Imperial College London

Systematic analysis of prognostic miRNAs and isomiRs in prostate cancer

> Sharmila Rana November 2020

A thesis submitted in accordance with the requirements for the degree of Doctor of Philosophy from Imperial College London

> Department of Surgery and Cancer Imperial College London

Declaration

I declare that the work presented in this thesis is my own, unless otherwise stated. All other work is appropriately referenced and acknowledged to my best knowledge.

The copyright of this thesis rests with the author. Unless otherwise indicated, its contents are licensed under a Creative Commons Attribution-Non Commercial 4.0 International Licence (CC BY-NC). Under this licence, you may copy and redistribute the material in any medium or format. You may also create and distribute modified versions of the work. This is on the condition that: you credit the author and do not use it, or any derivative works, for a commercial purpose. When reusing or sharing this work, ensure you make the licence terms clear to others by naming the licence and linking to the licence text. Where a work has been adapted, you should indicate that the work has been changed and describe those changes. Please seek permission from the copyright holder for uses of this work that are not included in this licence or permitted under UK Copyright Law.

Abstract

There are no reliable prognostic indicators to distinguish between indolent and aggressive prostate cancer (PCa). Consequently, 42–66% of patients with indolent PCa are over-treated. Additionally, 15-45% of patients treated with radical prostatectomy (RP) experience biochemical recurrence (BCR) within 5-years, highlighting an urgent need for reliable prognostic biomarkers.

MiRNAs (miRs) and isomiRs (miR isoforms) are non-coding regulatory RNAs that hold ideal biomarker properties such as detection in circulation, tissue and tumour specific expression profiles, and correlation with PCa development and progression. I hypothesised that miR species (canonical miRs and isomiRs) can be utilised as biomarkers for reliable PCa prognostication.

A novel database of prognostic PCa miRs was built by performing a systematic review of relevant publications in the PubMed database. MiRs significantly associated with BCR were also identified following a meta-analysis of six datasets. MiR-148a-3p and miR-582-4p were identified as potential biomarker candidates as they were consistently prognostic in both the review and meta-analysis.

The ability of miR species to predict BCR post-RP was tested with elastic net regularisation models using The Cancer Genome Atlas PCa dataset (recurrent=61, non-recurrent=330). Models based on a combination of isomiRs and clinical markers achieved marginally greater predictive power (AUC=0.795) than the model solely based on clinical markers (AUC=0.748), demonstrating that isomiRs could contribute additional prognostic value to the clinical markers currently used.

The mechanism by which miR-27a-3p, a PCa-specific putative oncomiR, promotes tumour growth was investigated using RNA-seq data from LNCaP tumour xenograft models treated with a miR-27a-3p inhibitor (n=3) and control (n=3). 11 significantly dysregulated genes involved in apoptosis and oncogenic signalling were identified as likely mir-27a-3p targets.

This study has not only furthered our understanding of the importance of miRs in PCa, but also identified potential prognostic miR biomarkers and showed the inclusion of miR species increases the utility of current markers.

Acknowledgements

First and foremost, I would like to thank the Prostate Cancer UK for funding this research project and the Movember Foundation for contributing to the funding of this research. I am sincerely grateful to my supervisors Professor Hector Keun, Professor Charlotte Bevan and Dr Ed Curry for giving me the opportunity to work on this project and their valuable mentorship and guidance. I would especially like to thank Charlotte for her support, encouragement and motivation through the hardest parts of my PhD journey.

I was fortunate to be part of two groups, the Keun and Bevan groups, and would like to thank all the members of the groups for their company and support, academic and otherwise. I would especially like to thank: Dr Ailsa Sita-Lumsden for providing the RNA-seq data; Dr Gabriel Valbuena for his feedback and technical support at the start of my degree; Inbar Levi who was my rubber duck many a time and always helpful when I had coding issues; Tom Meakin for his help with lab work; and finally Dr Clare Eckold, Dr Marc Lorentzen and Dr Damien Leach for generously taking their time to go over my report drafts and providing helpful suggestions and feedback.

Throughout this PhD journey, I was fortunate enough to meet and forge friendships with an amazing group of people who became my support group during the ups and downs of PhD life. Thank you Dr Emily Barnes for always going over my report drafts and revising my emails, and being the best bench partner. Dearest Abbi Kent, your constant words of encouragement helped me come out of my shell, I will always cherish our moments together. Ieva Eringyte, with whom I started this PhD journey, thank you for being my complain and motivate buddy, I am so happy to have reached the finish line with you. Johnny Kim, thank you for providing endless entertainment and listening through my worries during my thesis write-up, which coincided with the pandemic, without you I may have been a very anxious and unfit potato. I thank Dr Tian Lai, Dr Arti Sikka, Dr Eirini Kouloura, Ryan Doherty, Lili Herendi and Dr Foteini Kalofonou for their loveliest of companies, our meal-time chats and holiday adventures filled my days and months with positive vibes. Finally, I give my warmest thanks to the Imperial College Taekwondo team and the friends I made along my Taekwondo journey: Sophia Ppali, Dr Chris Dancel, Dr Sojin Park, Dr Liyan Chow, Reza Saberi, Ash, Johnny Kim, Mark Sargent, Simone Griffiths and Steve. Thank you for inspiring me to be fearless, stop overthinking and give my best inside and outside the ring. I had an absolute blast training and competing with you guys.

I am extremely grateful to my closest friends and family who have always been there for me. Two of my oldest friends, Tabassum Mujtaba and Hannah Park, thank you for being there for me 24/7, rain or shine. To my dear brother Gaurab, thank you for being unapologetically you and brightening my days. To my sister Bindu and her partner, Mark, thank you for your wisdom and advice. Your

courage and positive thinking are inspiring. Finally, my deepest gratitude to my mum and dad, who provided me with never-ending support and encouragement. I would not be where I am today without your bravery and sacrifices. I dedicate this thesis to you both.

Contents

D	e <mark>cla</mark> r	ation		2
A	bstra	ict		3
A	ckno	wledge	ments	5
Li	st of	Figure	es	9
Li	st of	Tables	3	11
Li	st of	Acron	yms	12
1	Intr	oducti	on	16
	1.1	Prosta	te Cancer	17
		1.1.1	Prostate cancer epidemiology	17
		1.1.2	The prostate gland	17
		1.1.3	Development of prostate cancer: Androgen signalling	21
		1.1.4	Genomic profile of prostate cancer	22
		1.1.5	Prostate cancer diagnosis	25
		1.1.6	Prostate cancer prognosis: one of the main clinical challenges	27
		1.1.7	Prostate cancer relapse: another clinical challenge	31
		1.1.8	Prognostic biomarkers currently being evaluated	32
	1.2	A new	class of biomarkers: MicroRNAs	34
		1.2.1	MicroRNAs: biogenesis	35
		1.2.2	microRNA mechanism of action	37
		1.2.3	Isoforms of microRNAs	40
		1.2.4	microRNA species and cancers	41
		1.2.5	Properties of microRNA species	42
		1.2.6	microRNA species in prostate cancer	43
		1.2.7	miRNA-27a-3p and prostate cancer	45
	1.3	Hypot	hesis and Aims	47
2	Ide	ntificat	ion of prognostic miRNA biomarkers in prostate cancer	49
	2.1	Backg	round	50
	2.2	Metho	ds	51
		2.2.1	Methodology for systematic review	51
		2.2.2	Data extraction	52

	2.2.3	Methodology for meta-analysis	53		
2.3	Resul	${ m ts}$	56		
	2.3.1	Prognostic miRNAs in prostate cancer: A systematic review	56		
	2.3.2	Identification of miRNA biomarkers for prostate cancer recurrence following			
		radical prostatectomy: A meta-analysis of six public datasets	72		
	2.3.3	MiRNAs with consistent association with prostate cancer recurrence: validation			
		between systematic review and meta-analysis	87		
2.4	Discu	ssion	88		
	2.4.1	miR-148a-3p	89		
	2.4.2	miR-582-5p	90		
	2.4.3	Limitations	91		
	2.4.4	Conclusion	94		
Biblio	graphy	,	95		
A Ap	pendix	figures	145		
B Ap	B Appendix tables				
$\mathbf{C} \mathbf{A} \mathbf{p}$	pendix	a methods	183		
D Per	missio	n to republish third party copyrighted works	186		

List of Figures

1.1	Region-specific age standardised incidence and mortality rates for prostate cancer in	
	2018	18
1.2	Anatomy of the prostate.	19
1.3	The androgen receptor signalling pathway	23
1.4	Canonical and alternative miRNA biogenesis pathways.	36
1.5	Mechanism of miRNA action.	39
1.6	The different types of seed sites in a miRNA.	39
1.7	Isotypes and isomiR nomenclatures.	41
2.1	Workflow for selecting eligible studies for the systematic review	57
2.2	Forest plot for all miRs with multiple entries in the systematic review.	63
2.3	Workflow for selecting eligible datasets for the meta-analysis	72
2.4	Clinical characteristics of the datasets included in meta-analysis.	77
2.5	Association of clinical characteristics with biochemical recurrence.	79
2.6	Association of miR expression with biochemical recurrence: an univariate analysis	80
2.7	Association of miR expression with biochemical recurrence: a multivariate analysis	84
2.8	The association of four miRs identified as prognostic in the systematic review with	
	biochemical recurrence: a multivariate Cox PH analysis	88
A1	Forest plot for miRs with single entries in the systematic review.	146
A2	Volcano plot of the differentially expressed genes in the ASO-27a RNA seq dataset. $\ .$.	147

List of Tables

1.1	Histological definitions of the ISUP Gleason Grade group categories	28
1.2	Definitions of the Tumour, Node, Metastasis staging system for prostate cancer	29
1.3	Prostate cancer risk stratification based on Gleason score, clinical tumour stage and	
	serum PSA at diagnosis.	30
1.4	Predictive performance of the three commonly genomic biomarker panels in validation/	
	external datasets.	34
2.1	Progression endpoints considered in the systematic review	58
2.2	The mir families represented within the individually prognostic miRs in the systematic	
	review	60
2.3	The mir clusters represented within the individually prognostic miRs in the systematic	
	review	60
2.4	The miRs with consistent direction of association to disease progression that have been	
	validated in multiple cohorts or independent studies	70
2.5	Characteristics of the studies included in the meta-analysis	73
2.6	Sample characteristics of the datasets included in the meta-analysis	76
2.7	Ten miRs significantly associated with biochemical recurrence in both univariate and	
	multivariate analyses.	86
B.1	A table of all individual miRNAs that have been investigated for their prognostic po-	
	tential in PCa so far, built by performing a systematic review of relevant publications	
	in the Pubmed database	156
B.2	A table of endpoint definitions and adjusted variables for the studies in the systematic	
	review (accompanying table for B.1)	171
B.3	A table of signature miRNAs of prognostic importance in PCa identified in the system-	
	atic review.	172
B.4	A table of endpoint definitions and adjusted variables for the studies in the systematic	
	review (accompanying table for B.3).	173
B.5	The coefficients of features for clinical variables model (model i).	174
B.6	The coefficients of features for all miR species model (model ii)	176
B.7	The coefficients of features for all miR species and clinical variables (model iii)	176
B.8	The coefficients of features for model based on miR-148a-3p isomiRs and clinical vari-	
	ables (model iv).	177
B.9	The coefficients of features for model based on miR-582-5p isomiRs and clinical variables	
	(model v)	177

B.10	The coefficients of features for model based on isomiRs of miR-148a-3p and miR-582-5p $$	
	and clinical variables (model vi). \ldots	178
B.11	The coefficients of features for model based on parent miRs signature and clinical vari-	
	ables (model vii).	178
B.12	The coefficients of features for model based on clusters signature and clinical variables	
	(model viii)	178
B.13	The coefficients of features for model based on isotypes signature and clinical variables	
	(model ix)	178
B.14	The coefficients of features for model based on 3' end size variations signature and	
	clinical variables (model x) $\ldots \ldots \ldots$	179
B.15	The coefficients of features for model based on 5' end size variations signature and	
	clinical variables (model xi) $\ldots \ldots \ldots$	179
B.16	The coefficients of features for model based on 7mer-m8 seeds signature and clinical	
	variables (model xii)	179
B.17	The coefficients of features for model based on 6mer seeds signature and clinical variables	
	(model xiii)	180
B.18	The coefficients of features for model based on miR-148a-3p isotypes signature and	
	clinical variables (model xiv)	180
B.19	Differentially expressed genes (n=79) between the ASO-27a and ASO-NTC groups	182

List of Acronyms

${\bf ADAR}$ Adenosine deaminase acting on RNA					
ADT Androgen deprivation therapy					
AGO2 Argonaute 2					
ANOVA Analysis of variance					
\mathbf{AR} Androgen Receptor					
\mathbf{ARV} Androgen Receptor splice variant					
${\bf ASO-NTC}$ Antisense oligonucleotide of non-targeting control					
${\bf ASO-27a}$ Antisense oligonucleotide or miR-27a-3p					
${\bf AUC}$ Area under the receiver operating characteristic curve					
BCR Biochemical recurrence					
BMI Body mass index					
${\bf BPFS}$ Biochemical progression/ recurrence-free survival					
BPH Benign prostatic hyperplasia					
CCP Cell cycle progression					
CFFS Clinical failure-free survival					
cfDNA Cell-free DNA					
CI Confidence interval					
c-miRs Circulating miRs					
CNV Copy number variation					
Cox PH Cox proportional hazards					
\mathbf{cpm} counts per million					
${\bf CRPC}$ Castration-resistant prostate cancer					
${\bf CRPC}\ {\bf FS}\ {\rm Castration}\ {\rm resistant}\ {\rm prostate}\ {\rm cancer-free}\ {\rm survival}$					

 ${\bf CSS}\,$ Cancer-specific survival

- **CTC** Circulating tumour cell
- ${\bf CV}\,$ Clinical variable
- ${\bf DFS}\,$ Disease-free survival
- ${\bf DSS}$ Disease-specific survival
- **DHT** 5α -dihydrotestosterone
- ${\bf DRE}\,$ Digital rectal examination
- EAU European Association of Urology
- ${\bf ERSPC}\,$ European Randomized Study of Screening for Prostate Cancer
- ${\bf EN}\,$ Elastic Net
- ${\bf FEM}\,$ Fixed-effects model
- ${\bf GC}\,$ Genomic classifier
- ${\bf GDC}\,$ Genomic Data Commons
- GEO Gene Expression Omnibus
- ${\bf GPS}\,$ Genomic prostate score
- **HIF-1** Hypoxia inducible factor-1
- ${\bf HR}\,$ Hazard ratio
- **ISUP** International Society of Urological Pathology
- ${\bf KLK}$ Kallikrein
- KM Kaplan-Meier
- ${\bf kb}$ kilobase
- ${\bf KW}\,$ Kruskal-Wallis
- LHRH Luteinizing hormone-releasing hormone
- ${\bf MFS}\,$ Metastasis-free survival
- \mathbf{miR} microRNA
- $\mathbf{MP}\text{-}\mathbf{MRI}\,$ multi-parametric magnetic resonance imaging
- \mathbf{MRE} miRNA responding element
- ${\bf NICE}\,$ National Institute for Healthcare and Excellence

nt nucleotide
ORF Open reading frame
OLS Ordinary least squares
OS Overall survival
PCA Principal component analysis
PCa Prostate Cancer
PCR Polymerase chain reaction
PFS Progression-free survival
$\mathbf{PIP2}$ Phosphatidylinositol-4,5-bisphosphate
PIP3 Phosphatidylinositol (3,4,5)-trisphosphate
PI3K Phosphoinositide 3-kinase
PLCO trial Prostate, Lung, Colorectal and Ovarian trial
pre-miR precursor miRNA
PS Percentage survival
PSA Prostate-specific antigen
RP Radical prostatectomy
REM Random-effects model
REMARK Reporting recommendations for tumour marker prognostic studies
\mathbf{RFS} recurrence/ relapse free survival
RISC RNA-induced silencing complex
SNP Single-nucleotide polymorphism
TCGA The Cancer Genome Atlas
${\bf TCGA-PRAD}$ The Cancer Genome Atlas - Prostate Adenocarcinoma
TMM Trimmed mean of M-values
TNM Tumour, Node, Metastasis
TRBP Transactivating response RNA-binding protein
TRUS Transrectal ultrasound

\mathbf{UTR} Untranslated region

${\bf X^2}$ Chi-squared

Chapter 1

Introduction

1.1 Prostate Cancer

1.1.1 Prostate cancer epidemiology

Prostate cancer (PCa) is the most commonly diagnosed cancer and the second most lethal cancer just after lung cancer in men in the UK [1]. Between 2015 and 2017, there were over 40,000 cases diagnosed every year, which accounted for 26% of all new cancer cases, and 11,700 deaths, which accounted for 14% of all cancer deaths, in men in the UK [1]. Diagnosis rates have increased in the UK over the last decade by 4%, while the mortality rate has decreased substantially by 10% [1].

Worldwide, approximately 1.2 million men were diagnosed with PCa (22.8% of all cancer diagnoses) in 2018, making it the second most common cancer in men worldwide after lung cancer [2]. Similarly the same year, there were an estimated 128,222 deaths (3.3% of total male cancer deaths), making it the eighth most common cause of cancer death in men worldwide [2]. The disease burden is not equally distributed worldwide (Figure 1.1). PCa incidence is higher in the more developed parts of the world such as North America, Northern Europe, Western Europe and Australia/ New Zealand [3]. In contrast, mortality rates are highest in men of African descent with Southern African, Caribbean and Middle African men having the highest mortality rates [3]. East, Southeast and South Central Asian men have the lowest incidence and mortality rates [3].

1.1.2 The prostate gland

The prostate is an exocrine gland of the male reproductive system, located just below the bladder, in front of the rectum and surrounding the urethra (Figure 1.2). It is approximately 20g in weight and secretes thick and alkaline prostatic fluid, which along with sperm from the testicles and seminal vesicle fluid from the seminal vesicles, make up the components of semen [4]. The prostatic fluid makes up to 30% of total fluid ejaculated. It contains Zn^{2+} ions, citric acid and various proteins such as phosphatases, polyamines and Kallikreins (KLKs), which are serine proteases and include prostatespecific antigen (PSA) [5, 6]. These molecules are required for the proper functioning of sperm cells as

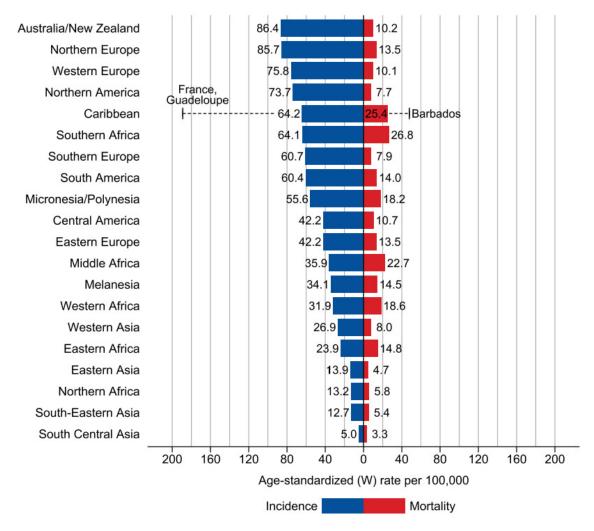
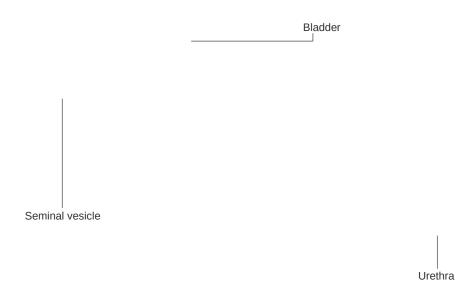



Figure 1.1: Region-specific age standardised incidence and mortality rates for prostate cancer in 2018. Figure extracted from Bray *et al.* (2018) with permission of the rights holder, International Agency for Research on Cancer [3].

they are responsible for regulating semen coagulation, liquefaction, providing nutrition for sperm and aiding sperm motility [4, 5]. The alkalinity of the secretion prolongs the lifespan of sperm as it helps neutralise the acidity of the vaginal tract [6]. Also, the muscles of the prostate contract during ejaculation, closing off the opening between the bladder and urethra, preventing retrograde ejaculation [7].

Anatomically, the prostate can be divided into three zones in humans: transitional, central and peripheral zones (Figure 1.2) [8]. The transition zone is the innermost zone that surrounds the urethra and makes up 5-10% of the gland [6]. Approximately 10-20% of PCa originate in this zone [9]. This region also enlarges with age and due to its immediate proximity to the urethra, this enlargement can cause a non-malignant disease, benign prostatic hyperplasia (BPH) [6, 8]. The central zone surrounds

the ejaculatory ducts, which run from the seminal vesicles to the prostatic urethra and makes up around 20-25% of the gland [6]. Approximately 2.5% of PCa originate in this zone [10]. This zone also begins to enlarge with age. The peripheral zone forms the outer layer of the prostate and makes up around 70% of the gland [6]. It is the most common zone where PCa develops, accounting for 70-80% of PCa cases [6, 8, 9].

Figure 1.2: Anatomy of the prostate. The prostate is comprised of three main zones: central zone (a), transitional zone (c) and peripheral zone (d) and two additional zones: fibromuscular zone (b) and periurethral gland region (e). The fibromuscular band of tissue separates the transition zone from the remaining glandular compartments. The periurethral gland region is a narrow area with short ducts adjacent to the prostatic urethra. Figure adapted from De Marzo *et al.* (2007) with permission of the rights holder, Springer Nature [11].

Risk factors for prostate cancer

Like most cancers, age, race and family history of the disease are important risk factors in PCa. In 2017, 55% of PCa cases occurred in men aged 70 and over, and more than 80% mortality were in men aged 70 and over [1]. Age as a risk factor relates to the accumulation of genetic and epigenetic alterations and increased exposure to carcinogens, in turn leading to DNA damage and genomic instability over time.

In terms of race as a risk factor, the incidence is highest in men of African origin. In England, black men are at double the risk of being diagnosed and dying from PCa compared to white men [12]. Black men have diagnosis and mortality rates of 29.3% and 8.7% respectively, whilst white men have lower diagnosis and mortality rates of 13.3% and 4.2% respectively [12]. Asian men have the lowest risk of being diagnosed and dying from PCa with diagnosis and mortality rates of 7.9% and 2.3% respectively [12]. Black men also have an earlier onset of disease and higher PSA levels at onset [13]. The reasons for racial disparities are complex. It likely involves genetic factors, which may lead to differences in physiology, tumour biology and treatment response; and environmental factors such as socioeconomic status and lifestyle differences, affecting access to healthcare and contributing to late diagnosis with clinically advanced-stage PCa [14].

Family studies have shown that first-degree relatives of men with PCa have approximately twice the risk of developing PCa compared to the general population; this risk increased three-fold if the men had two affected relatives [15, 16]. Furthermore, the risk for first-degree relatives of men diagnosed with PCa before 60 years of age increases four-fold compared to the general population [16]. These familial studies show strong evidence of genetic predisposition to PCa.

In fact, approximately 5% of cases represent hereditary PCa. Studies conducted to elucidate the genetic components contributing to susceptibility to PCa have identified aberrations in various PCa-specific and DNA repair genes. HOXB13 is a gene that codes for a transcription factor essential for embryonic and prostate development. A meta-analysis of HOXB13 mutation in men of European descent showed that men with G84E mutation in HOXB13 gene had four-fold increased cancer risk in comparison to non-carriers of the mutation [17]. Additionally, men with this mutation and family history had five-fold increased cancer risk compared to men with the mutation but no family history. About 1.4% of the European population carry this mutation, and this frequency increases to 3.1% in carrier men with a family history of PCa with early diagnosis (< 55 years of age) [18]. BRCA1, BRCA2 and ATM are tumour suppressor genes that code for proteins involved in the DNA damage

response pathways and are important for the maintenance of genomic stability. The frequencies of germline mutations for these genes ranged between 0.41-0.64% for *BRCA1*, 0.82-5.7% for *BRCA2* and 0.41-1.92% for *ATM* respectively [19–22]. Additionally, men with *BRCA1* and *BRCA2* mutations respectively conferred 3.75 and 5-fold higher relative risks of PCa compared to men without mutations [21, 23]. Carriers of these mutations usually experienced earlier age of onset and a more advanced, aggressive form of cancer with worse prognoses compared to men without the mutations. Like most cancers, a combined influence of hereditary variations in many genes and environmental factors impact the risk of a person developing PCa.

1.1.3 Development of prostate cancer: Androgen signalling

The prostate gland requires androgen hormones for normal development and functioning. As such, the key pathway implicated in the development and progression of PCa is the androgen receptor (AR) signalling pathway (Figure 1.3). In a normal prostate, circulating androgen testosterone produced by the testes is converted to a more potent androgen 5α -dihydrotestosterone (DHT) by the enzyme 5α reductase. DHT exerts its biological effects through binding to and activating the AR, a steroid and nuclear receptor located in the cytoplasm. Activated ARs homodimerise and are transported to the nucleus where they bind to androgen response elements in the promoter region of target genes, thus recruiting co-regulatory proteins and facilitating transcription or repression of those genes [24, 25]. Many of these target genes are involved in regulating cell proliferation, differentiation and apoptosis of epithelial cells, playing a pivotal role in tissue maintenance and homeostasis. Dysregulation of this pathway is a key driver of prostate tumorigenesis and progression.

Patients with high-risk/ locally advanced and metastatic tumours (i.e. inoperable) are treated with androgen deprivation therapy (ADT) to deactivate the AR signalling pathway, often in combination with other treatments such as radical radiotherapy and chemotherapies [26]. ADT may involve orchiectomy, administration of luteinizing hormone-releasing hormone (LHRH) agonists and antagonists to suppress the production of androgens, or administration of anti-androgens to competitively bind to and block ARs in cancer cells [27]. Drug-based ADT usually starts with the LHRH agonist/ antagonist approach and is often combined with anti-androgens to achieve combined androgen blockade. Combined androgen blockade blocks both androgen production and action to attain maximal treatment effectiveness. Although ADT is initially successful in reducing androgen levels and/ or AR activity and prostate tumour growth, patients eventually relapse and develop a much more aggressive ADT resistant form of PCa. This recurrent form have been referred to as androgen-independent PCa or castration-resistant PCa (CRPC). Although these tumours are resistant to ADT, they continue to depend on alternative mechanisms of androgen/ AR action for survival and growth. Thus, these tumours are not completely "androgen-independent"; as such, androgen-independent PCa is a misnomer for the recurrent form of PCa [28, 29]. For clarity, ADT resistant, recurrent cancer will be referred to as CRPC in this thesis.

The progression to CRPC has been attributed to various molecular alterations which abnormally activate AR signalling, such as gain-of-function AR mutations, amplifications, AR splice-variant expression and aberrant AR co-regulator activities. Indeed, while only 2% of primary tumours carry AR mutations and 0-5% carry AR amplifications, mutations and amplifications increase remarkably to 18% and 52-63% respectively in metastatic and CRPC cases [30–32]. Alterations to the AR gene often result in increased sensitivity to low levels of endogenous androgens and/ or alternative hormones, leading to inappropriate activation and amplification of AR response [25]. Overexpression of AR splice variants (ARVs) has also been observed frequently in CRPC. ARVs are abnormally truncated isoforms that lack the ligand-binding domain, thus activating AR reporter genes even in the absence of androgens [33].

1.1.4 Genomic profile of prostate cancer

PCa is a heterogeneous disease at both clinical and molecular level. Several studies have aimed to characterise the underlying genomic heterogeneity in patients with localised and metastatic tumours. They report a low mutational burden in PCa with approximately 1 mutation per megabase in primary tumours and 2-4.4 mutations per megabase in metastatic tumours [34–36]. In contrast, there

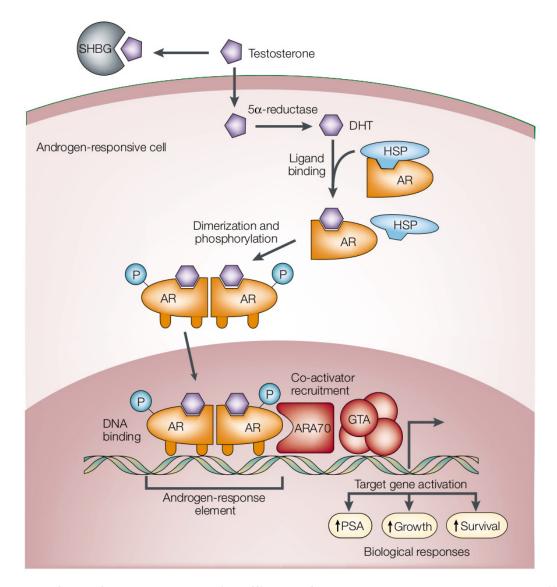


Figure 1.3: The androgen receptor signalling pathway. Testosterone enters prostate cells and is converted to a more potent form: dihydrotestosterone (DHT), by enzyme 5α -reductase. DHT binds to inactive androgen receptor (AR) in the cytoplasm, resulting in dissociation of the AR from chaperone proteins and its subsequent phosphorylation. The activated AR homodimerises and translocates to the nucleus where it binds to androgen response elements in the promoter regions of AR target genes. The AR recruits co-activators and co-repressors and facilitates activation or repression of target genes. Figure extracted from Feldman *et al.* (2001) with permission of the rights holder, Springer nature [25].

are higher rates of genomic rearrangements and copy number variations (CNVs), which suggests the development and progression of PCa is primarily due to the accumulation of large-scale CNVs and fusion gene formations [31, 32, 34–37].

In primary PCa, the most widely reported genomic alterations are in the ETS gene family fusions; almost 60% of primary tumours exhibiting a fusion involving one of the ETS family genes ERG, ETV1,

ETV4 and FLI1 [35]. This gene family is one of the largest families of transcription factors and regulate cell proliferation, differentiation, angiogenesis, inflammation and apoptosis [38]. These gene fusions primarily involve fusion with regulatory regions of prostate-specific and androgen-responsive genes such as TMPRSS2 and SLC45A3 [35, 38–40].

Focal deletions and mutations of PTEN (17%), TP53 (3.4-8%), BRCA2 (3%), SPOP (8-11%) and FOXA1 (2.3-3%) are also observed in primary tumours. These genes are key tumour suppressor genes implicated in various cancers. *PTEN* codes for a lipid and protein phosphatase that is responsible for dephosphorylation of Phosphatidylinositol (3,4,5)-trisphosphate (PIP3) to Phosphatidylinositol 4,5bisphosphate (PIP2). This inhibits the downstream oncogenic PI3K/AKT signalling pathway, which leads to inhibition of several cellular processes required for tumour development such as cell proliferation, migration and survival [41]. TP53 codes for a transcription factor which plays a key role in the regulation of various genes involved in DNA repair, cell cycle progression, apoptosis, or senescence in response to cellular stress leading to DNA damage [42]. As previously stated, BRCA2 codes for a protein involved in double-strand DNA damage repair and is responsible for the maintenance of genomic stability [43]. SPOP codes for a substrate adaptor for a ubiquitin ligase CRL3 and recruits substrates to CRL3 for ubiquitination and subsequent proteasomal degradation [44]. Its substrate includes AR [44]. FOXA1 codes for a transcription factor involved in endodermal organogenesis, metabolism and homeostasis and are pioneer factors (transcription factors that can condense chromatin and negatively or positively regulate transcription) for AR [45, 46]. Besides deletions of tumour suppressor genes, focal amplifications of 8q24.21 locus spanning MYC (8%) are also observed in primary tumours [35, 47]. MYC is a proto-oncogene that codes for a transcription factor which is activated upon various mitogenic signals and regulates various processes such as cell cycle progression, cellular transformation and apoptosis.

Metastatic tumours have a similar molecular landscape to primary tumours, albeit at different magnitudes. ETS gene family fusions collectively occur at 56% frequency, while alterations in tumour suppressors genes TP53, PTEN, BRCA2, SPOP and FOXA1 occur at higher frequencies (53.3%, 40.7%, 13.3%, 8% and 12% respectively) in comparison to primary tumours [32]. Focal amplification of the oncogene MYC is also high in metastases (13%) [32]. Besides, there are genomic modifications almost exclusive to metastases such as mutation and focal amplification of AR (58-63%); alteration in RB1(9%), a tumour suppressor gene which codes for a protein that regulates cell growth by suppressing cell cycle progression; and focal deletion in 11q23 spanning ZBTB16 (10%), a transcriptional repressor that induces epigenetic changes, including histone modifications and DNA methylation [31, 32, 35, 48]. Several studies have characterised the genomic landscape of primary and metastatic prostate, however, the functional relevance of many of these genomic events are still not well understood.

1.1.5 Prostate cancer diagnosis

The PSA test is one of the diagnostics tests currently used to diagnose PCa. It detects the level of PSA protein in the blood. A serum PSA level above the 'normal' threshold of 4.0 ng/ml is considered suggestive of potential prostate malignancy [49]. An elevated PSA level can be indicative of PCa but is nevertheless, not an exclusive symptom of PCa. It can be observed in patients with benign prostate conditions such as prostatitis, BPH, urinary tract infection or even in healthy males [50, 51]. Thus, the test does not necessarily indicate PCa development and results in a high proportion of false-positives [52, 53].

Besides diagnosis, PSA test is also used for PCa screening in US. However, PSA screening test is not currently offered in the UK and its use for screening is highly debated. Several trials have tested the efficacy of the test in PCa screening. The European Randomized Study of Screening for Prostate Cancer (ERSPC) was a randomised trial conducted in eight European countries where more than 162,000 men recruited were randomly assigned to PSA test screening group or control group without any screening [54]. This trial showed that the PSA screened group had a 21% reduction in PCa-specific mortality during 11-years of follow-up [55]. However, a study conducted by Gosselaar *et al.* on the Rotterdam cohort of the ERSPC trial showed that 50% of PCa diagnosed through PSA screening showed clinically and pathologically low-risk features, similar to the pathology of incidental cancers found at autopsy [56]. The overall survival for these patients was 70%, while none died of PCa. Similarly, another PSA screening trial, the Prostate, Lung, Colorectal and Ovarian (PLCO) trial, which screened more than 76,000 men over a period of ten years, showed no difference in PCa-specific mortality with PSA testing [57]. These trials demonstrate that although the PSA test is useful in PCa screening, most of the cancers detected are indolent tumours, which are clinically asymptomatic and therefore lead to over-diagnosis. Additionally, the increased incidence of PCa seen worldwide (Section 1.1.1) is attributed partly to the widespread application of the PSA test.

In addition to the PSA test, a digital rectal examination (DRE), where the prostate is examined for any abnormalities such as lumps by inserting a finger in the rectum, is another diagnostic procedure. Patients with positive diagnostic test results will be referred for a more invasive prostate tissue biopsy which is the only method to give a definitive diagnosis. This can be performed either using a transrectal ultrasound (TRUS), where a needle is inserted into the prostate through the rectum or a transperineal ultrasound, where a needle is inserted into the prostate through the skin behind the scrotum. Traditionally, 10-12 tissue samples are obtained for TRUS and 18-28 samples are obtained for transperineal biopsies. However, the optimal number of samples that should be taken during prostate biopsies is still debated; increasing the number of samples taken could improve the detection rate of PCa at the risk of increasing the side-effects.

Beside biopsies, imaging tests such as MRI and CT scans are also for PCa diagnosis and have proven to be beneficial for early detection. In 2017 a clinical trial, PROMIS, was performed in 740 men with elevated PSA where multi-parametric MRI (MP-MRI) was performed prior to biopsy [58]. This clinical trial reported MP-MRIs diagnosed 5% fewer indolent cancers (5% reduction in over-diagnosis of clinically insignificant cancers) than the biopsies. Additionally, the MP-MRI diagnosis could reduce unnecessary biopsies of 27% of patients.

1.1.6 Prostate cancer prognosis: one of the main clinical challenges

The natural course of PCa is variable. It manifests as either a low-risk, indolent tumour that is asymptomatic and localised to the prostate, or a high-risk, aggressive tumour that eventually metastasises and proves lethal if untreated. Approximately 42-66% of patients present the indolent form of PCa [52, 59]. Currently, there are no reliable methods to distinguish between indolent and aggressive disease. The National Institute for Health and Care Excellence (NICE) and the European Association of Urology (EAU) guidelines recommend using risk stratification systems that incorporate clinicopathological variables serum PSA at diagnosis, Gleason score and clinical tumour stage to predict disease severity/ prognosis and inform disease management decisions [26, 60].

Risk stratification based on clinicopathological variables

As stated above, risk stratification of PCa patients is based on three clinical factors: PSA level at diagnosis, Gleason score and clinical tumour stage [26, 60]. All of these are determined at diagnosis. To determine the Gleason score, the biopsies taken for definitive diagnosis are graded according to the Gleason grading system by a pathologist. This system categorises patients according to their histological features. A Gleason score can be between 1 (most differentiated, essentially normal) and 5 (least differentiated). In this system, two grades are assigned; the primary grade is the dominant pattern of the tumour and the secondary grade is the next most common pattern. These two grades are subsequently combined to give an overall Gleason score which ranges between 2 (1+1) and 10 (5+5). The score reflects aggressiveness and extent of de-differentiation. Scores ≤ 5 are insignificant and are not reported. A Gleason score of 6, 7 and 8-10 signify that cells are well-differentiated, moderately differentiated and poorly differentiated and thus have low, intermediate and high risks.

In addition to the overall Gleason score, a new grading system defined by the International Society of Urological Pathology (ISUP), where overall Gleason scores are further categorised into groups ranging from 1 to 5, has been used in newer studies for prognostication. In the classic Gleason score 7, consisting of 3+4=7 and 4+3=7, are categorised into the same prognostic risk group. However, research has shown that these two groups are prognostically different; group 3+4=7 are mostly well-differentiated cancer and have a more intermediate favourable prognosis, while group 4+3=7 are mostly poorly differentiated cancer and have an intermediate unfavourable prognosis [61, 62]. Accordingly, Gleason score 7 is divided into two groups: ISUP Grade 2 (3+4=7) and ISUP Grade 3 (4+3=7), in the ISUP grading system to account for the different prognoses (Table 1.1).

ISUP	Gleasor	1 Definition	Risk group/
Grade	score		prognosis
1	≤ 6	individual discrete well-formed glands	low
2	3+4=7	predominantly well-formed glands with a lesser component of	intermediate
		poorly-formed/fused/cribriform glands	favourable
3	4 + 3 = 7	predominantly poorly-formed/fused/cribriform glands with a	intermediate
		lesser $(>5\%)$ component of well-formed glands	unfavourable
4	4+4=8,	only poorly-formed/fused/cribriform glands OR predominantly	high
	3+5=8,	well-formed glands with a lesser component lacking glands OR	
	5+3=8	predominantly lacking glands with a lesser component of well-	
		formed glands	
5	4+5=9,	lacks gland formation (or with necrosis) with or without poorly-	high
	5+4=9,	formed/fused/cribriform glands	
	5 + 5 = 10		

Table 1.1: Histological definitions of the ISUP Gleason Grade group categories. Table adapted from Epstein *et al.* (2016) with permission of the rights holder, Elsevier [61].

Besides histopathology of the biopsy samples to determine the Gleason scores, results from the imaging tests are used to determine the clinical tumour stage according to the Tumour, Node, Metastasis (TNM) system, which is used to describe the location and spread of cancer. In TNM staging, the T stage is a measure of the size and extent of the primary tumour inside and in the periphery of the prostate, N stage is a measure of the spread of cancer to nearby lymph nodes and M stage is a measure of metastasis of cancer to other parts of the body. The first site of metastases is lymph nodes adjacent to the primary tumours. This is followed by metastases to the bone (84.40%), distant lymph nodes (10.6%), liver (10.60%) and thorax (9.10%) [63]. Rarely, prostate tumours may spread to the brain (3.10%), adrenal glands and kidneys (1%), digestive system (1.6%), and retroperitoneum (0.9%) [63]. The TNM scoring system is further detailed in Table 1.2.

