 

undertaken as described in section 4.3.6, for data being examined by multivariate methods. PCA and 

OPLS-DA models were used in this second experiment, to highlight the differences between SHAM 

and DSPE treated samples. 

 

4.3.8.2 Solvent assessment 
 

To assess the solvents which would be needed as part of the slurry, five organic solvents were 

initially compared. The solvents were IPA, MeCN, MeOH, Acetone (Acet) and EtOH. In separate 50mL 

centrifuge tubes, 20 mL of each solvent was added to 400mg of DSPE sorbent (using the final 

sorbent chosen from section 4.3.8.1), making a slurry concentration of 20 mg/mL. Sample 

extractions were prepared in triplicate using Deveset-plasma and follows Method 1 then Method 2 

i.e. sample extracts were only run by LIPID-UPLC-MS in positive ion mode. No data pre-processing 

was required for this part of the experiment, as evaluation was undertaken by a visual comparison of 

the TIC, for each solvent extraction.   

The results from this experiment than warranted a secondary investigation with only three of the 

solvents. These solvents were tested individually and in combination with one another resulting in 

seven different extraction conditions; EtOH, MeOH:EtOH (1:1), MeOH:MeCN (1:1), MeCN:EtOH (1:1), 

MeOH, MeCN, and MeOH:MeCN:EtOH (1:1:1). The Devest-plasma was extracted identically to the 

previous experiment, in replicates of six and follows Method 1. The extracts were run by RPC in both 

positive and negative ion mode. The total number of features were evaluated for each extraction 

condition, based on features that passed the dilution series and blank filter for each extraction 

condition. The TIC’s and the %RSD calculated from replicates for each extraction conditions were 

evaluated. 

 

4.3.8.3 Sorbent and solvent (slurry) optimisation 

Umetrics MODDE PRO12 (Sartorius Stedim Biotech, Malmö, Sweden), was implemented for the 

generation and evaluation of statistical experimental designs for a design-of-experiment (DOE) 

based analysis. DOE allowed for two variables (or factors) to be studied and optimised at the same 

time whilst also taking into account the interaction between the two factors (refer to Chapter 2 

section 2.5 for full details on the DOE process). Initial steps in a DOE design involved specification of 
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the factors and their ideal response measurements. The two factors investigated were the slurry 

concentration and slurry volume. Keeping the maximum concentration set at 20mg/mL and a sample 

to solvent ratio at 1:3, the input slurry concentration ranged from 2 mg/mL to 20 mg/mL and the 

slurry volume, ranged from 600 µL to 1000 µL for a sample volume of 200 µL. Eppendorf tubes with 

a wider diameter were used for sample preparation, to avoid risk of aspirating the protein pellet, a 

higher sample volume was used. The sample extraction using the sorbent and solvent that were 

optmised from the previous sections (4.3.8.1 and 4.3.8.2) were used. The sample extraction is 

similar to what is depicted in Figure 4-1, however volumes were scaled to account for the higher 

sample volume, and slurry conditions differed depending on the proposed conditions by the DOE 

design. The MODDE software recommended a quantitative central composite face design composing 

of eight different slurry concentration/solvent volume conditions with three replicated centre points 

for a total of 11 experiments. The conditions were 2mg/mL – 600 µL, 20mg/mL – 600 µL, 2mg/mL – 

1000 µL, 20mg/mL – 1000 µL, 2mg/mL – 800 µL, 20mg/mL – 800 µL, 11mg/mL – 600 µL, 11mg/mL – 

1000 µL and, three instances of 11mg/mL – 800 µL. Devset-plasma samples were prepared for each 

condition, with the inclusion of SHAM samples, and analysed by RPC-UPLC-MS (positive and negative 

ion mode) and LIPID-UPLC-MS (positive ion mode). Although MODDE only recommended 11 

experiments, a dilution series and blank samples were prepared for each extraction condition for 

feature filtering purposes. Apart from the three instances of 11mg/mL – 800 µL, no replicates were 

prepared for the other extraction conditions. In hindsight, this should not have been conducted as 

the quality of features in the final dataset may be affected. 

The responses required for DOE, was measured via the following steps:  

1. Data was split into 1-minute RT bins, equalling a total of 11 bins which make up the 

chromatographic range; 

 

2. Summation of peak intensities at each RT bin (up to 11 minutes) were calculated for each 

optimisation condition; 

 
3. A ratio taken with its RT bin counterpart in the SHAM treated samples and calculated as a 

percentage. This percentage is herein referred to as the recovery. A recovery of 100% would 

equate to zero difference between DSPE treatment and without (SHAM).  

 
The recoveries were input to MODDE as response measurements. Arbitrary response recoveries 

were selected. Ideal targets for the response recoveries were recorded as a range between 90-130% 

for RPC-UPLC-MS analyses and 20-40% for LIPID-UPLC-MS analysis. Performance indicators plots 
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were used to evaluate and access the quality of the model. The first was a Summary of Fit plot. The 

model was fitted with partial least squares regression (PLS) and the validity of the model was verified 

by the summary of fit. The resulting models were evaluated using both R2 and Q2 metrics. R2 values 

reported the total amount of variance explained by the model in the data. Q2 reported the model 

accuracy and was calculated by cross-validation. For this investigation Q2/R2 ratios of greater than 

0.5 was used as a measure of cross validation reproducibility and therefore model validity (Moltu et 

al., 2014). The second plots depict the regression coefficients of the models and their confidence 

intervals (or uncertainties) in the form of a bar graph. Any coefficients whose uncertainties exceeds 

their actual values have no significant contribution to the model and removed. This step also 

improves the R2/Q2. The final two plots were used for diagnostics, i.e. the Sweet spot contour plot 

and the design space plot. The Sweet spot plot highlights the areas where all responses are within 

the user specified range and is colour coded to how many specifications are fulfilled. The Design 

space plot represents how stable the model is by combining uncertainties from the specified factors 

and highlighting probabilities of failure. The plot is a result of disturbance-based Monte-Carlo 

simulations which estimates how sensitive the responses are to small fluctuations in the factors and 

thus how sensitive overall result is to different sources of uncertainties. 

 

4.3.8.4 Protein quantification 
 

Devset-plasma samples were prepared in triplicate and extracted with no dilution, with a five times 

dilution pre-extraction, and a five times dilution post-extraction. The DSPE parameters utilised the 

optimised conditions from the previous optimisation sections.  

Proteins were quantified using BCA protein assay (Smith et al., 1985) and analysed by a ClarioSTAR 

Plate Reader from BMG LABTECH with UV/vis detection. A standard curve was developed using a 

series of Bovine Serum Albumin (BSA) standards in concentrations ranging 150 µg/mL to 2000 

µg/mL. The absorbance of each sample was measured at 595 nm and plotted against the 

concentration of the BSA. The resulting line was fit by the linear least squared method. Relative 

albumin concentrations were calculated from the measured absorbance of each sample, together 

with the equation from the calibration line generated in the BSA standard curve (150 µg/mL to 200 

µg/mL). 
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4.3.9 Validation 
 

4.3.9.1 Method precision 
 

The precision of the method was explored in a 96 well format and split into two parts: (1) the 

precision of the sorbent quantity added to each well and (2) the precision of the metabolic profile 

from repeated extractions of the Devset-plasma. For the first part of the experiment, to ensure the 

homogeneity of slurry addition, conditioned and washed sorbent is firstly weighed in a 300mL PYREX 

flat bottom glass flask. Cold solvent is then added to the flask which is then placed on a magnetic 

plate with a stirrer that constantly rotates. This constant rotation allows the mixture to remain in a 

homogenised state. Slurry was aspirated from the PYREX flask, and dispensed into special 96-well 

PCR tube racks, one column at a time, using an 8-multichannel automatic pipette. This type of rack 

has the same dimensions as a typical 96-well plate and allows individual tubes to be detached. Each 

tube was weighed and recorded prior to addition of slurry. Once the slurry was added, racks were 

allowed to rest for 10 minutes and the remaining solvent dried under a gentle flow of Nitrogen. 

Individual tubes were then reweighed and recorded. The difference in weight for each tube was 

calculated and the % RSD reported.  

The second part of the experiment utilised the slurry conditions (optimised in section 4.3.8). Devset-

plasma samples were distributed to three 96-well plates and subjected to the updated DSPE 

protocol, i.e. optimised sorbent, solvent and sorbent/solvent (slurry) slurry conditions. The precision 

of the metabolic profile was evaluated using PCA, and the relative standard deviation (RSD) 

calculated for the measured signal intensities of individual molecular species passing the dilution 

series filter and blank filter. Sample observations in PCA score plots were produced to highlight any 

general trends in variation, and trends that could potentially arise from the addition of slurry (slurry 

added to sample column-wise in the 96-well plate), and from resuspension (water added during 

row-wise in the 96-well plate). 

 

4.3.9.2 Assessment of recovery after DSPE  
 

To determine if the lipid removal conditions had any significant effect on the small molecule profile, 

two experiments were conducted utilising urine. The first experiment was a more targeted 

approach, evaluating a mixture of xenobiotics which were spiked into the urine and assessing 

intensity levels between SHAM (i.e. sorbent free solvent is added to sample) and DSPE treated 
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samples. The second experiment evaluates feature intensity between SHAM and DSPE treated 

samples on a more global scale. 

Devset-urine was initially screened via the RPC-UPLC-MS assay to make sure the sample were free of 

the selected xenobiotics. A working mixture was prepared by quantitatively spiking individual stock 

standards of six xenobiotics (selected from the in-house refence standard database), and two 

labelled standards (N-Benzoyl-D5-Glycine and L-Phenylalanine-13C9,15N), to make a final 

concentration of 10 µg/mL in MeOH/MeCN 1:1.  

Table 4-2. Reference standards of xenobiotics and lipid species spiked at different concentrations into urine-

SHAM and urine-DSPE treated, to assess if varying concentration of lipids will affect the recovery of 

xenobiotics. 

 XENO Mixture  LIPID Mixture 

 RT (min) [M+H]+               RT (min) [M+H]+              

Amoxicillin 2.25 366.1118 Cer(d18:1/22:0) 8.457 604.6036 

Acetaminophen 2.59 152.0706 Cer(d18:1/24:0) 9.003 632.6346 

Diclofenac 10.66 296.0245 Cer(d18:1/24:1) 8.446 630.6191 

Amitriptyline  7.5 278.1903 LPC(16:0/0:0) 1.868 496.3407 

Lansoprazole 5.29 322.1164 LPC(16:1/0:0) 1.499 494.3249 

Terbinafine  8.4 292.2060 LPC(18:0/0:0) 2.415 524.372 

Ibuprofen 10.75 251.1036 PC(16:0/18:1) 6.55 760.5859 

N-Benzoyl-D5-Glycine 3.57 185.0975 PC(18:0/18:2) 6.725 786.6018 

L-Phenylalanine-13C9,15N 2.1 176.1140 PC(16:0/18:2) 6.031 758.5698 

   PE(16:0/18:2) 6.188 716.525 

   PE(16:0/20:4) 6.174 740.5222 

   PE(18:0/20:4) 6.86 768.5567 

   SM(d18:1/16:0) 5.683 703.5752 

   SM(d18:1/18:0) 6.409 731.6065 

   SM(d18:1/24:0) 8.401 815.7004 

 

A serial dilution from the working mixture, using MeOH/MeCN 1:1 as a diluent, was made four 

times, resulting in a total of four xenobiotic mixtures; XENO1 (10 times dilution), XENO2 (twenty-five 

times dilution), XENO3 (fifty times dilution) and XENO4 (seventy-five times dilution). Each mix is 

made at a total volume of 500 mL and was used as the extraction solvent for DSPE and SHAM 

treatments. A secondary artificial mixture, comprising of fifteen individual lipids was also prepared. 
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This lipid mixture was prepared by pooling together 200 µL of stock standards, each at 1mg/mL and 

diluting to a total volume of 3000 µL with water, for a final concentration of 67 µg/mL. This was 

labelled as LIPID1. A further two dilutions from LIPID1 were also made in water, i.e. LIPID2 (2 times 

dilution) and LIPID3 (4 times dilution). The compounds which make up both the xenobiotic mixture 

and the lipid mixture are summarised in Table 4-2. In addition to these two mixtures, an albumin 

stock solution of 6000mg/mL was made and spiked into the urine sample to give a final 

concentration of 375mg/mL. Combinations of the lipid mixtures and xenobiotic mixtures resulted in 

a total of 12 different experimental conditions. Each condition was spiked into urine samples that 

will undergo DSPE treatment and SHAM treatment. Therefore 12 experimental conditions, with a 

DSPE and SHAM treatment, prepared in six replicates, totalled 144 individual extractions spanning 

across two 96-well plate (Figure 4-2). 50 µL of Devset-urine samples were transferred to a 96-well 

preparation plate with 25 µL of the Lipid mixture, and 25 µL of the albumin stock solution.  

 

Figure 4-2. Plate layout of all extraction conditions for the xenobiotic/small molecule recovery validation 

experiments.  Combinations of the lipid mixtures and xenobiotic mixtures resulted in a total of 12 different 

experimental conditions. Each condition was spiked into urine samples that will undergo DSPE treatment, and 

SHAM treatment. Therefore 12 experimental conditions, with a DSPE and 12 experiments with a SHAM 

treatment, prepared in six replicates, totalled 144 individual extractions spanning across two 96-well plates. 
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4.3.9.2.1 Recovery of target xenobiotics 
 

Xenobiotics spiked into urine were identified by matching the observed retention time and accurate 

mass data from the Progenesis dataset to the in-house reference standard database. Within a 

xenobiotic concentration level, box plots and Kruskal-Wallis ANOVA test was used to determine if 

any statistically significant differences were found between the mean intensities measured for each 

xenobiotic in the DSPE and SHAM treated samples, regardless of the concentration of the lipid 

mixture. This was to demonstrate if varying concentration of lipids can also influence the signal 

intensity of the measured xenobiotics. The box plots and ANOVA tests were repeated for each 

concentration level of the xenobiotic mixture. The results from this analysis was acquired by RPC-

UPLC-MS in positive ion mode only, as the xenobiotics from the XENO mixes do not ionise in 

negative ion mode.  

 

4.3.9.2.2 Global small molecule recovery 
 

In the second experiment, to complement this targeted assessment of signal intensities to a more 

global investigation, the recoveries of all filtered features were assessed from data acquired by RPC-

UPLC-MS (both ionisation modes), for all experimental conditions associated with XENO3. 

Recoveries were calculated by taking the quotient of the average intensity (from replicate 

measurements) measured from the DSPE treated samples, with the average intensity observed in 

the corresponding SHAM treated samples, for all features passing the dilution series and blank filter. 

Filtered features were based on the dilution series and blanks prepared in only SHAM treated 

samples containing XENO3 and LIPID1 mixtures. 

 

4.3.9.3 Comparison between DSPE and liquid-liquid extraction (LLE) 
 

A series of two-phase LLE methods were applied to human plasma samples and compared to the 

DSPE protocol. Folch method (Folch), Bligh-Dyer (BD) and Matyash (Matyash) extractions were 

carried out in accordance with adapted protocols stated by Gil and co-workers (Gil et al., 2018). The 

metrics used to compare the different extractions were also adapted from Gil et al. For each 

extraction, samples were independently prepared in 10 mL centrifuge glass conical tubes in six 

replicates. The addition of plasma, water and MeOH, were all handled using a variable volume 

pipette, and any mixture involving chloroform or MTBE, was handled using a graduate glass pipette. 
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An incubation time of one hour and an incubation temperature of 20 °C were kept constant for each 

LLE method. The hydrophilic fractions were analysed by RPC-UPLC-MS (positive and negative ion 

mode) and HILIC-UPLC-MS (positive ion mode), and the organic fractions for the LLE methods were 

analysed by LIPID-UPLC-MS (positive ion mode), as illustrated in Figure 4-3. The details of the 

extractions are described below.  

 

 

Figure 4-3. Schematic of the five different extraction methods comparing the DSPE protocol to liquid-liquid 

extraction protocols commonly undertaken for lipidomics.  In all five methods, the hydrophilic layer was 

acquired using RPC-UPLC-MS (positive and negative ion mode) and HILIC-UPLC-MS (positive ion mode). The 

organic layer for the LLE protocols were acquired by LIPID-UPLC-MS (positive ion mode). 
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4.3.9.3.1 Folch method 
 

Seventy-five microliters of plasma were mixed with 187.4 µL of MeOH (ice cold) and 375 µL 

chloroform – CHCl3 (ice cold). The mixture was vortexed for 20 seconds and then incubated for 1 

hour on a shaker. Phase separation was induced with the addition of 156.2 µL of water, and the 

mixture incubated for an additional 10 minutes. Using a glass bulb pipette, the maximum volume of 

the lower organic phase was aspirated into a clean 10mL glass tube and dried under nitrogen. The 

upper methanolic phase was re-extracted with 250 µL of a CHCl3 /MeOH/H2O 86:14:1 (v/v/v) 

mixture. The maximum volume of the upper hydrophilic methanolic phase was aspirated into a clean 

10mL glass tube and dried under nitrogen. Once dried, both the lower organic phase and upper 

hydrophilic phase tubes were stored at − 20 °C. 

 

4.3.9.3.2 Bligh-Dyer method 
 

Seventy-five microliters of plasma were mixed with 562 µL of ice cold MeOH/ CHCl3 2:1 (v/v). The 

mixture was vortexed for 20 seconds and then incubated for 1 hour on a shaker. Phase separation 

was induced with the addition of 156.2 µL of water, and the mixture incubated for an additional 10 

minutes. Using a glass bulb pipette, the maximum volume of the lower organic phase was aspirated 

into a clean 10mL glass tube and dried under nitrogen. The upper methanolic phase was re-

extracted with 250 µL of a CHCl3 /MeOH 2:1 (v/v) mixture. The maximum volume of the upper 

methanolic phase was aspirated into a clean glass tube and dried under nitrogen Once dried, both 

the lower organic phase and upper hydrophilic phase tubes were stored at − 20 °C. 

 

4.3.9.3.3 Matyash method 
 

Seventy-five microliters of plasma were mixed with 187.4 µL of ice cold MeOH. The mixture was 

vortexed for 20 seconds and added to 625 µL MTBE (room temperature) and then incubated for 1 

hour on a shaker. Phase separation was induced with the addition of 156.2 µL of water and the 

mixture incubated for an additional 10 minutes. Using a glass bulb pipette, the maximum volume of 

the upper organic phase was aspirated into a clean 10mL glass tube and dried under nitrogen. The 

lower methanolic phase was re-extracted with 250 µL of a MTBE/MeOH/H2O 10:3:2.5 (v/v/v) 

mixture. The maximum volume of the lower methanolic phase was aspirated into a clean glass tube 
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and dried under nitrogen. Once dried, both the upper organic phase and lower hydrophilic phase 

tubes were stored at − 20 °C. 

 

4.3.9.3.4 Additional sample preparations 
 

Three additional experiments were further carried out in conjunction with the LLE prepared samples. 

A DSPE protocol (DSPE), a single-phase methanol extraction (MeOH) with no lipid removal, and a 

preparation of a pooled extract (Pool). The creation of a pooled extract to generate a reference 

sample is common technique used in phenotyping studies (Lewis et al., 2016). As it incorporates all 

extractions, it represents the average profile and therefore used as a reference to test against the 

other extraction procedures. To keep the sample volume (75 µL) consistent between the methods, 

the DSPE protocol was carried out with this revised volume and all parts of the procedure scaled 

accordingly. All extracts were resuspended with 60 µL of water. A volume of 10 µL were taken from 

the same replicate number of each extraction and combined to make a pool. For instance, 10 µL 

were taken from Folch replicate 1, BD replicate 1, Matyash replicate 1, DSPE replicate 1 and MeOH 

replicate 1, and combined to form Pool replicate 1. All replicates would therefore have a total 

volume of 50 µL, which was then further diluted to a final volume of 100 µL with water. In addition 

to being a reference sample, the pool replicates were injected at regular intervals throughout the 

analytical sequence and used as part of the LOWESS regression for run order correction.  

 

4.3.9.3.5 Profiling data pre-processing and analysis 
 

Individual blank samples and dilution series for all six extractions (Folch, BD, Matyash, DSPE, MeOH 

and Pool) were also prepared, and used for feature filtering as explained previously in section 4.3.6. 

Briefly, features are filtered out if there are found in the blank sample, have RSD > 30% between 

replicates (n=6), and a correlation to dilution of <0.7. The total number of features for each protocol 

were based of these metrics. As the pool represents the average of all extraction protocols, Venn 

diagrams, were produced to illustrate and compare the number of shared and unique features from 

each protocol, against the pool. Features included for any multivariate model had to pass the 

filtering criteria for only the pooled extracts. This allowed a comparison between shared features 

from all extraction protocols. Probabilistic quotient normalisation (PQN), log transformation and 

pareto scaling were carried out on these features prior to multivariate analysis. PQN was used to 

assess the relative differences between the samples extracted in different ways so that all samples 
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are brought into a comparable range for comparison. PCA and Hierarchical clustering analysis – HCA 

(using Euclidean distance) were used to explore the similarities and trends between the different 

extraction methods. OPLS-DA models were also implemented to examine the number of 

discriminating features between the pool, and each extraction method.  

 

4.3.9.3.6 Metabolite annotation and targeted data analysis 
 

Metabolite annotation was made by applying a custom peak fitting algorithm (peakPantheR:  

https://www.bioconductor.org/packages/release/bioc/html/peakPantheR.html) that utilises the 

panels of metabolites, pre-annotated and confirmed, in specific analytical assays (RPC-UPLC-MS, 

HILIC-UPLC-MS and LIPID-UPLC-MS) using UPLC-MS data acquired from an in-house reference 

standard database. The targeted data for annotated metabolites were subjected to the same feature 

quality (filtering) process as used for the profiling data and normalised by PQN. Method-induced 

losses of metabolites identified by peakPantheR, were compared for each extraction as suggested in 

the work originally published by Klont et al. (Klont et al., 2018). The average intensity for each 

annotated metabolite was firstly taken from each replicate within each extraction followed by the 

calculation of the percentage of each average intensity against the most abundant condition. 

Statistically significant differences (p < 0.05, Newman-Keuls multiple comparison test) was 

performed on the absolute average levels between all extraction comparisons.      

 

4.3.9.4 Solid phase extraction (SPE) comparison 
 

Using the optimised conditions from previous experiments, the DSPE technique was prepared in 

conjunction with known 96-well SPE extraction plates designed for phospholipid removal. These 

include, Water’s OSTRO, Biotage’s ISOLUTE and Phenomenex’s PHREE. In addition to these 

extractions, Phenomenex also packed the Sepra C18 material in a 96-well SPE format (Sepra-SPE), in 

the amount equivalent to the optimised dry weight. The purchased SPE plates were conditioned, 

equilibrated, and run, according to its own protocols for maximum efficiency in phospholipid 

removal (details for each extraction method are found in Appendix 2). The Sepra-SPE plate was 

conditioned and equilibrated in an identical manner as the DSPE sorbent. All extractions were 

prepared using Devset-plasma plasma, in six replicates. Solid phase extraction was carried out using 

a vacuum manifold with 10” Hg of vacuum for five to 10 minutes. Neat plasma samples (NEAT) were 

also included, i.e., samples were aliquoted into a UPLC-MS acquisition plate, with no protein 
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precipitation or solid phase extraction, and used as a control. Ultimately these samples will cause 

major analytical issues as protein as the sample has not been treated in any way to remove protein, 

so as a result samples were acquired at the very end of the analytical run. The idea is to use these 

samples as a control. Samples were analysed by RPC-UPLC-MS (positive and negative ion mode). The 

total number of features were firstly evaluated using individual dilution series, blanks and %RSD 

prepared for each extraction condition. Then, a PCA was used to explore any general trends, 

clustering and outliers for each extraction condition, using only the features that meet the filtering 

criteria for multivariate analysis as described in section 4.3.6. 

 

4.3.10 Application – biological materials for application to cohort studies 
 

4.3.10.1 Serum 
 

Serum samples were collected from female patients in an ovarian cancer population (Kaye et al., 

2012), that were randomly assigned to one of three different treatment groups; DrugA (n=32), 

DrugB (n=33) and DrugC (n=33). A subset of these samples (AZ-Study12), consisting of 55 patients at 

up to four different time points (n=171), were then provided for metabolic phenotyping. Serum was 

collected from patients in a 10 mL Vacutainer™ tube. Tubes were held at room temperature for a 

minimum of 30 min but no longer than one hour for sample clotting. The tube was then centrifuged, 

and the serum supernatant transferred to cryotubes and stored at -80°C until shipment to the NPC 

under dry ice, where it was stored in a -80°C freezer. 

 

4.3.10.2 Plasma 
 

Plasma samples were collected from male patients from a cross sectional study of a cohort relating 

to prostate cancer and pelvic radiotherapy (Reis Ferreira et al., 2019). A subset of these samples 

(MARS), consisting of 285 plasma samples, were provided for phenotyping. Plasma was collected via 

venepuncture into 6mL heparinized vacutainers, immediately placed in ice, then later centrifuged to 

generate plasma. Plasma supernatant (0.5mL) drawn above the white blood cell layer, were 

aliquoted into Eppendorf tubes and stored at -80°C. Plasma was stored for a minimum of 8 months 

prior to being shipped to the NPC, which similarly was in dry ice and stored in a -80°C freezer until 

analysis.  
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4.3.10.3 Final sample preparation and analysis 
 

A final sample preparation procedure was carried out on these two exemplar population studies 

using the optimised DSPE protocol. Sample recording using an in-house laboratory information 

management system (LIMS), randomisation, allocation, aliquoting and quality control sample 

preparation are all in accordance with guidelines set from Lewis et al (2016). Plasma samples are 

removed from the -80°C freezer and allowed to thaw at 4°C for approximately two hours prior to 

extraction. The samples are then prepared by transferring 100 µL to a 96-well preparation plate. A 

two-point internal standard (IS) solution, 0.05 µM of L-Phenylalanine-13C9,15N and 0.04 µM of N-

Benzoyl-D5-Glycine, was spiked into the extraction solvent prior to the addition of sorbent. Sorbent 

was weighed and equilibrated using the protocol described in the sorbent conditioning section. For 

every 192 samples (two 96-well preparation plates), a slurry of 100 mL solvent (containing IS) at a 16 

mg/mL concentration was made. A volume of 325 µL of slurry was added to each sample. Sample 

and slurry were vortexed thoroughly and left to incubate for 2 hours at 4°C. After centrifugation for 

10 minutes at 3214 x g, 212.5 µL of the supernatant was collected and dried under gentle flow of 

Nitrogen. Resuspension was undertaken in 75 µL of water, containing a mixture of reference 

standards (Method Reference or MR). The composition of the MR and the concentration is identical 

to that used in RPC urinalysis (Lewis et al., 2016). The feasibility and robustness of the extraction 

methodology was then explored using data acquired from RPC-UPLC-MS (positive and negative ion 

mode), for high resolution detection of chemical species and data processing pipelines. Using the 

same metric for data quality of global profiling data as stated by Lewis et al., the distribution of the 

RSD values (remaining features after dilution series), was calculated for the SR samples, and the 

median RSD values reported. To evaluate the quality of the raw data (uncorrected), the accuracy and 

precision of the method was examined. The mean RT and peak area % RSD were calculated by 

targeting the IS and MR from repeated injections of the two QC samples, i.e. SR and the long term 

reference (LTR).  Targeted integration was undertaken using TargetLynx (MassLynx 4.2 SCN 982). 

Finally, all metabolite annotations were undertaken using peakPantheR and the RPC panel of 

metabolites. The metabolites annotated where then combined with metabolites annotated from the 

other NPC blood profiling extraction methods (illustrated as Venn diagrams) for polar metabolites 

(using HILIC-UPLC-MS) and lipid metabolites (using LIPID-UPLC-MS). 
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4.4 Results and Discussion 
 

4.4.1 Optimisation 
 

4.4.1.1 Sorbent selection 
 

The depletion of lipid species was firstly evaluated by comparing the DSPE plasma profiles acquired 

by LIPID-UPLC-MS using HSST3, LRA, ENDCAPPED and NON.ENDCAPPED sorbents, against SHAM 

plasma profiles. The capacity of lipid removal was evaluated in the three most relevant retention 

time regions of the LIPID profiling method (positive ion mode). The 0-4 minutes (Region one) 

corresponds to Lysophosphatidylcholine (LPC), monoglycerides (MG), 

Lysophosphatidylethanolamine (LPE), lipophilic endogenous metabolites (acylcarnitines and bile 

acids) and xenobiotics; the 4-9 minutes (Region two) corresponds to phospholipids 

[phosphoglycerols (PG), phosphatidylcholines (PC), phosphatidylethanolamines (PE), 

phosphatidylserines (PS], sphingomyelins (SM), ceramides (Cer) and Diglycerides (DG); and 9 

minutes and onwards (Region three) correspond to only Triglycerides (TG).  

 

 

Figure 4-4. A comparison of the lipid profiles acquired by LIPID-UPLC-MS in positive ion mode, from plasma 

extracts using different DSPE sorbents (green) against the SHAM lipid profiles (red). 

(A) Lipid profile of a plasma sample subjected to DSPE, using Waters HSST3 as the sorbent; 

(B) Lipid profile of a plasma sample subjected to DSPE, using Sigma NON.ENDCAPPED as the sorbent; 

(C) Lipid profile of a plasma sample subjected to DSPE, using Sigma ENDCAPPED as the sorbent; 
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(D) Lipid profile of a plasma sample subjected to DSPE, using Sigma LRA as the sorbent; 

NON.ENDCAPPED sorbent had the poorest capacity to remove lipids, whereas HSST3, ENDCAPPED and LRA had 

a similar capacity of lipid removal, particularly in Region two of the lipid profile. 

 

From the total ion chromatogram (TIC) illustrated in Figure 4-4, the NON.ENDCAPPED sorbent 

demonstrated very little lipid removal. The other three sorbents showed a similar lipid removal 

performance, mainly removing lipids associated with Region two. The TG’s in Region three were not 

detected in both SHAM and plasma extractions due to the poor selectivity of MeOH. PCA was then 

used to display any general trends and compare the different sorbents to the SHAM, in urine 

samples acquired by RPC (Figure 4-5). This is to understand if any perturbation exists in the small 

molecule profile. From the PCA score plot, the LRA samples clearly clustered away from the SHAM 

samples and is responsible for the maximum source of variance in the data. A more global effect was 

observed with the LRA sorbent, which was observed with a significantly lower total signal (TIC) in 

comparison to the SHAM, when the chromatogram was evaluated. A similarity of the RPC-UPLC-MS 

profiles were observed between the SHAM samples, to the HSST3 and 

ENDCAPPED/NON.ENDCAPPED samples, as indicated by the four different groups and their close 

proximity to one another in the PCA.  

 

 



Enhanced RPC-UPLC-MS profiling of the human blood metabolome using an optimised dispersive SPE protocol 

 

153 
 

Figure 4-5. A PCA score plot comparing different sorbents used for DSPE in urine samples acquired by RPC-

UPLC-MS (positive ion mode), alongside a SHAM sample as reference.  The PCA showed clear clustering of 

samples based on the sorbent used in the DSPE treatment. LRA (brown) clustered furthest away from the 

other sorbents and was the main source of variance observed in the data. SHAM (light blue), HSST3 (dark 

blue), ENDCAPPED (green) and NONENDCAPPED (yellow) shared a similar RPC-UPLC-MS profile as indicated by 

their close proximity in the PCA.  

However, separation of clusters indicates differences between the sorbent groups. As a 

consequence of the poor lipid removal efficiency of the NON.ENDCAPPED sorbent, and a lower total 

signal associated with the LRA samples, these two sorbents were no longer considered viable 

options for our intended purpose of lipid removal from blood products. OPLS-DA models were then 

used to identify the features responsible for driving the separation between the SHAM samples, and 

the remaining HSST3 and ENDCAPPED samples. The R2Y and Q2Y values obtained with a single 

calculated component were 0.9 and 0.85 for HSST3 (Figure 4-6.A), and 0.9 and 0.73 for ENDCAPPED 

(Figure 4-6.B) and permutation testing indicated low variability and an excellent predictive ability. 

Features were coloured by “w*”, which represent the rotated weights, and how each 

variable/feature individually corelates with Y. Colouring by this parameter, highlights the features (X 

variables) which best associate with Y, and in addition, get a sense of direction with the latent 

variable. The scatter points closer to blue in colour therefore represents a decrease in signal 

associated with DSPE treatment. So, although the HSST3 and ENDCAPPED sorbents demonstrated 

lipid removal, particularly in Region two of the lipid profile (from the plasma extracts acquired by 

LIPID-UPLC-MS in positive ion mode), moderately hydrophobic small molecules (as indicated by 

features eluting after six minutes in the urine RPC-UPLC-MS profile) were also affected to a certain 

degree. A thorough examination into the specifications of each sorbent provided an explanation as 

to what was being observed experimentally.  

Both sorbents are endcapped; endcapping is a process by which residue silanol groups which are 

void of C18 attachment, have substituted functional groups attached. Due to steric blocking, particles 

can have many “unexposed” silanol groups which are highly polar and can interact with the polar 

and moderately hydrophobic properties of small molecule metabolites. The substitution of a specific 

compound to any remaining unexposed silanol group heads, is therefore referred to as the process 

of endcapping. The ENDCAPPED sorbent utilises trimethyl silane (TMS) for endcapping, whereas the 

HSST3 uses a proprietary trifunctional C18 alkyl phase. It seems that the degree of endcapping for 

each sorbent, did not completely eliminate the interaction with moderately hydrophobic small 

molecules. To significantly reduce the amount of interaction with the endcapped silanol groups, the 

sorbent therefore needed to exhibit a smaller pore diameter and larger surface area. This results in 
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an increase in the ligand density, or the number of fatty acid chain (C18) attachment, reducing the 

number sites needed for endcapping and therefore greater interaction with only lipophilic species. 

The ligand density for these two sorbents are proprietary, however relates to the carbon load which 

is a reported property. The results from this investigation therefore required the procurement of a 

material with structural properties better suited for lipid removal. At the time of this experiment, 

the Sepra C18 sorbent from Phenomenex, was the only product commercially available to purchase in 

a bulk powder form that fulfilled these criteria, with specifications far more favourable than the 

HSST3 or ENCAPPED sorbents. It was therefore the sorbent of choice for subsequent experiments. 
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Figure 4-6. OPLS-DA loadings plots, comparing the SHAM reference samples to DSPE treatment samples 

(acquired by RPC-UPLC-MS in positive ion mode) using the HSST3 sorbent and ENCAPPED sorbent.  

(A) OPLS-DA loading plot comparing the SHAM treated samples, to the HSST3 sorbent DSPE treated 

samples. The R2Y and Q2Y values obtained with a single calculated component were 0.9 and 0.85  

(B)  OPLS-DA loading plot comparing the SHAM treated samples, to the ENCAPPED sorbent DSPE treated 

samples. The R2Y and Q2Y values obtained with a single calculated component were 0.9 and 0.73   

The loadings are coloured w* which represents and how each variable/feature individually corelates with Y. 

The scatter points closer to blue in colour therefore represents a decrease in signal associated with DSPE 

treatment. So, although the HSST3 and ENDCAPPED sorbents provide a certain level of lipid removal (as 
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demonstrated from the plasma extracts acquire by LIPID-UPLC-MS in positive ion mode), moderately 

hydrophobic small molecules (as indicated by features eluting after six minutes in RPC-UPLC-MS positive ion 

mode) were also being affected in the urine by both DSPE treatments. 

 

Finally, volume of sorbent displacement was also evaluated for HSST3, ENDCAPPED and Sepra C18. A 

5 mL volumetric flask was filled to volume with MeOH and weighed.  A random amount of sorbent 

was added, and the flask reweighed. Using a syringe, a volume was drawn to bring the meniscus 

back to the 5mL mark on the flask. This drawn volume was then weighed and from this, the 

displacement volume can be extrapolated. As the displacement volume corresponds to the original 

amount of sorbent added, the volume which equates to 1mg can be calculated. The experiment was 

replicated in triplicate for all three sorbents, with random amounts of sorbent added to the 5mL 

flask each time. All three sorbents had approximately 0.7 µL of volume displaced for every 1 mg of 

sorbent and therefore regarded as negligible.    

 

4.4.1.2 Solvent optimisation 
 

The depletion of lipid species was firstly evaluated by their total ion chromatograms as depicted in 

Figure 4-7, in the three most relevant retention time regions of the lipid profiling method (LIPID-

UPLC-MS positive ion mode) as specified in section 4.4.1.1. IPA and Acet, being less polar than the 

others, demonstrated to be the poorest solvent of choice, as lipids had a greater affinity to remain in 

the solvent and not bind to the sorbent. MeOH, EtOH and MeCN had efficient lipid removal in 

Regions two and Region three, but with little effect in Region one. Mainly, polar lysophospholipids 

(LPC) elute in Region one, but so to do other small molecules, such as lipophilic xenobiotics and 

acylcarnitines. It is these classes of compounds we want to remain unaffected by the DSPE method, 

and so a compromise was made to have metabolites within Region one remain in solution.  
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Figure 4-7. The total ion chromatogram comparing the effect five different extraction solvents (Methanol-

MeOH, Isopropanol-ISP, Ethanol-EtOH, Acetonitrile-MeCN and Acetone-Acet), used in DSPE from plasma 

samples analysed by LIPID-UPLC-MS in positive ion mode.  The three retention time regions relevant to LIPID 

analysis were examined. The 0-4 minute (Region one), the 5-9minute (Region two), and the 9min and onwards 

(Region three). MeOH, EtOH and MeCN produced a “cleaner” TIC spectrum which represents adequate 

removal of lipid species, especially in regions 1 and 2. Whereas ISP and Acet demonstrated denser TIC in all 

three regions, highlighting poor lipid removal. Both ISP and Acet were eliminated as viable options. 

 

A secondary investigation was undertaken using solvent extraction conditions involving only MeOH, 

EtOH and MeCN. The total number of features detected by RPC-UPLC-MS in positive ion mode 

followed the order: EtOH > MeOH:EtOH > MeOH:MeCN > MeCN:EtOH > MeOH > MeCN > 

MeOH:MeCN:EtOH (6408, 6368, 6253, 5889, 5091, 4680 and 4248, respectively). In negative ion 

mode, the same order was observed (2416, 2398, 2281, 2281, 2239, 1974 and 1934, respectively). 

Overall, all solvents showed a similar extraction performance in negative ion mode, i.e. the number 

of features, median RSD levels and evaluation of the chromatography (Figure 4-8.B). Differences 

however were observed in positive mode. Although the extraction with only EtOH produced the 

highest number of features, the median RSD for these features was 68% (Figure 4-8.A). MeOH:EtOH 
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was the next highest in the number of features detected, and was far more reproduceable, sharing 

more than 80% of features to the EtOH samples. However, a higher baseline, and large asymmetrical 

peaks, composing of many m/z values, were observed after seven minutes in the chromatogram 

(Figure 4-8.A). Any solvent composition with EtOH, produced these features, and is the underlying 

reason for the poor reproducibility associated with these samples. The MeOH samples also produced 

these features, and although lower in intensity and more reproduceable than EtOH extracts, still 

resulted in carry-over issues during analytical acquisition which eventuated into an increase in 

overall system pressure. The MeCN extraction has a lower baseline and a significantly lower signal of 

these large asymmetrical peaks, after the eight-minute region of the chromatogram. However, the 

MeCN only extracted samples did produce the lowest number of features and was more variable 

when compared to the other extraction solvents. Addition of MeCN to high salt samples has known 

to result in inconsistent biphasic partitioning of metabolites, leading to poor reproducibility (Watts 

and McDonald, 1990). However, in many cases, MeCN has reported to be superior to other solvents 

in terms of protein precipitation (Polson et al., 2003), therefore the incorporation of MeCN may be 

necessary for adequate protein removal. The MeOH:MeCN extracted samples produced the third 

highest number of features, and the lowest median %RSD at approximately 12%. The box plots in 

both modes also demonstrated this composition to be the least scattered and dispersed than the 

other solvents. To address the possible partitioning of metabolites affiliated with MeCN extractions, 

an experiment was conducted to test the effect of MeOH addition, to MeCN and a strong salt 

solution. One part of a 500mM sodium chloride solution, was mixed with three parts of four 

different solvent compositions, i.e., 100:0 MeCN:MeOH, 72:25 MeCN:MEOH, 50:50 MeCN:MeOH, 

and 25:75 MeCN:MeOH. As predicted, the 100:0 MeCN:MeOH produced two distinct layers. The 

addition of at least 25% of MeOH to a strong salt solution however, negated the biphasic behaviour 

(Figure 4-9). Therefore a 1:1 MeOH:MeCN mixture should have no issue handling high salt samples 

and metabolite partitioning during extraction.  
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Figure 4-8. Total ion chromatograms (TIC) and %RSD values for features detected using the solvent 

compositions, EtOH, MeOH:EtOH (1:1), MeOH:MeCN (1:1), MeCN:EtOH (1:1), MeOH, MeCN, and 

MeOH:MECN:EtOH (1:1:1), for DSPE in plasma analysed by RPC-UPLC-MS (positive and negative ion mode). 

(A) TIC and % RSD values for features detected in all extraction solvent conditions analysed by RPC-UPLC-

MS (positive ion mode); 

(B) TIC and % RSD values for features detected in all extraction solvent conditions analysed by RPC-UPLC-

MS (negative ion mode); 

A similar extraction performance was observed for all solvent compositions in RPC-UPLC-MS (negative ion 

mode). In RPC-UPLC-MS (positive ion mode), EtOH produced the highest number of features, however, was 

most variable and exhibited a higher baseline, and large asymmetrical peaks, composing of many m/z values. 
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MeOH also demonstrated these characteristics, but to a lesser extent. Ultimately, MeOH:MeCN composition 

produced the most features which were least variable, and incorporated both a methanol and acetonitrile 

component for efficient protein precipitation, thereby eliminating any likelihood of partitioning between 

sample and solvent. 

 

Figure 4-9. A comparison of a high concentrated salt sample (with yellow dye) mixed with acetonitrile, and 

mixed with a 1:1 MeOH:MeCN mixture.  

(A)  1part 500mm NaCl mixture mixed with 3 parts MeCN. ; 

(B)  1part 500mm NaCl mixture mixed with 3 parts MeOH:MeCN (1:1); 

A clear biphasic separation is observed in the sample extracted purely with acetonitrile. The salt solution was 

dyed yellow to emphasis the clear separation between the salt solution and acetonitrile. A solvent composition 

incorporating as little as 25:75 MeOH:MeCN however, negated any biphasic separation between sample and 

solvent.  

 

In summary, the selection of 1:1 MeOH:MeCN solvent mixture demonstrated a high number of 

reproduceable features, lower baseline, a significantly reduced signal of the large asymmetric peaks, 

and eliminated any likelihood of partitioning between sample and solvent. As a compromise was 

chosen for partial lipid removal in the earlier experiment, chromatographic performance 
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parameters, such as pressure build up, carry-over and retention time drift were all assessed and 

considered negligible.  

 

4.4.1.3 Slurry optimisation-DOE 
 

The complexity involved in slurry optimisation was handled more efficiently and systematically using 

the DOE approach. The goal of this optimisation is to determine what slurry condition is best for lipid 

removal whilst maintaining maximum recovery of the remaining small molecules. A total of 11 

experiments were undertaken as proposed by MODDE. If the experiment were to be undertaken in 

the conventional sense, i.e. testing all experimental conditions, the final experiment would have 

resulted 55 different conditions. This immediately highlights the benefit of the DOE approach to 

speed up the design process, thereby reducing cost and time. The recoveries from RPC-UPLC-MS 

(positive and negative ion mode), and LIPID-UPLC-MS (positive ion mode) were combined and 

tabulated (Table 4-3).  The RT bins used on the data acquired from LIPID-UPLC-MS were based on 

regions one and two. Region three was not explored as TG’s and DG’s which elute in this region, 

would not extract due to poor selectivity of the MeOH/MeCN solvent. The recoveries beyond 10 

minutes on RPC-UPLC-MS (positive ion mode), were substantially high (>130%). An explanation for 

this is that the washing phase of the chromatographic gradient (high solvent flow through the 

column) for this method is during this time, i.e. ranges from 10 minutes to 11.5 minutes. Chemicals 

which are very hydrophobic and lipophilic elute at this retention time range and can potentially 

affect the small molecule profile and precision of the data. Both RPC-UPLC-MS and LIPID-UPLC-MS 

are reversed phase methods, each having a limited useable range, with the former geared to 

features of lesser hydrophobicity. This means there is an overlap in metabolite retention between 

the two profiling methods. A simple experiment was then conducted to determine whether 

metabolites which elute past 10min by the RPC-UPLC-MS (positive ion mode) method, are still 

captured, with suitable retention, by the LIPID-UPLC-MS (positive ion mode) method. This involved 

acquiring different classes of analytical reference standards by the two methods. The classes 

included a selection of two antibiotics, three carnitines, nine xenobiotics (medicinal drugs), two 

LPC’s and 45 Bile acids. Illustrated in Figure 4-10, the horizontal red dotted line represents the RT at 

10minutes for RPC-UPLC-MS, and the vertical red dotted line, represents the RT of two times the 

solvent front (t0), in the LIPID-UPLC-MS assay, i.e.  the t0 at 0.6 minutes. This essentially splits the 

figure into four quadrants and it is clear that none of the compounds fall in quadrant 1, meaning that 

all compounds which elute after 10 minutes by RPC-UPLC-MS, are captured in the LIPID-UPLC-MS 

assay and elute after the t0. We can therefore conclude that a cut-off RT at 10 min for RPC-UPLC-MS 
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is acceptable and was kept consistent between the two polarities. The recoveries from RPC-UPLC-MS 

(positive and negative ion modes), with the updated RT ranges, and LIPID-UPLC-MS (positive ion 

mode) were combined into one DOE model and inputted into MODDE. 

 

 

Figure 4-10. A mixture of lipophilic reference standards acquired by both LIPID-UPLC-MS and RPC-UPLC-MS 

profiling methods (both in positive ion mode), plotted on different axis to demonstrate the overlap in 

retention time between these two methods.  The reference standards include two antibiotics (green), three 

carnitines (red scatter points), nine xenobiotics (yellow scatter points), two LPC’s (purple scatter points) and 45 

Bile acids (blue). The vertical red dotted line represents the t0 of the LIPID-UPLC-MS method, and the 

horizontal red lone represents the retention time at 10 minutes for the RPC-UPLC-MS method. This splits the 

figure into four quadrants (1-4). Reference standards eluting after 10 minutes by RPC-UPLC-MS, eluted (with 

acceptable retention) well after the t0 at 0.6 minutes in the LIPID-UPLC-MS method (quadrant 2). Therefore, 

the useable retention time range for the RPC-UPLC-MS method of blood extracts will stop at 10 minutes for all 

subsequent experiments and in both polarities.  
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Table 4-3. The response recoveries inputted into the DOE model, calculated as a percentage of the measured TIC signal (within a retention time window – or bin) 

observed in the DSPE treatment against the SHAM treatment.  Ideal targets for the response recoveries were recorded as a range between 90-130% for RPC-UPLC-MS 

analyses (positive and negative ion mode) and 20-40% for LIPID-UPLC-MS (positive ion mode) analysis. One of the Replicate points in RPC-UPLC-MS (negative ion mode) 

was removed as a result of a mis-injection. 