Tumour stage		Definition						
\mathbf{stage}	score	Definition						
	ΤХ	primary tumour cannot be assessed						
	T0	no evidence of primary tumour						
	T1	clinically inapparent tumor neither palpable nor visible by imaging						
	T1a	tumour is found in less than 5% of the removed tissue						
	T1b	tumour is found in more than 5% of the removed tissue						
	T1c	tumours are found by biospy performed after a raised PSA level						
\mathbf{T}	T2	tumour is detectable with a DRE or imaging but is confined to the prostate						
T	T2a	tumour is found in only half of one side of the prostate						
	T2b	tumour is found in more than half of one side of the prostate						
	T2c	tumour is found in both sides of the prostate						
	Т3	Tumor extends through the prostate capsule						
	T3a	extraprostatic extension (unilateral or bilateral)						
	T3b	tumour has invaded seminal vesicle(s)						
	Τ4	tumour has invaded adjacent structures other than seminal vesicles such as external sphincter, rectum, bladder or pelvic wall						
	NX	regional lymph nodes were not measured						
\mathbf{N}	N0	no regional lymph node metastasis						
	N1	metastasis in regional lymph nodes(s)						
	M0	no distant metastasis						
	M1	distant metastasis						
\mathbf{M}	M1a	metastasis in non-regional lymph nodes						
TAT	M1b	metastasis in the bones						
	M1c	metastasised in other sites such as lungs, liver or brain with or without bone disease						
1.10	D C '''	and of the Tymesen Node Metastacia staging system for prestate concer Information systemated from Edge at al (20						

Table 1.2: Definitions of the Tumour, Node, Metastasis staging system for prostate cancer. Information extracted from Edge *et al.* (2010) with permission of the rights holder, Elsevier [64].

Once Gleason score and tumour stage are determined, these variables and PSA at diagnosis are used to categorise patients into risk groups. The criteria for determining risks of patients according to NICE and EAU guidelines are summarised in Table 1.3. Patients then follow personalised treatment/ disease management regimes depending on their risk.

Level of risk	PSA		Gleason score		Clinical tumour stage
low risk	<10 ng/ml	AND	≤ 6	AND	T1-T2
intermediate rsk	10-20 ng/ml	OR	7	OR	T2b
high risk	>20 ng/ml	OR	8-10	OR	\geq T2c
iligii 118k	any PSA	AND	any GS	AND	T3-T4

Table 1.3: Prostate cancer risk stratification based on Gleason score, clinical tumour stage and serum PSA at diagnosis. Information adapted from the National Institute for Health and Care Excellence (NICE) and European Association of Urology guidelines with permission of the rights holders, NICE and Elsevier [26, 60]. Abbreviations: GS=Gleason score; PSA=Prostate Specific Antigen.

As previously mentioned, raised PSA level is not PCa disease-specific and results in a high proportion of false positives. In addition, the PSA test detects asymptomatic indolent disease, leading to over-diagnosis. Another problem is that Gleason score and tumour stage measurements are subject to sampling and random errors as the biopsies may miss tumours, resulting in a high proportion of misdiagnoses. More than 30% TRUS biopsies are false negatives and higher than 45% of cancers patients have their Gleason scores underestimated [58, 65]. MRI-guided diagnoses are superior to ultrasoundguided biopsies; however, they also suffer from more than 50% false positives [58]. Although the clinical variables are good indicators of disease severity and correlate with patient survival, they are unreliable prognostic markers and may not represent true disease state.

Due to the unreliable diagnostic tests and risk stratification system, there are high rates of overdiagnosis and over-treatment of patients with indolent tumours. Patients with indolent tumours should be offered less invasive treatments such as active surveillance (monitoring of patients closely where diagnostic tests such as the PSA test, prostate biopsies and imaging tests are performed routinely to track tumour growth/ aggressiveness) and watchful waiting (less intensive monitoring of PCa with fewer diagnostic tests, thus avoiding surveillance-related risks and side effects). However, these patients with indolent tumours may follow the same highly invasive treatment procedures as patients with aggressive disease with no significant survival benefit. These treatments include radical prostatectomy (RP), radiotherapy and ADT. Watchful waiting and active surveillance, although less invasive, can give rise to complications such as infections, sepsis, rectal bleeding and acute urinary retention due to the invasive biopsy procedures [66]. On the other hand, RP, radiotherapy and ADT treatments for treating aggressive disease are associated with extreme side effects such as sexual dysfunction, urinary incontinence, impaired rectal/ bowel function, hernia, scarring of the urethra, and thromboembolic or cardiovascular events leading to poorer quality of life and increasing disease burden [67–69].

1.1.7 Prostate cancer relapse: another clinical challenge

In addition to the problem of over-treatment of indolent cases, a substantial proportion of patients with aggressive disease experience disease relapse. This is because the PCa risk stratification system (along with other clinical variables such as family history, age at diagnosis and co-morbidity) is also used to devise treatment strategy for the patients according to their risk [26]. Although these clinicopathological variables are used to devise treatment strategy, they are not indicative of treatment response; currently, there are no prognostic markers that are reliable predictors of treatment response. Consequently, approximately 15-45% of patients treated with RP, one of the first lines of curative treatments for localised PCa, experience biochemical recurrence (BCR) within five years [70–74]. Similarly, 30-60% of patients treated with radiotherapy experience BCR between three and ten years [74, 75]. Although it does not always equate to clinical recurrence, BCR is considered an initial event signifying disease progression and has been shown to be associated with increased risk of PCa metastasis and cancer-specific mortality [72, 73, 76–78].

Further, men treated with ADT for advanced disease relapse within one to three years to an incurable disease state, CRPC [50, 79, 80]. The outcome of ADT can be improved if it is combined with other treatment strategies. Results from the STAMPEDE trial, a randomised controlled trial in the UK and Switzerland that is evaluating different combinations of novel treatment strategies with ADT, show

that advanced disease treated with a combination of ADT and the chemotherapy drug docetaxel had a longer time to CRPC (3.03 years) in comparison to just ADT treatment (2.04 years) [81]. Similarly, a meta-analysis of five randomised controlled trials (CHAARTED, GETUG-15, GETUG-12, RTOG 0521 and STAMPEDE) conducted by Vale *et al.* reported that the combination of ADT and docetaxel led to a lower 4-years CRPC free survival (64%) compared to just ADT treatment (80%) [82].

Although results from these trials show improvement in disease outcome for advanced disease with adjuvant treatment strategies, it remains a challenge that there are no biomarkers or methods that can be used to identify (and separately treat) patient subgroups that will successfully respond to specific treatments or are more likely to experience relapse after treatment. The problem of unreliable prognosis and subsequent relapse after treatment are two of the main issues in PCa patient care. They highlight an urgent need for novel biomarkers that can accurately and reliably identify aggressive disease from indolent disease in order to limit over-treatment and facilitate appropriate personalised treatment strategies for PCa disease management.

1.1.8 Prognostic biomarkers currently being evaluated

In the last decade, hundreds of studies have been published addressing the lack of reliable biomarkers in PCa. These studies have introduced promising novel prognostic markers and tests; however, none have yet successfully replaced the established clinicopathological variables used for predicting disease risk. Some of the RNA-based gene biomarker panels that are commercially available for use and potential biomarkers currently being explored for prognostication are briefly discussed in this section before the introduction of miRNAs, a novel class of small non-coding RNAs with promising biomarker potential and the focus of my project.

OncotypeDX Genomic Prostate Score

OncotypeDX Genomic Prostate Score (GPS) is a gene panel for predicting disease aggressiveness (growth and spread) at diagnosis in men with clinically low-/ favourable intermediate-risk PCa (Glea-

son scores 3+3=6, 3+4=7) [83]. It is based on a multi-gene assay consisting of 17 genes (12 genes related to androgen metabolism, cellular organization, proliferation and stromal response, and 5 reference genes) and outputs a GPS between 0 to 100; higher scores indicate a more aggressive disease. The test may be useful in detecting aggressiveness in men with low-/ intermediate-risk PCa and assisting clinicians in deciding between active surveillance and immediate treatment of patients at the time of diagnosis. Currently, OncotypeDX GPS is commercially available only in the United States. The predictive performance of OncotypeDX in independent datasets are reported in Table 1.4.

Prolaris

Prolaris is a gene panel test for predicting disease aggressiveness in men with Gleason scores ≥ 7 [84]. The test calculates a cell cycle progression (CCP) score, which is based on the expression of 31 cell cycle progression genes. The CCP score can be positive or negative values and a score of ≥ 2 indicates an aggressive tumour. This test combines clinicopathological information with the CCP scores to generate either the ten-year risk of BCR (from RP specimens) or the ten-year PCa-specific mortality risk (from biopsy samples). Similar to the OncotypeDX GPS test, the Prolaris test can be used to decide between active surveillance and active treatment options, but in men with intermediate-/ high-risk PCa. In the UK, this test is commercially available in private clinics only. Its predictive performance in external validation datasets are reported in Table 1.4.

Decipher

The Decipher test is a gene panel test for predicting clinical metastasis within five years of RP in men with high-risk pathology after RP, i.e. PSA > 20, Gleason score ≥ 8 , pathological tumour stage T3b [85]. The Decipher test is a 'genomic classifier' (GC), a machine learning model built on a random forest algorithm, and is based on the expression profile of 22 different genes [85]. It outputs a GC score that ranges from 0 to 1; cases with scores > 0.6 are considered at high risk of progression. The Decipher test may be useful in predicting progression post-RP and improve the treatment decisionmaking process for high-risk patients. The Decipher test is currently only commercially available in the United States. The predictive performance of Decipher in external validation datasets are reported in Table 1.4.

Biomarker panels	Endpoint	Sample size	AUC/ C-index (% CI)	Ref
Oncotype DX	adverse pathology	402	0.720 (n/s)	[86]
Oncotype DA	adverse pathology	732	0.730 (n/s)	[87]
Prolaris	biochemical recurrence	366	0.842 (n/s)	[84]
1 101/115	PCa specific mortality	337 (cases: 68)	0.878 (n/s)	[84]
Decipher	metastasis	186 (cases: 63)	0.75(0.67-0.83)	[85]
Decipiter	metastasis	235	$0.84 \ (0.61-0.93)$	[88]

Table 1.4: Predictive performance of the three commonly genomic biomarker panels in validation/ external datasets. n/s represents not specified.

1.2 A new class of biomarkers: MicroRNAs

MicroRNAs (miRs) are small, non-coding regulatory RNA molecules of approximately 22 nucleotides (nt) in length. They negatively regulate gene expression primarily at the post-transcriptional level. They do so by binding to complementary sequences in the 3' untranslated region (UTR) of target mRNAs via their preserved 'seed sequence' region, which in turn represses translation of the target mRNAs [89]. The first miR was discovered in 1993 in the nematode *Caenorhabditis elegans* and was implicated in post-embryonic development [90]. Since then, the discovery of miRs in other species, including humans, have increased exponentially. The most recent version of miRBase database (version 22), an archive of miR annotations and sequences for all species, reported 4,800 mature miRs in humans [91]. Due to their regulatory role, these molecules have been implicated in various developmental, cellular and physiological processes and their dysregulation has been associated with various diseases including PCa [89, 92]. Consequently, miRs have been investigated for their potential as diagnostic, prognostic and treatment predictive biomarkers in PCa in the last two decades. These regulatory molecules present promising biomarker alternatives to the unreliable clinical markers for PCa prognosis.

1.2.1 MicroRNAs: biogenesis

In the canonical biogenesis pathway, miR coding genes are transcribed by RNA polymerase II to produce a primary miRNA transcript (group 1 in Figure 1.4) [89, 93]. Primary miRNAs are several kilobases (kb) in length and have at least one region that folds into a hairpin structure. They are cleaved by the Microprocessor, a complex of RNAse III enzyme Drosha and RNA binding protein DGCR8 to produce a ~70 nt long stem-loop precursor miRNA (pre-miR) transcripts with a 2 nt overhang at its 3' end [89, 93]. Pre-miRs are exported to the cytoplasm by Exportin-5 and further cleaved by another RNAse III enzyme, Dicer, near the loop producing a miRNA duplex of ~22 nts in length. This duplex has a 2 nt overhang at the newly generated 3' end as a result of offset cuts made by Dicer [89, 93]. Both strands of the duplex can act as a functional miR. However, only one strand, the guide strand, is incorporated to the RNA-induced silencing complex (RISC) while the remaining strand is often degraded. Strand selection usually depends on the thermodynamic stability of the 5' ends of the duplex; the strand that has relatively unstable base pairing at the 5' end becomes the guide strand [93, 94]. As mature miRs can be generated from both the 5' and 3' arm of the pre-miR, miRs have -5p and -3p suffixes at the end of their names to denote their arm of origin.

Besides the canonical pathway, miRs can also be produced via various alternative biogenesis pathways where the action of Drosha, Exportin-5 or Dicer are not required. Young-Kook *et al.* proposed six biogenesis pathways including the canonical pathway (referred to as Group 1) in humans (Figure 1.4) [95]. Group 2 biogenesis pathway requires mono-uridylation (non-templated addition of a single uridine at the 3' end) of pre-miRs by enzymes TUT7 and/ or TUT4 because the pre-miRs have a 1 nt overhang at their 3' end instead of typical 2 nt overhang [95–97]. Following mono-uridylation, they are processed by Dicer in a typical manner to generate the mature miR. The pre-miRs of miRs produced via the group 3 biogenesis pathway are directly generated through transcription by RNA polymerase II and are 7-methylguanosine capped at the 5' end [93, 98, 99]. The pre-miR bypasses Drosha cleavage and is directly exported into the cytoplasm by Exportin-1 where it is processed by Dicer to generate the mature form. Alternatively, miRs produced via the group 4 biogenesis pathway depend on Drosha cleavage but are independent of Dicer cleavage. This is because, in this pathway, Drosha cleavage produces a pre-miR with high stem complementarity and a short stem length which is less than 21 bp, too small for Dicer recognition [100, 101]. Instead, the pre-miR is directly cleaved by Argonaute 2 (AGO2), an endonuclease which is a component of the RISC [100, 101]. The cleaved product, acpre-miR, is further cleaved by 3'- 5' exoribonuclease PARN before being loaded into the RISC [89, 100]. MiRs produced via group 5 and group 6 biogenesis pathways are also Drosha independent and originate from spliced-out introns (group 5) or other small non-coding RNAs such as small nucleolar RNAs and tRNAs (group 6) [93, 102].

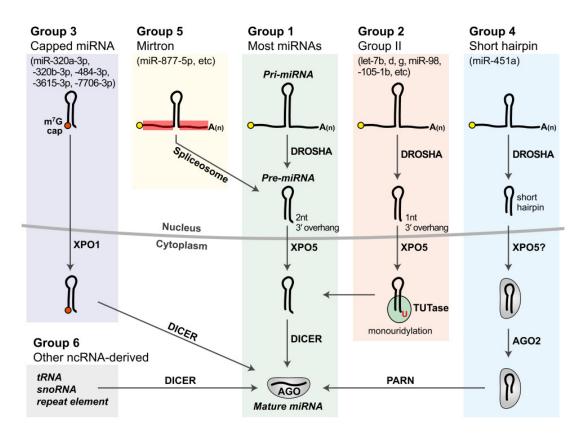


Figure 1.4: Canonical and alternative miRNA biogenesis pathways. The canonical miRNA biogenesis pathway (Group 1) requires the action of Drosha, Exportin-5 and Dicer, while alternative biogenesis pathways (Group 2-6) bypass action of these key proteins or require additional processing by other proteins such as TUTases, PARN and AGO2. Figure extracted with permission from Young-Kook *et al.*(2016) [95].

1.2.2 microRNA mechanism of action

Mature miRs mediate their functionality by associating with the RISC (Figure 1.5). The RISC is a multi-protein complex made up of Dicer, transactivating response RNA-binding protein (TRBP) and AGO2. As previously mentioned, Dicer is responsible for cleavage of pre-miR to produce a miR duplex of ~22 nt long, TRBP associates with Dicer and stabilises it, and AGO2 is an endonuclease and as such is the catalytic centre of the RISC [93, 103, 104]. The RISC incorporates single-stranded RNA fragments, such as miRs, as a template for binding to complementary mRNA and preventing their translation.

MiR target recognition requires Watson-Crick base pairing of the miR seed sequence to complementary sequence/ miRNA responding elements (MREs) in target mRNAs. In canonical binding, the seed region of miR, nts 2-7 from 5' end, base-pairs with complementary MRE sites of target mRNAs (Figure 1.6). This canonical seed region is termed a 6mer site and it confers marginal repression [105, 106]. The seed region is not just limited to 6mer sites. MiR-mRNA binding and repression can be further enhanced by the presence of an adenosine in the mRNA opposite miRNA nt 1 (7mer-A1 site) or base-pairing of mRNA to miR nts 2-8 (7mer-m8 site) [106]. The presence of both 7mer-A1 and 7mer-m8 sites, termed an 8mer site, confers the most efficacious binding; however, most miR targets harbour 7mer sites [106]. Complete or partial complementary paring between the miR and target mRNA results in translational repression of the mRNA either by preventing translation initiation or by promoting mRNA de-adenylation and degradation [107]. Target mRNA can also be directly cleaved by AGO2 in the RISC when there is a near-perfect complementary match between the miR and mRNA [106, 108, 109].

MREs are usually located within the 3' UTRs of target mRNAs. The 3'UTR is the section of an mRNA directly after the translation termination codon and contains various regulatory regions such as MREs, AU-rich elements, and polyadenylation signals, that post-transcriptionally influence gene expression. As the 3'UTR of genes can be very long often reaching lengths over 1 kb, it can contain

MREs for multiple miRs. Targeting has also been shown to occur in the 5'UTR (the section of an mRNA directly upstream from the initiation codon) and open reading frames (ORFs) of mRNAs. Although these are less frequent and less effective than 3'UTR targeting due to the translational machinery displacing the RISC complex as it moves from the 5'UTR of the transcript along the ORF [106].

As the seed sequences are very short, many miRs share identical seed sequences even if they originate from different genomic loci. This property leads to the miRs being functionally redundant or pleiotropic. As such, miR-mRNA targeting has a many-to-many relationship, where a specific miR can target multiple mRNAs and a specific mRNA is regulated by multiple miRs [110].

Target repression

Target degradation

Figure 1.5: Mechanism of miRNA action. The RISC is a multi-protein complex consisting of Dicer, TRBP and AGO2. The Dicer cleaves the pre-miR to generate a miR duplex of ~ 22 nt long. The Dicer then associates with AGO2 and TRBP to transfer the miR duplex. The strand with a less thermodynamically stable 5' end is loaded into the RISC (guide strand; red in the figure) the AGO2 protein degrades the remaining strand (passenger strand). The RISC will recognise and pair with mRNAs that have complementary sequence to the seed sequence of the guide strand. Depending on the degree of complementarity, the mRNAs are either translationally repressed or cleaved by AGO2. Figure adapted from Bartel (2018) with permission of the rights holder, Elsevier [89].

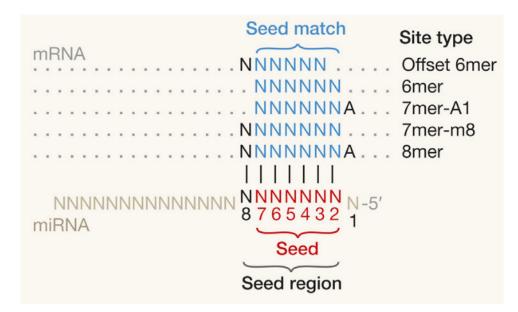


Figure 1.6: The different types of seed sites in a miRNA. Seed sites of miRNAs are comprised of nucleotides between positions 2-8 from the 5'end. The most effective seed sites are 8mer sites and the least effective seed sites are 6mer sites. 7mer-m8 and 7mer-A1 sites are more effective than 6mer but less effective than 8mer, and are the most common types of seed sites. Figure extracted from Bartel (2018) with permission of the rights holder, Elsevier [89].

1.2.3 Isoforms of microRNAs

Each strand of pre-miRs was initially believed to produce only one mature miR, however, deepsequencing studies have shown that pre-miRs can give rise to more than just the 3' and 5' canonical miRs. These variants of canonical miRs are termed isomiRs and differ in length and/ or sequence compared to their canonical form. IsomiRs can be categorised into four main isotypes: 3' end templated isomiRs, 5' end templated isomiRs, within-sequence non-templated isomiRs and 3' end non-templated isomiRs (Figure 1.7) [89, 111, 112]. The templated isomiRs differ only in length and can have base additions or deletions at their respective 5' or 3' ends. Any base additions in the templated isomiRs match the bases in the pre-miR at the corresponding position. Conversely, non-templated isomiRs can differ in length and/ or sequences and base changes can occur at the 3' end or anywhere within the sequence. Templated isomiRs are usually generated by imprecise cleavage by Drosha or Dicer [89, 111]. Non-templated isomiRs are generated by RNA-editing enzymes such as ADARs, which convert base adenine to inosine (read as guanine by the ribosome), or cytidine deaminases, which convert cytosine to uracil [89, 111, 113, 114]. Formation of isomiRs has also been attributed to nucleotidyl transferases and exonucleases which extend (adenylate and uridylate) or trim the 3' end [93, 96, 111, 115].

The biological significance of isomiRs has not yet been exhaustively characterized. Nevertheless, many studies have shown that these molecules are loaded into the RISC and thus maintain functionality [113, 116–118]. Changes in miR sequences leading to changes at the 3' end are associated with impacting miR processing (strand selection), stability and efficiency of target repression [94, 111, 115]. Changes at the 5' end alter the seed sequence (seed-shifting), which can lead to drastic changes in target repretoire and potentially distinct functional consequences in comparison to the canonical form [111, 119]. Accordingly, most frequently observed isomiRs have variation at the 3'end, while 5' ends are more conserved [89].

IsomiR nomenclature

IsomiR nomenclature follows the rules defined in *miraligner*, a command-line tool for isomiR mapping and annotation [120, 121]. Here, miR name is followed by the changes the miR contains at the four isotype positions i.e. miR name: within seq non-templated change : 3' end non-templated change : 5' end templated change : 3' end templated change. IsomiR nomenclature is better illustrated in Figure 1.7 with miR-21-5p as an example.

Figure 1.7: Isotypes and isomiR nomenclatures. IsomiRs can be categorised into 4 isotypes: 5' end templated (row 3, 4 in the figure), 3' end templated (row 5, 6), 3' end non-templated (row 7) and within sequence non-templated (row 8). IsomiR nomenclature is demonstrated in the above figure using miR-21-5p as an example. IsomiR annotation follows-miR name: within sequence non-templated change : 3' end non-templated change : 5' end templated change : 3' end templated change is additions, lowercase represents base deletions. For within sequence non-templated changes, the number is the position where substitution occurs, followed by the new base and the original base. Figure adapted with permission from Ms M Drozdz (2019) [122].

1.2.4 microRNA species and cancers

MiRs are estimated to regulate more than 60% of all protein-coding genes in mammals [109]. Due to their important regulatory function, several studies have already demonstrated an association of miR dysregulation with various diseases, including different types of cancers. Focusing on cancers, over 50% of miR-encoding loci are found in cancer-associated genomic regions or fragile sites [123]. As such, there is a wide dysregulation of miR expression in tumour growth and progression. One of the first studies to demonstrate the association between miRs and cancer was conducted by Calin *et al.* in 2002, where they showed deletion or down-regulation of miR-15 and miR-16 in B-cell chronic lymphocytic leukaemia [124]. Subsequently, the group confirmed that miR-15 and miR-16 induced

apoptosis by targeting anti-apoptotic factor *BCL2* in leukaemia [125]. Since then, a large number of studies have examined and reported dysregulation of miRs, including isomiRs in various cancers [126–134]. The role of miRs in cancers is tissue-specific and context-dependent so they can function as both oncomiRs or tumour suppressors. For example, miR-125b is upregulated in leukaemias, pancreatic and prostate cancers and considered to have oncogenic activity; while it is downregulated in many solid tumours such as bladder, ovarian and breast cancers, and considered to have a tumour suppressor role [135, 136]. The association of dysregulated miR species (miRs and isomiRs) with tumour growth, progression and treatment response have also been reported in various cancers [132, 133, 137–145]. Their tissue-specific properties, as well as an association with tumour growth, disease outcome and treatment response, have led to the hypothesis that miR species have great potential as disease biomarkers and therapeutic targets.

1.2.5 Properties of microRNA species

MiR species have properties that make them ideal biomarker candidates for investigation. Firstly, as mentioned above, the expression profile of these molecules are tissue-specific, allowing for disease specificity. They also show different expression profile between tumour and normal tissues at different stages of tumour progression and in response to treatment; this can be utilised for an indication of disease state or monitoring/ predicting disease and treatment outcomes.

Secondly, miR species are much more stable than mRNAs. They have been estimated to be highly stable with an average half-life from several hours to as long as 5 days in-vivo, higher than mRNAs [109]. They are also stable in storage in fresh-frozen paraffin-embedded samples compared to mRNAs [146, 147].

Thirdly, miRs exist stably in cell-free form in circulation (serum and plasma), potentially by incorporating themselves into microvesicles (exosomes and apoptotic bodies) or associating with other molecules to form RNA-protein complexes and thereby protecting themselves against RNAse activity [130, 148, 149]. As circulating miRs (c-miRs) can originate from several sources, including normal tissues, blood cells and tumour tissues, it is still unclear what proportion of c-miRs originate from tumour cells. There have been studies that have shown evidence for tumour-derived c-miRs. For example, Brase *et al.* showed high expression of miR-375 and miR-141 in both serum and tumour tissue samples of PCa patients [150]; Mitchell *et al.* demonstrated that tumour-derived miRs can be detected in circulation by developing tumour xenograft models injected with 22Rv1, an androgensensitive PCa cell line. They showed that miR-629-3p and miR-660-5p, expressed in 22Rv1 cell line but without known mouse homologs were readily detected in the plasma of xenografts but not in control mice [149]. These studies demonstrate that c-miRs can originate from tumours. C-miRs may be more useful biomarkers than tumour tissue-derived miRs. This is because they can provide more accurate information about the disease state as c-miRs avoid the heterogeneity one might encounter when sampling tumours directly. MiRs have also been detected in biofluids including urine and saliva [142, 149, 150]. Thus, stable detection of miRs in circulation and biofluids allow for non-invasive sample collection in the clinics.

Finally, compared to protein-based biomarkers, miRs have a specific advantage in that low abundance miRs in samples can be readily amplified and profiled using technologies such as quantitative real-time PCR, small RNA sequencing and miR microarrays and do not require the development of detection agents or antibodies (as needed for protein biomarkers) [151]. All these properties of miR species make them excellent biomarker candidates for investigation.

1.2.6 microRNA species in prostate cancer

One of the first studies to profile the expression of miRs in PCa patients was done by Porkka and colleagues in 2007 [152]. They identified 51 miRs with differential expression between BPH (n=4) and PCa tissue samples (n=9). Since then, various studies have profiled miR expression in PCa tissues and identified miRs with diagnostic and prognostic potential. Szczyrba and colleagues used deep sequencing to compare miR profiles of primary tumour (n=10) and normal prostate tissues (n=10)

[153]. They reported 33 differentially expressed miRs; this included significant upregulation of miR-375, miR-148a and miR-200c, and significant downregulation of miR-145 and miR-143 in prostate tumours. Schaefer *et al.* compared normal and matched tumour tissue samples (n=76) and reported 15 differentially expressed miRs. Of these, upregulated miR-183 and downregulated miR-205 classified 84% of tumour samples correctly, showing diagnostic potential, whilst upregulated miR-96 correlated with cancer recurrence, showing prognostic potential [154]. Besides tissues, researchers have also profiled and compared miRs extracted from serum and plasma. In 2008, Mitchell *et al.* profiled miRs in the serum of healthy (n=25) and metastatic PCa (n=25) patients and identified miR-141, which is significantly overexpressed in tumour samples, to have the greatest potential as a diagnostic biomarker [149]. Brase *et al.* compared serum-derived miRs between localised PCa (n=14) and metastatic samples (n=7) and identified overexpressed miR-141 and miR-375 as markers for high-risk tumours [150].

Similarly, isomiR expression profiles have also been studied in PCa. IsomiRs were first reported to be detected in PCa in a study by Watahiki *et al.* in 2011 [155]. However, these molecules were not further explored until recently. In 2016, Koppers-Lalic and colleagues examined miR species extracted from urine and showed that isomiRs of miR-21, miR-204 and miR-375 were significantly dysregulated in PCa patients (n=9) compared to healthy controls (n=4) [142]. The group also showed that isomiRs of these three miRs had improved diagnostic performance compared to their canonical counterparts. Magee *et al.* also characterised and demonstrated significant dysregulated between tumour and normal samples exclusively in black and white cohorts, demonstrating race-specific property of isomiRs.

Besides dysregulation of miR species at various stages of PCa, there is also growing evidence for dysregulation of miRs in response to treatments, which thus, could be novel biomarkers for therapy response in PCa [130, 148]. The PhD work by Dr Akifumi Shibakawa from the Bevan lab also identified eight circulating miRs (miR-132-3p, miR-141-3p, miR-200a-3p, miR-200c-3p, miR-210-3p, miR-30a-5p, miR-34a-5p and miR-375) which were significantly upregulated in responders to cabazitaxel

chemotherapy (n=21) in comparison to non-responders (n=21) [157]. Zhang and colleagues showed that oncomiR miR-21 expression levels were significantly higher in CRPC patients than androgendependent patients [158]. They additionally showed, with a small sample size of 10 patients, CRPC patients (n=4) resistant to docetaxel-based chemotherapy had higher levels of miR-21 in comparison to drug-responsive patients (n=6) [158]. Similarly, in a study by Lin *et al.* higher levels of miR-200c and miR-200b, and lower levels of miR-146a were observed in non-responders to docetaxel treatment (n=36) in comparison to responders (n=61) [159]. Although validation of these miRs in a separate cohort did not yield a significant association to docetaxel response, these studies highlight validation of findings in external datasets, along with the biomarker performance, as important factors to consider in biomarker development [160].

The literature is filled with studies that have successfully characterised the expression of miR species and identified potential miR based biomarkers in tissues and biofluids at different stages of prostate disease progression and in response to treatment. However, a huge caveat to these studies and a major problem in miR biomarker discovery is that these studies often report conflicting and/ or inconsistent findings. This could be due to various limitations such as different study design, protocols, low sample numbers and clinical heterogeneity in patient samples. As such, there is no general consensus of robust miR candidates for further investigation as biomarkers in PCa. Thus, although these discovery research are promising, larger prospective studies and validation of findings in independent datasets are required before their approval for investigation as biomarkers in clinical trials.

1.2.7 miRNA-27a-3p and prostate cancer

MiR-27a-3p is a part of a cluster of three miRs: miR-23a, miR-27a and miR-24-2, located on chromosome 19p13.1. It is a well-studied miR that has been termed an "oncomiR" due to its upregulation and pro-survival role in various cancers. In ER-negative breast cancer MDA-MB-231, miR-271-3p over-expression has shown to increase cell proliferation by suppressing ZBTB10 and Myt-1, which are important for cell cycle progression at G2/M stage [161]. In gastric cancer and osteosarcoma cell line models, elevated expression of the miR promoted proliferation, migration and invasion; these studies showed that miR-27a-3p conferred its pro-survival activity by targetting genes SFRP1 via the wnt/B-catenin signalling pathway in gastric cancer and MAP2K4 in the JNK signalling pathway in osteosarcoma [162, 163]. In a lung cancer cell model, overexpression of miR-27a-3p promoted proliferation by downregulating transcription factor FOXO1, and promoted the G1/S cell cycle transition by decreasing the cell cycle inhibitors p21 and p27 and increasing the cell cycle regulator cyclin D1 [164]. Similarly, the miR-27a-3p expression was elevated in ovarian cancer and overexpression of the miR in HO8910 and OV90 cell models promoted migration and invasion by targeting the transcription factor FOXO1 via the Wnt/ b-catenin signalling pathway [165]. Additionally in ovarian cancer, miR-27a-3p expression may lead to the development of chemotherapy resistance partly by targeting HIPK2, a tumour suppressor involved in suppressing VEGF activation and inducing apoptosis [166]. These studies demonstrate the role of miR-27a-3p in promoting EMT/ disease progression and confer an oncomiRic role in solid cancers.

MiR-27a-3p has also been reported to be frequently dysregulated in PCa, however, its direction of dysregulation is inconsistent between studies. A study by Porkka *et al.* showed that miR-27a-3p levels were significantly downregulated in PCa tissue samples (n=9) in comparison to BPH samples (n=4) [152]. Similarly, Wan *et al.* demonstrated significant downregulation of miR-27a-3p in prostate tumours compared to normal samples in three publicly available datasets [167]. In contrast, Volinia *et al.* reported miR-27a-3p levels to be significantly upregulated in prostate tumours (n=56) compared to normal tissues (n=7) [126]. Nam *et al.* also found miR-27a-3p upregulation in patients who developed metastasis after RP (n=19) in comparison to non-recurrent cases (n=19) [168]. Upregulation of miR-27a-3p has also been reported in sera of PCa patients [169, 170]. Additionally, miR-27a-3p has also been identified as a biomarker and included in miR panels for PCa diagnostics and prognostication [168, 170].

Due to its frequent dysregulation at various stages of PCa, miR-27a-3p is of particular interest to

the Bevan lab; it has been investigated for its potential as a biomarker and a therapeutic target by members of the lab. Work done by Fletcher *et al.*, from the Bevan group, into the mechanism of miR-27a-3p in PCa, showed miR-27a-3p and AR (a steroid hormone receptor which is a key driver of growth in PCa carcinogenesis and progression, (Section 1.1.3)) regulate each other in a positive feedback loop mechanism [171]. Specifically, they demonstrated that AR induced transcription of the miR-23a/27a/24-2 cluster, encoding miR-27a-3p, as well as increased processing of the primary-mir-23a/27a/24-2 cluster by Drosha, resulting in an increase in mature miR-27a levels. In turn, miR-27a-3p suppressed the AR co-repressor Prohibitin, leading to an increase in AR activity [171]. Chromatin immunoprecipitation assays demonstrated enriched AR binding to the regulatory regions of miR-27a-3p encoding DNA in the presence of androgens, culminating in an upregulation of miR-27a-3p expression in androgen-dependent LNCaP cell lines [172]. The inconsistent reporting of the diagnostic/prognostic capabilities of miR-27a-3p expression between studies may be reflective of miR-27a-3p regulation by AR. As such, miR levels may change with respect to AR status and activity as prostate tumours progress and transition from hormone-dependent to castration-resistant phenotype.

Even though miR-27a-3p has been reported to be dysregulated in PCa by various publications, its precise role in PCa biology and progression remains yet to be fully elucidated. Its frequent dysregulation in clinical samples, implication with a key driver of PCa (AR), and potential as a therapeutic target highlight its importance in PCa and prompt the need for a thorough investigation of its role in PCa.

1.3 Hypothesis and Aims

The shortcomings of current clinical prognostic markers have lead to an over-treatment of a high proportion of patients with indolent tumours and the absence of reliable prognostic biomarkers for predicting treatment response have led to inappropriate treatment strategies and a high rate of disease relapse in patients with aggressive disease. These problems highlight the need to develop more effective prognostic biomarkers in PCa that can predict disease progression more reliably and aid clinicians in devising patient-specific personalised treatments and therapies. MiR species present ideal candidates for investigation as prognostic biomarkers for PCa. In this study, I hypothesised that:

- i) dysregulated miR and isomiR profiles in the prostate are associated with prostate malignancy
- ii) dysregulated miRs and isomiRs in PCa provide additional value as prognostic biomarkers in comparison/ addition to the standard clinical markers.

With these hypotheses, I aimed to:

- i) elucidate the role of putative oncomiR miR-27a-3p and its mechanism of action in PCa
- ii) identify consistently reported prognostic miRs in PCa by systematically reviewing all relevant publications in the scientific literature to date
- iii) assess and compare the prognostic performance of miR species in predicting disease progression with the performance of clinical prognostic markers.

Chapter 2

Identification of prognostic miRNA

biomarkers in prostate cancer

2.1 Background

The first extensive miR expression profiling in prostate cancer (PCa) cell lines, xenograft samples and clinical tumour samples was published by Porkka *et al.* in 2007 [152]. Since then, numerous studies have characterised miR expression profile in PCa tissues and biofluids at various stages of the disease and examined their prognostic potential [142, 150, 151, 153, 154, 173–178]. A major caveat to these studies is that they often report inconsistent results, possibly due to differences in study designs, methodologies, tumour content and clinical diversity. Thus, there is no consensus to date on the miRs that truly associate with disease progression and have the potential to be utilised as a prognostic biomarker for PCa. Attempts at meta-analyses to combine results from multiple studies and appraise the current miR biomarker landscape are limited to only a handful of publicly available datasets [179]. A systematic review, which does not require the disclosure of sensitive clinical data, may be more useful in examining prognostic miR biomarker landscape in PCa and subsequently identifying consistent patterns across the studies. There has been no systematic review covering the topic of prognostic miR biomarkers in PCa as yet.

In this chapter, I aimed to review the relevant publications in the scientific literature to date and identify consistently reported miRs with potential as prognostic biomarkers in PCa. Firstly, a systematic review was performed on studies that investigated the prognostic potential of individual miRs or miR panels in PCa. Here, a broad, comprehensive approach was taken in which any publications evaluating prognostic miRs were included, irrespective of methodological or clinical diversity such as differences in study design, profiling technologies, sample source or clinical trial endpoints. The findings of the review revealed a considerable number of publications that examined the association of tumour tissue-derived miRs with biochemical recurrence (BCR) in patients who have undergone radical prostatectomy (RP). The only meta-analysis addressing prognostic miRs in PCa was performed in 2017 [179]. Thus, secondly, to account for any new public datasets after the first and only meta-analysis, an updated meta-analysis was performed on studies with publicly accessible global miR expression datasets. Based on the results of the systematic review, the aim was redefined to focus on identifying miRs that are prognostic of BCR in patients that have undergone RP. Here, only tissue-specific miRs were considered as the majority of publications in the systematic review (\sim 88%) addressed tissue-derived miRs. This approach minimised possible heterogeneity introduced from considering different sample types.

2.2 Methods

2.2.1 Methodology for systematic review

Search strategy

A methodological search of electronic database PubMed was performed in order to identify relevant studies published between January 2007 and December 2019. The search was conducted on 24th of January 2020. The keywords searched were "**prostate cancer microRNAs prognosis relapse outcome**". This search included both free words and MeSH terms, which ensured all publications with the keywords and related terms in their title or body were included in the search result. The MeSH term associated with the keywords were:

("micrornas" [MeSH Terms] OR "micrornas" [All Fields] OR "mirnas" [All Fields] OR "miRs" [All fields]
OR "microrna" [All Fields] OR "mirna" [All Fields] OR "miR" [All fields]) AND ("prostatic neoplasms" [MeSH Terms] OR ("prostatic" [All Fields] AND "neoplasms" [All Fields]) OR "prostatic neoplasms" [All Fields]
OR ("prostate" [All Fields] AND "cancer" [All Fields]) OR "prostate cancer" [All Fields]) AND ("prognosis" [MeSH Terms] OR "prognosis" [MeSH Terms] OR "prognosis" [MeSH Terms] OR "prognosis" [All Fields] OR "recurrence" [MeSH Terms] OR "recurrence" [All Fields]
Fields] OR "relapse" [All Fields] OR "mortality" [Subheading] OR "mortality" [All Fields] OR "survival" [All Fields] OR "survival" [MeSH Terms] OR "outcome" [All Fields]).

Study eligibility

Studies were selected according to the following criteria:

 i) the study measured the expression of miRs in tissues or biofluids (circulation, urine, saliva) of PCa patients (not xenograft or other animal models) ii) the study investigated the association of miRs with outcome with a survival analysis: Cox proportional hazards (Cox PH) regression model or Kaplan-Meier (KM) analysis, and appropriate test statistics such as hazard ratio (HR), associated 95% confident intervals (CI) and log-rank p-values were reported in the main text or supplementary section.

Studies were excluded if:

- i) the study tested the prognostic role of miR host genes or target genes instead of the miR itself
- ii) the study tested the prognostic role of miR in combination with non-miR markers such as clinical factors, genes or proteins
- iii) the study was in a different language with no English translation available
- iv) the study was a meta-analysis, review, comment, letter or duplicate publication.

Using the criteria described above, the title and abstract of the studies obtained from the keyword search were screened. Studies that were clearly not relevant to the review were removed. This was followed by full-text screening to identify studies with relevant prognostic information. This systematic review was conducted in accordance with the (PRISMA) guidelines [180].

2.2.2 Data extraction

The following data were extracted from each eligible study: EntrezUID, surname of first author, year published, title, miR/s investigated, sample size, sample type, detection method, outcome endpoint, endpoint definition, test type (Cox PH/ KM), effect estimates: HR, 95% CI or log-rank p-value, Cox PH test type (univariate/ multivariate), adjusted variables (if multivariate Cox PH). If the study performed both Cox PH model and KM analysis, only the results for Cox PH model was extracted.

Statistical analysis

For the miRs that had multiple entries and the same endpoint, and had their Cox PH test statistics reported, a meta-analysis was performed to calculate the summary effect size (pooled HR). For the miR entries originating from the same study, a fixed-effects model (FEM) approach was employed for the meta-analysis. For the miR entries from different studies, we expected the true effect size to vary across studies due to biological and technological diversity; therefore, a random-effects model (REM) approach was employed. Low miR expression was set as the reference group, so for entries with high miR expression as the reference group, reciprocal of HR and 95% CI were calculated. Reference group standardisation allowed consistent interpretation of HR between all studies that have performed Cox PH: miRs with HR > 1 had a negative association, miRs with HR = 0 had no association, and miRs with HR < 1 had a positive association with disease outcome. Between study heterogeneity was assessed using Cochran's Q-test and Higgins I² statistic. Significance for the Q-test was set to p-value < 0.05. As the number of studies considered in the meta-analysis for each miR was very low publication bias was not assessed. The meta-analysis and heterogeneity tests were performed in statistical software R using package metafor (version 2.4.0) [181].

MiRNA annotation

As the search spanned across more than a decade, the miR annotation was outdated in many of the studies. This is due to growing research in the last decade or so providing a better understanding of miR biogenesis, evolution and functionality, and discoveries of novel miRs, requiring revision and update of miR annotations [182]. For such cases, the article was screened in order to obtain strand information for the miR of interest. If strand information was not stated in the article, the miR was assumed to be the dominant strand. The miR name was then cross-referenced with its entry in the miRBase database and updated to the most recent version (version 22) [91]. MiR names were left unchanged if the dominant/ passenger strand in miRBase was not specified.

2.2.3 Methodology for meta-analysis

Search strategy

The meta-analysis employed a search strategy similar to the systematic review. A methodological search of electronic database PubMed was performed in order to identify relevant studies published between January 2007 and December 2019. The search was conducted on 23rd of April 2020. The

keywords searched were "**prostate cancer relapse microRNA expression**". The MeSH term associated with the keywords were:

("prostatic neoplasms" [MeSH Terms] OR ("prostatic" [All Fields] AND "neoplasms" [All Fields]) OR "prostatic neoplasms" [All Fields] OR ("prostate" [All Fields] AND "cancer" [All Fields]) OR "prostate cancer" [All Fields]) AND ("recurrence" [MeSH Terms] OR "recurrence" [All Fields] OR "relapse" [All Fields]) AND ("micrornas" [MeSH Terms] OR "micrornas" [All Fields] OR "mirna" [All Fields]) AND ("gene expression" [MeSH Terms] OR ("gene" [All Fields] AND "expression" [All Fields]) OR "gene expression" [All Fields] OR "expression" [All Fields])

Study eligibility

Studies were selected according to the following criteria:

- i) the study measured miR expression in tissues of PCa patients who underwent RP and no other curative therapy (no studies with miR profiled in circulation)
- ii) the study generated global miR expression profile dataset which was available in public data repositories
- iii) the study contained follow-up data, i.e. BCR status of patients and time to BCR.

Studies were excluded if:

- i) the study was in a different language with no English translation available
- ii) the study was a meta-analysis, review, comment, letter or duplicate publication.

Using the criteria described above, title and abstract screening were performed on the studies obtained from the keyword search in order to remove any irrelevant articles. This was followed by full-text screening to select studies with public PCa miR expression data and clinical information. For studies with public expression datasets and insufficient follow-up information, corresponding authors were directly contacted for additional clinical information. Studies that investigated global miR expression profile without generating novel data were also included to examine if the datasets they used were eligible for the meta-analysis. This meta-analysis was conducted in accordance with the (PRISMA) guidelines [180].

Data extraction and normalisation

Five studies, which included six datasets, were eligible for the meta-analysis (Table 2.5). The workflow for study selection and study characteristics of eligible datasets are described in results section 2.3.2. For The Cancer Genome Atlas - Prostate Adenocarcinoma (TCGA-PRAD) dataset, access for raw miR-sequencing (level 1) data was applied through the National Institute of Health database of Genotypes and Phenotypes (https://www.ncbi.nlm.nih.gov/gap/). Once access was granted, the raw miR-sequencing data and associated clinical data were downloaded from the Genomic Data Commons (GDC) data portal via the GDC data transfer tool (version 1.6.0) and Bioconductor package TCGAbiolinks (version 2.12.6) [183, 184]. Raw miR expression data was normalised using the trimmed mean of M-values (TMM) method using the *edgeR* package (version 3.26.8) [185]. MiRs were then filtered to include only those with normalised read counts ≥ 1 counts per million (cpm) in at least 80% of samples.

For rest of the datasets, normalised miR expression data and associated clinical data were obtained from the National Centers for Biotechnology Information Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/). For GSE21036, clinical information was supplemented with data obtained from the data repository in the Memorial Sloan-Kettering Cancer Centre - computational biology centre website (https://cbio.mskcc.org/cancergenomics/prostate/data/). For GSE26245 and GSE26247, clinical information was supplemented with clinical data provided in the supplementary section of their corresponding paper [186]. For GSE46738 and GSE88958, the corresponding authors directly provided follow-up data (Leite K., written communication, 27 June 2018; Ozen M., written communication, 18 January 2019). The normalised datasets were then standardised according to z-score transformation. MiR annotation in each dataset was also updated to miRBase version 22 using package *miRBaseConverter* (version 1.8.0) [187].

Statistical analyses

In addition to follow-up information, clinical variables used for PCa risk stratification: PSA at diagnosis, Gleason score and clinical tumour stage, were available in five of the six datasets. Only, GSE88958 did not contain tumour stage information. Additionally, GSE21036 reported clinical tumour stage information, while the rest of the datasets reported pathological tumour stage information. To examine the prognostic potential of the miRNAs, firstly, a univariate Cox PH analysis was performed in each of the six datasets, where the only predictor being tested for association with disease relapse was miR expression. Secondly, a multivariate Cox PH analysis was performed in each of the five datasets with all three clinical variables available. Here, the Cox PH model included miR expression as the main predictor with PSA at diagnosis, Gleason score and tumour stage as confounders. Cox PH regressions were performed using R package *survival* (version 3.1.12) [188]. An analysis of variance (ANOVA), Kruskal-Wallis (KW) and Chi-squared (X²) tests were also performed to test whether the distribution of the clinical variables differed between the datasets.

Following univariate/ multivariate Cox PH regression, a REM meta-analysis was performed to estimate the overall effect size (pooled HR) of the miRs across the studies. The meta-analysis was performed only for miRs that were present in all the datasets. Subsequently, a total of 162 and 164 miRs were evaluated for the univariate and multivariate analyses, respectively. The significance threshold was set at p-value < 0.05. Considering the low number of studies included in the meta-analysis, publication bias was not assessed.

2.3 Results

2.3.1 Prognostic miRNAs in prostate cancer: A systematic review

Study selection

A total of 992 studies were retrieved from the initial literature search. The title and abstract screening removed 800 non-relevant studies such as meta-analyses, book chapters, reviews and other irrelevant publications. Full-text screening removed 64 studies for various reasons such as inaccessibility of full text, insufficient reporting of results, no prognostic test performed and containing mistakes such as incorrect CIs or female PCa sample population. Ultimately, 128 studies were eligible for the review. These studies included 215 entries for individually prognostic miRs (containing 120 unique miRs) and 18 entries for miR signatures panels (containing 8 unique miR signatures). The workflow for the study selection is detailed in Figure 2.1.

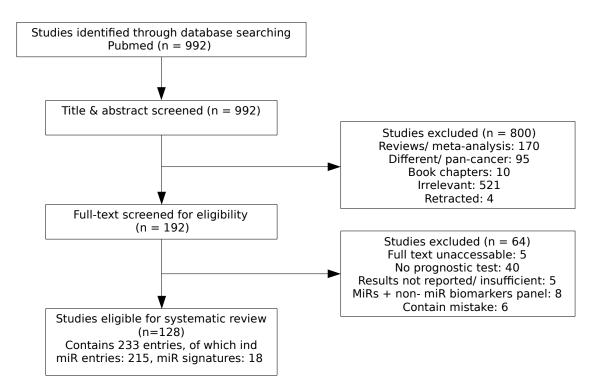


Figure 2.1: Workflow for selecting eligible studies for the systematic review.

Study characteristics

The majority of the miR biomarkers were detected using variations of the polymerase chain reaction (PCR) technique: quantitative PCR, reverse transcription-PCR and quantitative reverse transcription-PCR. Less frequent detection methods were microarrays, (small-)RNAseq, NanoString, *in situ* hybridization, mass spectrometry and BeadChip based technologies. This review included biomarkers extracted from a variety of sources such as tissues (n=204), blood (whole blood, peripheral blood, serum, plasma) (n=23), exosomes (n=2), urine (n=2) and cells (epithelial and stromal, fibroblast) (n=2). The prognostic ability of 178 entries was tested using Cox PH regression and 55 entries tested

using KM analysis and log-rank test. The different endpoints used by the studies are listed in Table 2.1. The most common endpoint used as a surrogate for progression was biochemical recurrence-free survival (BPFS) (44.64%), followed by overall survival (OS) (20.17%). The remaining endpoints each accounted for less than 10% of the studies in the review. A total of 177 entries (75.97%) had sample size ≥ 50 . The median sample size was 93, and the range was 16 to 846. Only 14 entries did not report their sample sizes. The study characteristics, statistical results, endpoint definitions and additional variables included in the survival analysis (if a multivariate Cox PH was performed) are summarised in Appendix Tables B.1 and B.2 for individually prognostic miRs and in Appendix Tables B.3 and B.4 for prognostic miR signatures.

Endpoint	Abbreviation	No. of entries (%)
bone metastasis-free survival	bone MFS	8(3.43)
biochemical progression/ recurrence-free survival	BPFS	$104 \ (44.64)$
clinical failure-free survival	CFFS	7 (3.00)
castration resistant prostate cancer-free survival	CRPC FS	$6\ (2.58)$
cancer-specific survival	\mathbf{CSS}	6(2.58)
disease-free survival	DFS	$11 \ (4.72)$
disease-specific survival	DSS	2(0.86)
metastasis-free survival	MFS	$6\ (2.58)$
overall survival	OS	47(20.17)
progression-free survival	PFS	5(2.17)
percentage survival (survival rate)	\mathbf{PS}	13 (5.58)
recurrence/ relapse-free survival	RFS	18 (7.73)

Table 2.1: Progression endpoints considered in the systematic review. There were 12 different endpoints considered. After verifying endpoint definitions in respective studies, endpoints with redundant meanings were categorised into the same group. If the studies did not provide definitions or the definitions were different between studies, endpoint with redundant meanings were not categorised together.

Individually prognostic miR biomarkers in PCa

There was a total of 215 entries in the systematic review that report 120 unique individual prognostic miR markers (Appendix Table B.1). Majority of the studies reported the association of miR expression with disease progression. Six studies reported the association of miR single-nucleotide polymorphisms (SNPs) or miR methylation with disease progression [189–194]. These were miR-146a-5p (rs2910164), miR-423-3p (rs6505162), miR-23a (rs3745453) and miR-605 (rs2043556) SNPs and miR-129-5p, miR-

205 and miR-34b/c methylation. Within the 120 unique miRs, 15 miR families and 12 miR clusters were represented. These miR families and clusters are reported in Tables 2.2 and 2.3. MiR-17 was the biggest miR family represented in the review with five miR members. Similarly, the miR-17/92 cluster was also one of the biggest clusters represented along with miR-183/96/182; both clusters had more than three members in the review.

mir family	miR members
let-7	let-7b-5p, let-7c
mir-10	miR-100-5p, miR-10b-5p
mir-130	miR-130b-3p, miR-301a-3p
mir-148	miR-148a-3p, miR-152-3p
mir-15	miR-15b-5p, miR-195-5p
mir-154	miR-409-3p, miR-410-3p
mir-17	miR-106b-5p, miR-17-5p, miR-20a-5p, mir-20b-5p, miR-93-5p
mir-182	miR-182-5p, miR-182-3p
mir-221	miR-221-3p, miR-222-3p
mir-23	miR-23a-3p, miR-23b-3p
mir-27	miR-27a-3p, miR-27b-3p
mir-34	miR-34b-3p, miR-34c-5p
mir-3622	miR-3622a-5p, miR-3622b-5p
mir-582	miR-582-3p, miR-582-5p
mir-8	miR-141-3p, miR-200b-3p

Table 2.2: The mir families represented within the individually prognostic miRs in the systematic review. In total, 15 mir families were represented in the review, of which mir-17 was the most represented miR family with five miR members.

miR cluster	miR members
miR-143/145	miR-143-5p, miR-145-5p
miR-17/92	miR-17-5p, miR-19a-3p, miR-20a-5p
miR-183/96/182	miR-182-5p, miR-182-3p, miR-183-3p, miR-96-5p
miR-221/222	miR-221-3p, miR-222-3p
miR-224/452	miR-224-5p, miR-452-5p
miR-23b/27b/24-1	miR-23b-3p, miR-27b-3p
miR-23a/27a/24-2	miR-27a-3p, miR-23a-3p
miR-34b/c	miR-34b-3p,miR-34c-5p
miR-3622a/b	miR-3622b-5p,miR-3622a-5p
miR-370/410	miR-409-3p, miR-410-3p
miR-424(322)/503	miR-503-5p, miR-424-3p
miR-106/25	miR-93-5p, miR-106b-5p

Table 2.3: The mir clusters represented within the individually prognostic miRs in the systematic review. In total, 12 miR clusters were represented in the review, of which miR-17 /92 and miR-183/96/182 were the most represented miR clusters with three and four miR members respectively.

There were a total of 44 unique miRs with multiple entries in the review. These miRs were either evaluated against different endpoints/ cohorts in the same study or were evaluated more than once in separate studies. Of these, 36 miRs had Cox PH output available. A REM meta-analysis was performed for these miRs against the same endpoint and their overall association determined (Figure 2.2). Seven miRs, let-7b-5p, miR-128a-3p, miR-188-5p, miR-224-5p, miR-23a-3p, miR-23b-3p and miR-34b/c, consistently and significantly associated with progression, irrespective of different endpoints. High expression of miR-34b/c and miR-23a-3p associated with disease progression, while high expression of rest of the miRs associated with favourable disease outcome. The Q-test for heterogeneity was not significant for these miRs (where meta-analysis was performed), suggesting an absence of heterogeneity between the datasets. However, Q-test has low power to detect heterogeneity when the number of datasets in the meta-analysis is low. The I^2 statistic, which also tests for heterogeneity, ranged between 0.00 - 4.30%, suggesting absence of statistical heterogeneity. Interestingly, for three miRs, miR-21-5p, miR-222-3p and miR-30c-5p, association with progression differed depending on the endpoints:

- i) high miR-21-5p expression significantly associated with shorter time to BPFS but longer time to RFS
- ii) high miR-222-3p expression significantly associated with shorter time to BPFS and RFS but longer time to CRPC FS
- iii) high miR-30c-5p expression significantly associated with longer time to BPFS but shorter PS.

These inconsistent results may suggest these miRs have dual roles at different stages of disease progression. However, it is more likely these results are due to clinical and methodological heterogeneity between the studies such as different comorbidities, sample sizes, and endpoint definitions. A forest plot was also generated for the remaining miRs with single entries (Appendix Figure A1).

In summary, considering the effect sizes of both Cox PH and KM outputs for the 120 unique miRs, 57 miRs negatively associated with progression, 43 miRs positively associated with progression and 20 miRs had an inconsistent direction of association. Only four miRs, let-7b-5p, miR-152-3p, miR-195-5p and miR-224-5p, significantly and consistently associated with progression, irrespective of different endpoints, in multiple patient cohorts in the same study or at least two independent studies. Additionally, although insignificant, miRs-145-5p had a consistent trend in association with progression in five independent studies. Low expression of these five miRs associated with shorter time to disease progression. These miRs are reported in Table 2.4 and are the strongest prognostic biomarker

candidates for PCa based on current literature.

Author and Year	Endpoint		Hazard Ratio [95% CI]
let–7b–5p Schubert 2013 (cohort A) Schubert 2013 (cohort B) Overall (Q=0.47, df=1, p=0.4	BPFS BPFS I9; I ² =0.0%)		0.30 [0.15, 0.61] 0.44 [0.19, 1.02] 0.35 [0.20, 0.60]
Schubert 2013 (cohort A) Schubert 2013 (cohort B) Overall (Q=0.76, df=1, p=0.3	CFFS CFFS 38; I ² =0.0%)		0.23 [0.08, 0.70] 0.46 [0.15, 1.41] 0.32 [0.15, 0.70]
miR-1207-3p Das 2016 Das 2016	CSS RFS	┠ ╴╺ ╶──┤ ┠╼┻╌┤	1.80 [0.80, 4.30] 2.50 [1.60, 4.00]
miR–125b–5p Schaefer 2010 Singh 2014 Overall (Q=1.79, df=1, p=0.1	BPFS BPFS 8; l ² =44.2%)		0.23 [0.01, 3.75] 1.79 [1.10, 2.91] 1.10 [0.20, 6.08]
miR–128–3p Sun 2015 (matched serum) Sun 2015 (matched tissue) Overall (Q=0.06, df=1, p=0.8	BPFS BPFS 81; l ² =0.0%)		0.30 [0.14, 1.09] 0.25 [0.12, 0.98] 0.28 [0.13, 0.57]
miR–129–5p Torres–Ferreira 2017 Hu 2019	DSS OS	┝──■──	6.12 [1.56, 24.07] 0.36 [0.12, 1.06]
miR–130b–3p Hashimoto 2019 (White case Hashimoto 2019 (Black case Overall (Q=3.45, df=1, p=0.0	es) OS		0.91 [0.12, 10.00] 0.04 [0.00, 0.43] 0.21 [0.04, 1.04]
miR–133a–3p Tang 2018 Tang 2018	bone MFS OS		0.37 [0.19, 0.74] 1.07 [0.41, 2.78]
miR–133b Huang 2018 Li 2014 Huang 2018	bone MFS BPFS OS	┝─┺─┤ ┝─┺─┤ ┝──┺─┝	0.08 [0.03, 0.22] 1.77 [1.01, 3.11] 6.90 [0.72, 66.60]
		0.01 0.12 1 7.39 Hazard ratio (95% CI)	

Figure 2.2: Forest plot for all miRs with multiple entries in the systematic review. For those miRs with multiple entries and the same progression endpoints, a random-effects model was performed to get an overall effect estimate (pooled hazard ratio). For the full form of the abbreviated endpoints, refer to Table 2.1. Figure continued63

Author and Year	Endpoint		Hazard Ratio [95% CI]
miR–139–5p			
Nam 2019 Nam 2019 Hu 2019	BPFS MFS OS	┝ ╸ ╡ ┝─╺╸┥ ╞───╺──┤	0.77 [0.58, 1.04] 0.60 [0.28, 1.28] 4.00 [1.08, 14.29]
miR-141-3p			
Richardsen 2019 Zhao 2019	BPFS BPFS		1.07 [1.00, 1.14] 1.92 [1.32, 2.79]
Overall (Q=9.10, df=1, p=0.00; l ² =89.0%)	20	•	1.39 [0.79, 2.46]
miR–145–5p			
Kang 2012 Schaefer 2010 Avgeris 2013 (intermediate risk cases) Avgeris 2013 (low, intermediate risk cases	BPFS BPFS BPFS) BPFS		0.68 [0.22, 2.14] 0.74 [0.23, 2.34] 0.23 [0.06, 0.90] 0.22 [0.06, 0.79]
Overall (Q=3.33, df=3, p=0.34; l ² =9.5%)		•	0.43 [0.23, 0.82]
Avgeris 2013 (all cases) Larne 2015 Chen 2010	DFS OS PFS	↓ <u></u> ↓ <u></u> ↓ <u></u>	0.79 [0.31, 2.04] 0.33 [0.14, 0.62] 0.40 [0.17, 0.94]
miR–15b–5p			
Chen 2018 Chen 2018	OS RFS	⊢ 	1.45 [0.28, 7.14] 0.86 [0.51, 1.47]
miR-182-5p			
Schaefer 2010 Casanova–Salas 2014 (validation set) Casanova–Salas 2014 (train set)	BPFS ├── BPFS BPFS		0.36 [0.01, 17.90] 1.50 [1.00, 2.00] 2.00 [1.00, 3.50]
Overall (Q=1.23, df=2, p=0.54; l ² =0.0%)		◆	1.59 [1.17, 2.15]
Casanova–Salas 2014 (validation set) Casanova–Salas 2014 (train set) Overall (Q=2.86, df=1, p=0.09; l ² =65.0%)	PFS PFS		1.00 [0.50, 2.00] 2.50 [1.00, 5.00] 1.48 [0.87, 2.50]
evenair (d=2.00, d=1, p=0.00, 1 =00.070)			1.40 [0.07, 2.30]
miR–188–5p			
Zhang 2015 Zhang 2015	BPFS OS	+•-1 +•-1	0.47 [0.30, 0.75] 0.33 [0.19, 0.57]
	Г <u> </u>		
	0.01	0.12 1 7.39	
		Hazard ratio (95% CI)	

Figure 2.2: Forest plot for all miRs with multiple entries in the systematic review. For those miRs with multiple entries and the same progression endpoints, a random-effects model was performed to get an overall effect estimate (pooled hazard ratio). For the full form of the abbreviated endpoints, refer to Table 2.1. Figure continued₆₄

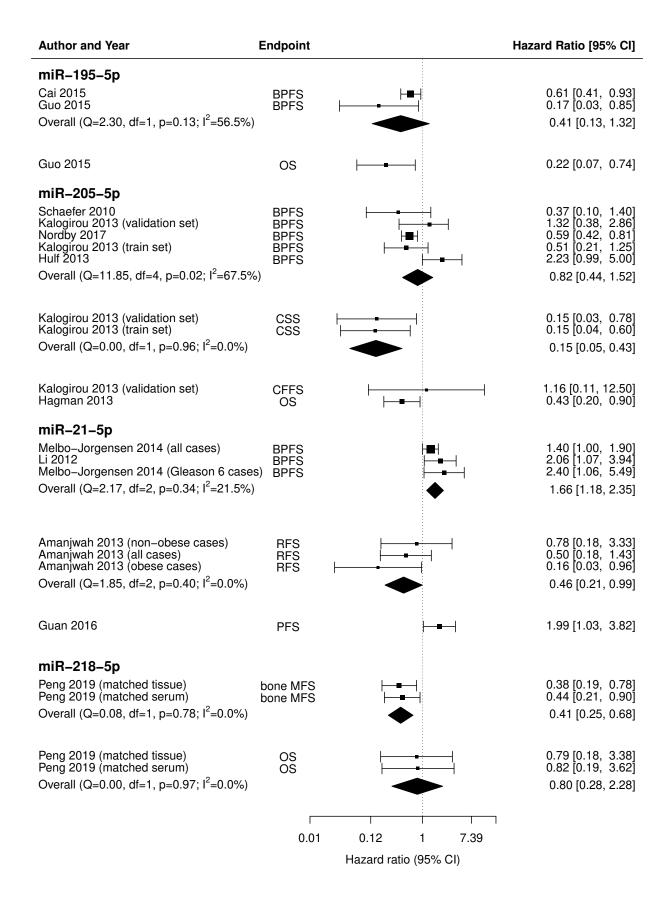


Figure 2.2: Forest plot for all miRs with multiple entries in the systematic review. For those miRs with multiple entries and the same progression endpoints, a random-effects model was performed to get an overall effect estimate (pooled hazard ratio). For the full form of the abbreviated endpoints, refer to Table 2.1. Figure continued65

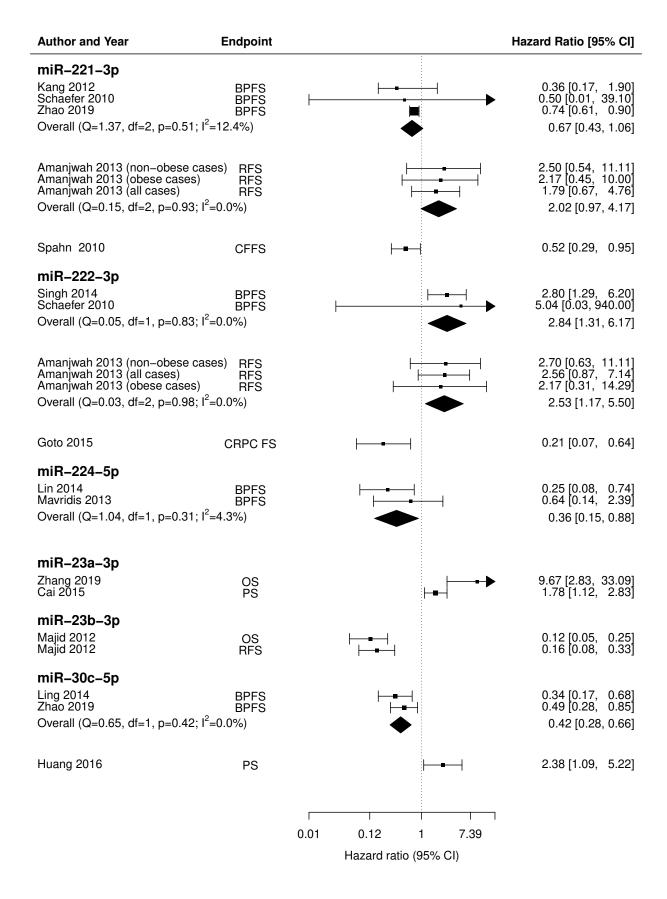


Figure 2.2: Forest plot for all miRs with multiple entries in the systematic review.For those miRs with multiple entries and the same progression endpoints, a random-effects model was performed to get an overall effect estimate (pooled hazard ratio). For the full form of the abbreviated endpoints, refer to Table 2.1. Figure continued₆₆

Author and Year	Endpoint		Hazard Ratio [95% CI]
miR-30d-5p Lin 2017 Kobayashi 2012 Overall (Q=9.18, df=1, p=0.00	BPFS BPFS ; I ² =89.1%)		0.52 [0.19, 1.41] 5.93 [1.75, 20.09] 1.70 [0.16, 18.66]
miR-31-5p Zhao 2019 Schaefer 2010 Overall (Q=1.76, df=1, p=0.18	BPFS BPFS ; I ² =43.1%)		0.78 [0.67, 0.91] 15.00 [0.19, 1179.00] 1.48 [0.14, 16.08]
miR-34b/c Torres-Ferreira 2017 Torres-Ferreira 2017	DFS DSS		2.76 [1.24, 6.15] 3.84 [1.27, 11.60]
miR-375 Schaefer 2010 Huang 2015	BPFS OS	├───- ├─ ─ ─┤	0.42 [0.03, 5.60] 2.69 [1.52, 4.77]
miR_378_3p Avgeris 2014 (all cases) Avgeris 2014 (high, v.high risk Overall (Q=1.94, df=1, p=0.16			0.58 [0.28, 1.22] 0.21 [0.06, 0.76] 0.44 [0.23, 0.84]
miR–505–3p Tang 2019 Tang 2019	bone MFS OS	<u>}-∎</u>]	0.25 [0.12, 0.56] 0.50 [0.10, 2.46]
miR-582-3p Huang 2019 Huang 2019	bone MFS OS	├ <u></u> -∎┤ ├──■┤	0.31 [0.15, 0.66] 0.43 [0.19, 1.88]
miR-582-5p Huang 2019 Huang 2019	bone MFS OS	├ ─ ₽──┤ ├─── ₽ ──┤	0.21 [0.10, 0.45] 0.74 [0.17, 3.27]
miR-615-3p Laursen 2019 (cohort 2) Laursen 2019 (cohort 3) Laursen 2019 (cohort 1) Laursen 2019 (cohort 4) Overall (Q=0.99, df=3, p=0.80	BPFS BPFS BPFS BPFS ; I ² =0.0%)	┝╼┤ ┾╼┤ ┝╴╾┤	1.05 [0.67, 1.66] 1.31 [0.86, 2.01] 1.38 [0.84, 2.26] 1.46 [0.78, 2.73] 1.27 [0.99, 1.61]
Laursen 2019 (cohort 1,2,3)	CSS	├∎	2.66 [1.29, 5.49]
		0.01 0.12 1 7.39 Hazard ratio (95% CI)	

Figure 2.2: Forest plot for all miRs with multiple entries in the systematic review. For those miRs with multiple entries and the same progression endpoints, a random-effects model was performed to get an overall effect estimate (pooled hazard ratio). For the full form of the abbreviated endpoints, refer to Table 2.1. Figure continued67

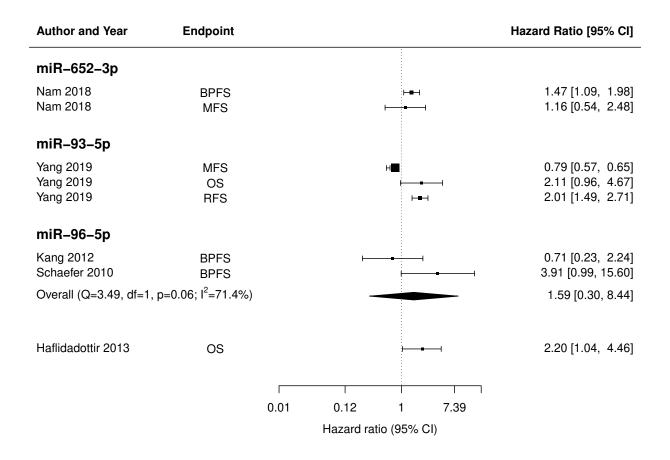


Figure 2.2: Forest plot for all miRs with multiple entries in the systematic review. For those miRs with multiple entries and the same progression endpoints, a random-effects model was performed to get an overall effect estimate (pooled hazard ratio). For the full form of the abbreviated endpoints, refer to Table 2.1.

Prognostic	Prognostic test			Reference	Association	Sample size	Sample	PMID	Ref
miR	test: endpoint	HR (95% CI)	р	group	group after reference standardisation	Sample Size	type	T MID	nei
1-4 71- K	multivariate: BPFS	$0.44 \ (0.193 - 1.022)$	0.05	low	negative	98 (cohort A)	tissue		
	multivariate: BPFS	0.30(0.15-0.61)	< 0.010	low	negative	92 (cohort B)	tissue	23798998 	[105]
let-7b-5p	multivariate: CFFS	0.23 (0.08-0.70)	< 0.010	low	negative	92 (cohort B)	tissue		[195]
	multivariate: CFFS	0.46 (0.15 - 1.41)	0.17	low	negative	98 (cohort A)	tissue		
	multivariate: BPFS	4.47(1.27-15.74)	0.020	high	negative	36 (low + intermedi-	tissue	23703249	[106]
						ate risk)		23703249	[196]
	multivariate: BPFS	4.43 (1.11-17.61)	0.035	high	negative	29 (intermediate	tissue		
miR-145-5p						$\operatorname{risk})$			
	multivariate: PFS	$0.40 \ (0.17 - 0.94)$	0.036	low	negative	106	tissue	20332243	[197]
	univariate/ KM: OS	3.00 (1.60-7.00)	< 0.010	high	negative	49	tissue	25969144	[198]
	univariate: BPS	0.74(0.23-2.34)	0.609	low	negative	76	tissue	19676045	[154]
	univariate: BPFS	0.68 (0.22 - 2.14)	0.510	low	negative	73	tissue	22864280	[199]
	multivariate: DFS	1.26(0.49-3.27)	0.629	high	negative	73	tissue	23703249	[196]
miR-152-3p	KM: BPFS	-	< 0.001	low	negative	n/s (MSKCC)	tissue	25004396	[200]
IIII1-152-5p	multivariate: DFS	$0.23 \ (0.07 - 0.72)$	0.012	low	negative	494 (TCGA)	tissue	29599847	[201]
	multivariate: BPFS	5.96(1.18-30.02)	0.031	high	negative	140	tissue	- 26338045	[202]
	multivariate: OS	4.46(1.35-14.72)	0.014	high	negative	140	tissue	- 20558045	[202]
miR-195-5p	multivariate: BPFS	0.61 (0.41 - 0.93)	0.022	low	negative	107 (MSKCC)	tissue	26080838	[203]
шк-195-5р	KM: BPFS	-	0.009	low	negative	131 (MSKCC)	tissue	30032144	[204]
	KM: RFS	-	0.049	low	negative	98 (MSKCC)	tissue	26650737	[205]
	KM: DFS	-	< 0.010	low	negative	n/s (MSKCC)	tissue	27175617	[206]
miR-224-5p	multivariate: BPFS	0.25 (0.08-0.74)	0.010	low	negative	114	tissue	24382668	[207]
mm-224-9p	multivariate: BPFS	$0.64 \ (0.14-2.39)$	0.525	low	negative	58	tissue	23136246	[208]

Table 2.4: The miRs with consistent direction of association to disease progression, irrespective of different endpoints, that have been validated in multiple cohorts or independent studies. The KM, univariate and multivariate tests stand for Kaplan-Meier analysis, and univariate and multivariate Cox PH regressions respectively. For the test entry "univariate/ KM", both univariate Cox PH and KM analysis were performed, but the p-value for the univariate Cox PH regression was not reported. Thus, the HR and 95% CI corresponds to outputs of the univariate Cox PH regression and the p-value corresponds to the KM log-rank test. For studies that performed multivariate analysis, the different variables adjusted for are reported in Table B.2. The values in the "Prognostic test" and "Reference group" columns refer to the statistics and the reference group used for comparison as reported in respective papers. In contrast, the "Association after reference standardisation" column refers to the association of the miRs to progression after standardising the comparisons to "low" miR expression as the reference group. n/s represents not-specified.

Prognostic miR signatures as biomarker panels in PCa

Eight prognostic miR signatures, comprising of 36 unique miRs, were reported as prognostic in eight independent studies (Appendix Table B.3). The majority of these studies performed independent clinical validations and/ or have large sample sizes ($\gtrsim 100$), making their findings robust. Interestingly, only Feng *et al.* (2017) investigated a panel of miRs that were biologically related, i.e. the miRs in the signature panel were part of miR-17/92 cluster [209]. The remaining studies grouped miRs into signature panels if they were significantly differentially expressed between recurrent and non-recurrent cases.

Within the eight signatures, only miRs let-7a-5p and miR-223 were present in multiple miR signatures. In Mihelich *et al.* [210], both miR-223 and let-7a-5p were grouped into a panel with five other miRs as their expression levels were significantly down-regulated in recurrent patients compared to nonrecurrent patients. In Nam et al. [211] miR-223, and in Fredsoe et al. [212] let-7a-5p, were grouped into signature panels for their predictive power to significantly distinguish between recurrent and nonrecurrent PCa cases. Interestingly, although prognostic as part of miR signatures, neither let-7a-5p nor miR-223 has been reported as individually prognostic predictors. However, 16 out of the 36 unique miRs in the signature panels (miR-10b-5p, miR-130b-3p, miR-139-5p, miR-145-5p, miR-17-5p, miR-19a-3p, miR-200b-3p, miR-20a-5p, miR-221-3p, miR-23a-3p, miR-301a-3p, miR-326, miR-374b-5p, miR-375, miR-652-3p and miR-96-5p) were reported as individually prognostic in multiple studies (Appendix Table B.1). For 11 out of the 16 miRs (miR-10b-5p, miR-130b-3p, miR-145-5p, miR-17-5p, miR-19a-3p, miR-23a-3p, miR-301a-3p, miR-326, miR-374b-5p, miR-652-3p and miR-96-5p), the individual association with progression in corresponding studies were consistent with the direction of expression in signature panel studies. These 16 miRs also include three members of the miR-17/92 cluster panel (miR-17-5p, miR-19a-3p and miR-20a-5p) evaluated in the study by Feng et al. [209]. The consistent association of the miR-17/92 cluster and its members in independent studies suggest they have a biological role in PCa progression and support them as potential biomarker panel candidates for prognostication in PCa.

2.3.2 Identification of miRNA biomarkers for prostate cancer recurrence following radical prostatectomy: A meta-analysis of six public datasets

Study selection

A total of 185 studies were retrieved from the initial literature search. After title and abstract screening 164 ineligible articles such as meta-analyses, reviews and studies based on non-tissue datasets or non-PCa studies were removed. Full-text of the remaining articles were screened; 16 studies were removed as their datasets were not publicly available (n=7), did not have follow-up information (n=5), could not share clinical information due to patient confidentiality (n=2), contained inconsistent clinical information (n=1) or categorised as duplicate as it utilised public dataset already included in this meta-analysis (n=1). Ultimately, five studies, containing six datasets, were eligible for the meta-analysis. The workflow for the selection of studies is detailed in Figure 2.3 and the study characteristics are reported in Table 2.5. Two of the datasets, GSE21036 and TCGA-PRAD were publicly available datasets cited in Schaefer *et al.* (2010), while the rest of the datasets were novel data generated by the authors of the paper [154].