Slurry conditions: Concentration and Volume 

MODDE 
RT bins 

(min) 

2mg/mL 

600 µL 

20mg/mL 

600 µL 

2mg/mL 

1000 µL 

20mg/mL 

1000 µL 

2mg/mL 

800 µL 

20mg/mL 

800 µL 

11mg/mL 

600 µL 

11mg/mL 

1000 µL 

11mg/mL 

800 µL 

11mg/mL 

800 µL 

11mg/mL 

800 µL 

RPC-UPLC-

MS (positive 

ion mode) 

0-1 99.00% 103.54% 105.54% 106.49% 94.58% 102.97% 100.93% 107.61% 101.18% 102.17% 104.84% 

1-2 99.54% 106.87% 107.98% 110.46% 93.44% 107.50% 102.89% 114.46% 103.70% 105.18% 108.49% 

2-3 98.75% 105.27% 107.59% 109.32% 93.36% 107.03% 101.55% 113.11% 103.52% 104.17% 109.58% 

3-4 95.89% 111.10% 108.28% 111.42% 89.99% 110.34% 101.33% 113.20% 107.93% 104.66% 112.40% 

4-5 95.85% 109.67% 107.07% 107.17% 88.04% 110.86% 98.52% 110.25% 104.19% 99.96% 108.79% 

5-6 93.44% 107.87% 102.90% 111.04% 89.40% 122.51% 97.80% 130.26% 104.06% 106.64% 118.63% 

6-7 93.44% 106.46% 106.65% 104.74% 83.79% 103.68% 96.72% 108.82% 94.99% 99.60% 109.05% 

7-8 97.34% 110.45% 112.48% 122.68% 85.97% 116.55% 100.69% 125.18% 105.61% 109.03% 118.04% 

8-9 94.98% 111.77% 109.01% 132.75% 80.48% 118.34% 100.98% 128.89% 101.83% 112.99% 122.88% 

9-10 93.78% 113.37% 116.86% 146.41% 76.96% 124.21% 95.44% 127.58% 96.96% 120.86% 126.63% 

0-1 96.89% 102.55% 98.63% 100.61% 93.72% 101.42% 101.51% 97.79% 103.13% 105.92%  

             

RPC-UPLC-

MS 

(negative 

ion mode) 

1-2 100.67% 106.69% 98.54% 100.38% 92.14% 99.47% 103.51% 101.03% 105.46% 105.78%  

2-3 99.53% 105.49% 98.50% 99.49% 91.58% 103.97% 102.04% 100.69% 105.82% 109.26%  

3-4 100.24% 107.54% 98.69% 103.64% 89.86% 106.24% 105.38% 104.21% 108.20% 111.78%  

4-5 100.34% 106.23% 99.73% 102.21% 89.65% 103.80% 102.92% 101.98% 105.21% 108.17%  
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Slurry conditions: Concentration and Volume 

MODDE 
RT bins 

(min) 

2mg/mL 

600 µL 

20mg/mL 

600 µL 

2mg/mL 

1000 µL 

20mg/mL 

1000 µL 

2mg/mL 

800 µL 

20mg/mL 

800 µL 

11mg/mL 

600 µL 

11mg/mL 

1000 µL 

11mg/mL 

800 µL 

11mg/mL 

800 µL 

11mg/mL 

800 µL 

5-6 101.97% 114.00% 103.66% 108.50% 88.78% 114.06% 112.02% 114.15% 114.11% 115.40%  

6-7 105.78% 115.40% 104.52% 105.55% 90.67% 109.31% 110.12% 107.90% 112.28% 113.81%  

7-8 108.35% 129.75% 108.32% 128.14% 100.57% 137.57% 122.78% 123.55% 137.33% 144.00%  

8-9 111.75% 147.60% 115.85% 156.89% 103.47% 164.57% 138.26% 151.04% 165.95% 171.72%  

9-10 120.49% 150.60% 121.40% 163.54% 104.98% 172.54% 144.31% 150.72% 177.34% 179.53%  

             

LIPID-UPLC-

MS (positive 

ion mode) 

1-3.5 101.47% 69.92% 106.38% 89.94% 103.34% 81.31% 82.50% 94.11% 83.61% 89.13% 87.96% 

4-8 84.75% 3.41% 86.13% 15.01% 78.39% 6.63% 7.50% 21.86% 12.14% 17.02% 16.86% 
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Models for each response demonstrated a Q2/R2 > 0.5 as observed with in Figure 4-11. In addition 

to these metrics, model validity of >0.25, indicating no lack of fit,  and reproducibility of >0.5 was 

observed, all of which demonstrates good experimental control and robustness of the model (Jänsch 

et al., 2019). 

 

Figure 4-11. A summary of fit plot from the DOE model.  Summary of fit mode displaying four model 

performance indicators; the R2 – model fit (green), Q2 – estimate of the model to predict new data (blue), 

Model validity (yellow) and Reproducibility (cyan) for the DOE model incorporating all factor and response 

analyses from the RPC-UPLC-MS (positive and negative ion mode) and LIPID-UPLC-MS (positive ion mode) 

data. A good model is characterised by both R2 and Q2 close to 1, model validity of >0.25, and reproducibility of 

>0.5. The model has been fitted using PLS. The output summary statistic indicated the model to be sufficient 

for this optimisation. 

   

Regression coefficients and their confidence intervals or uncertainties are shown in Figure 4-12 with 

slurry concentration labelled as “C18”, and slurry volume labelled as “Vol”. In RPC-UPLC-MS (positive 

and negative ion mode), both the slurry concentration and slurry volume behaved similarly with no 

significant impact in the retention time range spanning 0-8minutes. This is to be expected as there 

should be no change in the small molecule profile when plasma is subjected to DSPE. A factor is only 

considered significant, if the factor effect is greater than its error, and in all RT bins associated with 
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RPC-UPLC-MS (positive and negative ion mode), this was observed. One can argue however, that a 

small influence may be observed, in the RT bin corresponding to 8-10 minutes in both ionisation 

modes and in the positive direction. This means, that as either factor increases, the higher the 

response (away from the ideal target) is observed. This could be attributed to the fact that lipophilic 

features elute later in this assay and so an increase in slurry concentration can result in less 

suppression on other small molecules that elute at this time. In the LIPID-UPLC-MS profiling assay, 

the regression coefficient for the slurry concentration (C18) is in the negative direction and 

significant to the model in regions one (1-3 min) and two (4-8 min). What this represents is what is 

already known, and that is the higher the sorbent concentration, the more lipid is removed, resulting 

in lower recoveries.  

 

Figure 4-12. The scaled and centered regression factors calculated from the DOE optimisation for RPC-UPLC-

MS (RPC+ and RPC-) and LIPID-UPLC-MS (LIPID+).  The regression factors were slurry concentration (C18), 

slurry volume (Vol) and interaction factors; C18*C18, Vol*Vol and C18*Vol. In most retention time bins, certain 

factors were removed to improve the Q2/R2 ratio. Large regression coefficients represent factors with large 

contributions to the response. If a factor’s regression coefficient is smaller than the associated errors bars, 

then the factor is not significant. A slight positive influence was observed in the retention time bin associated 

with 8-10 minutes in RPC-UPLC-MS (both ionisation modes; RPC + and RPC -), indicating higher recoveries were 

observed. The opposite was in fact observed in LPID-UPLC-MS (LIPID +), demonstrating that the C18 factor had 

a diminishing effect on the response.    
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Finally, based on Sweet spot (Figure 4-13.A) and design space (Figure 4-13.B) plots, the optimum 

conditions with a low % uncertainty was estimated to be to be 14-18 mg/mL for the slurry 

concentration and 650 µL for slurry volume. From this point forward in the development, all samples 

subjected to DSPE, utilised the Sepra C18 sorbent, the 1:1 MeOH:MeCN solvent mixture, and a slurry 

concentration at 16 mg /mL at a slurry volume of 325 µL for any 100 µL sample.     
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Figure 4-13. Contour (sweet spot) and design space plot showing the interaction between both slurry 

volume and concentration factors.  Both plots are used for diagnostics and interpretation and indicate 

combinations of the factors where all responses are within the target ranges (i.e. fulfil all criteria).  

(A) Design space plot illustrates model stability by combing uncertainties from the specified factors. The 

areas in the lighter green, indicate combinations of the factors where the risk of failure to meet the 

criteria, is less than 5%. As the risk increases, indicated by the contour lines, the colour transitions 

from green to red; 

(B) Contour plot highlights the areas where all criteria are met based on the user specified target ranges. 

The “sweet spot” is represented by the lightest green colour; 

The optimised condition was therefore estimated to be 14-18 mg/mL for the slurry concentration and 650 µL 

for slurry volume.  

 

4.4.1.4 Protein presence and dilution of sample 
 

Current NPC blood profiling methodologies (polar metabolites acquired by HILIC-UPLC-MS and lipids 

acquired by LIPID-UPLC-MS), for sample preparation of the dilution series QC samples, requires a 

dilution of the blood product prior to extraction with solvent. It became apparent however that this 

is not applicable for the small molecule RPC based assays. As the QC sample increased in dilution, 

the extracts exhibited a higher baseline and large asymmetrical peaks in the TIC comprising of many 

m/z values eluting from 7min onwards (Figure 4-14). These are the same features that were 

detected from the MeOH and EtOH compositions in the solvent optimisation experiment (section 

4.4.1.2) 
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Figure 4-14. The TIC of dilution series plasma samples that were subjected to the DSPE protocol, where 

plasma was diluted post-DSPE treatment.  As the sample concentration decreases (from 100% to 1%), the 

intensity of high molecular weight, multiply charged species increased. These species exhibited 

protein/peptide spectral characteristics.  

The spectral features from these large peaks were multiply charged hinting that peptides or proteins 

remained in solution even after PP. To test this, the albumin content for samples dilute pre-

extraction and post-extraction were measured and summarised in Table 4-4. As predicted, samples 

which were diluted pre-extraction exhibited large levels of albumin, exceeding the highest point on 

the calibration curve (> 3500 µg/mL). Samples diluted post-extraction, were significantly lower in 

albumin content. So, although the exact peptides have not been properly identified, these features 

are related to albumin still in solution.  

A possible reason for this is that proteins contain both hydrophobic/hydrophilic parts in its structure, 

and therefore in solution may generally exhibit an overall net charge which can be either positive or 

negative. The presence of water molecules can cause an interaction with protein therefore resulting 

in protein molecules to dissociate itself from others and remain soluble. This solubility depends on 

the chemical environment and is a measure of the dielectric constant (Frigerio and Hettinger, 1962). 

If protein molecules are soluble, this implies a large dielectric constant. The dielectric constant of 

aqueous solutions can be lowered by adding water-soluble organic solvents, such as methanol and 

acetonitrile. The combination of water and alcohols, such as ethanol and methanol, was not 

sufficient in reducing the dielectric constant, therefore resulting in proteins to remain in solution as 
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demonstrated in this experiment. The decision was therefore made to dilute the samples post 

extraction for the dilution series samples to be diluted post-extraction.    

 

Table 4-4. A summary of the concentration of albumin in plasma samples diluted pre and post DSPE.  

Samples where the plasma sample was diluted pre-DSPE exhibited significant levels of detectable albumin 

(>3500 µg/mL), thereby demonstrating that plasma samples diluted pre-DSPE is unsuitable for this assay 

 

Concentration 

(µg/mL) Replicate 1 Replicate 2 Replicate 3 Mean 

Calibration 2000 2158 2165 2164 2162 

 1500 1616 1573 1623 1604 

 1200 1302 1260 1254 1272 

 1000 967 760 1105 944 

 600 584 570 596 583 

 400 389 384 382 385 

 200 215 200 198 204 

LOQ 150 177 170 170 172 

Sample (no dilution)  525 500 485  

Sample (5X DIL -Before 

DSPE)  >3500 >3500 >3500  

Sample (5X DIL -After DSPE)  231 233 244  

 

4.4.2 Validation 
 

4.4.2.1 Precision 
 

The precision of the sorbent weight (in a 96 well format suitable for high throughput) and metabolic 

profiles were assessed. Each tube of the PCR rack was weighed before and after the addition of 

slurry, and the difference calculated (Appendix 2). An RSD of less than 10% sorbent weight was 

measured across all wells of a 96-well plate. This not only confirms that a uniform amount of slurry is 

added to the sample, but also, larger amounts of the slurry can be made which can then be easily 

distributed to 96-well sample plates in an easy manner, therefore making the procedure applicable 

for high throughput profiling projects.
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Figure 4-15. PCA score plot of 288 (three 96-well plate) samples prepared using the updated DSPE protocol 

to assess method reproducibility. 

(A) PCA score plot of all sample observations coloured by order of slurry addition (column-wise using an 

8-channel multi-pipette) from RPC-UPLC-MS (positive ion mode). No trend observed; 

(B) PCA score plot of all sample observations coloured by order of water resuspension (row-wise, using a 

12-channel multi-pipette) from RPC-UPLC-MS (positive ion mode). No trend observed; 

(C) PCA score plot of all sample observations coloured by order of slurry addition (column-wise using an 

8-channel multi-pipette) from RPC-UPLC-MS (negative ion mode). No trend observed; 

(D) PCA score plot of all sample observations coloured by order of water resuspension (row-wise, using a 

12-channel multi-pipette) from RPC-UPLC-MS (negative ion mode). No trend observed; 

Overall, no trends observed, indicating high method reproducibility. 

 

For the second part of the experiment, plasma samples from all three plates were randomised and 

acquired by RPC-UPLC-MS (positive and negative ion mode). PCA scores plots demonstrated no 

outlying samples and no trend in variation between the samples when coloured by addition of slurry 

(Figure 4-15.A and Figure 4-15.C) or addition of the water during resuspension (Figure 4-15.B and 

Figure 4-15.D). From the data acquired in both modes, the majority of features had an %RSD< 30 

(Figure 4-16). In RPC-UPLC-MS (positive ion mode), a total of 3055 features were detected. Of these 

features, only 22 features had an %RSD more than the 30% threshold. Similarly, in RPC-UPLC-MS 

(negative ion mode), a total of 4236 features were detected, with 106 over this threshold. The 



Enhanced RPC-UPLC-MS profiling of the human blood metabolome using an optimised dispersive SPE protocol 

 

172 
 

median %RSD measured was 4.5% in positive ion mode and 4.2% in negative ion mode. 

Chromatographic performance was also assessed with no observable pressure spikes throughout the 

analytical run, low background, negligible drift in RT and a stable baseline. Overall, no significant 

global variation was observed across all detected chemical features. Finally, as the DSPE method 

described is subject to variances in the precision and accuracy of measurements, evaluation of data 

quality was accounted for by careful deliberation in various steps during the sample preparation. 

One such step is during the recovery stage of the sample preparation, although manual recovery of 

the supernatant is possible, the risk of disturbing the pellet after centrifugation is high and was 

mitigated using a multichannel automated fluid pipetting robot. 

 

 

Figure 4-16. The relative standard deviation (RSD) for feature groups passing the dilution series and blank 

filtering from all samples acquired in both RPC-UPLC-MS positive ion mode (yellow) and RPC-UPLC-MS 

negative ion mode (grey).  The median %RSD measured was 4.5% and 4.2%, respectively. 
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4.4.2.2 Performance of lipid removal on xenobiotics and endogenous small molecules 
 

A mixture of prevalent xenobiotics was spiked into urine at varying concentrations and subjected to 

DSPE. A decision was made to spike into urine a variety of xenobiotics, which are known to elute 

throughout the chromatographic range, with an emphasis on lipophilic xenobiotics (lansoprazole, 

amitriptyline ,terbinafine and diclofenac), as these would have the potential, like lipids, to be 

removed by the DSPE procedure. The spiking of LIPID mixes at different concentrations, added a 

further layer to the experiment to explore whether varying levels of lipids can have a suppressive 

effect on the intensity of the spiked xenobiotics. The lipids selected for the lipid mixture are based 

on lipid classes which are prevalent in normal human blood and commonly detected by the LIPID-

UPLC-MS profiling method. The approximate final concentration of the LIPID mix (held at three 

concentrations; 985 ng/mL, 1970 ng/mL, and 3941 ng/mL) in the urine extracts were designed to 

span average lipid levels observed in human plasma (Bowden. J et al. 2017). Finally, albumin was 

spiked into urine at a concentration consistent to reported levels found in circulating plasma of 

healthy individuals (Varacallo, 2020). Although the composition between urine and blood products 

are vastly different, the aim here was to try and create an artificial mixture resembling blood. This 

was undertaken by spiking lipids and albumin into a urine matrix. Urine profiling by RPC-UPLC-MS is 

extensively studied at the NPC and exhibits a greater number of features in comparison to blood 

products, therefore a more global evaluation can be undertaken if such a significant effect between 

SHAM and DSPE treatment were to be observed.  

 

4.4.2.2.1 Recovery of xenobiotics 
 

Differences between DSPE and SHAM samples were firstly examined by targeting the spiked 

xenobiotics from the xenobiotic mixtures and comparing signal intensities. Xenobiotics were spiked 

into urine at four different concentrations. Within each concentration exist six different 

preparations, i.e., three different concentrations of lipids each with a SHAM and DSPE treatment. 

The results are illustrated as box plots (Figure 4-17), and an ANOVA test was used to determine if 

any statistically significant differences exist between the mean intensities observed in the DSPE 

treated samples, and the mean intensity measure from the SHAM treated samples within a specific 

concentration of the xenobiotic mixture. For some xenobiotic’s, there were p<0.05 within a XENO 

group (highlighted in red in Table 4-5), however no real pattern was observed to explain these p-

value results. Ibuprofen demonstrated significant difference in intensity between SHAM and DSPE 

treated samples, at different concentrations (XENO1-4). This agrees with the observations made 
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during the DOE analysis (section 4.4.1.3), as this compound elutes after 10 minutes and 

measurement of features eluting after this time may be unstable. Diclofenac also elutes after 10 

minutes, but apart from its highest concentration (XENO1), no statistically significant differences 

were observed between groups at lower concentrations. Overall, regardless of the concentration of 

the lipid mixture, SHAM and DSPE treated samples demonstrated little significant difference in mean 

signal intensities for this exemplar set of xenobiotics.  
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Figure 4-17. Box plots depicting the distribution of  signal intesity from an exemplar set  of xenobiotics and internal standards, between DSPE and SHAM treated 

samples.  Overalll (within each XENO concentration level), regardless of the concentration of the lipid mixture (LIPID1-3), SHAM and DSPE treated samples demonstrated 

little statistically significant difference (p < 0.05 Kruskal-Wallis ANOVA) in mean signal intensities of these xenobiotics.
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Table 4-5. p-values from Kruskal-Wallis ANOVA comparing the mean intensities of an exemplar set of 

xenobiotics between DSPE and SHAM treated samples. 

Xenobiotic/IS 
ANOVA p-value 

XENO1 XENO2 XENO3 XENO4 

L-Phenylalanine-13C9,15N 0.93 0.75 0.99 0.12 

Amoxicillin 0.01 0.01 0.14 0.21 

Acetaminophen 0.70 0.83 0.06 0.01 

N-Benzoyl-D5-Glycine 0.66 0.67 0.16 0.12 

Lansoprazole 0.95 0.20 0.33 0.01 

Amitriptyline 0.24 0.10 0.11 0.11 

Terbinafine 0.23 0.01 0.06 0.06 

Diclofenac 0.01 0.12 0.06 0.12 

Ibuprofen <0.001 <0.001 <0.001 <0.001 

 

4.4.2.2.2 Global recovery 
 

A secondary analysis was subsequently undertaken to explore any significant differences from a 

more global interrogation of the data. The distribution of recovery values was calculated between 

the DSPE and SHAM treated samples acquired by RPC-UPLC-MS, in positive ion mode (Figure 4-18.A-

C) and negative ion mode (Figure 4-18.D-F) at the three different lipid concentrations. For clarity the 

x-axis has been truncated to between 50% and 200% recovery, and features were further divided 

into retention time bins of 2minutes and coloured accordingly. The median recovery, as indicated by 

the purple dotted line in the figures (A-F), were approximately 102-104% in both positive and 

negative ion mode. The results of this experiment demonstrate that the DSPE treatment has had 

minimal global effect on small molecule recovery.    
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Figure 4-18. Recovery density plots for feature groups passing the dilution series and blank filtering, 

calculated between DSPE and SHAM treated samples analysed by both RPC-UPLC-MS (positive and negative 

ion mode).  Feature groups are segregated by 2-minute retention time bins; 0.2min (pink), 2-4min (yellow), 4-

6min (green), 6-8min (blue) and 8-10min (purple).  

(A) Density plot measuring the recovery (between SHAM and DSPE treated samples) of filtered features 

spiked at the first lipid concentration of lipids (LIPID1) in positive ion mode. Median recovery 

calculated at 102% (vertical purple dotted line);   

(B) Density plot measuring the recovery (between SHAM and DSPE treated samples) of filtered features 

spiked at the second lipid concentration of lipids (LIPID2) in positive ion mode. Median recovery 

calculated at 104% (vertical purple dotted line); 

(C) Density plot measuring the recovery (between SHAM and DSPE treated samples) of filtered features 

spiked at the third lipid concentration of lipids (LIPID3) in positive ion mode. Median recovery 

calculated at 104% (vertical purple dotted line);   

(D) Density plot measuring the recovery (between SHAM and DSPE treated samples) of filtered features 

spiked at the first lipid concentration of lipids (LIPID1) in negative ion mode. Median recovery 

calculated at 102% (vertical purple dotted line);  

(E) Density plot measuring the recovery (between SHAM and DSPE treated samples) of filtered features 

spiked at the second lipid concentration of lipids (LIPID2) in negative ion mode. Median recovery 

calculated at 104% (vertical purple dotted line);  

(F) Density plot measuring the recovery (between SHAM and DSPE treated samples) of filtered features 

spiked at the second lipid concentration of lipids (LIPID3) in negative ion mode. Median recovery 

calculated at 104% (vertical purple dotted line).    
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4.4.2.3 Liquid-Liquid extraction (LLE) comparison 
 

4.4.2.3.1 Residual protein 
 

Within 20 injections of the hydrophilic fraction acquisitions via the NPC RPC-UPLC-MS profiling 

method assay, the instrument stopped due to the pressure exceeding its maximum limit (15000 psi). 

Viewing the spectra from these injections indicated evidence of protein that accumulated on the 

column resulting in a blockage that caused the overpressure stoppage. As a result, all extracts were 

then subjected to an additional protein precipitation step using cold acetonitrile in the 1:3 

proportion sample:acetonitrile. During sample preparation for both the Folch and BD extractions, 

the protein precipitate forms in between the organic and aqueous phases. It was evident from these 

extractions, that precipitate also formed on the walls of the glass tubes and its aspiration with the 

upper hydrophilic aqueous phase was therefore inevitable. In the Matyash extraction, the 

precipitate formed at the bottom of the tube. Visually, there seemed to be no evidence that 

precipitate was present on the walls of tube, however the spectra did show evidence of protein, 

possibly be due to carry-over from the Folch and BD extractions.  

From the literature, lipid analysis using LLE has never indicated the presence of protein. Analysis of 

the organic extracts via the NPC LIPID-UPLC-MS profiling assay (Izzi-Engbeaya et al., 2018) requires 

resuspension of the dried organic phase in a method appropriate solution of 1:4 water:IPA. Apart 

from the selectivity of this mixture to extract lipids, this step also ensures protein precipitation. The 

organic fractions were subsequently analysed and showed no evidence of protein in the spectra. The 

presence of protein in the hydrophilic fractions when acquired by RPC methodologies was a novel 

finding. LLE of blood products is primarily for lipid analysis, and the analysis of the aqueous phase in 

most cases is analysed (if analysed at all) by HILIC methodologies (Fei et al., 2014, Lange and 

Fedorova, 2020, Fauland et al., 2011, Schwaiger et al., 2018). Both the organic and aqueous phase 

will have some level of protein precipitation associated with it in its preparation. The analysis of the 

aqueous phases by RPC-UPLC-MS evidently can not be done so easily as observed with protein on 

the walls of the sample extraction tubes and its inevitable contamination during aspiration.  

 

4.4.2.3.2 Unsupervised multivariate comparison of the extraction systems 
 

All extracts and the pooled sample were analysed by the RPC-UPLC-MS profiling method. The total 

number of features for each extraction in positive ion mode had the following order: DSPE > Pool > 

BD > MeOH > Folch > Matyash (2655, 2535 ,2362, 2230, 2103, 2086). In negative ion mode, the 
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order was: DSPE > BD > Pool > MeOH > Matyash > Folch (3681, 3481, 3290 ,3235, 2964, 2921). In 

both modes, the DSPE RPC data demonstrated the highest number of high-quality features, and the 

highest number of common features, when compared to the pooled extract, as illustrated by the 

Venn diagrams (Figure 4-19). The pooled sample will be more diluted when compared to the other 

extracts, as it is a mixture of all the samples, which could explain why a smaller number of features 

were detected.   

 

 

Figure 4-19. Venn diagrams representing the number of common features between the pool samples (grey 

circle) , to the different extraction methods analysed by the RPC-UPLC-MS method.  These are Folch (green), 

Mataysh (pink), DSPE (yellow) and MeOH (orange).   

(A) are Pool samples compared to the Folch, BD, Matyash, DSPE and MeOH in positive ion mode; 

(B) are Pool samples compared to the Folch, BD, Matyash, DSPE and MeOH in negative ion mode.The DSPE 

treated samples exhibited the highest number of features when compared to the other extraction protocols, 

and shared the highest number of common features to the pooled samples.  

  

Using only the features that passed all filtering criteria (Blank filtering, RSD<30% and correlation to 

dilution of 0.7) for the pooled extract, the RPC-UPLC-MS data from all extractions were exported to 

SIMCA software for multivariate analysis. Grouping, trends and outliers were examined from PCA 

scores plots shown in Figure 4-20.A and Figure 4-20.C. In both ion modes, a PCA score plot 

illustrated little method variability associated with all extraction methods, as the samples were 

relatively clustered together. However, the DSPE, MeOH and pool samples clustered more tightly 
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than the LLE samples. One Matyash replicate clustered with the Folch extraction, highlighting a 

possible contamination. This sample was then removed from further analysis. A dendrogram from 

HCA, was also plotted (Figure 4-20.B and Figure 4-20.D) to visually and quantitively demonstrate the 

similarity between the RPC profiles from each extraction (where the height of the link that joins two 

groups are the smallest). The profiles of the Matyash method in both ionisation modes were the 

most similar to the pool sample profiles as it is also observed from the PCA score plots. In positive 

ion mode, the order of proximity is as follows: Pool > Mataysh > Folch > MeOH > BD > DSPE, while in 

negative ion mode, the order is Pool > Matyash > Folch > BD > DSPE > MeOH.   The DSPE method 

seems to differ significantly in the profile from the pool, even though the DSPE and pool samples 

share the most common features (Venn diagrams above). The Venn diagrams produced in this 

instance relate to only the number of features and whether it is present in each extraction. Both PCA 

and HCA can illustrate the similarity of general profiles, taking into account the relative abundances 

of the features. 

 

 

Figure 4-20. PCA score plots and HCA dendrograms depicting the relationships of the different extraction 

methods of the hydrophilic fractions acquired by RPC-UPLC-MS, to one another.  The PCA score plot will 

depict how the different extraction methods relate to each other by identifying clusters, whilst also 

highlighting outliers and time-based patterns. The dendrogram quantitatively highlights similar groups based 

on the height at which any two objects are joined together. The most similar group have the smallest link that 

joins them are the smallest.  
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(A) PCA score plot of the Pool, Folch, BD, Matyash, DSPE and MeOH profiles in positive ion mode; 

(B) HCA dendrogram comparing Pool, Folch, BD, Matyash, DSPE and MeOH profiles in positive ion mode; 

(C) PCA score plot of the Pool, Folch, BD, Matyash, DSPE and MeOH profiles in negative ion mode; 

(D) HCA dendrogram comparing Pool, Folch, BD, Matyash, DSPE and MeOH profiles in negative ion mode. 

 

4.4.2.3.3 Supervised multivariate comparison of the extraction systems 
 

Even though the RPC-UPLC-MS profiles obtained for Matyash extracts proved to be more similar to 

the pool sample, the PCA did demonstrate different clustering groups, thereby suggesting different 

profiles. A series of OPLS-DA models were therefore produced between the pool and all other 

extraction methods to highlight the ratio of the number of discriminant features to common 

features. Discriminant features were based on VIP values greater than 1.5. S plots produced from 

the OPLS-DA models were used to visualise the features that were driving the separation between 

two extraction groups in positive ion mode (Figure 4-21) and negative ion mode (Figure 4-22). The 

results show that for all OPLS-DA models in both positive and negative ion modes, the R2 (> 0.995) 

and Q2 (> 0.945) values of the original models were above the permutated models, indicating low 

variability and a high predictive ability. From these models, in both ionisation modes, the DSPE 

method has the highest ratio of discriminant to common features, therefore indicating that a higher 

number of features are being affected by this method. As to be expected, the number a lower ratio 

of discriminant to common features was observed for the Mataysh samples, as indicated by their 

close proximity to the pool in the PCA and HCA.  
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Figure 4-21. One-component OPLS-DA S-Plots showing the separation and discriminating features 

(respectively) between the RPC-UPLC-MS profiles of the Pool samples (with loadings coloured in red 

exhibiting a VIP > 1.5), and all other extraction methods in positive ion mode.  Validation plots displaying 999 

permutation tests are alongside the corresponding OPLS-DA model. 

(A) The explained variance (R2Y) was 0.972 and predictive ability was 0.968 for “Pool vs Folch”; 

(B) The explained variance (R2Y) was 0.979 and predictive ability was 0.930 for “Pool vs BD”; 

(C) The explained variance (R2Y) was 0.898 and predictive ability was 0.854 for “Pool vs Matyash”; 

(D) The explained variance (R2Y) was 0.997 and predictive ability was 0.994 for “Pool vs DSPE”; 

(E) The explained variance (R2Y) was 0.995 and predictive ability was 0.990 for “Pool vs MeOH”. 
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Figure 4-22. One-component OPLS-DA S-Plots showing the separation and discriminating features 

(respectively) between the RPC-UPLC-MS profiles of the Pool samples (with loadings coloured in red 

exhibiting a VIP > 1.5), and all other extraction methods in negative ion mode.  Validation plots displaying 

999 permutation tests are alongside the corresponding OPLS-DA model. 

(A) The explained variance (R2Y) was 0.977 and predictive ability was 0.962 for “Pool vs Folch”; 

(B) The explained variance (R2Y) was 0.983 and predictive ability was 0.972 for “Pool vs BD”; 

(C) The explained variance (R2Y) was 0.955 and predictive ability was 0.20 for “Pool vs Matyash”; 

(D) The explained variance (R2Y) was 0.995 and predictive ability was 0.992 for “Pool vs DSPE”; 

(E) The explained variance (R2Y) was 0.996 and predictive ability was 0.994 for “Pool vs MeOH”. 

 

4.4.2.3.4 Method-induced losses of annotated small molecules 
 

The identification of all unknown discriminant features was not feasible due to their high number. 

However, relative method-induced losses for RPC-UPLC-MS metabolites annotated by peakpantheR, 

were evaluated for each extraction. This method was implemented, as the conventional way to 

calculate recoveries could not be conducted due to improper use of internal standards (i.e. internal 

standard were spiked pre-extraction but a number of sample were not subjected to a post-

extraction spike of the same standards). A total of 105 metabolites were annotated in both 

ionisation modes for RPC-UPLC-MS data from the different extraction methods (Appendix 2). The 

method-induced losses are also listed in Appendix 2 and illustrated in the jitter plots (Figure 4-23). 

Overall, all extraction procedures demonstrated a similar performance with average metabolite 

losses less than 10% for both ionisation modes (as indicated by the red horizontal line in Figure 

4-23). There were no statistically significant average metabolite losses observed in negative mode, 

however in positive mode, only the DSPE samples demonstrated statistically significant differences 

to all other extraction methods (apart from BD). Both BD and DSPE yielded the highest levels for pre-

annotated metabolites measured by peakPantheR, with the lowest average loss. The DSPE method 

in particular, gave the highest levels for xenobiotics (Cortisone, Caffeine, Theobromine, 

Theophylline, Cotinine and Prednisolone) and carnitine metabolites (L-acetylcarnitine, Carnitine, 2-

Octenoylcarnintine and Propionylcarntinine).  
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Figure 4-23. Method-induced losses for metabolites identified from RPC-UPLC-MS peakPantheR on all 

extraction approaches.  (Pool - red, Folch - yellow, BD – green, Matyash – aqua, DSPE – blue, MeOH – purple). 

The average losses were calculated for each method, as indicated by the red horizontal line. Statistically 

significant differences, p < 0.05, Newman-Keuls multiple comparison test, were performed on the absolute 

average levels.  
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(A) In positive ion mode, statistically significant differences were observed between DSPE and all other 

extraction methods apart from BD. Both BD and DSPE yielded the highest average level of targeted 

metabolites. The DSPE method in particular yielded highest levels for carnitine and related metabolites and 

xenobiotics. 

(B) In negative ion mode, no statistically significant differences were observed between the different 

extraction groups  

 

4.4.2.3.5 Carnitine presence from the different extraction systems  
 

The high yield associated with carnitine metabolites in the DSPE extracts corroborates the work in 

section 4.4.1.2. As stated in this section, the DSPE protocol is not a method that enables complete 

lipid removal, and a compromise was made that allowed metabolites within region one of the lipid 

profile, to remain, i.e. polar lipids such as LPC, acylcarnitines and lipophilic endogenous and 

exogenous metabolites. To explore this further, when the samples were treated with acetonitrile to 

remove the residual protein (1:3 sample:acetonitrile), an aliquot was taken and run via the NPC 

HILIC-UPLC-MS assay which provides a wider range of detected and pre-annotated acylcarnitine 

species. A total of 76 metabolites were annotated and measured using peakPantheR (list provided in 

Appendix 2). A PCA biplot was used to summarise the findings. The biplot illustrates the 

features/metabolites which associate best to a particular extraction method. It models similarities 

and dissimilarities between sample clusters and the relationship of metabolites to the clusters 

simultaneously. As highlighted in Figure 4-24, most of the extracted carnitines present, as well as 

lipophilic xenobiotics such as warfarin, are strongly associated to the DSPE method (blue circles). 

This also explains the higher number of features observed in the Venn diagrams, indicating that the 

DSPE method covers a wider range of metabolites amendable to RPC small molecule analysis when 

compared to the other LLE methods. 

 

 

  



Enhanced RPC-UPLC-MS profiling of the human blood metabolome using an optimised dispersive SPE protocol 

 

188 
 

 

Figure 4-24. A PCA biplot comparing the levels of targeted metabolites measured using peakpantheR in 

hydrophilic fractions of samples from the different extractions acquired by HILIC-UPLC-MS (positive ion 

mode).  The grey circles represent the targeted metabolites (loadings), and all other coloured cirlces represent 

the different extrcation methods; BD (green), DSPE (dark blue), Folch (maroon), Matyash (yellow), MeOH (light 

blue) and pool (purple). The biplot demonstrates a strong association for acylcarnitine affiliated metabolites to 

the DSPE method as indicated by the light green eclipse and the accompanying table of targeted metabolites. 

The Matyash  and Pool samples are closest to the origin and therefore do not significantly contribute to the 

formation of the observed clusters as described by PC1 and PC2. 

 

4.4.2.3.6 Selectivity of the LLE methods for different lipid species 
 

Gil et al.  found that metabolites associated with Region one (specifically LPC) in the Matyash and BD 

methods, had a lower overall signal in the organic fractions when compared to the Folch method. 

The recovery of these LPC affiliated metabolites were not lost during the sample reparation 

procedure but rather were detected in higher quantities than the Folch method in the 

hydrophilic/aqueous fractions. The organic extracts from all LLE extractions obtained in this work 

were acquired by the NPC LIPID-UPLC-MS assay in positive mode only, to examine whether their 

findings were consistent. In hindsight, the DSPE sorbent should have been re-extracted with the IPA 

mixture, so that comparison of lipid profiles could be made, however the collection plate was 

discarded at the time of preparation. A total of 243 lipid species were annotated in the organic 

extracts using a LIPID panel of metabolites. Apart from lipid species, the panel also included a 

mixture of short, medium, and long chain acylcarnitine’s, most of which elute in Region one of the 

LIPID assay. Repeatability of Folch and Matyash methods were similar, with approximately the same 

number of metabolites demonstrating a %RSD < 30 (208 and 206, respectively). The BD method was 

more variable, and only 113 metabolites had a %RSD < 30%. Method-induced losses and a PCA-
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biplot were again used to examine the results, and metabolites were divided into the three retention 

time regions. Figure 4-25.B shows that the Folch method produced the highest mean lipid yield, with 

the lowest losses associated with metabolites from region one. This can also be observed in the 

biplot, where the majority of these metabolites (as indicated by the green circles in the PCA-Biplot in 

Figure 4-25.A) is related to the Folch method. The biplot also demonstrates that the Matyash 

samples are closest to the origin and therefore do not significantly contribute to the formation of 

the observed clusters as described by PC1 and PC2. A clustering of TG’s (red circles), and the majority 

of later eluting metabolites affiliated with region two (blue circles), are observed, relating to samples 

from the BD method. The BD extraction method resulted in the highest yields for metabolites 

associated with region’s two and three (Figure 4-25.C-D), specifically, phospholipids, SM, CER, DG 

and TG. However, the BD method was the most variable, with only 113 metabolites with a CV < 30%, 

thus demonstrating a greater overall loss between the three methods. These results are consistent 

with Gil et al., who found that the Folch method was the best of the three LLE methods in terms of 

lipid coverage along with precision of lipid measurements. A summary of the annotated lipid 

metabolites and method induced losses, are summarised in Appendix 2. 
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Figure 4-25. A PCA-Biplot (A) and method-induced jitter plots (B-D) comparing the organic fractions of the 

LLE methods (Folch, BD and Mataysh) acquired by the LIPID-UPLC-MS (positive ion mode).  (A) PCA-Biplot of 

the different LLE methods (highlighted by the coloured triangles, Folch (orange), BD (purple) and Matyash 

(aqua)) overlayed with the metabolites annotated by LIPID (ESI positive) peakpantheR. Metabolites are colour 

coded by region: Region one (Blue circles), region two (green circles), region three (red circles). (B), (C) and (D) 
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are plots depicting the method induced losses observed between the three LLE methods for metabolites 

identified by LIPID peakpantheR. The coloured circles represent lipid metabolites extracted by Folch (red), BD 

(green) and Matyash (blue). The average method induced losses for each LLE method is represented by the red 

horizontal line. Statistically significant differences (p < 0.05, Newman-Keuls multiple comparison test) was 

performed on the absolute average levels between all extraction comparisons. (B) Method induced losses for 

lipid metabolites associated with Region one. The Folch method demonstrated the highest average signal in 

this region. (C) Method induced losses for lipid metabolites associated with Region two. The BD method 

demonstrated the highest average signal but also was the most variable. (D) Method induced losses for lipid 

metabolites associated with Region three. The BD method demonstrated the highest average signal for TG’s. 

Overall, the Folch method demonstrated the highest average lipid yield, particularly with metabolites 

associated with Region one.  The BD extraction method resulted in the highest yields for metabolites 

associated with region’s two and three, specifically, phospholipids, SM, CER, DG and TG. However, was also the 

most variable, with only 133 metabolites with a CV<30%. Both Folch and Matyash had 206 and 208 

metabolites with CV<30%, respectively.   

 

4.4.2.3.7 The detection of LPC in the hydrophilic fraction 
 

To determine if the losses associated with LPC in the organic fractions is due to its partitioning into 

the hydrophilic fraction during sample extraction, an endogenous LPC (14:0/0) and LPC (15:0/0) 

were identified from the extracts acquired by the RPC-UPLC_MS (positive ion mode) and compared. 

The extracted ion chromatogram (EIC) from one replicate of each extraction method were overlayed 

for these two compounds to illustrate the difference in peak area (Figure 4-26). The highest signals 

observed for both LPC species were detected in BD samples, followed by Matyash, MeOH, DSPE and 

very minor levels in Folch. The order of decreasing intensity associated with LPC in the LLE methods 

(BD > Matyash > Folch), correspond exactly to the findings by Gil et al. Regarding the DSPE protocol, 

its lipid removal capacity is greater than the BD and Matayash methods but less that the Folch. 

However, the higher yield associated with lipophilic small molecule metabolites (acylcarnitines and 

other lipophilic xenobiotics), overweighs the presence of the small amount of lipids in the DSPE 

extraction compared to the Folch extraction, which yielded the lowest amount of lipids in the 

hydrophilic fractions but an overall lower yield of small molecule metabolites. 
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Figure 4-26. Comparison of the relative abundance of a representative set of LPC species , 14 (I) and 15 (II) 

carbon saturated LPC, present in the hydrophilic fractions of the five different LLE extraction methods,  Folch 

(purple), BD (green), Matyash (blue), DSPE (red) and MeOH (yellow), analysed by RPC-UPLC-MS (positive ion 

mode). The BD method yielded the highest levels of the LPC species, followed in decreasing order by MeOH, 

Matyash, DSPE and Folch.  

 

4.4.2.3.8 Liquid-liquid extraction (LLE) comparison summary 
 

The analysis of the hydrophilic/aqueous fractions by RPC-UPLC-MS (positive and negative ion mode) 

demonstrated that the DSPE method produced the highest number of features between all 

extraction methods. The method also had the highest number of common features when compared 

to the pooled extract, which is representative of all the extraction methods and used as a reference 

to compare the performance of an extraction method. The DSPE samples were the least similar to 

the pooled extract, with OPLS-DA models indicating that the DSPE method had the highest ratio of 

discriminant to common features. Targeted analysis (peakpantheR) and acquisition of the extracts 

via the HILIC-UPLC-MS assay, highlighted DSPE, to be the best method for the measurement of 

short, medium, and long chain acylcarnitine in the hydrophilic fractions, providing a possible 

explanation as to the difference and higher number of discriminant features observed between the 

DSPE and pooled extract.  These fractions also revealed that the DSPE method was better at 

removing LPC affiliated metabolites, than the BD and Matyash methods. The organic fractions 

analysed by the LIPID-UPLC-MS assay (positive ion mode) revealed that the Folch method is the 

better of the three LLE methods in terms of lipid coverage and overall precision. The BD method was 
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best for TG extractions but demonstrated the greatest overall loss and variability. Lastly, the 

presence of protein in the hydrophilic fraction of the LLE methods is therefore a limitation for the 

analysis of polar metabolites by RPC methodologies, especially for high throughput applications. 

 

4.4.2.4 SPE VS DSPE 
 

The optimised DSPE protocol was compared to known SPE methods/plates for lipid removal. As 

DSPE and SPE are essentially different extraction techniques, comparison between the two were 

undertaken by creating an SPE plate using the DSPE parameters. In conjunction with Phenomenex, 

the optimised sorbent weight was packed into cartridges in a 96-well format to replicate a typical 

96-well SPE plate. Sample extraction using this plate (Sepra-SPE) was carried out in a similar manner 

to Sepra-DSPE.  This included making sure that sample volume, conditioning/washing of the sorbent, 

solvent, recovery, and reconstitution volumes were all identical. A comparison between the different 

protocols were then conducted using PCA, and by reporting the total number of reproducible 

features detected. For PCA, a score plot was generated to illustrate the variance within the dataset 

(Figure 4-27.A). In both positive and negative modes, both Sepra-DSPE and Sepra-SPE samples 

clustered together highlighting a similarity in their profiles. This highlights the importance of sorbent 

and solvent optimisation and its impact on small molecule measurement.   
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Figure 4-27. A PCA score plot comparing different phospholipid removal SPE protocols in plasma samples 

acquired by RPC-UPLC-MS (positive and negative ion mode)-, alongside a DSPE treated samples, the DSPE 

sorbent packed into a SPE format, and Neat plasma samples with no treatment. 

(A) PCA score plot comparing Sepra-DSPE (green), Sepra-SPE (blue), Neat (yellow), OSTRO (light blue), 

ISOLUTE (brown) and PHREE (purple), which were analysed by RPC in positive ion mode 

(B) PCA score plot comparing Sepra-DSPE (green), Sepra-SPE (blue), Neat (yellow), OSTRO (light blue), 

ISOLUTE (brown) and PHREE (purple), which were analysed by RPC in negative ion mode 

The PCA showed clear clustering of samples based on their treatment. The Sepra samples clustered together 

indicating highly similar profiles, thereby allowing comparison to SPE lipid removal protocols. OSTRO, ISOLUTE 

and PHREE plates all incorporated acetonitrile and therefore was the main driver of variance, as a lower 
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number of features were detected with these protocols. The PHREE plate was the least favourable exhibiting 

species related to protein (like the NEAT), causing major instrument issues.  

 

The total number of features detected in the positive mode followed the order: Sepra-DSPE > Sepra-

SPE > Neat > OSTRO > ISOLUTE > PHREE (2566, 2312, 1986, 1580, 1405 and 469, respectively). In 

negative ion mode, the same order was observed (828, 810, 679, 549 and 176, respectively). In both 

modes, the PHREE samples clustered on its own and had the lowest number of features detected. 

This is in part due to MeCN as the protocol’s extraction solvent. We have demonstrated in section 

4.4.1.2, that MeCN has a lower extraction efficiency and selectivity of small molecules in comparison 

to MeOH. A similar RPC-UPLC-MS profile was observed between the PHREE and NEAT samples, with 

the detection of high molecular weight multiply charged species, eluting between seven and 11 

which we have now attributed to residual protein. It seems that during sample extraction with the 

PHREE plates, the precipitate from the PP, did not remain within the cartridge, and made it through 

to the collected filtrate. This later becomes apparent in the analytical run, as both the NEAT and 

PHREE samples resulted in stoppages of the LC-MS due to over overpressure caused by an 

accumulation of protein in the LC column. The presence of these species may potentially affect the 

ionisation of other LMW ions, resulting in a fewer number of features detected, as observed with 

the PHREE samples. The OSTRO and ISOLUTE plates also used MeCN in the extraction but was void 

of any protein/peptide species. As a result, a higher number of features, when compared to the 

PHREE plate, were observed, and explains the clustering in the top-left quadrant of the PCA, away 

from the PHREE samples in positive ion mode. In negative ion mode, the OSTRO plate clustered with 

the Sepra samples, indicating a similarity in the blood profile, however, was lower in the number of 

features detected.  It is the fact that MeCN was used as the extraction solvent for ISOLUTE, PHREE, 

and OSTRO which explains the greatest source of variation in the data as described by PC1 (45%). 