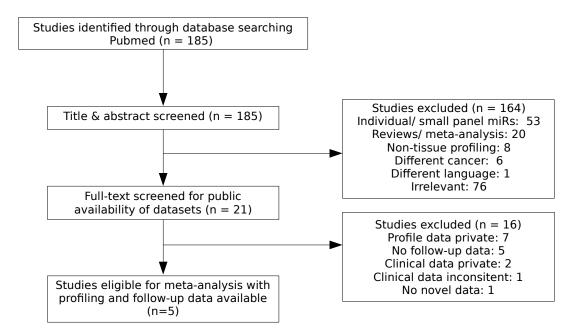


Figure 2.3: Workflow for selecting eligible datasets for the meta-analysis.

r study ID	profiling technology	endpoint definition	sample collection	sample type	sample size with follow-up	No. of miRs	ref
GSE21036	Agilent-019118 Human	$PSA \ge 0.2 \text{ ng/ml}$ on	RP	tissue	99	373	[31]
	miRNA Microarray 2.0	two occasions					
	G4470B						
GSE26245	Illumina Custom Prostate	two detectable PSA	RP	tissue FFPE	63	733	[186]
	Cancer DASL Panel miRNA	readings $(> 0.2 \text{ ng/mL})$					
GSE26247	Illumina Custom Prostate	two detectable PSA	RP	tissue FFPE	40	1145	[186]
	Cancer DASL Panel miRNA	readings $(>0.2 \text{ ng/mL})$					
GSE46738	Affymetrix Multispecies	PSA > 0.2 ng/ml	RP	tissue frozen	51	847	[213]
	miRNA-1 Array						
GSE88958	Agilent 8x15 K Human V3 mi-	$PSA \ge 0.2 \text{ ng/ml}$ on	RP	tissue	30	851	[178]
	croRNA Microarray V3	two occasions					
TCGA-PRAD	Illumina GAIIx or HiSeq 2000	PSA > 0.2 ng/ml at two	RP	tissue frozen	349	328	[35]
	miRNA Sequencing	or more occasions					-
	GSE21036 GSE26245 GSE26247 GSE46738 GSE88958	GSE21036Agilent-019118Human miRNAmiRNAMicroarray2.0 G4470BGSE26245IlluminaCustomGSE26247IlluminaCustomGSE26247IlluminaCustomGSE46738AffymetrixMultispecies miRNA-1GSE88958Agilent 8x15 K Human V3 mi- croRNA Microarray V3TCGA-PRADIllumina GAIIx or HiSeq 2000	GSE21036Agilent-019118Human Microarray $PSA \ge 0.2 \text{ ng/ml}$ on two occasionsGSE21036Agilent-019118Human Microarray $PSA \ge 0.2 \text{ ng/ml}$ on two occasionsG4470BGSE26245IlluminaCustom Prostate Cancer DASL Panel miRNAtwo detectable readings (> 0.2 ng/mL)GSE26247IlluminaCustom Cancer DASL Panel miRNAtwo detectable readings (> 0.2 ng/mL)GSE46738Affymetrix miRNA-1 ArrayMultispecies miRNA-1 ArrayPSA >0.2 ng/ml on two occasionsGSE88958Agilent 8x15 K Human V3 mi- 	rstudy IDprofiling technologyendpoint definition collectionGSE21036Agilent-019118Human miRNAPSA $\geq 0.2 \text{ ng/ml}$ on two occasions G4470BRPGSE26245IlluminaCustom Cancer DASL Panel miRNAtwo detectable readings (> 0.2 ng/mL)RPGSE26247IlluminaCustom Cancer DASL Panel miRNAtwo detectable readings (> 0.2 ng/mL)RPGSE46738Affymetrix miRNA-1 ArrayMultispecies readings (> 0.2 ng/mL)RPGSE88958Agilent 8x15 K Human V3 mi- croRNA Microarray V3PSA $\geq 0.2 \text{ ng/ml}$ on two occasionsRPTCGA-PRADIllumina GAIIx or HiSeq 2000PSA > 0.2 ng/ml at twoRP	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	rstudy IDpronting technologyendpoint definitioncollectiontypewith follow-upGSE21036Agilent-019118HumanPSA $\geq 0.2 \text{ ng/ml on}$ RPtissue99miRNAMicroarray2.0two occasions4470B63GSE26245IlluminaCustomProstatetwo detectablePSARPtissueFFPE63GSE26247IlluminaCustomProstatetwo detectablePSARPtissueFFPE40Cancer DASL Panel miRNAreadings (>0.2 ng/mL)readings (>0.2 ng/mL)1151GSE46738AffymetrixMultispeciesPSA >0.2 ng/mlRPtissue frozen51miRNA-1ArraySSE 88958Agilent 8x15 K Human V3 mi- croRNA Microarray V3PSA $\geq 0.2 ng/ml$ on two occasionsRPtissue30TCGA-PRADIllumina GAIIx or HiSeq 2000PSA > 0.2 ng/ml at twoRPtissue frozen349	rstudy IDprofiling technologyendpoint definitioncollectiontypewith follow-upmiRsGSE21036Agilent-019118Human miRNAPSA ≥ 0.2 ng/ml on two occasions G4470BRPtissue99373GSE26245IlluminaCustom Prostate Cancer DASL Panel miRNA Cancer DASL Panel miRNAtwo detectable PSA readings (> 0.2 ng/mL)RPtissue FFPE63733GSE26247IlluminaCustom Prostate readings (> 0.2 ng/mL)two detectable PSA readings (> 0.2 ng/mL)RPtissue FFPE401145GSE26247IlluminaCustom Prostate miRNA-1 Arrayreadings (> 0.2 ng/mL)1145847GSE88958Agilent 8x15 K Human V3 mi- croRNA Microarray V3PSA ≥ 0.2 ng/ml on two occasionsRPtissue30851TCGA-PRADIllumina GAIIx or HiSeq 2000PSA > 0.2 ng/ml at twoRPtissue frozen349328

Table 2.5: Characteristics of the studies included in the meta-analysis. These five studies contained six prostate cancer datasets eligible forthe meta-analysis. All of which had global miR expression profiled from tumour tissue samples collected during radical prostatectomy. Abbreviations:FFPE=Fresh-frozen paraffin-embedded; PSA=Prostate specific antigen; RP=radical prostatectomy.

Sample characteristics of eligible datasets

MiRs were profiled from tissue samples collected from men who underwent RP in all datasets. The endpoint for the datasets was BCR, which was defined by majority of the datasets as a rise in serum PSA levels ≥ 0.2 ng/ml on two or more occasions, as per the European Association of Urology (EAU) guidelines [214]. Only GSE36738 did not specify the number of rising PSA measurements required to classify a BCR event. As mentioned in Section 2.2.3, the majority of the datasets contained accompanying clinical variables: age at diagnosis, PSA at diagnosis, Gleason score and tumour stage. Only GSE88958 did not contain tumour stage information. The sample characteristics for these studies are provided in Table 2.6.

There were significant differences in age and PSA at diagnosis of patients between the six datasets (ANOVA p < 0.05 and KW test p < 0.05 respectively) (Figure 2.4a, 2.4b). There were also significant differences in the proportion of samples with different Gleason scores, tumour stages and BCR events between the datasets (X² test p < 0.05) (Figure 2.4c, 2.4d, 2.4e). TCGA-PRAD contained one of the highest proportions of aggressive tumour samples with Gleason scores ≥ 8 and T3+T4 stages at 40.88% and 60.47% frequencies, respectively. However, it contained the lowest median PSA at diagnosis (0.12 ng/mL) and the lowest proportion of samples experiencing BCR (14.55%). The majority of the samples in the TCGA-PRAD cohort originate from data centres in the US, a country that offers PSA screening to men between 55 and 69 years of age. This routine screening often leads to early diagnosis, especially of indolent tumours, and could potentially explain the younger age and low PSA levels at diagnosis seen in this cohort [56, 57]. Early detection could also lead to early intervention, thus explaining the low proportion of samples experiencing BCR in this cohort.

Similarly, GSE21036 also originated from the US. This dataset contained the youngest cohort with a median age of 57 years at diagnosis, the second-lowest median for PSA at diagnosis (5.6 ng/mL) and the second-lowest proportion of samples with BCR events (19.19%). It also had less aggressive cases compared to other datasets with Gleason scores ≥ 8 and T3+T4 stages at 12.24% and 30.30%, respectively. The lower age and PSA at diagnosis, and lower proportion of BCR samples could be, again, due to the patients taking the PSA screening and early intervention.

GSE46738 contained the oldest cohort with a median age of 66 years at diagnosis. Accordingly, this dataset had aggressive disease with the highest proportion of Gleason scores ≥ 8 (44%) and second-highest T3+T4 proportion (50%), suggesting that patients in this cohort diagnosis had aggressive PCa due to diagnosis at a later age. The proportion of BCR samples in this cohort was not high (24%) compared to the rest of the datasets. This is probably because patients diagnosed at an older age with highly aggressive disease are usually offered passive treatments instead of curative treatments. The remaining three datasets: GSE88958, GSE26247 and GSE26245, generally had an older age at diagnosis (≥ 63 yrs) and low to medium levels of proportion of samples with aggressive histopathology compared to the rest of the datasets. These three datasets also had the top three highest median PSA level at diagnosis (≥ 8) and proportion of BCR samples (> 30%) among the six datasets.

Characteristics		TCGA-PRAD	GSE88958	GSE46738	GSE26247	GSE26245	GSE21036
	total	433	30	50	40	63	99
number of samples	BCR	63	19	12	13	25	19
	non-BCR	370	11	38	27	38	80
follow-up time	median	28.73	69.83	25.50	49.50	49.97	46.39
(months)	range	0.00 - 165.17	1.38 - 118.16	1.35 - 120.20	1.00 - 164.00	0.99 - 163.99	1.35 - 128.42
	<10	364	12	36	14	41	80
PSA at	10-20	3	4	13	17	18	12
m diagnosis~(ng/mL)	> 20	26	3	0	4	2	6
	\mathbf{NA}	40	11	1	5	2	1
ama at diamaaja	median	61	63	66	64	63	57
age at diagnosis	range	41-78	40-75	49-77	49-82	45-79	37-83
	version	pathological	NA	pathological	pathological	pathological	clinical
	$\mathbf{T1}$	2	NA	0	0	12	0
tumour stage	$\mathbf{T2}$	168	NA	22	27	42	69
	$\mathbf{T3}$	251	NA	28	10	6	25
	$\mathbf{T4}$	9	NA	0	3	3	5
	≥ 6	44	8	15	12	18	32
	7	212	17	13	18	39	54
	≤ 8	177	5	22	10	6	12

Table 2.6: Sample characteristics of the datasets included in the meta-analysis. Abbreviations: BCR=Biochemical recurrence; NA=Not available; PSA=Prostate specific antigen.

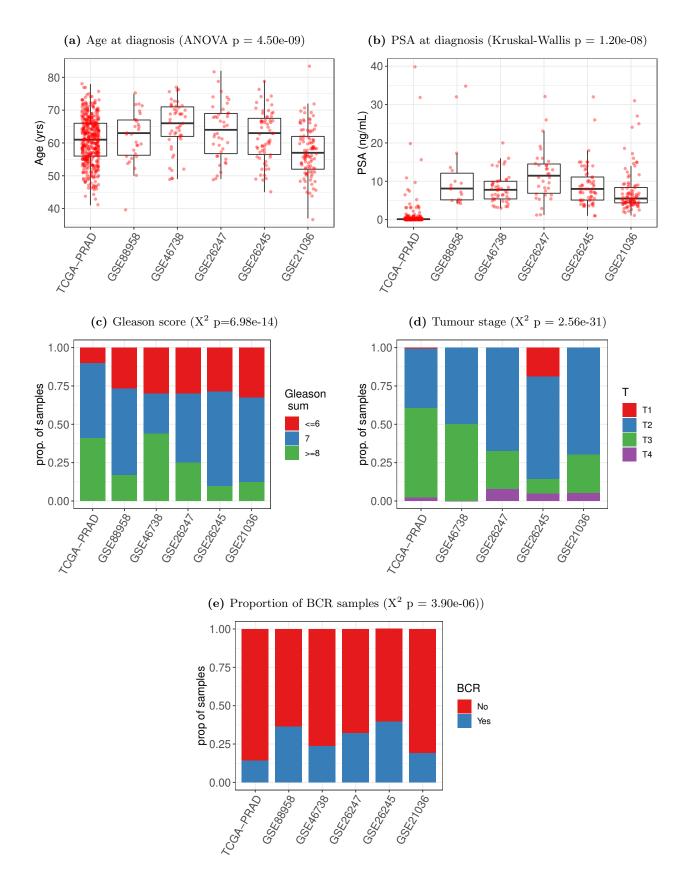


Figure 2.4: Clinical characteristics of the datasets included in meta-analysis. There were significantly different distributions between the five datasets for all five clinical variables examined. Abbreviations: ANOVA=Analysis of variance; BCR=Biochemical recurrence; PSA=Prostate specific antigen; X^2 =Chi-squared test.

Association of clinical features with disease relapse

Whilst clinical features PSA level at diagnosis, tumour stage and Gleason score are established prognostic factors in PCa; age is one of the key risk factors strongly associated with PCa incidence and mortality. In the UK, ~ 55% of PCa cases and ~ 86% PCa specific mortality occurred in men aged 70 and over [1]. The association of these features with disease relapse, defined as BCR, were tested in each dataset and a REM meta-analysis model was employed to summarise the overall effect across the datasets. The results are reported as forest plots in Figure 2.5. Although non-significant, higher age at diagnosis associated with higher risk of BCR (Figure 2.5a). Similarly, higher PSA levels at diagnosis also showed a non-significant association with BCR (Figure 2.5b). Higher Gleason score (\geq 8) and higher tumour stages (T3+T4) had significant and stronger association with poor disease outcome (Figure 2.5c, 2.5d). As, Gleason score, tumour stage and PSA at diagnosis are the standard prognostic features as per the National Institute for Healthcare and Excellence (NICE) and EAU guidelines, the multivariate Cox PH models testing the association of miR expression with BCR were adjusted for these three confounding variables [26, 60].

(a) Age at diagnosis

0.37

1 2.72

Hazard ratio

20.09

(b) PSA at diagnosis

0.37 1 2.72

Hazard ratio

20.09

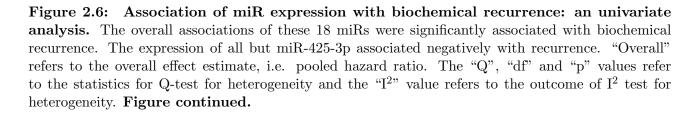

Author (Study ID)	Hazard Ratio [95% CI]	Author (Study ID)	Hazard Ratio [95% CI]	
Taylor 2010 (GSE21036)	1.03 [0.97, 1.09]	Taylor 2010 (GSE21036)	1.02 [1.01, 1.04]	
Long 2011 (GSE26245)	1.04 [0.98, 1.09]	Long 2011 (GSE26245)	1.02 [0.95, 1.09]	
Long 2011 (GSE26247)	1.02 [0.96, 1.09]	Long 2011 (GSE26247)	1.01 [0.95, 1.07]	
Leite 2015 (GSE46738)	1.04 [0.97, 1.12]	Leite 2015 (GSE46738)	1.03 [0.88, 1.19]	
Suer 2018 (GSE88958)	1.05 [0.97, 1.14]	Suer 2018 (GSE88958)	1.02 [0.96, 1.07]	
TCGA (TCGA–PRAD)	0.99 [0.95, 1.03]	TCGA (TCGA–PRAD)	0.99 [0.98, 1.01]	
Overall (Q=3.80, df=5, p=0.58; l ² =10.8%)	- 1.02 [0.99, 1.04]	Overall (Q=9.42, df=5, p=0.09; l ² =50.9%)	• 1.01 [0.99, 1.03]	
г <u> </u>			1 1 1	
0.95 1	1.05 1.16	0.82 0.9	1 1.11 1.22	
Haz	ard ratio	Hazard ratio		
(c) Gleason score \leq	$7 \text{ vs} \ge 8$ Hazard Ratio [95% Cl]	(d) Tumour stage: T	1-12 vs 13-14 Hazard Ratio [95% Cl]	
		Aution (Study ID)		
Taylor 2010 (GSE21036)	····■································	Taylor 2010 (GSE21036)	4.19 [1.68, 10.46]	
Long 2011 (GSE26245)		Long 2011 (GSE26245)	2.08 [0.83, 5.26]	
Long 2011 (GSE26247)	- 1.43 [0.44, 4.65]	Long 2011 (GSE26247)	5.94 [1.77, 19.96]	
Leite 2015 (GSE46738)		Leite 2015 (GSE46738)	3.31 [0.72, 15.16]	
	■→ 4.53 [2.60, 7.90]	TCGA (TCGA-PRAD)	5.58 [2.54, 12.27]	
Overall (Q=12.72, df=5, p=0.03; l ² =63.0%)	3.22 [1.64, 6.33]	Overall (Q=3.07, df=4, p=0.55; l ² =0.0%)	4.02 [2.58, 6.26]	

Figure 2.5: Association of clinical characteristics with biochemical recurrence. Whilst age and PSA show a non-significant association with biochemical recurrence, there were significant overall associations of higher Gleason score and tumour stage with biochemical recurrence. "Overall" refers to the overall effect estimate, i.e. pooled hazard ratio. The "Q", "df" and "p" values refer to the statistics for Q-test for heterogeneity and the "I²" value refers to the outcome of I² test for heterogeneity. Abbreviations: PSA=Prostate specific antigen.

MiRNAs that consistently associate with disease recurrence: a univariate analysis

Univariate Cox PH regression followed by a REM meta-analysis was performed for 162 miRs that were common in all six datasets. Pooled HR estimates for 18 miRs were significantly associated with BCR (Figure 2.6). Out of these, 17 miRs (let-7a-5p, miR-125b-5p, miR-133a-3p, miR-135a-5p, miR-148a-3p, miR-155-5p, miR-203a-3p, miR-204-5p, miR-218-5p, miR-222-3p, miR-26b-5p, miR-30a-3p, miR-30c-5p, miR-30e-3p, miR-374a-5p, miR-455-5p and miR-582-5p) had negative association, while only miR-425-3p had positive association with BCR. The Q-test for heterogeneity was not significant for any of the miRs and I² statistic ranged from 0-40%, suggesting moderate levels of heterogeneity between the datasets.

Author (Study ID)	let-7a-5p	Hazard Ratio [95% CI]	Author (Study ID)	miR-125b-5p	Hazard Ratio [95% CI]
Taylor 2010 (GSE21036)	+ -	0.62 [0.42, 0.91]	Taylor 2010 (GSE21036)		- 0.99 [0.62, 1.58]
Long 2011 (GSE26245)		0.91 [0.70, 1.18]	Long 2011 (GSE26245)	-	0.93 [0.72, 1.20]
Long 2011 (GSE26247)		0.61 [0.32, 1.16]	Long 2011 (GSE26247)	⊢ ∎→	0.61 [0.34, 1.10]
Leite 2015 (GSE46738)	· · · · ·	0.71 [0.40, 1.27]	Leite 2015 (GSE46738)		→ 0.87 [0.52, 1.44]
Suer 2018 (GSE88958)	• • •	0.76 [0.44, 1.30]	Suer 2018 (GSE88958)	,	- 0.83 [0.46, 1.52]
TCGA (TCGA-PRAD)		0.95 [0.75, 1.20]	TCGA (TCGA-PRAD)	+#	0.82 [0.63, 1.05]
Overall (Q=5.09, df=5, p=0.4	40; l ² =18.1%) ◆	0.81 [0.69, 0.96]	Overall (Q=2.16, df=5, p=0.	83; I ² =0.0%)	0.86 [0.74, 1.00]
	0.14 1	2.72		0.14 1	2.72
	Hazard r	atio		Hazard	ratio
	(c)			(d)	
Author (Study ID)	miR-133a-3p	Hazard Ratio [95% CI]	Author (Study ID)	miR-135a-5p	Hazard Ratio [95% CI]
Taylor 2010 (GSE21036)		0.78 [0.52, 1.17]	Taylor 2010 (GSE21036)	⊢∎ →	0.65 [0.45, 0.96]
Long 2011 (GSE26245)	H-	0.84 [0.65, 1.10]	Long 2011 (GSE26245)	H-	0.90 [0.65, 1.26]
Long 2011 (GSE26247)		→ 0.89 [0.52, 1.51]	Long 2011 (GSE26247)		→ 0.78 [0.46, 1.33]
Leite 2015 (GSE46738)			Leite 2015 (GSE46738)		1.27 [0.68, 2.39]
Suer 2018 (GSE88958) TCGA (TCGA-PRAD)		0.62 [0.33, 1.17] 0.77 [0.62, 0.97]	Suer 2018 (GSE88958) TCGA (TCGA–PRAD)		→ 0.72 [0.39, 1.33] 0.82 [0.64, 1.06]
		0.77 [0.62, 0.97]			0.62 [0.64, 1.06]
Overall (Q=2.57, df=5, p=0.7	77; l ² =0.0%)	0.81 [0.71, 0.94]	Overall (Q=3.79, df=5, p=0.	58; I ² =0.0%)	0.82 [0.70, 0.96]
	0.14 1				2.72
	Hazard r	atio		Hazard	ratio
	(e)			(f)	
	miR-148a-3p			miR-155-5p	
Author (Study ID)		Hazard Ratio [95% CI]	Author (Study ID)		Hazard Ratio [95% CI]
Taylor 2010 (GSE21036)		0.84 [0.53, 1.33]	Taylor 2010 (GSE21036)	— —	0.45 [0.27, 0.76]
Long 2011 (GSE26245)	+ B +	0.92 [0.71, 1.20]	Long 2011 (GSE26245)		0.79 [0.52, 1.20]
Long 2011 (GSE26247) Leite 2015 (GSE46738)		1.12 [0.56, 2.27]	Long 2011 (GSE26247) Leite 2015 (GSE46738)		→ 0.89 [0.52, 1.52]
Suer 2018 (GSE88958)		0.72 [0.44, 1.20]	Suer 2018 (GSE46738)		- 0.92 [0.49, 1.71]
TCGA (TCGA-PRAD)		→ 0.93 [0.49, 1.78] 0.73 [0.56, 0.95]	TCGA (TCGA-PRAD)		1.20 [0.62, 2.31] 0.88 [0.69, 1.13]
· · · · ·		0.75 [0.50, 0.55]	· · ·		0.00 [0.03, 1.10]
Overall (Q=2.66, df=5, p=0.7	75; I²=0.0%) ◆	0.83 [0.71, 0.97]	Overall (Q=6.89, df=5, p=0.	23; I ² =16.7%)	0.82 [0.67, 1.00]
		2.72		0.14 1	2.72
	Hazard r	atio		Hazard	ratio
	(g)			(h)	
Author (Study ID)	miR-203a-3p	Hazard Ratio [95% CI]	Author (Study ID)	miR-204-5p	Hazard Ratio [95% CI]
Taylor 2010 (GSE21036)		0.64 [0.41, 1.00]	Taylor 2010 (GSE21036)	-	0.68 [0.44, 1.05]
Long 2011 (GSE26245)		0.97 [0.69, 1.36]	Long 2011 (GSE26245)	-	- 1.02 [0.70, 1.50]
Long 2011 (GSE26247)		- 0.84 [0.49, 1.41]	Long 2011 (GSE26247)		0.45 [0.23, 0.87]
Leite 2015 (GSE46738)		0.58 [0.31, 1.12]	Leite 2015 (GSE46738)		- 0.77 [0.42, 1.39]
Suer 2018 (GSE88958)	⊢ ∎	0.61 [0.31, 1.18]	Suer 2018 (GSE88958)		0.95 [0.51, 1.76]
TCGA (TCGA-PRAD)	H e r	0.81 [0.63, 1.03]	TCGA (TCGA-PRAD)		0.87 [0.69, 1.09]
Overall (Q=3.76, df=5, p=0.5	58; l ² =0.0%) ◆	0.79 [0.67, 0.93]	Overall (Q=5.66, df=5, p=0.	34; l ² =0.0%) ◆	0.83 [0.71, 0.97]
	0.14 1	2.72		0.14 1	2.72
	Hazard r			Hazard	
	nazaru			i lazara i	

Author (Study ID)	miR-218-5p	Hazard Ratio [95% CI]	Author (Study ID)	miR-222-3p	Hazard Ratio [95% CI]
Taylor 2010 (GSE21036)		0.72 [0.49, 1.07]	Taylor 2010 (GSE21036)		1.05 [0.63, 1.74]
Long 2011 (GSE26245)		0.73 [0.48, 1.13]	Long 2011 (GSE26245)	⊢≣ -(0.69 [0.50, 0.95]
Long 2011 (GSE26247)		0.76 [0.44, 1.32]	Long 2011 (GSE26247)		- 0.77 [0.45, 1.31]
Leite 2015 (GSE46738)		1.20 [0.73, 1.97]	Leite 2015 (GSE46738)		1.26 [0.70, 2.26]
Suer 2018 (GSE88958)		→ 0.88 [0.47, 1.65]	Suer 2018 (GSE88958)	·	- 0.72 [0.41, 1.28]
TCGA (TCGA-PRAD)		0.88 [0.69, 1.13]	TCGA (TCGA-PRAD)	-	0.67 [0.53, 0.85]
Overall (Q=3.13, df=5, p=0.6	68; l ² =0.0%) ◆	0.85 [0.72, 1.00]	Overall (Q=5.65, df=5, p=0.3	34; l ² =6.4%) ◆	0.76 [0.64, 0.89]
		2.72			2.72
	Hazard r	atio		Hazard	ratio
	(k)			(1)	
Author (Study ID)	miR–26b–5p	Hazard Ratio [95% CI]	Author (Study ID)	miR–30a–3p	Hazard Ratio [95% CI]
Taylor 2010 (GSE21036)	⊢ ∎→	0.62 [0.42, 0.90]	Taylor 2010 (GSE21036)	⊢ ∎	0.61 [0.39, 0.96]
Long 2011 (GSE26245)	-	0.93 [0.72, 1.20]	Long 2011 (GSE26245)	н	1.13 [0.79, 1.59]
Long 2011 (GSE26247)	⊢ ∎	0.77 [0.46, 1.31]	Long 2011 (GSE26247)	⊢ ∎	0.70 [0.43, 1.14]
Leite 2015 (GSE46738)		0.69 [0.37, 1.30]	Leite 2015 (GSE46738)		0.70 [0.45, 1.10]
Suer 2018 (GSE88958)		1.24 [0.66, 2.32]	Suer 2018 (GSE88958)	· •	0.43 [0.17, 1.08]
TCGA (TCGA-PRAD)	-	0.93 [0.73, 1.18]	TCGA (TCGA-PRAD)	• = •	0.68 [0.55, 0.84]
Overall (Q=5.59, df=5, p=0.3	s5; l²=3.5%) ◆	0.86 [0.74, 1.00]	Overall (Q=8.25, df=5, p=0.	14; l ² =40.8%) ←	0.73 [0.59, 0.91]
	0.14 1	2.72		0.14 1	2.72
	Hazard r			Hazard	
	(m)			(n)	
Author (Study ID)	miR-30c-5p	Hazard Ratio [95% CI]	Author (Study ID)	miR-30e-3p	Hazard Ratio [95% CI]
Taylor 2010 (GSE21036)		0.61 [0.42, 0.89]	Taylor 2010 (GSE21036)		0.61 [0.42, 0.89]
Long 2011 (GSE26245)	-	0.91 [0.70, 1.19]	Long 2011 (GSE26245)	-	- 0.92 [0.69, 1.23]
Long 2011 (GSE26247)		0.84 [0.52, 1.36]	Long 2011 (GSE26247)		- 0.77 [0.48, 1.25]
Leite 2015 (GSE46738)	⊢∎ -1	0.66 [0.46, 0.96]	Leite 2015 (GSE46738)		- 0.61 [0.29, 1.27]
Suer 2018 (GSE88958)		1.58 [0.87, 2.87]	Suer 2018 (GSE88958)		0.43 [0.17, 1.08]
TCGA (TCGA-PRAD)	-	0.82 [0.64, 1.05]	TCGA (TCGA-PRAD)	+ = +	0.67 [0.51, 0.87]
Overall (Q=9.08, df=5, p=0.1	1; l ² =30.8%) ◆	0.82 [0.69, 0.97]	Overall (Q=5.15, df=5, p=0.4	40; l ² =17.0%)	0.71 [0.60, 0.86]
	0.14 1	2.72		0.14 1	2.72
	Hazard r			Hazard	
	(o)			(p)	
Author (Study ID)	miR-374a-5p	Hazard Ratio [95% CI]	Author (Study ID)	miR-425-3p	Hazard Ratio [95% CI]
Taylor 2010 (GSE21036)		0.64 [0.44, 0.93]	Taylor 2010 (GSE21036)		1.41 [0.90, 2.23]
Long 2011 (GSE26245)	-8-1	0.89 [0.66, 1.20]	Long 2011 (GSE26245)	н	■ 1.11 [0.77, 1.62]
Long 2011 (GSE26247)	—	→ 0.93 [0.52, 1.65]	Long 2011 (GSE26247)		1.10 [0.58, 2.10]
Leite 2015 (GSE46738)	·	0.39 [0.20, 0.77]	Leite 2015 (GSE46738)	-	1.52 [0.78, 2.95]
Suer 2018 (GSE88958)		1.32 [0.70, 2.51]	Suer 2018 (GSE88958)	F	1.10 [0.58, 2.11]
TCGA (TCGA-PRAD)	•=	0.81 [0.63, 1.04]	TCGA (TCGA-PRAD)	•	1.28 [0.99, 1.65]
Overall (Q=8.78, df=5, p=0.1	2; l ² =7.7%)	0.80 [0.68, 0.94]	Overall (Q=1.28, df=5, p=0.5	94; l ² =0.0%)	• 1.25 [1.05, 1.48]
		2.72			2.72
	Hazard r	atio		Hazard	ratio

Figure 2.6: Association of miR expression with biochemical recurrence: an univariate analysis. The overall associations of these 18 miRs were significantly associated with biochemical recurrence. The expression of all but miR-425-3p associated negatively with recurrence. "Overall" refers to the overall effect estimate, i.e. pooled hazard ratio. The "Q", "df" and "p" values refer to the statistics for Q-test for heterogeneity and the "I²" value refers to the outcome of I² test for heterogeneity. Figure continued.

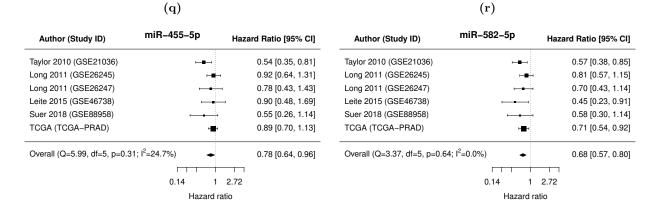


Figure 2.6: Association of miR expression with biochemical recurrence: an univariate analysis. The overall associations of these 18 miRs were significantly associated with biochemical recurrence. The expression of all but miR-425-3p associated negatively with recurrence. "Overall" refers to the overall effect estimate, i.e. pooled hazard ratio. The "Q", "df" and "p" values refer to the statistics for Q-test for heterogeneity and the "I²" value refers to the outcome of I² test for heterogeneity.

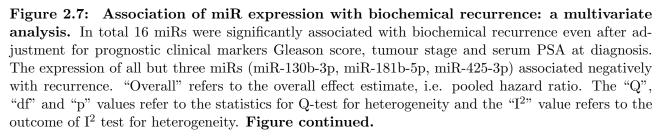
MiRNAs that consistently associate with disease recurrence: a multivariate analysis with adjustment for prognostic clinical markers

Multivariate Cox PH regression followed by a REM meta-analysis was performed for 164 miRs that were common in the five datasets considered for the multivariate analysis. The variables adjusted in this multivariate analysis were clinical markers Gleason score, tumour stage and serum PSA at diagnosis. The meta-analysis revealed only 16 miRs were significantly associated with BCR (Figure 2.7). 13 miRs (let-7a-5p, miR-1-3p, miR-148a-3p, miR-203a-3p, miR-20a-5p, miR-221-3p, miR-26b-5p, miR-30a-3p, miR-30c-5p, miR-30e-3p, miR-30e-5p, miR-374a-5p and miR-582-5p) had negative association and three miRs (miR-130b-3p, miR-181b-5p and miR-425-3p) had positive association with BCR. The Q test for heterogeneity between samples for these miRs were non-significant and the I² value ranged from 0-30%. These values represent absence to moderate heterogeneity between the datasets. The slight reduction in heterogeneity in the multivariate analysis compared to the univariate analysis suggests that heterogeneity between the datasets was partly explained by clinical diversity, i.e. tumour stage, Gleason score and serum PSA. Overall, ten miRs (let-7a-5p, miR-148a-3p, miR-203a-3p, miR-26b-5p, miR-30a-3p, miR-30c-5p, miR-30e-3p, miR-374a-5p, miR-425-3p and miR-582-5p) were significantly prognostic in both univariate and multivariate meta-analyses (Table 2.7).

(a)

(b)

miR-1-3p Author (Study ID) Hazard Ratio [95% CI] Taylor 2010 (GSE21036) 0.68 [0.45, 1.04] Long 2011 (GSE26245) 0.82 [0.58, 1.14] Long 2011 (GSE26247) 0.88 [0.46, 1.70] Leite 2015 (GSE46738) 0.65 [0.30, 1.40] TCGA (TCGA-PRAD) 0.88 [0.68, 1.15] Overall (Q=1.41, df=4, p=0.84; l²=0.0%) 0.81 [0.68, 0.97] 1 2.72 0.14 Hazard ratio


(d)

Author (Study ID)	miR-148a-3p	Hazard Ratio [95% CI]
Author (Study ID)		
Taylor 2010 (GSE21036)	⊢ ∎>	0.70 [0.47, 1.05]
Long 2011 (GSE26245)	H	0.92 [0.71, 1.20]
Long 2011 (GSE26247)	——	1.50 [0.60, 3.73]
Leite 2015 (GSE46738)	⊢− ∎−−1	0.72 [0.43, 1.20]
TCGA (TCGA-PRAD)	⊢ ∎⊣	0.72 [0.55, 0.93]
Overall (Q=4.12, df=4, p=0.39;	I²=2.9%) ◆	0.80 [0.68, 0.94]
	0.14 1 2	2.72
	Hazard ratio	
	(f)	
	miR–203a–3p	

let-7a Author (Study ID)	–5p	Hazard Ratio [95% CI]
Taylor 2010 (GSE21036)		0.61 [0.41, 0.91]
Long 2011 (GSE26245)	H -	0.92 [0.70, 1.22]
Long 2011 (GSE26247)		0.72 [0.36, 1.43]
Leite 2015 (GSE46738)		0.64 [0.34, 1.20]
TCGA (TCGA-PRAD)	H H H	0.91 [0.71, 1.17]
Overall (Q=4.20, df=4, p=0.38; l ² =15.6%)	•	0.82 [0.68, 0.98]
	- i	
0.14	1	2.72
	Hazard rati	0
(c))	

Author (Study ID)	miR-130b-3p	Hazard Ratio [95% CI]
Taylor 2010 (GSE21036)	F	2.06 [1.28, 3.30]
Long 2011 (GSE26245)		- 1.37 [0.91, 2.08]
Long 2011 (GSE26247)		1.65 [0.91, 3.00]
Leite 2015 (GSE46738)		0.98 [0.55, 1.75]
TCGA (TCGA-PRAD)	+=+	1.19 [0.92, 1.55]
Overall (Q=5.52, df=4, p=0.24	; I ² =25.9%)	1.37 [1.10, 1.71]
	0.14 1	2.72
	Hazard rat	io
	(e)	
Author (Study ID)	miR-181b-5p	Hazard Ratio [95% CI]
Taylor 2010 (GSE21036)		- 1.23 [0.79, 1.93]

Author (Study ID)	Hazard Ratio [95% CI]	Author (Study ID)	Hazard Ratio [95% CI]
Taylor 2010 (GSE21036)	1.23 [0.79, 1.93]	Taylor 2010 (GSE21036)	
Long 2011 (GSE26245)		Long 2011 (GSE26245)	⊢∎→ 1.01 [0.70, 1.44]
Long 2011 (GSE26247)	1.83 [0.86, 3.92]	Long 2011 (GSE26247)	1.03 [0.52, 2.04]
Leite 2015 (GSE46738)	2.02 [0.81, 5.06]	Leite 2015 (GSE46738)	0.58 [0.32, 1.06]
TCGA (TCGA-PRAD)	- 1.26 [0.98, 1.61]	TCGA (TCGA-PRAD)	-∎ 0.78 [0.61, 0.99]
Overall (Q=4.41, df=4, p=0.35; l ² =1.4%)	 ◆ 1.21 [1.01, 1.44] 	Overall (Q=3.95, df=4, p=0.41; l ² =0.0%)	• 0.80 [0.68, 0.94]
0.14	1 2.72	0.14	1 2.72
Haz	zard ratio	Haz	ard ratio
(g)		(h)	
miR–20a–5 Author (Study ID)	p Hazard Ratio [95% CI]	miR–221–3j Author (Study ID)	p Hazard Ratio [95% CI]
Taylor 2010 (GSE21036)	⊷ 0.71 [0.50, 1.00]	Taylor 2010 (GSE21036)	0.95 [0.64, 1.40]
Long 2011 (GSE26245)		Long 2011 (GSE26245)	0.81 [0.65, 1.01]
Long 2011 (GSE26247)	0.63 [0.34, 1.17]	Long 2011 (GSE26247)	0.72 [0.36, 1.46]
Leite 2015 (GSE46738)	0.81 [0.44, 1.46]	Leite 2015 (GSE46738)	1.10 [0.61, 2.01]
TCGA (TCGA-PRAD)	•∎• 0.92 [0.73, 1.16]	TCGA (TCGA-PRAD)	- 0.87 [0.67, 1.12]
Overall (Q=2.84, df=4, p=0.59; l ² =0.0%)	◆ 0.85 [0.73, 0.99]	Overall (Q=1.43, df=4, p=0.84; l ² =0.0%)	◆ 0.86 [0.74, 1.00]
	- - -		- i - 1 - 1
0.14	1 2.72	0.14	1 2.72

(i)

1	•)	
١,	J)	

miF Author (Study ID)	l–30a–3p	Hazard Ratio [95% CI]
Taylor 2010 (GSE21036)	 -	0.75 [0.47, 1.19]
Long 2011 (GSE26245)	- 	1.14 [0.80, 1.62]
Long 2011 (GSE26247)		0.76 [0.44, 1.30]
Leite 2015 (GSE46738)	—	0.62 [0.38, 1.03]
TCGA (TCGA-PRAD)	⊨∎⊀	0.76 [0.59, 0.98]
Overall (Q=5.05, df=4, p=0.28; I ² =26	.4%) 🝝	0.81 [0.66, 1.00]
	0.14 1 2	
	Hazard ratio	
	(1)	

Author (Study ID)	miR–26b–5p	Hazard Ratio [95% CI]			
Taylor 2010 (GSE21036)		0.60 [0.40, 0.89]			
Long 2011 (GSE26245)	H a H	0.93 [0.72, 1.21]			
Long 2011 (GSE26247)	·	0.78 [0.39, 1.56]			
Leite 2015 (GSE46738)	·•	0.66 [0.35, 1.24]			
TCGA (TCGA-PRAD)	H a rt	0.92 [0.71, 1.18]			
Overall (Q=4.55, df=4, p=0.34; I	0.82 [0.68, 0.99]				
	0.14 1	2.72			
Hazard ratio					
	(k)				

Author (Study ID)	miR–30c–5p	Hazard Ratio [95% CI]	Author (Study ID)	miR-30e-3p	Hazard Ratio [95% CI]
Taylor 2010 (GSE21036)	-	0.62 [0.42, 0.94]	Taylor 2010 (GSE21036)		0.69 [0.46, 1.03]
Long 2011 (GSE26245)		0.91 [0.70, 1.19]	Long 2011 (GSE26245)	- -	0.92 [0.68, 1.23]
Long 2011 (GSE26247)	· •	0.99 [0.52, 1.89]	Long 2011 (GSE26247)	·	- 0.92 [0.51, 1.65]
Leite 2015 (GSE46738)	⊢ ∎	0.61 [0.40, 0.91]	Leite 2015 (GSE46738)	·	0.58 [0.26, 1.28]
TCGA (TCGA-PRAD)	H.	0.92 [0.72, 1.18]	TCGA (TCGA-PRAD)	H a H	0.71 [0.53, 0.94]
Overall (Q=5.62, df=4, p=0.23	3; l ² =30.2%) ◆	0.81 [0.67, 0.98]	Overall (Q=2.84, df=4, p=0.5	58; I ² =0.0%)	0.78 [0.66, 0.92]
	0.14 1	2.72		0.14 1	2.72
	Hazard ratio	0		Hazard ra	atio
	(m)			(n)	
Author (Study ID)	miR–30e–5p	Hazard Ratio [95% CI]	Author (Study ID)	miR-374a-5p	Hazard Ratio [95% CI]
Taylor 2010 (GSE21036)	·	1.07 [0.63, 1.83]	Taylor 2010 (GSE21036)	- - -	0.68 [0.46, 1.01]
Long 2011 (GSE26245)	H ar ia	0.87 [0.66, 1.15]	Long 2011 (GSE26245)	- -	0.90 [0.66, 1.22]
Long 2011 (GSE26247)	·	0.58 [0.32, 1.05]	Long 2011 (GSE26247)		- 0.96 [0.50, 1.85]
Leite 2015 (GSE46738)	-	0.75 [0.44, 1.29]	Leite 2015 (GSE46738)		0.39 [0.19, 0.80]
TCGA (TCGA-PRAD)	F E	0.77 [0.59, 1.02]	TCGA (TCGA-PRAD)	⊢ ∰-1	0.91 [0.70, 1.19]
Overall (Q=2.79, df=4, p=0.59	9; I ² =0.0%)	0.81 [0.69, 0.96]	Overall (Q=6.14, df=4, p=0.1	I9; I ² =2.0%) ◆	0.82 [0.69, 0.98]
	r t t i				
	0.14 1	2.72		0.14 1	2.72
	Hazard ratio	0		Hazard ra	atio
	(o)			(p)	
Author (Study ID)	miR-425-3p	Hazard Ratio [95% CI]	Author (Study ID)	miR-582-5p	Hazard Ratio [95% CI]
Taylor 2010 (GSE21036)		1.26 [0.77, 2.08]	Taylor 2010 (GSE21036)		0.58 [0.38, 0.89]
Long 2011 (GSE26245)	⊢∎ 1	1.16 [0.79, 1.70]	Long 2011 (GSE26245)	⊢ ∎ •	0.83 [0.57, 1.19]
Long 2011 (GSE26247)		0.95 [0.50, 1.84]	Long 2011 (GSE26247)		0.71 [0.41, 1.25]
Leite 2015 (GSE46738)		i 1.86 [0.87, 3.99]	Leite 2015 (GSE46738)		0.33 [0.13, 0.83]
TCGA (TCGA-PRAD)		1.33 [1.00, 1.76]	TCGA (TCGA-PRAD)	r ≣ a	0.80 [0.61, 1.04]
Overall (Q=2.02, df=4, p=0.73	3; l ² =0.0%)	1.27 [1.05, 1.53]	Overall (Q=4.86, df=4, p=0.3	30; l ² =0.0%)	0.73 [0.61, 0.87]
	0.14 1	2.72		0.14 1	2.72

Hazard ratio

Figure 2.7: Association of miR expression with biochemical recurrence: a multivariate analysis. In total 16 miRs were significantly associated with biochemical recurrence even after adjustment for prognostic clinical markers Gleason score, tumour stage and serum PSA at diagnosis. The expression of all but three miRs (miR-130b-3p, miR-181b-5p, miR-425-3p) associated negatively with recurrence. "Overall" refers to the overall effect estimate, i.e. pooled hazard ratio. The "Q", "df" and "p" values refer to the statistics for Q-test for heterogeneity and the "I²" value refers to the outcome of I^2 test for heterogeneity.

Hazard ratio

miRs	univariate Cox PH		multivariate Cox PH		systematic review				
	pooled HR	CI (95%)	pooled HR	CI (95%)	test: endpoint	\mathbf{HR}	CI (95%)	sample size	ref
let-7a-5p	0.81	0.69-0.86	0.82	0.68 - 0.98					
miR-148a-3p	0.83	0.71 - 0.97	0.80	0.68-0.94	multivariate: BPFS	0.60	0.44-0.81	207	[215]
miR-203a-3p	0.79	0.67-0.93	0.80	0.68-0.94	KM: PS	2.52	1.11-4.88	44	[216]
miR-26b-5p	0.86	0.74 - 1.00	0.82	0.68 - 0.99					
miR-30a-3p	0.73	0.59 - 0.91	0.81	0.66 - 1.00					
					multivariate: BPFS	0.34	0.17-0.68	103	[217]
miR-30c-5p	0.82	0.69 - 0.97	0.81	0.67 - 0.98	multivariate: BPFS	0.49	0.28 - 0.85	207	[215]
					univariate: PS	2.38	1.09-5.22	44	[216]
miR-30e-3p	0.71	0.60-0.86	0.78	0.66-0.92					
miR-374a-5p	0.80	0.68-0.94	0.82	0.69-0.98					
miR-425-3p	1.25	1.05 - 1.48	1.27	1.05 - 1.53					
miR-582-5p	0.68	0.57 - 0.80	0.73	0.61 - 0.87	KM: bone MFS	0.21	0.10 - 0.45	94	[218]

Table 2.7: Ten miRs significantly associated with biochemical recurrence in both univariate and multivariate meta-analyses. Four miRs: miR-148a-3p, miR-203a-3p, miR-30c-5p and miR-582-5p, have been identified as prognostic in independent publications, although the direction of association with progression is not consistent for miR-203a-3p and miR-30c-5p between my findings and the independent publications. KM, univariate and multivariate tests refer to Kaplan-Meier analysis, univariate Cox PH regression and multivariate Cox PH regression respectively. In the multivariate Cox PH, the adjusted variables were Gleason score, tumour stage, and PSA. A total of 5 and 6 datasets were included in the univariate and multivariate meta-analyses, respectively. Abbreviations: KM=Kaplan-Meier. For the full form of the abbreviated endpoints, refer to Table 2.1.

2.3.3 MiRNAs with consistent association with prostate cancer recurrence: validation between systematic review and meta-analysis

In the systematic review, five miRs, let-7b-5p, miR-145-5p, miR-152-3p, miR-195-5p and miR-224-5p, were identified as consistently individually prognostic, of which the latter four miRs were evaluated in the multivariate meta-analysis. However, the association of these four miRs with BCR were insignificant and inconsistent in the meta-analysis (Figure 2.8).

In the meta-analysis, ten miRs, let-7a-5p, miR-148a-3p, miR-203a-3p, miR-26b-5p, miR-30a-3p, miR-30c-5p, miR-30e-3p, miR-374a-5p, miR-425-3p and miR-582-5p, were validated as significantly prognostic of BCR post-RP. Among these, only four miRs (miR-148a-3p, miR-582-5p, miR-30c-5p and miR-203a-3p) were identified as individually prognostic in the systematic review (Table 2.7). The direction of association of miR-148a-3p and miR-582-5p with progression endpoints BPFS and bone MFS respectively in the review were consistent with the direction of association of the miRs with BCR in the meta-analysis [215, 218]. MiR-30c-5p was reported as prognostic in three independent studies; Ling *et al.* and Zhao *et al.* reported negative association of miR-30c-5p expression with BPFS, which were consistent with the results from the meta-analysis [215, 217]. However, the findings of Huang *et al.* was inconsistent as they reported a positive association of miR-30c expression with PCa patient survival [216]. For miR-203a-3p, its association with PCa patient survival was also conflicting with the findings of the meta-analysis [216]. The inconsistencies for miR-30c-5p and miR-203a-3p could potentially be due to differences in endpoints or statistical approaches, such as inclusion of different confounder variables in the multivariate models. Potential sources of heterogeneity are discussed in Section 2.4.

Although there were no overlaps between miRs identified as of interest in the systematic review and meta-analysis, two miRs: miR-148a-3p and miR-582-5p, were identified as consistently predictive of BCR in the meta-analysis and had at least one publication in the systematic review verifying their association [215, 218]. Therefore, these two miRs are ideal candidates to follow-up as individual



Figure 2.8: The association of four miRs identified as prognostic in the systematic review with biochemical recurrence: a multivariate Cox PH analysis. This analysis was adjusted for prognostic clinical markers Gleason score, tumour stage and serum PSA at diagnosis. None of these four miRs were significantly associated with biochemical recurrence in the meta-analysis. Let-7b-5p could not be evaluated in the meta-analysis as it was not profiled in all five datasets. "Overall" refers to the overall effect estimate, i.e. pooled hazard ratio. The "Q", "df" and "p" values refer to the statistics for Q-test for heterogeneity and the "I²" value refers to the outcome of I² test for heterogeneity.

2.4 Discussion

In this work, I addressed the problem of inconsistent and conflicting reports of prognostic miRs in PCa in the literature with (i) a systematic review which summarised and identified consistently reported prognostic miR markers in PCa. I next performed (ii) a meta-analysis of six publicly available datasets which identified tumour tissue-derived miRs consistently associated with BCR in post-RP samples. Two miRs: miR-148a-3p and miR-582-5p, were identified as independently prognostic of PCa progression in the review and meta-analysis despite significant heterogeneity between studies and thus, presented as novel promising biomarkers for PCa progression.

2.4.1 miR-148a-3p

MiR-148a-3p is one of the commonly dysregulated miRs in human cancers. Its downregulation has been observed in various cancers such as bladder, oesophageal, gastric, breast, colorectal and ovarian cancers [219–225]. Upregulation of miR-148a has also been detected in osteocarcinoma and glioblastoma [226, 227]. In PCa, miR-148a-3p has been reported to be both up- and down-regulated. Upregulation of miR-148a-3p levels has been shown in prostate tumours tissues in comparison to adjacent normal tissues [153]. Upregulation was also observed in serum and urine of PCa patients in comparison to healthy controls [177, 228]. In contrast, downregulation of miR-148a-3p has been reported in CRPC cell lines PC3 and DU145 [229, 230]. Similarly, in PCa patients, downregulation of the miR has been reported in CRPC cases compared to BPH cases and in high-grade tumours compared to low-grade tumours [152, 231].

Although expression of miR-148a-3p is variably reported in the literature, studies investigating its biological role in PCa generally suggest a tumour suppressive role. Sengupta *et al.* showed downregulation of miR-148a-3p in CRPC and identified DNA methylatransferase DNMT1, a gene upregulated in several cancers, as a target of the miR [230]. They reported that the two molecules exhibit a negative loop in PCa: while DNMT1 enzyme methylates the miR promoter and silences miR expression, miR-148a directly targets DNMT1, whose repression leads to induction of apoptosis and repression of cell proliferation and migration. They also demonstrated that ectopic expression of miR-148a-3p repressed anti-apoptotic BCL2 in PC3 cells promoting apoptosis. Suppression of DNMT1 by miR-148-3p has been reported in pancreatic, liver, bladder, oesophageal and gastric cancers [219–222, 232, 233]. Targeting of BCL2 by miR-148a-3p has also been reported in colorectal and pancreatic cancers [224, 234]. Additionally, a study by Fujita *et al.* showed miR-148a-3p expression increased chemosensitivity in PC3 cells by directly targeting mitogen-and stress-activated protein kinase, MSK1 [229]. These studies demonstrate that miR-148a-3p plays a role in promoting anti-survival, tumour suppressive phenotype via similar mechanisms in various cancers including PCa and its loss is not only a good indicator of tumour progression but also shows potential to serve as a biomarker for therapeutic response in PCa.

MiR-148a-3p is a highly abundant miR which has been detected and successfully profiled in PCa patients from various sources including tumour tissues, urine and circulation [155, 177, 228, 235]. Its high abundance and detection in circulation allows for non-invasive sample collection and monitoring in the clinics, adding to its value as a biomarker. Its consistent association with progression and ideal biomarker properties make it a potential candidate for further investigation as a clinical prognostic biomarker. However, its role in PCa at various stages of the disease still remains uncertain and needs to be elucidated; understanding the role of miR-148a-3p at various stages of PCa will allow for its utilisation as a biomarker at disease stages where it is the most effective.

2.4.2 miR-582-5p

miR-582-5p is a poorly investigated miR in oncology. Similar to miR-148a-3p, it is reported to act as both an oncogene and a tumour suppressor in various cancers. In gastric, bladder, non-small cell lung cancers and endometrial carcinoma, miR-582-5p levels are downregulated and shown to suppress proliferation, migration, invasion and promote apoptosis [236–239]. Conversely, in colorectal cancer and pituitary adenomas, it is over-expressed and promotes proliferation [240, 241].

The clinical significance of miR-582-5p in PCa is not yet elucidated and the literature presents conflicting evidence. Most recent research on miR-582-5p in PCa investigated the role of the miR in promoting bone metastasis [218]. In this study, lower miR-582-5p expression was reported in PCa tissues with bone metastasis compared to PCa tissues without bone metastasis. The study reported that lower miR-582-5p expression was significantly associated with shorter bone MFS. They also demonstrated that over-expression of the miR in mice model bearing PC3 tumour xenografts repressed bone metastasis and over-expression in PCa cell lines PC3, VCaP and C42B repressed tumour invasiveness and migration. Mechanistically, the study proposed that miR-582-3p exerted its anti-invasion and migration properties by directly inhibiting components of the TGF β signalling pathway: *SMAD2*, TGFBRI and TGFBRII, and subsequently the pathway itself. Maeno *et al.* developed AR-positive, androgen-independent xenograft model KUCaP2 and cell line AILNCaP#1 and observed upregulation of miR-582-5p in these models in comparison to their androgen dependent counterparts [242]. Their study also demonstrated suppression of the miR decreased cell proliferation in AILNCaP#1, suggesting an oncomiRic role of miR-582-5p in the transition of PCa from hormone- sensitive to more aggressive castration-resistant phenotypes. These limited studies on miR-582-3p report conflicting roles of the miR in tumour progression. Their findings may indicate a dual role of the miR at different stages of progression from invasion and metastasis to the bones, to transition from androgen-dependent to aggressive CRPC. MiR-582-5p is a novel miR that has been identified as a potential prognostic candidate for PCa. However, its exact role in PCa tumour progression is poorly understood and prompts further research along with its investigation as a biomarker.

2.4.3 Limitations

One of the major issues highlighted by this project is the inconsistent findings between studies and datasets despite their common aim to identify prognostic miR biomarkers in PCa. Inconsistent summary effects between studies, which can potentially lead to inaccurate conclusions, is termed statistical heterogeneity or heterogeneity, and arises from clinical and methodological heterogeneity at any point during the study. Due to the nature of retrospective cohort studies, clinical heterogeneity, which encompasses factors such as race, family history, co-morbidity, treatment history, time to outcome and differential loss of follow up between studies, was unavoidable. In the systematic review, a potential contributor of clinical heterogeneity was outcome endpoints. There were 12 endpoints (Table 2.1) in the systematic review that were considered surrogates of disease progression. Although there may be a correlation between different endpoints and irrefutable clinical progression, the occurrence of these endpoints does not warrant clinical progression, thus introducing the potential for inaccurate conclusions. Different endpoints were combined if they had redundant meaning and unambiguous, matching definitions. However, a large proportion of studies did not provide definitions for their chosen endpoints. For some studies that did specify endpoint definitions, there was still definition heterogeneity between studies; this is evident in studies by Hulf *et al.* and Nordby *et al.* where both studies examined the association of miR-205 with BPFS but used different criteria to define BPFS [138, 193]. As such, even if some studies had similar/ redundant endpoints, they were not combined.

In the meta-analysis, only studies examining association with BPFS as their surrogate for disease progression was considered to minimise endpoint heterogeneity. However, BPFS may not have been the most suitable surrogate endpoint for disease progression. The ICECaP study, a large scale metaanalysis that aimed to determine clinically relevant endpoints for localised PCa, determined MFS, and not PSA-based endpoints, as the most appropriate surrogate for PCa specific survival [243, 244]. Ideally, MFS would be used as the endpoint of interest for the meta-analysis. However, studies in the literature frequently use BPFS instead of MFS. This is evident in the systematic review, where almost half the studies (44%) considered BPFS, while only 6% of studies considered bone-/metastasis FS as endpoints. As BPFS was used as the surrogate endpoint, the prognostic miRs identified in the meta-analysis may not be the most reliable predictors of disease progression. Moving forward, studies should consider evidence-based clinically relevant endpoints.

To minimise heterogeneity from different sample sources, only samples originating from tumour tissues of patients who underwent RP were considered. Nonetheless, this approach could not ensure a comparable level of tumour content in the samples. Datasets TCGA-PRAD, GSE88958 and GSE21036 included samples with at least 60-70% tumour content in the tissues, while the rest of the datasets did not specify their percentage tumour content. Differences in baseline severity also existed in samples between the datasets (Figures 2.4). To reduce their impact on heterogeneity, clinical confounders were included as predictors in multivariate Cox PH analyses.

Methodological heterogeneity, attributing to differences in study design, sample preparation methods, sample types, profiling technologies and threshold values for a positive result, were also present in the analyses. Besides these factors, one of the sources of methodological heterogeneity that may have influenced my results were the different statistical tests, either Cox PH regression or KM analysis, employed by different studies. The KM analysis only allows categorical variables as predictors (e.g. miR expression needs to be categorised into high vs low expression), which can lead to weakening or loss of potential signal. It also cannot adjust for multiple predictors. Whereas, Cox PH regression is more flexible, allowing for both categorical and continuous variables as predictors. Besides, multiple predictors can be added into a Cox PH model, thus allowing for adjustment of confounding variables. For this reason, when a study in the systematic review reported outcome of both Cox PH and KM analyses, the Cox PH regression, there was potential for further heterogeneity to be introduced as different studies adjusted for different confounders. For example, Amankwah *et al.*, Melbo-Jorgensen *et al.* and Guan *et al.* examined association of miR-21-5p with progression using a multivariate Cox PH model but each study considered different confounders in their models B.2 [245-247].

In the meta-analysis, heterogeneity was controlled for as much as possible. This was done by firstly, standardising the expression dataset with z-scores and secondly, by only including datasets in the multivariate analysis if they had all three standard clinical variables (PSA at diagnosis, Gleason score and tumour stage) present. The multivariate Cox PH analysis in each of the five datasets were adjusted for those confounding clinical variables, ensuring that the association of miRs with BCR could be interpreted independently of them. Although appropriate measures were taken to reduce heterogeneity, it cannot be completely eliminated. This calls for the need for standardisation of methodology and protocols in the field of biomarker discovery in order to derive more accurate conclusions from future investigations.

Besides heterogeneity, another major limitation in the meta-analysis was the limited number of publicly available datasets. Numerous studies generate novel miR expression data, but most do not make their data publicly available. This led to the inclusion of only six datasets for the meta-analysis. Additionally, a caveat to the studies included in the meta-analyses was that the proportion of samples that experienced BCR were disproportionately lower than the samples that did not (Figure 2.4e). Insufficient and unbalanced datasets are a major problem of working with biomedical data, reducing the power of the study and potentially leading to biased, inaccurate conclusions specific to the cohorts being studied rather than the general population.

2.4.4 Conclusion

This is the first systematic review and only the second meta-analysis, updated with newer datasets and larger sample sizes compared to the first meta-analysis performed in 2017, to focus on prognostic miR markers in PCa [179]. It revealed considerable research undertaken in the field of biomarkers discovery in PCa and catalogued a novel database of all PCa prognostic miRs reported so far. These findings present a valuable reference point for future studies. This investigation also highlighted a lack of validation or inconsistent evidence for miRs frequently suggested to have prognostic biomarker potential. Only miR-148a-3p and miR-582-5p were consistently associated with disease progression in multiple publications and datasets, indicating reliability in predicting prognosis. Nevertheless, their biological significance in PCa progression is still uncertain. Further research to verify their biological roles is warranted to support investigations into their performance as prognostic PCa biomarkers.

Bibliography

- Prostate cancer statistics. Mar. 2020. URL: https://www.cancerresearchuk.org/healthprofessional/cancer-statistics/statistics-by-cancer-type/prostate-cancer.
- [2] Cancer today. URL: https://gco.iarc.fr/today/online-analysis-multi-bars.
- [3] Freddie Bray, Jacques Ferlay, Isabelle Soerjomataram, Rebecca L. Siegel, Lindsey A. Torre, and Ahmedin Jemal. "Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries". In: CA: A Cancer Journal for Clinicians 68.6 (2018), pp. 394–424. ISSN: 1542-4863. DOI: 10.3322/caac.21492.
- [4] Simon W. Hayward and Gerald R. Cunha. "The prostate: Development and physiology". In: *Radiologic Clinics of North America* 38.1 (2000), pp. 1–14. ISSN: 00338389. DOI: 10.1016/ S0033-8389(05)70146-9.
- [5] Paolo Verze, Tommaso Cai, and Stefano Lorenzetti. "The role of the prostate in male fertility, health and disease". In: *Nature Reviews Urology* 13.7 (2016), pp. 379–386. ISSN: 17594820. DOI: 10.1038/nrurol.2016.89. URL: http://dx.doi.org/10.1038/nrurol.2016.89.
- [6] G. S. Prins. "What is the prostate and what are its functions?" In: Handbook of Andrology (2010), pp. 1–8. DOI: 10.1038/npg.els.0000217.
- [7] Xiangdong Wang, Tieyan Liu, Jing Zhao, Jingyi Sun, Yuefeng Chen, Pengyu Sun, et al. "Normal anatomic relationship between urethral sphincter complex and zones of prostrate in young Chinese males on MRI". In: *International Journal of Clinical and Experimental Medicine* 8.9 (2015), pp. 16918–16925. ISSN: 19405901.
- [8] Jeffrey C. Francis and Amanda Swain. "Prostate organogenesis". In: Cold Spring Harbor Perspectives in Medicine 8.7 (2018), pp. 1–18. ISSN: 21571422. DOI: 10.1101/cshperspect. a030353.

- JE McNeal, EA Redwine, FS Freiha, and TA Stamey. "Zonal distribution of prostatic adenocarcinoma. Correlation with histologic pattern and direction of spread". In: *The American journal* of surgical pathology 12.12 (Dec. 1988), pp. 897–906. ISSN: 0147-5185. DOI: 10.1097/00000478-198812000-00001. URL: https://doi.org/10.1097/00000478-198812000-00001.
- [10] Ronald J. Cohen, Beverley A. Shannon, Michael Phillips, Rachael E. Moorin, Thomas M. Wheeler, and Kerryn L. Garrett. "Central Zone Carcinoma of the Prostate Gland: A Distinct Tumor Type With Poor Prognostic Features". In: *Journal of Urology* 179.5 (2008), pp. 1762–1767. ISSN: 00225347. DOI: 10.1016/j.juro.2008.01.017.
- [11] Angelo M. De Marzo, Elizabeth A. Platz, Siobhan Sutcliffe, Jianfeng Xu, Henrik Grönberg, Charles G. Drake, et al. "Inflammation in prostate carcinogenesis". In: *Nature Reviews Cancer* 7.4 (2007), pp. 256–269. ISSN: 1474175X. DOI: 10.1038/nrc2090.
- [12] Therese Lloyd, Luke Hounsome, Anita Mehay, Sarah Mee, Julia Verne, and Alison Cooper.
 "Lifetime risk of being diagnosed with, or dying from, prostate cancer by major ethnic group in England 2008 – 2010". In: *BMC Medicine* 13.171 (2015), pp. 1–10. ISSN: 1741-7015. DOI: 10.1186/s12916-015-0405-5. URL: http://dx.doi.org/10.1186/s12916-015-0405-5.
- [13] Richard M Hoffman, D Frank, J William Eley, C Linda, Robert A Stephenson, L Stanford, et al. "Racial and Ethnic Differences in Advanced-Stage Prostate Cancer : the Prostate Cancer Outcomes Study". In: Journal of the National Cancer Institute 93.5 (2001), pp. 388–395.
- Tisheeka Graham-Steed, Edward Uchio, Carolyn K. Wells, Mihaela Aslan, John Ko, and John Concato. "Race' and prostate cancer mortality in equal-access healthcare systems". In: American Journal of Medicine 126.12 (2013), pp. 1084–1088. ISSN: 00029343. DOI: 10.1016/j.amjmed.2013.08.012.
- [15] David E Goldgar, Douglas F Easton, Lisa A Cannon-albright, and Mark H Skolnick. "Systematic Population-Based Assessment of Cancer Risk in First-Degree Relatives of Cancer Probands". In: Journal of the National Cancer Institute 86.21 (1994), pp. 1600–1608.

- [16] L E Johns and R S Houlston. "A systematic review and meta-analysis of familial prostate cancer risk". In: British Journal of Urology International 91 (2003), pp. 789–794. DOI: 10. 1046/j.1464-410X.2003.04232.x.
- [17] Zhiqun Shanga, Shimiao Zhua, Hui Zhangb, Lihua Lib, and Yuanjie Niua. "Germline Homeobox B13 (HOXB13) G84E Mutation and Prostate Cancer Risk in European Descendants: A Meta-analysis of 24 213 Cases and 73 631 Controls Next-generation". In: *European Association of Urology* 64 (2013), pp. 173–176.
- [18] Charles M. Ewing, Anna M. Ray, Ethan M. Lange, Kimberly A Zuhlke, Christiane M Robbins,
 Waibhav D Tembe, et al. "Germline Mutations in HOXB13 and Prostate-Cancer Risk". In: The New England Journal of Medicine 366.2 (2012), pp. 141–149.
- [19] Laufey Tryggvadóttir, Linda Vidarsdóttir, Tryggvi Thorgeirsson, Jon Gunnlaugur Jonasson, Elinborg Jona Ólafsdóttir, Gudridur Helga Ólafsdóttir, et al. "Prostate Cancer Progression and Survival in BRCA2 Mutation Carriers". In: Journal of the National Cancer Institute 99 (2007), pp. 929–935. DOI: 10.1093/jnci/djm005.
- [20] Tomas Kirchhoff, Noah D Kauff, Nandita Mitra, Kedoudja Nafa, Helen Huang, Crystal Palmer, et al. "BRCA Mutations and Risk of Prostate Cancer in Ashkenazi Jews". In: *Clinical Cancer Research* 10.212 (2004), pp. 2918–2921.
- [21] D. Leongamornlert, N. Mahmud, M. Tymrakiewicz, E. Saunders, T. Dadaev, E. Castro, et al. "Germline BRCA1 mutations increase prostate cancer risk". In: *British Journal of Cancer* 106.10 (2012), pp. 1697–1701. ISSN: 00070920. DOI: 10.1038/bjc.2012.146.
- [22] Rong Na, S. Lilly Zheng, Misop Han, Hongjie Yu, Deke Jiang, Sameep Shah, et al. "Germline Mutations in ATM and BRCA1/2 Distinguish Risk for Lethal and Indolent Prostate Cancer and are Associated with Early Age at Death [figure presented]". In: *European Urology* 71.5 (2017), pp. 740–747. ISSN: 18737560. DOI: 10.1016/j.eururo.2016.11.033. URL: http://dx.doi.org/10.1016/j.eururo.2016.11.033.

- [23] The Breast Cancer Linkage Consortium. "Cancer risks in BRCA2 mutation carriers". In: Journal of the National Cancer Institute 91.15 (1999), pp. 1310–1316. ISSN: 00278874. DOI: 10.1093/jnci/91.15.1310.
- [24] Cynthia A. Heinlein and Chawnshang Chang. "Androgen receptor in prostate cancer". In: *Endocrine Reviews* 25.2 (2004), pp. 276–308. ISSN: 0163769X. DOI: 10.1210/er.2002-0032.
- B J Feldman and David Feldman. "The development of androgen-independent prostate cancer."
 In: Nature reviews. Cancer 1.1 (2001), pp. 34-45. ISSN: 1474-175X. DOI: 10.1038/35094009.
 URL: http://www.ncbi.nlm.nih.gov/pubmed/11900250.
- [26] NICE. "Prostate cancer diagnosis and management". In: Lancet (2019). ISSN: 01406736. DOI:
 10.1016/S0140-6736(96)07393-X.
- [27] E. David Crawford, Axel Heidenreich, Nathan Lawrentschuk, Bertrand Tombal, Antonio C.L. Pompeo, Arturo Mendoza-Valdes, et al. "Androgen-targeted therapy in men with prostate cancer: evolving practice and future considerations". In: *Prostate Cancer and Prostatic Diseases* 22.1 (2019), pp. 24–38. ISSN: 14765608. DOI: 10.1038/s41391-018-0079-0. URL: http://dx.doi.org/10.1038/s41391-018-0079-0.
- [28] Pradip Roy-Burman, Donald J. Tindall, Diane M. Robins, Norman M. Greenberg, Mary J.C. Hendrix, Suresh Mohla, et al. "Androgens and prostate cancer: Are the descriptors valid?" In: Cancer Biology and Therapy 4.1 (2005), pp. 4–5. ISSN: 15558576. DOI: 10.4161/cbt.4.1.1563.
- [29] Robert H. Carlson. "Hormone Refractory' May Be Misnomer". In: Oncology Times 30.2 (2008),
 pp. 26–27. ISSN: 0276-2234. DOI: 10.1097/01.cot.0000311428.60208.b6.
- [30] Galina Khemlina, Sadakatsu Ikeda, and Razelle Kurzrock. "Molecular landscape of prostate cancer : Implications for current clinical trials". In: *Cancer Treatment Reviews* 41.9 (2015), pp. 761–766. ISSN: 0305-7372. DOI: 10.1016/j.ctrv.2015.07.001. URL: http://dx.doi.org/10.1016/j.ctrv.2015.07.001.

- [31] BS Taylor, Nikolaus Schultz, and Haley Hieronymus. "Integrative genomic profiling of human prostate cancer". In: *Cancer cell* 18.1 (2010), pp. 11–22. DOI: 10.1016/j.ccr.2010.05.026.
 Integrative.
- [32] Dan Robinson, Eliezer M Van Allen, Charles L Sawyers, Arul M Chinnaiyan, Dan Robinson, Eliezer M Van Allen, et al. "Integrative Clinical Genomics of Advanced Prostate Resource Integrative Clinical Genomics of Advanced Prostate Cancer". In: Cell 161.May (2015), pp. 1215– 1228. DOI: 10.1016/j.cell.2015.05.001.
- [33] E S Antonarakis, A J Armstrong, S M Dehm, and J Luo. "Androgen receptor variant-driven prostate cancer : clinical implications and therapeutic targeting". In: *Prostate Cancer and Prostatic Disease* 19.3 (2016), pp. 231-241. ISSN: 1365-7852. DOI: 10.1038/pcan.2016.17.
 URL: http://dx.doi.org/10.1038/pcan.2016.17.
- [34] Michael F. Berger, Michael S. Lawrence, Francesca Demichelis, Yotam Drier, Kristian Cibulskis, Andrey Y. Sivachenko, et al. "The genomic complexity of primary human prostate cancer". In: Nature 470.7333 (2011), pp. 214–220. ISSN: 0028-0836. DOI: 10.1038/nature09744. URL: http://www.nature.com/doifinder/10.1038/nature09744.
- [35] Adam Abeshouse, Jaeil Ahn, Rehan Akbani, Adrian Ally, Samirkumar Amin, Christopher D.
 Andry, et al. "The Molecular Taxonomy of Primary Prostate Cancer". In: *Cell* 163.4 (2015),
 pp. 1011–1025. ISSN: 10974172. DOI: 10.1016/j.cell.2015.10.025.
- [36] Catherine S Grasso, Yi-mi Wu, Dan R Robinson, Xuhong Cao, Saravana M Dhanasekaran, Amjad P Khan, et al. "The mutational landscape of lethal castration-resistant prostate cancer". In: Nature 487 (2012), pp. 239–273. DOI: 10.1038/nature11125.
- [37] Christopher E Barbieri, Sylvan C Baca, Michael S Lawrence, Francesca Demichelis, Mirjam Blattner, Jean-Philippe Theurillat, et al. "Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer." In: *Nature genetics* 44.6 (2012), pp. 685–9. ISSN: 1546-1718. DOI: 10.1038/ng.2279. URL: http://dx.doi.org/10.1038/ng.2279.

- [38] Zhu Wang, Yuliang Wang, Jianwen Zhang, Qiyi Hu, Fan Zhi, Shengping Zhang, et al. "Significance of the TMPRSS2: ERG gene fusion in prostate cancer". In: *Molecular Medicine Reports* 16.4 (2017), pp. 5450–5458. ISSN: 17913004. DOI: 10.3892/mmr.2017.7281.
- [39] Scott A Tomlins, Daniel R Rhodes, Sven Perner, Saravana M Dhanasekaran, Rohit Mehra, Xiao-wei Sun, et al. "Recurrent Fusion of TMPRSS2 and ETS Transcription Factor Genes in Prostate Cancer". In: Science 310.5748 (2005), pp. 644–648.
- [40] Jiangchun Xu, Michael Kalos, John A. Stolk, Eden J. Zasloff, Xinqun Zhang, Raymond L. Houghton, et al. "Identification and characterization of prostein, a novel prostate-specific protein". In: *Cancer Research* 61.4 (2001), pp. 1563–1568. ISSN: 00085472.
- [41] Michiel S. Van Der Heijden and René Bernards. "Inhibition of the PI3K pathway: Hope we can believe in?" In: *Clinical Cancer Research* 16.12 (2010), pp. 3094–3099. ISSN: 10780432. DOI: 10.1158/1078-0432.CCR-09-3004.
- [42] M. Lokshin, T. Tanaka, and C. Prives. "Transcriptional regulation by p53 and p73". In: Cold Spring Harbor Symposia on Quantitative Biology 70 (2005), pp. 121–128. ISSN: 00917451. DOI: 10.1101/sqb.2005.70.046.
- [43] Kiyotsugu Yoshida and Yoshio Miki. "Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage". In: *Cancer Science* 95.11 (2004), pp. 866–871. ISSN: 13479032. DOI: 10.1111/j.1349-7006.2004.tb02195.x.
- [44] Matthew J. Cuneo and Tanja Mittag. "The ubiquitin ligase adaptor SPOP in cancer". In: FEBS Journal 286.20 (2019), pp. 3946–3958. ISSN: 17424658. DOI: 10.1111/febs.15056.
- [45] Makiko Iwafuchi-Doi and Kenneth S. Zaret. "Pioneer transcription factors in cell reprogramming". In: Genes and Development 28.24 (2014), pp. 2679–2692. ISSN: 15495477. DOI: 10.1101/gad.253443.114.
- [46] Yusuke Imamura, Shinichi Sakamoto, Takumi Endo, Takanobu Utsumi, and Miki Fuse. "FOXA1Promotes Tumor Progression in Prostate Cancer via the Insulin-Like Growth Factor Binding

Protein 3 Pathway". In: *PLoS ONE* 7.8 (2012), pp. 1–14. DOI: 10.1371/journal.pone. 0042456.

- [47] Michael Fraser, Veronica Y. Sabelnykova, Takafumi N. Yamaguchi, Lawrence E. Heisler, Julie Livingstone, Vincent Huang, et al. "Genomic hallmarks of localized, non-indolent prostate cancer". In: Nature 541.7637 (2017), pp. 359–364. ISSN: 0028-0836. DOI: 10.1038/nature20788.
 URL: http://www.nature.com/doifinder/10.1038/nature20788.
- [48] O. Šeda, L. Šedová, J. Vcelák, M. Vanková, F. Liška, and B. Bendlová. "ZBTB16 and metabolic syndrome: A network perspective". In: *Physiological Research* 66.3 (2017), S357–S365. ISSN: 18029973. DOI: 10.33549/physiolres.933730.
- [49] Gerhardt Attard, Chris Parker, Ros A. Eeles, Fritz Schröder, Scott A. Tomlins, Ian Tannock, et al. "Prostate cancer". In: *The Lancet* 387.10013 (2016), pp. 70–82. ISSN: 1474547X. DOI: 10.1016/S0140-6736(14)61947-4.
- [50] Jan-erik Damber and Gunnar Aus. "Prostate cancer". In: The Lancet 371 (2008), pp. 1710– 1721.
- [51] Kamla Kant Shukla, D Ph, Sanjeev Misra, M Ch, Puneet Pareek, D N B, et al. "Recent scenario of microRNA as diagnostic and prognostic biomarkers of prostate cancer". In: Urologic Oncology: Seminars and Original Investigations 35.3 (2017), pp. 92–101. ISSN: 1078-1439. DOI: 10.1016/j.urolonc.2016.10.019. URL: http://dx.doi.org/10.1016/j.urolonc.2016.10.019.
- [52] Claartje Gosselaar, Monique J. Roobol, and Fritz H. Schröder. "Prevalence and characteristics of screen-detected prostate carcinomas at low prostate-specific antigen levels: Aggressive or insignificant?" In: *BJU International* 95.2 (2005), pp. 231–237. ISSN: 14644096. DOI: 10.1111/ j.1464-410X.2005.05324.x.
- [53] J. R. Prensner, M. A. Rubin, J. T. Wei, and A. M. Chinnaiyan. "Beyond PSA: The Next Generation of Prostate Cancer Biomarkers". In: *Science Translational Medicine* 4.127 (2012),

127rv3-127rv3. ISSN: 1946-6234. DOI: 10.1126/scitranslmed.3003180. arXiv: NIHMS150003. URL: http://stm.sciencemag.org/cgi/doi/10.1126/scitranslmed.3003180.

- [54] Monique J. Roobol, Melissa Kerkhof, Fritz H. Schröder, Jack Cuzick, Peter Sasieni, Matti Hakama, et al. "Prostate Cancer Mortality Reduction by Prostate-Specific Antigen-Based Screening Adjusted for Nonattendance and Contamination in the European Randomised Study of Screening for Prostate Cancer (ERSPC)". In: *European Urology* 56.4 (2009), pp. 584–591. ISSN: 03022838. DOI: 10.1016/j.eururo.2009.07.018.
- [55] Fritz H. Schröder, Jonas Hugosson, Monique J. Roobol, Teuvo L.J. Tammela, Stefano Ciatto, Vera Nelen, et al. "Prostate-Cancer Mortality at 11 Years of Follow-up Fritz". In: 36.11 (2012), pp. 981–990.
- [56] Claartje Gosselaar, Monique J. Roobol, and Fritz H. Schröder. "Prevalence and characteristics of screen-detected prostate carcinomas at low prostate-specific antigen levels: Aggressive or insignificant?" In: *BJU International* 95.2 (2005), pp. 231–237. ISSN: 14644096. DOI: 10.1111/ j.1464-410X.2005.05324.x.
- [57] Paul F. Pinsky, Amanda Blacka, Barnett S. Kramer, Anthony Miller, Philip C. Prorok, and Christine Berg. "Assessing contamination and compliance in the prostate component of the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial". In: *Clinical Trials* 7.4 (2010), pp. 303–311. ISSN: 17407745. DOI: 10.1177/1740774510374091.
- [58] Hashim U. Ahmed, Ahmed El-Shater Bosaily, Louise C. Brown, Rhian Gabe, Richard Kaplan, Mahesh K. Parmar, et al. "Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study". In: *The Lancet* 389.10071 (2017), pp. 815–822. ISSN: 1474547X. DOI: 10.1016/S0140-6736(16)32401-1. URL: http://dx.doi.org/10.1016/S0140-6736(16)32401-1.
- [59] Gerrit Draisma, Ruth Etzioni, Alex Tsodikov, Angela Mariotto, Elisabeth Wever, Roman Gulati, et al. "Lead Time and Overdiagnosis in Prostate-Specific Antigen Screening : Importance

of Methods and Context". In: *Journal of National Cancer institute* 101.6 (2009), pp. 374–383. DOI: 10.1093/jnci/djp001.

- [60] Nicolas Mottet, Joaquim Bellmunt, Michel Bolla, Erik Briers, Marcus G. Cumberbatch, Maria De Santis, et al. "EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent". In: *European Urology* 71.4 (2017), pp. 618– 629. ISSN: 18737560. DOI: 10.1016/j.eururo.2016.08.003.
- [61] Jonathan I. Epstein, Michael J. Zelefsky, Daniel D. Sjoberg, Joel B. Nelson, Lars Egevad, Cristina Magi-Galluzzi, et al. "A Contemporary Prostate Cancer Grading System: A Validated Alternative to the Gleason Score". In: *European Urology* 69.3 (2016), pp. 428-435. DOI: 10. 1016/j.eururo.2015.06.046.A. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC5002992/.
- [62] Ni Chen and Qiao Zhou. "The evolving gleason grading system". In: *Chinese Journal of Cancer Research* 28.1 (2016), pp. 58–64. ISSN: 19930631. DOI: 10.3978/j.issn.1000-9604.2016.02.
 04.
- [63] Giorgio Gandaglia, Firas Abdollah, Jonas Schiffmann, Vincent Trudeau, Shahrokh F. Shariat, Simon P. Kim, et al. "Distribution of metastatic sites in patients with prostate cancer: A population-based analysis". In: *Prostate* 74.2 (2014), pp. 210–216. ISSN: 02704137. DOI: 10. 1002/pros.22742.
- [64] STEPHEN B. EDGE, DAVID R. BYRD, CAROLYN C. COMPTON, APRIL G. FRITZ,
 FREDERICK L. GREENE, and ANDY TROTTI, eds. AJCC CANCER STAGING MANUAL.
 7th ed. Springer, 2010. ISBN: 9780387884400.
- [65] Ege Can Serefoglu, Serkan Altinova, Nevzat Serdar Ugras, Egemen Akincioglu, Erem Asil, and M Derya Balbay. "How reliable is 12-core prostate biopsy procedure in the detection of prostate cancer?" In: *Canadian Urological Association journal* 7.5-6 (2013), E293-8. ISSN: 1911-6470.
 DOI: 10.5489/cuaj.11224. URL: http://www.ncbi.nlm.nih.gov/pubmed/22398204%7B%5C%
 %7D5Cnhttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3668408.