PC2 explained approximately 20% of the variation and was attributed to the presence of the 

protein/peptide species. This is corroborated by the fact that both PHREE and NEAT samples are in 

line along PC2 and contain significant levels of these species. OPLS-DA models were used to identify 

the features that contribute to the greatest influence between Sepra-DSPE and NEAT samples, and 

further highlighted the above point. Significant features were based on their VIP scores (VIP > 1.5). 

The results show that for single component OPLS-DA models, in both positive and negative ion 

modes, the R2Y (> 0.991) and Q2Y (> 0.855), and permutation testing indicated low variability and an 

excellent predictive ability. A loadings plot (with retention time on the x-axis and m/z on the y-axis) 

of the two OPLS-DA models, show that the majority of discriminating features eluted between 7 and 

11 minutes, which are representative of the protein/peptide species (Figure 4-28.B). There were also 
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features eluting after 11 minutes which were attributed to LPC affiliated metabolites, as annotated 

in section 4.4.2.3.7. Other than these features, the remaining profile between the Sera-DSPE and 

NEAT samples are similar (between zero and seven minutes).  

The use of NEAT plasma was not a good sample to use as a control. Urine should have been used in 

this experiment (as demonstrated in previous sections), as we could then evaluate the effect of SPE 

treatment on small molecules. However, the use of blood samples did highlight a similarity between 

Phree and Neat samples suggesting an inefficiency of protein removal during extraction. Overall, the 

Sepra samples boasted the highest number of detected features in comparison to the other lipid 

removal lipid removal SPE plates. The experiment demonstrated that both the sorbent and solvent 

can affect the selectivity of small molecules, and the parameters use for the DSPE protocol was the 

better of all protocols, detecting a greater number of high-quality features whilst also delivering a 

cleaner extract.  
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Figure 4-28. One-component OPLS-DA loadings plots showing the separation and discriminating features 

(respectively) between the RPC profiles of the NEAT samples (with loadings coloured in red exhibiting a VIP 

> 1.5), to the DSPE treated samples.  

(A) The explained variance (R2Y) was 0.994 and predictive ability was 0.812 for Neat samples vs DSPE treated 

samples in positive ion mode; 

(B) The explained variance (R2Y) was 0.974 and predictive ability was 0.964 for Neat samples vs DSPE treated 

samples in negative ion mode; 
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The loadings plot (with retention time on the x-axis and m/z on the y-axis) of the two OPLS-DA models, 

highlight most discriminating features to elute between 7 and 11 minutes in both modes. These discriminating 

features are representative of the protein/peptide species identified in previous sections. 

 

4.4.3 Application 
 

4.4.3.1 Analysis of plasma and serum samples 
 

The acquired data were pre-processed within ongoing operations of the NPC according to 

established QC protocols for metabolic phenotyping (Lewis et al., 2016, Sands et al., 2019) thereby 

ensuring high data quality. No obvious drifts or outliers were observed in TIC for both the SR and LTR 

QC samples in both ionisation modes, and for both studies (Figure 4-29.A-B and Figure 4-30.A-B). 

The distribution of the % RSD in relation to the feature intensity in the SR samples was also assessed 

(Figure 4-29.C-D and Figure 4-30.C-D). The distribution is further divided into a lower quartile range 

(green), interquartile range (blue) and upper quartile range (green), highlighting the precision of 

features based on their measured signals. The median RSD values in the MARS and AZ Study 12 

studies were 8.4% and 5.9% respectively in positive ion mode and 7.6% and 8.3% in negative ion 

mode.  
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Figure 4-29. RPC-UPLC-MS TIC of all plasma samples (Study samples – blue, SR – green, and LTR – red) in 

MARS (A-B), and the % RSD distribution for all features passing the dilution series filter (C-D). Alongside the 

TIC scatter plots are violin plots exhibiting the TIC density for each sample type. The distribution plots are 

%RSD segmented by mean feature intensity into quartiles. 

(A) TIC of all samples in MARS (positive ion mode) against the run order;  

(B) TIC of all samples in MARS (negative ion mode) against the run order;  

(C) % RSD distribution in positive ion mode. Median RSD value was 8.4%; 

(D) % RSD distribution in negative ion mode. Median RSD value was 7.6%. 

Data from the MARS plasma study (n=285) resulted in 2837 detected metabolite features in positive ion mode 

and 1523 in negative ion mode. Repeated observation of the pooled sampled (SR) throughout the analytical 

batch demonstrated high precision, with the majority of features that occupied the interquartile and upper 

quartile intensity range having an RSD of less than 30%. The TIC plots exhibited no major outliers or trends 

with respect to the QC samples.  
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Figure 4-30. RPC-UPLC-MS TIC of all serum samples (Study samples – blue, SR – green, and LTR – red) in AZ 

Study 12 (A-B), and the % RSD distribution for all features passing the dilution series filter (C-D). Alongside 

the TIC scatter plots are violin plots exhibiting the TIC density for each sample type. The distribution plots 

are %RSD segmented by mean feature intensity into quartiles.  

(A) TIC of all samples in MARS (positive ion mode) against the run order.  

(B) TIC of all samples in MARS (negative ion mode) against the run order.  

(C) % RSD distribution in positive ion mode. Median RSD value was 5.9%; 

(D) % RSD distribution in negative ion mode. Median RSD value was 8.3%. 

Data from the AZ Study 12 serum study (n=169) resulted in 2936 detected metabolite features in positive ion 

mode and 2342 in negative ion mode. Repeated observation of the pooled sampled (SR) throughout the 

analytical batch demonstrated high precision, with the majority of features that occupied the interquartile and 

upper quartile intensity range having an RSD of less than 30%. The TIC plots exhibited no major outliers or 

trends with respect to the QC samples.  

 

Repeated observation of reference features from the pooled QC samples (SR) throughout the two 

profiling studies, demonstrated high precision with both mean peak area and retention time RSD < 

10% (Table 4-6 and Table 4-7).   
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Table 4-6. Retention time and Peak area precision of reference standards within the MARS plasma project 

acquired by RPC-UPLC-MS in positive and negative ion mode.  Repeated observations of reference features 

from the pooled QC samples throughout the analytical batch demonstrated high precision with mean 

retention time RSD < 1% and mean peak area RSD <10% with no post batch correction required. 

%RSD 

NPC Project MARS 

Polarity RPC-UPLC-MS (positive ion mode) RPC-UPLC-MS (negative ion mode) 

QC Sample SR LTR SR LTR 

 RT Peak Area RT Peak Area RT Peak Area RT Peak Area 

L-Glutamine-13C5 0.0 6.3 0.0 7.0 0.0 5.0 0.0 3.8 

L-Glutamic acid-13C5 0.0 6.7 0.0 7.5 0.5 5.4 0.5 4.8 

Creatinine-(methyl-d3) 0.6 3.4 0.6 3.6 0.5 4.6 0.4 4.3 

L-Isoleucine-13C6,15N 0.3 7.8 0.3 7.6 0.3 9.3 0.3 6.5 

L-Leucine-13C6 0.3 8.1 0.3 8.4 0.3 7.7 0.2 9.2 

L-Tryptophan-13C11, 15N2 0.4 8.9 0.3 10.3 0.1 5.3 0.1 4.1 

Cytidine-5,6- d2 0.0 5.3 0.0 5.4 0.1 4.2 0.1 3.9 

L-Phenylalanine-13C9, 15N 0.1 5.8 0.1 6.6 0.0 2.0 0.0 1.7 

N-Benzoyl- d5-glycine 0.0 6.3 0.0 7.0 0.0 5.0 0.0 3.8 

 

 

Table 4-7. Retention time and Peak area precision of reference standards within the AZ Study12 Serum 

project acquired by RPC-UPLC-MS in positive and negative ion mode.  Repeated observations of reference 

features from the pooled QC samples throughout the analytical batch demonstrated high precision with mean 

retention time RSD < 1% and mean peak area RSD <10% with no post batch correction required. 

%RSD 

NPC Project AZ Study 12 

Polarity RPC-UPLC-MS (positive ion mode) RPC-UPLC-MS (negative ion mode) 

QC Sample SR LTR SR LTR 

 RT Peak Area RT Peak Area RT Peak Area RT Peak Area 

L-Glutamine-13C5 0.0 5.2 0.6 4.0 0.0 4.1 0.0 3.1 

L-Glutamic acid-13C5 0.0 2.7 0.0 4.1 0.0 5.4 0.8 3.5 

Creatinine-(methyl-d3) 0.0 3.8 0.0 4.4 0.0 2.1 0.0 1.7 

L-Isoleucine-13C6,15N 0.3 2.2 0.3 3.6 0.0 6.5 0.2 7.4 

L-Leucine-13C6 0.3 2.1 0.3 4.1 0.2 6.8 0.3 8.2 

L-Tryptophan-13C11, 15N2 0.0 4.4 0.0 5.7 0.2 2.5 0.2 3.5 

Cytidine-5,6- d2 0.3 1.3 0.3 2.4 0.1 6.6 0.1 6.5 

L-Phenylalanine-13C9, 15N 0.2 2.7 0.0 2.2 0.1 4.0 0.0 2.4 

N-Benzoyl- d5-glycine 0.1 2.7 0.1 3.3 0.0 1.6 0.0 1.1 
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4.4.3.2 Targeted annotations 
 

Of the features which passed QC protocols, 144 metabolites were annotated in AZ-Study12 (Figure 

4-31.B) and 141 metabolites in MARS (Figure 4-31.A). In conjunction with the two other blood 

profiling assays, polar metabolites by HILIC-UPLC-MS and lipid metabolites by LIPID-UPLC-MS, an 

additional 129 metabolites were reported in AZ-Study12 and 111 in MARS. Of these metabolites for 

both studies, 23 were xenobiotics, eluted well within acceptable RT confines of the RPC-UPLC-MS 

assay. Selectivity of all compounds that are moderately hydrophobic and/or amphipathic, are poor 

for LIPID-UPLC-MS and HILIC-UPLC-MS analysis. If detected, would not retain, or would elute too 

close to the t0 of the chromatographic method. As the LIPID assay is a method specifically designed 

to target lipid classes, this leaves only the HILIC assay as the only other blood profiling assay for 

xenobiotic detection at the NPC. Only four xenobiotics, cotinine, caffeine, acetaminophen and 

cortisol passed QC and was detected via the HILIC assay, but all these xenobiotics were close to the 

t0. So, although detected in HILIC, caution should be taken using this data for further analysis.  

 

 

Figure 4-31. Venn diagram for the number of annotated metabolites detected in MARS and AZ STUDY12 

studies using all blood NPC profiling assays, i.e. polar metabolites by HILIC-UPLC-MS (positive ion mode- 

purple), lipids by LIPID-UPLC-MS (positive and negative ion mode - red) and the developed DSPE method by 

RCP-UPLC-MS (positive and negative ion mode – light green)  

(A) Venn diagram for the number of annotated metabolites detected in MARS (plasma) 

(B) Venn diagram for the number of annotated metabolites detected in AZ Study12 (serum) 

An additional 111 (MARS) and 129 (AZ Study12) metabolites (endogenous and xenobiotics) were annotated 

from these two exemplar studies.   
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4.5 Results Summary 
 

The aim of the work described in this chapter was to develop an analytical strategy to improve 

xenometabolome coverage in blood products.  

Comprehensive effort was therefore undertaken to construct a method for the depletion of lipids 

from blood which rendered the sample type fit for the analysis of amphipathic and moderately 

hydrophobic metabolites, encompassing many xenobiotics, by RPC. The approach is accomplished 

using DSPE with C18 sorbent, thereby enabling large scale high throughput LC-MS (RPC) profiling. To 

address this main aim, development of this DSPE sample preparation method for blood products 

was split into three design stages; optimisation, validation and application.  

The first stage involved optimising the components that make up DSPE, i.e., the C18 sorbent use to 

target lipophilic species, and the solvent used to extract the metabolite subset of interest. 

Properties of the Sepra C18 sorbent from Phenomenx was most favourable in comparison to other 

C18 sorbent material, due to small particle size, and greater surface area. As a result of these 

properties, a greater number of fatty acid or C18 chains will attach to the surface of the underlying 

support material, reducing the number of polar endcapped sites, and thereby ensuring that only 

highly lipophilic metabolites in blood are targeted by the sorbent.  

A methanol:acetronitrile (1:1) mixture provided the best solvent composition for extracting this 

subset of metabolites, producing the greatest number of highly reproducible metabolic features, 

minor signals of residual protein, and minimal evidence of biphasic partitioning.   

The combination of the sorbent and solvent variables make a slurry, and it is both the concentration 

and volume of the slurry which were optimised simultaneously using a DOE protocol. Rather than a 

full factorial design which would have incorporated all the possible combinations in the design 

model, a central composite face design was efficiently used, providing much of the necessary 

information on variable effects and overall experimental error, in a minimum number of 

experimental analyses.  The MODDE software highlighted several performance indicators plots 

which were used to evaluate and assess the quality of the PLS model produced, this included;  

1. summary of fit, in which R2/Q2 ratios greater than 0.5 were evaluated and used as a 

measure of cross validation reproducibility and model validity. 

2. a plot depicting regression coefficients for slurry concentration and slurry volume factors at 

each retention time bin. Coefficients whose uncertainties exceeds their actual values have 

no significant contribution to the model and removed. Slurry volume and concentration had 
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no significant impact within each retention time bin for the RPC-UPLC-MS based assays. For 

the LIPID-UPLC-MS assay, the slurry concentration was significant in the negative direction, 

implying as more sorbent is added, more lipid is removed. 

3. Finally, the sweet spot contour plots and design space plots, both of which highlight regions 

in the design space, where all responses are within the specified range, and most sensitive 

to small fluctuations in the factors.   

 

Collectively, utilising these performance indicator plots, both the slurry concentration and slurry 

volume were optimised; 325 uL of a 16mg/mL slurry solution is added to every 100 uL of blood 

sample. 

The second stage involved testing method reproducibility, recovery, and effectiveness of the 

protocol at lipid removal and small molecule measurement (comparison to SPE and LLE).  

Reproducibility addressed whether the sorbent can be reproducibly dispensed into a 96-well format, 

and the precision of the molecular profile of detected metabolic features from repeated measures of 

the same sample. An RSD of less than 10% sorbent weight was measured across all wells of a 96-well 

plate and the median RSD of less than 5% was measured for all detected features passing the 

dilution series filter. 

Recovery was addressed by evaluating the signals of specific xenobiotic targets and metabolic 

features passing the dilution series filter, between SHAM and DSPE treated samples. Overall, SHAM 

and DSPE treated samples demonstrated little significant difference in mean signal intensities for the 

exemplar set of xenobiotics, eluting before 10 minutes for data acquired by RPC-UPLC-MS. DSPE 

treatment has also had minimal global effect on small molecule recovery.    

To address whether the DSPE procedure is effective at lipid removal and small molecule 

measurement, blood profiles were compared to other sample preparation methods, namely SPE 

lipid removal plates, and LLE. The DSPE method was the better of all protocols, detecting a greater 

number of reproducible metabolic features, whilst also delivering a cleaner extract free of any 

residual protein. The solvent composition of methanol:acetonitrile for DSPE was crucial in detecting 

more features, as most lipid removal SPE plates utilise acetonitrile, which has poorer selectivity. 

Targeted analysis of DSPE samples demonstrated higher yields for short, medium and long chain acyl 

carnitine metabolites, and lipophilic drugs. Finally, although a compromise was made to leave 

metabolites associated with Region 1 of the lipid profile intact (LPC’s), the DSPE method 

demonstrated lower yields of these LPC metabolites in comparison to BD and Matyash LLE methods.  
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The final stage were applications of the DSPE method to the exemplar MARS and AZ Study 12 

population studies. 

In both studies, no obvious outliers were observed in the TIC for the QC samples (SR and LTR), the 

median RSD values for all detected features were less than 10% in both ionisation modes, and 

repeated observation of the reference standards from the SR samples for both intensity and 

retention time had RSD values of < 10%. Overall, an additional 129 metabolites were reported in AZ-

Study12 and 111 in MARS. Approximately 23 metabolites were identified as xenobiotics, which 

would not have been annotated by the other profiling studies offered at the NPC. This therefore 

demonstrates that xenobiotic coverage was significantly enhanced for both studies via this analytical 

strategy. 

 

4.6 Significance of Findings 
 

The work presented in this chapter is useful in three main ways:  

1. An additional profiling method for blood products has been added to the NPC 

profiling portfolio; this method is optimized for the subset of metabolites that fall in-

between those suited to the existing HILIC or lipid methods and encompasses many 

xenobiotics of interest. 

2. The method combines an efficient sample preparation technique (DSPE) to a robust 

chromatographic technique (RPC).  

3. This method supports an analytical strategy to separate and distinguish between 

xenobiotic and endogenous signatures potentially increasing xenobiotic coverage in 

population studies. 

 

4.7 General Discussion 
 

Whilst the development of the analytical strategy features a substantial amount of trial and error 

and process of elimination in the scoping of materials and chemistry conditions, it also relies on the 

principles of DOE.  The approach benefitted the work greatly by allowing assessment of a broad 

parameter space with less overall experiments physically performed.  For example, when optimising 

the slurry composition, if the experiment set was to be undertaken in the conventional sense, i.e. 

testing all experimental conditions, the final experiment would have resulted 55 different conditions 
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to analyse. Using DOE, only 11 experiments were required to assess the same parameter space.  This 

immediately highlights the benefit of the DOE approach to speed up the design process, thereby 

reducing cost and time. The final method is fit for application to blood product analysis, bringing the 

benefits of RPC as a high performing and dependable separation technique into focus for less 

hydrophobic metabolites in an otherwise complex sample type. 

Historically, RPC has been the benchmark for LC/MS profiling in untargeted metabolomic studies 

(Zelena et al., 2009, Wilson et al., 2005, Plumb et al., 2006, Dunn et al., 2011). Uniform peak shape 

across the separation, stable retention times and high speed of equilibration make RPC a popular 

analytical separation technique for examining the chemically diverse range of metabolites present in 

biofluids (Psychogios et al., 2011). Lipids constitute a large portion of the metabolic content present 

in biofluids, with more than 60% annotated of all metabolites listed in the human metabolome 

database (Wishart et al., 2013).  

As such, RPC has been most widely used for the analysis of complex lipids and therefore well 

established (Cajka and Fiehn, 2014). However, highly polar, and ionic metabolites suffer retention on 

the RPC systems, making measurement unsuitable. Ion-paring agents for highly polar metabolites 

have been added to RPC mobile phase buffers to improve measurement although these additives 

can result in heavy contamination of the entire chromatographic system (Tulipani et al., 2015, Yanes 

et al., 2011). HILIC has increasingly been incorporated into metabolomic research, as an alternative 

to RPC for the analysis of highly polar metabolites (Cubbon et al., 2010, Spagou et al., 2010).  

The presence of endogenous phospholipids in significant levels are however considered to be a real 

problem in HILIC (Tsakelidou et al., 2017). The analysis of polar metabolites and lipids using RPC 

based methods for large scale profiling has also been reported, however the authors have stated 

that that phospholipids can interfere with retention time of all endogenous compounds (Dunn et al., 

2011). 

Sample preparation plays an important role in blood-based metabolomics and lipidomic analysis, as 

methods need to be reproducible and efficiently denature and precipitate proteins, whilst also 

ensuring maximum extraction recoveries for metabolites. Therefore, the most popular practice for 

large scale metabolome studies is to focus on different sample extraction and separation 

(chromatographic) procedures. Studies that have reported comprehensive coverage of metabolites 

have analysed polar extracted fractions using HILIC and non-polar lipid extracted fractions using RPC 

with C8 or C18 columns (Dunn et al., 2011, García-Cañaveras et al., 2011, Urayama et al., 2010). This 

approach of complementary analytical methods each covering a specific subset of metabolites based 
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on hydrophobicity (i.e. the HILIC and LIPID analysis) helps to build more complete metabolome 

coverage.  

To limit time, cost and sample consumption, simultaneous analysis of both the metabolome and 

lipidome has also been undertaken (Cai and Li, 2016). Cai et al. prepared one extraction for the 

analysis of both polar metabolites and lipids in plasma using HILIC-MS. The solvent composition of 

MEOH/MeCN/Acetone used in the plasma extraction demonstrated the highest efficiency for the 

extraction of both polar metabolites and lipids. In this chapter, MeOH:MeCN was assessed to be the 

most suitable extraction solvent. Acetone was eliminated as a candidate extraction solvent due to an 

affinity of lipids to remain in solution rather than bind to the DSPE sorbent. It is therefore not 

surprising that the combination incorporating all three yielded highest recoveries for both polar 

metabolites and lipids.  

In addition to analytical issues, the extraction procedure involved for the simultaneous analysis of 

both polar metabolites and lipid species, are tailored specifically for these types of metabolites. 

However, these protocols provide poor coverage for the subset of metabolites that fall in between 

these two chemistries, i.e., moderately hydrophobic, and amphipathic, which encompasses many 

xenobiotics. RPC is still the better choice of the two separation chemistries, to analyse this specific 

subset of metabolites, however as discussed in the introduction, the presence of complex and 

neutral lipid species in blood products can accumulate and elute unpredictably from the column 

which could thereby exhibit suppressive effects on the ionisation of LMW metabolites. Nasar et al. 

describes the metabolites that fall within this polar-lipid range as “semi-polar”(Naser et al., 2018). 

These semi-polar metabolites were classified by their inherent lipophilicity calculated by using the 

logarithm of the partition coefficient (logP). Semi-polar metabolites exhibited logP values from 

approximately −2 to 1.5. This group also found that for comprehensive metabolome coverage, 

analysis had to be split into a HILIC method for polar metabolites and two RPC methods for semi-

polar (using a C18 column) and lipid metabolites (using a C8 column), which agrees with the approach 

adopted by the NPC. Another study classified xenobiotics (drugs and steroids), as having a logP 

between 0-5 (Drouin et al., 2018), and its measurement in blood samples required sample clean-up 

methods, such as LLE and SPE, to remove most of the lipophilic interference. The group also 

describes a variant of DSPE called dispersive liquid–liquid microextraction (DLLME) which can be 

used as an alternative sample extraction method to LLE and SPE. Rather than using a solid sorbent 

component as with DSPE, in DLLME, a nonpolar water immiscible high-density solvent (such as 

chloroform) is added to the sample-solvent mixture and acts as extraction phase. This method 

reports high yields for drugs with faster analysis time when compared to SPE, however has not been 

implemented for metabolomic applications.  
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The DSPE method was optimised for high recoveries for the subset of metabolites of interest. It also 

has the added benefit of being reproducible, inexpensive, and effective for high through-put 

analyses. However, a limitation of the method, is that the procedure does not eliminate lipids 

completely, especially those with single fatty acyl chains. For example, lysophospholipids were 

heavily retained in solution by the method in order to ensure more hydrophobic metabolites were 

not depleted.  If a more complete reduction of these less hydrophobic lipids were required, the 

solvent ratio used in the slurry could be adapted (e.g., making the solvent component more polar), 

but some sacrifice to the yield of those small molecules would certainly be made. Alternatively, a 

higher concentration of sorbent could be used to target lipids, as demonstrated in the DOE 

experiments. However higher slurry concentrations would also mean higher slurry volumes and 

ultimately higher sample volume, which maybe an issue if sample volume is limited. The approach is 

therefore a compromise, intended to deplete the most highly retained lipid species and thereby 

reduce their accumulation and carryover on column, but with a bias towards complete retention of 

small molecules in solution (at the expense of more complete lipid removal). 

A range of different SPE sorbents, packed into 96-well plates for high throughput analyses, has now 

been introduced that remove proteins and phospholipids from biofluids in a single step, with each 

exhibiting different degrees of extraction efficiency (Tulipani et al., 2013, Neville et al., 2012, 

Patterson et al., 2015). However, these plates appear to be more appropriate for targeted 

applications (sample cleaning, compound enrichment) than for global profiling, with some groups 

reporting loss of recovery of small molecules and introduction of contaminants (Armirotti et al., 

2014, Simón-Manso et al., 2013). SPE sorbent materials tested in this chapter exhibited a lower 

number of metabolic features and were found to retain hydrophilic analytes together with 

endogenous interferences (protein/peptides). This agrees with the findings by Tsakelidou et al., 

where the SPE phospholipid removal plate required additional elution steps to remove these 

interferences (Tsakelidou et al., 2017). The same species were also observed with the initial analysis 

of the hydrophilic fractions of the LLE extractions by the RPC profiling method demonstrated in this 

chapter. As a result, all extracts were subjected to an additional protein precipitation step. 

Compared to the DSPE method, the hydrophilic fraction from LLE methods also exhibited significant 

levels of LPC affiliated metabolites, which were highest in the BD and Matyash extraction methods. 

Additionally, small molecule metabolites such acylcarnitine’s, have been reported to be lost in 

biphasic extraction, and was also observed in this investigation (Patterson et al., 2015). The 

additional steps and effort needed to analyse the hydrophilic fraction from LLE methods for small 

molecules analysis, and loss of small molecule metabolites makes LLE as means for lipid removal, 

unfavourable. Returning to the original hypothesis, where we stated that DSPE would provide a 
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better alternative to LLE and SPE phospholipid removal plates for metabolome and 

xenometabolome measurement, the results support this hypothesis.  

The application of DSPE for lipid removal in metabolomic investigations involving blood products is 

novel, in that it has not been explored in any great level of detail. For blood sample preparations in a 

metabolomic investigation, Tsakelidou et al. used a QuECHERS (quick, easy, cheap, effective, rugged 

and safe) kit that utilise DSPE. It is a form of liquid-liquid extraction with implements a solvent and a 

high salt buffer where analytes of interest will partition into the organic phase. The authors used a 

specific QuECHERS clean-up step which involves an initial protein precipitation, followed by a DSPE 

that utilises a sorbent mixture of MgSO4 and a proprietary primary secondary amine. They did 

report however lower recoveries for 24 out of the 53 metabolites when compared to conventional 

protein precipitation extraction method (using methanol). A high recovery was observed for 

xenobiotics from this list of metabolites and recommended that a C18 sorbent should be 

investigated, which was exactly what was investigated for this work. At the time of this work, no C18 

material as the sorbent was available in the QuECHERS kits, but kits are now available with C18 

sorbents from various vendors (Waters, Sigma, Thermo Fisher Scientific and Agilent) which 

represents another avenue of research which can potentially be explored.  

Configurations of instrumentation to partition lipids, either by directing to waste or measurement of 

the lipid profile, can also be undertaken via 2-dimensional LC methods (Li et al., 2015, Schwaiger et 

al., 2019, Broeckling and Prenni, 2018, Chalcraft and McCarry, 2013). Commonly used in proteomics, 

eluent from one column is collected in a sample loop and then injected onto a second column 

exhibiting orthogonal properties. In these studies, dual HILIC and RPC were combined in serial or 

parallel to high-resolution mass spectrometry. Injection stacking was proposed as an alternative to 

the reported conventional based 2-D methods, significantly reducing cost and hardware. Broeckling 

et al. utilised a Mataysh extraction on whole human blood, whereby the injection of the organic 

(lipophilic) extract onto a RPC column under isocratic conditions, followed immediately by injection 

of the aqueous (hydrophilic) extract onto the same column (stacking). The authors did state that this 

platform does not claim to cover comprehensive profiling and should only be considered a viable 

option if time and resources are limited. 

A Q-TOF-MS was used for this work as it can offer a higher sensitivity, high mass resolving power, 

rapid scanning capabilities, and cover a wider mass range with high mass accuracy than other 

profiling platforms used in metabolomics (GCMS or NMR). As such, the use of Q-TOF-MS 

instrumentation has also gained considerable attention in forensic and clinical toxicological 

applications due to its high sensitivity and specificity in xenobiotic detection (Allen and McWhinney, 
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2019, Ranasinghe et al., 2012, Maurer and Meyer, 2016, Bidny et al., 2016, Dalsgaard et al., 2012, 

Dresen et al., 2010). The unique MS scanning capabilities can allow MS/MS fragmentation data to be 

acquired without any prior knowledge of the parent ion through acquisition modes such as data 

dependent (DDA) and data independent (DIA) acquisition (Roemmelt et al., 2014). The simultaneous 

acquisitions of both parent and fragment ions are formed in one analytical run, with the added 

benefit of matching MS signatures alongside spectral databases for putative annotations to be made 

in real time, which is something which is to be considered for future analyses. Furthermore, 

unknown xenobiotic metabolites which cannot be matched to spectral libraries will often exhibit 

common mass fragments with their parent compound (Rathahao-Paris et al., 2014, Sauvage and 

Marquet, 2012). Therefore, putative matches can be potentially made if spectra of the parent 

xenobiotic are known. The limitation of these techniques however is the need for high performance 

computing (memory, storage, computer processing capabilities etc), and less sensitivity. In addition 

to this limitation, given the diverse range of metabolites detected in blood products, with > 30 000 

small molecules present in human serum (Ivanisevic et al., 2013), the Q-TOF-MS may not have the 

desired selectivity to resolve such a vast array of metabolites, especially with regards to biologically 

relevant isomer pairs. The higher resolution attained by Orbitrap mass spectrometers can 

characterise the isomeric composition of samples without sacrificing sensitivity. As a result, the 

Orbitrap is increasingly being used in metabolomics investigations, thereby enabling scientist to 

carry out quantitation similar to the Q-TOF-MS with its DIA capabilities (Barbier Saint Hilaire et al., 

2020, Zhou et al., 2017, Bonner and Hopfgartner, 2019). Separation methods, such as the use of 

UPLC, can be hyphenated to high-resolution mass spectrometers providing fast separation of sample 

components. The high-speed acquisition to enable the necessary number of data points across a 

chromatographic peak is well suited to Q-TOF-MS instrumentation and if optimised and developed 

properly, can be used to address, and resolve isomeric metabolites. Furthermore, as mentioned in 

Chapter 2 of this thesis, developments in TOF analysers have demonstrated higher sensitivities than 

Orbitraps and are superior in accurately establishing isotopic abundance patterns, which are vital for 

metabolite identification (Kind and Fiehn, 2006, Rousu et al., 2010). As the NPC mass spectrometry 

facility incorporates UPLC-Q-TOF-MS for high throughput metabolic phenotyping, the use of this 

analytical platform was therefore suitable for this piece of work as it can attain the high sensitivity 

and resolution required for metabolic measurements. However, in a publication by Rappaport et al. 

on the human blood exposome, untargeted analyses using high resolution mass spectrometry (Q-

TOF-MS or Orbitrap) may miss about 90% of environmental pollutants, with concentration levels 

approximately 1000 times lower than endogenous metabolites (Rappaport et al., 2014). 

Concentrating the sample can increase the concentration levels of these metabolites marginally, as 
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do larger sample volumes, although such approaches would not enable the required levels of these 

low-level metabolites to be detected. Therefore, the combination of both untargeted and targeted 

methods maybe needed to detect these metabolites, such as the use of triple quadrupole (TQ) 

instruments which can attain the necessary level of sensitivity required.  

 

4.8 Conclusion 
 

The untargeted nature of metabolomics allows measurement of biofluid chemistry related to both 

endogenous metabolism and host-environment exposures. Comprehensive coverage of chemically 

diverse metabolites present in human blood products benefits from the use of multiple methods, 

each oriented toward a small molecule subset generally segregated by polarity and hydrophobicity. 

Whilst recent developments in LC-MS profiling methodologies have delivered numerous solutions 

for the analysis of polar molecules (e.g., via HILIC-MS) and complex lipids, the analysis of moderately 

hydrophobic and amphipathic molecules in blood products by RPC methodology, is complicated by 

the suppressive effects of lipids on the ionisation of LMW metabolites. SPE techniques and LLE 

methodologies can offer a solution to remove lipophilic species, but can often be expensive, time 

consuming, effect recoveries on the other small molecules, and introduce contamination. Lipids can 

also chromatographically be separated from other small molecules, however, have been reported to 

accumulate on the column and elute in an unpredictable manner. DSPE therefore provides an 

alternative to these approaches for lipid removal from blood products, which is where the novelty 

lies. As demonstrated in this study, a high throughput and highly precise DSPE sample preparation 

technique provided a way to efficiently removing highly lipophilic species from the sample, but with 

minimal effect on moderately hydrophobic and amphipathic LMW compounds. This offers a solution 

for one of the major remaining gaps in end-to-end comprehensive metabolome coverage. As no 

single methodology is yet able to capture the entire plasma metabolome, our approach 

complements two established analytical assays (HILIC for polar metabolites and specific lipidomic 

assays) commonly used in the field. The approach enables the use of RPC methodology for 

metabolome measurement and has both the advantages of being cheaper and more robust than 

conventional SPE and LLE methodologies, making it a highly suitable way to study the human 

metabolome and xenometabolome.  
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Chapter 5  

 

Exploration and characterisation of 
detectable xenobiotic-metabolome 
exposures 
 

Summary 

The novel analytical and statistical strategies for xenometabolome exploration described in Chapters 

3 and 4 of this thesis were applied to two exemplar phenotyping studies; these are discussed in turn 

in this chapter.  

The first application focused on the xenobiotic triclosan (TCS). Exploration is undertaken from 

molecular phenotyping data acquired from key epidemiological studies (RPC-UPLC-MS) which have 

been previously acquired. As exposure prevalence was relevant in this study, large datasets with 

matching urine-blood pairs were needed. The AIRWAVE (n=3000; plasma and urine) cohort were 

therefore used for this investigation, and the distribution of a feature marker relating to exposure 

was explored. A semi-quantitative analysis was undertaken using this marker to evaluate 

approximate exposure levels observed in the population. In vitro models were also explored to 

evaluate TCS metabolism. Finally, logistic regression models were used to explore features 

(metabolites) that best predict exposure, highlighting direct metabolites, co-exposures, and 

endogenous metabolites. The second application involves the xenobiotic polyethylene glycol (PEG), 

and utilises an intersample correlation analysis, and PLS models to find feature associations where 

the response (outcome) is continuous. Exploration was undertaken on the ALZ cohort using 

previously acquired urine samples (by RPC-UPLC-MS), and serum samples prepared using the blood 

lipid removal protocol developed in Chapter 4. The PEG application exploits both data-driven and 

analytical strategies to enhance coverage of the xenometabolome.  
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Aim and Objectives 

The central aim of the work described in this chapter was to explore metabolism related to two 

exemplar xenobiotics using strategies developed in Chapter 3 and 4 of this thesis. The chapter is 

divided into two applications.  

The first application involves the xenobiotic Triclosan (TCS). The following was undertaken: 

 Acquisition of reference standards for TCS and known metabolites by current NPC profiling 

methodologies; 

 Retrospective interrogation of broad profiling data for the large-scale assessment of TCS 

exposure prevalence and distribution within the UK population – Airwave (AW) cohort (urine 

and plasma);  

 Semi-quantitative assessment of a TCS exposure marker in AW cohort; 

 Logistic regression analysis to explore features (metabolites) that best predict TCS exposure 

in AW cohort; 

 Investigate the products of TCS metabolism in an in vitro investigation and how it translates 

in vivo across exemplar population studies. 

 

The second application involves the xenobiotic polyethylene glycol (PEG). The following was 

undertaken: 

 Acquisition of the different PEG forms by RPC-UPLC-MS (positive ion mode); 

 Interrogation of urine and serum (Blood lipid removal protocol developed in Chapter 4) 

metabolite phenotyping data for PEG signatures; 

 Distinguishing between PEG-contamination and PEG-excipient, as surrogate for drug 

exposure in serum; 

 Examining metabolism in relation to PEG exposure within and between biofluids using 

intersample correlation (urine and serum) and PLS models (serum only). 

 

5.1 Introduction 
 

Erroneous outlier signals consistent with a polymeric signature and chlorinated compounds were 

highlighted in Chapter 3. The presence of these signals in biofluids can reflect contamination during 

sample handling or a legitimate external exposure from a variety of different xenobiotics including 

drugs, cosmetics, environmental pollutants, and food additives. The absorption, metabolism, and 
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excretion of xenobiotics produce metabolites that can potentially have a negative impact on human 

health producing unintended toxic effects. Considerable effort has been placed in drug discovery, 

testing and development into the disposition of individual xenobiotics on the human body, however, 

can often be a time-consuming and costly process (Wishart, 2016, Dickson and Gagnon, 2004, 

Vishwakarma and Patel, 2010). The untargeted nature of a molecular phenotyping workflows has 

the potential to provide direct metabolism data as well as capturing information about downstream 

metabolic perturbations in population-level studies. As molecular phenotyping approaches are 

increasingly applied to the study of large populations, it is increasingly likely that such data already 

exists for exploitation. The measurement of metabolites using phenotyping approaches can improve 

our understanding of how factors such as xenobiotic exposure, can influence the phenotype. This 

unique advantage of accessing population studies provides an opportunity to survey the 

metabolome without a priori analyte selection, demonstrating the power and value of untargeted 

molecular phenotyping in studying the xenometabolome. 

 

5.2 Hypothesis 
 

Using the strategies developed in Chapter 3 and 4, xenobiotice signatures can be partitioned and 

distinguished from endogenous signals in population studies. Strategies are knowledge driven 

(xenobiotic reference standard databasing), data driven (application of methodologies to statistically 

identify relationships between exposures and metabolic responses) and analytical driven (some 

physiochemical property that distinguishes between xenobiotics and endogenous metabolites). The 

result of these strategies will effectively increase coverage and enhance large scale human 

population phenotyping by providing novel insight into population level exposure and metabolism of 

xenobiotics.  The provision of xenometabolome data will augment the established profiling methods 

that exist for these sample sets (which are largely focused on endogenous metabolites). 

 

5.3 Methods 
 

5.3.1 Sample metabolic phenotyping 
 

The cohorts of interest for these two applications were the Airwave Health Monitoring study (AW) 

and Alzheimer’s Disease Multimodal Biomarkers study (ALZ) (Elliott et al., 2014, Lovestone et al., 

2009). For both studies, urine and blood samples were collected from participants in the same visit. 



Exploration and characterisation of detectable xenobiotic-metabolome exposures 

 

215 
 

The AW study is an observational cohort study on British police officers (various age and sex), 

intended to evaluate possible health risks associated with Terrestrial Trunked Radio use. It consists 

of 3000 plasma and 3000 urine samples. Urine and blood products were prepared and analysed 

according to established protocols for blood (LIPID) and urine (RPC) phenotyping (Izzi-Engbeaya et 

al., 2018, Lewis et al., 2016). ALZ is a nested case-control study of Alzheimer’s disease consisting of 

650 urine samples and 650 serum samples.  

AW and ALZ Urine samples and AW plasma samples were prepared and analysed according to 

established protocols for blood (LIPID) and urine (RPC) phenotyping (Izzi-Engbeaya et al., 2018, Lewis 

et al., 2016). The ALZ serum samples however were prepared using the RPC lipid removal protocol 

for blood products described in Chapter 4. The ALZ study for both biofluids were acquired as one 

continuous analytical batch. The data acquired for serum under negative ionisation conditions were 

unsuitable due to unforeseen instrument stoppages and limited sample volume. The serum samples 

were prepared for the second application of this chapter involving PEG, however PEG signals do not 

generate very stable negative ions through deprotonation, so the loss of this dataset was not a 

major concern. For AW however, due to the large sample size (n=3000), samples for both biofluids 

were acquired as three separate analytical batches. Each analytical batch consisted of 1000 study 

samples (excluding QC samples). Batch sizes are capped at 1000 samples as per NPC protocol for 

large scale phenotyping applications with certain consumables, such as columns, sample loops and 

syringes, kept consistent between batches (Lewis et al., 2016).    

 

5.3.2 Data pre-processing 
 

Mass spectral data files in .RAW format (Waters Corporation, USA) were converted to the open 

mzML format using the ProteoWizard msconvert tool (Chambers et al., 2012). During this 

conversion, all signals with an absolute intensity of less than 100 counts were removed.  

All datasets, i.e. AW plasma (LIPID-UPLC-MS, negative ion mode) and urine (RPC-UPLC-MS, negative 

ion mode), ALZ urine and serum (RPC-UPLC-MS, positive and negative ion mode), were then pre-

processed using the R, version 3.6.1 (R Development Core Team, 2019), package XCMS, version 3.6.1 

(Smith et al., 2006). Peak detection was performed using the centwave algorithm with identical 

parameters as stated in Chapter 3 for the RPC ALZ study data. For the blood LIPID assay, apart from 

peakwidth = 3 to 12, all other parameters for this assay were identical. The overall dataset produced 

from the three analytical batches of the AW urine study were too large to be pre-processed together 

using XCMS on available computational resources. Therefore, AW urine data pre-processing was 
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conducted in four individual processed cohorts; the first analytical batch was able to be processed as 

one cohort, i.e. AW-B1; the second analytical batch had to be processed as two smaller cohorts due 

to its size, i.e. AW-B2.1 and AW-B2.2, and the third analytical batch was processed as the fourth 

cohort, i.e. AW-B3. 

The size of the spectral datasets for AW plasma, ALZ urine and ALZ serum were sufficiently small to 

be pre-processed as single batches. Following the pre-processing steps in XCMS, data matrices were 

imported into and filtered using the nPYc-Toolbox (Sands et al., 2019), running in the Python 

environment (Python Software Foundation. Python Language Reference, version 3.5 and above. 

Available at http://www.python.org).  

A pooled QC samples, or Study reference (SR), was used for noise filtering purposes and signal drift 

correction, as previously mentioned in Chapter 4. Briefly, filtering was based on features which had 

passed several criteria. Firstly, all features which are included must not have a relative standard 

deviation (RSD) exceeding 30% from repeated extractions of the SR, which were systematically 

injected throughout the analytical run. The features passing this initial step, whose Pearson 

correlation with dilution of the SR, as estimated from the serial dilution series, was less than 0.7 or, 

having a residual standard deviation (RSD) in the study samples smaller than 1.1 times the value 

estimated from the SR, were subsequently removed. These SR were also systematically injected 

throughout the analytical run, and LOESS regression applied, to correct for any signal drift. The SR 

sample was prepared by pooling together an aliquot of all samples in a study and is a representation 

of the physical average. The quality control processes described in Lewis et al., including the 

preparation of the SR sample and implementation of a dilution series for filtering purposes has 

already been previously described and established (Lewis et al., 2016, Dona et al., 2014). A further 

normalization step was implemented on the urine samples, using PQN to adjust for urinary sample 

dilution on global sample intensity (Dieterle et al., 2006). Both blood and urine datasets were also 

log transformed (log base 10) to reduce the impact of outliers causing highly skewed feature 

distributions, thereby converting data to be more normally distributed. 

 

5.3.3 Metabolite Identification (MetID) 
 

Initial steps for MetID efforts required an intrasample and intersample correlation analysis (Chapter 

4) to be undertaken for the unknown feature from a representative sample, i.e. a sample exhibiting 

the highest signal of the unknown feature in the study. This allowed the molecular ion to be 

identified and can reveal additional information on structurally and biologically related metabolites. 
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The representative sample underwent a series of MS/MS experiments, where the target molecular 

ion was subjected to five different static collision energies (5V, 10V, 20V, 30V and 40V). The 

acquisitions at the five collision energies were undertaken as means to obtain the accurate mass of 

fragment ions, and to identify the correct fragment ions, i.e. as the collision energy increases, the 

intensity of the parent molecular ion will decrease, and the intensity of the correct fragment ions 

will increase. Putative annotations were therefore made by comparison of the accurate mass of the 

unknown feature (molecular ion and fragment ions), to in-house and online spectral databases such 

as PubChem (Kim et al., 2018), HMDB (Wishart et al., 2017) and Metlin (Guijas et al., 2018). 

Identification of metabolites were confirmed based on matching candidate metabolites from the 

putative annotations to purchased referenced standards (if commercially available) or to the 

chromatographic and spectral data (MS) from an in-house reference standard database using a 

narrow m/z window (1-5mDA) and retention time range (0.02 minutes). Exact definitions for 

putative annotation and identification can be found in Chapter 2 in the Metabolite identification 

section. Additional MS/MS on the reference standard were further carried out and compared to the 

fragmentation pattern of the unknown feature. For a successful identification (MSI level 1), both the 

retention time value and the fragmentation data acquired for the unknown feature and the 

reference standard must be identical. When reference standards were not available, two other 

techniques were implemented to synthesise the desired standard, i.e. a sulfation protocol (for 

sulfate conjugates), which was adapted from the protocol described by Sarafian et al for bile acids 

(Sarafian et al., 2015), and enzymatic hydrolysis (for glucuronide conjugates). For both techniques, 

the candidate unmetabolised compound was purchased and then subjected to either the sulfation 

protocol or analysed in parallel with the unconjugated metabolite obtained upon the enzymatic 

hydrolysis of the glucuronide conjugated metabolites.  

 

5.3.3.1 Sulfation 
 

A 20 µL of a 1 mg/mL reference solution was firstly added to a 500 µL mixture of sulfur trioxide – 

pyridine complex (50mg) and sodium sulfate (5mg) in 10 mL chloroform. The solution was 

evaporated to dryness by using nitrogen flow at 55 °C and then resuspended in 100 µL of water for 

RPC-UPLC-MS analysis.  
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5.3.3.2 Enzymatic hydrolysis 
 

This protocol combines an enzymatic hydrolysis sample preparation method, and a neutral loss (NL) 

MS acquisition. Prepared samples were acquired using RPC-UPLC-MS chromatographic conditions, 

but with NL MS acquisition. The protocol used the enzyme β-glucuronidase from different biological 

sources to cleave the glucuronide moiety from the unknown conjugated metabolite, leaving only the 

unconjugated parent in the solution, the structure of which could then be then ascertained by 

confirmation with an analytical reference standard. Briefly, a 90 µL representative sample was 

subjected to a hydrolysis incubation followed by protein precipitation (Figure 5-1). Reference 

standards for the unconjugated forms were available for purchase and acquired by reversed phase 

profiling (RPC-UPLC-MS) (Lewis et al., 2016) using the method developed for reference standard 

acquisition described in detail in Chapter 3.  

 

 

Figure 5-1. Sample preparation protocol for enzymatic hydrolysis. 

 

5.4 Application 1: Triclosan 
 

5.4.1 Introduction 
 

Endogenous halogenated compounds are rare in humans and its presence in biofluids can be good 

indicators of environmental exposures (Gribble, 2003). The incorporation of halogens into 

pharmaceutical formulations is common, often as a means to improve and enhance certain 

properties of the medication, i.e. facilitate the active drug molecules across biological barriers, fill 
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hydrophobic pockets within protein targets, prolong medication lifetime and allow for easy 

adsorption (Wagner et al., 2009, Rahman et al., 2016). Importantly, the halogen atoms have 

distinctive patterns of isotopic abundance and therefore the analysis of halogenated compounds by 

mass spectrometry can make use of the resulting spectral signatures that can be readily identify on 

account of these their unique and characteristic isotopic distributions. For example, the antibiotic 

flucloxacillin that was identified in Chapter 3, contains both a fluorine and a chlorine atom. While 

fluorine-19 is 100% abundant, chlorine has two stable isotopes: 35Cl and 37Cl, with relative 

abundances in the ratio 3:1. The distinctive isotope pattern of flucloxacillin and its chlorine 

containing metabolites can be readily identified in mass spectra alongside endogenous metabolites.   