- [66] Stacy Loeb, Annelies Vellekoop, Hashim U. Ahmed, James Catto, Mark Emberton, Robert Nam, et al. "Systematic review of complications of prostate biopsy". In: *European Urology* 64.6 (2013), pp. 876–892. ISSN: 03022838. DOI: 10.1016/j.eururo.2013.05.049. URL: http://dx.doi.org/10.1016/j.eururo.2013.05.049.
- [67] Freddie C. Hamdy, Jenny L. Donovan, J. Athene Lane, Malcolm Mason, Chris Metcalfe, Peter Holding, et al. "10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer". In: New England Journal of Medicine 375.15 (2016), pp. 1415–1424. ISSN: 0028-4793. DOI: 10.1056/nejmoa1606220.
- [68] Martin G. Sanda, Rodney L. Dunn, Jeff Michalski, Howard M. Sandler, Laurel Northouse, Larry Hembroff, et al. "Quality of Life and Satisfaction with Outcome among Prostate-Cancer Survivors". In: The New England Journal of Medicine 358.12 (2008), pp. 1250–1261.
- [69] Sophie Knipper and Markus Graefen. "Treatment options for localized prostate cancer". In: Onkologe 25.3 (2019), pp. 279–288. ISSN: 14330415. DOI: 10.1007/s00761-019-0540-2.
- [70] Christopher L. Amling, Michael L. Blute, Erik J. Bergstrahh, Thomas M. Seay, Jeffrey Slezak, and Horst Zincke. "Long-term hazard of progression after radical prostatectomy for clinically localized prostate cancer: Continued risk of biochemical failure after 5 years". In: *Journal of Urology* 164.1 (2000), pp. 101–105. ISSN: 00225347. DOI: 10.1016/S0022-5347(05)67457-5.
- [71] Misop Han, Alan W. Partin, Marianna Zahurak, Steven Piantadosi, Jonathan I. Epstein, and Patrick C. Walsh. "Biochemical (prostate specific antigen) recurrence probability following radical prostatectomy for clinically localized prostate cancer". In: *Journal of Urology* 169.2 (2003), pp. 517–523. ISSN: 00225347. DOI: 10.1016/S0022-5347(05)63946-8.
- [72] Alberto Briganti, Robert Jeffrey Karnes, Giorgio Gandaglia, Martin Spahn, Paolo Gontero, Lorenzo Tosco, et al. "Natural history of surgically treated high-risk prostate cancer". In: Urologic Oncology: Seminars and Original Investigations 33.4 (2015), 163.e7-163.e13. ISSN: 18732496. DOI: 10.1016/j.urolonc.2014.11.018. URL: http://dx.doi.org/10.1016/j. urolonc.2014.11.018.

- [73] Do Kyung Kim, Kyo Chul Koo, Kwang Suk Lee, Yoon Soo Hah, Koon Ho Rha, Sung Joon Hong, et al. "Time to disease recurrence is a predictor of metastasis and mortality in patients with High-risk prostate cancer who achieved undetectable prostate-specific Antigen Following robot-assisted radical prostatectomy". In: Journal of Korean Medical Science 33.45 (2018), pp. 1–10. ISSN: 15986357. DOI: 10.3346/jkms.2018.33.e285.
- [74] Piyush K. Agarwal, Natalia Sadetsky, Badrinath R. Konety, Martin I. Resnick, and Peter R. Carroll. "Treatment failure after primary and salvage therapy for prostate cancer: Likelihood, patterns of care, and outcomes". In: *Cancer* 112.2 (2008), pp. 307–314. ISSN: 0008543X. DOI: 10.1002/cncr.23161.
- [75] Anthony L. Zietman, Kyounghwa Bae, Jerry D. Slater, William U. Shipley, Jason A. Efstathiou, John J. Coen, et al. "Randomized trial comparing conventional-dose with high-dose conformal radiation therapy in early-stage adenocarcinoma of the prostate: Long-term results from Proton Radiation Oncology Group/American College Of Radiology 95-09". In: Journal of Clinical Oncology 28.7 (2010), pp. 1106–1111. ISSN: 0732183X. DOI: 10.1200/JC0.2009.25.8475.
- [76] Charles R. Pound, Alan W. Partin, Mario A. Eisenberger, Daniel W. Chan, Jay D. Pearson, and Patrick C. Walsh. "Natural history of progression after PSA elevation following radical prostatectomy". In: Journal of the American Medical Association 281.17 (1999), pp. 1591– 1597. ISSN: 00987484. DOI: 10.1001/jama.281.17.1591.
- [77] Stephen J. Freedland, Elizabeth B Humphreys, Leslie a Mangold, Mario Eisenberger, Frederick J Dorey, Patrick C Walsh, et al. "Risk of Prostate Cancer – Specific Mortality". In: JAMA : the journal of the American Medical Association 294.4 (2005), pp. 433–439.
- [78] Thomas Van den Broeck, Roderick C.N. van den Bergh, Nicolas Arfi, Tobias Gross, Lisa Moris, Erik Briers, et al. "Prognostic Value of Biochemical Recurrence Following Treatment with Curative Intent for Prostate Cancer: A Systematic Review". In: *European Urology* 75.6 (2019), pp. 967–987. ISSN: 18737560. DOI: 10.1016/j.eururo.2018.10.011.

- [79] Angela C. Pine, Flavia F. Fioretti, Greg N. Brooke, and Charlotte L. Bevan. "Advances in genetics: widening our understanding of prostate cancer". In: *F1000Research* 5.0 (2016), p. 1512.
 ISSN: 2046-1402. DOI: 10.12688/f1000research.8019.1. URL: http://f1000research.com/articles/5-1512/v1.
- [80] William P Harris, Elahe A Mostaghel, Peter S Nelson, and Bruce Montgomery. "Androgen deprivation therapy: progress in understanding mechanisms of resistance and optimizing androgen depletion". In: Nature Clinical Practice Urology 6.2 (2009), pp. 76–85. ISSN: 15378276. DOI: 10.1038/ncpuro1296.Androgen. arXiv: NIHMS150003.
- [81] Beth S. Woods, Eleftherios Sideris, Matthew R. Sydes, Melissa R. Gannon, Mahesh K.B. Parmar, Mymoona Alzouebi, et al. "Addition of Docetaxel to First-line Long-term Hormone Therapy in Prostate Cancer (STAMPEDE): Modelling to Estimate Long-term Survival, Qualityadjusted Survival, and Cost-effectiveness". In: *European Urology Oncology* 1.6 (2018), pp. 449– 458. ISSN: 25889311. DOI: 10.1016/j.euo.2018.06.004. URL: https://doi.org/10.1016/j. euo.2018.06.004.
- [82] Claire L. Vale, Sarah Burdett, Larysa H.M. Rydzewska, Laurence Albiges, Noel W. Clarke, David Fisher, et al. "Addition of docetaxel or bisphosphonates to standard of care in men with localised or metastatic, hormone-sensitive prostate cancer: A systematic review and meta-analyses of aggregate data". In: *The Lancet Oncology* 17.2 (2016), pp. 243–256. ISSN: 14745488. DOI: 10.1016/S1470-2045(15)00489-1. URL: http://dx.doi.org/10.1016/S1470-2045(15)00489-1.
- [83] Eric A. Klein, Matthew R. Cooperberg, Cristina Magi-Galluzzi, Jeffry P. Simko, Sara M. Falzarano, Tara Maddala, et al. "A 17-gene assay to predict prostate cancer aggressiveness in the context of gleason grade heterogeneity, tumor multifocality, and biopsy undersampling". In: *European Urology* 66.3 (2014), pp. 550–560. ISSN: 18737560. DOI: 10.1016/j.eururo.2014. 05.004. URL: http://dx.doi.org/10.1016/j.eururo.2014.05.004.

- [84] Jack Cuzick, Gregory P. Swanson, Gabrielle Fisher, Arthur R. Brothman, Daniel M. Berney, Julia E. Reid, et al. "Prognostic value of an RNA expression signature derived from cell cycle proliferation genes in patients with prostate cancer: A retrospective study". In: *The Lancet Oncology* 12.3 (2011), pp. 245–255. ISSN: 14702045. DOI: 10.1016/S1470-2045(10)70295-3. URL: http://dx.doi.org/10.1016/S1470-2045(10)70295-3.
- [85] Nicholas Erho, Anamaria Crisan, Ismael A. Vergara, Anirban P. Mitra, Mercedeh Ghadessi, Christine Buerki, et al. "Discovery and Validation of a Prostate Cancer Genomic Classifier that Predicts Early Metastasis Following Radical Prostatectomy". In: *PLoS ONE* 8.6 (2013). ISSN: 19326203. DOI: 10.1371/journal.pone.0066855.
- [86] Jennifer Cullen, Inger L. Rosner, Timothy C. Brand, Nan Zhang, Athanasios C. Tsiatis, Joel Moncur, et al. "A biopsy-based 17-gene genomic prostate score predicts recurrence after radical prostatectomy and adverse surgical pathology in a racially diverse population of men with clinically low- and intermediate-risk prostate cancer". In: *European Urology* 68.1 (2015), pp. 123–131. ISSN: 18737560. DOI: 10.1016/j.eururo.2014.11.030. URL: http://dx.doi.org/10.1016/j.eururo.2014.11.030.
- [87] Timothy C. Brand, Nan Zhang, Michael R. Crager, Tara Maddala, Anne Dee, Isabell A. Sesterhenn, et al. "Patient-specific Meta-analysis of 2 Clinical Validation Studies to Predict Pathologic Outcomes in Prostate Cancer Using the 17-Gene Genomic Prostate Score". In: Urology 89 (2016), pp. 69–75. ISSN: 15279995. DOI: 10.1016/j.urology.2015.12.008. URL: http://dx.doi.org/10.1016/j.urology.2015.12.008.
- [88] Daniel E. Spratt, Jingbin Zhang, Maria Santiago-Jimenez, Robert T. Dess, John W. Davis, Robert B. Den, et al. "Development and validation of a novel integrated clinical-genomic risk group classification for localized prostate cancer". In: *Journal of Clinical Oncology* 36.6 (2018), pp. 581–590. ISSN: 15277755. DOI: 10.1200/JC0.2017.74.2940.
- [89] David P Bartel. "Metazoan MicroRNAs". In: Cell 173.1 (2018), pp. 20–51. ISSN: 0092-8674. DOI:
 10.1016/j.cell.2018.03.006. URL: http://dx.doi.org/10.1016/j.cell.2018.03.006.

- [90] Rhonda Feinbaum, Victor Ambros, and Rosalind Lee. "The C. elegans Heterochronic Gene lin-4 Encodes Small RNAs with Antisense Complementarity to lin-14". In: *Cell* 116.116 (2004), pp. 843–854. ISSN: 0092-8674.
- [91] mirbase: the microrna database. URL: http://www.mirbase.org/.
- [92] Luca F.R. Gebert and Ian J. MacRae. "Regulation of microRNA function in animals". In: *Nature Reviews Molecular Cell Biology* 20.1 (2019), pp. 21–37. ISSN: 14710080. DOI: 10.1038/ s41580-018-0045-7.
- [93] Minju Ha and V Narry Kim. "Regulation of microRNA biogenesis". In: Nature Reviews Molecular Cell Biology 15.8 (2014), pp. 509–524. ISSN: 1471-0072. DOI: 10.1038/nrm3838. URL: http://dx.doi.org/10.1038/nrm3838.
- [94] Hedda A Meijer, Ewan M Smith, and Martin Bushell. "Regulation of miRNA strand selection : follow the leader ?" In: *Biochemical Society Transcactions* 42.4 (2014), pp. 1135–1140. DOI: 10.1042/BST20140142.
- [95] Young-kook Kim, Boseon Kim, and V Narry Kim. "Re-evaluation of the roles of DROSHA, Exportin 5, and DICER in microRNA biogenesis". In: *PNAS* 113.13 (2016), E1881–£1889.
 DOI: 10.1073/pnas.1602532113.
- [96] Inha Heo, Minju Ha, Jaechul Lim, Mi Jeong Yoon, Jong Eun Park, S. Chul Kwon, et al. "Monouridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs". In: *Cell* 151.3 (2012), pp. 521–532. ISSN: 00928674. DOI: 10.1016/j.cell.2012.09.022. URL: http://dx.doi.org/10.1016/j.cell.2012.09.022.
- [97] James E. Thornton, Peng Du, Lili Jing, Ljiljana Sjekloca, Shuibin Lin, Elena Grossi, et al.
 "Selective microRNA uridylation by Zcchc6 (TUT7) and Zcchc11 (TUT4)". In: Nucleic Acids Research 42.18 (2014), pp. 11777–11791. ISSN: 13624962. DOI: 10.1093/nar/gku805.
- [98] Mingyi Xie, Mingfeng Li, Anna Vilborg, Nara Lee, Mei Di Shu, Valeria Yartseva, et al. "Mammalian 5'-capped microRNA precursors that generate a single microRNA". In: *Cell* 155.7 (2013), pp. 1568–1580. ISSN: 10974172. DOI: 10.1016/j.cell.2013.11.027. arXiv: NIHMS150003.

- [99] Peike Sheng, Christopher Fields, Kelsey Aadland, Tianqi Wei, Oralia Kolaczkowski, Tongjun Gu, et al. "Dicer cleaves 5'-extended microRNA precursors originating from RNA polymerase II transcription start sites". In: Nucleic Acids Research 46.11 (2018), pp. 5737–5752. ISSN: 0305-1048. DOI: 10.1093/nar/gky306. URL: https://academic.oup.com/nar/article/46/11/5737/4994208.
- [100] Elena Herrera-Carrillo and Ben Berkhout. "Dicer-independent processing of small RNA duplexes: Mechanistic insights and applications". In: *Nucleic Acids Research* 45.18 (2017), pp. 10369–10379. ISSN: 13624962. DOI: 10.1093/nar/gkx779.
- [101] Jr-shiuan Yang, Thomas Maurin, and Eric C Lai. "Functional parameters of Dicer-independent microRNA biogenesis". In: RNA 18.5 (2012), pp. 945–957. DOI: 10.1261/rna.032938.112.
- [102] J. Graham Ruby, Calvin H. Jan, and David P. Bartel. "Intronic microRNA precursors that bypass Drosha processing". In: *Nature* 448.7149 (2007), pp. 83–86. ISSN: 14764687. DOI: 10.
 1038/nature05983. eprint: NIHMS150003.
- [103] Thimmaiah P Chendrimada, Richard I Gregory, Easwari Kumaraswamy, Neil Cooch, Kazuko Nishikura, and Ramin Shiekhattar. "TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing". In: 436.7051 (2005), pp. 740–744. DOI: 10.1038/nature03868. TRBP.
- [104] Mohamed Fareh, Kyu Hyeon Yeom, Anna C. Haagsma, Sweeny Chauhan, Inha Heo, and Chirlmin Joo. "TRBP ensures efficient Dicer processing of precursor microRNA in RNAcrowded environments". In: *Nature Communications* 7 (2016), pp. 1–11. ISSN: 20411723. DOI: 10.1038/ncomms13694. URL: http://dx.doi.org/10.1038/ncomms13694.
- [105] Julius Brennecke, Alexander Stark, Robert B. Russell, and Stephen M. Cohen. "Principles of microRNA-target recognition". In: *PLoS Biology* 3.3 (2005), pp. 0404–0418. ISSN: 15449173.
 DOI: 10.1371/journal.pbio.0030085.

- [106] David P. Bartel. "MicroRNAs: Target Recognition and Regulatory Functions". In: Cell 136.2 (2009), pp. 215–233. ISSN: 00928674. DOI: 10.1016/j.cell.2009.01.002. arXiv: 0208024 [gr-qc].
- [107] Ashley J. Pratt and Ian J. MacRae. "The RNA-induced silencing complex: A versatile genesilencing machine". In: *Journal of Biological Chemistry* 284.27 (2009), pp. 17897–17901. ISSN: 00219258. DOI: 10.1074/jbc.R900012200.
- [108] Julia Winter, Stephanie Jung, Sarina Keller, Richard I Gregory, and Sven Diederichs. "Many roads to maturity : microRNA biogenesis pathways and their regulation". In: *Nature Cell Biology* 11.3 (2009), pp. 228–234.
- [109] Jacek Krol, Inga Loedige, and Witold Filipowicz. "The widespread regulation of microRNA biogenesis, function and decay". In: *Nature Publishing Group* 11.9 (2010), pp. 597–610. ISSN: 1471-0056. DOI: 10.1038/nrg2843. URL: http://dx.doi.org/10.1038/nrg2843.
- [110] Jayanth Kumar Palanichamy and Dinesh S. Rao. "miRNA dysregulation in cancer: Towards a mechanistic understanding". In: *Frontiers in Genetics* 5.MAR (2014), pp. 1–10. ISSN: 16648021.
 DOI: 10.3389/fgene.2014.00054.
- [111] Corine T Neilsen, Gregory J Goodall, and Cameron P Bracken. "IsomiRs the overlooked repertoire in the dynamic microRNAome". In: *Trends in Genetics* 28.11 (2012), pp. 544–549.
 ISSN: 0168-9525. DOI: 10.1016/j.tig.2012.07.005. URL: http://dx.doi.org/10.1016/j.tig.2012.07.005.
- [112] Daniel Amsel, Andreas Vilcinskas, and André Billion. "Evaluation of high-throughput isomiR identification tools: illuminating the early isomiRome of Tribolium castaneum". In: BMC Bioinformatics 18.1 (2017), p. 359. ISSN: 1471-2105. DOI: 10.1186/s12859-017-1772-z. URL: http: //bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1772-z.
- [113] Yumeng Wang, Xiaoyan Xu, Shuangxing Yu, Kang Jin Jeong, Zhicheng Zhou, Leng Han, et al. "Systematic characterization of A-to-I RNA editing hotspots in microRNAs across human cancers". In: Genome Research 27 (2017), pp. 1112–1125. DOI: 10.1101/gr.219741.116.10.

- [114] Yumeng Wang and Han Liang. "When MicroRNAs Meet RNA Editing in Cancer: A Nucleotide Change Can Make a Difference". In: *BioEssays* 40.2 (2018), pp. 1–8. ISSN: 15211878. DOI: 10.1002/bies.201700188.
- Stacia K. Wyman, Emily C. Knouf, Rachael K. Parkin, Brian R. Fritz, Daniel W. Lin, Lucas M. Dennis, et al. "Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity". In: Genome Research 21.9 (2011), pp. 1450–1461. ISSN: 10889051. DOI: 10.1101/gr.118059.110.
- [116] Li Guo and Feng Chen. "A challenge for miRNA : multiple isomiRs in miRNAomics". In: Gene 544.1 (2014), pp. 1–7. ISSN: 0378-1119. DOI: 10.1016/j.gene.2014.04.039. URL: http://dx.doi.org/10.1016/j.gene.2014.04.039.
- [117] Phillipe Loher, Eric R. Londin, and Isidore Rigoutsos. "IsomiR expression profiles in human lymphoblastoid cell lines exhibit population and gender dependencies". In: Oncotarget 5.18 (2014), pp. 8790-8802. ISSN: 1949-2553. DOI: 10.18632/oncotarget.2405. URL: http://www.ncbi.nlm.nih.gov/pubmed/25229428.
- [118] Geok Chin Tan, Elcie Chan, Attila Molnar, Rupa Sarkar, Diana Alexieva, Mad Isa, et al. "5" isomiR variation is of functional and evolutionary importance". In: *Nucleic Acids Research* 42.14 (2014), pp. 9424–9435. DOI: 10.1093/nar/gku656.
- [119] Mark Manzano, Eleonora Forte, Archana N. Raja, Matthew J. Schipma, and Eva Gottwein.
 "Divergent target recognition by coexpressed 5'-isomiRs of miR-142-3p and selective viral mimicry". In: Rna 21.9 (2015), pp. 1606–1620. ISSN: 14699001. DOI: 10.1261/rna.048876.114.
- [120] Lorena Pantano, Xavier Estivill, and Eulàlia Martí. "SeqBuster, a bioinformatic tool for the processing and analysis of small RNAs datasets, reveals ubiquitous miRNA modifications in human embryonic cells". In: Nucleic Acids Research 38.5 (2010). ISSN: 03051048. DOI: 10.1093/ nar/gkp1127.
- [121] Lorena Pantano. miRNA annotation. URL: https://seqcluster.readthedocs.io/mirna_ annotation.html.

- [122] Magdalena Drozdz. "The impact of PTEN loss on the isomiR landscape in prostate cancer".MA thesis. Imperial College London, 2019.
- [123] George Adrian Calin, Cinzia Sevignani, Calin Dan Dumitru, Terry Hyslop, Evan Noch, Sai Yendamuri, et al. "Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers". In: Proceedings of the National Academy of Sciences 101.9 (2004), pp. 2999–3004.
- [124] George Adrian Calin, Calin Dan Dumitru, Masayoshi Shimizu, Roberta Bichi, Simona Zupo, Evan Noch, et al. "Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia". In: *Proceedings of the National Academy of Sciences of the United States of America* 99.24 (2002), pp. 15524–15529. ISSN: 00278424. DOI: 10.1073/pnas.242606799.
- [125] Amelia Cimmino, George Adrian Calin, Muller Fabbri, Marilena V. Iorio, Manuela Ferracin, Masayoshi Shimizu, et al. "miR-15 and miR-16 induce apoptosis by targeting BCL2". In: Proceedings of the National Academy of Sciences 102.39 (2005), pp. 1344–13949.
- [126] Stefano Volinia, George A Calin, Chang-gong Liu, Stefan Ambs, Amelia Cimmino, Fabio Petrocca, et al. "A microRNA expression signature of human solid tumors defines cancer gene targets". In: PNAS 103.7 (2005), pp. 2257–2261.
- [127] Jun Lu, Gad Getz, Eric A Miska, Ezequiel Alvarez-saavedra, Justin Lamb, David Peck, et al.
 "MicroRNA expression profiles classify human cancers". In: *Nature* 435.June (2005), pp. 834–838. DOI: 10.1038/nature03702.
- [128] Andrew Dhawan, Jacob G. Scott, Adrian L. Harris, and Francesca M. Buffa. "Pan-cancer characterisation of microRNA across cancer hallmarks reveals microRNA-mediated downregulation of tumour suppressors". In: *Nature Communications* 9.1 (2018), pp. 1–13. ISSN: 20411723. DOI: 10.1038/s41467-018-07657-1. URL: http://dx.doi.org/10.1038/s41467-018-07657-1.
- [129] Gang Zhao, Bo Wang, Yang Liu, Jun Gang Zhang, Shi Chang Deng, Qi Qin, et al. "MiRNA-141, downregulated in pancreatic cancer, inhibits cell proliferation and invasion by directly

targeting MAP4K4". In: *Molecular Cancer Therapeutics* 12.11 (2013), pp. 2569–2580. ISSN: 15388514. DOI: 10.1158/1535-7163.MCT-13-0296.

- [130] Heidi Schwarzenbach, Naohiro Nishida, George A Calin, and Klaus Pantel. "Clinical relevance of circulating cell-free microRNAs in cancer". In: *Nature Publishing Group* 11.3 (2014), pp. 145–156. ISSN: 1759-4774. DOI: 10.1038/nrclinonc.2014.5. URL: http://dx.doi.org/10.1038/nrclinonc.2014.5.
- [131] Eleni Van Schooneveld, Hans Wildiers, Ignace Vergote, Peter B Vermeulen, Luc Y Dirix, and Steven J Van Laere. "Dysregulation of microRNAs in breast cancer and their potential role as prognostic and predictive biomarkers in patient management". In: Breast Cancer Research 17.21 (2015), pp. 1–15. DOI: 10.1186/s13058-015-0526-y.
- [132] Yuta Ibuki, Yukie Nishiyama, Yasuhiro Tsutani, Manabu Emi, Yoichi Hamai, Morihito Okada, et al. "Circulating microRNA/isomiRs as novel biomarkers of esophageal squamous cell carcinoma". In: *PLoS ONE* 15.4 (2020), pp. 1–18. ISSN: 19326203. DOI: 10.1371/journal.pone.
 0231116. URL: http://dx.doi.org/10.1371/journal.pone.0231116.
- [133] Aristeidis G Telonis, Rogan Magee, Phillipe Loher, Inna Chervoneva, Eric Londin, and Isidore Rigoutsos. "Knowledge about the presence or absence of miRNA isoforms (isomiRs) can successfully discriminate amongst 32 TCGA cancer types". In: Nucleic Acids Research 45.6 (2017), pp. 2973–2985. DOI: 10.1093/nar/gkx082.
- [134] Hengli Ni, Xiaoxiao Dai, Xueqin Leng, Min Deng, Yan Qin, Qinghua Ji, et al. "Higher variety and quantity of microRNA-139-5p isoforms confer suppressive role in hepatocellular carcinoma". In: Journal of Cellular Biochemistry 119.8 (2018), pp. 6806–6813. ISSN: 10974644. DOI: 10.1002/jcb.26874.
- [135] L. Shaham, V. Binder, N. Gefen, A. Borkhardt, and S. Izraeli. "MiR-125 in normal and malignant hematopoiesis". In: *Leukemia* 26.9 (2012), pp. 2011–2018. ISSN: 14765551. DOI: 10.1038/ leu.2012.90.

- [136] Yu Meng Sun, Kang Yu Lin, and Yue Qin Chen. "Diverse functions of miR-125 family in different cell contexts". In: *Journal of Hematology and Oncology* 6.1 (2013), pp. 1–8. ISSN: 17568722. DOI: 10.1186/1756-8722-6-6.
- Yongpeng Xie, Xin Ma, Luyao Chen, Hongzhao Li, Liangyou Gu, Yu Gao, et al. "MicroRNAs with prognostic significance in bladder cancer: A systematic review and meta-analysis". In: Scientific Reports 7.1 (2017), pp. 1–12. ISSN: 20452322. DOI: 10.1038/s41598-017-05801-3.
 URL: http://dx.doi.org/10.1038/s41598-017-05801-3.
- [138] Yngve Nordby, Elin Richardsen, Nora Ness, Tom Donnem, Hiten R.H. Patel, Lill Tove Busund, et al. "High miR-205 expression in normal epithelium is associated with biochemical failure An argument for epithelial crosstalk in prostate cancer?" In: Scientific Reports 7.1 (2017), pp. 1–10. ISSN: 20452322. DOI: 10.1038/s41598-017-16556-2. URL: http://dx.doi.org/10.1038/s41598-017-16556-2.
- [139] Jia Xing Zhang, Wu Song, Zhen Hua Chen, Jin Huan Wei, Yi Ji Liao, Jian Lei, et al. "Prognostic and predictive value of a microRNA signature in stage II colon cancer: A microRNA expression analysis". In: *The Lancet Oncology* 14.13 (2013), pp. 1295–1306. ISSN: 14702045. DOI: 10.1016/ S1470-2045(13)70491-1. URL: http://dx.doi.org/10.1016/S1470-2045(13)70491-1.
- [140] Jan Kral, Vlasta Korenkova, Vendula Novosadova, Lucie Langerova, Michaela Schneiderova, Vaclav Liska, et al. "Expression profile of miR-17/92 cluster is predictive of treatment response in rectal cancer". In: *Carcinogenesis* 39.11 (2018), pp. 1359–1367. ISSN: 14602180. DOI: 10. 1093/carcin/bgy100.
- [141] Omar Salem, Nese Erdem, Janine Jung, Ewald Münstermann, Angelika Wörner, Heike Wilhelm, et al. "The highly expressed 5 ' isomiR of hsa-miR- 140-3p contributes to the tumor-suppressive effects of miR-140 by reducing breast cancer proliferation and migration". In: BMC Genomics 17.566 (2016), pp. 1–16. ISSN: 1471-2164. DOI: 10.1186/s12864-016-2869-x. URL: http://dx.doi.org/10.1186/s12864-016-2869-x.

- [142] Danijela Koppers-lalic, Michael Hackenberg, and Renee De Menezes. "Non invasive prostate cancer detection by measuring miRNA variants (isomiRs) in urine extracellular vesicles". In: Oncotarget 7.16 (2016), pp. 22566–22578.
- [143] Aristeidis G Telonis, Phillipe Loher, Yi Jing, Eric Londin, and Isidore Rigoutsos. "Beyond the one-locus-one-miRNA paradigm : microRNA isoforms enable deeper insights into breast cancer heterogeneity". In: Nucleic Acids Research 43.19 (2015), pp. 9158–9175. DOI: 10.1093/nar/ gkv922.
- [144] Chaowang Lan, Hui Peng, Eileen M. McGowan, Gyorgy Hutvagner, and Jinyan Li. "An isomiR expression panel based novel breast cancer classification approach using improved mutual information". In: *BMC Medical Genomics* 11.Suppl 6 (2018). ISSN: 17558794. DOI: 10.1186/s12920-018-0434-y. URL: http://dx.doi.org/10.1186/s12920-018-0434-y.
- [145] Eric Londin, Rogan Magee, Carol L. Shields, Sara E. Lally, Takami Sato, and Isidore Rigoutsos.
 "IsomiRs and tRNA-derived fragments are associated with metastasis and patient survival in uveal melanoma". In: *Pigment Cell and Melanoma Research* 33.1 (2020), pp. 52–62. ISSN: 1755148X. DOI: 10.1111/pcmr.12810.
- [146] Monika Jung, Annika Schaefer, Isabel Steiner, Carsten Kempkensteffen, Carsten Stephan, Andreas Erbersdobler, et al. "Robust MicroRNA stability in degraded RNA preparations from human tissue and cell samples". In: *Clinical Chemistry* 56.6 (2010), pp. 998–1006. ISSN: 00099147.
 DOI: 10.1373/clinchem.2009.141580.
- [147] Jenna Khan, Joshua A. Lieberman, and Christina M. Lockwood. "Variability in, variability out: Best practice recommendations to standardize pre-analytical variables in the detection of circulating and tissue microRNAs". In: *Clinical Chemistry and Laboratory Medicine* 55.5 (2017), pp. 608–621. ISSN: 14374331. DOI: 10.1515/cclm-2016-0471.
- [148] Maria Angelica Cortez, Carlos Bueso-ramos, Jana Ferdin, Gabriel Lopez-berestein, Anil K Sood, and George A Calin. "MicroRNAs in body fluids—the mix of hormones and biomark-

ers". In: Nature Publishing Group 8.8 (2011), pp. 467-477. ISSN: 1759-4774. DOI: 10.1038/ nrclinonc.2011.76. URL: http://dx.doi.org/10.1038/nrclinonc.2011.76.

- [149] Patrick S Mitchell, Rachael K Parkin, Evan M Kroh, Brian R Fritz, Stacia K Wyman, Era L Pogosova-Agadjanyan, et al. "Circulating microRNAs as stable blood-based markers for cancer detection." In: *Proc. Natl. Acad. Sci. U.S.A.* 105.30 (2008), pp. 10513–10518. ISSN: 1091-6490. DOI: 10.1073/pnas.0804549105. arXiv: pnas.0804549105 [10.1073]. URL: http://www.ncbi.nlm.nih.gov/pubmed/18663219.
- [150] Jan C Brase, Alexander Haese, Thomas Steuber, Marc Johannes, Thorsten Schlomm, and Maria Fa. "Circulating miRNAs are correlated with tumor progression in prostate cancer". In: International Journal of Cancer 128.3 (2011), pp. 608–616. DOI: 10.1002/ijc.25376.
- Young-Kook Kim. "Extracellular microRNAs as Biomarkers in Human Disease". In: Chonnam Medical Journal 51.2 (2015), p. 51. ISSN: 2233-7385. DOI: 10.4068/cmj.2015.51.2.51.
- [152] Kati P Porkka, Minja J Pfeiffer, Kati K Waltering, Robert L Vessella, Teuvo L J Tammela, and Tapio Visakorpi. "MicroRNA Expression Profiling in Prostate Cancer". In: *Cancer Research* 67.13 (2007), pp. 6130–6136. DOI: 10.1158/0008-5472.CAN-07-0533.
- [153] Jaroslaw Szczyrba, Elke Löprich, Sven Wach, Volker Jung, and Gerhard Unteregger. "The MicroRNA Profile of Prostate Carcinoma Obtained by Deep Sequencing". In: *Molecular Cancer Research* 8.4 (2010), pp. 529–539. DOI: 10.1158/1541-7786.MCR-09-0443.
- [154] Annika Schaefer, Monika Jung, Hans Joachim Mollenkopf, Ina Wagner, Carsten Stephan, Florian Jentzmik, et al. "Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma". In: *International Journal of Cancer* 126.5 (2010), pp. 1166–1176. ISSN: 00207136.
 DOI: 10.1002/ijc.24827.
- [155] Akira Watahiki, Yuwei Wang, James Morris, Kristopher Dennis, Helena M. O'Dwyer, Martin Gleave, et al. "MicroRNAs associated with metastatic prostate cancer". In: *PLoS ONE* 6.9 (2011). ISSN: 19326203. DOI: 10.1371/journal.pone.0024950.

- [156] Rogan G. Magee, Aristeidis G. Telonis, Phillipe Loher, Eric Londin, and Isidore Rigoutsos.
 "Profiles of miRNA Isoforms and tRNA Fragments in Prostate Cancer". In: Scientific Reports
 8.1 (2018), p. 5314. ISSN: 2045-2322. DOI: 10.1038/s41598-018-22488-2. URL: http://www.nature.com/articles/s41598-018-22488-2.
- [157] Akifumi Shibakawa. "Investigating circulating miRNAs as predictors of therapeutic response in metastatic castration-resistant prostate cancer". PhD thesis. Imperial College London, 2019.
- [158] Hai Liang Zhang, Li Feng Yang, Yao Zhu, Xu Dong Yao, Shi Lin Zhang, Bo Dai, et al. "Serum miRNA-21: Elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy". In: *Prostate* 71.3 (2011), pp. 326–331. ISSN: 02704137. DOI: 10.1002/pros.21246.
- [159] H-M Lin, L Castillo, K L Mahon, K Chiam, B Y Lee, Q Nguyen, et al. "Circulating microRNAs are associated with docetaxel chemotherapy outcome in castration-resistant prostate cancer".
 In: British Journal of Cancer 110.10 (2014), pp. 2462-2471. ISSN: 0007-0920. DOI: 10.1038/bjc.2014.181. URL: http://www.nature.com/doifinder/10.1038/bjc.2014.181.
- [160] Hui Ming Lin, Kate L. Mahon, Calan Spielman, Howard Gurney, Girish Mallesara, Martin R. Stockler, et al. "Phase 2 study of circulating microRNA biomarkers in castration-resistant prostate cancer". In: British Journal of Cancer 116.8 (2017), pp. 1002–1011. ISSN: 15321827.
 DOI: 10.1038/bjc.2017.50.
- [161] Susanne U. Mertens-Talcott, Sudhakar Chintharlapalli, Xiangrong Li, and Stephen Safe. "The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells". In: *Cancer Research* 67.22 (2007), pp. 11001–11011. ISSN: 00085472. DOI: 10.1158/0008-5472.CAN-07-2416.
- [162] Fang Wu, Jun Li, Ni Guo, Xiao Hui Wang, and Yu Qian Liao. "MiRNA-27a promotes the proliferation and invasion of human gastric cancer MGC803 cells by targeting SFRP1 via Wnt/βcatenin signaling pathway". In: American Journal of Cancer Research 7.3 (2017), pp. 405–416. ISSN: 21566976.

- [163] Weibo Pan, Haibao Wang, Ruan Jianwei, and Zhaoming Ye. "MicroRNA-27a promotes proliferation, migration and invasion by targeting MAP2K4 in human osteosarcoma cells". In: *Cellular Physiology and Biochemistry* 33.2 (2014), pp. 402–412. ISSN: 14219778. DOI: 10.1159/ 000356679.
- [164] Baozhen Sun, Jing Li, Dan Shao, Yue Pan, Yujing Chen, Suo Li, et al. "Adipose tissue-secreted miR-27a promotes liver cancer by targeting FOXO1 in obese individuals". In: OncoTargets and Therapy 8 (2015), pp. 735–744. ISSN: 11786930. DOI: 10.2147/OTT.S80945.
- [165] Li Ya Zhang, Yuan Chen, Jue Jia, Xi Zhu, Yan He, and Li Ming Wu. "MiR-27a promotes EMT in ovarian cancer through active Wnt/o œ •-catenin signalling by targeting FOXO1". In: *Cancer Biomarkers* 24.1 (2019), pp. 31–42. ISSN: 18758592. DOI: 10.3233/CBM-181229.
- [166] Zhimin Li, Sha Hu, Jing Wang, Jing Cai, Lan Xiao, Lili Yu, et al. "MiR-27a modulates MDR1/P-glycoprotein expression by targeting HIPK2 in human ovarian cancer cells". In: *Gynecologic Oncology* 119.1 (2010), pp. 125–130. ISSN: 00908258. DOI: 10.1016/j.ygyno.2010.
 06.004. URL: http://dx.doi.org/10.1016/j.ygyno.2010.06.004.
- [167] Xuechao Wan, Wenhua Huang, Shu Yang, Yalong Zhang, Pu Zhang, Zhe Kong, et al. "Androgeninduced miR-27A acted as a tumor suppressor by targeting MAP2K4 and mediated prostate cancer progression". In: International Journal of Biochemistry and Cell Biology 79 (2016), pp. 249-260. ISSN: 18785875. DOI: 10.1016/j.biocel.2016.08.043. URL: http://dx.doi. org/10.1016/j.biocel.2016.08.043.
- [168] Robert K. Nam, Christopher J.D. Wallis, Yutaka Amemiya, Tania Benatar, and Arun Seth.
 "Identification of a Novel MicroRNA Panel Associated with Metastasis Following Radical Prostatectomy for Prostate Cancer". In: Anticancer Research 38.9 (2018), pp. 5027–5034. ISSN: 0250-7005. DOI: 10.21873/anticanres.12821.
- [169] Weiyin Gao, Zhengdong Hong, Hongwei Huang, Anyi Zhu, Shuangquan Lin, Cheng Cheng, et al. "miR-27a in serum acts as biomarker for prostate cancer detection and promotes cell

proliferation by targeting Sprouty2". In: Oncology Letters 16.4 (2018), pp. 5291–5298. ISSN: 17921082. DOI: 10.3892/ol.2018.9274.

- [170] Ji Lyu, Lin Zhao, Fubo Wang, Jin Ji, Zhi Cao, Huan Xu, et al. "Discovery and validation of serum MicroRNAs as early diagnostic biomarkers for prostate cancer in Chinese population".
 In: BioMed Research International 2019 (2019). ISSN: 23146141. DOI: 10.1155/2019/9306803.
- [171] Claire E. Fletcher, D. Alwyn Dart, Ailsa Sita-lumsden, Helen Cheng, Paul S. Rennie, and Charlotte L. Bevan. "Androgen-regulated processing of the oncomir MiR-27a, which targets Prohibitin in prostate cancer". In: *Human Molecular Genetics* 21.14 (2012), pp. 3112–3127.
 ISSN: 09646906. DOI: 10.1093/hmg/dds139.
- [172] Wenjuan Mo, Jiyuan Zhang, Xia Li, Delong Meng, Yun Gao, Shu Yang, et al. "Identification of Novel AR-Targeted MicroRNAs Mediating Androgen Signalling through Critical Pathways to Regulate Cell Viability in Prostate Cancer". In: *PLoS ONE* 8.2 (2013). ISSN: 19326203. DOI: 10.1371/journal.pone.0056592.
- [173] Sven Wach, Elke Nolte, Jaroslaw Szczyrba, Robert Stohr, Arndt Hartmann, Torben Ørntoft, et al. "MicroRNA profiles of prostate carcinoma detected by multiplatform microRNA screening".
 In: International Journal of Cancer 130 (2012), pp. 611–621. DOI: 10.1002/ijc.26064.
- [174] Christine Han Nguyen Ngoc, Wanling Xie, Ming Yang, Chen-Lin Hsieh, Sarah Drouin, Gwo-Shu Mary Lee, et al. "Expression Differences of Circulating MicroRNAs in Metastastic Castration Resistant Prostate Cancer and Low-risk, Localized Prostate Cancer". In: *Prostate* 73.4 (2013), pp. 346–354. DOI: 10.1002/pros.22572.Expression.
- [175] Yuzhuo Watahiki, Robyn J. Macfarlane, Martin E. Gleave, Francesco Crea, Yuzhuo Wang, Cheryl D. Helgason, et al. "Plasma miRNAs as biomarkers to identify patients with castrationresistant metastatic prostate cancer". In: *International Journal of Molecular Sciences* 14.4 (2013), pp. 7757–7770. ISSN: 14220067. DOI: 10.3390/ijms14047757.

- [176] L. A. Selth, S. L. Townley, A. G. Bert, P. D. Stricker, P. D. Sutherland, L. G. Horvath, et al.
 "Circulating microRNAs predict biochemical recurrence in prostate cancer patients". In: *British Journal of Cancer* 109.3 (2013), pp. 641–650. ISSN: 00070920. DOI: 10.1038/bjc.2013.369.
- [177] Kristina Stuopelyte, Kristina Daniunaite, Arnas Bakavicius, Juozas R. Lazutka, Feliksas Jankevicius, and Sonata Jarmalaite. "The utility of urine-circulating miRNAs for detection of prostate cancer". In: *British Journal of Cancer* 115.6 (2016), pp. 707–715. ISSN: 15321827. DOI: 10.1038/bjc.2016.233. URL: http://dx.doi.org/10.1038/bjc.2016.233.
- [178] Ilknur Suer, Esra Guzel, Omer F. Karatas, Chad J. Creighton, Michael Ittmann, and Mustafa Ozen. "MicroRNAs as prognostic markers in prostate cancer". In: *The Prostate* October (2018), pp. 1–7. ISSN: 02704137. DOI: 10.1002/pros.23731. URL: http://doi.wiley.com/10.1002/pros.23731.
- [179] Elnaz Pashaei, Elham Pashaei, Maryam Ahmady, Mustafa Ozen, and Nizamettin Aydin. "Metaanalysis of miRNA expression profiles for prostate cancer recurrence following radical prostatectomy". In: *PLoS ONE* 12.6 (2017), pp. 1–23. ISSN: 19326203. DOI: 10.1371/journal.pone. 0179543.
- [180] Alessandro Liberati, Douglas G. Altman, Jennifer Tetzlaff, Cynthia Mulrow, Peter C. Gøtzsche, John P.A. Ioannidis, et al. "The PRISMA statement for reporting systematic reviews and metaanalyses of studies that evaluate healthcare interventions: explanation and elaboration." In: BMJ (Clinical research ed.) 339 (2009). ISSN: 14685833. DOI: 10.1136/bmj.b2700.
- [181] Wolfgang Viechtbauer. "Conducting meta-analyses in R with the metafor package". In: Journal of Statistical Software 36.3 (2010), pp. 1–48. URL: https://www.jstatsoft.org/v36/i03/.
- [182] Hikmet Budak, Reyyan Bulut, Melda Kantar, and Burcu Alptekin. "MicroRNA nomenclature and the need for a revised naming prescription". In: *Briefings in Functional Genomics* 15.1 (2016), pp. 65–71. ISSN: 20412657. DOI: 10.1093/bfgp/elv026.
- [183] GDC Data Transfer Tool. URL: https://gdc.cancer.gov/access-data/gdc-datatransfer-tool.

- [184] Antonio Colaprico, Tiago C. Silva, Catharina Olsen, Luciano Garofano, Claudia Cava, Davide Garolini, et al. "TCGAbiolinks: An R/Bioconductor package for integrative analysis of TCGA data". In: Nucleic Acids Research 44.8 (2016), e71. ISSN: 13624962. DOI: 10.1093/nar/gkv1507.
- [185] Davis J McCarthy, Yunshun Chen, and Gordon K Smyth. "Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation". In: *Nucleic Acids Research* 40.10 (2012), pp. 4288–4297. DOI: 10.1093/nar/gks042.
- [186] Qi Long, Brent A Johnson, Adeboye O Osunkoya, Yu-heng Lai, Wei Zhou, Mark Abramovitz, et al. "Protein-Coding and MicroRNA Biomarkers of Recurrence of Prostate Cancer Following Radical Prostatectomy". In: *The American journal of pathology* 179.1 (2011), pp. 46–54. ISSN: 0002-9440. DOI: 10.1016/j.ajpath.2011.03.008. URL: http://dx.doi.org/10.1016/j.ajpath.2011.03.008.
- [187] Taosheng Xu, Ning Su, Lin Liu, Junpeng Zhang, Hongqiang Wang, Jie Gui, et al. "miRBaseConverter: An R/Bioconductor Package for Converting and Retrieving miRNA Name, Accession, Sequence and Family Information in Different Versions of miRBase". In: *BioRxiv* 407148 (2018). URL: https://doi.org/10.1101/407148.
- [188] Terry M. Therneau and Patricia M. Grambsch. Modeling Survival Data: Extending the Cox Model. New York: Springer, 2000. ISBN: 0-387-98784-3.
- M. Chen, Z. Y. Zhou, J. G. Chen, N. Tong, S. Q. Chen, Y. Yang, et al. "Effect of miR-146a polymorphism on biochemical recurrence risk after radical prostatectomy in southern Chinese population". In: *Genetics and Molecular Research* 13.4 (2014), pp. 10615–10621. ISSN: 16765680.
 DOI: 10.4238/2014.December.18.3.
- [190] Minhao Zhang, Yali Wang, Can Wang, Zonghao You, Shuqiu Chen, Qingfang Kong, et al.
 "Association of Hsa-miR-23a rs3745453 variation with prostate cancer risk among Chinese Han population: A case-control study". In: *Medicine (United States)* 98.52 (2019). ISSN: 15365964.
 DOI: 10.1097/MD.00000000018523.

- [191] Bo Ying Bao, Jiunn Bey Pao, Chun Nung Huang, Yeong Shiau Pu, Ta Yuan Chang, Yu Hsuan Lan, et al. "Polymorphisms inside MicroRNAs and MicroRNA target sites predict clinical out-comes in prostate cancer patients receiving androgen-deprivation therapy". In: *Clinical Cancer Research* 17.4 (2011), pp. 928–936. ISSN: 10780432. DOI: 10.1158/1078-0432.CCR-10-2648.
- [192] Shu Pin Huang, Eric Levesque, Chantal Guillemette, Chia Cheng Yu, Chao Yuan Huang, Victor C. Lin, et al. "Genetic variants in microRNAs and microRNA target sites predict biochemical recurrence after radical prostatectomy in localized prostate cancer". In: *International Journal* of Cancer 135.11 (2014), pp. 2661–2667. ISSN: 10970215. DOI: 10.1002/ijc.28904.
- [193] T. Hulf, T. Sibbritt, E. D. Wiklund, K. Patterson, J. Z. Song, C. Stirzaker, et al. "Epigeneticinduced repression of microRNA-205 is associated with MED1 activation and a poorer prognosis in localized prostate cancer". In: Oncogene 32.23 (2013), pp. 2891–2899. ISSN: 09509232. DOI: 10.1038/onc.2012.300.
- [194] Jorge Torres-Ferreira, João Ramalho-Carvalho, Antonio Gomez, Francisco Duarte Menezes, Rui Freitas, Jorge Oliveira, et al. "MiR-193b promoter methylation accurately detects prostate cancer in urine sediments and miR-34b/c or miR-129-2 promoter methylation define subsets of clinically aggressive tumors". In: *Molecular Cancer* 16.1 (2017), pp. 1–12. ISSN: 14764598. DOI: 10.1186/s12943-017-0604-0.
- [195] Maria Schubert, Martin Spahn, Susanne Kneitz, Claus Jürgen Scholz, Steven Joniau, Philipp Stroebel, et al. "Distinct microRNA Expression Profile in Prostate Cancer Patients with Early Clinical Failure and the Impact of let-7 as Prognostic Marker in High-Risk Prostate Cancer". In: *PLoS ONE* 8.6 (2013). ISSN: 19326203. DOI: 10.1371/journal.pone.0065064.
- [196] M. Avgeris, K. Stravodimos, E. G. Fragoulis, and A. Scorilas. "The loss of the tumour-suppressor miR-145 results in the shorter disease-free survival of prostate cancer patients". In: British Journal of Cancer 108.12 (2013), pp. 2573-2581. ISSN: 00070920. DOI: 10.1038/bjc.2013.250.

- [197] Xueqin Chen, Jing Gong, Hao Zeng, Ni Chen, Rui Huang, Ying Huang, et al. "MicroRNA145 targets BNIP3 and suppresses prostate cancer progression". In: *Cancer Research* 70.7 (2010), pp. 2728–2738. ISSN: 00085472. DOI: 10.1158/0008-5472.CAN-09-3718.
- [198] Olivia Larne, Zandra Hagman, Hans Lilja, Anders Bjartell, Anders Edsjö, and Yvonne Ceder. "miR-145 suppress the androgen receptor in prostate cancer cells and correlates to prostate cancer prognosis". In: *Carcinogenesis* 36.8 (2015), pp. 858–866. ISSN: 14602180. DOI: 10.1093/ carcin/bgv063.
- [199] Sung Gu Kang, Young Ran Ha, Seo Jin Kim, Seok Ho Kang, Hong Seok Park, Jeong Gu Lee, et al. "Do microRNA 96, 145 and 221 expressions really aid in the prognosis of prostate carcinoma?" In: Asian Journal of Andrology 14.5 (2012), pp. 752–757. ISSN: 1008682X. DOI: 10.1038/aja.2012.68.
- [200] Shaniece C Theodore, Melissa Davis, Fu Zhao, Honghe Wang, Dongquan Chen, Johng Rhim, et al. "MicroRNA profiling of novel African American and Caucasian Prostate Cancer cell lines reveals a reciprocal regulatory relationship of miR-152 and DNA methyltranferase 1". In: Oncotarget 5.11 (2014), pp. 3512–25.
- [201] João Ramalho-Carvalho, Céline S. Gonçalves, Inês Graça, David Bidarra, Eva Pereira-Silva, Sofia Salta, et al. "A multiplatform approach identifies miR-152-3p as a common epigenetically regulated onco-suppressor in prostate cancer targeting TMEM97". In: *Clinical Epigenetics* 10.1 (2018), pp. 1–15. ISSN: 18687083. DOI: 10.1186/s13148-018-0475-2.
- [202] Jia Guo, Min Wang, and Xiuheng Liu. "MicroRNA-195 suppresses tumor cell proliferation and metastasis by directly targeting BCOX1 in prostate carcinoma". In: Journal of Experimental and Clinical Cancer Research 34.1 (2015), pp. 1–8. ISSN: 17569966. DOI: 10.1186/s13046-015-0209-7. URL: http://dx.doi.org/10.1186/s13046-015-0209-7.
- [203] Chao Cai, Qing Biao Chen, Zhao Dong Han, Yan Qiong Zhang, Hui Chan He, Jia Hong Chen, et al. "miR-195 inhibits tumor progression by targeting RPS6KB1 in human prostate cancer".

In: *Clinical Cancer Research* 21.21 (2015), pp. 4922–4934. ISSN: 15573265. DOI: 10.1158/1078–0432.CCR-15-0217.

- [204] Zhen Tao, Shaohua Xu, Hailong Ruan, Tao Wang, Wen Song, Li Qian, et al. "MiR-195/-16 Family Enhances Radiotherapy via T Cell Activation in the Tumor Microenvironment by Blocking the PD-L1 Immune Checkpoint". In: *Cellular Physiology and Biochemistry* 48.2 (2018), pp. 801–814. ISSN: 14219778. DOI: 10.1159/000491909.
- [205] Chunhui Liu, Han Guan, Yiduo Wang, Ming Chen, Bin Xu, Lei Zhang, et al. "MIR-195 inhibits emt by targeting FGF2 in prostate cancer cells". In: *PLoS ONE* 10.12 (2015), pp. 1–13. ISSN: 19326203. DOI: 10.1371/journal.pone.0144073.
- [206] Xiaowen Zhang, Tao Tao, Chunhui Liu, Han Guan, Yeqing Huang, Bin Xu, et al. "Downregulation of miR-195 promotes prostate cancer progression by targeting HMGA1". In: Oncology Reports 36.1 (2016), pp. 376–382. ISSN: 17912431. DOI: 10.3892/or.2016.4797.
- [207] Zhuo Yuan Lin, Ya Qiang Huang, Yan Qiong Zhang, Zhao Dong Han, Hui Chan He, Xiao Hui Ling, et al. "MicroRNA-224 inhibits progression of human prostate cancer by downregulating TRIB1". In: International Journal of Cancer 135.3 (2014), pp. 541–550. ISSN: 10970215. DOI: 10.1002/ijc.28707.
- [208] Konstantinos Mavridis, Konstantinos Stravodimos, and Andreas Scorilas. "Downregulation and prognostic performance of microRNA 224 expression in prostate cancer". In: *Clinical Chemistry* 59.1 (2013), pp. 261–269. ISSN: 00099147. DOI: 10.1373/clinchem.2012.191502.
- [209] Sujuan Feng, Xiaosong Qian, Han Li, and Xiaodong Zhang. "Combinations of elevated tissue miRNA-17-92 cluster expression and serum prostate-specific antigen as potential diagnostic biomarkers for prostate cancer". In: Oncology Letters 14.6 (2017), pp. 6943–6949. ISSN: 17921082. DOI: 10.3892/ol.2017.7026.
- [210] Brittany L. Mihelich, Joseph C. Maranville, Rosalie Nolley, Donna M. Peehl, and Larisa Nonn."Elevated serum microRNA levels associate with absence of high-grade prostate cancer in a

retrospective cohort". In: *PLoS ONE* 10.4 (2015), pp. 1–15. ISSN: 19326203. DOI: 10.1371/ journal.pone.0124245.

- [211] Robert K. Nam, Yutaka Amemiya, Tania Benatar, Christopher J.D. Wallis, Jessica Stojcic-Bendavid, Stephanie Bacopulos, et al. "Identification and validation of a five MicroRNA signature predictive of prostate cancer recurrence and metastasis: A cohort study". In: Journal of Cancer 6.11 (2015), pp. 1160–1171. ISSN: 18379664. DOI: 10.7150/jca.13397.
- [212] Jacob Fredsøe, Anne K.I. Rasmussen, Anni R. Thomsen, Peter Mouritzen, Søren Høyer, Michael Borre, et al. "Diagnostic and Prognostic MicroRNA Biomarkers for Prostate Cancer in Cell-free Urine". In: *European Urology Focus* 4.6 (2017), pp. 825–833. ISSN: 24054569. DOI: 10.1016/j.euf.2017.02.018. URL: http://dx.doi.org/10.1016/j.euf.2017.02.018.
- [213] Katia Ramos Moreira Leite, Sabrina T. Reis, Nayara Viana, Denis R. Morais, Caio M. Moura, Iran A. Silva, et al. "Controlling RECK miR21 promotes tumor cell invasion and is related to biochemical recurrence in prostate cancer". In: *Journal of Cancer* 6.3 (2015), pp. 292–301. ISSN: 18379664. DOI: 10.7150/jca.11038.
- [214] Philip Cornford, Joaquim Bellmunt, Michel Bolla, Erik Briers, Maria De Santis, Tobias Gross, et al. "EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part II: Treatment of Relapsing, Metastatic, and Castration-Resistant Prostate Cancer". In: *European Urology* 71.4 (2017), pp. 630–642. ISSN: 18737560. DOI: 10.1016/j.eururo.2016.08.002.
- [215] Zhongwei Zhao, Sabine Weickmann, Monika Jung, Michael Lein, Ergin Kilic, Carsten Stephan, et al. "A novel predictor tool of biochemical recurrence after radical prostatectomy based on a five-microRNA tissue signature". In: *Cancers* 11.10 (2019). ISSN: 20726694. DOI: 10.3390/ cancers11101603.
- [216] Ziling Huang, Long Zhang, Xianghua Yi, and Xiaoting Yu. "Diagnostic and prognostic values of tissue hsa-miR-30c and hsa-miR-203 in prostate carcinoma". In: *Tumor Biology* 37.4 (2016), pp. 4359–4365. ISSN: 14230380. DOI: 10.1007/s13277-015-4262-9.

- [217] Xiao Hui Ling, Zhao Dong Han, Dan Xia, Hui Chan He, Fu Neng Jiang, Zhuo Yuan Lin, et al.
 "MicroRNA-30c serves as an independent biochemical recurrence predictor and potential tumor suppressor for prostate cancer". In: *Molecular Biology Reports* 41.5 (2014), pp. 2779–2788. ISSN: 15734978. DOI: 10.1007/s11033-014-3132-7.
- [218] Shuai Huang, Changye Zou, Yubo Tang, Qingde Wa, Xinsheng Peng, Xiao Chen, et al. "miR-582-3p and miR-582-5p Suppress Prostate Cancer Metastasis to Bone by Repressing TGF-β Signaling". In: Molecular Therapy Nucleic Acids 16.June (2019), pp. 91–104. ISSN: 21622531.
 DOI: 10.1016/j.omtn.2019.01.004. URL: https://doi.org/10.1016/j.omtn.2019.01.004.
- [219] Xiao Wang, Zhen Liang, Xin Xu, Jiangfeng Li, Yi Zhu, Shuai Meng, et al. "MIR-148a-3p represses proliferation and EMT by establishing regulatory circuits between ERBB3/AKT2/c-myc and DNMT1 in bladder cancer". In: *Cell Death and Disease* 7.12 (2016), e2503–12. ISSN: 20414889. DOI: 10.1038/cddis.2016.373. URL: http://dx.doi.org/10.1038/cddis.2016.373.
- [220] Alan P. Lombard, Benjamin A. Mooso, Stephen J. Libertini, Rebecca M. Lim, Rachel Nakagawa, Kathleen Vidallo, et al. "miR-148a Dependent Apoptosis of Bladder Cancer Cells is Mediated in Part by the Epigenetic Modifier DNMT1". In: 55.5 (2017), pp. 757–767. DOI: 10.1002/mc.22319.miR-148a.
- [221] Yuping Wang, Yuna Hu, Junhui Guo, and Lingling Wang. "MiR-148a-3p Suppresses the Proliferation and Invasion of Esophageal Cancer by Targeting DNMT1". In: *Genetic Testing and Molecular Biomarkers* 23.2 (2019), pp. 98–104. ISSN: 19450257. DOI: 10.1089/gtmb.2018.0285.
- [222] Huaijie Shi, Xiaojing Chen, Hao Jiang, Xujie Wang, Hao Yu, Pijiang Sun, et al. "miR-148a suppresses cell invasion and migration in gastric cancer by targeting DNA methyltransferase 1".
 In: Oncology Letters 15.4 (2018), pp. 4944–4950. ISSN: 17921082. DOI: 10.3892/ol.2018.7907.
- Jing Yu, Qi Li, Qing Xu, Lingzhi Liu, and Binghua Jiang. "MiR-148a inhibits angiogenesis by targeting ERBB3". In: Journal of Biomedical Research 25.3 (2011), pp. 170–177. ISSN: 16748301. DOI: 10.1016/S1674-8301(11)60022-5.

- H. Zhang, Y. Li, Q. Huang, X. Ren, H. Hu, H. Sheng, et al. "MiR-148a promotes apoptosis by targeting Bcl-2 in colorectal cancer". In: *Cell Death and Differentiation* 18.11 (2011), pp. 1702–1710. ISSN: 13509047. DOI: 10.1038/cdd.2011.28.
- [225] Wen Wang, Jing Dong, Maoxiu Wang, Shujuan Yao, Xiangyu Tian, Xiujuan Cui, et al. "miR-148a-3p suppresses epithelial ovarian cancer progression primarily by targeting c-Met". In: Oncology Letters 15.5 (2018), pp. 6131–6136. ISSN: 17921082. DOI: 10.3892/ol.2018.8110.
- [226] Wanli Ma, Xuhua Zhang, Jie Chai, Peng Chen, Peng Ren, and Mingzhi Gong. "Circulating miR-148a is a significant diagnostic and prognostic biomarker for patients with osteosarcoma".
 In: Tumor Biology 35.12 (2014), pp. 12467–12472. ISSN: 14230380. DOI: 10.1007/s13277-014-2565-x.
- [227] Jungeun Kim, Ying Zhang, Michael Skalski, Josie Hayes, Benjamin Kefas, David Schiff, et al. "MicroRNA-148a is a prognostic oncomiR that targets MIG6 and BIM to regulate EGFR and apoptosis in glioblastoma". In: *Cancer Research* 74.5 (2014), pp. 1541–1553. ISSN: 15387445. DOI: 10.1158/0008-5472.CAN-13-1449.
- [228] Sandra Amalie Dybos, Arnar Flatberg, Jostein Halgunset, Trond Viset, Toril Rolfseng, Solveig Kvam, et al. "Increased levels of serum miR-148a-3p are associated with prostate cancer".
 In: Apmis 126.9 (2018), pp. 722-731. ISSN: 09034641. DOI: 10.1111/apm.12880. URL: http://doi.wiley.com/10.1111/apm.12880.
- [229] Yasunori Fujita, Keitaro Kojima, Riyako Ohhashi, Nanako Hamada, Yoshinori Nozawa, Aya Kitamoto, et al. "MiR-148a attenuates paclitaxel resistance of hormone-refractory, drug-resistant prostate cancer PC3 cells by regulating MSK1 expression". In: *Journal of Biological Chemistry* 285.25 (2010), pp. 19076–19084. ISSN: 00219258. DOI: 10.1074/jbc.M109.079525.
- [230] Dipta Sengupta, Moonmoon Deb, and Samir Kumar Patra. "Antagonistic activities of miR-148a and DNMT1: Ectopic expression of miR-148a impairs DNMT1 mRNA and dwindle cell proliferation and survival". In: Gene 660.March (2018), pp. 68–79. ISSN: 18790038. DOI: 10. 1016/j.gene.2018.03.075. URL: https://doi.org/10.1016/j.gene.2018.03.075.

- Beatriz A. Walter, Vladimir A. Valera, Peter A. Pinto, and Maria J. Merino. "Comprehensive microRNA profiling of prostate cancer". In: *Journal of Cancer* 4.5 (2013), pp. 350–357. ISSN: 18379664. DOI: 10.7150/jca.6394.
- [232] Xiao Ran Long, Yong He, Cheng Huang, and Jun Li. "MicroRNA-148a is silenced by hypermethylation and interacts with DNA methyltransferase 1 in hepatocellular carcinogenesis". In: International Journal of Oncology 45.6 (2014), pp. 1915–1922. ISSN: 17912423. DOI: 10.3892/ijo.2014.2373.
- [233] Qian Zhan, Yuan Fang, Xiaxing Deng, Hao Chen, Jianbin Jin, Xiongxiong Lu, et al. "The interplay between miR-148a and DNMT1 might be exploited for pancreatic cancer therapy".
 In: Cancer Investigation 33.7 (2015), pp. 267–275. ISSN: 15324192. DOI: 10.3109/07357907.
 2015.1025794.
- [234] Rui Zhang, Min Li, Wenqiao Zang, Xudong Chen, Yuanyuan Wang, Ping Li, et al. "MiR-148a regulates the growth and apoptosis in pancreatic cancer by targeting CCKBR and Bcl-2". In: *Tumor Biology* 35.1 (2014), pp. 837–844. ISSN: 10104283. DOI: 10.1007/s13277-013-1115-2.
- [235] Claire Corcoran, Sweta Rani, and Lorraine O'Driscoll. "MiR-34a is an intracellular and exosomal predictive biomarker for response to docetaxel with clinical relevance to prostate cancer progression". In: Prostate 74.13 (2014), pp. 1320–1334. ISSN: 10970045. DOI: 10.1002/pros.22848.
- [236] Keita Uchino, Fumitaka Takeshita, Ryou U. Takahashi, Nobuyoshi Kosaka, Kae Fujiwara, Haruna Naruoka, et al. "Therapeutic effects of microRNA-582-5p and -3p on the inhibition of bladder cancer progression". In: *Molecular Therapy* 21.3 (2013), pp. 610–619. ISSN: 15250024.
 DOI: 10.1038/mt.2012.269. URL: http://dx.doi.org/10.1038/mt.2012.269.
- Y. Jin, L. P. Tao, S. C. Yao, Q. K. Huang, Z. F. Chen, Y. J. Sun, et al. "MicroRNA-582-5p suppressed gastric cancer cell proliferation via targeting AKT3". In: *European review for medical and pharmacological sciences* 21.22 (2017), pp. 5112–5120. ISSN: 22840729. DOI: 10.
 26355/eurrev_201711_13827.

- [238] Lingling Li and Li Ma. "Upregulation of miR-582-5p regulates cell proliferation and apoptosis by targeting AKT3 in human endometrial carcinoma". In: Saudi Journal of Biological Sciences 25.5 (2018), pp. 965–970. ISSN: 1319562X. DOI: 10.1016/j.sjbs.2018.03.007.
- [239] L. L. Wang and M. Zhang. "MiR-582-5p is a potential prognostic marker in human non-small cell lung cancer and functions as a tumor suppressor by targeting MAP3K2". In: *European Review for Medical and Pharmacological Sciences* 22.22 (2018), pp. 7760–7767. ISSN: 22840729.
 DOI: 10.26355/eurrev-201811-16397.
- [240] Henriett Butz, István Likó, Sándor Czirják, Péter Igaz, Márta Korbonits, Károly Rácz, et al. "MicroRNA profile indicates downregulation of the TGFβ pathway in sporadic non-functioning pituitary adenomas". In: *Pituitary* 14.2 (2011), pp. 112–124. ISSN: 1386341X. DOI: 10.1007/ s11102-010-0268-x.
- [241] Zhenbo Shu, Libo Chen, and Dayong Ding. "miR-582-5P induces colorectal cancer cell proliferation by targeting adenomatous polyposis coli". In: World Journal of Surgical Oncology 14.1 (2016), pp. 1–7. ISSN: 14777819. DOI: 10.1186/s12957-016-0984-4. URL: http://dx.doi.org/10.1186/s12957-016-0984-4.
- [242] Atsushi Maeno, Naoki Terada, Masayuki Uegaki, Takayuki Goto, Yoshiyuki Okada, Takashi Kobayashi, et al. "Up-regulation of miR-582-5p regulates cellular proliferation of prostate cancer cells under androgen-deprived conditions". In: *Prostate* 74.16 (2014), pp. 1604–1612. ISSN: 10970045. DOI: 10.1002/pros.22877.
- [243] Wanling Xie, Meredith M. Regan, Marc Buyse, Susan Halabi, Philip Kantoff, Oliver Sartor, et al. "Metastasis-free survival is a strong Surrogate of overall survival in localized prostate cancer". In: Journal of Clinical Oncology 35.27 (2017), pp. 3097–3104. ISSN: 15277755. DOI: 10.1200/JC0.2017.73.9987.
- [244] Christopher Sweeney, Mari Nakabayashi, Meredith Regan, Wanling Xie, Julia Hayes, Nancy Keating, et al. "The Development of Intermediate Clinical Endpoints in Cancer of the Prostate

(ICECaP)". In: *Journal of the National Cancer Institute* 107.12 (2015), djv261. ISSN: 14602105. DOI: 10.1093/jnci/djv261.

- [245] Ernest K. Amankwah, Evelyn Anegbe, Hyun Park, Julio Pow-Sang, Ardeshir Hakam, and Jong Y. Park. "MiR-21, miR-221 and miR-222 expression and prostate cancer recurrence among obese and non-obese cases". In: Asian Journal of Andrology 15.2 (2013), pp. 226–230. ISSN: 1008682X. DOI: 10.1038/aja.2012.160. URL: http://dx.doi.org/10.1038/aja.2012.160.
- [246] Christian Melbø-Jørgensen, Sigve Andersen, Andrej Valkov, Tom Dønnem, Samer Al-Saad, Yury Kiselev, et al. "Stromal expression of miR-21 predicts biochemical failure in prostate cancer patients with Gleason score 6". In: *PLoS ONE* 9.11 (2014). ISSN: 19326203. DOI: 10. 1371/journal.pone.0113039.
- [247] Yangbo Guan, You Wu, Yifei Liu, Jian Ni, and Shaojun Nong. "Association of microRNA-21 expression with clinicopathological characteristics and the risk of progression in advanced prostate cancer patients receiving androgen deprivation therapy". In: *The Prostate* 76.11 (2016), pp. 986–993. ISSN: 02704137. DOI: 10.1002/pros.23187. URL: http://doi.wiley.com/10. 1002/pros.23187.
- [248] Robert S. Hudson, Ming Yi, Dominic Esposito, Stephanie K. Watkins, Arthur A. Hurwitz, Harris G. Yfantis, et al. "MicroRNA-1 is a candidate tumor suppressor and prognostic marker in human prostate cancer". In: Nucleic Acids Research 40.8 (2012), pp. 3689–3703. ISSN: 03051048. DOI: 10.1093/nar/gkr1222.
- [249] Katia R.M. Leite, Alberto Tomiyama, Sabrina T. Reis, Juliana M. Sousa-Canavez, Adriana Saudo, Marcos F. Dall'Oglio, et al. "MicroRNA-100 expression is independently related to biochemical recurrence of prostate cancer". In: *Journal of Urology* 185.3 (2011), pp. 1118–1122. ISSN: 00225347. DOI: 10.1016/j.juro.2010.10.035. URL: http://dx.doi.org/10.1016/j.juro.2010.10.035.
- [250] Prashant K Singh, Leah Preus, Qiang Hu, Li Yan, Mark D Long, Carl D Morrison, et al. "Serum microRNA expression patterns that predict early treatment failure in prostate cancer patients."

In: Oncotarget 5.3 (2014), pp. 824-40. ISSN: 1949-2553. DOI: 10.18632/oncotarget.1776. URL: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3996656%7B%5C& %7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract.

- [251] R. S. Hudson, M. Yi, D. Esposito, S. A. Glynn, A. M. Starks, Y. Yang, et al. "MicroRNA-106b-25 cluster expression is associated with early disease recurrence and targets caspase-7 and focal adhesion in human prostate cancer". In: Oncogene 32.35 (2013), pp. 4139–4147. ISSN: 09509232. DOI: 10.1038/onc.2012.424.
- [252] Annika Fendler, Monika Jung, Carsten Stephan, Richardson J. Honey, Robert J. Stewart, Kenneth T. Pace, et al. "miRNAs can predict prostate cancer biochemical relapse and are involved in tumor progression". In: *International Journal of Oncology* 39.5 (2011), pp. 1183– 1192. ISSN: 10196439. DOI: 10.3892/ijo.2011.1128.
- [253] Erica Hlavin Bell, Simon Kirste, Jessica L. Fleming, Petra Stegmaier, Vanessa Drendel, Xiaokui Mo, et al. "A novel MiRNA-based predictive model for biochemical failure following post-prostatectomy salvage radiation therapy". In: *PLoS ONE* 10.3 (2015), pp. 1–19. ISSN: 19326203.
 DOI: 10.1371/journal.pone.0118745.
- [254] Dibash K. Das, Joseph R. Osborne, Hui Yi Lin, Jong Y. Park, and Olorunseun O. Ogunwobi. "miR-1207-3p is a novel prognostic biomarker of prostate cancer". In: *Translational Oncology* 9.3 (2016), pp. 236-241. ISSN: 19365233. DOI: 10.1016/j.tranon.2016.04.005. URL: http: //dx.doi.org/10.1016/j.tranon.2016.04.005.
- [255] Yitao Wang, Qingling Zhang, Baowei Guo, Jiao Feng, and Dan Zhao. "MiR-1231 Is Downregulated in Prostate Cancer with Prognostic and Functional Implications". In: Oncology Research and Treatment (2019). ISSN: 22965262. DOI: 10.1159/000504606.
- [256] X Sun, Z Liu, Z Yang, L Xiao, F Wang, Y He, et al. "Association of microRNA-126 expression with clinicopathological features and the risk of biochemical recurrence in prostate cancer patients undergoing radical prostatectomy". In: *Diagnostic Pathology* 8 (2013), p. 208. URL: http://ovidsp.ovid.com/ovidweb.cgi?T=JS%7B%5C&%7DCSC=Y%7B%5C&%7DNEWS=N%7B%

5C&%7DPAGE=fulltext%7B%5C&%7DD=medl%7B%5C&%7DAN=24350576%7B%5C%%7D5Cnhttp: //digitaal.uba.uva.nl:9003/uva-linker?sid=OVID:medline%7B%5C&%7Did=pmid: 24350576%7B%5C&%7Did=doi:10.1186%7B%5C%%7D2F1746-1596-8-208%7B%5C&%7Dissn= 1746-1596%7B%5C&%7Disbn=%7B%5C&%7Dvolume=8%7B%5C&%7Dissue=%7B%5C&%7Dspage=208% 7B%5C&%7Dpages=208.

- [257] Xiaoke Sun, Zhen Yang, Yu Zhang, Jing He, Feng Wang, Pengxiao Su, et al. "Prognostic implications of tissue and serum levels of microRNA-128 in human prostate cancer". In: International Journal of Clinical and Experimental Pathology 8.7 (2015), pp. 8394–8401. ISSN: 19362625.
- [258] Zhongchun Hu, Junjie Guo, Ming Zhao, Tao Jiang, and Xiaofeng Yang. "Predictive values of miR-129 and miR-139 for efficacy on patients with prostate cancer after chemotherapy and prognostic correlation". In: Oncology Letters 18.6 (2019), pp. 6187–6195. ISSN: 17921082. DOI: 10.3892/ol.2019.10950.
- [259] Xiaoyi Huang, Tiezheng Yuan, Meihua Liang, Meijun Du, Shu Xia, Rachel Dittmar, et al. "Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer".
 In: European Urology 67.1 (2015), pp. 33–41. ISSN: 18737560. DOI: 10.1016/j.eururo.2014.
 07.035. URL: http://dx.doi.org/10.1016/j.eururo.2014.07.035.
- [260] Bo Liu, Weidong Zhou, Huiyang Jiang, Zhendong Xiang, and Lei Wang. "miR-1303 promotes the proliferation, migration and invasion of prostate cancer cells through regulating the Wnt/β-catenin pathway by targeting DKK3". In: *Experimental and Therapeutic Medicine* 18.7 (2019), pp. 4747–4757. ISSN: 1792-0981. DOI: 10.3892/etm.2019.8120.
- Yutaka Hashimoto, Marisa Shiina, Pritha Dasgupta, Priyanka Kulkarni, Taku Kato, Ryan K. Wong, et al. "Upregulation of MIR-130b contributes to risk of poor prognosis and racial disparity in African-American Prostate Cancer". In: *Cancer Prevention Research* 12.9 (2019), pp. 585–598. ISSN: 19406215. DOI: 10.1158/1940-6207.CAPR-18-0509.
- [262] Yubo Tang, Jincheng Pan, Shuai Huang, Xinsheng Peng, Xuenong Zou, Yongxiang Luo, et al. "Downregulation of miR-133a-3p promotes prostate cancer bone metastasis via activating

PI3K/AKT signaling". In: Journal of Experimental and Clinical Cancer Research 37.1 (2018), pp. 1–16. ISSN: 17569966. DOI: 10.1186/s13046-018-0813-4.

- [263] Xia Li, Xuechao Wan, Hongbing Chen, Shu Yang, Yiyang Liu, Wenjuan Mo, et al. "Identification of miR-133b and RB1CC1 as independent predictors for biochemical recurrence and potential therapeutic targets for prostate cancer". In: *Clinical Cancer Research* 20.9 (2014), pp. 2312–2325. ISSN: 15573265. DOI: 10.1158/1078-0432.CCR-13-1588.
- [264] Shuai Huang, Qingde Wa, Jincheng Pan, Xinsheng Peng, Dong Ren, Qiji Li, et al. "Transcriptional downregulation of miR-133b by REST promotes prostate cancer metastasis to bone via activating TGF-β signaling article". In: Cell Death and Disease 9.7 (2018). ISSN: 20414889. DOI: 10.1038/s41419-018-0807-3.
- [265] Robert K. Nam, Tania Benatar, Christopher J.D. Wallis, Elizabeth Kobylecky, Yutaka Amemiya, Christopher Sherman, et al. "MicroRNA-139 is a predictor of prostate cancer recurrence and inhibits growth and migration of prostate cancer cells through cell cycle arrest and targeting IGF1R and AXL". In: *Prostate* 79.12 (2019), pp. 1422–1438. ISSN: 10970045. DOI: 10.1002/ pros.23871.
- [266] Elin Richardsen, Sigve Andersen, Christian Melbø-Jørgensen, Mehrdad Rakaee, Nora Ness, Samer Al-Saad, et al. "MicroRNA 141 is associated to outcome and aggressive tumor characteristics in prostate cancer". In: Scientific Reports 9.1 (2019), pp. 1–9. ISSN: 20452322. DOI: 10.1038/s41598-018-36854-7.
- [267] Ahmed Hussein Zedan, Søren Garm Blavnsfeldt, Torben Frøstrup Hansen, Boye Schnack Nielsen, Niels Marcussen, Mindaugas Pleckaitis, et al. "Heterogeneity of miRNA expression in localized prostate cancer with clinicopathological correlations". In: *PLoS ONE* 12.6 (2017), pp. 1–17. ISSN: 19326203. DOI: 10.1371/journal.pone.0179113.
- [268] Dongyang Li, Xuanyu Hao, and Yongsheng Song. "Identification of the Key MicroRNAs and the miRNA-mRNA Regulatory Pathways in Prostate Cancer by Bioinformatics Methods". In: *BioMed Research International* 2018 (2018). ISSN: 23146141. DOI: 10.1155/2018/6204128.

- Bin Xu, Yeqing Huang, Xiaobing Niu, Tao Tao, Liang Jiang, Na Tong, et al. "Hsa-miR-146a-5p modulates androgen-independent prostate cancer cells apoptosis by targeting ROCK1". In: *Prostate* 75.16 (2015), pp. 1896–1903. ISSN: 10970045. DOI: 10.1002/pros.23068.
- [270] Jingsong Yu, Yue Feng, Yan Wang, and Ruihua An. "Aryl hydrocarbon receptor enhances the expression of miR-150-5p to suppress in prostate cancer progression by regulating MAP3K12".
 In: Archives of Biochemistry and Biophysics 654.23 (2018), pp. 47–54. ISSN: 10960384. DOI: 10.1016/j.abb.2018.07.010. URL: https://doi.org/10.1016/j.abb.2018.07.010.
- [271] Cheng Wei Bi, Guo Ying Zhang, Yu Bai, Bin Zhao, and Hong Yang. "Increased expression of miR-153 predicts poor prognosis for patients with prostate cancer". In: *Medicine (United States)* 98.36 (2019), pp. 1–4. ISSN: 15365964. DOI: 10.1097/MD.00000000016705.
- [272] Ran Chen, Lu Sheng, Hao Jie Zhang, Ming Ji, and Wei Qing Qian. "miR-15b-5p facilitates the tumorigenicity by targeting RECK and predicts tumour recurrence in prostate cancer". In: *Journal of Cellular and Molecular Medicine* 22.3 (2018), pp. 1855–1863. ISSN: 15821838. DOI: 10.1111/jcmm.13469.
- [273] C. Hoey, M. Ahmed, A. Fotouhi Ghiam, D. Vesprini, X. Huang, K. Commisso, et al. "Circulating miRNAs as non-invasive biomarkers to predict aggressive prostate cancer after radical prostatectomy". In: Journal of Translational Medicine 17.1 (2019), pp. 1–11. ISSN: 14795876. DOI: 10.1186/s12967-019-1920-5.
- [274] Yanan Sun, Xiaopeng Jia, Lianguo Hou, and Xing Liu. "Screening of Differently Expressed miRNA and mRNA in Prostate Cancer by Integrated Analysis of Transcription Data". In: Urology 94 (2016), 313.e1-313.e6. ISSN: 15279995. DOI: 10.1016/j.urology.2016.04.041. URL: http://dx.doi.org/10.1016/j.urology.2016.04.041.
- [275] Hiroshi Hirata, Koji Ueno, Varahram Shahryari, Guoren Deng, Yuichiro Tanaka, Z. Laura Tabatabai, et al. "MicroRNA-182-5p Promotes Cell Invasion and Proliferation by Down Regulating FOXF2, RECK and MTSS1 Genes in Human Prostate Cancer". In: *PLoS ONE* 8.1 (2013). ISSN: 19326203. DOI: 10.1371/journal.pone.0055502.