Triclosan (TCS), is a chlorinated anti-microbial chemical. Originally confined to use in hospital 

environments for pre-operative skin preparation and post-surgical sutures (Leaper et al., 2011, 

Leaper et al., 2010), TCS was soon after introduced into US and European populations via 

incorporation into antiseptic over the counter consumer products (Bhargava and Leonard, 1996, 

Jones et al., 2000) with concentrations in the range of 0.1-0.3% (w/w) (Pannek and Vestweber, 2011, 

Dhillon et al., 2015). As a consequence of its widespread use, TCS has now been shown to 

contaminate water supplies, furthering population-level exposure to the chemical (Lindström et al., 

2002, Lopez-Avila and Hites, 1980, McAvoy et al., 2002, Okumura and Nishikawa, 1996, Singer et al., 

2002, Lehutso et al., 2017, Dhillon et al., 2015).  

Phenolic xenobiotics generally undergo rapid metabolism and detoxification to glucuronide and 

sulfate conjugates by phase II metabolic enzyme. To date, phase II conjugates and oxidative 

metabolites of TCS has been reported in a diverse number of species, in vitro (Hanioka et al., 1996, 

Moss et al., 2000) and in vivo (Moss et al., 2000), with the major excretion product being the 

glucuronide in urine samples (Fang et al., 2016, Fang et al., 2010). More recently a new metabolism 

route was discovered, reporting a TCS dimer in microsomal extracts, but only in the absence of 

phase II enzymes (Ashrap et al., 2017). These reported metabolites are summarised in Figure 5-2. 

Exposure to TCS in can occur via absorption through the oral cavities (Lin, 2000), gastrointestinal 

tract (Sandborgh-Englund et al., 2006) and dermal exposure (Moss et al., 2000). Its occurrence has 

been reported in plasma, urine and breast milk (Allmyr et al., 2006, Li et al., 2013). TCS is estimated 

to have a half-life of approximately 8 hours with the majority being eliminated through the urine in 

the course of 24hrs (Sandborgh-Englund et al., 2006). Baseline levels are reached within 8 days of 

exposure with evidence that daily exposure has bioacculumative effects (Mustafa et al., 2003).  
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Figure 5-2. in vivo and in vitro phase I and phase II metabolism of TCS  (Fang et al., 2010). 

 

In the recent decade, the efficacy of TCS has been repeatedly brought into question (Fang et al., 

2010), and in September 2016, the US food and drug administration (FDA), investigated and banned 

the use of antibacterial soaps containing TCS and similar agents citing a failure to produce evidence 

of effectiveness and health benefit (Aiello et al., 2007). This decision has emerged due to increasing 

concerns regarding anti-microbial resistance (Carey and McNamara, 2015, Braoudaki and Hilton, 

2004), TCS-induced disruption to the endocrine system responsible for reproductive and 

developmental functions in mammalian systems (Chen et al., 2008), shifts in the microbiome in 

animal studies (Gaulke et al., 2016, Lawrence et al., 2015) and mitochondrial uncoupling in living 

organisms (Shim et al., 2016).  

Notwithstanding the mounting concern related to use of TCS in consumer products, such products 

remain in great abundance, with 450 tonnes still used for domestic uses within the EU annually 

(Halden et al., 2017). At the time of writing, TCS has not been investigated by the Medicines and 

Healthcare products Regulatory Agency (MHRA) in the UK. Furthermore, despite its ubiquity as an 

environmental exposure, no population-level study on human samples has been performed to 

assess TCS exposure in UK cohorts and/or access the effect that low-level TCS exposure may have on 

endogenous metabolism and/or disease risk. 
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TCS was therefore selected as an exemplar to assess the prevalence in UK cohorts, and to implement 

a statistical strategy as discussed in Chapter 3, to characterise the xenometabolome in relation to 

exposure. 

 

5.4.2 Materials and additional methods 
 

5.4.2.1 Reference standard preparation and preliminary assessment 
 

All TCS-related metabolites that have been previously reported in the literature and that were 

commercially available, were purchased. The chemical standards: TCS, TCS O-β-D-Glucuronide 

Sodium Salt (TCS-Gluc) and TCS O-Sulfate (TCS-SO4) were purchased from Toronto Research 

Chemicals Inc. 2, 4 Dichlorophenol and 4-chlorocaetchol purchased from SIGMA-ALDRICH. 

Compounds were subjected to the acquisition workflow for reference standards as described in 

Chapter 3, and the 1:100 dilution standard was analysed by RPC-UPLC-MS (in both positive and 

negative ion mode). The preparation of standards undertaken in Chapter 3 are however, for RPC 

based assays, and therefore made to volume in water. A 50 µL aliquot of each standard were 

individually mixed with 200 µL of isopropanol to make them compatible with the LIPID assay. 

Solutions were then acquired using the RPC and LIPID profiling methods. For each standard (as 

discussed in Chapter 3), data was acquired under both electrospray positive (ESI+) and negative (ESI-

) ionisation conditions, in continuum mode with 2 injections per well. One injection was at a low 

collision energy (4V) and the other utilising a collision energy ramp (10-30V). Within each injection, 

three interleaved full MS scans (0.05 second scan rate) were acquired for the m/z range between 50 

and 1200 Da.  

 

5.4.2.2 In vitro incubations of TCS with human hepatocytes 
 

Metabolic profiling was undertaken on human liver samples prepared by Sygnature Discovery and 

analysed by UPLC-MS (negative ion mode) using in-house methodologies. Samples were prepared 

from an incubation of TCS (10 µM final concentration) with cryopreserved human hepatocytes (0.5 

million cells/mL). Samples were taken at 0, 10 and 60 minutes and were compared with blank 

samples of hepatocytes to identify compound related peaks. All detectable metabolites were 

identified by UPLC-MS (negative ion mode). A TCS dimer has been reported in the literature (Ashrap, 

Zheng et al. 2017) and so in addition to the above analysis, a further incubation in human liver 
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microsomes was carried out to see if the dimer was formed in the absence of phase II metabolism. 

The incubation was carried out at both 10 µM  and 50 µM  to see if an increased concentration 

resulted in the formation of dimer. Sample extracts were analysed under the same UPLC-MS 

conditions. Assignment of TCS and metabolites were based by matching the theoretical accurate 

mass of the molecular ion, to peaks consistent with the EIC observed in the samples. There was no 

further spectral information provided. Reports from both analyses detailing the results were kindly 

provided by Sygnature Discovery. Further details on the experimental details and instrument 

conditions can be found in Appendix 3. 

Finally, the hepatocyte and microsomal extracts analysed by Sygnature Discovery were sampled in 

200 µL UPLC-MS vials and shipped to the phenome centre. These samples were then  acquired using 

RPC-UPLC-MS (negative ion mode) and LIPID-UPLC-MS (negative ion mode) profiling methodologies 

for method specific retention times and spectral data.  

 

5.4.2.3 Exposure prevalence and distributions of TCS in urine phenotyping data (AW) 
 

5.4.2.3.1 Exposure prevalence 
 

The m/z and retention time of TCS and metabolites, recorded from the reference standards, for each 

profiling assay, were then screened for in the corresponding profiling data for urine AW. Prevalence 

in the population was assessed using a specific metabolite as a proxy for TCS exposure. The LOD 

reported in 5.4.2.4 below, is not appropriate to apply to retrospective data as calibration curves 

were not run with the original AW profiling data. Prevalence of TCS exposure in AW was therefore 

evaluated differently. For a sample to be classified as detected, or “exposed”, the following four 

criteria had to be fulfilled: 

1.) A retention time and molecular ion [M-H] match against a reference standard. The m/z of 

the ion must be within 3ppm and the retention time of the chromatographic peak within 

0.02 minutes between the reference standard and that observed in phenotyping data;     

2.) A minimum Signal to noise ratio (S/NR) ≥ 5 in the correct elution region. This equated to an 

approximate peak area ≥ 25000 arbitrary units (or approximately 4.3 arbitrary units on a 

log10 scale); 

3.) The detection of the unique isotopic distribution in the mass spectrum, which is 

characteristic of chlorinated compounds. A molecule containing a chlorine atom will produce 

two molecular ion peaks in a mass spectrum, i.e. M+ and M+2. The chlorine atom can exist as 
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two major isotopes, 35Cl and 37Cl with relative abundances 3:1 respectively. TCS-Gluc 

contains 3 three chlorine atoms resulting in 4 isotopic combinations in the ratio 27:27:9:1. 

This isotopic pattern had to be present, and the two main isotopes had to be approximately 

the same in relative intensity; 

4.) In addition to the M+ ion, an in-source fragment ion of m/z 286.9425, which represents the 

loss of a conjugation moiety, had to also be present with a similar isotopic cluster as stated 

in 3.). 

 

5.4.2.3.2 Implementation of Gaussian mixture models 
 

As multimodal distributions of TCS exposure exists in the data, multi-component Gaussian mixture 

models (GMMs) were specified, placing clusters across the distributions (as explained in Chapter 3). 

Once fitted, conversion of the distributions to probability distribution functions (PDF’s), were 

calculated, dividing the data into three main exposure groups; a zero, low-mid range and high group. 

The PDF’s for each of these Gaussians were obtained and any sample with a probability (prn) of more 

than 0.90, assumed the classification for that group. The samples that occupied the “zero” group 

demonstrated no evidence of TCS, based on the criteria for exposure prevalence listed previously.  

 

5.4.2.4 Semi-quantitative screening of TCS-Gluc 
 

The approximate concentration range observed in the AW urine dataset was estimated. Calibration 

curves were firstly prepared in triplicate to access the limit of detection (LOD), limit of quantitation 

(LOQ) and linear range. Two separate curves were constructed by spiking TCS-Gluc into water and 

blank urine (i.e. urine free of TCS-Gluc). The concentration ranged from 0.1 µg/mL to 5000 µg/mL. 

Like the study samples, a dilution of 1:1 (v/v) was undertaken where the diluent was water with a 

spiked concentration of an isotope-labelled internal standard (IS), L-Phenylalanine-13C9,15N at 50 

µg/mL. For each curve, the ratio of the TCS-Gluc area to the IS area is plotted against the measured 

concentration with no weighting factor applied. Standard concentrations were then back 

extrapolated from the calibration curves. The LOQ was established as the concentration five times 

the LOD. The concentration of the AIRWAVE SR sample and a secondary developmental set urine, 

Devset-urine (same set used in Chapter 3), was measured using both calibration curves and prepared 

in six replicates to assess precision. Precision is defined as the closeness of six individual 

preparations of the QC samples, and the percentage relative standard deviation (RSD) reported. It is 
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precise if the RSD is less than 15% and reported levels are above the LOQ. An additional curve was 

also prepared via a standard addition method using the AIRWAVE SR. The standard addition method 

allowed the quantitative measurement of existing TCS-Gluc present in the SR, and at the same time, 

minimise the matrix effects that would have otherwise interfered with analyte measurement signals. 

This allowed a comparison of the SR measured from to the two calibration curves, to the standard 

addition measurement. The standard addition curve was prepared by aliquoting equal volumes of 

TCS-Gluc reference standards held at different concentrations ranging from 20 µg/mL to 0.2 µg/mL, 

into an aqueous diluent, and into the aqueous diluent, whist keeping the sample volume, overall 

volume and IS concentration constant. Finally, a random subset of samples selected from AW, which 

were classified as either zero (n=10), mid-range (n=5) or high (n=10), as described in the exposure 

prevalence section above, were additionally acquired and approximate concentration ranges for 

each group reported. All developmental, QC and study samples were prepared with the same 

dilution factor as the original AW study. 

 

5.4.2.5 Metabolite associations from TCS exposure  
 

To highlight the features with the strongest associations to TCS exposure, LogReg models were 

individually applied to each cohort. LogReg models binary response variables by fitting a regression 

curve between two groups of samples, in this case, the zero and high TCS exposure groups. The 

application of LogReg is applied in an almost identical manner to that observed in Chapter 3. Briefly, 

the zero-exposure group was defined as 0 (control) and the high exposure group defined as 1 (case). 

The data was then split into a training and test set, where selection of the statistically significant 

features was conducted on the training set and validated in the test set. It should be noted that prior 

to the splitting of the data, all TCS related variables (adduct, isotopes and in-source fragments) were 

removed. These variables would be predicted perfectly as it is essentially predicting itself.  

Two Multivariate regularised LogReg models, Ridge and Elastic Net (EN), were firstly explored to see 

how features together relate to TCS exposure. LASSO was not explored as it is considered too 

stringent in feature selection, as observed in Chapter 3.  

A univariate method was used to estimate the individual contribution of each feature. The exact 

details of the procedure used for data partitioning, tuning parameters for the multivariate models 

and, and feature selection (based on statistical significance and bootstrapping of the regression 

coefficients), can be found in the LogReg application in Chapter 3.  
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LogReg was carried out on each of the four cohorts of the AW urine study. . A decision was made to 

also include a fifth cohort, ALZ urine dataset (RPC-UPLC-MS, negative ion mode). Features selected 

for the final model had to be significant from at least two out of the four cohorts for AW and be 

significant in the ALZ cohort. This way there was no issue with the cohorts being unbalanced. EN has 

implicit feature selection and imposes a penalty similar to both Ridge and LASSO by effectively 

shrinking regression coefficients (Ridge) or sets them as zero (LASSO). In the univariate model, 

feature selection was based on a cut-off of padj<0.05. As there were instances where features were 

statistically significant in some cohorts but not all, in order to assess all cohorts together and 

therefore achieve a higher statistical power, a meta-analysis was performed to combine p-values 

(padj). Fisher’s combination test (Fisher, 1992), Stouffer’s method (Stouffer et al., 1949) and 

Stouffer’s method with weights (Zaykin, 2011) are common approaches for combining p -values 

(Vaitsiakhovich et al., 2014). This Stouffer method with weights has been implemented in several 

different metabolomic applications (Kaever et al., 2014, Laíns et al., 2019, Whitlock, 2005) and is 

applicable in this circumstance as all cohorts share the same experimental design and the combined 

p-values are from multiple tests of the same hypothesis. It is summarised by the following three 

equations:  

                                                                       (5. 1) 

 

    (5. 2) 

 

     (5. 3) 

 

Where: 

 is the number of observations for the  cohort to the  cohort. 

 is cohort specific weight 

 is the z-score 

 is normal standard cumulative distribution and its inverse 

 cohort specific p-value 
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The padj-values from all cohorts were converted to z-scores which are weighted based on their 

sample sizes. In any of the cohorts, if a feature was statistically significant (FDR; padj≤0.05), the 

corresponding features were found in the remaining datasets, and its padj-value was used in the 

Stouffer method equation to produce a combined padj-value (padjmeta). Features with a padjmeta 

<0.05 are included in the final model. As these padj-values are combined for the meta-analysis, the 

samples used to train the models for the five cohorts were also combined. Application of the 

combined training set model, using only the statistically significant features from the meta-analysis, 

was then applied to the combined test set. The calculation of the AUC (area under the curve) from a 

ROC curve, which is a typical performance parameter for binary classifier measurements (Chapter 2), 

was assessed. The optimum cut-off point was defined as that which maximized the AUC value, as 

indicated by the minimum distance to the top-left corner of a ROC curve plot. A summary of the 

steps carried out for LogReg is illustrated in Figure 5-3. 

 

5.4.2.6 Blood samples 
 

The evaluation of TCS exposure in blood products was not as comprehensive as urine. Exposure was 

examined using only plasma samples from the AW study. Blood samples from the ALZ dataset were 

not available as data quality was compromised. Nevertheless, the distribution of a TCS exposure 

marker was firstly evaluated, then both univariate and multivariate LogReg models were 

subsequently explored using samples from the AW cohort. Furthermore, AW had matching urine 

and plasma samples collected during the same visit. Assessment of the correlation between the 

intensity profile of the molecular ion of a TCS metabolite in urine and in blood, was therefore 

undertaken to determine if a significant relationship existed between circulating plasma and 

excreted urine. 
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Figure 5-3. A summary of the steps involved in univariate and multivariate (Ridge and Elastic net regularisation) logistic regression models to assess metabolite 

associations in relation to TCS exposure in RPC-UPLC-MS (negative ion mode) datasets from AW and ALZ studies  
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5.4.3 Results and discussion 
 

5.4.3.1 Preliminary assessment 
 

Reference standards for TCS, TCS-Gluc, TCS-SO4, 2, 4 dichlorophenol and 4-chlorocatechol were only 

identified by RPC-UPLC-MS and LIPID-UPLC-MS instrumentation, in negative ion mode. The retention 

time and mass spectrum for the standard acquired using a collision energy ramp (as discussed in 

Chapter 3 for reference standard acquisitions), are summarised in Figure 5-4. Screening of these 

compounds in XCMS outputs for AW, revealed detection of TCS-Gluc in urine, and TCS-SO4 in blood. 

The molecular ion corresponding to TCS-Gluc (m/z 462.9754) was therefore used as a proxy for TCS 

exposure for all subsequent analyses involving urine and similarly, the molecular ion corresponding 

to TCS-SO4 (m/z 366.9002) was used as a proxy for TCS exposure for all analyses involving plasma. 
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Figure 5-4. Retention time and mass spectrum for TCS and reported metabolites acquired by RPC-UPLC-MS 

(negative ion mode) and LIPID-UPLC-MS (negative ion mode).  (A) Retention time and mass spectrum of TCS 

and metabolites (TCS-Gluc, TCS-SO4, 4-Chlorocatechol and 2,4Dichlorphenol) acquired by RPC-UPLC-MS 

(negative ion mode) using a collision energy ramp; (B) Retention time and mass spectrum of TCS and 

metabolites (TCS-Gluc, TCS-SO4, 4-Chlorocatechol and 2,4Dichlorphenol) acquired by LIPID-UPLC-MS (negative 

ion mode) using a collision energy ramp; The RPC and LIPID profiling methods were successful in detecting TCS 

and metabolites, which allowed for easy screening of the same signatures in the AW dataset. TCS-Gluc was 

detected in AW urine RPC-UPLC-MS (negative ion mode) and TCS-SO4 was detected in AW blood LIPID-UPLC-

MS (negative ion mode). 
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5.4.3.2 Assessing exposure prevalence and distributions of TCS-Gluc  
 

Using the criterion stated in the methods, the prevalence of exposure was studied. As there are 4 

pre-processed cohorts within AW, the prevalence was measured 4 times and summed, resulting in 

approximately 28% TCS-Gluc exposure. Using this information, the distribution of TCS-Gluc was 

evaluated in all four cohorts. It was clear that a multimodal distribution exists in the data. The PDF’s 

for each gaussian were obtained, dividing the data into a High, Low-Mid and Zero exposure groups 

as illustrated in the density plot for AW-B3 in Figure 5-5. The distribution was also evaluated for the 

ALZ cohort. Density plots for each cohort (AW-B1, AW-B2.1, AW-B2.3, and ALZ) can be found in 

Appendix 3. The samples occupying the high and zero groups for all cohorts (four from AW and 1 

from ALZ), were then used for logistic regression.   

 

 

Figure 5-5. Gaussian mixture models (GMM’s) fitted to the MS intensity distribution of TCS-Gluc from AW-B3 

urine RPC-UPLC-MS (negative ion mode) data.  GMM’s were fitted to AW-B3, and the PDF’s for each gaussians 

were obtained, dividing the data to a High exposure group (Distribution 2, pr3 – green), Low-Mid exposure 

group (Distribution 2, pr2 – blue) and a Zero exposure group, (Distribution 1, pr1 -red). Any sample with 

pr1>0.90, or a log10 signal less than the red dotted line, assumed the classification of zero exposure, and any 

sample with pr3>0.90, or log10 signal more than the dotted green line, assumed the classification of high 

exposure. The blue dotted line is equivalent to a signal that fulfils all three criteria as stated in section 

5.4.2.3.1. 
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5.4.3.3 In vitro incubations of TCS with human hepatocytes 
 

The observed ions for TCS and metabolites reported by Sygnature Discovery, were then assessed by 

analysing the same extracts by RPC-UPLC-MS (negative ion mode) and LIPID-UPLC-MS (negative ion 

mode). The observed metabolites at 60 minutes incubations, are summarised in Table 5-1.  

 

Table 5-1. Observed metabolites from the incubation of TCS with human hepatocytes analysed by RPC-UPLC-

MS (negative ion mode) and LIPID-UPLC-MS (negative ion mode). 

Name RPC-UPLC-MS (RT min) LIPID-UPLC-MS (RT min) Observed ion [M-H]- Formula [M-H]- 

TCS-unmetabolised 11.01 1.37 286.9433 C12H6Cl3O2
- 

TCS -Oxidised 

Glucuronide 

6.79 & 6.81 Not detected 478.9703 C18H14Cl3O9
- 

TCS – Oxidised 

Sulfate 

7.78 & 7.95 0.42 382.8951 C12H6Cl3O6S - 

TCS-Gluc 9.04 0.47 462.9754 C18H14Cl3O8
- 

TCS-SO4 10.48 0.58 366.9002 C12H6Cl3O5S - 
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Figure 5-6. Extracted mass chromatograms (EIC) for TCS-unmetabolised, and metabolites, from the incubation 

of TCS with human hepatocytes at 60 minutes acquired by RPC-UPLC-MS (negative ion mode). 

  

Metabolites observed in the RPC assay (Figure 5-6) were predominantly sulfate and glucuronide 

conjugates, with lower levels of oxidised sulfate, and oxidised glucuronide conjugates. However, the 

dimer reported by Asphrap et al. (2017), was not detected. According to the publication, the dimer 

was observed in microsomal extracts. Microsomal incubations provide by Sygnature Discovery were 

analysed by LIPID-UPLC-MS (negative ion mode), due to the lipophilic nature of the dimer. The EIC of 

the observed ions provided by Sygnature Discovery in their report, matched two peaks 

corresponding to hydroxylated metabolites of TCS in the LIPID-UPLC-MS profile, and five peaks 

corresponding to the dimer (summarised in Table 5-2 and Figure 5-7), highlighting that multiple 

different isomeric forms exist for these two metabolites. TCS, TCS-Gluc and TCS-SO4 assigned in the 

in vitro extracts are considered identifications, as reference standards acquired by the sample 

analytical platform were conducted for these compounds. Although comparison of spectral data is 

not made with a public library, comparison of the molecular ion of all other TCS metabolites, to the 

assignments made by Sygnature Discovery would be sufficient to constitute a level two putative 

annotation (MSI level 2). The complex isotopic pattern observed in the mass spectrum for each 

annotated metabolite is consistent with the presence of multiple chlorine atoms, which also gives 

additional confidence to their assignment.  
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Table 5-2. Observed metabolites from microsomal incubations of TCS analysed by LIPID-UPLC-MS (negative 

ion mode). 

Name LIPID-UPLC-MS (min) Observed ion [M-H]- Formula [M-H]- 

TCS-unmetabolised 1.37 286.9433 C12H6Cl3O2
- 

TCS Hydroxylated isomer 1 0.71 302.9383 C12H6Cl3O3
- 

TCS Hydroxylated isomer 2 1.05 302.9383 C12H6Cl3O3
- 

TCS Dimer 1 2.07 572.8789 C24H11Cl6O4
- 

TCS Dimer 2 2.44 572.8789 C24H11Cl6O4
- 

TCS Dimer 3 2.67 572.8789 C24H11Cl6O4
- 

TCS Dimer 4 2.88 572.8789 C24H11Cl6O4
- 

TCS Dimer 5 3.17 572.8789 C24H11Cl6O4
- 

TCS Dimer 6 Not detected 572.8789 C24H11Cl6O4
- 

 

 

Figure 5-7. Extracted mass chromatograms for TCS unmetabolised, and metabolites from the 50µM 

incubation of TCS with human liver microsomes at Time = 60 minutes analysed by LIPID-UPLC-MS (negative 

ion mode).  The dimerised TCS metabolites as identified by Rang et al, were present, but only in the absence of 

phase II enzymes. These metabolites were not observed in the AW and ALZ plasma/serum datasets. 
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5.4.3.4 LOD, LOQ and linear range 
 

Calibration curves, made in water and blank urine, were constructed to approximate the LOD, LOQ, 

and linearity range for TCS-Gluc. A linear range was measured to be between 0.1 µg/mL and 500 

µg/mL. The curve began to plateau at levels greater than 500 µg/mL. A LOD of 0.5 µg/mL and a LOQ 

of 2 µg/mL were estimated from these curves. Both water and urine calibration curves reported 

mean concentrations at 36 µg/mL and 34 µg/mL for SR and 26 µg/mL and 24 µg/mL for the Devset-

urine, respectively. The precision was well within 5% for both QC samples. A two-sample t-test was 

subsequently used with a p-value < 0.05, demonstrating no statistically significant deference 

between the measured means of the SR and Devset-urine using either water or urine calibration 

curves. As there is no difference between the water and urine curves, only the urine curve was used 

for subsequent measurements.  

A standard addition method using the SR samples from AW, calculated the SR to be 40 µg/mL (n=3), 

similar to the levels measured using the calibration curves. As a dilution series, is acquired with 

project data, it was also prepared and acquired with this experiment. The concentration of the SR 

from standard addition, corresponds to the intensity measured for the 100%SR sample, and each 

dilution series level is then calculated as a percentage of the 100% SR, i.e. 80%,60%,40%,20%,10% 

and 1%. This curve was plotted, and for ease of comparison, the dilution series intensities were 

additionally projected onto the urine calibration curve and the concentration back-calculated (Figure 

5-8). The standard addition curve (red), is much steeper than the urine (blue) or water (green) curve, 

demonstrating a certain level of matrix effects. This can be explained by the fact that the SR sample 

is a complex pool of approximately 3000 samples, each with various levels of diversity. Although the 

gradient is steeper, a similar concentration of TCS-Gluc in the SR was observed. The goodness of fit 

R2, for all three curves was superior to 0.9955.  

Finally, a subset of samples from the three exposure groups were run and their TCS-Gluc signal 

measured using the urine calibration curve. All samples in the zero group had levels less than the 

LOD, in the Low-mid range group, concentrations ranged from 3-10 µg/mL, and in the high group, 

concentrations ranged from 70 µg/mL to concentrations exceeding 500 µg/mL.  

To my knowledge, Provencher et al. is the only piece of work that has quantitative data on TCS-Gluc 

in human urine samples using a LC-MS/MS platform (Provencher et al., 2014). They established an 

LOD at 0.089 µg/mL, a LOQ at 0.30 µg/mL and a calibration range from 0.3 µg/mL to 100 µg/mL. 

Overall, a similar LOD, LOQ and linear range was observed in this study. The method presented by 

Provencher et al., is a fully validated method meeting laboratory accreditation standards, which 
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explains the lower LOD achieved and the fact they were also able to detect the TCS unmetabolised 

form and sulfate conjugate in urine. They stated that 97.7% of the total TCS detected in the human 

urine samples measured, were attributed to TCS-Gluc. The platform and analysis used for urine 

phenotyping in this study was still able to capture the best biomarker for evaluating human 

exposure to TCS, whilst also achieving similar quantitative metrics. 

 

Figure 5-8. Calibration curves for TCS-Gluc made in solvent and urine, superimposed with a standard 

addition curve using AW SR analysed by RPC-UPLC-MS (negative ion mode).  The curve associated with the 

standard addition method (red) presents a much steeper gradient, which is potentially due to the SR sample 

being a much more complex matrix then the urine (blue) and water (green) curves. However, all three curves 

estimated a similar concentration of TCS-Gluc in the SR. The urine calibration curve was used to estimate the 

approximate concentration ranges observed for samples occupying the High, Low-Mid, and the Zero exposure 

groups. 

 

5.4.3.5 TCS-Gluc associations using LogReg models 
 

A penalised logistic regression model was firstly employed to find TCS related associations. The 

results from Ridge regression however, even after bootstrapping the regression coefficients, 

produced too many variables which made interpretation and selection too complicated. EN however 

had the opposite issue, where the number of significant variables were less than 10 for each AW 
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cohort. Only two features replicated between the cohorts of AW. This was immediately identified as 

the oxidised sulfate and the oxidised glucuronide of TCS, which was observed from the in vitro work. 

These metabolites however were not present in the ALZ dataset. This is possibly due to the smaller 

sample size or, these features could have been filtered due to the minfrac setting during XCMS pre-

processing. The data was re-processed to include these features, however, was not significant from 

the models. EN was therefore successful in identifying direct TCS metabolites, however, to find more 

feature associations, other than direct xenobiotic related correlates, a univariate approach which 

incorporated meta-analysis (pmeta), was implemented. The outcome from the meta-analysis across 

the five cohorts demonstrated an association of 16 features (pmeta ≤ 0.05) (Table 5-3). The five 

cohorts were combined (using all data allocated to the training set), to create a model using only 

these 16 features. This model was then applied to the combined test set data. The ROC curve 

estimated an AUC of 0.96 as illustrated in Figure 5-9. ROC analyses were used to further characterize 

the predictive value of these individual metabolites independently. 

 

 

Figure 5-9. The ROC analysis from a binary logistic regression model used to characterise the metabolites 

associated with TCS exposure in AW urine RPC-UPLC-MS (negative ion mode), from thetest set 

data.Exposure groups (zero and High) were firstly partitioned into training and testing sets where selection of 

discriminant variables were conducted on the training set and the performance validated on the test set. From 

the zero group, 80% of the samples were assigned to a training set. Similarly, 80% of samples from the high 

group were selected and assigned to the same training set to maintain the same ratio between zero and high 
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groups in the training and test sets. The remaining 20% of samples from each cohort were combined and 

assigned to the testing set. The 80:20 split, incorporated a Euclidean distance metric. A logistic regression 

model was constructed on the training sample sets (from AW and ALZ totalling five cohorts) to design the best 

metabolite combination using features selected from the (pmeta) analysis. A ROC curve was used to evaluate 

the accuracy of this model in the combined independent test set. The performance of the model was 

evaluated using the AUC and the determination of sensitivity and specificity at the optimal cut-off point 

defined by the minimum distance to the top-left corner. The optimised model resulted in an AUC of 0.96 

demonstrating an excellent ability of the model to distinguish between the high and zero TCS exposure groups. 
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Table 5-3. padj -values and regression coefficients of 16 features with the most significant association to TCS exposure following logistic regression applied to urine AW 

RPC-UPLC-MS (negative ion mode) data.  A meta-analysis was used to combine results from five different cohorts. The meta-analysis of these results revealed that 16 

metabolites differed significantly (padj-value < 0.05) between samples occupying the low and high exposure groups. 

Metabolite 

AW-B1 AW-B1.2 AW-B2.2 AW-B3 ALZ Combined p-value (pmeta) 

Coefficient padj -value Coefficient padj -value Coefficient padj -value Coefficient padj -value Coefficient padj -value 

 

Metabolite 1 0.35 7.83×10-1 2.07 4.03×10-2 2.98 1.45×10-4 1.85 4.28×10-4 2.35 9.47×10-4 3.88×10-7 

Metabolite 2 0.53 7.81×10-1 1.75 5.53×10-2 2.65 8.95×10-5 1.57 1.02×10-3 2.83 6.62×10-4 6.01×10-7 

Metabolite 3 0.82 4.58×10-1 1.14 1.68×10-1 2.24 8.95×10-5 1.53 3.43×10-4 2.27 2.28×10-4 7.02×10-8 

Metabolite 4 0.95 7.81×10-1 1.82 4.03×10-2 2.94 8.95×10-5 1.07 1.29×10-2 2.00 5.94×10-3 1.40×10-5 

Metabolite 5 0.38 8.20×10-1 1.89 4.03×10-2 0.91 5.24×10-1 1.39 2.61×10-3 1.58 2.56×10-3 1.66×10-3 

Metabolite 6 0.67 7.81×10-1 2.00 4.03×10-2 3.02 9.69×10-5 1.48 1.64×10-3 1.96 3.82×10-3 2.13×10-6 

Metabolite 7 0.25 9.33×10-1 0.64 5.21×10-2 0.60 7.18×10-1 4.13 4.90×10-9 1.90 5.31×10-4 3.29×10-5 

Metabolite 8 0.34 2.20×10-1 0.75 2.20×10-1 0.90 1.30×10-2 1.21 1.47×10-4 1.57 2.12×10-3 1.53×10-6 

Metabolite 9 0.090 8.79×10-1 1.72 1.18×10-1 3.19 1.65×10-4 2.18 3.43×10-4 3.07 2.28×10-4 1.17×10-7 

Metabolite 10 0.43 1.08×10-1 0.62 4.59×10-2 1.24 8.51×10-4 1.04 6.58×10-4 1.25 5.63×10-3 5.75×10-8 

Metabolite 11 0.57 7.88×10-1 1.09 4.21×10-1 1.24 4.03×10-1 2.06 3.66×10-3 3.74 5.30×10-4 4.47×10-3 

Metabolite 12 1.00 6.17×10-1 1.80 4.03×10-2 2.48 8.95×10-5 1.56 4.90×10-2 2.90 1.95×10-4 2.32×10-6 
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Metabolite 

AW-B1 AW-B1.2 AW-B2.2 AW-B3 ALZ Combined p-value (pmeta) 

Coefficient padj -value Coefficient padj -value Coefficient padj -value Coefficient padj -value Coefficient padj -value 

 

Metabolite 13 0.39 6.82×10-2 0.41 1.63×10-1 0.55 4.96×10-2 0.71 3.63×10-3 1.69 3.09×10-3 7.71×10-6 

Metabolite 14 0.59 7.81×10-1 1.58 4.32×10-2 2.40 8.95×10-5 1.16 8.40×10-4 2.23 2.28×10-4 2.03×10-7 

Metabolite 15 9.31 1.01×10-2 11.7 9.25×10-2 18.9 9.25×10-5 12.52 2.12×10-2 0.16 8.60×10-1 3.73×10-3 

Metabolite 16 4.39 4.00×10-10 8.06 3.16×10-3 8.69 5.35×10-3 7.66 3.67×10-4 0.19 7.70×10-1 1.00×10-11 
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5.4.3.6 Blood products 
 

Initial screening for TCS revealed only the sulfate conjugate (TCS-SO4) present in phenotyping data. 

Interestingly, 20% prevalence was observed, which was less than the reported prevalence in urine 

(28%). Both univariate and multivariate LogReg models revealed four consistent metabolites with an 

association to exposure in the AW study (Table 5-4). The ROC curve (Figure 5-10) estimated an AUC 

of 0.675 (from an independent test set not used in training the model). This AUC value falls 

somewhere between poor and acceptable discrimination; therefore, caution should be taken in the 

biological interpretation of metabolites identified from this model.   

 

Table 5-4. padj -values and regression coefficients of four features with the most significant association to 

TCS exposure following logistic regression applied to the AW plasma cohort acquired by LIPID-UPLC-MS 

(negative ion mode). 

Metabolite 

AW-plasma 

Coefficient padj -value 

Metabolite 17 2.15 7.14×10-3 

Metabolite 18 0.83 3.97×10-2 

Metabolite 19 1.14 9.64×10-4 

Metabolite 20 0.58 8.73×10-3 
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Figure 5-10. The ROC analysis from a binary logistic regression model used to characterise the metabolites 

associated with TCS exposure in AW plasma LIPID-UPLC-MS (negative ion mode), from the test set 

data.Exposure groups (zero and High) were firstly partitioned into training and testing sets where selection of 

discriminant variables were conducted on the training set and the performance validated on the test set. From 

the zero group, 80% of the samples were assigned to a training set. Similarly, 80% of samples from the high 

group were selected and assigned to the same training set to maintain the same ratio between zero and high 

groups in the training and test sets. The remaining 20% of samples from each group were combined and 

assigned to the testing set. The 80:20 split, incorporated a Euclidean distance metric. A logistic regression 

model was constructed on the training sample sets (AW plasma – one cohort) to design the best metabolite 

combination using features which had padj – value ≤ 0.05 (FDR multiple testing correction). A ROC curve was 

used to evaluate the accuracy of this model in the combined independent test set. The performance of the 

model was evaluated using the AUC and the determination of sensitivity and specificity at the optimal cut-off 

point defined by the minimum distance to the top-left corner. The optimised model resulted in an AUC of 

0.675. 
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5.4.3.7 Metabolite identification 
 

Of the 20 metabolites from both urine and blood bio-fluids, there were four metabolic 

identifications; 2,4-dichlorophenol glucuronide (Metabolite 7 – Figure 5-14), γ-hydroxybutyric acid 

sulfate (Metabolite 9 – Figure 5-13), menthol glucuronide (Metabolite 13 – Figure 5-12) and 

perfluorooctanesulfonic acid (Metabolite 18 – Figure 5-11). There were seven putative annotations, 

and the remaining features could not be deduced from the MS/MS acquisitions. The results of 

metabolite identification efforts are summarised in Table 5-5.  
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Figure 5-11. Metabolite identification efforts to compare retention time and MS/MS for Metabolite 18, to 

the MS/MS of the candidate reference compound perfluorooctanesulfonic acid analysed by LIPID-UPLC-MS 

(negative ion mode) chromatographic conditions.  The MS/MS fragmentation spectra and retention time of 

Metabolite 18 observed in the profiling data was a match to the candidate reference standard. Metabolite 18 

has therefore been identified as perfluorooctanesulfonic acid. 

 

5.4.3.7.1 Intersample correlation 
 

Using the molecular ion associated with Metabolite 12 (putatively annotated as lauric acid sulfate) as 

the driver feature, statistically significant correlations (Spearman; padj≤0.05) were observed with, 
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Metabolite 1 (r = 0.80), Metabolite 2 (r = 0.82), Metabolite 3 (r = 0.69), Metabolite 6 (r = 0.82), and 

Metabolite 14 (r = 0.86), respectively. Metabolite 6 was putatively annotated as hydroxy lauric acid 

sulfate, so is not surprising that they correlate strongly to one another. Unfortunately, the unknown 

metabolites could not be deduced from this correlation study, however their statistically significant 

correlation to Metabolite 12, strongly suggest that they are metabolically connected. 

Metabolite 13 was identified as menthol glucuronide by matching the retention time and 

fragmentation spectra to a reference standard (Figure 5-12). When the molecular ion was used as a 

driver feature, statistically significant correlations were observed to the metabolites putatively 

annotated as menthol correlates, i.e. Metabolite 8 (menthol bound with two glucuronic acid 

molecules linked together, r = 0.71) and Metabolite 10 (hydroxy menthol glucuronide of p-

menthane-3,7-diol, r = 0.61).  
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Figure 5-12. Metabolite identification by comparison of retention time and MS/MS spectra for Metabolite 

13, to the MS/MS of the candidate reference compound menthol glucuronide analysed by RPC-UPLC-MS 

(negative ion mode) chromatographic conditions.  The MS/MS fragmentation spectra and retention time of 

Metabolite 13 observed in the profiling data was a match to the candidate reference standard. These data 

confirm the identity of Metabolite 13 as menthol glucuronide. 
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5.4.3.7.2 Metabolite sulfation 
 

No peak was present at the highest concentration for both unmetabolised and sulfate conjugates for 

the candidate metabolites suspected for Metabolite 2, Metabolite 6 and Metabolite 12. MassLynx 

elemental composition software predicted a chemical formula C4H7O6S for Metabolite 9, which was 

subsequently inputted into the online database HMDB. Hydroxybutyric acid Sulfate was identified. 

Three isomeric unconjugated forms have been reported in human urine; γ-hydroxybutyric acid, β-

hydroxybutyric acid and α-hydroxybutyric acid (Petersen et al., 2013, Gall et al., 2010, Stojanovic and 

Ihle, 2011). Sulfated versions are not commercially available which presents a bottleneck in 

identification and structural separation of the three metabolites. The unconjugated forms were 

purchased, and the sulfation protocol were implemented on all three compounds. The unconjugated 

and sulfate conjugated reference standards were acquired (MS scan and MS/MS) alongside a study 

sample positive for Metabolite 9, confirming the identity to be γ-hydroxybutyric acid sulfate via 

matching of retention time and fragmentation pattern (Figure 5-13). Interestingly, although γ-

hydroxybutyric acid has two hydroxyl functional groups, sulphation of the metabolite did not result 

in two isomeric peaks.  
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Figure 5-13. Metabolite identification by comparison of  retention time and MS/MS spectra for Metabolite 

9, to the MS/MS of the candidate reference standard compound γ-hydroxybutyric acid sulfate analysed by 

RPC-UPLC-MS (negative ion mode) chromatographic conditions.  The MS/MS fragmentation spectra and 

retention time of Metabolite 9 observed in the profiling data was a match to the candidate reference standard. 

These data conform the identity of Metabolite 9 to be γ-hydroxybutyric acid sulfate. 
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5.4.3.7.3 Enzymatic hydrolysis 
 

Metabolite 7 was putatively annotated as 2,4-dichlorophenol glucuronide (2,4 DCP-Gluc); 2,4-

dichlorophenol (2,4 DCP) is a phase 1 metabolite of TCS and its glucuronidated conjugate is a 

reported metabolite in urine (Somani and Khalique, 1982). A search of the molecular ion 336.9881 

revealed an additional isomer which can also be present in urine, 2,5-dichlorophenol glucuronide 

(2,5 DCP-Gluc) (Park and Kim, 2018). An MS/MS experiment was acquired on this feature (using RPC-

UPLC-MS chromatographic conditions), however fragmentation patterns revealed nothing useful for 

differentiating between the two glucuronide isomers. Reference standards for the unconjugated 

forms were available for purchase and acquired by RPC using the method for reference standard 

acquisition, described in Chapter 3. 2,4 DCP, was detected at retention time 8.70 minutes while 2,5 

DCP was detected at retention time of 8.66 minutes. Using identical chromatography as the profiling 

methods, a NL acquisition was conducted on the enzymatic hydrolysed study sample. The retention 

time of Metabolite 7 was at 5.78 minutes. After enzymatic hydrolysis, the peak at 5.78 minutes 

disappeared, and the emergence of a new peak at retention time 8.70 minutes was observed in the 

NL acquisition (Figure 5-14). This confirms that the unknown metabolite at retention time 5.78 min 

is 2,4-dichlorophenol glucuronide. 
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Figure 5-14. Metabolite identification efforts to identify Metabolite 7, by enzymatic hydrolysis.  

(A) The top figure is the TIC of the NL acquisition at 176 Da (glucuronide moiety) in a urine sample analysed by 

RPC-UPLC-MS chromatographic conditions. The retention time at 5.8 minutes corresponds to the retention 

time of Metabolite 7. The bottom figure is an additional MSMS acquisition of the unknown feature at 5.8 

minutes, which clearly depicts the loss of 176 to give the unconjugated M_ H ion at 160.9556. Fragments at 

m/z 113.0236 and m/z 85.0290 are typical fragment ions associated with the glucuronide moiety;  

(B) The retention time of 2,4 dichlorophenol (top) and 2,5 dichlorophenol (bottom) reference standards 

analysed by RPC-UPLC-MS (negative ion mode); 

(C) TIC of the urine sample (RPC-UPLC-MS) after enzymatic hydrolysis. The top image represents the TIC of the 

NL acquisition at 176, demonstrating that the moiety has been cleaved. The bottom image is the EIC of the ion 

160.9561, which is the molecular ion of the unconjugated form of dichlorophenol (either isomer). The peak at 

5.8minutes is no longer detected, but a peak at 8.73 minutes has appeared. This matches the retention time to 

the reference standard of 2,4 dichlorophenol.  

All images for this analysis have been provided by Miss Ziyue Wang (Imperial). 
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Table 5-5. MS/MS summary of all metabolites with a significant association to TCS exposure, possible putative annotations (MSI levels), and confirmation with a 

reference standard if available. 

Metabolite Biofluid Assay 

(Polarity) 

Experiment RT 

(min) 

[M-H]-

Molecular 

ion 

m/z -Fragment Structural Elucidation Candidate 

Molecular 

Formula  

Candidate Compound  Confirmation Identification/

Putative 

Annotation 

Metabolite 1 Urine RPC-UPLC-

MS 

(negative 

ion mode) 

MS/MS 5.82 297.1383 96.96 Fragment at m/z 96.96 – 

sulfate.  Many possible 

candidates, but should have -

OH group or two 

C12H26O6S unknown 
 

No match 

(MSI level 4) 

Metabolite 2 Urine RPC-UPLC-

MS 

(negative 

ion mode) 

Metabolite 

Sulfation, 

MS/MS and 

reference 

standard 

7.42 281.143 96.96 Fragment at m/z 96.96 – 

sulfate.  

C12H26O5S  1,2-dodecanediol sulfate No peak 

present for 

both 

unmetabolised 

and sulfate  

Putative 

annotation 

(MSI level 4) 

Metabolite 3 Urine RPC-UPLC-

MS 

(negative 

ion mode) 

MS/MS 6.41 394.2267 335.153, 96.96 Fragment m/z 335.153 – loss 

of 59 Da, -N(CH3)3 betaine 

group. Fragment m/z 96.96 – 

sulfate. 

C18H37NO6S unknown 
 

No match 

(MSI level 4) 

Metabolite 4 Urine RPC-UPLC-

MS 

(negative 

ion mode) 

MS/MS 6.51 281.1064 201.15, 155, 

96.96 

Fragment at 96.96 – sulfate. 

Fragment at m/z 201.15 – loss 

of 80 Da from sulfate. MS/MS 

at 30 V shows the fragment at 

m/z 155 – loss of 46 Da from 

m/z 201, formic acid CH2O2. 

Alpha hydroxy acids typically 

dissociate in tandem mass 

spectrometric experiments to 

produce product ions 

C11H22O6S  2-hydroxyundecanoic acid 

sulfate 

No reference 

standard 

commercially 

available 

Putative 

Annotation 

(MSI level 3) 
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Metabolite Biofluid Assay 

(Polarity) 

Experiment RT 

(min) 

[M-H]-

Molecular 

ion 

m/z -Fragment Structural Elucidation Candidate 

Molecular 

Formula  

Candidate Compound  Confirmation Identification/

Putative 

Annotation 

representing a neutral loss of 

46 Da (CH2O2) in negative ion 

mode. (i.e. 201->155)  

Metabolite 5 Urine RPC-UPLC-

MS 

(negative 

ion mode) 

MS/MS 6.21 295.1216 96.96 Fragment at 96.96 – sulfate C12H24O6S  unknown 
 

No match 

(MSI level 4) 

Metabolite 6 Urine RPC-UPLC-

MS 

(negative 

ion mode) 

Metabolite 

Sulfation, 

MS/MS and 

reference 

standard 

7.33 295.1222 215.1647, 

169.17, 96.96 

Fragment at 96.96 – sulfate. 

Fragment at m/z 215.1647 – 

loss of 80 Da from sulfate. 

MS/MS at 30 V shows the 

fragment at m/z 169.17 – loss 

of 46 Da from m/z 215, formic 

acid CH2O2. 

C12H24O6S  Hydroxydodecanoic acid 

sulfate or hydroxy lauric 

acid sulfate. Possible 

metabolite of lauric acid  

No peak 

present for 

both 

unmetabolised 

and sulfate 

Putative 

annotation  

(MSI level 3) 

Metabolite 7 Urine RPC-UPLC-

MS 

(negative 

ion mode) 

Enzymatic 

Hydrolysis 

5.65 336.9876 160.95, 96.96 Fragment at 160.9 – loss of 

glucuronide. 113 and 85 are 

typical fragment ions of the 

glucuronide moiety 

C12H12Cl2O7 2,4 Dichlorophenol 

glucuronide 

Confirmed by 

enzymatic 

hydrolysis 

Identification 

(MSI level 1) 

Metabolite 8 Urine RPC-UPLC-

MS 

(negative 

ion mode) 

MS/MS 6.32 507.2081 351.12, 113.02, 

85.03 

Fragment at m/z 351 – loss of 

menthol, which means that 

two glucuronic acid moieties 

are bound together. 

C22H36O13 Menthol bound with two 

glucuronic acid molecules 

linked together 

No reference 

standard 

commercially 

available 

Putative 

annotation 

(MSI level 3) 

Metabolite 9 Urine RPC-UPLC-

MS 

Metabolite 

Sulfation, 

MS/MS and 

1.01 182.9976 96.96 Fragment at 96.96 – sulfate C4H8O6S γ-hydroxybutyric acid 

sulfate 

Reference 

standard via 

Identification 

(MSI level 1) 
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Metabolite Biofluid Assay 

(Polarity) 

Experiment RT 

(min) 

[M-H]-

Molecular 

ion 

m/z -Fragment Structural Elucidation Candidate 

Molecular 

Formula  

Candidate Compound  Confirmation Identification/

Putative 

Annotation 

(negative 

ion mode) 

reference 

standard 

sulfation 

match 

Metabolite 

10 

Urine RPC-UPLC-

MS 

(negative 

ion mode) 

MS/MS 3.15 347.1711 113.02, 85.03 Typical fragment ions of the 

glucuronide moiety 

C16H28O8 Hydroxy Menthol 

glucuronide of p-menthane-

3,7-diol 

No reference 

standard 

commercially 

available 

Putative 

annotation 

(MSI level 3) 

Metabolite 

11 

Urine RPC-UPLC-

MS 

(negative 

ion mode) 

Metabolite 

Sulfation, 

MS/MS and 

reference 

standard 

0.75 168.9827 96.96 Fragment at 96.96 – sulfate C3H6O6S Sulfonatolactate  Reference 

standard does 

not match 

No match 

(MSI level 4) 

Metabolite 

12 

Urine RPC-UPLC-

MS 

(negative 

ion mode) 

Metabolite 

Sulfation, 

MS/MS and 

reference 

standard 

7.76 279.1275 96.96 Fragment at 96.96 – sulfate C12H24O5S  Lauric acid sulfate No peak 

present for 

both 

unmetabolised 

and sulfate 

Putative 

annotation  

(MSI level 4) 

Metabolite 

13 

Urine RPC-UPLC-

MS 

(negative 

ion mode) 

MS/MS and 

reference 

standard  

7.82 331.1774 153.128, 

113.02, 85.03 

Fragment at 153 – loss of 

glucuronide. 113 and 85 are 

typical fragment ions of the 

glucuronide moiety 

C16H28O7 Menthol glucuronide Reference 

standard 

match 

Identification 

Metabolite 

14 

Urine RPC-UPLC-

MS 

(negative 

ion mode) 

MS/MS 8.17 295.1225 235.11, 96.96 Fragment at 96.96 – sulfate. 

MS/MS at 20 V shows the 

fragment at m/z 235.11 – loss 

of 60 Da from m/z 295, acetic 

acid CH2O2. Ethyl ester 

moiety in the structure.  

C12H24O6S  unknown 
 

No match 

(MSI level 3) 
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Metabolite Biofluid Assay 

(Polarity) 

Experiment RT 

(min) 

[M-H]-

Molecular 

ion 

m/z -Fragment Structural Elucidation Candidate 

Molecular 

Formula  

Candidate Compound  Confirmation Identification/

Putative 

Annotation 

Metabolite 

15 

Urine RPC-UPLC-

MS 

(negative 

ion mode) 

in vitro 

comparison 

6.79 478.969 
  

C18H15Cl3O9 TCS Oxidised Glucuronide Match with in 

vitro 

Putative 

annotation 

(MSI level 2) 

Metabolite 

16 

Urine RPC-UPLC-

MS 

(negative 

ion mode) 

in vitro 

comparison 

7.94 382.8943 
  

C12H7Cl3O6S TCS Oxidised Sulfate Match with in 

vitro 

Putative 

annotation 

(MSI level 2) 

Metabolite 

17 

Plasma LIPID-UPLC-

MS 

(negative 

ion mode) 

Internal 

Reference 

LIPID 

Database 

4.42 657.4961 
 

Ion type [M-CH3]-. Also 

present was 731.5327, ion 

type [M+CH3COO]- 

C37H73N2O6P Sphingomyelin (d18:2/14:0) Reference 

standard 

match 

Putative 

annotation 

(MSI level 2) 

Metabolite 

18 

Plasma LIPID-UPLC-

MS 

(negative 

ion mode) 

MS/MS and 

reference 

standard  

0.79 498.9291 80, 98.95, 

168.98, 279.95 

Retention time and MS/MS 

match with reference 

standard 

C8HF17O3S Perfluorooctanesulfonic 

Acid 

Reference 

standard 

match 

Identification 

(MSI level 1) 

Metabolite 

19 

Plasma LIPID-UPLC-

MS 

(negative 

ion mode) 

MS/MS 2.18 473.2802 457.25, 205.16  Fragment at 457.25 – loss of 

water 

 
unknown 

 
No match 

(MSI level 4) 

Metabolite 

20 

Plasma LIPID-UPLC-

MS 

(negative 

ion mode) 

MS/MS 1.07 660.8435 126.90, 216.91, 

243.04, 279.03, 

315.01, 344.82 

315.01 loses HCl to 279.03 

which loses HCl to 243.04, 

thus compound contains two 

chlorine atoms. 344.82 to 

216.91, neutral loss of 

126.905 which is iodine  

C22H14Cl2I2N2O

2 

Closantel? 
 

No match 

(MSI level 3) 
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5.4.3.8 Correlation between matching biofluids 
 

Using the Pearson method, statistically significant (padj≤0.05) positive correlations were observed 

between TCS-SO4 in plasma to TCS-Gluc (r = 0.89), TCS-oxidised glucuronide (r = 0.75), and TCS-

oxidised sulfate (r = 0.79) in urine, suggesting, a significant relationship between circulating plasma 

TCS and excreted TCS. This is illustrated in Figure 5-15 where the intersection of the two purple 

dotted lines represent levels of TCS which are detected in accordance with the detection criteria 

stated in section 5.4.2.3.1.  
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Figure 5-15. Correlation of the TCS signals detected in plasma (LIPID-UPLC-MS negative ion mode), to TCS 

signals in urine (RPC-UPLC-MS negative ion mode). 

(A) A scatter plot demonstrating the correlation between the intensity level of TCS-Sulfate in plasma and 

TCS-Gluc in urine; 

(B) A scatter plot demonstrating the correlation between the intensity level of TCS-Sulfate in plasma and 

TCS oxidised sulfate in urine; 
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(C) A scatter plot demonstrating the correlation between the intensity level of TCS-Sulfate in plasma and 

TCS oxidised glucuronide in urine. 

A liner regression line fitted to the scatter plot which visually illustrates a positive statistically significant 

correlation between TCS-Sulfate in plasma to TCS-Gluc (r = 0.89), TCS-oxidised glucuronide (r = 0.75), and TCS-

oxidised sulfate (r = 0.79) in urine, thereby suggesting a significant relationship between circulating plasma TCS 

metabolite to excreted urinal TCS metabolites. The points are coloured by their exposure group (red = Zero to 

low, blue = Low-Mid, and green = High exposure) and the intersection of the two purple dotted lines represent 

levels of TCS which are detected in accordance with the detection criteria stated in prevalence section of this 

study. 

 

5.4.4 General Discussion 
 

The chemical complexity of urine samples combined with such a large study size was problematic in 

terms of sample pre-processing. Due to lack of resources and computational power, the urine AW 

dataset could not be pre-processed as one cohort but rather split into four. As a result of this 

limitation, a meta-analysis was necessary to combine cohorts to enable subsequent statistical 

exploration. Meta-analyses take into account the heterogeneity observed with the different cohorts 

which can stem from various sources, such as differences in participants, or study design. In this 

application, the Stouffer method with weights meta-analysis was specifically useful, as it applied a 

weighting algorithm which accounts for sample size. This therefore enabled combining p-values from 

the logistic regression models conducted on the different cohorts which ultimately led to the 

discovery of TCS exposure related metabolites. This all could have been avoided if the datasets were 

able to be pre-processed and combined as one cohort. The complexity involved with such a task can 

be difficult and therefore it is common practice to concentrate on the statistically significant 

metabolites, whether it be for metabolite identification, or for classifying new data. As 

demonstrated in this application, once the statistically significant variables were determined using 

logistic regression on the training dataset, only then were the five test set cohorts stitched together 

and the model validated using this combined cohort. However, there are tools now available for 

combining datasets for untargeted metabolomic investigations prior to any statistical testing. The 

package “MSCombine” is such an example, which uses a series of algorithms to essentially match 

molecular features from different datasets with provision for mass accuracy and retention time 

(Calderón-Santiago et al., 2016). Another way to reduce the computational power needed to handle 

the complexity observed with MS datasets, is to remove redundant metabolic features relating to 

ionisation products, such as adducts or fragments. A group from the Broad institute has introduced a 
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computational suite named “netome”, that not only can remove these redundancies, but also align 

features between separately acquired datasets (Rahnavard et al., 2018). Both tools have been 

successfully applied to metabolomic studies and represents a solution to merge datasets, which can 

then be statistically analysed. 

The main metabolites reported from TCS exposure, are the glucuronide and sulfate conjugates 

(Rodricks et al., 2010, Wu et al., 2010, Ranganathan et al., 2015, Ye et al., 2007). Rodricks et al. 

noted that the glucuronide metabolite predominates in humans while the sulfate conjugate is the 

dominant metabolite in mice. The sulfate was not observed in AW urine, however the oxidised 

sulfate was. Other direct metabolites were oxidised glucuronide and 2,4 dichlorophenol glucuronide. 

To my knowledge these three metabolites are the first be reported in vivo. Wu et al, although did 

not report the presence of these metabolites, did report additional metabolites in rat urine in the 

form of glucosidated, cysteine and mercapturic conjugates. They did however also report 

hydroxylated TCS, which is interesting because from the in vitro model evaluated in this chapter, the 

hydroxylated metabolites were only present in the absence of phase II conjugation enzymes 

(microsomes). The Logistic regression models from both AW urine and plasma highlighted other 

feature associations due to TCS exposure. Menthol was another xenobiotic that was identified (MSI 

level 1) as highlight associated, from the LogReg models. A possible source of exposure, could arise 

from topical compositions used in cosmetics, where Menthol and TCS are co-ingredients (Samani et 

al., 2004). The putative annotation of Lauric acid is yet another ingredient used in these cosmetic 

applications.  

The application of MS/MS to features with an association to TCS exposure, did reveal most features 

to contain a sulfate moiety. A sulfation method was implemented to putative unconjugated 

candidates, however sulfation can occur on a molecule hydroxyl or amine group, and if the 

candidate compound has multiple groups present, this can result in the formation of multiple 

different isomeric forms. Thus, care should therefore be taken when using this method for the 

preparation of the reference standards to avoid incorrect metabolite annotations. Nevertheless, 

these highly associated features raised an interesting point. As mentioned in Chapter 2, section 2.2, 

metabolism of xenobiotics in mammalian systems occurs in two phases, Phases I and II. Both involve 

the biotransformation of molecules to increase water solubility and facilitate excretion (more details 

in Chapter 2). Phase 2 reactions, or conjugation reactions, occurs when phase I is insufficient to clear 

a compound from circulation, or if phase I generates a reactive metabolite. It consists of the 

conjugation of a drug or its metabolite, with hydrophilic endogenous molecules such as glycine, 

sulfate or glucuronic acid. Sulfotransferases (SULT), are enzymes that catalyse phase II conjugation 

by transferring a sulfuryl group, donated by 3-phospoadenosine5’-phosphosulfate (PAPS), to the 
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hydroxy or amine group of a molecule often referred to as sulfonation. There are at least 11 

different SULT isoforms in the human body that catalyse sulfate conjugation of endogenous 

metabolites and xenobiotics. In addition to being a detoxifying step in xenobiotic metabolism, SULTs 

are involved in many endogenous processes, which include hormone regulation, transport of 

steroids and modulation of neurotransmitters. SULT activity however has been known to be 

inhibited by certain xenobiotic exposures, which includes therapeutic drugs, dietary additives, and 

environmental pollutants. Hydroxylated polychlorinated biphenyls such as Triclosan has been 

reported to inhibit the sulfonation of Bisphenol A, Acetaminophen, 4-Nitrophenol, all of which occur 

ubiquitously in the environment. In addition, sulfonation is regarded as a low capacity, high affinity 

conjugation system (Leung et al., 2016). What this means, is although it is used in a number of 

different metabolic processes, the capacity to sulfonate can be inhibited due to competitive 

sulfonation of endogenous metabolites and xenobiotics (Clayton et al., 2009). Whether it is an 

inhibition of a particular SULT isoform or competition with another metabolite, a disturbance in the 

capacity to sulfonate could potentially result in prolonged exposure to xenobiotics and therefore 

toxicity. As, the majority of chemicals with the strongest associations with TCS, were all sulphated, 

collectively, this could place a biochemical strain on the sulfonation potential needed in endogenous 

and exogenous metabolism. Another group also made such a claim, highlighting an effect on the 

sulfonation pathway on the rat metabolome when subjected to human level exposure of TCS 

(Houten et al., 2016).  

Another identified metabolite with a strong association to TCS exposure, was γ- hydroxybutyric acid 

sulfate (GHB-SO4). The unconjugated parent, GHB, can be used as an anaesthetic drug, enhancing 

supplement in body building and a substance of abuse used in drug facilitated sexual assault. It is 

however also generated endogenously in human brain, urine and blood as an in vivo metabolic 

product and short fatty acid derivative of gamma-aminobutyric acid (GABA). GABA is a principal 

inhibitory neurotransmitter that plays a major role in the central nervous system (CNS) and together 

with glutamate, has excitatory effects on nerve cells, thereby decreasing the brains overall level of 

excitation. Much research has been conducted linking the microbiome to the CNS with levels of 

GABA being associated with depression and mood disorders (Ma et al., 2019, Sharon et al., 2016, 

Wang and Kasper, 2014). TCS has been reported to change the gut microbiota in fish and rats, with 

modest effects observed in humans (Gálvez-Ontiveros et al., 2020). However, to date, there is no 

definitive study that demonstrates a disruption in the microbial community due to TCS exposure. As 

GHB-SO4 is a direct metabolite of GHB, which in turn is a metabolite of GABA, a link does seem to 

exist between TCS exposure and a known biomarker associated with the microbiome, however as 

the parent GHB was not significant from this investigation, care must be taken in its interpretation.     
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In plasma samples, the association of SM to TCS observed in this study, highlighted a perturbation in 

lipid metabolism. SM, a class of sphingolipids, together with ceramides and glycosphingolipids, are 

integral in cell signalling pathways and cell apoptosis in humans (Slotte, 2013). Varying levels of SM 

are associated with diseases such as multiple sclerosis and Abetalipoproteinemia (Jana and Pahan, 

2010, Cooper et al., 1977). An association of SM to TCS has been reported in Daphnia magna (water 

fleas) (Sengupta et al., 2017). This stemmed from an original metabolomic study, which successfully 

examined Daphnia and the metabolomic dysregulation due to exposure from the pollutant 

propranolol (Jeong and Simpson, 2019). The study served as an indicator for water quality and the 

basis for studying Daphnia in relation to environmental toxicants. Sengupta et al. reported an effect 

of SM metabolism specifically from TCS exposure in new-borns of Daphnia. The changes occurred on 

a molecular and genetic level, which could potentially result in a cascading effect throughout the 

food web. Perfluorooctanesulfonic acid (PFOS), like TCS, is a chemical which is widely found in the 

environment and used in a number of different applications including industrial surfactants and in 

the manufacture of textiles, cleaning agents, paints and polishes. Due to its ubiquitous nature, its 

environment fate has been thoroughly examined, with an estimated half-life of 5.4 years and a high 

potential for bioaccumulation (Sznajder-Katarzyńska et al., 2019). As such, PFOS has been detected 

in human serum and in organs such as spleen kidneys and brain (Zeng et al., 2019). Studies suggest 

long term exposure can impact estrogenic activity, result in liver toxicity and alter endocrine 

functions (Chaparro-Ortega et al., 2018, Karzi et al., 2018, Henry and Fair, 2013). Recently, co-

exposures to both TCS and PFOS has increased toxicity in freshwater organisms (González-Doncel et 

al., 2020). The detection of both these chemicals in human biofluids is therefore a concern. 

 

5.5 Application 2: Polyethylene Glycol 
 

5.5.1 Introduction 
 

Polyethylene glycol (PEG) is a semi-crystalline polyether, composed of repeating sub-units of 

ethylene oxide. It is one of the most commonly encountered contaminants in biochemical and 

molecular biological research. It can derive from various sources including, sample collection 

containers, plastic labware, plastic tubing, LC column manufacture processes, detergents and 

common analytical reagents (Hodge et al., 2013, Waters, 2003, Mihailova et al., 2006, Weaver and 

Riley, 2006, Michopoulos et al., 2010, Forcisi et al., 2013). PEG signatures are expressed as an 

envelope of repeating signals separated by 44.0262 Da, making it easily recognizable in UPLC-MS 
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measurements. These patterns can cause signal loss by supressing other low molecular weight 

compounds, thereby representing a risk to the validity of data generated from PEG-containing 

biofluids (Weaver and Riley, 2006, Mortier et al., 2002, Antignac et al., 2005). As a result, 

metabolomic workflows often remove these samples from the study. However, PEG (<600) is 

popular water soluble vehicle,  widely present in a number of common over-the-counter and 

prescription drug formulations (D’souza and Shegokar, 2016, Gullapalli and Mazzitelli, 2015), food 

products  (FDA, 2014, EFSA, 2015), supplements (EFSA, 2007), infant diapers (Goodpaster et al., 

2011) and cosmetics (Fruijtier-Pölloth, 2005). Therefore, its presence in biofluids may not necessarily 

derive from a contamination, but rather form a legitimate exposure to any of the aforementioned 

sources. Commercially, PEG exists as a mixture of varying polymeric lengths with each mixture being 

reflective of its average molecular weight, for example, PEG400 refers to a distribution of PEG 

polymers with an average of approximately 400 Da. Its naming convention can also be defined by 

the number of ethylene oxide monomers present, e.g., PEG(n8) equates to a polymer of 8 ethylene 

oxide unit repeats. Low molecular weight PEG forms, such as PEG 400 is notorious within analytical 

chemistry as a ubiquitous contaminant but is also a common vehicle attached used in 

pharmacological formulations. PEG as an excipient, provides better solubility for poorly water-

soluble active ingredients, thereby playing a major role in formulating a dosage form to facilitate 

drug absorption. The metabolic fate of PEG (specifically PEG 400) has been well studied in 

mammalian systems due to its presence in a variety of different pharmaceutical formulations. PEG 

400 remains in the blood for a minimum of 4hrs prior to oral administration (Tong et al., 2002). 

Where absorbed, in vivo oxidation to diacid and hydroxy acid metabolites is known to occur prior to 

renal excretion (Boyd Shaffer et al., 1950, Fruijtier-Pölloth, 2005, Prentice and Majeed, 1978, Hunt et 

al., 1982, Herold et al., 1982, Herold et al., 1989, Friman et al., 1993, Baumann et al., 2014) (Figure 

5-16). 

In this work, commercially available forms of PEG were selected and analysed by RPC-UPLC-MS 

(positive ion mode). These signatures were then assessed for in the ALZ urine UPLC-MS (positive ion 

mode) dataset. This project was specially chosen as many samples were flagged by NMR as being 

positive for PEG. It provided an opportunity to acquire blood samples with the newly developed lipid 

removal protocol (Chapter 4) and explore the potential perturbation in the blood metabolome due 

to PEG exposure. Using a combination of different statistical methods and data acquired from the 

serum samples, PEG signals that are due to contamination, and those that are a result of an external 

exposure, maybe differentiated. It is the former that should be removed from metabolomic 

workflows and the latter which should be considered as part of the everyday metabolome, when 

investigating health status. 
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Figure 5-16. Reported PEG metabolism products  (Webster et al., 2007). PEG metabolism in vivo, undergoes 

oxidation to its two major metabolites, a hydroxy acid and a diacid form. Both have been reported in urine and 

blood products. 

 

5.5.2 Materials and additional methods 
 

5.5.2.1 Materials 
 

Reference standards for PEG 400, 600, 1000, 2000, 3350, 4000, 6000 and 8000 were purchased from 

Toronto Research Chemicals Inc., and SIGMA-ALDRICH. Reference standards were prepared as 

discussed in Chapter 3. Mass spectral analysis was performed using the 1:100 dilution in RPC-UPLC-

MS (positive ion mode only).  
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5.5.2.2 Validation study 
 

A study to observe PEG metabolism was undertaken. A urine sample was collected from three 

volunteers and their metabolic profile obtained using phenotyping protocols as described by Lewis 

et al. This step was to ensure that the urine samples were free of PEG signals. The volunteers were 

then subjected to consumption of a PEG containing OTC gel capsule. The capsule contained PEG 400. 

Metabolic profiles were then obtained for three sets of samples: 

1. An aqueous extraction of a typical over-the-counter pharmaceutical gel capsule containing 

PEG 

 

2. Urine collected prior to consumption of the gel capsule (control) 

 

3. Urine collected within 24 hours of consumption of the gel capsule. 

 

5.5.2.3 Data analysis 
 

5.5.2.3.1 Univariate correlation analysis 
 

The details for all univariate correlation analysis implemented for this investigation can be found in 

Chapter 3, namely, intersample correlation (Spearman), intrasample correlation (Pearson) and i-

STOCSY (Pearson). Bonferroni multiple testing correction is applied to the p-values associated with 

each intersample correlation test, defining statistical significance (padj-value ≤ 0.05). The i-STOCSY 

tool was also used to explore correlations between the profiling data and the same compliance 

medication data that accompanied the ALZ dataset, used in the example application in Chapter 3. 

  

5.5.2.3.2 Multivariate analysis 
 

Multivariate analysis of phenotyping data was performed SIMCA-P v.14.1 (Umetrics, Umeå, 

Sweden). Principal component analysis (PCA) was used for the detection of outliers and to display 

any general trends and clustering observed in the data. Partial-least-squares regression (PLS-R) 

modelling was used to identify statistically significant covariation between a set (X) of independent 

variables (MS features) and the corresponding (Y) response (PEG). PCA and PLS models were 

performed on mean-centered and unit variance-scaled (MC-UV) data. The quality of the PLS models 
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were validated by a seven-fold internal cross-validation, and assessment of the variance explained 

(R2Y) and predictive ability (Q2Y) of the model. The number of components for each model was 

selected to optimise for model quality and avoid over-fitting. Finally, variable selection for metabolic 

identification were based on variable importance for the projection (VIP) values, summarising the 

contribution the variables make to the overall model. Only variables with VIP values ≥ 1.5 were 

considered for metabolite identification.  

 

5.5.3 Results and discussion 
 

5.5.3.1 Acquisition of reference standards and initial observations in urine data 
 

Reference solutions for various PEG mixtures were made according to the protocol set in Chapter 4 

and acquired on RPC-UPLC-MS (positive ion mode). PEG 400, 600, 1000 exhibited highly resolved 

chromatographic peaks with some overlap in RT. The mass range acquired for typical profiling 

studies are between 50 and 1200 Da, so as a result, PEG mixtures which exceeded 1000Da suffered 

in chromatographic resolution resulting in large broad peaks.  The TIC for each PEG form is 

summarised in Figure 5-17. 

 

 

Figure 5-17. Reference standard of the different PEG forms acquired by RPC-UPLC-MS (positive ion mode).  

The reference standards for the PEG forms; PEG 400, 600, 1000, 2000, 3350, 4000, 6000 and 8000 were acquired 

using the same profiling methods as sample acquisitions. PEG forms of a lower polymeric length exhibited highly 
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resolved peaks. As the polymeric length increased (starting at PEG2000), resolution became poorer resulting in 

large broad peaks.    

 

Part of the workflow for the analysis of urine samples at the NPC involves NMR sample acquisition 

prior to LC-MS. This serves two purposes, 1.) a complementary acquisition by a secondary analytical 

platform and 2.) to screen for species like PEG and protein, which would otherwise cause ionisation 

interferences for MS based acquisition. The samples which are flagged are subsequently removed 

and in addition, removed in the making of the QC study pool, which for MS based analysis is crucial 

as it is used for filtering and batch correction purposes. However, as NMR is less sensitive analytically 

to MS, PEG containing samples are not entirely removed, as was the case in the ALZ urine RPC 

dataset. Multiple metabolic features were observed in the ALZ urine RPC dataset, that exhibited a 

repeating polymer pattern that differed by 44 Daltons. These features were identified as PEG with a 

varying polymer length of n5-n16, matching the LC-MS signature observed from the PEG400-600 

reference standards. Further, polymer patterns alongside the PEG parent were also observed and 

the accurate mass of these features matched perfectly to the oxidised and di-oxidised form of PEG. 

These forms of oxidised PEG have previously been reported as the major metabolites in mammalian 

studies (Fruijtier-Pölloth, 2005) (Boyd Shaffer et al., 1950, Prentice and Majeed, 1978, Baumann et 

al., 2014, Friman et al., 1993, Herold et al., 1989, Herold et al., 1982, Hunt et al., 1982). As there are 

many spectral features corresponding to PEG, one representative ion was which did not exhibit 

saturation was chosen for all subsequent statistical analysis. The molecular ion of a PEG form with 

eight ethylene glycol monomers (PEG(n8)-unmetabolised) was selected, i.e. m/z 388.2540. This 

feature was used as the driver feature in a intersample correlation analysis (Chapter 3), and 

statistically significant correlates included features corresponding to ionisation products (i.e. 

isotopes, adducts and in-source fragments) and to multiple isotopes and adducts of the acid 

(PEG(n8)-COOH) and diacid (PEG(n8)-2xCOOH) metabolites (accurate mass of within 3 ppm), as 

illustrated in Figure 5-18. For example, the correlation coefficient observed with the molecular ion of 

PEG(n8)-COOH and PEG(n8)-2xCOOH, were 0.93 and 0.90, respectively. This correlation suggests a 

strong relationship between the concentration of PEG(n8) in the study samples, to its two putatively 

annotated metabolic products. The intensity of the acid metabolite was also generally higher than 

the diacid metabolite. There were no other correlated features present in the urine data.  
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Figure 5-18. Intersample correlation using PEG(n8)-unmetabolised as the driver in ALZ urine analysed by 

RPC-UPLC-MS (positive ion mode).  Results from the intersample correlation were presented as a retention 

time (RT) vs m/z plot, where features that correlated to the driver feature (PEG(n8)-unmetabolised), were 

coloured by statistical significance (padj ≤ 0.05)- blue, and a statistically significant correlation coefficient 

greater than 0.7 (i.e. Spearman: r >0.7 and padj ≤ 0.05) as green. All other detected features are coloured grey. 

Correlated features included ionisation products of PEG(n8)-unmetabolised, and features corresponding to 

acid (PEG(n8)-COOH) and diacid (PEG(n8)-2xCOOH) metabolites. 

 

5.5.3.2 PEG metabolism and renal excretion validation study 
 

In this study, volunteers were exposed to PEG 400. As 400 represents an average molecular weight, 

the number of ethylene oxide units lies in the range between n8 to n13. All three volunteers 

produced the same result. Extracted ion chromatograms for features corresponding to PEG n8 – n13 

of the three different sets of samples (specified in the method) for one of the volunteers is 

illustrated in Figure 5-19. The gel capsule profile only showed evidence of the molecular ion 

associated with the unmetabolised form of PEG. The mass spectrometry profile for the control urine 

samples contained low, background traces of PEG(n8-n13)-unmetabolised, PEG(n8-n13)-COOH and 

PEG(n8-n13)-2xCOOH. In the urine sample collected following the self-consumption of an over-the-

counter gel capsule, metabolite profiles contained PEG and the two metabolites at high 
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concentrations, suggesting absorption, metabolism, and renal excretion of PEG compounds. The 

findings suggest that consumption of the PEG containing gel capsule results in renal excretion of 

both PEG unmetabolised and PEG-COOH and PEG-2xCOOH metabolites, thereby supporting the 

findings in the ALZ urine cohort above. 

 

 

Figure 5-19. EIC of PEG (n8-n13) unmetabolised, PEG (n8-n13)-COOH and PEG (n8-n13)-2xCOOH in a urine 

sample of a volunteer, pre/post consumption of PEG containing OTC gel capsule analysed by RPC-UPLC-MS 

(positive ion mode).  EIC profiles of PEG(n8-n13) in a gel capsule extraction (green), a first pass morning urine 

sample taken as a control (yellow), and a urine sample taken within 24 hours following consumption of a PEG 

containing gel capsule (orange). All chromatograms are scaled to the same intensity on the Y-axis. 

Chromatographic features corresponding to the PEG polymer (n8-n13) can be observed in an example gel 

capsule extract, and a urine sample collected post consumption of a gel capsule. Chromatographic features for 

PEG oxidised acid metabolite PEG (n8-n13)-COOH and diacid metabolite PEG (n8-n13)-2xCOOH can be 

observed only in urine collected post consumption of a gel capsule. First pass urine only contains trace levels 

of both parent PEG and PEG-COOH.  
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5.5.3.3 Investigation of PEG metabolism in ALZ serum  
 

5.5.3.3.1 Serum profiling by lipid removal protocol 
 

At the time of writing, blood samples analysed at the NPC are not subjected to a preliminary 

screening process for PEG. A HILIC LC-MS assay employed at the NPC was previously run on these 

samples highlighting the presence of large PEG signatures, however PEG metabolites were not 

present in this assay. Using the developed lipid removal protocol, all serum samples were prepared 

and acquired by RPC-UPLC-MS (positive ion mode).  Data was pre-processed using XCMS software in 

accordance with NPC workflows, resulting in 2499 detected metabolite features. Repeated 

observation of specific reference features from pooled QC samples throughout an analytical batch 

demonstrated mean retention time RSD <0.3% and mean peak area RSD <10% with no post 

normalisation, except for the labelled creatinine (Table 5-6). No obvious drifts or outliers were 

observed in TIC for both the SR and LTR samples (Figure 5-20.A). The distribution of the % RSD in 

relation to the feature intensity in the SR samples, is illustrated in Figure 5-20.B. The distribution is 

further divided into a lower quartile range (green), interquartile range (blue) and upper quartile 

range (green), highlighting the precision of features based on their measured signals. The median 

RSD values for the ALZ study was 20.3%.  

Table 5-6. Retention time and peak area precision of reference standards within the ALZ serum project 

analysed by RPC-UPLC-MS (positive ion mode).  Repeated observations of reference features from the pooled 

QC samples throughout the analytical batch demonstrated high precision with mean retention time RSD < 1% 

and mean peak area RSD <20% with no post batch correction required. 

NPC Project ALZ Serum RPC-UPLC-MS (+) 

Metric RT %RSD Area %RSD 

QC Sample SR LTR SR LTR 

L-Glutamine-13C5 0.00 0.70 7.98 7.48 

L-Glutamic acid-13C5 0.00 0.00 9.13 8.24 

Creatinine-(methyl-d3) 0.00 0.33 18.91 21.45 

L-Isoleucine-13C6,15N 0.39 0.39 7.67 7.78 

L-Leucine-13C6 0.41 0.37 7.64 7.89 

L-Tryptophan-13C11, 15N2 0.33 0.35 6.54 6.86 

Cytidine-5,6- d2 0.40 0.61 5.25 6.78 

L-Phenylalanine-13C9, 15N 0.33 0.33 7.63 7.21 

N-Benzoyl- d5-glycine 0.16 0.17 7.08 7.69 
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Figure 5-20. RPC-UPLC-MS (positive ion mode) TIC of all plasma samples (Study samples – blue, SR – green, 

and LTR – red) in ALZ (A), and the % RSD distribution for all features passing the dilution series filter (B). 

Alongside the TIC scatter plots are violin plots exhibiting the TIC density for each sample type. The 

distribution plots are %RSD segmented by mean feature intensity into quartiles. 

(A) TIC of all samples in ALZ (positive ion mode) against the run order;  

(B) % RSD distribution in positive ion mode. Median RSD value was 20%; 

Data from the ALZ serum study (n=449) resulted in 2499 detected metabolite features. Repeated observation 

of the pooled sampled (SR) throughout the analytical batch demonstrated high precision, with the majority of 

features that occupied the interquartile and upper quartile intensity range having an RSD of less than 30%. The 

TIC plots exhibited no major outliers or trends with respect to the QC samples. 

 

5.5.3.3.2 PEG exploration in serum samples  
 

Intersample correlation 
 

The presence of PEG in biofluid samples can result from both an environmental exposure (for 

example, from medicinal use), or from contamination during sample handling. To evaluate the 

potential biochemical impact of PEG exposure, samples contaminated with PEG had to be first 

removed from the dataset to avoid skewing the findings. Most of the urine samples positive for PEG 

were originally excluded by the NMR screening process, and of the samples remaining, 

differentiating between an exposure or a contamination was not particularly obvious. As no samples 

were excluded from serum prior to profiling, exploration of PEG exposure/contamination was 

undertaken by firstly exploring the distribution of PEG associated signals in the serum dataset. The 

density plot (as illustrated in Figure 5-21) represents the distribution of PEG(n8)-unmetabolised 

signal intensities detected in all serum samples. A clear bimodal distribution exists in the data. 
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PEG(n8)-unmetabolised was detected at basal levels in all samples, however the relative intensity 

was significantly higher in the group on the right. The two groups from the density plot was 

therefore labelled as PEG-Low (left) and PEG-High (right).  

 

Figure 5-21. The distribution range of signal intensity associated with PEG(n8)-unmetabolised, observed in 

the ALZ serum analysed by RPC-UPLC-MS (positive ion mode).  

A bimodal distribution PEG(n8)-unmetabolised was observed in ALZ, and Gaussian mixture models (GMM’s) 

were fitted to the MS intensity distribution essentially splitting the data into a PEG-Low and PEG-High group. 

PEG(n8)-COOH and PEG(n8)-2xCOOH were largely absent from samples in the PEG-High group. These samples 

were subsequently removed to form a new “amended” dataset.  

 

The features associated with PEG(n8)-COOH and PEG(n8)-2xCOOH were largely absent from samples 

in the PEG-High group, as such, these samples can be attributed to a significant PEG contamination 

and were therefore flagged for exclusion from subsequent data analysis. The exclusion of these 

samples required an approximate LOD for PEG(n8)-COOH to be estimated. The LOD of only the acid 

metabolite was evaluated, because like urine, the serum exhibited generally higher signals than the 

diacid metabolite. The LOD involved approximating an arbitrary intensity threshold, that 

corresponded to an intensity greater than five times the signal to noise. All samples within the PEG-
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High group which showed no evidence of PEG(n8)-COOH, i.e. less than the threshold, were removed. 

This resulted in a new “amended” dataset, which contained approximately 232 samples (from 449), 

45 of which were positive for PEG(n8)-COOH. An intersample correlation was then undertaken using 

PEG(n8)-unmetabolised as the driver (Figure 5-22). Significant correlates included the two oxidised 

metabolites, PEG(n8)-COOH (Spearman, r = 0.76, p <2.2e-16) and PEG(n8)-2xCOOH (Spearman, r = 

0.57, p <2.2e-16). Three other feature groups (Feature Group 1, Feature Group 2 and Feature Group 3 

– as in Figure 5-22) were also identified with statistically significant correlations to the driver, and to 

one another. To further demonstrate that the eliminated samples from the analysis are products of 

PEG contamination and have no relation to exposure, the samples from the PEG-High group which 

were removed, was also subjected to an intersample correlation analysis (Figure can be found in 

Appendix 3). As suspected, the only correlates to the PEG(n8)-unmetabolised driver, were features 

related to the ionisation products of the PEG(n8) molecule (i.e. isotopes, adducts and in-source 

fragments).  

 

 

Figure 5-22. Intersample correlation using PEG(n8)-unmetabolised as the driver, observed in the ALZ serum 

analysed by RPC-UPLC-MS (positive ion mode).  Results from the intersample correlation were presented as a 

retention time (RT) vs m/z plot, where features that correlated to the driver feature (PEG(n8)-unmetabolised), 

were coloured by statistical significance (padj ≤ 0.05)- blue, and a statistically significant correlation coefficient 



Exploration and characterisation of detectable xenobiotic-metabolome exposures 

 

271 
 

greater than 0.7 (i.e. Spearman: r >0.7 and padj ≤ 0.05) as green. All other detected features are coloured grey. 

Correlated features included ionisation products of PEG(n8)-unmetabolised, features corresponding to acid 

(PEG(n8)-COOH) and diacid (PEG(n8)-2xCOOH) metabolites and three unknown feature groups, which will be 

the subject of metabolic identification efforts.  

 

Multivariate analysis using PCA and PLS-R 
 

Multivariate models were used to establish if the same feature groups highlighted from the 

correlation analyses, together relate to PEG exposure. The heavy presence of PEG in ALZ serum was 

immediately observed with two tightly clustered groups in the PCA model. PC1 and PC2 are shown in 

the score plot (Figure 5-23.A), accounting for 25% and 6% of the total dataset variance (R2X). The 

loadings (coloured by the weighting values scaled as correlation coefficients – pcorr) highlighted the 

polymeric pattern associated with PEG as the major source of variance between these two clusters. 

The samples within these two clusters are consistent with the samples from the PEG-Low and PEG-

High groups observed in the density plots above. Feature group 1 and Feature group 2 were also 

observed as underlying drivers in the data (Figure 5-23.B). PLS modelling was then used on the 

amended dataset to identify statistically significant covariation between MS features and the 

corresponding Y response. Four PLS models were made using different Y response variables; 

PEG(n8)-unmetabolised, and features representing the molecular ion (deduced from the intrasample 

correlation) from each of the feature groups. The same feature groups, as observed from the 

intersample correlation above, replicated across the four models as illustrated in the PLS loadings 

plot (Figure 5-24.A-D), where features with VIP values ≥ 1.5 was used as a cut-off point for feature 

selection. There were other feature groups with VIP values > 1.5, a decision was made to 

concentrate on only the consistent feature groups between the univariate and multivariate analyses.  
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Figure 5-23. PCA Score and loadings plot on samples from the amended dataset for ALZ serum.  (A) A score 

scatter plot, coloured by sample type, PEG-low (red), PEG-High (blue) and SR (green); (B) Loadings plot, 

coloured by pcorr.  

An unsupervised PCA model demonstrates two clear groups along PC1. The loadings indicate that the features, 

associated with PEG, are the main source of variance driving the separation between these two groups (PEG-

Low and PEG-High). Two unknown clusters of features not related to PEG were also observed in the loadings 

plot (at 2.25 minutes and 8.18 minutes). 
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Figure 5-24. PLS regression (PLS-R) models (loading plots) from the amended ALZ serum dataset, coloured by 

VIP using a single y-response.  

(A) PLS model where the Y response variable is the molecular ion associated with PEG(n8)-

unmetabolised; 

(B) PLS model where the Y response variable is the molecular ion associated with Feature Group 1; 
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(C) PLS model where the Y response variable is the molecular ion associated with Feature Group 2; 

(D) PLS model where the Y response variable is the molecular ion associated with Feature Group 3; 

PLS-R captured the relationship between additional phenotypic information (PEG exposure) and metabolite 

concentrations (MS features). The three feature groups (coloured by the light green and correspond to a VIP > 

1.5) are consistent between the four models thereby validating the findings from the univariate correlation 

analyses.  

 

i-STOCSY  
 

To explore potential sources for PEG exposure, i-STOCSY was implemented using the profiling 

dataset and reported medication, as demonstrated in Chapter 3. Three drugs were flagged (Figure 

5-25) using the amended dataset and PEG(n8)-unmetabolised as the driver feature. The strongest 

correlation observed, were to the drugs buflomedil, nifedepine and sulpride (correlation value of 

0.44). Although without any calculation of p-values accompanying these correlation coefficients, the 

statistical significance of these values cannot be determined. The i-STOCSY tool for this investigation 

should only be used as an approximate indicator to correlates that maybe observed in the profiling 

data. For a more comprehensive calculation on correlation, an intersample correlation analysis 

should be carried out once the features corresponding to a drug has been assigned. Furthermore, 

the three drugs highlighted from i-STOCSY, does not necessarily mean that each drug has a 

relationship to PEG. The i-STOCSY tool not only looks for correlations between the medication and 

profiling datasets, but also highlights the correlations within each dataset separately. Buflomedil and 

nifedipine are vasoactive drugs which can be both used to treat high blood pressure and peripheral 

arterial disease (Chacón-Quevedo et al., 1994). It is therefore not surprising that they correlate to 

one another. According to the European Medicines Agency (https://www.ema.europa.eu/en) 

common formulations for all three-drugs mention PEG as part of their film coating, however as we 

are not privy to the exact brand that patients were administered, there is no way of knowing the 

exact PEG form. 
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Figure 5-25. i-STOCSY output plots highlighting correlations between the PEG(n8)-unmetabolised feature, to 

all other features within the profiling dataset (ALZ serum RPC-UPLC-MS in positive ion mode) , and within 

the medication compliance dataset.  The results are presented as two interactive plots in which driver feature 

(PEG(n8)-unmetabolised) was selected and correlated features coloured by the strength of the correlation. The 

dark red features indicate a correlation coeffecent close to 1 and therfore strongly correlated to the driver. 

Features which are whitw and greyed out, represrent no correaltion associationm, and finally features which 

are dark blue inidcate a strong negative correlation. In the profiling data (top plot), strongly correlated 

features indicate the ionisartion products of PEG(n8)-unmetabolised, acid (PEG(n8)-COOH) and diacid 

(PEG(n8)-2xCOOH) metabolites, and the Feature group 1 and Feature Group 2. In the medication data (bottom 

plot), the strongest correlation were to the drugs buflomedil, nifedepine and sulpride (r = 0.44). 
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5.5.3.3.3 Correlation between biofluids 
 

Correlations between serum samples, and its corresponding urine pair were evaluated, i.e. PEG(n8)-

unmetabolised in serum, against both PEG(n8)-COOH and PEG(n8)-2xCOOH in urine. The correlation 

was undertaken using the log transformed intensities of these PEG compounds, from samples in the 

amended dataset. A positive statistically significant correlation (spearman) was observed between 

PEG(n8)-unmetabolised in serum and the two metabolites in urine (Figure 5-26), suggesting a 

significant relationship between circulating plasma PEG and excreted urinal PEG metabolite.   

 

 

Figure 5-26. Correlation of the PEG signals detected in ALZ serum (RPC-UPLC-MS positive ion mode), to PEG 

signals in ALZ urine (RPC-UPLC-MS positive ion mode).  A. Scatter plot demonstrating the correlation between 

the intensity level of PEG(n8)-unmetabolised in serum and PEG(n8)-COOH in urine; B. Scatter plot 

demonstrating the correlation between the intensity level of PEG(n8)-unmetabolised in serum and PEG(n8)-

2xCOOH in urine. 

A linear regression line fitted to the scatter plot that illustrates a positive statistically significant correlation 

between PEG(n8)-unmetabolised in serum to PEG(n8)-COOH (r= 0.6, padj ≤ 0.05), and PEG(n8)-COOH (r= 0.3, 

padj ≤ 0.05), thereby suggesting a significant relationship between circulating serum PEG and excreted urinal 

PEG metabolite. 

 

5.5.3.4 Metabolite identification in serum samples 
 

A total of three feature groups were identified from PLS and the intersample correlation analysis. 

This molecular ion from each feature group (now labelled Metabolite 1, Metabolite 2, and 

Metabolite 3) was used as the target ion for MS/MS acquisitions. A description of the MetID efforts 

for each metabolite are provided below.  
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Metabolite 1 (8.18 minutes, m/z 359.1495) 

Fragments corresponding to a toluene ion (m/z 91.055) and a benzaldehyde ion (m/z 105.03) were 

present from the MS/MS. These fragments suggest that a Nitrogen atom may not be present in the 

overall molecule. MassLynx elemental composition software predicted a chemical formula 

C20H22O6, which was subsequently inputted into the online database Pubchem. There are two 

possible candidates based on the fragmentation data and molecular formula: triethylene glycol 

dibenzoate (TGD) and dibenzylidene D-sorbitol (DBS). Out of the two, only a reference standard for 

DBS was commercially available. Acquisition of TGD by RPC-UPLC-MS revealed a chromatographic 

peak at 10 minutes (not 8.18 minutes) and a different fragmentation pattern (Figure 5-27) thereby 

excluding it as a potential candidate. DBS is therefore only a putative annotation (MSI level 4), as no 

reference standard was available to confirm its identity. DBS has been used in a variety of different 

applications including as an active excipient for transdermal pharmaceutical compositions that 

enables high drug release (Okesola et al., 2015).  
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Figure 5-27. Metabolite identification efforts to compare Retention time and MS/MS of Metabolite 1, to the 

MS/MS of a candidate reference standard triethylene glycol dibenzoate analysed by RPC-UPLC-MS (positive 

ion mode) chromatographic conditions.  The MS/MS fragmentation spectra and retention time of Metabolite 

1 observed in the profiling data did not match the candidate reference standard of triethylene glycol 

dibenzoate. No identification could be made for this feature.  
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Metabolite 2 (2.25 minutes, m/z 100.077) 

The molecular ion for Metabolite 2 was inputted into the online database HMDB. The first hit was 

piperidone. There are two isomeric forms available, 2-piperidone and 4-piperidone, and both are 

used in the manufacture of pharmaceuticals such as Fentanyl (Valdez et al., 2014). From the 

literature, both these compounds undergo hydroxylation metabolism (Cheng et al., 2013). An 

intersample correlation using this feature as the driver, highlighted a statistically significant correlate 

corresponding to the monoisotopic mass (within 1 ppm) of the hydroxyl metabolite of piperidone 

(Spearman, r = 0.60, padj≤0.001). Upon closer inspection, the PCA and PLS models also highlighted 

the significance of the hydroxyl metabolite. An MS/MS experiment was conducted for the standard 

2-piperidone by Cheng et al, revealing a fragment at m/z 82.07, matching the fragment observed in 

the MS/MS acquisition for this feature in ALZ serum (Figure 5-28). Unfortunately, no reference 

standards for both compounds were commercially available, so retention time could not be 

confirmed. Therefore piperidone (either isomer) is only a putative annotation (MSI level 2).   

 

 

Figure 5-28. Metabolite identification efforts to compare only the MS/MS of Metabolite 2 analysed by RPC-

UPLC-MS (positive ion mode) chromatographic conditions, to the MS/MS of a candidate reference 

compound observed in the literature.  The MS/MS fragmentation spectra of metabolite 2 observed in the 

profiling data matched the candidate reference standard of 2-piperidone from literature. No standard was 

commercially available; therefore Metabolite 2 is putatively annotated (MSI level 2) as piperidone (the 2 or 4 

isomer). 
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Metabolite 3 (1.3 minutes, m/z 130.0491) 

Was identified as pyroglutamic acid (PGA), by comparison of the molecular ion, in-source fragment, 

and retention time, to an already acquired reference standard from an in-house standard database 

(Figure 5-29). The intersample correlation using PGA as the driver, revealed statistically significant 

correlations in the serum, to features identified from the database as glutamic acid (Spearman, r = 

0.40, padj≤0.001), glutamyl threonine (Spearman, r = 0.60, padj≤0.001) and glutamine (Spearman, r = -

0.30, padj≤0.001). PGA, glutamic acid, glutamyl threonine and glutamine are all involved in the 

glutathione cycle or gamma-glutamyl cycle, so it is not surprising that they correlate to one another 

(Bachhawat and Yadav, 2018). 

 



Exploration and characterisation of detectable xenobiotic-metabolome exposures 

 

281 
 

 

Figure 5-29. Metabolite identification efforts to compare Retention time and MS/MS for Metabolite 3, to 

the MS/MS of a candidate reference standard pyroglutamic acid analysed by RPC-UPLC-MS (positive ion 

mode) chromatographic conditions.   The MS/MS fragmentation spectra and retention time of Metabolite 3 

observed in the profiling data was a match to the candidate reference standard. Metabolite 3 has therefore 

been identified as pyroglutamic acid (PGA).    
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5.5.4 General discussion 
 

5.5.4.1 PEG as a sample contaminant vs PEG as a true xenometabolome signature 
 
Analytical laboratories have historically viewed PEG as a contaminant that enters the biological 

sample as a by-product of laboratory equipment and LC solvents (Hodge et al., 2013, Mihailova et 

al., 2006, Michopoulos et al., 2010, Weaver and Riley, 2006, Waters, 2003).  

PEG presence in UPLC-MS profiling experiments is an analytical concern, as signals can potentially 

compromise the analytical system causing carry-over contamination issues and ion suppression 

effects (Weaver and Riley, 2006). One approach is for samples to be screened for PEG prior to mass 

spectral analysis using another technique; the NPC utilises data acquired from NMR to identify 

samples containing appreciable (µM – mM) PEG that allows these samples to be removed prior to 

MS acquisition.  

Metabolomic workflows have implemented strategies to account for PEG containing samples, and 

computational methods such as the Kendrick mass filter has been successfully applied to dataset to 

filter PEG (da Silva et al., 2019). Sample preparation techniques such as SPE (Kamleh et al., 2008) 

have also been proposed to reduce PEG content in biological samples. but SPE (and similar) methods 

are not well suited for integration with high-throughput metabolic phenotyping assays.  

This study suggests that not all PEG signals can be attributed to contamination. It is evident that PEG 

undergoes significant metabolism in humans. Evidence to support this include the correlation of 

urinary PEG(n8) signals with those of its primary oxidised metabolite PEG(n8)-COOH (Spearman, r = 

0.93, p<2.2e-16) in 900 urinary samples analysed by RPC-MS. Both oxidised metabolites were 

detected in corresponding serum samples (n=449) and similarly, a statistically significant correlation 

was observed between PEG(n8)-unmetabolised and PEG(n8)-COOH (Spearman, r = 0.76, p<2.2e-16) in 

serum. Statistically significant correlations were also observed between PEG(n8)-unmetabolised in 

serum, to both metabolites in urine. This presence of PEG metabolites in different biofluids is 

perhaps not surprising, especially since PEG has long been used as an excipient in a range of over the 

prescription drug formulations (D’souza and Shegokar, 2016, Gullapalli and Mazzitelli, 2015), food 

products (FDA, 2014, EFSA, 2015), supplements (EFSA, 2007), infant diapers (Goodpaster et al., 

2011) and cosmetics (Fruijtier-Pölloth, 2005). As a result of its ubiquitous nature, PEG products has 

mostly been reported to be safe (Jang et al., 2015) however despite its perceived safety, there are 

instances of toxicity in both human and animals (Pellegrini et al., 2013, Descamps et al., 2000, Biondi 

et al., 2002, Fruijtier-Pölloth, 2005, Erickson et al., 1996).     
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As metabolic phenotyping is now frequently applied to large clinical and epidemiology sample 

cohorts, eliminating PEG contaminated samples, designated for metabolite phenotyping would 

ensure greater data quality and applicability for retrospective data mining. As sample collection 

protocols are developed that are specific for metabolic phenotyping the implementation of the 

restriction or substitution of products that are known to contain PEG for biofluid study participants 

in the lead up to sample collection may be beneficial to study design. An example that could be 

implemented is the substitution of over–the-counter pharmaceuticals in gel capsules could be 

replaced with powder form alternatives that do not contain PEG. Exposure to PEG, be that a 

pharmaceutical excipient or elsewhere, can potentially have a negative impact on the metabolome 

and confound phenotyping studies. However, what is apparent is that this exposure to PEG, in the 

presence of PEG metabolites, should no-longer simply be disregarded as a laboratory contamination 

and should be considered as part of the human metabolome. 

 

5.5.4.2 Potential biological implications 
 

The association of PGA to PEG and the putative annotated metabolites DBS (Metabolite 1) and 

piperidone (Metabolite 2) were highlighted from both multivariate (PCA and PLS) and univariate 

approaches (correlation). When PGA is used as a driver feature in the correlation analysis, a 

statistically significant correlation is observed to PEG(n8)-unmetabolised (Spearman, r = 0.47, 

padj≤0.001), TGD (Spearman, r = 0.4, padj≤0.001), and piperidone (Spearman, r = 0.42, padj≤0.001). 

PGA also demonstrated statistically significant covariation with these metabolites from the PLS 

models.  

PGA, also known as 5-oxoproline, is an intermediate organic acid formed in the production and 

recycling of glutathione. Elevated levels can be a marker for glutathione deficiency, which can be 

dangerous in humans as glutathione is a crucial antioxidant needed in ridding the body of toxins and 

in amino acid transport. A defect in the γ-glutamyl cycle, can cause an up-regulation of γ-

glutamylcysteine synthtase resulting in a build-up of this enzyme. Conversion to glutathione is rate-

limiting. As levels of this enzyme increase, it can then enter a secondary pathway in which PGA is 

produced. Accumulation of PGA in serum can lead to a condition known as pyroglutamic acidosis 

and can be an underlying cause for high anion gap metabolic acidosis (HAGMA). The major causes of 

HAGMA have been commonly attributed to the accumulation of lactate, ketones, urea and ingestion 

of toxins, however more recently, elevated levels of PGA have been linked to this condition (Spector 

et al., 2019). Chronic acetaminophen use and antibiotic therapies have been reported to deplete 
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glutathione reserves, resulting in pyroglutamic acidosis (Spector et al., 2019, Croal et al., 1998, 

Wardell et al., 2012).  

Another well documented cause for HAGMA is ethylene glycol (EG) poisoning (Latus et al., 2012). EG 

has been extensively studied and its metabolism similar to PEG, with the formation of the oxidised 

hydroxy acid (glycolic acid) and diacid metabolites (Singh et al., 2016). EG is responsible for increased 

osmolality after exposure, resulting in a higher concentration of EG metabolites that accumulate in 

serum and produces the HAGMA associated in EG poisoning. They have also been numerous reports 

indicating PEG as a likely culprit in HAGMA observed in patients, due to exposure from topical and 

intravenous use of drugs, even as far as stating the PEG form as PEG400 (Bruns et al., 1982, Laine et 

al., 1995). These reports do not suggest that PEG depolymerises to EG and that it is EG toxicity that is 

the cause of the HAGMA, but rather, the oxidised PEG metabolites react similarly to the oxidised EG 

metabolites, resulting in the same hyperosmolar state of the serum, and an accumulation of the 

oxidised acid metabolites. The exact mechanism causing the acidosis from PEG exposure is still 

unknown. 

The results from this investigation suggest that PGA has a linear relationship to PEG, DBS and 

piperidone. Drug compliance metadata and i-STOCSY revealed the presence and detection of many 

drugs in the ALZ serum dataset. As PEG, DBS and piperidone are common excipients used in these 

drugs, it is therefore possible that increased levels of PEG metabolites, combined with numerous 

medication intake, could result in a synergistic interaction that increases PGA levels. The metabolic 

handling of many drugs, consumes glycine, which is integral in glutathione production (Jackson et al., 

1997). A limitation in its availability may also increase PGA levels. Biologically, this could be of 

significance, as a rise in PGA levels may induce pyroglutamic acidosis and even potentially provide an 

explanation for the HAGMA that was observed from patients with PEG exposure in the studies 

referenced above. To my knowledge this is the first reported case of PGA association with PEG 

exposure. However, care should be taken in this interpretation as this observation has not been 

validated in other studies and therefore a limitation of this discovery. As PEG is easily detected by 

UPLC-MS, in future studies we can identify PEG/metabolites and evaluate if any associations truly 

exist with PGA (using the strategies developed in this thesis) and the glutathione cycle.   
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Figure 5-30. A depiction of the gamma-glutamyl cycle: an essential pathway for cells in the human body to 

regulate intracellular glutathione (GSH) levels  (Bachhawat and Yadav, 2018). 

 

5.6 Results Summary  
 

The aim of the work described in this chapter was to apply the strategies developed in the two 

previous chapters to explore xenobiotic metabolism (xenometabolome).  

The first application involved the retrospective examination of urine and blood MS datasets on the 

xenobiotic Triclosan. In vitro models with TCS liver incubations were undertaken and profiled to 

discover the main TCS metabolites, which was then explored in both urine and plasma AW 

phenotyping datasets. Once the best marker for TCS exposure was identified in these datasets, 

subsequent analyses such as measurement of its population distribution, semi-quantitation and 

finally the application of logistic regression was used to identify feature (metabolite) associations. 

The second application was on the xenobiotic PEG 400, which is a known excipient used in 

pharmaceutical formulations. Similarly, the best marker for exposure and its distribution was 

evaluated in the ALZ phenotyping datasets. In this application however, both data-driven and 

analytical strategies were implemented. Correlation analyses and PLS models were applied to 

datasets acquired using the developed small molecule (DSPE lipid removal) method for blood 

products.   
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Triclosan 

Molecular phenotyping techniques has successfully detected TCS metabolites in the bio-fluids of 

human volunteers enabling a large-scale assessment of TCS exposure prevalence and metabolism 

within the UK population (AW). An in vitro incubation of TCS with human hepatocytes revealed 

several metabolites, predominately sulfate and glucuronide conjugates. A reported prevalence of 

approximately 20-30% was observed in vivo, confirmed by the presence of the conjugates TCS-Gluc 

in urine, and TCS-SO4 in blood respectively. Multimodal distributions for TCS-Gluc in urine and TCS-

SO4 in plasma essentially divided the data into exposure groups of varying levels, i.e. zero, Low-mid 

and high. Logistic regression analysis was performed between the zero and high exposure groups to 

identify metabolites with significant differences in concentration using a measured TCS exposure 

marker (TCS-Gluc in urine and TCS-SO4 in plasma) as a dependent variable and each detected 

metabolite as an explanatory variable. Significant metabolites (univariate, padj  ≤ 0.05 or EN) in urine, 

highlighted strong associations to direct drug metabolites, i.e. the oxidised glucuronide and sulfate 

forms as well as the detection of phase1 metabolite 2,4 dichlorophenol glucuronide. To my 

knowledge this is the first reported case of oxidised phase 2 conjugates of TCS, and a glucuronidated 

phase 1 metabolite of TCS, to be reported in vivo. An endogenous metabolite, GHB-SO4, was also 

identified with a significant association to TCS, suggesting a possible link with the microbiome. Other 

significant metabolites which were identified or annotated were exogenous in nature (surfactants 

like the identification of Menthol and putative annotation of lauric acid derivatives), indicating that 

they possibly derived from the same source, such as diet or personal care products. In addition, the 

majority of associated metabolites were sulfated which could potentially result in a reduced 

sulfonation capacity. In plasma samples, the detection of PFOS as a co-exposure, and the 

perturbation in lipid metabolism, specifically SM, were observed with known reported toxic health 

implications. In closing, the studies and data presented here are part of an effort to demonstrate the 

ability of molecular phenotyping for xenobiotic metabolism applications.   

 

Polyethylene glycol 

Due to the common usage of PEG in food products, cosmetics and as an excipient in pharmaceutical 

formulations, PEG metabolism has been well documented in mammalian systems. Urine excretory 

metabolites include the diacid (PEG-2xCOOH) and hydroxy acid (PEG-COOH) metabolites. 

Interrogation of MS data from the ALZ cohort demonstrated a significant correlation between the 

PEG unmetabolised form, to these metabolites in both urine and serum biofluids. The correlation 

coefficients for PEG(n8)-COOH and PEG(n8)-2xCOOH, were 0.93 and 0.90 in urine and 0.76 and 0.57 
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in serum respectively. Additionally, matched urine and serum collected at the same ALZ participant 

visit, also demonstrated a significant correlation (r = 0.6 and r = 0.3). Together, these findings 

suggest that PEG encountered in a subset of samples has undergone metabolism in vivo and can 

therefore originate as part of an environmental exposure and should not be immediately 

disregarded when phenotyping the population.  

The detection of highly intense PEG signals in the absence of PEG metabolites, highlighted the 

samples that have been contaminated through sample handling or instrumentation. By 

differentiating the signals due to exposure, exploration on associations of PEG to the endogenous 

profile were possible. Through the application of univariate correlation models and multivariate PLS 

models (regression and discriminant analysis), the endogenous metabolite PGA was identified, and 

two exogenous metabolites, DBS and piperidone were putatively annotated. DBS and piperidone are 

excipients used in pharmaceutical formulations, and although have only putatively been annotated, 

if true, further provides evidence of PEG as an external exposure due to medications and not 

contamination.  

A linear relationship was also observed between excipient profiles and metabolites involved in the γ-

glutamyl cycle. A biological implication of this is that Increases in medical use, compounded by PEG 

used as an excipient in the same medical formulations, can potentially result in an accumulation of 

PGA, leading to pyroglutamic acidosis, which is one of many causes of HAGMA. PEG intoxication can 

also result in HAGMA. It therefore seems that careful consideration is perhaps needed not only on 

the number of medications being administered to an individual patient, but also the excipients used 

in the formulation.  

An epidemiological implication of this work is how the presence of PEG in biofluids can reduce the 

quality of a dataset and can negatively impact the statistical power and ultimately the economic 

value of a study if contaminated samples are not removed from the dataset. For this reason, PEG 

contamination in population studies may be preventable. Steps can be taken in metabolic 

phenotyping sample collection protocols to reduce polymer presence in biological samples and 

ensuring mass spectrometry data acquisition is not compromised by ion suppression effects. Steps 

such as the substitution of medicines or any supplements which are in gel form (known to contain 

PEG), to perhaps a powdered alternative, in the lead up to sample collection.  

The findings of this study strongly suggest that excipients such as PEG should be regarded as a 

separate exposure as they too can influence metabolic systems. Analytical considerations aside, 

samples that are found to contain PEG (and metabolite) should not necessarily be excluded on the 

basis of post-sampling contamination and be considered for inclusion. 
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5.7 Significance of Findings 

 

The examination of the two exemplar xenobiotics highlighted the increased importance of 

environmental chemicals, and their potential influence on health status.  

Data driven strategies using statistical based analyses such as correlation, logistic regression and PLS 

models were implemented (from strategies explored in Chapter 3) resulting in additional feature 

associations to be identified from the target exposure marker. This was exemplified in the TCS 

application, which allowed the prevalence and metabolism of exposure to be explored at the 

population level (in vivo). In addition to the data-driven strategies, the analytical lipid removal 

method (Chapter 4) provided an additional strategy to broaden the coverage of the 

xenometabolome in blood products which was exemplified in the PEG application. Both xenobiotics 

have therefore been profiled in the population and as a result, associated metabolites have been 

identified and added to the xenobiotic database.  

Thus, the applications studied in this chapter utilised both data-driven and analytical strategies 

highlighting additional xenobiotic derived annotations related to direct metabolism and co-

exposures, whilst also highlighting perturbations in endogenous metabolism leading to the discovery 

of novel metabolites and potential affected metabolic pathways. Ultimately both applications 

demonstrated the effectiveness of metabolic phenotyping to study drug metabolism, and to 

generate new hypotheses. 

 

5.8 Conclusion 
 

Establishing a prospective and dedicated investigation into individual ubiquitous chemicals such as 

PEG and TCS, as an environmental risk factor would require substantial investment, thereby 

presenting a barrier to such studies. Comprehensive work on the metabolism kinetics of xenobiotics 

in human subjects uses targeted methodology with mass spectrometry offering higher sensitivity 

and lower limits of detection (Calafat et al., 2008, Allmyr et al., 2006, Gonzalez-Marino et al., 2009, 

Vijaya Bhaskar et al., 2013, Gong et al., 2014, Su et al., 2019).  

While these provide an extremely rigorous measurement, they are limited to parent xenobiotic and 

its metabolized forms. The application of molecular phenotyping to epidemiological studies is 

increasingly being incorporated into disease research and the data produced from these studies may 

already contain the metabolic responses from external xenobiotic exposures, potentially offering a 
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far more cost-effective and productive route. Although not always quantitative in an absolute sense, 

it can provide insight into direct metabolism, associated metabolites (endogenous and exogenous 

co-exposures) and affected metabolic pathways.  

Also, from both applications, metabolic profiling of multiple biofluids collected simultaneously 

enabled a greater understanding of the metabolic associations related to exposure from these two 

exemplar xenobiotics. Urine and plasma/serum were collected at the same participant study visit 

and analysed using the same analytical method (RPC-UPLC-MS). Samples are however processed 

independently, with biofluid specific sample preparation protocols, randomised run orders and 

sample acquisition using different mass spectrometers. Nevertheless, the analysis of both urine and 

serum biofluids enabled a multicompartment snapshot of metabolic status, with statistically 

significant correlation indicative of a relationship between circulating plasma metabolite(s) and 

those present in the urine of the same individual. 

To conclude, the results from this chapter demonstrated that the strategies developed from 

previous Chapters 3 and 4, and the phenotyping workflow was successful in capturing the metabolic 

imprint of TCS and PEG exposures, thereby supporting the hypothesis for this chapter. As a result of 

these applications, the novelty of this chapter came about from new knowledge discovered relating 

to biology. Profiling the metabolism of exemplar xenobiotics over an entire population of people, 

and evaluating the proportion exposed, led to the discovery of novel xenobiotic metabolites, with 

possible implications affecting major metabolic pathways such as the γ-glutamyl cycle and 

sulfonation pathways.  
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Chapter 6  
 

General discussion and future work 
 

Outside of targeted analysis of specific compounds in toxicological, pharmaceutical, and 

environmental studies, the xenometabolome has been largely uninvestigated; the majority of 

metabolic phenotyping studies to date focusing on biomarkers which are endogenous.  

The high analytical sensitivity from phenotyping platforms (such as mass spectrometry), will not only 

improve detection of these endogenous metabolites, but also xenobiotics. Estimates for exposures 

of individuals to xenobiotics are commonly poorly characterised in population studies and relies on 

participant recall or be estimated from exposure models.  

As a result, exposure misclassification, inadequate adjustment for confounders, and failure to 

remove outlier samples may lead to reduced study power and increased bias in metabolic 

phenotyping analyses. The work presented in this thesis has sought to explore and deliver strategies 

to enable the annotation of xenobiotic derived signatures that augments existing metabolome 

profiles in large-scale molecular epidemiological analysis. The strategies have additionally provided 

novel insight into xenobiotic metabolism at the population level.  

Throughout this work, the focus has been to substantially broaden the coverage of the 

xenometabolome through the development of new laboratory and data-driven statistical methods 

to achieve this goal. Combined, this provided novel methods for xenobiotic annotations and 

identifications in common metabolic phenotyping assays of urine and blood products and a 

workflow for prospective xenobiotic annotation in current and future studies. Two strategies were 

therefore developed to broaden the coverage of the xenometablome.  

The first strategy (Chapter 3) was a multi-faceted data-driven approach which initially involved the 

generation of a xenobiotic database, in which reference standards were acquired by RPC-UPLC-MS. 

Next, statistical based methods were used to further increase xenobiotic related annotations 

present in urine and blood phenotyping datasets, from a target xenobiotic.  

Finally, a method was developed to identify outlying signals with the potential to be affiliated with 

xenobiotic exposure. The second strategy (Chapter 4) was an analytical based approach to 

characterise xenometabolome components. This involved the development of a sample preparation 
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protocol for the analysis of moderately hydrophobic and amphipathic metabolites, which includes 

much of the xenometabolome, in blood products, thereby enabling RPC-UPLC-MS profiling which 

would have otherwise been compromised by lipophilic species. The two strategies were then applied 

to existing human cohort studies, to enhance and characterise the xenometabolome, relating to two 

exemplar xenobiotics (Chapter 5).  

 

6.1 Knowledge-based and data-driven strategies 
 

6.1.1 Reference standard database 
 

Metabolite identification of unknown metabolic features obtained from UPLC-MS data, remains a 

bottleneck in untargeted metabolomics. Metabolites often reported are by spectral matching with 

online mass spectrometry databases. Therefore, the simplest approach to increase xenobiotic 

annotations was the analysis of authentic standards of xenobiotics and xenobiotic metabolites using 

the existing NPC RPC platforms (for method specific retention times) to generate a library of 

common xenobiotic signatures. Xenobiotics selected for the database were chosen based on 

comprehensive knowledge through literature search and collation of priority therapeutic drugs, 

excipients, and additives, that are commonly prevalent (through prescription or otherwise) in the 

United Kingdom. The pharmacokinetic/pharmacodynamic (PK/PD) and metabolism of many 

pharmaceutical agents are very well characterized during regulatory steps and was the basis for any 

statistical-based survey to complement the laboratory-based analyses. A total of 25 chemical 

reference standards were initially acquired to populate the xenobiotic database. There are currently 

41 reference standards and 57 pharmaceutical medications that have undergone the acquisition 

workflow. This number is increasing as more studies are being conducted at the NPC. Using targeting 

software such as peakpantheR, has allowed for many xenobiotics to be annotated in existing 

datasets. The workflow necessary to acquire, process and examine xenobiotics have been set in 

place for future procurement of xenobiotic refence standards. There is also scope to run these 

standards via other NPC profiling platforms (HILIC, LIPID and NMR), as xenobiotics can exhibit a 

range of different molecular properties, and so may be better measured by these methodologies.  
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6.1.2 Statistical methods 
 

The acquisition of reference standards may not always be feasible due to time and cost restraints. 

Reference standards available commercially are usually related to the unconjugated parent from, 

and metabolites often require synthesis which can also be quite costly. Sample preparation 

protocols, such as enzymatic hydrolysis and sulfation protocols discussed in Chapter 5 can also be 

used to further increase annotations analytically, but still require the necessary reagents and further 

analytical experiments (MS/MS) for annotations.  

This does raise a limitation for exposure exploration of this nature. Although we were able to extract 

out features/metabolites related to exposure, identification in some instances were difficult due to 

lack reference materials. Xenobiotics are often expensive or not commercially available, requiring 

expensive synthesis. As mentioned in the discussion in Chapter 3 (section 3.6), metabolic 

identification represents a bottleneck in phenotyping studies. As a result, interpreting the biology 

from putative annotations should be approached with caution. Suspect screening, protocols to 

purify and concentrate signals in biofluids such as urine to enable additional analyses and combining 

or linking analytical platforms such as MS and NMR, are some examples of what other groups in the 

scientific community are implementing to annotate unknown metabolites in biofluids.   

An alternative approach for xenobiotic annotations, are statistical based methods for extracting 

xenobiotic related MS signals from datasets, which were exemplified in Chapter 3. Human exposure 

to xenobiotics may result in elimination of the xenobiotic unchanged, however the vast majority 

undergo endogenous metabolism such as conjugation and enzymatic functionalisation. Existing 

metabolomics datasets, which are an unbiased measurement of all downstream low molecular 

weight compounds, may already contain data related to xenobiotic metabolism data which can be 

exploited. Annotations of MS features related to xenobiotic exposure, can be further validated by 

known metabolites of the xenobiotic (literature or from databases), e, g. conjugation moieties, if 

detected by the analytical platform, as these will in most cases have some relationship statistically to 

the unconjugated form.  

In this thesis, the statistical methods explored were, correlation (intersample and i-STOCSY), logistic 

regression and PLS models. Univariate methods used in metabolomics are often used and simplest 

to implement. The application of multiple testing correction for statistical significance in univariates 

tests, therefore, makes interpretation easy. Scripts for both the intersample correlation and logistic 

regression univariate methods were written in R and successfully implemented on existing datasets 

allowing for further annotations relating to xenobiotics. Embedded in the code was the use of 
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multiple testing correction. FDR was used as the default parameters for the intersample correlation 

analysis, although can be changed easily in the code if needed. The graphical interface of i-STOCSY 

makes carrying out correlation-based analyses efficient, as driver features can be selected at any 

point. However, unlike i-STOCSY, added features to the intersample correlation developed in this 

thesis includes multiple testing correction. i-STOCSY can be used to give an indication of correlated 

features and used with the intersample correlation analysis for a more vigorous and accurate 

measurement.  

As with any univariate method, relationships are between pairs of features, however instances may 

arise where feature associations observed in a univariate sense, may not exhibit the same 

association when other features are taken into account. Alternately, the inverse could be observed, 

where features together may indicate an association, but is exhibits no association individually. 

Multivariate models (PCA, PLS, OPLS) may also be of value for xenobiotic exposure related 

investigations. Furthermore, correlations between features within a dataset may not always be 

biological, but can be the result of instrumentation artefacts, resulting in many intercorrelated 

features. To account for this, dimension reduction using PCA or PLS models, have been widely used 

in the metabolomics, however, care should be taken as these models can be prone to overfitting. In 

the PEG application, PLS-R (continuous variables) was implemented and for feature selection, 

variable importance in projection (VIP) was used as a means to highlight the features (loadings) 

which have a strong contribution to exposure. Apart from PLS based methods, alternative 

multivariate approaches which can provide implicit feature selection together with model 

development relates to regularization-based methods where a penalty is imposed on regression 

coefficients,  (Ridge, LASSO and Elastic net) as demonstrated in TCS application. Both LASSO and EN 

has implicit variable selection so as part of the regularisation, important variables are those with 

non-zero coefficients, which was directly derived from the model. For models, that utilised ridge 

regression, the most important regression coefficient, were found by bootstrapping and resampling 

the data (500 iterations). This produced confidence intervals in which statistical significance could be 

derived. The multivariate based approaches can be and was, additionally utilized to further 

complement the univariate analysis, highlighting additional xenobiotic feature associations. 

The identification of exposure groups was vital when exploring xenobiotic feature associations using 

both univariate and multivariate methods. The classification of samples into exposure groups was 

undertaken in one of two ways; either the xenobiotic of interest is known through compliance 

patient meta data, or a spectral feature which was representative of exposure to be specified 

(through identification from a reference standard), and its population distribution in the data to be 



General discussion and future work 

 

294 
 

evaluated. Assessment of the distribution was vital for each statistical method. Non-zero metabolite 

features in metabolomic datasets often presents as right-skewed distributions, and any modality 

observed in the data may potentially be a result a measurement artefact (such as batch effects). 

Some variation of transformation (log transformation used in this thesis) can usually be carried out 

to correct for any skewed distribution thereby reducing the impact of outliers causing the skewness. 

Multimodal distributions were observed for xenobiotic related features in phenotyping data (as seen 

in the PEG and TCS). Often is the case with metabolomic investigations involving a healthy and a 

disease group, exposure to particular xenobiotics will mostly only present in the disease as a result 

of medicinal intake. If a multimodal distribution exists, code was written in R, where multi-

component gaussian mixture models (GMMs) were specified, placing clusters across the 

distributions. Once fitted, conversion of the distributions to probability distribution functions 

(PDF’s), were calculated. This resulted in a more accurate assessment of samples belonging to a 

particular distribution. From this, any univariate or multivariate analyses could be carried out, which 

were exemplified in the TCS and PEG applications, and in Chapter 3 with Amlodipine. 

The statical methods explored to identify xenobiotic metabolites, resulted in models which were 

generally easy to interpret. The evaluation of beta coefficients observed in regression models, 

statistical significance through the calculation of p-values or the use of resampling and 

regularization, all are approaches which were utilised to highlight metabolic features relating to 

xenobiotic exposure in profiling datasets. In addition to interpretation, different methods are more 

appropriate depending on whether the measurement for exposure is continuous or categorical. 

Where measurements are continuous, correlation or covariation in PLS regression models are more 

suitable methods for highlighting metabolic features associated with exposure. However, a lack of 

correlation does not necessarily mean there is no associations, as metabolites could exhibit non-

linear relationships. Therefore, evaluation of the feature distribution, and classification into 

exposure groups then allowed for other methodologies to be implemented whereby variables 

relating to exposure could be categorical. Logistic regression and PLS-DA are such examples of 

methodologies more suited to identify the most predictive or discriminative metabolic features in 

the classification of sample groups. Also, regression can be considered a more detailed analysis, as it 

can accommodate confounders, such as age or gender. As a result, regression models which 

incorporate confounders are increasingly being used in epidemiology in place of stratification 

methods (McNamee, 2005).        
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6.1.3 Outlier samples 
 

Finally, a more untargeted statistical approach for identifying xenobiotic signatures was developed, 

based on distinguishing outliers caused by erroneous signals (e.g., poor peak integrations or system 

contaminants) from those caused by the legitimate presence of a feature in an unusually high 

concentration highlighted a pattern in the data which could be the result of a xenobiotic exposure. 

The feature in an outlying sample is corroborated by an observed effect on the average (pooled) 

sample, resulting in its elevation from the mean distribution of the study sample population. This 

approach was successful in identifying signature relating to xenobiotics (Flucloxacillin and PEG3350). 

As with correlation and logistic regression, a script was written in the R language to automate 

xenobiotic annotations from existing and future metabolomic datasets. However, the current pre-

processing tool for MS profiling datasets at the NPC, uses XCMS which incorporates algorithms such 

as minimum fraction filters (Minfrac) to look for valid features present in a minimum number of 

samples within a sample group. Outlying features may therefore be removed at this stage of the 

workflow, therefore this method for outlier detection may be better suited using a lower Minfrac 

setting. A lower setting does however come with risks, such as the inclusion of features relating to 

artefactual noise. The additional filtering protocol adopted by the NPC, i.e. dilution series and RSD 

under a threshold, will account for some of the noise features but only to a certain extent, as such, 

the setting used for LC-MS based analyses by the NPC is currently fixed at 0.4. The detection of the 

chlorinated compounds from this work, highlighted an avenue of research where metabolites can be 

identified based on their specific isotopic distribution. Synthetic compounds such as Flucloxacillin 

and TCS, and other xenobiotics (pharmaceutical drugs and pesticides), are more likely to contain 

halogens, thereby exhibiting a unique isotopic pattern in the mass spectrum (Hernandes et al., 2010, 

Jeschke, 2010). The MassLynx software suite (Waters Inc., USA) includes OpenLynx , an 

application that can perform isotopic cluster analysis; inputting the isotopic distribution (m/z peak 

ratios based on peak area) and target retention time range allows identification of matching features 

and feature extraction across sample sets. Note: this analysis is computationally intensive as it is 

based on a scan-by-scan. Pre-processing software used for MS data, such as Progenesis QI 

(Nonlinear Dynamics, Newcastle, UK) measures isotopic abundance profiles for each spectral feature 

during the peak picking process. This was one of the main reasons why Progenesis QI was the pre-

processing software of choice for the first few initial projects conducted by the NPC. However, 

incorrect assignment of isotopic profiles was consistently observed. Furthermore, feature grouping 

parameters such as the Minfrac setting, is not available within the Progenesis peak picking method 

which can result in larger less manageable datasets comprising of more noise features. Thus, a move 

from Progenesis QI to XCMS was eventually adopted by the NPC for the pre-processing of MS 
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datasets. 

More recently, mass defect and isotope filtering algorithms have been developed that identifies 

oxidative metabolites with mass defects similar to or significantly different from those of the parent 

drugs, and isotopic distributions indicative of a chlorine atom presence in the molecule (Zhu et al., 

2006, Rathahao-Paris et al., 2014). The algorithms may not cover all biotransformation products of a 

xenobiotic in vivo but can be useful to identify xenobiotics and metabolites from LC-MS datasets. 

This suggests that halogen identification may lie in a more informatic based approach and warrants 

further investigation.  

 

6.2 Analytical driven strategy 
 

To complement the data-driven strategies for xenometabolome coverage, a more analytical based 

strategy was developed. The majority of xenobiotics exhibit both a certain degree of hydrophobicity 

and amphipathic properties (semi-polar). As such, the analysis of molecules which fit this specificity, 

are better suited with reversed phased methodologies due to binding of the non-polar properties of 

the molecule, to the hydrophobic stationary phase in RP columns and the excellent analytical 

performance (uniform peak shape, stable retention times and quick equilibration times) offered by 

RPC based systems. A urine RPC profiling assay was previously developed and is part of the NPC 

profiling portfolio (Lewis et al., 2016), so a complementary blood protocol to measure the 

xenometabolome using RPC was developed, with the added benefit of being utilised to measure a 

broader range of moderately hydrophobic metabolites, which includes many endogenous molecules. 

Significant challenges in the analysis of blood extracts using RPC platforms are the presence of highly 

lipophilic compounds (e.g., lysophospholipids, phospholipids, triglycerides, etc.) which can result in 

significant methodological issues for high-throughput analysis. The DSPE sample preparation 

protocol developed in this thesis efficiently removes lipids from blood products, but with minimal 

effect on other low-molecular weight metabolites. Briefly, the development was split into three 

stages, optimisation, validation and application. Optimizing the components of a DSPE protocol was 

firstly undertaken, i.e. the sorbent, solvent, and slurry (sorbent-solvent concentration). Selection of 

sorbent and solvent were based on metrics which produced the greatest number of features that 

were highly precise. The optimum sorbent-solvent (slurry) concentration was undertaken using a 

design-of-experiment (DOE) protocol, allowing both variables (sorbent and solvent) to be optimised 

simultaneously by maximising response recoveries associated with the small molecule profile and 

lipid profile, i.e. high recoveries for the former, and low recoveries for the latter. The validation 
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demonstrated high reproducibility when implemented in a 96-well format, and therefore is 

applicable for high through-put. When the small molecule profile was compared to samples without 

DSPE treatment, higher recoveries were observed thereby demonstrating that the protocol was able 

to efficiently remove the lipids, without any significant change to the remaining profile. The 

validation stage also compared other lipid removal protocols (SPE) and LLE methods. The DSPE 

delivered extracts free of large concentrations of peptides and protein, were highly reproducible, 

less tedious in terms of sample preparation, and greater metabolite coverage. The final stage of the 

development was the application of the DSPE method to two exemplar profiling studies. In both 

cases, high precision, and annotation of a greater set of metabolites (both endogenous and 

xenobiotic) were observed, thereby offering greater xenometabolome and metabolome coverage 

for blood products. The analysis of these projects also demonstrated that the DSPE method was also 

applicable with serum biofluids. A limitation of the DSPE protocol was that only plasma was used in 

the development. However, the findings from the application of DSPE to serum samples associated 

with AZ Study 12 population study, suggest that this may not necessarily be an issue. Although a 

comparison between serum and plasma was not undertaken in this development, literature suggests 

that either matrix will generate similar metabolite profiles if sample preparation protocols are 

identical (Yu et al., 2011, Liu et al., 2018). Another weakness of the method that was uncovered 

during the development involved preparation of the dilution series. Sample dilution prior to 

extraction is common procedure for all profiling methods at the NPC. As such, any contaminant 

introduced as part of the sample extraction procedure, in theory will not correlate to dilution, and 

therefore be removed as part of the filtering process. However, in this DSPE protocol, diluting the 

sample prior to a solvent extraction highlighted a disruption in protein precipitation, resulting in 

protein presence in the final extract. Thus, contaminants introduced during sample preparation, will 

also serially dilute. This was accounted for in the development, by utilising blank samples, that 

underwent the extraction procedure and therefore used as a third criteria for filtering. It would 

mean, for future project samples, an extra extraction using water blanks is a necessary requirement 

for filtering purposes. There is however promise for this protocol to be implemented on blood 

products analysed for HILIC based assays.  Tsakelidou  et al.  highlighted that endogenous 

phospholipids contained in blood products in significant levels are considered to be a real problem in 

HILIC based assays (Tsakelidou et al., 2017). Southam et al demonstrated that a 50 : 50, methanol : 

acetonitrile solvent composition delivered the greatest number of putatively-identified polar 

metabolites with high reproducibility,  in blood analysed by HILIC (Southam et al., 2020). Both points 

have been addressed with the developed protocol. Furthermore, the DSPE extracts when acquired 

via the NPC HILIC method, also produced substantial coverage in comparison to other samples 
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preparation protocols (i.e. LLE methods and monophasic extraction methods) of polar small 

molecules especially in relation to acylcarnitine’s. Overall, this protocol, provided an analytical 

option to measure xenometabolome and metabolome components in blood products, which was 

exemplified in a number of different profiling studies, adding another a dataset which not only 

measured endogenous metabolites, but also a range of xenobiotics of this specificity. 

 

6.3 Data-driven and analytical application 
 

Complementary analytical and statistical strategies were developed in this work described in this 

thesis; both identified signatures pertaining to xenobiotics and/or xenobiotic-induced endogenous 

changes in the metabolome when applied to biofluid samples within epidemiological studies. These 

strategies were exemplified in Chapter 5 by the exploration of the xenometabolome and 

metabolome in relation to the xenobiotics, TCS and PEG. The workflow identified several aspects in 

relation to exposure evaluation. Firstly, metabolism related to these two xenobiotics could be 

assessed at the population level. For instance, known metabolites of TCS were reported, in the form 

of the glucuronide and the sulfate. The oxidised sulfate and oxidised glucuronide metabolites were 

additionally detected, and to my knowledge are novel and has never been reported in human 

biofluids in vivo. The workflow also highlighted affected endogenous pathways. In both examples, 

pathways relating to sulfation, microbiome, lipid and glutathione metabolism were highlighted. 

There were also toxicity concerns that could potentially arise due to co-exposures (TCS and PFOS). 

Furthermore, changes to study design can also be inferred from this evaluation. In the PEG example, 

PEG should not always be regarded as a laboratory contamination and in the presence of PEG 

metabolites, should be considered as part of the human metabolome and the wider exposome. 

Environmental chemicals will be of influence on our health status and are becoming part of the 

human metabolite phenotype. The substitution of medicinal products, from gel caps (known to 

contain PEG) to powder alternatives, in the lead up to sample collection may be a possible solution 

in reducing PEG exposure and be beneficial to attaining analytical data that is better in quality and 

would be more appropriate for population phenotyping and retrospective data mining. However, as 

some of the annotations were putative, care must be taken in some of the interpretations made. 

Identification of less prevalent xenobiotics and their metabolites will always be a bottleneck for 

these investigations and requires additional analysis (such as MS/MS) for additional structural 

information. If sample is limited, in future studies, it may be helpful to run analyses with MSE mode 

for fragmentation data, with the added benefit of enabling real time putative annotations using 

spectral databases. It was evident from the PEG and TCS investigations, that validity and confidence 



General discussion and future work 

 

299 
 

in metabolic feature associations related to exposure, lies in robust exposure models (accurate 

exposure classification, cross validation and/or training and independent test sets), significant 

features replicating across multiple datasets, (as seen with the significant features relating to TCS 

exposure validating across both AW and ALZ datasets), and confirmation of putatively annotated 

metabolites with reference standards. The observations made from the TCS and PEG examples 

demonstrate the strength of phenotyping approaches in studying xenobiotic metabolism, 

highlighting metabolites which are better markers for exposure, and identifying affected 

endogenous pathways. 

 

6.4 Final note 
 

The statistical and analytical strategies described can therefore be useful in two possible real-world 

applications. The first application is useful in metabolic phenotyping investigations. In untargeted 

metabolic phenotyping studies, MS features associated with xenobiotic exposure can potentially bias 

the interpretation of such studies. However, the use of these strategies allows such exposures to 

identified and partitioned, thereby permitting improved detection of both outliers and non-

compliant participants, and better confounder data. The second application is more suited to 

toxicology and even pharmaceutical industries, where these strategies can be implemented on 

samples sets produced from epidemiological studies, in an effort to study the metabolism of 

xenobiotics on a population level. The benefit of studying xenobiotic metabolism using untargeted 

phenotyping approaches in vivo rather than the conventional in vitro or stable isotope route (the 

latter of which is commonly used in drug metabolism studies), is due to its potential to capture both 

xenobiotic metabolism, and changes in endogenous metabolism, as demonstrated by the TCS and 

PEG examples. This insight has led to an increased interest in metabolic phenotyping approaches to 

study how drugs are being developed and dosed.  

Looking forward, strategies to identify and partition samples in large population studies with 

exposure to xenobiotics will not only be important to help improve the quality of phenotyping 

datasets but can be particularly important with respect to personalised healthcare. The 

characterisation of the xenometabolome in population studies may reveal unique biochemical 

signatures that are a result of xenobiotic exposure and aid in explaining the variation observed with 

its metabolism in the human body. As a result, adverse drug reactions could be potentially avoided, 

and drug efficacy could be enhanced. 
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Lastly, the workflow developed for identifying xenobiotics, via the statistical or analytical strategies, 

has many applications in the area of metabolic phenotyping, with the latter (blood lipid removal 

protocol) now employed in a large range of MS based studies at the NPC. The statistical methods for 

annotating xenobiotics, can be applied to existing human cohort study as needed to characterize 

priority xenometabolome components and partition prior to subsequent data analysis. Furthermore, 

the generation of the reference standard database has also proved very useful in further annotating 

xenobiotics for current and future metabolic phenotyping studies, with the addition of new 

xenobiotic compounds to the database being driven by metabolite identification efforts on studies 

conducted at the NPC.
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Appendix 1 Chapter 3 
Reference standards acquired by RPC-UPLC-MS (positive and negative ion 

mode) for the database (Chapter 3)  

All standards purchased by Sigma Aldrich (Vienna, Austria).  

 
1 Amoxicillin 
2 Bisoprolol 
3 Caffeine 
4 Citalopram hydrobromide 

5 
Codeine-6-beta-D-glucuronide solution C-
II 

6 (-)-Cotinine 
7 Escitalopram oxalate 
8 Lansoprazole 
9 Metformin hydrochloride  

10 Norcodeine solution C-II 
11 Omeprazole 
12 Ramipril 
13 Simvastatin 
14 Acetaminophen 
15 6-Acetylcodeine.HCL 
16 Acetylsalicylic acid 
17 Amitriptyline hydrochloride 
18 Amlodypine besylate 
19 Atorvastatin calcium salt trihydrate 
20 Bendroflumethiazide 

21 Carboxyibuprofen 
22 Cholecalciferol 
23 Codeine.HCL 
24 Dihydrocodeine.HCL 
25 (+)-cis-Diltiazem hydrochloride 
26 Furosemide 
27 2-Hydroxyibuprofen 
28 Ibuprofen 
29 Levothyroxine  
30 Paracetamol sulfate potassium salt 
31 Paracetamol β-D-glucuronide 
32 Salicylic acid 
33 Terbinafine hydrochloride 
34 Theobromine 
35 Theophylline 
36 Warfarin 
37 Naproxen 
38 N-Acetylbenzoquinoneimine 
39 Nicotine  
40 Salbutamol 
41 Cotinine 
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Pharmaceutical medications acquired by RPC-UPLC-MS (positive and negative 

ion mode) for the database (Chapter 3)  

All medications were provided by Mr James Kinross 

 
1 Paracetamol 
2 Codeine 
3 Morphine 
4 Duhydrocodeine 
5 Gabapentin 
6 Pregabalin 
7 Carbamazepine 
8 Lamotrgine 
9 Enoxaparin 

10 Zopiclone 
11 Citalopram 
12 Amitriptyline 
13 Sertraline 
14 Fluoxetine 
15 Mirtazapine 
16 Venlafaxine 
17 Paroxetne 
18 Duloxetine 
19 Simvastatin 
20 Atorvastatin 
21 Pravastatin 
22 Ezetimibe 
23 Quetiapine 
24 Olanzapine 
25 Risperidone 
26 Naproxen 
27 Allopurinol 
28 Ibuprofen 
29 Diclofenac 

30 Omeprazole 
31 Lansoprazole 
32 Ranitidine 
33 Esomeprazole 
34 Trimethoprim 
35 Metronidazole 
36 Metformin 
37 Gliclazide 
38 Nitrazepam 
39 Diazepam 
40 Ramipril 
41 Lisinopril 
42 Losartan 
43 Doxazosin 
44 Candesartan 
45 Perindopril 
46 Amlodipine 
47 Isosorbide 
48 Felodipine 
49 Diltiazem 
50 Warfarin 
51 Bendroflumethiazide 
52 Furosemide 
53 Indapamide 
54 Bisoprolol 
55 Atenolol 
56 Propranolol 
57 Metoprolol 
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ROC curves produced from the logistic regression univariate and multivariate 

models using the test set samples 

 
 ROC curves produced from the logistic regression univariate and multivariate models using the test set 
samples.  

(A) univariate Model 1; Sensitivity = 0.77, Specificity = 0.69, Accuracy (AUC) = 0.73;  

(B) univariate Model 2; Sensitivity = 0.77, Specificity = 0.85, Accuracy (AUC) = 0.81; 

(C) univariate Model 3; Sensitivity = 0.69, Specificity = 0.62, Accuracy (AUC) = 0.65; 

(D) Ridge; Sensitivity = 0.61, Specificity = 0.77, Accuracy (AUC) = 0.67; 

(E) LASSO; Sensitivity = 0.69, Specificity = 0.85, Accuracy (AUC) = 0.78; 

(F) Elastic Net; Sensitivity = 0.69, Specificity = 0.92, Accuracy (AUC) = 0.79. 
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Appendix 2: Chapter 4 
Mass of 96-well plate prior to sorbent addition, post addition, and the difference (Mass of plate post sorbent addition – 
mass of plate) - Chapter 4  

 

Table X Mass of plate prior to sorbent additon 

BEFORE 

(mg) 1 2 3 4 5 6 7 8 9 10 11 12 

A 609.91 607.82 610.1 607.89 610.41 608.41 610.09 608.09 610.48 607.79 610.33 608.33 

B 604.83 610.31 609.67 610 609.7 610.58 609.56 610.63 609.7 609.12 609.38 608.68 

C 605.92 612.16 605.8 612.49 605.77 612.5 605.77 612.61 605.84 612.52 605.71 612.57 

D 619.1 603.9 619.07 604 619.04 603.89 617.5 603.91 618.75 603.87 618.69 603.93 

E 609.95 611.64 610.56 611.8 610.56 611.8 610.52 611.54 610.52 611.83 610.51 611.82 

F 605.25 612.07 605.61 612.19 605.67 612.03 605.52 612.16 605 612.04 605.52 612.1 

G 609.9 605.28 609.98 605.22 609.88 605.18 609.85 605.22 609.84 605.16 609.84 605.2 

H 613.22 607.6 613.45 607.55 613.15 607.45 613.33 609.64 613.14 605.57 613.17 607.46 

 

Table X Mass of plate post sorbent addition 

AFTER 

(mg) 1 2 3 4 5 6 7 8 9 10 11 12 

A 618.51 616.3 617.83 616.48 618.83 617.13 618.61 615.94 618.48 615.99 618.33 617.09 

B 614 619.93 617.62 619.12 618.95 620.14 618.83 618.74 618.82 617.74 618.84 619.01 
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C 616.23 622.35 614.34 622.23 615.12 622.67 616.13 621.52 615.24 622.42 615.41 622.99 

D 628.97 613.07 627.43 613.86 628.08 613.29 626.57 611.99 627.71 613.54 627.93 612.95 

E 619.89 620.39 618.77 621.07 619.6 621.64 619.91 619.33 619.05 621.15 619.4 621.04 

F 614.56 620.97 613.54 620.9 613.97 621.22 614.33 620.08 613.42 621.24 613.68 620.92 

G 617.84 613.78 617.57 613.69 618.04 613.18 618.15 613.09 617.81 614 618.3 613.27 

H 621.32 615.75 621.23 615.61 621.19 615.49 621.21 617.44 621.11 615.77 621.72 616 

 

Table X Mass of sorbent (Mass of plate post sorbent addition – mass of plate) 

DIFFERENCE 

(mg) 
1 2 3 4 5 6 7 8 9 10 11 12 

A 8.6 8.48 7.73 8.59 8.42 8.72 8.52 7.85 8 8.2 8 8.76 

B 9.17 9.62 7.95 9.12 9.25 9.56 9.27 8.11 9.12 8.62 9.46 10.33 

C 10.31 10.19 8.54 9.74 9.35 10.17 10.36 8.91 9.4 9.9 9.7 10.42 

D 9.87 9.17 8.36 9.86 9.04 9.4 9.07 8.08 8.96 9.67 9.24 9.02 

E 9.94 8.75 8.21 9.27 9.04 9.84 9.39 7.79 8.53 9.32 8.89 9.22 

F 9.31 8.9 7.93 8.71 8.3 9.19 8.81 7.92 8.42 9.2 8.16 8.82 

G 7.94 8.5 7.59 8.47 8.16 8 8.3 7.87 7.97 8.84 8.46 8.07 

H 8.1 8.15 7.78 8.06 8.04 8.04 7.88 7.8 7.97 10.2 8.55 8.54 
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List of identified metabolites (RPC positive mode peakpantheR) and relative method induced losses (%) 

Compound HMDBClass HMDBSubClass Retention time (min) cpdMonoisotopicion m/z Pool-mean Folch-mean BD-mean Matyash-mean DSPE-mean MeOH-mean Max intensity Pool Folch BD Matyash DSPE MeOH
Histidine Carboxylic acids and derivatives Amino acids, peptides, and analogues 0.53 155.0695 M+H 156.0768 4.84 4.88 4.65 4.88 4.58 5.05 5.05 95.84 96.68 92.15 96.62 90.84 100.00
Acetaminophen glucuronide Organooxygen compounds Carbohydrates and carbohydrate conjugates 1.95 327.0954 M+Na 350.0846 4.05 4.01 4.10 4.05 3.96 4.06 4.10 98.72 97.64 100.00 98.79 96.55 98.83
Symmetric dimethylarginine Carboxylic acids and derivatives Amino acids, peptides, and analogues 0.64 171.1002 M+H 172.1080 3.97 4.02 3.86 3.97 3.97 3.96 4.02 98.84 100.00 96.21 98.90 98.77 98.50
4-Guanidinobutanoate Carboxylic acids and derivatives Amino acids, peptides, and analogues 0.87 145.0851 M+H 146.0924 4.75 4.81 4.87 4.71 4.47 4.72 4.87 97.55 98.83 100.00 96.75 91.95 97.11
Riboflavin (vit B2) Pteridines and derivatives Alloxazines and isoalloxazines 3.86 376.1383 M+H 377.1456 3.29 2.83 2.82 2.96 3.74 3.14 3.74 87.86 75.61 75.37 79.23 100.00 84.00
Citrate Carboxylic acids and derivatives  Tricarboxylic acids and derivatives 1.10 192.0270 M+Na 215.0162 5.85 5.49 5.96 5.78 5.79 5.86 5.96 98.13 92.02 100.00 96.82 97.13 98.19
Phenylacetylglutamine Carboxylic acids and derivatives Amino acids, peptides, and analogues 3.62 264.1110 M+H 265.1183 5.20 5.19 5.19 5.21 5.14 5.22 5.22 99.59 99.36 99.54 99.80 98.49 100.00
Guanidinosuccinate Carboxylic acids and derivatives Amino acids, peptides, and analogues 0.59 175.0593 M+H 176.0666 3.95 3.93 3.82 3.92 3.89 4.08 4.08 96.74 96.33 93.55 96.08 95.42 100.00
Paracetamol sulfate potassium salt Organooxygen compounds Carbohydrates and carbohydrate conjugates 2.20 231.0201 M+H 232.0274 3.93 3.91 3.96 3.92 3.88 3.92 3.96 99.12 98.59 100.00 98.84 98.01 99.06
N2,N2-Dimethylguanosine Purine nucleosides 2.39 311.1230 M+H 312.1302 4.07 4.05 4.10 4.05 4.07 4.03 4.10 99.30 98.87 100.00 98.79 99.34 98.29
Imidazolelactate Azoles Imidazoles 0.61 156.0535 M+H 157.0608 4.69 4.71 4.71 4.69 4.64 4.62 4.71 99.51 100.00 99.92 99.48 98.48 98.00
S-Adenosylhomocysteine 5'-deoxyribonucleosides 5'-deoxy-5'-thionucleosides 1.40 384.1216 M+H 385.1289 3.73 3.69 3.78 3.74 3.74 3.63 3.78 98.70 97.66 100.00 99.00 98.96 95.99
1-Methyladenosine Purine nucleosides 1.26 281.1124 M+H 282.1197 5.06 4.95 5.03 4.99 5.21 5.01 5.21 97.13 94.95 96.58 95.71 100.00 96.16
N-a-Acetyl-L-arginine Carboxylic acids and derivatives Amino acids, peptides, and analogues 0.92 216.1222 M+H 217.1295 4.51 4.48 4.54 4.49 4.45 4.55 4.55 99.02 98.30 99.65 98.57 97.74 100.00
Indole-3-acetate Indoles and derivatives Indolyl carboxylic acids and derivatives 5.59 175.0633 M+H 176.0706 4.80 4.87 4.91 4.92 4.75 4.09 4.92 97.67 99.00 99.86 100.00 96.59 83.08
Homocitrulline Carboxylic acids and derivatives Amino acids, peptides, and analogues 0.65 189.1113 M+H 190.1186 4.31 4.28 4.33 4.29 4.31 4.30 4.33 99.55 98.88 100.00 99.20 99.72 99.34
7-Methylguanine Imidazopyrimidines Purines and purine derivatives 1.26 165.0651 M+H 166.0723 4.79 4.74 4.80 4.77 4.82 4.79 4.82 99.41 98.35 99.57 98.98 100.00 99.32
Prednisolone Steroids and steroid derivatives Hydroxysteroids 6.89 360.1937 M+H 361.2010 4.17 2.95 4.17 3.52 4.50 4.31 4.50 92.66 65.56 92.65 78.23 100.00 95.59
Acetaminophen Phenols 1-hydroxy-2-unsubstituted benzenoids  2.58 151.0633 M+H 152.0706 4.25 4.26 4.34 3.71 4.35 4.26 4.35 97.62 97.93 99.70 85.25 100.00 97.99
1,1-Dimethylbiguanide (Metformin) Organonitrogen compounds  Guanidines 0.67 129.1014 M+H 130.1087 5.69 5.70 5.64 5.71 5.68 5.73 5.73 99.41 99.57 98.41 99.69 99.25 100.00
Cortisone Steroids and steroid derivatives Hydroxysteroids 6.96 360.1937 M+H 361.2010 4.17 2.99 4.17 3.52 4.50 4.31 4.50 92.68 66.43 92.63 78.22 100.00 95.59
Pantothenate Alcohols and polyols Polyols 2.35 219.1107 M+H 220.1179 4.22 4.20 4.25 4.23 4.20 4.17 4.25 99.30 98.91 100.00 99.64 98.90 98.16
Disaccharides Organooxygen compounds Carbohydrates and carbohydrate conjugates 0.68 342.1162 M+Na 365.1054 5.20 5.26 5.25 5.26 5.07 5.09 5.26 98.94 100.00 99.91 99.97 96.54 96.79
Caffeine Imidazopyrimidines  Purines and purine derivatives 3.48 194.0804 M+H 195.0877 5.96 4.41 5.93 5.91 6.16 6.10 6.16 96.84 71.62 96.33 95.96 100.00 99.17
Aminoadipate Carboxylic acids and derivatives Amino acids, peptides, and analogues 0.63 161.0688 M+H 162.0761 4.13 4.12 4.11 4.11 4.12 4.15 4.15 99.36 99.27 98.91 99.08 99.31 100.00
1-Methylurate Imidazopyrimidines Purines and purine derivatives 1.83 182.0440 M+H 183.0513 4.56 4.51 4.57 4.54 4.60 4.55 4.60 99.13 98.03 99.29 98.58 100.00 98.91
a-glycerophosphocholine Glycerophospholipids Glycerophosphocholines 0.56 257.1028 M+H 258.1101 6.21 6.02 6.27 6.17 6.01 6.42 6.42 96.69 93.78 97.56 95.98 93.51 100.00
(-)-Cotinine Pyridines and derivatives Pyrrolidinylpyridines 1.43 176.0950 M+H 177.1022 5.48 4.19 5.44 5.54 5.65 5.60 5.65 97.11 74.26 96.28 98.03 100.00 99.24
Kynurenine Organooxygen compounds Carbonyl compounds 2.02 208.0848 M+H 209.0921 5.25 5.22 5.13 5.17 5.51 5.01 5.51 95.32 94.71 93.14 93.73 100.00 90.97
Propionylcarnitine Fatty Acyls Fatty acid esters 1.64 217.1314 M+H 218.1387 5.50 5.52 5.50 5.55 5.54 5.30 5.55 99.04 99.35 99.03 100.00 99.82 95.44
Urate Imidazopyrimidines  Purines and purine derivatives 1.13 168.0283 M+H 169.0356 6.81 6.87 6.72 6.84 6.78 6.87 6.87 99.21 99.99 97.82 99.60 98.76 100.00
Prolylhydroxyproline Carboxylic acids and derivatives Amino acids, peptides, and analogues 0.77 228.1110 M+H 229.1183 5.21 5.16 5.19 5.17 5.31 5.16 5.31 98.15 97.24 97.72 97.38 100.00 97.24
Tetrahydropentoxyline Harmala alkaloids 2.01 366.1427 M+H 367.1509 4.87 4.86 4.89 4.86 4.86 4.82 4.89 99.46 99.29 100.00 99.33 99.36 98.60
Pipecolate Carboxylic acids and derivatives Amino acids, peptides, and analogues 0.91 129.0790 M+H 130.0863 5.69 5.70 5.68 5.70 5.69 5.66 5.70 99.77 99.91 99.56 100.00 99.74 99.25
Theobromine Imidazopyrimidines Purines and purine derivatives 2.42 180.0647 M+H 181.0720 5.84 5.42 5.86 5.82 5.94 5.89 5.94 98.18 91.25 98.56 97.91 100.00 99.06
Niacinamide (vit B3) Pyridines and derivatives Pyridinecarboxylic acids and derivatives 1.12 122.0480 M+H 123.0553 4.54 4.46 4.56 4.43 4.62 4.54 4.62 98.14 96.52 98.62 95.83 100.00 98.19
1-Methyl-2-piperidinecarboxylate Carboxylic acids and derivatives Amino acids, peptides, and analogues 0.93 143.0946 M+H 144.1019 4.77 4.76 4.77 4.78 4.79 4.72 4.79 99.65 99.43 99.73 99.79 100.00 98.69
Tyramine ISF.2 Benzene and substituted derivatives  Phenylethylamines 1.46 102.0452 103.0530 4.50 4.50 4.50 4.48 4.52 4.48 4.52 99.64 99.61 99.72 99.28 100.00 99.11
Isobutyrylcarnitine Fatty Acyls Fatty acid esters 2.41 231.1471 M+H 232.1543 5.10 5.09 5.09 5.10 5.14 5.06 5.14 99.35 99.05 99.17 99.29 100.00 98.62
N-acetyl-DL-glutamate ISF.1 Carboxylic acids and derivatives Amino acids, peptides, and analogues 1.36 129.0422 130.0500 5.98 5.99 5.95 5.99 5.95 5.99 5.99 99.72 100.00 99.27 99.94 99.29 99.91
Pyroglutamate Carboxylic acids and derivatives Amino acids, peptides, and analogues 1.27 129.0426 M+H 130.0499 5.98 5.99 5.95 5.99 5.95 5.99 5.99 99.72 100.00 99.27 99.94 99.29 99.91
Pseudouridine ISF.1 Nucleoside and nucleotide analogues 0.95 208.0482 209.0560 4.79 4.80 4.81 4.78 4.79 4.72 4.81 99.51 99.71 100.00 99.40 99.52 98.15
Trigonelline 0.62 137.0477 M+H 138.0550 5.65 5.67 5.63 5.67 5.60 5.65 5.67 99.55 100.00 99.29 99.94 98.72 99.59
Paraxanthine Imidazopyrimidines Purines and purine derivatives 2.77 180.0647 M+H 181.0720 5.97 5.69 5.97 5.97 6.05 6.00 6.05 98.57 94.02 98.62 98.69 100.00 99.12
Theophylline Imidazopyrimidines Purines and purine derivatives 2.76 180.0647 M+H 181.0720 5.97 5.69 5.97 5.97 6.05 6.00 6.05 98.57 94.02 98.62 98.69 100.00 99.12
L-Acetylcarnitine Fatty Acyls Fatty acid esters 0.98 203.1158 M+H 204.1230 6.43 6.47 6.27 6.47 6.56 6.31 6.56 98.05 98.67 95.70 98.67 100.00 96.29
N6-Acetyl-L-lysine Carboxylic acids and derivatives Amino acids, peptides, and analogues 0.92 188.1161 M+H 189.1234 4.54 4.51 4.55 4.52 4.55 4.54 4.55 99.73 99.07 100.00 99.28 99.96 99.75
Hypoxanthine Imidazopyrimidines Purines and purine derivatives 1.21 136.0385 M+H 137.0458 5.65 5.66 5.65 5.64 5.65 5.59 5.66 99.72 100.00 99.79 99.58 99.86 98.75
Tryptophan Carboxylic acids and derivatives Amino acids, peptides, and analogues 2.75 204.0899 M+H 205.0972 6.30 6.35 6.23 6.33 6.27 6.31 6.35 99.12 100.00 98.00 99.58 98.69 99.39
2-Octenoylcarnitine Fatty Acyls Fatty acid esters 5.65 285.1940 M+H 286.2013 5.66 5.64 5.60 5.67 5.76 5.59 5.76 98.34 98.01 97.29 98.45 100.00 97.17
dimethylarginine Carboxylic acids and derivatives Amino acids, peptides, and analogues 0.63 202.1430 M+H 203.1503 5.87 5.90 5.81 5.89 5.87 5.86 5.90 99.43 100.00 98.44 99.82 99.50 99.32
Carnitine Organonitrogen compounds Quaternary ammonium salts  0.54 161.1052 M+H 162.1125 6.54 6.59 6.41 6.55 6.55 6.60 6.60 99.00 99.86 97.02 99.15 99.15 100.00
Tyrosine Carboxylic acids and derivatives Amino acids, peptides, and analogues 1.40 181.0739 M+H 182.0812 6.37 6.41 6.29 6.39 6.36 6.39 6.41 99.29 100.00 98.08 99.61 99.16 99.70
Creatine Carboxylic acids and derivatives Amino acids, peptides, and analogues 0.61 131.0695 M+H 132.0768 6.32 6.37 6.25 6.36 6.30 6.35 6.37 99.24 100.00 98.00 99.77 98.88 99.65
Betaine Carboxylic acids and derivatives Amino acids, peptides, and analogues 0.56 117.0790 M+H 118.0863 6.40 6.45 6.32 6.43 6.37 6.42 6.45 99.23 100.00 98.02 99.77 98.89 99.52
Proline betaine Carboxylic acids and derivatives Amino acids, peptides, and analogues 0.68 143.0946 M+H 144.1019 6.52 6.57 6.45 6.55 6.50 6.54 6.57 99.25 100.00 98.15 99.69 98.92 99.53
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 List of identified metabolites (RPC negtaive mode peakpantheR) and relative method induced losses (%) 

Compound HMDBClass HMDBSubClass Retention time (min) cpdMonoisotopic ion m/z Pool-mean Folch-mean BD-mean Matyash-mean DSPE-mean MeOH-mean Max intensity Pool Folch BD Matyash DSPE MeOH
1,3,7-Trimethylurate Imidazopyrimidines Purines and purine derivatives 2.95 210.0753 M-H 209.0680 3.75 3.68 3.69 3.77 3.79 3.80 3.80 98.58 96.83 97.16 99.11 99.84 100.00
1,7-Dimethylurate Imidazopyrimidines Purines and purine derivatives 2.57 196.0596 M-H 195.0524 4.35 4.32 4.34 4.34 4.39 4.37 4.39 99.16 98.51 98.79 98.80 100.00 99.57
2-Hydroxy-2-methylbutanoate Fatty Acyls Fatty acids and conjugates 2.45 118.0630 M-H 117.0557 3.98 3.90 4.01 4.00 4.00 3.95 4.01 99.30 97.40 100.00 99.78 99.89 98.61
Methylglutarate Fatty Acyls Fatty acids and conjugates 2.66 146.0579 M-H 145.0506 4.26 4.33 4.35 4.32 4.00 3.98 4.35 97.99 99.60 100.00 99.45 92.02 91.53
Adipate Fatty Acyls Fatty acids and conjugates 2.59 146.0579 M-H 145.0506 4.25 4.32 4.34 4.31 3.99 3.97 4.34 97.97 99.56 100.00 99.43 91.99 91.50
Azelaic Acid Fatty Acyls  Fatty acids and conjugates 5.48 188.1049 M-H 187.0976 5.60 5.44 5.89 5.37 5.35 5.40 5.89 95.18 92.32 100.00 91.15 90.89 91.64
Cholate Steroids and steroid derivatives Bile acids, alcohols and derivatives 9.75 408.2876 M-H 407.2803 4.76 4.78 4.82 4.88 4.63 4.56 4.88 97.57 98.01 98.76 100.00 94.80 93.41
Indolelactate Indoles and derivatives Indolyl carboxylic acids and derivatives 4.86 205.0739 M-H 204.0666 5.18 5.18 5.22 5.23 5.09 5.15 5.23 99.13 99.07 99.80 100.00 97.32 98.58
4-Hydroxyphenyllactate Phenylpropanoic acids 2.81 182.0579 M-H 181.0506 5.10 5.09 5.10 5.11 5.10 5.10 5.11 99.75 99.48 99.67 100.00 99.69 99.78
Histidine Carboxylic acids and derivatives  Amino acids, peptides, and analogues 0.52 155.0695 M-H 154.0622 5.18 5.17 5.12 5.19 5.27 5.10 5.27 98.23 98.21 97.16 98.46 100.00 96.82
Hypoxanthine Imidazopyrimidines Purines and purine derivatives 1.20 136.0385 M-H 135.0312 4.89 4.89 4.88 4.88 4.94 4.88 4.94 99.09 98.95 98.78 98.80 100.00 98.73
Indoxyl sulfate Organic sulfuric acids and derivatives Arylsulfates 3.40 213.0096 M-H 212.0023 6.32 6.36 6.26 6.35 6.32 6.34 6.36 99.47 100.00 98.51 99.94 99.41 99.67
Tyrosine Carboxylic acids and derivatives  Amino acids, peptides, and analogues 1.38 181.0739 M-H 180.0666 6.35 6.37 6.25 6.36 6.40 6.41 6.41 99.04 99.28 97.46 99.18 99.73 100.00
Acetaminophen Glucuronide Organooxygen compounds Carbohydrates and carbohydrate conjugates 1.92 327.0954 M-H 326.0881 5.04 5.03 5.04 5.03 5.00 5.08 5.08 99.13 99.04 99.16 99.05 98.31 100.00
Pantothenate Alcohols and polyols Polyols 2.31 219.1107 M-H 218.1034 4.52 4.51 4.52 4.52 4.53 4.50 4.53 99.75 99.49 99.74 99.87 100.00 99.44
Acetaminophen Sulfate Organic sulfuric acids and derivatives  Arylsulfates 2.26 231.0201 M-H 230.0129 5.51 5.51 5.47 5.51 5.51 5.54 5.54 99.34 99.37 98.66 99.41 99.47 100.00
p-Cresol sulfate Organic sulfuric acids and derivatives Arylsulfates 4.20 188.0143 M-H 187.0071 6.95 7.00 6.82 6.97 6.97 7.05 7.05 98.63 99.31 96.76 98.86 98.87 100.00
Salicylate Benzene and substituted derivatives Benzoic acids and derivatives 5.48 138.0317 M-H 137.0244 4.69 4.69 4.70 4.67 4.68 4.74 4.74 99.14 99.00 99.20 98.67 98.78 100.00
Succinate Carboxylic acids and derivatives Dicarboxylic acids and derivatives 1.37 118.0266 M-H 117.0193 5.40 5.43 5.42 5.41 5.31 5.41 5.43 99.36 100.00 99.68 99.50 97.67 99.58
Theophylline Imidazopyrimidines Purines and purine derivatives 2.76 180.0647 M-H 179.0574 5.03 4.73 5.03 5.02 5.16 5.10 5.16 97.64 91.75 97.64 97.30 100.00 99.01
Urate Imidazopyrimidines Purines and purine derivatives 1.12 168.0283 M-H 167.0211 6.89 6.94 6.74 6.91 6.90 7.00 7.00 98.41 99.15 96.32 98.74 98.54 100.00
Uridine Pyrimidine nucleosides 1.38 244.0695 M-H 243.0623 5.60 5.59 5.57 5.58 5.65 5.60 5.65 99.05 98.92 98.53 98.64 100.00 99.01
D-Gluconate Organooxygen compounds Carbohydrates and carbohydrate conjugates 0.58 196.0583 M-H 195.0505 5.82 5.48 5.54 5.51 6.13 6.05 6.13 94.88 89.40 90.31 89.89 100.00 98.63
Malate Hydroxy acids and derivatives Beta hydroxy acids and derivatives  0.75 134.0215 M-H 133.0137 4.75 4.76 4.83 4.76 4.68 4.66 4.83 98.50 98.63 100.00 98.61 97.03 96.50
Glutamate Carboxylic acids and derivatives  Amino acids, peptides, and analogues 0.54 147.0532 M-H 146.0453 6.18 6.11 6.03 6.10 6.27 6.37 6.37 96.94 95.86 94.67 95.66 98.43 100.00
3-Hydroxyhippurate Benzene and substituted derivatives Benzoic acids and derivatives 2.73 195.0532 M-H 194.0453 4.17 4.17 4.17 4.15 4.15 4.22 4.22 98.97 99.00 98.84 98.49 98.45 100.00
N-acetyl-L-glutamate Carboxylic acids and derivatives Amino acids, peptides, and analogues 1.35 189.0637 M-H 188.0559 3.94 3.88 3.99 3.90 3.82 4.05 4.05 97.25 95.85 98.63 96.31 94.40 100.00
Phenylalanine Carboxylic acids and derivatives  Amino acids, peptides, and analogues 2.05 165.0790 M-H 164.0712 6.14 6.17 5.96 6.17 6.25 6.17 6.25 98.33 98.82 95.48 98.85 100.00 98.82
Glutarate Carboxylic acids and derivatives  Dicarboxylic acids and derivatives 1.86 132.0423 M-H 131.0344 4.39 4.51 4.50 4.34 4.20 4.19 4.51 97.15 100.00 99.59 96.23 92.93 92.72
N-Acetylneuraminate Organooxygen compounds Carbohydrates and carbohydrate conjugates  0.62 309.1060 M-H 308.0987 6.17 6.27 6.24 6.41 5.24 5.49 6.41 96.24 97.79 97.24 100.00 81.78 85.59
Quinate Organooxygen compounds Alcohols and polyols  0.65 192.0634 M-H 191.0561 5.28 5.25 5.28 5.27 5.31 5.27 5.31 99.37 98.88 99.26 99.20 100.00 99.23
Xanthine Imidazopyrimidines Purines and purine derivatives 1.31 152.0334 M-H 151.0262 5.10 5.09 5.09 5.10 5.14 5.08 5.14 99.32 99.09 99.10 99.34 100.00 98.86
4-Hydroxyhippurate Benzene and substituted derivatives Benzoic acids and derivatives 2.45 195.0532 M-H 194.0459 4.27 4.27 4.28 4.27 4.25 4.29 4.29 99.57 99.56 99.62 99.50 99.11 100.00
Pyroglutamate Carboxylic acids and derivatives Amino acids, peptides, and analogues 1.25 129.0426 M-H 128.0353 6.35 6.36 6.26 6.36 6.35 6.42 6.42 98.86 99.13 97.58 99.07 98.96 100.00
Xanthosine Purine nucleosides 1.83 284.0757 M-H 283.0684 3.92 3.82 3.95 3.90 3.97 3.84 3.97 98.66 96.27 99.59 98.16 100.00 96.73
N-Acetylaspartate Carboxylic acids and derivatives Amino acids, peptides, and analogues 1.00 175.0481 M-H 174.0408 4.30 4.28 4.34 4.29 4.26 4.31 4.34 99.08 98.54 100.00 98.83 98.12 99.38
N-acetyl-L-carnosine Peptidomimetics Hybrid peptides 0.92 268.1172 M-H 267.1090 4.36 4.32 4.38 4.35 4.40 4.31 4.40 99.00 98.03 99.51 98.85 100.00 97.87
Riboflavin Pteridines and derivatives Alloxazines and isoalloxazines 3.82 376.1383 M-H 375.1310 2.88 2.39 2.50 1.58 3.36 2.83 3.36 85.63 71.08 74.29 46.97 100.00 84.03
Suberate Fatty Acyls Fatty acids and conjugates 4.46 174.0892 M-H 173.0819 4.70 4.79 4.81 4.65 4.52 4.59 4.81 97.70 99.60 100.00 96.60 93.91 95.39
Sucrose Organooxygen compounds Carbohydrates and carbohydrate conjugates 0.68 342.1162 M-H 341.1089 4.86 4.84 4.84 4.87 4.90 4.82 4.90 99.15 98.74 98.81 99.45 100.00 98.35
Phenyllactate Phenylpropanoic acids 4.51 166.0630 M-H 165.0552 4.62 4.60 4.63 4.63 4.62 4.60 4.63 99.73 99.39 99.88 100.00 99.79 99.38
a-Hydroxyisobutanoate Hydroxy acids and derivatives Alpha hydroxy acids and derivatives 1.62 104.0473 M-H 103.0401 5.43 5.43 5.40 5.44 5.44 5.44 5.44 99.73 99.79 99.10 100.00 99.90 99.95
Indoxyl glucuronide Organooxygen compounds Carbohydrates and carbohydrate conjugates 3.39 309.0849 M-H 308.0776 3.05 3.11 3.12 3.14 2.82 2.72 3.14 97.23 99.18 99.53 100.00 89.81 86.62
Citrate Carboxylic acids and derivatives Tricarboxylic acids and derivatives 1.13 192.0270 M-H 191.0197 6.55 6.07 6.77 6.44 6.35 6.37 6.77 96.80 89.79 100.00 95.21 93.87 94.20
Pregnanediol-3-glucuronide Steroids and steroid derivatives Steroidal glycosides 9.23 496.3036 M-H 495.2953 5.09 5.16 5.12 5.20 4.89 5.00 5.20 97.95 99.20 98.48 100.00 94.13 96.11
p-Cresol glucuronide Organooxygen compounds Carbohydrates and carbohydrate conjugates 4.30 284.0896 M-H 283.0824 4.37 4.39 4.37 4.38 4.31 4.43 4.43 98.69 99.09 98.49 98.75 97.21 100.00
2-hydroxybutyric acid Hydroxy acids and derivatives Alpha hydroxy acids and derivatives 1.30 104.0473 M-H 103.0403 4.84 4.85 4.79 4.86 4.86 4.86 4.86 99.53 99.76 98.38 100.00 99.92 99.97
4-hydroxybutyric acid Hydroxy acids and derivatives Alpha hydroxy acids and derivatives 1.67 104.0473 M-H 103.0404 5.43 5.43 5.40 5.45 5.44 5.44 5.45 99.73 99.80 99.11 100.00 99.90 99.96
Epinephrine sulfate Organic sulfuric acids and derivatives  Arylsulfates 0.89 263.0464 M-H 262.0425 4.65 4.59 4.49 4.28 4.75 4.57 4.75 97.86 96.54 94.42 89.99 100.00 96.18
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List of annotated metabolites (HILIC positive mode peakpantheR) 
Compound HMDBSubClass HMDB Class cpdMonoisotopic ion Retention time (min) m/z
1,2-Dimyristoyl-sn-glycero-3-phosphocholine Organooxygen compounds  Carbohydrates and carbohydrate conjugates 677.4996 M+H 4.18 678.5068
Citrulline Carboxylic acids and derivatives Amino acids, peptides, and analogues M+Na 5.74 198.0850
L-prolyl-L-proline 212.1161 M+H 5.40 213.1234
Sucrose 342.1162 M+Na 2.27 365.1053
Oleoylcarnitine (C18:1) M+H 3.65 426.3578
a-glycerophosphocholine 257.1028 M+H 6.02 258.1101
Hypoxanthine Glycerophospholipids  Glycerophosphocholines  136.0385 M+H 1.59 137.0458
Tryptamine 160.1000 M-NH3+H 2.79 144.0813
Propionylcarnitine Fatty Acyls  Fatty acid esters  M+Na 4.82 240.1180
1-Methyl-2-piperidinecarboxylate 143.0946 M+H 4.59 144.1019
Histidine 155.0695 M+H 6.15 156.0768
Cotinine Pyridines and derivatives  Pyridinecarboxylic acids and derivatives  176.0950 M+H 1.40 177.1022
Trigonelline 137.0477 M+H 4.85 138.0550
Lysine 146.1055 M+H 5.98 147.1128
Methionine 149.0510 M+H 4.11 150.0583
4-Trimethylammoniobutanoate 146.1181 M 4.91 146.1181
Palmitoylcarnitine (C16:0) 399.3349 M+H 3.78 400.3421
N6,N6,N6-Trimethyllysine 188.1525 M+H 6.16 189.1598
N,N-Dimethylglycine 103.0633 M+H 4.64 104.0712
Glutarylcarnitine 275.1369 M+H 5.10 276.1442
Alanine 89.0477 M+2Na-H 4.57 134.0188
Tetradecenoylcarnitine (C14:1) 369.2879 M+H 3.86 370.2952
Taurine 125.0147 M+H 2.61 126.0219
3-methylhistidine 169.0851 M+H 6.35 170.0924
Linoleoylcarnitine (C18:2) 423.3349 M+H 3.80 424.3421
N-Acetyl-D-mannosamine 221.0899 M+Na 1.81 244.0792
Acetaminophen 151.0633 M+H 0.71 152.0706
Trimethylaminoacetone 116.1075 M+ 3.51 116.1075
Symmetric | Asymmetric Dimethylarginine 202.1430 M+H 5.91 203.1503
Tetradecadienoylcarnitine (C14:2) Fatty Acyls  Fatty acid esters  367.2723 M+H 3.81 368.2795
N1-Acetylspermidine 187.1685 M+H 5.99 188.1757
Tetradecanoylcarnitine (C14:0) 371.3036 M+H 3.78 372.3109
Creatine 131.0695 M+H 5.06 132.0768
Hydroxybutyrylcarnitine (C4:0-OH) 247.1420 M+H 5.40 248.1492
Decanoylcarnitine (C10:0) 315.2410 M+H 3.92 316.2482
Tiglylcarnitine (C5:1) 243.1471 M+H 4.54 244.1543
Laurylcarnitine (C12:0) 343.2723 M+H 3.97 344.2795
Pipecolate | N-methyl proline 129.0790 M+H 4.48 130.0863
N6-Methyladenosine 281.1124 M+H 1.43 282.1197
Hydroxyisovaleroyl Carnitine HMDBClass HMDBSubClass 261.1576 M+H 5.22 262.1649
Butyryl- | isobutyrylcarnitine 231.1471 M+H 4.69 232.1543
Decenoylcarnitine (10:1) 313.2253 M+H 4.00 314.2326
Proline 115.0633 M+H 4.46 116.0706
N1-methyl-4-pyridone-3-carboxamide M+H 1.50 153.0659
Cortisol 362.2093 M+H 0.71 363.2166
Urocanate 138.0429 M+H 1.30 139.0502
Choline 104.1075 M 3.97 104.1075
Homoarginine 188.1273 M+H 5.92 189.1346
4-Guanidinobutanoate 145.0851 M+H 3.84 146.0930
1-Methylnicotinamide 137.0715 M+ 4.08 137.0713
Isovaleryl | valeryl | 2-methylbutyryl carnitine 245.1627 M+H 4.39 246.1700
Phenacetylcarnitine 280.1549 M 4.47 280.1549
Pantothenate 219.1107 M+H 1.13 220.1179
Hexanoylcarnitine (C6:0) 259.1784 M+H 4.34 260.1856
Arginine 174.1117 M+H 5.92 175.1190
Carnitine Organonitrogen compounds  Quaternary ammonium salts  161.1052 M+H 5.32 162.1125
Betaine Organooxygen compounds  Carbonyl compounds  117.0790 M+H 4.78 118.0863
Tryptophan 204.0899 M+H 3.82 205.0972
Creatinine 113.0589 M+Na 2.51 136.0481
Pseudouridine 244.0695 M+H 1.25 245.0768
Paraxanthine 180.0647 M+H 0.95 181.0720
Caffeine 194.0804 M+H 0.85 195.0877
Trimethylamine N-oxide 75.0684 M+H 4.18 76.0757
Dodecenoylcarnitine (12:1) 341.2566 M+H 3.89 342.2639
Niacinamide 122.0480 M+H 1.07 123.0553
Hydroxydecanoylcarnitine (C10:0-OH) 331.2359 M+H 4.49 332.2431
L-Acetylcarnitine 203.1158 M+H 5.03 204.1230
Phenylalanine 165.0790 M+H 3.78 166.0863
1-Methyladenosine 281.1124 M+H 1.43 282.1197
Decadienoylcarnitine (C10:2) 311.2097 M+H 4.11 312.2169
Octanoylcarnitine (C8:0) Organoheterocyclic compounds  Pyridines and derivatives  287.2097 M+H 4.13 288.2169
Proline Betaine 143.0946 M+Na 4.91 166.0839
Octenoylcarnitine (C8:1) Fatty Acyls Fatty acid esters 285.1940 M+H 4.20 286.2013
1,1-Dimethylbiguanide (Metformin) 129.1014 M+H 3.42 130.1087
Warfarin Carboxylic acids and derivatives Amino acids, peptides, and analogues 308.1049 M+H 0.67 309.1121
N1-methyl-2-pyridone-5-carboxamide M+H 1.50 153.0659
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 List of annotated metabolites from region 1 (LIPID positive mode peakpantheR), and relative method induced losses 
(%) 

Compound HMDBSubClass HMDBDirectParent LMapsID LMapsSubclass cpdMonoisotopicMZ ion m/z Retention time (min) Region BD-mean BD-%CV Folch-mean Folch-%CV Matyash-mean Matyash-%CV Max intensity BD Folch Matyash
CAR(8:1) Fatty acid esters Acyl carnitines Fatty acyl carnitines [FA0707] 285.1940 [M+H]+ 286.2015 0.42 1 4.45 1.17 4.19 0.72 4.09 0.65 4.45 100.00 94.06 91.95
CAR(8:0) Fatty acid esters Acyl carnitines LMFA07070095 Fatty acyl carnitines [FA0707] 287.2097 [M+H]+ 288.2175 0.46 1 4.13 1.68 4.08 0.89 3.94 1.02 4.13 100.00 98.90 95.43
CAR(10:2) Fatty acid esters Acyl carnitines Fatty acyl carnitines [FA0707] 311.2097 [M+H]+ 312.2168 0.47 1 3.79 6.11 3.74 2.15 3.60 2.33 3.79 100.00 98.76 94.88
CAR(10:0-OH) Fatty acid esters Acyl carnitines Fatty acyl carnitines [FA0707] 331.2359 [M+H]+ 332.2440 0.49 1 3.56 2.78 3.22 2.63 3.44 5.20 3.56 100.00 90.53 96.73
CAR(10:1) Fatty acid esters Acyl carnitines Fatty acyl carnitines [FA0707] 313.2253 [M+H]+ 314.2332 0.53 1 4.46 0.73 4.68 0.57 4.40 0.73 4.68 95.33 100.00 93.93
CAR(12:1-OH) Fatty acid esters Acyl carnitines Fatty acyl carnitines [FA0707] 357.2515 [M+H]+ 358.2585 0.56 1 3.45 1.85 3.63 2.05 3.26 4.30 3.63 95.03 100.00 89.73
CAR(10:0) Fatty acid esters Acyl carnitines LMFA07070059 Fatty acyl carnitines [FA0707] 315.2410 [M+H]+ 316.2490 0.61 1 4.61 0.90 4.87 0.43 4.60 0.33 4.87 94.58 100.00 94.38
CAR(12:1)_1 Fatty acid esters Acyl carnitines Fatty acyl carnitines [FA0707] 341.2566 [M+H]+ 342.2645 0.72 1 4.36 0.58 4.75 0.66 4.47 0.69 4.75 91.90 100.00 94.25
CAR(18:0-DC) Fatty acid esters Acyl carnitines Fatty acyl carnitines [FA0707] 457.3403 [M+H]+ 458.3472 0.84 1 2.55 19.69 0.85 155.09 0.96 167.59 2.55 100.00 33.17 37.50
CAR(14:2) Fatty acid esters Acyl carnitines Fatty acyl carnitines [FA0707] 367.2723 [M+H]+ 368.2803 0.85 1 4.25 1.46 4.69 0.66 4.43 0.50 4.69 90.72 100.00 94.58
CAR(12:0) Fatty acid esters Acyl carnitines LMFA07070062 Fatty acyl carnitines [FA0707] 343.2723 [M+H]+ 344.2804 0.88 1 4.40 0.49 4.76 0.58 4.50 0.61 4.76 92.47 100.00 94.52
CAR(14:0-OH) Fatty acid esters Acyl carnitines Fatty acyl carnitines [FA0707] 387.2985 [M+H]+ 388.3057 0.97 1 3.35 2.18 3.77 1.62 3.67 1.74 3.77 88.77 100.00 97.27
CAR(14:1) Fatty acid esters Acyl carnitines Fatty acyl carnitines [FA0707] 369.2879 [M+H]+ 370.2959 1.06 1 4.56 0.82 4.90 0.42 4.72 0.57 4.90 93.20 100.00 96.29
CAR(16:1-OH) Fatty acid esters Acyl carnitines Fatty acyl carnitines [FA0707] 413.3141 [M+H]+ 414.3219 1.15 1 3.24 4.92 3.72 2.58 3.52 1.68 3.72 87.18 100.00 94.60
CAR(16:2) Fatty acid esters Acyl carnitines Fatty acyl carnitines [FA0707] 395.3036 [M+H]+ 396.3109 1.16 1 3.61 3.29 4.04 1.38 3.89 0.95 4.04 89.34 100.00 96.28
CAR(14:0) Fatty acid esters Acyl carnitines LMFA07070107 Fatty acyl carnitines [FA0707] 371.3036 [M+H]+ 372.3116 1.26 1 4.10 1.89 4.47 0.94 4.32 0.45 4.47 91.70 100.00 96.63
LPC(0:0/14:0) Glycerophosphocholines2-acyl-sn-glycero-3-phosphocholines LMGP01050073 Monoacylglycerophosphocholines [GP0105] 467.3012 [M+H]+ 468.3090 1.27 1 5.14 1.12 5.44 0.63 5.28 0.34 5.44 94.66 100.00 97.13
LPC(0:0/18:3) Glycerophosphocholines2-acyl-sn-glycero-3-phosphocholines Monoacylglycerophosphocholines [GP0105] 517.3168 [M+H]+ 518.3236 1.28 1 4.47 1.60 4.76 0.65 4.62 0.48 4.76 94.01 100.00 97.20
LPC(0:0/20:5) Glycerophosphocholines2-acyl-sn-glycero-3-phosphocholines Monoacylglycerophosphocholines [GP0105] 541.3168 [M+H]+ 542.3242 1.29 1 4.60 1.89 4.89 0.80 4.76 0.52 4.89 94.06 100.00 97.32
CAR(18:3)_2 Fatty acid esters Acyl carnitines Fatty acyl carnitines [FA0707] 421.3192 [M+H]+ 422.3259 1.35 1 3.48 1.46 3.82 1.52 3.70 1.24 3.82 91.17 100.00 96.84
LPC(14:0/0:0) Glycerophosphocholines1-acyl-sn-glycero-3-phosphocholines LMGP01050012 Monoacylglycerophosphocholines [GP0105] 467.3012 [M+H]+ 468.3092 1.36 1 5.14 1.11 5.44 0.63 5.28 0.34 5.44 94.66 100.00 97.13
LPC(18:3/0:0)_1 Glycerophosphocholines1-acyl-sn-glycero-3-phosphocholines Monoacylglycerophosphocholines [GP0105] 517.3168 [M+H]+ 518.3245 1.36 1 4.47 1.52 4.75 0.67 4.62 0.45 4.75 94.04 100.00 97.22
LPC(20:5/0:0) Glycerophosphocholines1-acyl-sn-glycero-3-phosphocholines Monoacylglycerophosphocholines [GP0105] 541.3168 [M+H]+ 542.3246 1.37 1 4.60 1.89 4.89 0.80 4.76 0.52 4.89 94.06 100.00 97.32
LPA(18:2/0:0) Glycerophosphates 1-acylglycerol-3-phosphates Monoacylglycerophosphates [GP1005] 434.2433 [M+H-H2O]+ 417.2409 1.39 1 3.47 2.31 2.31 49.48 3.67 1.41 3.67 94.55 63.08 100.00
LPA(20:4/0:0) Glycerophosphates 1-acylglycerol-3-phosphates Monoacylglycerophosphates [GP1005] 458.2433 [M+H-H2O]+ 441.2401 1.39 1 2.95 6.25 1.54 78.98 3.18 2.35 3.18 92.77 48.40 100.00
LPC(0:0/16:1) Glycerophosphocholines2-acyl-sn-glycero-3-phosphocholines Monoacylglycerophosphocholines [GP0105] 493.3168 [M+H]+ 494.3243 1.41 1 5.45 0.92 5.68 0.64 5.56 0.38 5.68 95.91 100.00 97.92
CAR(16:1)_2 Fatty acid esters Acyl carnitines Fatty acyl carnitines [FA0707] 397.3192 [M+H]+ 398.3269 1.45 1 4.69 5.26 4.98 1.34 4.86 2.05 4.98 94.09 100.00 97.56
LPC(16:1/0:0) Glycerophosphocholines1-acyl-sn-glycero-3-phosphocholines Monoacylglycerophosphocholines [GP0105] 493.3168 [M+H]+ 494.3249 1.50 1 5.45 0.92 5.68 0.64 5.56 0.38 5.68 95.91 100.00 97.92
LPC(0:0/15:0) Glycerophosphocholines2-acyl-sn-glycero-3-phosphocholines Monoacylglycerophosphocholines [GP0105] 481.3168 [M+H]+ 482.3244 1.50 1 5.05 1.06 5.31 0.63 5.20 0.41 5.31 95.16 100.00 97.85
LPC(0:0/22:6) Glycerophosphocholines2-acyl-sn-glycero-3-phosphocholines Monoacylglycerophosphocholines [GP0105] 567.3325 [M+H]+ 568.3403 1.52 1 5.28 1.74 5.52 0.64 5.44 0.40 5.52 95.60 100.00 98.40
CAR(18:2) Fatty acid esters Acyl carnitines Fatty acyl carnitines [FA0707] 423.3349 [M+H]+ 424.3431 1.56 1 4.85 0.98 5.07 0.67 5.01 0.42 5.07 95.57 100.00 98.72
LPC(0:0/18:2) Glycerophosphocholines2-acyl-sn-glycero-3-phosphocholines Monoacylglycerophosphocholines [GP0105] 519.3325 [M+H]+ 520.3407 1.56 1 6.69 0.70 6.77 0.59 6.71 0.47 6.77 98.81 100.00 99.05
LPC(0:0/20:4) Glycerophosphocholines2-acyl-sn-glycero-3-phosphocholines Monoacylglycerophosphocholines [GP0105] 543.3325 [M+H]+ 544.3402 1.57 1 6.24 0.98 6.35 0.60 6.29 0.44 6.35 98.33 100.00 99.09
CAR(20:4) Fatty acid esters Acyl carnitines Fatty acyl carnitines [FA0707] 447.3349 [M+H]+ 448.3429 1.58 1 3.56 3.28 4.00 1.09 3.92 1.14 4.00 89.20 100.00 98.15
LPC(22:6/0:0) Glycerophosphocholines1-acyl-sn-glycero-3-phosphocholines Monoacylglycerophosphocholines [GP0105] 567.3325 [M+H]+ 568.3402 1.60 1 5.28 1.74 5.52 0.64 5.44 0.40 5.52 95.60 100.00 98.40
LPC(15:0/0:0) Glycerophosphocholines1-acyl-sn-glycero-3-phosphocholines LMGP01050016 Monoacylglycerophosphocholines [GP0105] 481.3168 [M+H]+ 482.3247 1.61 1 5.05 1.06 5.31 0.63 5.20 0.41 5.31 95.16 100.00 97.85
LPE(0:0/18:2) Glycerophosphoethanolamines2-acyl-sn-glycero-3-phosphoethanolamines Monoacylglycerophosphoethanolamines [GP0205] 477.2855 [M+H]+ 478.2939 1.63 1 3.50 14.36 4.67 0.61 4.57 1.34 4.67 74.89 100.00 97.80
LPC(20:4/0:0) Glycerophosphocholines1-acyl-sn-glycero-3-phosphocholines Monoacylglycerophosphocholines [GP0105] 543.3325 [M+H]+ 544.3402 1.66 1 6.24 0.98 6.35 0.60 6.29 0.44 6.35 98.33 100.00 99.09
LPC(18:2/0:0) Glycerophosphocholines1-acyl-sn-glycero-3-phosphocholines Monoacylglycerophosphocholines [GP0105] 519.3325 [M+H]+ 520.3406 1.66 1 6.69 0.70 6.77 0.59 6.71 0.47 6.77 98.81 100.00 99.05
LPC(0:0/22:5)_1 Glycerophosphocholines2-acyl-sn-glycero-3-phosphocholines Monoacylglycerophosphocholines [GP0105] 569.3481 [M+H]+ 570.3550 1.66 1 4.95 1.47 5.11 0.82 5.07 0.61 5.11 96.86 100.00 99.11
LPE(18:2/0:0) Glycerophosphoethanolamines1-acyl-sn-glycero-3-phosphoethanolamines Monoacylglycerophosphoethanolamines [GP0205] 477.2855 [M+H]+ 478.2939 1.71 1 3.50 14.36 4.67 0.61 4.57 1.34 4.67 74.89 100.00 97.80
LPE(20:4/0:0) Glycerophosphoethanolamines1-acyl-sn-glycero-3-phosphoethanolamines Monoacylglycerophosphoethanolamines [GP0205] 501.2855 [M+H]+ 502.2944 1.71 1 3.92 8.21 4.77 0.77 4.66 1.04 4.77 82.22 100.00 97.74
LPA(18:1/0:0) Glycerophosphates 1-acylglycerol-3-phosphates Monoacylglycerophosphates [GP1005] 436.2590 [M+H-H2O]+ 419.2559 1.71 1 3.57 3.68 3.73 2.56 3.70 2.09 3.73 95.51 100.00 99.11
LPC(22:5/0:0)_1 Glycerophosphocholines1-acyl-sn-glycero-3-phosphocholines Monoacylglycerophosphocholines [GP0105] 569.3481 [M+H]+ 570.3556 1.74 1 4.95 1.47 5.11 0.82 5.07 0.61 5.11 96.86 100.00 99.11
LPC(17:1/0:0) Glycerophosphocholines1-acyl-sn-glycero-3-phosphocholines Monoacylglycerophosphocholines [GP0105] 507.3325 [M+H]+ 508.3404 1.75 1 4.43 1.35 4.69 0.94 4.61 0.54 4.69 94.48 100.00 98.37
LPC(0:0/20:3) Glycerophosphocholines2-acyl-sn-glycero-3-phosphocholines Monoacylglycerophosphocholines [GP0105] 545.3481 [M+H]+ 546.3558 1.75 1 5.24 4.36 5.57 4.54 5.53 3.27 5.57 94.09 100.00 99.26
CAR(16:0) Fatty acid esters Acyl carnitines LMFA07070004 Fatty acyl carnitines [FA0707] 399.3349 [M+H]+ 400.3429 1.75 1 4.95 1.03 5.16 0.66 5.11 0.59 5.16 95.80 100.00 98.90
CAR(20:3) Fatty acid esters Acyl carnitines Fatty acyl carnitines [FA0707] 449.3505 [M+H]+ 450.3580 1.75 1 3.58 1.36 3.83 1.26 3.80 0.69 3.83 93.48 100.00 99.33
LPC(0:0/16:0) Glycerophosphocholines2-acyl-sn-glycero-3-phosphocholines LMGP01050074 Monoacylglycerophosphocholines [GP0105] 495.3325 [M+H]+ 496.3407 1.76 1 7.43 0.87 7.45 0.59 7.41 0.55 7.45 99.77 100.00 99.39
LPE(0:0/16:0) Glycerophosphoethanolamines2-acyl-sn-glycero-3-phosphoethanolaminesLMGP02050036 Monoacylglycerophosphoethanolamines [GP0205] 453.2855 [M+H]+ 454.2935 1.82 1 3.65 8.09 4.57 0.67 4.56 1.03 4.57 79.98 100.00 99.75
LPC(20:3/0:0)_1 Glycerophosphocholines1-acyl-sn-glycero-3-phosphocholines Monoacylglycerophosphocholines [GP0105] 545.3481 [M+H]+ 546.3561 1.84 1 5.62 1.20 5.71 0.64 5.68 0.38 5.71 98.49 100.00 99.51
LPC(16:0/0:0) Glycerophosphocholines1-acyl-sn-glycero-3-phosphocholines LMGP01050018 Monoacylglycerophosphocholines [GP0105] 495.3325 [M+H]+ 496.3407 1.87 1 7.43 0.87 7.45 0.59 7.41 0.55 7.45 99.77 100.00 99.39
LPC(20:3/0:0)_2 Glycerophosphocholines1-acyl-sn-glycero-3-phosphocholines Monoacylglycerophosphocholines [GP0105] 545.3481 [M+H]+ 546.3559 1.91 1 5.62 1.20 5.71 0.64 5.68 0.38 5.71 98.49 100.00 99.51
CAR(18:1) Fatty acid esters Acyl carnitines Fatty acyl carnitines [FA0707] 425.3505 [M+H]+ 426.3588 1.91 1 5.07 1.06 5.24 0.61 5.22 0.59 5.24 96.83 100.00 99.61
LPC(0:0/18:1) Glycerophosphocholines2-acyl-sn-glycero-3-phosphocholines Monoacylglycerophosphocholines [GP0105] 521.3481 [M+H]+ 522.3563 1.91 1 6.65 0.78 6.73 0.50 6.69 0.51 6.73 98.76 100.00 99.43
LPE(16:0/0:0) Glycerophosphoethanolamines1-acyl-sn-glycero-3-phosphoethanolaminesLMGP02050002 Monoacylglycerophosphoethanolamines [GP0205] 453.2855 [M+H]+ 454.2935 1.93 1 3.66 8.09 4.57 0.67 4.56 1.03 4.57 80.02 100.00 99.75
LPC(18:1/0:0)_1 Glycerophosphocholines1-acyl-sn-glycero-3-phosphocholines Monoacylglycerophosphocholines [GP0105] 521.3481 [M+H]+ 522.3562 2.01 1 6.65 0.78 6.73 0.50 6.69 0.51 6.73 98.76 100.00 99.43
LPC(0:0/20:2) Glycerophosphocholines2-acyl-sn-glycero-3-phosphocholines Monoacylglycerophosphocholines [GP0105] 547.3638 [M+H]+ 548.3710 2.03 1 4.95 0.64 5.03 1.04 5.03 0.73 5.03 98.41 100.00 99.97
LPC(22:4/0:0) Glycerophosphocholines1-acyl-sn-glycero-3-phosphocholines Monoacylglycerophosphocholines [GP0105] 571.3638 [M+H]+ 572.3713 2.05 1 4.80 1.32 4.85 0.82 4.84 0.59 4.85 98.79 100.00 99.75
LPC(18:1/0:0)_2 Glycerophosphocholines1-acyl-sn-glycero-3-phosphocholines Monoacylglycerophosphocholines [GP0105] 521.3481 [M+H]+ 522.3565 2.08 1 6.65 0.78 6.73 0.50 6.69 0.51 6.73 98.76 100.00 99.43
LPC(O-16:0/0:0) Glycerophosphocholines1-acyl-sn-glycero-3-phosphocholines LMGP01060010 Monoalkylglycerophosphocholines [GP0106] 481.3532 [M+H]+ 482.3610 2.09 1 5.89 0.65 5.97 0.95 5.93 0.34 5.97 98.66 100.00 99.29
LPC(P-16:0/0:0) Glycerophosphocholines1-(1Z-alkenyl)-glycero-3-phosphocholinesLMGP01070006 1Z-alkenylglycerophosphocholines [GP0107] 479.3376 [M+H]+ 480.3446 2.09 1 5.66 1.13 5.81 1.02 5.85 0.46 5.85 96.86 99.41 100.00
LPC(20:2/0:0) Glycerophosphocholines1-acyl-sn-glycero-3-phosphocholines Monoacylglycerophosphocholines [GP0105] 547.3638 [M+H]+ 548.3701 2.13 1 4.95 0.64 5.03 1.04 5.03 0.73 5.03 98.41 100.00 99.97
LPC(17:0/0:0) Glycerophosphocholines1-acyl-sn-glycero-3-phosphocholines LMGP01050024 Monoacylglycerophosphocholines [GP0105] 509.3481 [M+H]+ 510.3562 2.14 1 5.52 0.57 5.64 0.78 5.61 0.73 5.64 98.02 100.00 99.51
LPC(O-18:1/0:0)_1 Glycerophosphocholines1-acyl-sn-glycero-3-phosphocholines Monoalkylglycerophosphocholines [GP0106] 507.3689 [M+H]+ 508.3768 2.22 1 5.69 0.85 5.74 0.95 5.71 0.91 5.74 99.21 100.00 99.57
CAR(18:0) Fatty acid esters Acyl carnitines LMFA07070051 Fatty acyl carnitines [FA0707] 427.3662 [M+H]+ 428.3743 2.30 1 4.59 0.71 4.72 0.90 4.70 0.52 4.72 97.20 100.00 99.54
LPC(0:0/18:0) Glycerophosphocholines2-acyl-sn-glycero-3-phosphocholines LMGP01050076 Monoacylglycerophosphocholines [GP0105] 523.3638 [M+H]+ 524.3721 2.30 1 7.17 0.71 7.16 0.68 7.15 0.52 7.17 100.00 99.87 99.68
LPC(O-18:1/0:0)_2 Glycerophosphocholines1-acyl-sn-glycero-3-phosphocholines Monoalkylglycerophosphocholines [GP0106] 507.3689 [M+H]+ 508.3729 2.30 1 5.69 0.85 5.74 0.95 5.71 0.91 5.74 99.21 100.00 99.57
LPE(0:0/18:0) Glycerophosphoethanolamines2-acyl-sn-glycero-3-phosphoethanolaminesLMGP02050038 Monoacylglycerophosphoethanolamines [GP0205] 481.3168 [M+H]+ 482.3247 2.38 1 4.07 6.86 4.86 0.59 4.87 1.04 4.87 83.62 99.90 100.00
CAR(20:1) Fatty acid esters Acyl carnitines Fatty acyl carnitines [FA0707] 453.3818 [M+H]+ 454.3891 2.40 1 3.76 1.24 3.83 0.55 3.83 1.12 3.83 98.27 100.00 100.00
LPC(18:0/0:0) Glycerophosphocholines1-acyl-sn-glycero-3-phosphocholines LMGP01050026 Monoacylglycerophosphocholines [GP0105] 523.3638 [M+H]+ 524.3720 2.42 1 7.17 0.71 7.16 0.68 7.15 0.52 7.17 100.00 99.87 99.68
LPE(18:0/0:0) Glycerophosphoethanolamines1-acyl-sn-glycero-3-phosphoethanolaminesLMGP02050001 Monoacylglycerophosphoethanolamines [GP0205] 481.3168 [M+H]+ 482.3247 2.48 1 4.07 6.86 4.86 0.59 4.87 1.04 4.87 83.62 99.90 100.00
LPC(20:1/0:0) Glycerophosphocholines1-acyl-sn-glycero-3-phosphocholines Monoacylglycerophosphocholines [GP0105] 549.3794 [M+H]+ 550.3874 2.51 1 5.00 0.79 5.08 0.99 5.10 0.67 5.10 98.01 99.62 100.00
MG(16:0) Monoradylglycerols na Monoacylglycerols [GL0101] 330.2770 [M+H-H2O]+ 313.2740 2.52 1 4.01 2.57 4.11 3.24 4.13 2.37 4.13 97.19 99.41 100.00
MG(18:1)_1 Monoradylglycerols na Monoacylglycerols [GL0101] 356.2927 [M+H-H2O]+ 339.2891 2.60 1 3.99 1.09 4.02 2.30 4.05 1.97 4.05 98.57 99.19 100.00
LPC(P-18:0/0:0) Glycerophosphocholines1-(1Z-alkenyl)-glycero-3-phosphocholinesLMGP01070009 1Z-alkenylglycerophosphocholines [GP0107] 507.3689 [M+H]+ 508.3767 2.66 1 4.95 1.24 5.00 1.30 5.07 0.93 5.07 97.66 98.66 100.00
LPC(O-18:0/0:0) Glycerophosphocholines1-acyl-sn-glycero-3-phosphocholines LMGP01060014 Monoalkylglycerophosphocholines [GP0106] 509.3845 [M+H]+ 510.3922 2.66 1 5.43 0.76 5.42 1.06 5.43 0.73 5.43 99.98 99.87 100.00
MG(18:1)_2 Monoradylglycerols na Monoacylglycerols [GL0101] 356.2927 [M+H-H2O]+ 339.2896 2.66 1 3.99 1.23 4.02 2.28 4.05 1.95 4.05 98.72 99.26 100.00
LPC(19:0/0:0) Glycerophosphocholines1-acyl-sn-glycero-3-phosphocholines LMGP01050041 Monoacylglycerophosphocholines [GP0105] 537.3794 [M+H]+ 538.3874 2.70 1 4.52 0.92 4.62 1.22 4.62 1.00 4.62 97.86 100.00 99.97
LPE(P-18:0/0:0) Glycerophosphoethanolamines1-(1Z-alkenyl)-glycero-3-phosphoethanolamines Glycerophosphoethanolamines [GP02] 465.3219 [M+H]+ 466.3293 2.75 1 3.86 6.55 4.63 0.59 4.68 0.98 4.68 82.51 98.90 100.00
CAR(20:0) Fatty acid esters Acyl carnitines LMFA07070052 Fatty acyl carnitines [FA0707] 455.3975 [M+H]+ 456.4047 2.88 1 3.53 1.92 3.66 1.73 3.68 2.53 3.68 95.75 99.53 100.00
LPC(20:0/0:0) Glycerophosphocholines1-acyl-sn-glycero-3-phosphocholines LMGP01050045 Monoacylglycerophosphocholines [GP0105] 551.3951 [M+H]+ 552.4030 3.02 1 4.71 0.59 4.76 1.30 4.79 0.97 4.79 98.41 99.55 100.00
LPC(O-20:0/0:0) Glycerophosphocholines1-acyl-sn-glycero-3-phosphocholines LMGP01060041 Monoalkylglycerophosphocholines [GP0106] 537.4158 [M+H]+ 538.4231 3.32 1 4.65 0.95 4.62 1.05 4.69 0.99 4.69 99.16 98.49 100.00
CAR(24:1) Fatty acid esters Acyl carnitines Fatty acyl carnitines [FA0707] 509.4444 [M+H]+ 510.4515 3.59 1 3.58 1.56 3.66 1.20 3.73 1.00 3.73 96.07 98.15 100.00
LPC(22:0/0:0) Glycerophosphocholines1-acyl-sn-glycero-3-phosphocholines LMGP01050053 Monoacylglycerophosphocholines [GP0105] 579.4264 [M+H]+ 580.4342 3.73 1 3.99 1.74 4.06 1.28 4.13 1.11 4.13 96.48 98.26 100.00

Average intensity Relative percentage
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List of annotated metabolites from region 2 (LIPID positive mode peakpantheR), and relative method induced losses (%) 

Compound HMDBSubClass HMDBDirectParent LMapsID LMapsSubclass cpdMonoisotopicMZ ion m/z Retention time (min) Region BD-mean BD-%CV Folch-mean Folch-%CV Matyash-mean Matyash-%CV Max intensity BD Folch Matyash
LPC(O-24:1/0:0) Glycerophosphocholines1-acyl-sn-glycero-3-phosphocholines Monoalkylglycerophosphocholines [GP0106] 591.4628 [M+H]+ 592.4704 4.03 2 5.03 0.93 4.95 0.80 5.05 0.80 5.05 99.69 98.01 100.00
SM(d30:1); SM(d16:1/14:0) | SM(d18:1/12:0)PhosphosphingolipidsPhosphosphingolipids Ceramide phosphocholines (sphingomyelins) [SP0301] 646.5050 [M+H]+ 647.5125 4.25 2 4.59 0.66 4.69 0.66 4.74 0.91 4.74 96.82 98.91 100.00
CAR(26:1) Fatty acid esters Acyl carnitines Fatty acyl carnitines [FA0707] 537.4757 [M+H]+ 538.4831 4.33 2 4.11 1.04 4.16 1.04 4.20 1.22 4.20 97.74 99.05 100.00
CAR(24:0) Fatty acid esters Acyl carnitines Fatty acyl carnitines [FA0707] 511.4601 [M+H]+ 512.4675 4.34 2 4.44 0.56 4.47 0.56 4.50 1.01 4.50 98.70 99.35 100.00
SM(d18:2/14:0) PhosphosphingolipidsPhosphosphingolipids Ceramide phosphocholines (sphingomyelins) [SP0301] 672.5206 [M+H]+ 673.5280 4.39 2 4.91 0.49 4.96 0.49 5.00 0.59 5.00 98.08 99.20 100.00
LPC(24:0/0:0) Glycerophosphocholines1-acyl-sn-glycero-3-phosphocholines LMGP01050057 Monoacylglycerophosphocholines [GP0105] 607.4577 [M+H]+ 608.4656 4.52 2 4.67 0.83 4.74 0.83 4.82 0.91 4.82 96.94 98.29 100.00
Cholesterol Cholestane steroids Cholesterols and derivatives LMST01010001 Cholesterol and derivatives [ST0101] 386.3549 [M+H-H2O]+ 369.3527 4.55 2 5.79 1.18 5.72 1.18 5.76 1.48 5.79 100.00 98.79 99.49
LPC(O-26:1/0:0) Glycerophosphocholines1-acyl-sn-glycero-3-phosphocholines Monoalkylglycerophosphocholines [GP0106] 619.4941 [M+H]+ 620.5002 4.80 2 3.89 1.69 3.94 1.69 4.04 1.65 4.04 96.25 97.38 100.00
LPC(O-24:0/0:0) Glycerophosphocholines1-acyl-sn-glycero-3-phosphocholines Monoalkylglycerophosphocholines [GP0106] 593.4784 [M+H]+ 594.4853 4.84 2 4.69 0.86 4.71 0.86 4.77 0.97 4.77 98.33 98.87 100.00
SM(d32:1);  SM(d16:1/16:0) | SM(d18:1/14:0)PhosphosphingolipidsPhosphosphingolipids Ceramide phosphocholines (sphingomyelins) [SP0301] 674.5363 [M+H]+ 675.5438 4.97 2 6.16 0.35 6.17 0.35 6.22 0.59 6.22 98.96 99.16 100.00
SM(d18:2/16:0)_1 PhosphosphingolipidsPhosphosphingolipids Ceramide phosphocholines (sphingomyelins) [SP0301] 700.5519 [M+H]+ 701.5596 5.11 2 6.47 0.37 6.45 0.37 6.50 0.52 6.50 99.46 99.17 100.00
PC(14:0/22:6) GlycerophosphocholinesPhosphatidylcholines Diacylglycerophosphocholines [GP0101] 777.5309 [M+H]+ 778.5376 5.14 2 4.40 0.88 4.49 0.88 4.53 1.11 4.53 96.99 99.05 100.00
CAR(26:0) Fatty acid esters Acyl carnitines LMFA07070069 Fatty acyl carnitines [FA0707] 539.4914 [M+H]+ 540.4990 5.15 2 4.71 0.68 4.69 0.68 4.74 0.49 4.74 99.46 98.99 100.00
PC(14:0/20:4) GlycerophosphocholinesPhosphatidylcholines Diacylglycerophosphocholines [GP0101] 753.5309 [M+H]+ 754.5378 5.32 2 5.15 1.09 5.18 1.09 5.24 0.33 5.24 98.42 98.94 100.00
PC(14:0/18:2) GlycerophosphocholinesPhosphatidylcholines Diacylglycerophosphocholines [GP0101] 729.5309 [M+H]+ 730.5377 5.32 2 5.75 0.89 5.71 0.89 5.77 0.30 5.77 99.59 98.90 100.00
SM(d17:1/16:0) PhosphosphingolipidsPhosphosphingolipids Ceramide phosphocholines (sphingomyelins) [SP0301] 688.5519 [M+H]+ 689.5595 5.33 2 5.95 0.64 5.93 0.64 6.01 0.31 6.01 99.01 98.71 100.00
PC(16:1/20:4) GlycerophosphocholinesPhosphatidylcholines Diacylglycerophosphocholines [GP0101] 779.5465 [M+H]+ 780.5534 5.46 2 6.06 0.81 6.07 0.81 6.13 0.29 6.13 98.88 99.12 100.00
PC(16:0/20:5) GlycerophosphocholinesPhosphatidylcholines Diacylglycerophosphocholines [GP0101] 779.5465 [M+H]+ 780.5539 5.55 2 6.06 0.81 6.07 0.81 6.13 0.29 6.13 98.88 99.12 100.00
PC(18:2/20:4) GlycerophosphocholinesPhosphatidylcholines Diacylglycerophosphocholines [GP0101] 805.5622 [M+H]+ 806.5690 5.63 2 6.87 0.72 6.82 0.72 6.87 0.34 6.87 99.95 99.32 100.00
PC(18:2/18:2) GlycerophosphocholinesPhosphatidylcholines Diacylglycerophosphocholines [GP0101] 781.5622 [M+H]+ 782.5694 5.64 2 6.60 0.76 6.53 0.76 6.58 0.51 6.60 100.00 98.90 99.63
PC(15:0/18:2) GlycerophosphocholinesPhosphatidylcholines Diacylglycerophosphocholines [GP0101] 743.5465 [M+H]+ 744.5510 5.67 2 5.64 0.64 5.56 0.64 5.59 0.48 5.64 100.00 98.45 99.12
SM(d18:1/16:0) PhosphosphingolipidsPhosphosphingolipids LMSP03010003 Ceramide phosphocholines (sphingomyelins) [SP0301] 702.5676 [M+H]+ 703.5752 5.68 2 7.46 0.58 7.32 0.58 7.37 0.71 7.46 100.00 98.07 98.82
LacCer(d18:1/16:0) Glycosphingolipids Glycosyl-N-acylsphingosines LMSP0501AB03 Simple Glc series [SP0501] 861.6177 [M+H-H2O]+ 844.6120 5.75 2 5.01 1.94 5.02 1.94 5.22 0.63 5.22 95.90 96.12 100.00
PC(16:0/20:4)_1 GlycerophosphocholinesPhosphatidylcholines Diacylglycerophosphocholines [GP0101] 781.5622 [M+H]+ 782.5691 5.77 2 7.49 0.63 7.33 0.63 7.35 0.75 7.49 100.00 97.84 98.12
PC(16:0/22:6) GlycerophosphocholinesPhosphatidylcholines Diacylglycerophosphocholines [GP0101] 805.5622 [M+H]+ 806.5697 5.84 2 6.87 0.72 6.82 0.72 6.87 0.34 6.87 99.95 99.32 100.00
SM(d18:2/18:0) PhosphosphingolipidsPhosphosphingolipids Ceramide phosphocholines (sphingomyelins) [SP0301] 728.5832 [M+H]+ 729.5905 5.86 2 6.31 0.66 6.28 0.66 6.36 0.35 6.36 99.33 98.74 100.00
PC(32:1); PC(14:0/18:1) | PC(16:0/16:1)GlycerophosphocholinesPhosphatidylcholines Diacylglycerophosphocholines [GP0101] 731.5465 [M+H]+ 732.5541 5.87 2 6.39 0.81 6.32 0.81 6.39 0.29 6.39 100.00 98.85 99.95
SM(d18:0/16:0) PhosphosphingolipidsPhosphosphingolipids LMSP03010004 Ceramide phosphocholines (sphingomyelins) [SP0301] 704.5832 [M+H]+ 705.5907 5.94 2 6.09 0.78 6.04 0.78 6.12 0.28 6.12 99.56 98.73 100.00
SM(d19:1/16:0) PhosphosphingolipidsPhosphosphingolipids LMSP03010045 Ceramide phosphocholines (sphingomyelins) [SP0301] 716.5832 [M+H]+ 717.5902 5.95 2 5.77 0.77 5.67 0.77 5.74 0.87 5.77 100.00 98.27 99.57
SM(d18:1/18:1) PhosphosphingolipidsPhosphosphingolipids Ceramide phosphocholines (sphingomyelins) [SP0301] 728.5832 [M+H]+ 729.5898 5.97 2 6.31 0.66 6.28 0.66 6.36 0.35 6.36 99.33 98.74 100.00
PC(16:0/16:1) GlycerophosphocholinesPhosphatidylcholines Diacylglycerophosphocholines [GP0101] 731.5465 [M+H]+ 732.5536 5.97 2 6.39 0.81 6.32 0.81 6.39 0.29 6.39 100.00 98.85 99.95
HEXCer(d18:1/16:0) Glycosphingolipids Glycosyl-N-acylsphingosines Simple Glc series [SP0501] 699.5649 [M+H-H2O]+ 682.5614 5.98 2 4.99 1.69 4.91 1.69 4.98 0.37 4.99 100.00 98.43 99.85
PC(16:0/18:2) GlycerophosphocholinesPhosphatidylcholines Diacylglycerophosphocholines [GP0101] 757.5622 [M+H]+ 758.5698 6.03 2 7.99 0.65 7.77 0.65 7.80 0.81 7.99 100.00 97.22 97.65
SM(d35:1); SM(d17:1/18:0) | SM(d18:1/17:0)PhosphosphingolipidsPhosphosphingolipids Ceramide phosphocholines (sphingomyelins) [SP0301] 716.5832 [M+H]+ 717.5906 6.07 2 5.77 0.81 5.67 0.81 5.74 0.88 5.77 100.00 98.29 99.56
PC(O-16:0/14:0) Glycerophosphocholines1-alkyl,2-acylglycero-3-phosphocholines LMGP01020178 1-alkyl,2-acylglycerophosphocholines [GP0102] 691.5516 [M+H]+ 692.5586 6.14 2 4.95 1.14 4.88 1.14 4.92 0.72 4.95 100.00 98.55 99.42
PE(16:0/20:4) GlycerophosphoethanolaminesPhosphatidylethanolamines Diacylglycerophosphoethanolamines [GP0201] 739.5152 [M+H]+ 740.5222 6.17 2 4.11 0.69 4.86 0.69 4.81 1.09 4.86 84.53 100.00 98.93
PE(16:0/18:2) GlycerophosphoethanolaminesPhosphatidylethanolamines Diacylglycerophosphoethanolamines [GP0201] 715.5152 [M+H]+ 716.5250 6.19 2 4.23 0.84 4.83 0.84 4.80 0.96 4.83 87.64 100.00 99.25
PC(33:1); PC(15:0/18:1) | PC(16:0/17:1)GlycerophosphocholinesPhosphatidylcholines Diacylglycerophosphocholines [GP0101] 745.5622 [M+H]+ 746.5694 6.21 2 5.72 0.38 5.66 0.38 5.70 0.38 5.72 100.00 98.96 99.74
PC(O-18:1/22:6) and/or PC(P-18:0/22:6)Glycerophosphocholinesna na 817.5985 [M+H]+ 818.6051 6.34 2 5.09 1.07 5.17 1.07 5.21 0.65 5.21 97.71 99.41 100.00
PC(18:1/20:3) GlycerophosphocholinesPhosphatidylcholines Diacylglycerophosphocholines [GP0101] 809.5935 [M+H]+ 810.5986 6.38 2 7.34 0.61 7.20 0.61 7.21 0.66 7.34 100.00 98.09 98.29
PC(16:0/16:0) GlycerophosphocholinesPhosphatidylcholines LMGP01010564 Diacylglycerophosphocholines [GP0101] 733.5622 [M+H]+ 734.5700 6.38 2 6.63 0.41 6.53 0.41 6.56 0.33 6.63 100.00 98.49 98.96
SM(d18:1/18:0) PhosphosphingolipidsPhosphosphingolipids LMSP03010001 Ceramide phosphocholines (sphingomyelins) [SP0301] 730.5989 [M+H]+ 731.6065 6.41 2 6.66 0.43 6.58 0.43 6.62 0.54 6.66 100.00 98.77 99.43
PC(O-16:0/22:5) Glycerophosphocholines1-alkyl,2-acylglycero-3-phosphocholines 1-alkyl,2-acylglycerophosphocholines [GP0102] 793.5985 [M+H]+ 794.6060 6.43 2 6.38 0.48 6.32 0.48 6.34 0.53 6.38 100.00 99.03 99.29
PC(O-16:0/18:2) Glycerophosphocholines1-alkyl,2-acylglycero-3-phosphocholines 1-alkyl,2-acylglycerophosphocholines [GP0102] 743.5829 [M+H]+ 744.5903 6.45 2 6.24 0.58 6.20 0.58 6.23 0.36 6.24 100.00 99.26 99.74
PC(O-16:0/15:0) Glycerophosphocholines1-alkyl,2-acylglycero-3-phosphocholines LMGP01020180 1-alkyl,2-acylglycerophosphocholines [GP0102] 705.5672 [M+H]+ 706.5738 6.47 2 4.28 1.26 4.31 1.26 4.35 0.75 4.35 98.25 99.17 100.00
PC(16:0/22:4) GlycerophosphocholinesPhosphatidylcholines Diacylglycerophosphocholines [GP0101] 809.5935 [M+H]+ 810.6008 6.47 2 7.34 0.61 7.20 0.61 7.21 0.66 7.34 100.00 98.09 98.29
PC(16:0/18:1)_1 GlycerophosphocholinesPhosphatidylcholines Diacylglycerophosphocholines [GP0101] 759.5778 [M+H]+ 760.5856 6.48 2 7.68 0.51 7.51 0.51 7.54 0.56 7.68 100.00 97.85 98.18
SM(d16:1/20:0) PhosphosphingolipidsPhosphosphingolipids LMSP03010052 Ceramide phosphocholines (sphingomyelins) [SP0301] 730.5989 [M+H]+ 731.6063 6.50 2 6.66 0.43 6.58 0.43 6.62 0.54 6.66 100.00 98.77 99.43
Cer(d18:1/16:0) Ceramides Ceramides LMSP02010004 N-acylsphingosines (ceramides) [SP0201] 537.5121 [M+H-H2O]+ 520.5095 6.50 2 4.94 0.73 4.79 0.73 4.80 0.65 4.94 100.00 96.90 97.17
PC(18:0/22:6) GlycerophosphocholinesPhosphatidylcholines Diacylglycerophosphocholines [GP0101] 833.5935 [M+H]+ 834.6009 6.52 2 6.40 0.46 6.37 0.46 6.39 0.42 6.40 100.00 99.60 99.84
SM(d18:1/20:1) PhosphosphingolipidsPhosphosphingolipids Ceramide phosphocholines (sphingomyelins) [SP0301] 756.6145 [M+H]+ 757.6222 6.60 2 6.09 0.38 6.06 0.38 6.11 0.18 6.11 99.66 99.15 100.00
PC(36:2); PC(16:0/20:2) | PC(18:1/18:1)GlycerophosphocholinesPhosphatidylcholines Diacylglycerophosphocholines [GP0101] 785.5935 [M+H]+ 786.6011 6.61 2 7.74 0.60 7.55 0.60 7.58 0.63 7.74 100.00 97.52 97.83
PC(18:0/20:4) GlycerophosphocholinesPhosphatidylcholines Diacylglycerophosphocholines [GP0101] 809.5935 [M+H]+ 810.6018 6.71 2 7.34 0.61 7.20 0.61 7.21 0.66 7.34 100.00 98.09 98.29
PC(18:0/18:2) GlycerophosphocholinesPhosphatidylcholines Diacylglycerophosphocholines [GP0101] 785.5935 [M+H]+ 786.6018 6.73 2 7.74 0.60 7.55 0.60 7.58 0.63 7.74 100.00 97.52 97.83
PC(O-16:0/16:0) Glycerophosphocholines1-alkyl,2-acylglycero-3-phosphocholines LMGP01020029 1-alkyl,2-acylglycerophosphocholines [GP0102] 719.5829 [M+H]+ 720.5906 6.81 2 5.90 0.68 5.84 0.68 5.89 0.34 5.90 100.00 98.99 99.87
DG(36:4)_1; DG(18:2/18:2) | DG(18:1/18:3)Diradylglycerols na Diacylglycerols [GL0201] 616.5067 [M+H]+ 617.5140 6.86 2 4.20 2.27 4.23 2.27 4.23 2.03 4.23 99.27 99.91 100.00
PE(18:0/20:4) GlycerophosphoethanolaminesPhosphatidylethanolamines Diacylglycerophosphoethanolamines [GP0201] 767.5465 [M+H]+ 768.5567 6.86 2 4.72 0.85 5.33 0.85 5.29 1.02 5.33 88.48 100.00 99.24
PC(18:0/20:3) GlycerophosphocholinesPhosphatidylcholines Diacylglycerophosphocholines [GP0101] 811.6091 [M+H]+ 812.6173 6.91 2 6.87 0.43 6.77 0.43 6.79 0.23 6.87 100.00 98.56 98.90
PC(18:0/22:5) GlycerophosphocholinesPhosphatidylcholines Diacylglycerophosphocholines [GP0101] 835.6091 [M+H]+ 836.6168 6.96 2 5.62 0.60 5.65 0.60 5.67 0.21 5.67 99.10 99.55 100.00
PC(O-16:0/18:1) Glycerophosphocholines1-alkyl,2-acylglycero-3-phosphocholines 1-alkyl,2-acylglycerophosphocholines [GP0102] 745.5985 [M+H]+ 746.6063 6.97 2 6.19 0.60 6.14 0.60 6.18 0.22 6.19 100.00 99.19 99.87
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List of annotated metabolites from region 3 (LIPID positive mode peakpantheR), and relative method induced losses (%) 

Compound HMDBSubClass HMDBDirectParent LMapsID LMapsSubclass cpdMonoisotopicMZ ion m/z Retention time (min) Region BD-mean BD-%CV Folch-mean Folch-%CV Matyash-mean Matyash-%CV Max intensity BD Folch Matyash
TG(44:1) Triradylcglycerols Triacylglycerols Triacylglycerols [GL0301] 748.6581 [M+NH4]+ 766.6908 9.87 3 4.24 5.49 4.18 1.79 4.17 2.67 4.24 100.00 98.52 98.16
TG(46:2) Triradylcglycerols Triacylglycerols Triacylglycerols [GL0301] 774.6737 [M+NH4]+ 792.7068 9.91 3 4.45 7.10 4.39 2.51 4.34 3.07 4.45 100.00 98.69 97.70
TG(48:3) Triradylcglycerols Triacylglycerols Triacylglycerols [GL0301] 800.6894 [M+NH4]+ 818.7225 9.96 3 4.61 7.37 4.53 2.08 4.50 2.86 4.61 100.00 98.33 97.78
TG(50:4) Triradylcglycerols Triacylglycerols Triacylglycerols [GL0301] 826.7050 [M+NH4]+ 844.7384 10.00 3 4.78 7.18 4.73 1.58 4.65 2.91 4.78 100.00 98.92 97.39
TG(52:5)_1 Triradylcglycerols Triacylglycerols Triacylglycerols [GL0301] 852.7207 [M+NH4]+ 870.7541 10.05 3 5.17 6.92 5.10 1.85 5.02 2.83 5.17 100.00 98.66 97.12
TG(54:6)_1 Triradylcglycerols Triacylglycerols Triacylglycerols [GL0301] 878.7363 [M+NH4]+ 896.7699 10.10 3 4.94 6.76 4.88 1.99 4.79 2.73 4.94 100.00 98.90 96.97
TG(44:0) Triradylcglycerols Triacylglycerols Triacylglycerols [GL0301] 750.6737 [M+NH4]+ 768.7061 10.17 3 4.12 6.45 4.01 3.43 4.00 2.87 4.12 100.00 97.32 97.10
TG(46:1) Triradylcglycerols Triacylglycerols Triacylglycerols [GL0301] 776.6894 [M+NH4]+ 794.7227 10.21 3 4.75 6.52 4.64 2.08 4.60 2.76 4.75 100.00 97.82 96.93
TG(48:2) Triradylcglycerols Triacylglycerols Triacylglycerols [GL0301] 802.7050 [M+NH4]+ 820.7384 10.25 3 5.15 6.90 5.06 2.22 4.97 2.76 5.15 100.00 98.26 96.48
TG(50:3) Triradylcglycerols Triacylglycerols Triacylglycerols [GL0301] 828.7207 [M+NH4]+ 846.7541 10.29 3 5.60 7.01 5.51 2.20 5.40 2.74 5.60 100.00 98.39 96.40
TG(52:4)_1 Triradylcglycerols Triacylglycerols Triacylglycerols [GL0301] 854.7363 [M+NH4]+ 872.7698 10.33 3 6.23 6.89 6.15 1.84 6.02 2.34 6.23 100.00 98.70 96.65
TG(54:5)_1 Triradylcglycerols Triacylglycerols Triacylglycerols [GL0301] 880.7520 [M+NH4]+ 898.7852 10.37 3 5.63 7.13 5.57 2.02 5.44 2.48 5.63 100.00 98.82 96.55
TG(47:1) Triradylcglycerols Triacylglycerols Triacylglycerols [GL0301] 790.7050 [M+NH4]+ 808.7356 10.37 3 3.69 8.84 3.62 2.91 3.63 3.77 3.69 100.00 98.04 98.39
TG(49:2) Triradylcglycerols Triacylglycerols Triacylglycerols [GL0301] 816.7207 [M+NH4]+ 834.7535 10.41 3 4.11 9.14 4.12 3.21 3.97 4.18 4.12 99.82 100.00 96.25
TG(51:3) Triradylcglycerols Triacylglycerols Triacylglycerols [GL0301] 842.7363 [M+NH4]+ 860.7700 10.44 3 4.47 7.52 4.40 2.70 4.30 2.91 4.47 100.00 98.46 96.16
TG(56:6)_1 Triradylcglycerols Triacylglycerols Triacylglycerols [GL0301] 906.7676 [M+NH4]+ 924.8014 10.48 3 4.68 8.37 4.65 2.53 4.50 2.81 4.68 100.00 99.36 96.12
TG(53:4) Triradylcglycerols Triacylglycerols Triacylglycerols [GL0301] 868.7520 [M+NH4]+ 886.7849 10.48 3 4.21 8.74 4.16 2.48 4.04 3.29 4.21 100.00 98.97 96.12
TG(46:0) Triradylcglycerols Triacylglycerols Triacylglycerols [GL0301] 778.7050 [M+NH4]+ 796.7365 10.50 3 4.00 6.69 3.92 1.93 3.89 1.92 4.00 100.00 98.14 97.34
TG(48:1) Triradylcglycerols Triacylglycerols Triacylglycerols [GL0301] 804.7207 [M+NH4]+ 822.7543 10.53 3 5.12 6.41 5.00 2.02 4.91 2.47 5.12 100.00 97.58 95.77
TG(50:2) Triradylcglycerols Triacylglycerols Triacylglycerols [GL0301] 830.7363 [M+NH4]+ 848.7698 10.56 3 5.82 6.37 5.69 2.05 5.57 2.31 5.82 100.00 97.71 95.77
TG(52:3) Triradylcglycerols Triacylglycerols Triacylglycerols [GL0301] 856.7520 [M+NH4]+ 874.7863 10.60 3 5.48 7.50 5.42 2.02 5.43 5.26 5.48 100.00 99.01 99.17
TG(54:4) Triradylcglycerols Triacylglycerols Triacylglycerols [GL0301] 882.7676 [M+NH4]+ 900.8014 10.64 3 5.86 7.49 5.77 2.21 5.61 2.58 5.86 100.00 98.52 95.74
TG(49:1) Triradylcglycerols Triacylglycerols Triacylglycerols [GL0301] 818.7363 [M+NH4]+ 836.7694 10.68 3 4.31 9.82 4.29 2.67 4.16 3.30 4.31 100.00 99.59 96.64
TG(51:2) Triradylcglycerols Triacylglycerols Triacylglycerols [GL0301] 844.7520 [M+NH4]+ 862.7856 10.71 3 4.68 7.96 4.62 2.54 4.45 3.26 4.68 100.00 98.70 95.23
TG(53:3) Triradylcglycerols Triacylglycerols Triacylglycerols [GL0301] 870.7676 [M+NH4]+ 888.8012 10.74 3 4.49 7.94 4.44 2.72 4.31 2.78 4.49 100.00 98.79 95.88
TG(48:0) Triradylcglycerols Triacylglycerols Triacylglycerols [GL0301] 806.7363 [M+NH4]+ 824.7689 10.80 3 4.16 5.76 4.04 1.65 4.04 1.43 4.16 100.00 96.91 97.10
TG(50:1) Triradylcglycerols Triacylglycerols Triacylglycerols [GL0301] 832.7520 [M+NH4]+ 850.7853 10.82 3 5.57 6.55 5.42 2.26 5.30 2.17 5.57 100.00 97.31 95.19
TG(52:2) Triradylcglycerols Triacylglycerols Triacylglycerols [GL0301] 858.7676 [M+NH4]+ 876.8021 10.85 3 6.22 6.54 6.07 2.11 5.92 2.27 6.22 100.00 97.69 95.22
TG(54:3) Triradylcglycerols Triacylglycerols Triacylglycerols [GL0301] 884.7833 [M+NH4]+ 902.8172 10.89 3 5.68 6.75 5.55 2.12 5.40 2.26 5.68 100.00 97.76 95.09
TG(53:2) Triradylcglycerols Triacylglycerols Triacylglycerols [GL0301] 872.7833 [M+NH4]+ 890.8170 10.99 3 4.31 8.25 4.24 2.71 4.07 3.23 4.31 100.00 98.19 94.27
TG(52:1) Triradylcglycerols Triacylglycerols Triacylglycerols [GL0301] 860.7833 [M+NH4]+ 878.8171 11.10 3 4.83 7.04 4.70 2.30 4.58 2.15 4.83 100.00 97.32 94.80
TG(54:2) Triradylcglycerols Triacylglycerols Triacylglycerols [GL0301] 886.7989 [M+NH4]+ 904.8328 11.13 3 4.97 7.36 4.87 2.55 4.70 2.51 4.97 100.00 97.96 94.55
TG(54:1) Triradylcglycerols Triacylglycerols Triacylglycerols [GL0301] 888.8146 [M+NH4]+ 906.8483 11.36 3 4.05 14.04 4.16 3.25 3.89 7.13 4.16 97.41 100.00 93.52

Average intensity Relative percentage
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Sample preparation method for phospholipid removal using 96-well SPE 
plates 

 

96-well SPE extraction plates designed for phospholipid removal. These include, Water’s OSTRO, 

Biotage’s ISOLUTE and Phenomenex’s PHREE. In addition to these extractions, Phenomenex also 

packed the Sepra C18 material in a 96-well SPE format (Sepra-SPE). The extraction conditions and 

sample volumes are summarised in the table below. All plates were washed with their specific 

extraction solvents three times. Then samples are loaded into the wells, followed by their solvents. A 

series of aspiration and dispensing was undertaken to mix the sample (total of three times). The 

extraction plate was then placed above a collection plate and placed on the vacuum manifold for 5- 

10 minutes at 15” Hg of vacuum.  

 
COMPANY NAME Sample 

volume (uL) Solvent Solvent (uL) 
Waters OSTRO 100 MECN+0.1%FA 300 

Phenomenex PHREE 100 MECN 300 
Biotage ISOLUTE 100 MECN 300 
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Appendix 3: Chapter 5 
 

Sygnature discovery experimental conditions 

Incubations  

Hepatocytes: Triclosan (10M) was incubated with cryopreserved human hepatocytes at 0.5 million 

cells/ml in a total volume of 330 l Leibovitz buffer at 37OC for 60 minutes. Negative control 

incubations in buffer without hepatocytes, and in hepatocytes without compound were performed in 

parallel to eliminate peaks that are not compound related or to identify any transformations that are 

non-metabolic. 

 

Microsomes: Triclosan (10M and 50 M) was incubated with human liver microsomes at 0.5 mg/ml 

with NADPH (1mM) in a total volume of 500 l phosphate-buffered saline at 37OC for 60 minutes. A 

negative control was carried out in parallel without NADPH.  

 

Aliquots were taken from incubations in both hepatocytes and microsomes at 0 and 60 minutes and 

quenched 1:1 with 3% formic acid in acetonitrile. 

 

Sample Analysis 

Samples were analysed using a Waters Xevo-G2-XS-TOF mass spectrometer with Waters Acquity 

UPLC system.  Full scan spectra were acquired using an MSE method in negative ion mode.  

 

Chromatography was performed on an ACQUITY UPLC HSS C18 Column, (1.8 µm, 2.1 mm X 100 mm)  

with a solvent flow of 0.45 ml min-1 and a column temperature of 40OC. An ammonia (0.002%) / 

acetonitrile gradient with 0.1% formic acid was run (Table A2). 

 
 
Table A1: MS Conditions 

Capillary Voltage 2 kV 
Cone Voltage 25 V 

Collision Energy 20-50 V ramped (high energy MSE mode) 
Lock mass Leucine Enkephalin (200 pg/mL @ 10 µL/min) 

 
Table A2: LC Conditions 

Time % Acetonitrile 
0.20 5 



Appendix 3 

 

355 
 

11.00 95 
13.00 95 
14.00 5 
15.00 5 

 
 

Gaussian mixture models (GMM’s) fitted to the MS intensity distribution of 
TCS-Gluc from AW and ALZ cohorts 
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GMM’s were fitted to each cohort, and the PDF’s for each gaussians were obtained, dividing the 
data to a High exposure group (Distribution 2, pr3 - green), Low-Mid exposure group (Distribution 2, 
pr2 - blue) and a Zero exposure group, (Distribution 1, pr1 -red). Any sample with pr1>0.90, or a 
log10 signal less than the red dotted line, assumed the classification of zero exposure, and any 
sample with pr3>0.90, or log10 signal more than the dotted green line, assumed the classification of 
high exposure. The blue dotted line is equivalent to a signal that fulfils all three criteria as stated in 
the Prevalence section. 
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Between-sample correlation using PEG(n8)-unmetabolised as the driver, 
observed in the ALZ serum samples which were removed as PEG 
contaminated samples. 

 

 
Results from the between-sample correlation were presented as a retention time (RT) vs m/z plot, where features that correlated to the 
driver feature (PEG(n8)-unmetabolised), were coloured by statistical significance (padj ≤ 0.05)- blue, and a statistically significant correlation 
coefficient greater than 0.7 (i.e. Spearman: r >0.7 and padj ≤ 0.05) as green. All other detected features are coloured grey. Correlated 
features included ionisation products of PEG(n8)-unmetabolised only, Features corresponding to acid (PEG(n8)-COOH) and diacid 
(PEG(n8)-2xCOOH) metabolites and three unknown feature groups, are not present. 
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