- [276] Irene Casanova-Salas, José Rubio-Briones, Ana Calatrava, Caterina Mancarella, Esther Masiá, Juan Casanova, et al. "Identification of miR-187 and miR-182 as biomarkers of early diagnosis and prognosis in patients with prostate cancer treated with radical prostatectomy". In: *Journal* of Urology 192.1 (2014), pp. 252–259. ISSN: 15273792. DOI: 10.1016/j.juro.2014.01.107.
- [277] Xian Zhao, Yanli Wang, Rong Deng, Hailong Zhang, Jinzhuo Dou, Haihua Yuan, et al. "miR186 suppresses prostate cancer progression by targeting Twist1". In: Oncotarget 7.22 (2016), pp. 33136– 33151. ISSN: 19492553. DOI: 10.18632/oncotarget.8887.
- [278] Hongtuan Zhang, Shiyong Qi, Tao Zhang, Andi Wang, Ranlu Liu, Jia Guo, et al. "miR-188-5p inhibits tumour growth and metastasis in prostate cancer by repressing LAPTM4B expression".
 In: Oncotarget 6.8 (2015), pp. 6092–6104. ISSN: 19492553. DOI: 10.18632/oncotarget.3341.
- [279] Shaohua Xu, Tao Wang, Wen Song, Tao Jiang, Feng Zhang, Yu Yin, et al. "The inhibitory effects of AR/miR-190a/YB-1 negative feedback loop on prostate cancer and underlying mechanism". In: Scientific Reports 5.July (2015), pp. 1–14. ISSN: 20452322. DOI: 10.1038/srep13528. URL: http://dx.doi.org/10.1038/srep13528.
- [280] Jing Bo Liu, Yong Ji Yan, Jing Shi, Ya Bing Wu, Yan Feng Li, Lin Feng Dai, et al. "Upregulation of microRNA-191 can serve as an independent prognostic marker for poor survival in prostate cancer". In: *Medicine* 98.29 (2019), e16193. ISSN: 15365964. DOI: 10.1097/MD. 000000000016193.
- [281] Zhong Jun Chen, You Ji Yan, Hao Shen, Jia Jie Zhou, Guang Hua Yang, Yi Xiang Liao, et al.
 "MiR-192 Is Overexpressed and Promotes Cell Proliferation in Prostate Cancer". In: *Medical Principles and Practice* 28.2 (2019), pp. 124–132. ISSN: 14230151. DOI: 10.1159/000496206.
- [282] Fangqiu Fu, Xuechao Wan, Dan Wang, Zhe Kong, Yalong Zhang, Wenhua Huang, et al. "MicroRNA-19a acts as a prognostic marker and promotes prostate cancer progression via inhibiting VPS37A expression". In: Oncotarget 9.2 (2018), pp. 1931–1943. ISSN: 19492553. DOI: 10.18632/oncotarget.23026.

- [283] Betina Katz, Sabrina T. Reis, Nayara I. Viana, Denis R. Morais, Caio M. Moura, Nelson Dip, et al. "Comprehensive study of gene and microRNA expression related to epithelial-mesenchymal transition in prostate cancer". In: *PLoS ONE* 9.11 (2014). ISSN: 19326203. DOI: 10.1371/ journal.pone.0113700.
- [284] Qingde Wa, Sheng Huang, Jincheng Pan, Yubo Tang, Shaofu He, Xiaodong Fu, et al. "miR-204-5p Represses Bone Metastasis via Inactivating NF-κB Signaling in Prostate Cancer". In: Molecular Therapy - Nucleic Acids 18.December (2019), pp. 567–579. ISSN: 21622531. DOI: 10.1016/j.omtn.2019.09.008. URL: https://doi.org/10.1016/j.omtn.2019.09.008.
- [285] Z. Hagman, B. S. Haflidadóttir, J. A. Ceder, O. Larne, A. Bjartell, H. Lilja, et al. "MiR-205 negatively regulates the androgen receptor and is associated with adverse outcome of prostate cancer patients". In: *British Journal of Cancer* 108.8 (2013), pp. 1668–1676. ISSN: 00070920. DOI: 10.1038/bjc.2013.131.
- [286] Charis Kalogirou, Martin Spahn, Markus Krebs, Steven Joniau, Evelyne Lerut, Maximilian Burger, et al. "MiR-205 is progressively down-regulated in lymph node metastasis but fails as a prognostic biomarker in high-risk prostate cancer". In: *International Journal of Molecular Sciences* 14.11 (2013), pp. 21414–21434. ISSN: 16616596. DOI: 10.3390/ijms141121414.
- [287] Tao Li, Run Sheng Li, Yu Hua Li, Shang Zhong, Yu Ying Chen, Cun Ming Zhang, et al. "MiR-21 as an independent biochemical recurrence predictor and potential therapeutic target for prostate cancer". In: *Journal of Urology* 187.4 (2012), pp. 1466–1472. ISSN: 00225347. DOI: 10.1016/j.juro.2011.11.082.
- [288] Sigve Andersen, Elin Richardsen, Line Moi, Tom Donnem, Yngve Nordby, Nora Ness, et al.
 "Fibroblast miR-210 overexpression is independently associated with clinical failure in Prostate Cancer - A multicenter (in situ hybridization) study". In: Scientific Reports 6.October (2016), pp. 1–9. ISSN: 20452322. DOI: 10.1038/srep36573.
- [289] H. W. Qu, Y. Jin, Z. L. Cui, and X. B. Jin. "MicroRNA-212 participates in the development of prostate cancer by upregulating BMI1 via NF-κB pathway". In: European review for medical

and pharmacological sciences 22.11 (2018), pp. 3348-3356. ISSN: 22840729. DOI: 10.26355/ eurrev_201806_15155.

- [290] Peng Peng, Tao Chen, Qing Wang, Yixi Zhang, Fangfang Zheng, Shuai Huang, et al. "Decreased miR-218-5p Levels as a Serum Biomarker in Bone Metastasis of Prostate Cancer". In: Oncology Research and Treatment 42.4 (2019), pp. 165–180. ISSN: 22965262. DOI: 10.1159/000495473.
- [291] Martin Spahn, Susanne Kneitz, Claus Jürgen Scholz, Nico Stenger, Thomas Rüdiger, Philipp Ströbel, et al. "Expression of microRNA-221 is progressively reduced in aggressive prostate cancer and metastasis and predicts clinical recurrence". In: International Journal of Cancer 127.2 (2010), pp. 394–403. ISSN: 00207136. DOI: 10.1002/ijc.24715.
- [292] Juliana I. Santos, Ana L. Teixeira, Francisca Dias, Joaquina Maurício, Francisco Lobo, António Morais, et al. "Influence of peripheral whole-blood microRNA-7 and microRNA-221 high expression levels on the acquisition of castration-resistant prostate cancer: Evidences from in vitro and in vivo studies". In: *Tumor Biology* 35.7 (2014), pp. 7105–7113. ISSN: 14230380. DOI: 10.1007/s13277-014-1918-9.
- [293] Yusuke Goto, Satoko Kojima, Rika Nishikawa, Akira Kurozumi, Mayuko Kato, Hideki Enokida, et al. "MicroRNA expression signature of castration-resistant prostate cancer: The microRNA-221/222 cluster functions as a tumour suppressor and disease progression marker". In: British Journal of Cancer 113.7 (2015), pp. 1055–1065. ISSN: 15321827. DOI: 10.1038/bjc.2015.300.
- [294] Songwang Cai, Ruihan Chen, Xiaojuan Li, Yi Cai, Zhiqiang Ye, Shigeng Li, et al. "Down-regulation of microRNA-23a suppresses prostate cancer metastasis by targeting the PAK6-LIMK1 signaling pathway". In: Oncotarget 6.6 (2015), pp. 3904–3917. ISSN: 19492553. DOI: 10.18632/oncotarget.2880.
- [295] Shahana Majid, Altaf A. Dar, Sharanjot Saini, Sumit Arora, Varahram Shahryari, Mohd Saif Zaman, et al. "miR-23b represses proto-oncogene Src kinase and functions as methylationsilenced tumor suppressor with diagnostic and prognostic significance in prostate cancer". In:

Cancer Research 72.24 (2012), pp. 6435–6446. ISSN: 00085472. DOI: 10.1158/0008-5472.CAN-12-2181.

- [296] Kai Guo, Shaobo Zheng, Yawen Xu, Abai Xu, Binshen Chen, and Yong Wen. "Loss of miR-26a-5p promotes proliferation, migration, and invasion in prostate cancer through negatively regulating SERBP1". In: *Tumor Biology* 37.9 (2016), pp. 12843–12854. ISSN: 14230380. DOI: 10.1007/s13277-016-5158-z. URL: http://dx.doi.org/10.1007/s13277-016-5158-z.
- Yusuke Goto, Satoko Kojima, Rika Nishikawa, Hideki Enokida, Takeshi Chiyomaru, Takashi Kinoshita, et al. "The microRNA-23b/27b/24-1 cluster is a disease progression marker and tumor suppressor in prostate cancer". In: Oncotarget 5.17 (2014), pp. 7748–7759. ISSN: 19492553.
 DOI: 10.18632/oncotarget.2294.
- [298] Robert K. Nam, Tania Benatar, Christopher J.D. Wallis, Yutaka Amemiya, Wenyi Yang, Alaina Garbens, et al. "MiR-301a regulates E-cadherin expression and is predictive of prostate cancer recurrence". In: Prostate 76.10 (2016), pp. 869–884. ISSN: 10970045. DOI: 10.1002/pros.23177.
- [299] Naohito Kobayashi, Hiroji Uemura, Kiyotaka Nagahama, Koji Okudela, Mitsuko Furuya, Yoko Ino, et al. "Identification of miR-30d as a novel prognostic maker of prostate cancer". In: Oncotarget 3.11 (2012), pp. 1455–1471. ISSN: 19492553. DOI: 10.18632/oncotarget.696.
- [300] Zhuo yuan Lin, Guo Chen, Yan qiong Zhang, Hui chan He, Yu xiang Liang, Jian heng Ye, et al. "MicroRNA-30d promotes angiogenesis and tumor growth via MYPT1/c-JUN/VEGFA pathway and predicts aggressive outcome in prostate cancer". In: *Molecular Cancer* 16.1 (2017), pp. 1–14. ISSN: 14764598. DOI: 10.1186/s12943-017-0615-x.
- [301] Xuan Liang, Zhaolun Li, Qunli Men, Yongwei Li, Hechen Li, and Tie Chong. "miR-326 functions as a tumor suppressor in human prostatic carcinoma by targeting Mucin1". In: *Biomedicine and Pharmacotherapy* 108.May (2018), pp. 574–583. ISSN: 19506007. DOI: 10.1016/j.biopha. 2018.09.053. URL: https://doi.org/10.1016/j.biopha.2018.09.053.
- [302] Si Wei Xiong, Tian Xin Lin, Ke Wei Xu, Wen Dong, Xiao Hui Ling, Fu Neng Jiang, et al."MicroRNA-335 acts as a candidate tumor suppressor in prostate cancer". In: *Pathology and*

Oncology Research 19.3 (2013), pp. 529–537. ISSN: 12194956. DOI: 10.1007/s12253-013-9613-5.

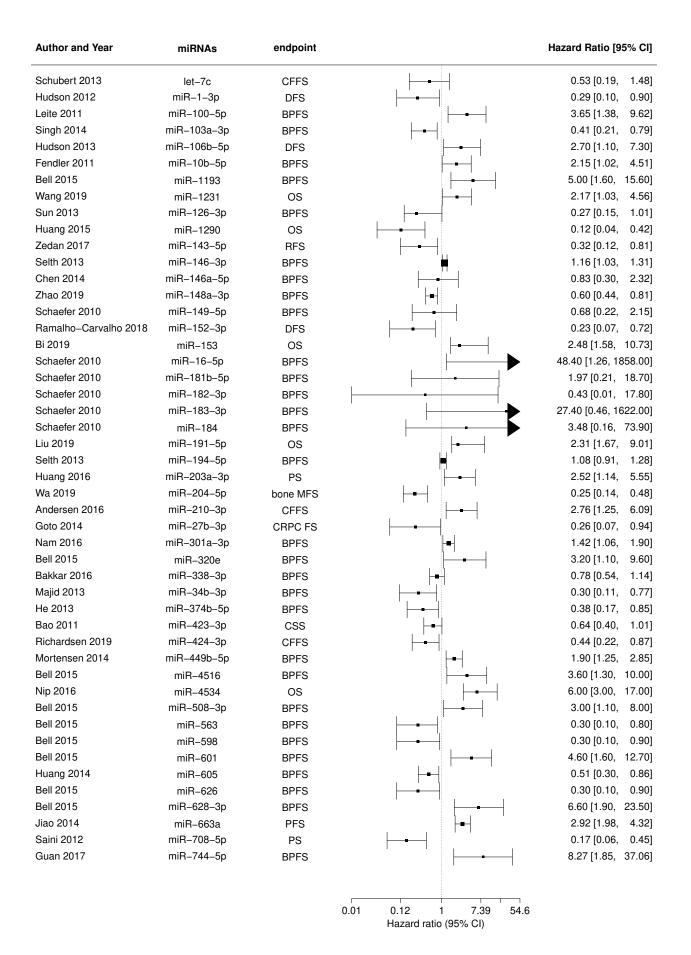
- [303] Ashraf Bakkar, Mohammed Alshalalfa, Lars F. Petersen, Hatem Abou-Ouf, Amal Al-Mami, Samar A. Hegazy, et al. "microRNA 338-3p exhibits tumor suppressor role and its downregulation is associated with adverse clinical outcome in prostate cancer patients". In: *Molecular Biology Reports* 43.4 (2016), pp. 229–240. ISSN: 15734978. DOI: 10.1007/s11033-016-3948-4.
- [304] Shahana Majid, Altaf A. Dar, Sharanjot Saini, Varahram Shahryari, Sumit Arora, Mohd Saif Zaman, et al. "miRNA-34b inhibits prostate cancer through demethylation, active chromatin modifications, and AKT pathways". In: *Clinical Cancer Research* 19.1 (2013), pp. 73–84. ISSN: 10780432. DOI: 10.1158/1078-0432.CCR-12-2952.
- [305] Zandra Hagman, Olivia Larne, Anders Edsjö, Anders Bjartell, Roy A. Ehrnström, David Ulmert, et al. "MiR-34c is downregulated in prostate cancer and exerts tumor suppressive functions". In: International Journal of Cancer 127.12 (2010), pp. 2768–2776. ISSN: 00207136. DOI: 10.1002/ijc.25269.
- [306] Sharanjot Saini, Shahana Majid, Varahram Shahryari, Z. Laura Tabatabai, Sumit Arora, Soichiro Yamamura, et al. "Regulation of SRC kinases by microRNA-3607 located in a frequently deleted locus in prostate cancer". In: *Molecular Cancer Therapeutics* 13.7 (2014), pp. 1952–1963. ISSN: 15388514. DOI: 10.1158/1535-7163.MCT-14-0017.
- [307] Nathan Bucay, Divya Bhagirath, Kirandeep Sekhon, Thao Yang, Shinichiro Fukuhara, Shahana Majid, et al. "A novel microRNA regulator of prostate cancer epithelial-mesenchymal transition". In: Cell Death and Differentiation 24.7 (2017), pp. 1263–1274. ISSN: 14765403. DOI: 10.1038/cdd.2017.69.
- [308] Nathan Bucay, Kirandeep Sekhon, Shahana Majid, Soichiro Yamamura, Varahram Shahryari,
 Z. Laura Tabatabai, et al. "Novel tumor suppressor microRNA at frequently deleted chromosomal region 8p21 regulates Epidermal Growth Factor Receptor in prostate cancer". In: *Oncotarget* 7.43 (2016), pp. 70388–70403. ISSN: 19492553. DOI: 10.18632/oncotarget.11865.

- [309] H. W. Qu, Y. Jin, Z. L. Cui, and X. B. Jin. "MicroRNA-373-3p inhibits prostate cancer progression by targeting AKT1". In: *European Review for Medical and Pharmacological Sciences* 22.19 (2018), pp. 6252–6259. ISSN: 22840729. DOI: 10.26355/eurrev-201810-16032.
- [310] Hui-chan He, Zhao-dong Han, Qi-shan Dai, Xiao-hui Ling, Xin Fu, Zhuo-yuan Lin, et al. "Global analysis of the differentially expressed miRNAs of prostate cancer in Chinese patients". In: BMC Genomics 14.1 (2013), p. 757. ISSN: 1471-2164. DOI: 10.1186/1471-2164-14-757. URL: http://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-14-757.
- [311] Margaritis Avgeris, Konstantinos Stravodimos, and Andreas Scorilas. "Loss of miR-378 in prostate cancer, a common regulator of KLK2 and KLK4, correlates with aggressive disease phenotype and predicts the short-term relapse of the patients". In: *Biological Chemistry* 395.9 (2014), pp. 1095–1104. ISSN: 14374315. DOI: 10.1515/hsz-2014-0150.
- [312] Murali Gururajan, Sajni Josson, Gina Chia Yi Chu, Chia Lun Lu, Yi Tsung Lu, Christopher L. Haga, et al. "MiR-154* and miR-379 in the DLK1-DIO3 MicroRNA mega-cluster regulate epithelial to mesenchymal transition and bone metastasis of prostate cancer". In: *Clinical Cancer Research* 20.24 (2014), pp. 6559–6569. ISSN: 15573265. DOI: 10.1158/1078-0432.CCR-14-1784.
- [313] Sajni Josson, Murali Gururajan, Peizhen Hu, Chen Shao, Gina Chia Yi Chu, Haiyen E. Zhau, et al. "miR-409-3p/-5p promotes tumorigenesis, epithelial-to-mesenchymal transition, and bone metastasis of human prostate cancer". In: *Clinical cancer research : an official journal of the American Association for Cancer Research* 20.17 (2014), pp. 4636–4646. ISSN: 10780432. DOI: 10.1158/1078-0432.CCR-14-0305.
- [314] Yuelong Zhang, Dahong Zhang, Jia Lv, Shuai Wang, and Qi Zhang. "miR-410–3p promotes prostate cancer progression via regulating PTEN/AKT/mTOR signaling pathway". In: *Biochemical and Biophysical Research Communications* 503.4 (2018), pp. 2459–2465. ISSN: 10902104.
 DOI: 10.1016/j.bbrc.2018.06.176. URL: https://doi.org/10.1016/j.bbrc.2018.06.176.

- [315] E. Richardsen, S. Andersen, S. Al-Saad, M. Rakaee, Y. Nordby, M. I. Pedersen, et al. "Low Expression of miR-424-3p is Highly Correlated with Clinical Failure in Prostate Cancer". In: *Scientific Reports* 9.1 (2019), pp. 1–10. ISSN: 20452322. DOI: 10.1038/s41598-019-47234-0.
- [316] DIvya Bhagirath, Thao Ly Yang, Z. Laura Tabatabai, Varahram Shahryari, Shahana Majid, Rajvir Dahiya, et al. "Role of a novel race-related tumor suppressor microRNA located in frequently deleted chromosomal locus 8p21 in prostate cancer progression". In: *Carcinogenesis* 40.5 (2019), pp. 633–642. ISSN: 14602180. DOI: 10.1093/carcin/bgz058.
- [317] X. Lin and Y. Wang. "Re-expression of microRNA-4319 inhibits growth of prostate cancer via Her-2 suppression". In: *Clinical and Translational Oncology* 20.11 (2018), pp. 1400–1407. ISSN: 16993055. DOI: 10.1007/s12094-018-1871-y. URL: https://doi.org/10.1007/s12094-018-1871-y.
- [318] Martin Mørck Mortensen, Søren Høyer, Torben Falck Ørntoft, Karina Dalsgaard Sørensen, Lars Dyrskjøt, and Michael Borre. "High miR-449b expression in prostate cancer is associated with biochemical recurrence after radical prostatectomy". In: BMC Cancer 14.1 (2014), p. 859. ISSN: 1471-2407. DOI: 10.1186/1471-2407-14-859. URL: http://bmccancer.biomedcentral.com/ articles/10.1186/1471-2407-14-859.
- [319] Yusuke Goto, Satoko Kojima, Akira Kurozumi, Mayuko Kato, Atsushi Okato, Ryosuke Matsushita, et al. "Regulation of E3 ubiquitin ligase-1 (WWP1) by microRNA-452 inhibits cancer cell migration and invasion in prostate cancer". In: *British Journal of Cancer* 114.10 (2016), pp. 1135–1144. ISSN: 15321827. DOI: 10.1038/bjc.2016.95.
- [320] Hannah Nip, Altaf A. Dar, Sharanjot Saini, Melissa Colden, Shahryari Varahram, Harshika Chowdhary, et al. "Oncogenic microRNA-4534 regulates PTEN pathway in prostate cancer".
 In: Oncotarget 7.42 (2016), pp. 68371–68384. ISSN: 19492553. DOI: 10.18632/ONCOTARGET. 12031.

- [321] Qianwei Xing, Huyang Xie, Bingye Zhu, Zhiwei Sun, and Yeqing Huang. "MiR-455-5p suppresses the progression of prostate cancer by targeting CCR5". In: *BioMed Research International* 2019 (2019). ISSN: 23146141. DOI: 10.1155/2019/6394784.
- [322] Melissa Colden, Altaf A. Dar, Sharanjot Saini, Priya V. Dahiya, Varahram Shahryari, Soichiro Yamamura, et al. "MicroRNA-466 inhibits tumor growth and bone metastasis in prostate cancer by direct regulation of osteogenic transcription factor RUNX2". In: *Cell Death and Disease* 8.1 (2017), pp. 1–11. ISSN: 20414889. DOI: 10.1038/cddis.2017.15. URL: http: //dx.doi.org/10.1038/cddis.2017.15.
- [323] Sumit Arora, Sharanjot Saini, Shinichiro Fukuhara, Shahana Majid, Varahram Shahryari, Soichiro Yamamura, et al. "MicroRNA-4723 inhibits prostate cancer growth through inactivation of the abelson family of nonreceptor protein tyrosine kinases". In: *PLoS ONE* 8.11 (2013). ISSN: 19326203. DOI: 10.1371/journal.pone.0078023.
- [324] Bing Cai, Wei Chen, Yue Pan, Hongde Chen, Yirong Zhang, Zhiliang Weng, et al. "Inhibition of microRNA-500 has anti-cancer effect through its conditional downstream target of TFPI in human prostate cancer". In: *Prostate* 77.10 (2017), pp. 1057–1065. ISSN: 10970045. DOI: 10.1002/pros.23361.
- [325] Xingkang Jiang, Yue Chen, E. Du, Kuo Yang, Zhihong Zhang, Shiyong Qi, et al. "GATA3-driven expression of miR-503 inhibits prostate cancer progression by repressing ZNF217 expression".
 In: Cellular Signalling 28.9 (2016), pp. 1216–1224. ISSN: 18733913. DOI: 10.1016/j.cellsig. 2016.06.002.
- [326] Yubo Tang, Bowen Wu, Shuai Huang, Xinsheng Peng, Xing Li, Xiufang Huang, et al. "Down-regulation of miR-505-3p predicts poor bone metastasis-free survival in prostate cancer". In: Oncology Reports 41.1 (2019), pp. 57–66. ISSN: 17912431. DOI: 10.3892/or.2018.6826.
- [327] Xiyan Zhang, Jian Zhou, Dongwei Xue, Zhi Li, Yili Liu, and Liming Dong. "MiR-515-5p acts as a tumor suppressor via targeting TRIP13 in prostate cancer". In: *International Journal of*

Biological Macromolecules 129 (2019), pp. 227–232. ISSN: 18790003. DOI: 10.1016/j.ijbiomac. 2019.01.127. URL: https://doi.org/10.1016/j.ijbiomac.2019.01.127.


- [328] Jayant K. Rane, Mauro Scaravilli, Antti Ylipää, Davide Pellacani, Vincent M. Mann, Matthew
 S. Simms, et al. "MicroRNA expression profile of primary prostate cancer stem cells as a source of biomarkers and therapeutic targets". In: *European Urology* 67.1 (2015), pp. 7–10.
 ISSN: 18737560. DOI: 10.1016/j.eururo.2014.09.005.
- [329] Lin Wang, Guanhua Song, Weiwei Tan, Mei Qi, Lili Zhang, Jonathan Chan, et al. "miR-573 inhibits prostate cancer metastasis by regulating epithelial-mesenchymal transition". In: Oncotarget 6.34 (2015). URL: www.impactjournals.com/oncotarget/.
- [330] Emma B. Laursen, Jacob Fredsøe, Linnéa Schmidt, Siri H. Strand, Helle Kristensen, Anne K.I. Rasmussen, et al. "Elevated miR-615-3p Expression Predicts Adverse Clinical Outcome and Promotes Proliferation and Migration of Prostate Cancer Cells". In: American Journal of Pathology 189.12 (2019), pp. 2377–2388. ISSN: 15252191. DOI: 10.1016/j.ajpath.2019.08.007. URL: https://doi.org/10.1016/j.ajpath.2019.08.007.
- [331] Robert K. Nam, Tania Benatar, Yutaka Amemiya, Christopher J.D. Wallis, Joan Miguel Romero, Melina Tsagaris, et al. "MicroRNA-652 induces NED in LNCaP and EMT in PC3 prostate cancer cells". In: Oncotarget 9.27 (2018), pp. 19159–19176. ISSN: 19492553. DOI: 10. 18632/oncotarget.24937.
- [332] Li Jiao, Zhen Deng, Chuanliang Xu, Yongwei Yu, Yun Li, Chun Yang, et al. "miR-663 induces castration-resistant prostate cancer transformation and predicts clinical recurrence". In: *Jour*nal of Cellular Physiology 229.7 (2014), pp. 834–844. ISSN: 10974652. DOI: 10.1002/jcp.24510.
- [333] Sharanjot Saini, Shahana Majid, Varahram Shahryari, Sumit Arora, Soichiro Yamamura, Inik Chang, et al. "MiRNA-708 control of CD44+ prostate cancer-initiating cells". In: *Cancer Research* 72.14 (2012), pp. 3618–3630. ISSN: 15387445. DOI: 10.1158/0008-5472.CAN-12-0540.
- [334] Han Guan, Chunhui Liu, Fang Fang, Yeqing Huang, Tao Tao, Zhixin Ling, et al. "MicroRNA 744 promotes prostate cancer progression through aberrantly activating Wnt/β-catenin signal-

ing". In: Oncotarget 8.9 (2017), pp. 14693-14707. ISSN: 19492553. DOI: 10.18632/oncotarget. 14711.

- [335] Yuemei Yang, Binghan Jia, Xiaoling Zhao, Yao Wang, and Weiliang Ye. "miR-93-5p may be an important oncogene in prostate cancer by bioinformatics analysis". In: Journal of Cellular Biochemistry 120.6 (2019), pp. 10463–10483. ISSN: 10974644. DOI: 10.1002/jcb.28332.
- [336] Benedikta S. Haflidadóttir, Olivia Larne, Myriam Martin, Margareta Persson, Anders Edsjö,
 Anders Bjartell, et al. "Upregulation of miR-96 Enhances Cellular Proliferation of Prostate
 Cancer Cells through FOXO1". In: *PLoS ONE* 8.8 (2013), pp. 1–11. ISSN: 19326203. DOI: 10.1371/journal.pone.0072400.
- [337] Helle Kristensen, Anni R. Thomsen, Christa Haldrup, Lars Dyrskjøt, Søren Høyer, Michael Borre, et al. "Novel diagnostic and prognostic classifiers for prostate cancer identified by genome-wide microRNA profiling". In: Oncotarget 7.21 (2016). ISSN: 1949-2553. DOI: 10.18632/ oncotarget.8953. URL: http://www.oncotarget.com/fulltext/8953.
- [338] L Schmidt, J Fredsøe, H Kristensen, S H Strand, A Rasmussen, S Høyer, et al. "Training and validation of a novel 4-miRNA ratio model (MiCaP) for prediction of postoperative outcome in prostate cancer patients". In: Annals of Oncology 29.9 (2018), pp. 2003–2009. DOI: 10.1093/annonc/mdy243.
- [339] Olivia Larne, Elena Martens-Uzunova, Zandra Hagman, Anders Edsjö, Giuseppe Lippolis, Mirella S.Vredenbregt Van Den Berg, et al. "MiQ - A novel microRNA based diagnostic and prognostic tool for prostate cancer". In: *International Journal of Cancer* 132.12 (2013), pp. 2867–2875. ISSN: 00207136. DOI: 10.1002/ijc.27973.
- [340] Ailsa Sita-Lumsden. "The role of prohibitin and miR-27a in prostate cancer progression and therapy response". PhD thesis. Imperial College London, 2016.

Appendix A

Appendix figures

Figure A1: Forest plot for miRs with single entries in the systematic review. For the full form of the abbreviated endpoints, refer to Table 2.1.

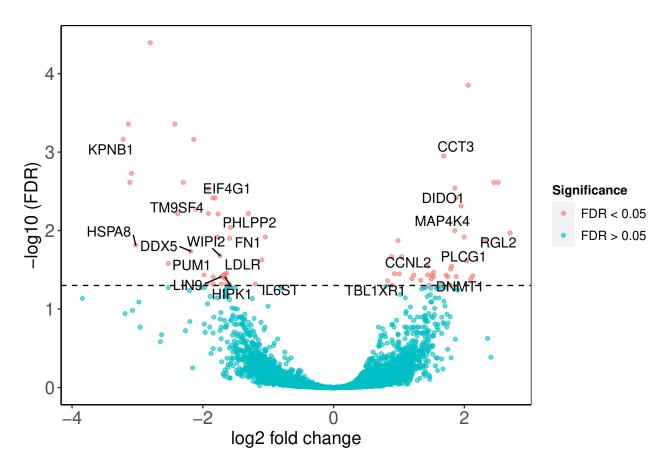


Figure A2: Volcano plot of the differentially expressed genes in ASO-27a the RNAseq dataset. Generalised linear model and FDR methods were used to perform the differential expression analysis and obtain the multiple test corrected p-values. Genes with positive and negative log2 fold changes are upregulated and downregulated respectively in ASO-27a treated group compared to ASO-NTC treated group. Genes that are predicted miR-27a-3p targets are labelled. Gene ITSN2, a significantly dysregulated and putative miR-27a-3p target gene, has been omitted from this plot due to its very low FDR p-value which skewed the plot. For an unedited volcano plot refer to Figure ??.

Appendix B

Appendix tables

Prognostic	Prog	nostic test		Reference	Association	Sample size	Sample	PMID	Ref
miR	test: endpoint	HR (95% CI)	р	group	after reference standardisation	Sample Size	\mathbf{type}	I WIID	ner
	multivariate: BPFS	$0.44 \ (0.193 - 1.022)$	0.05	low	negative	98 (cohort A)	tissue		
let-7b-5p	multivariate: BPFS	0.30(0.15-0.61)	< 0.010	low	negative	92 (cohort B)	tissue	- 23798998	[195]
1et-10-5h	multivariate: CFFS	$0.23 \ (0.08-0.70)$	< 0.010	low	negative	92 (cohort B)	tissue	- 20190990	[190]
	multivariate: CFFS	$0.46 \ (0.15 - 1.41)$	0.17	low	negative	98 (cohort A)	tissue	—	
let-7c	multivariate: CFFS	0.53 (0.19-1.48)	0.22	low	negative	98 (cohort A)	tissue	23798998	[195]
miR-1-3p	univariate/ KM:	0.29(0.10-0.90)	0.008	low	negative	99 (MSKCC)	tissue	22210864	[248]
	DFS								
miR-100-5p	multivariate: BPFS	3.65(1.38-9.62)	0.009	low	positive	49	tissue	21255804	[249]
miR-103a-3p	multivariate: BPFS	$0.41 \ (0.21 - 0.79)$	0.008	low	negative	93	serum	24583788	[250]
miR-106b-5p	univariate/ KM:	2.70 (1.10-7.30)	0.014	low	positive	113 (MSKCC)	tissue	22986525	[251]
	DFS								
miR-10b-5p	multivariate: BPFS	2.15 (1.02-4.51)	0.044	low	positive	52	tissue	21769427	[252]
miR-1193	multivariate: BPFS	5.00 (1.60-15.60)	0.006	low	positive	43	tissue	25760964	[253]
miR-1207-3p	multivariate: RFS	2.50 (1.60-4.00)	< 0.010		positive	368	tissue	-27267842	[254]
	multivariate: CSS	1.80(0.80-4.30)	0.060	low	positive	368	tissue		
miR-1231	multivariate: OS	2.17(1.03-4.56)	0.041	low	positive	118	tissue	31822000	[255]
miR-125b-5p	multivariate: BPFS	1.79(1.10-2.91)	0.018	low	positive	93	serum	24583788	[250]
-	multivariate: BPFS	$0.23 \ (0.01 - 3.75)$	0.304	low	negative	76	tissue	19676045	[154]
miR-126-3p	multivariate: BPFS	$3.68 \ (0.99-6.83)$	0.010	high	negative	128	tissue	24350576	[256]
miR-128-3p	multivariate: BPFS	3.96(1.02 - 8.12)	0.010	high	negative	128	tissue	- 26339409	[257]
mm-120-5p	multivariate: BPFS	3.32(0.92-6.91)	0.010	high	negative	128	serum	- 20009409	[201]
miR-129-5p	multivariate: OS	2.77 (0.93 - 8.17)	0.048	high	negative	84	peripheral blood	31788094	[258]
	multivariate: DSS	6.12 (1.56-24.07)	0.009	low methy- lation	positive	180 (cohort 1)	tissue	28143614	[194]
miR-1290	univariate: OS	8.04 (2.36-27.33)	< 0.001	high	negative	100	exosome (blood)	25129854	[259]
miR-1303	KM: OS	-	0.031	high	positive	30	tissue	31772644	[260]
miR-130b-3p	multivariate: OS	22.4 (2.30-222.40)	0.008	high	negative	36 (African Americans)	tissue	31266828	[261]

	multivariate: OS	$1.1 \ (0.10-8.30)$	0.910	high	negative	57 (European American)	tissue		
miR-133a-3p	multivariate: bone MFS	0.37 (0.19-0.74)	0.005	low	negative	223 (TCGA)	tissue	30021600	[262]
	multivariate: OS	1.07 (0.41-2.78)	0.886	low	positive	245 (TCGA)	tissue	_	
	multivariate: BPFS	1.78 (1.01-3.11)	0.040	low	positive	135	tissue	24610824	[263]
miR-133b	univariate: bone MFS	0.08 (0.03-0.22)	0.001	low	negative	176	tissue	30006541	[264]
	multivariate: OS	6.90(0.72-66.60)	0.095	low	positive	202	tissue	_	
miR-139-5p	multivariate: OS	0.25 (0.07-0.93)	0.038	high	positive	84	peripheral blood	31788094	[258]
	multivariate: BPFS	0.77 (0.58 - 1.04)	0.091	low	negative	540	tissue	- 31269290	[265]
	multivariate: MFS	0.60(0.28-1.28)	0.188	low	negative	540	tissue	- 31209290	[205]
miR-141-3p	multivariate: BPFS	1.07 (1.00-1.14)	0.05	low	positive	463	epithelial and stromal	30674952	[266]
	multivariate: BPFS	1.92(1.32 - 2.79)	0.001	low	positive	207	tissue	31640261	[215]
miR-143-5p	univariate: RFS	0.32(0.12-0.81)	0.016	low	negative	49	tissue	28628624	[267]
шк-145-эр	KM: OS	-	0.047	high	positive	n/s (TCGA)	tissue	30027097	[268]
	multivariate: BPFS	4.47 (1.27-15.74)	0.020	high	negative	36 (low + intermedi- ate risk)	tissue	23703249	[196]
miR-145-5p	multivariate: BPFS	4.43 (1.11-17.61)	0.035	high	negative	29 (intermediate risk)	tissue		
-	multivariate: PFS	0.40(0.17 - 0.94)	0.036	low	negative	106	tissue	20332243	[197]
	univariate/ KM: OS	3.00(1.60-7.00)	< 0.010	high	negative	49	tissue	25969144	[198]
	univariate: BPS	0.74 (0.23-2.34)	0.609	low	negative	76	tissue	19676045	[154]
	univariate: BPFS	0.68(0.22-2.14)	0.510	low	negative	73	tissue	22864280	[199]
	multivariate: DFS	1.26(0.49-3.27)	0.629	high	negative	73	tissue	23703249	[196]
miR-146-3p	multivariate: BPFS	1.16(1.03-1.31)	0.017	low	positive	16	serum	23846169	[176]
miR-146a-5p	KM: BPFS	-	0.048	low	negative	98 (MSKCC)	tissue	26306811	[269]
miR-146a-5p rs2910164	multivariate: BPFS	0.83 (0.30-2.32)	0.722	CC vs GG/GC	negative	72	peripheral blood	25526182	[189]
miR-148a-3p	multivariate: BPFS	0.60(0.44-0.81)	0.001	low	negative	207	tissue	31640261	[215]
miR-149-5p	multivariate: BPFS	0.68 (0.22-2.15)	0.510	low	negative	76	tissue	19676045	[154]
miR-150-5p	KM: OS	-	0.035	low	negative	86	tissue	30009782	[270]

'D 150 9	KM: BPFS	-	< 0.001	low	negative	n/s (MSKCC)	tissue	25004396	[200]
miR-152-3p	multivariate: DFS	0.23 (0.07 - 0.72)	0.012	low	negative	494 (TCGA)	tissue	29599847	[201]
miR-153	multivariate: OS	2.48 (1.58-10.73)	0.019	low	positive	143	tissue	31490362	[271]
:D 15h F	univariate: OS	0.69(0.14-3.51)	0.658	high	positive	387 (TCGA)	tissue	00969969	[070]
miR-15b-5p	multivariate: RFS	1.16 (0.68-1.98)	0.583	high	negative	387 (TCGA)	tissue	29363862	[272]
miR-16-5p	KM: BPFS	-	0.003	low	negative	n/s (MSKCC)	tissue	30032144	[204]
шк-10-әр	multivariate: BPFS	48.4 (1.26-1858)	0.037	low	positive	76	tissue	19676045	[154]
miR-17-5p	KM: BPFS	-	0.013	high	positive	268 (TCGA)	tissue	31122242	[273]
miR-181b-5p	multivariate: BPFS	1.97 (0.21 - 18.70)	0.553	low	positive	76	tissue	19676045	[154]
miR-182-3p	multivariate: BPFS	$0.43 \ (0.01 - 17.80)$	0.658	low	negative	76	tissue	19676045	[154]
	KM: OS	-	0.002	high	positive	63	tissue	27179774	[274]
	KM: OS	-	0.012	high	positive	52	tissue	23383207	[275]
	multivariate: BPFS	2.00(1.00-3.50)	0.009	low	positive	204	tissue		
miR-182-5p	multivariate: PFS	2.50(1.00-5.00)	0.013	low	positive	204	tissue	24518785	[276]
	univariate: BPFS	1.50(1.00-2.00)	0.147	low	positive	137	tissue	24310703	[270]
	multivariate: PFS	1(0.50-2.00)	0.387	low	positive	137	tissue		
	multivariate: BPFS	0.36 (0.01-17.90)	0.608	low	negative	76	tissue	19676045	[154]
miR-183-3p	KM: OS	-	0.001	high	positive	n/s (TCGA)	tissue	30027097	[268]
	multivariate: BPFS	27.40(0.46-1622)	0.112	low	positive	76	tissue	19676045	[154]
miR-184	multivariate: BPFS	3.48(0.16-73.90)	0.423	low	positive	76	tissue	19676045	[154]
miR-186-5p	KM: PS	-	0.028	low	negative	38	tissue	27121312	[277]
miR-188-5p	multivariate: BPFS	2.11(1.34-3.33)	0.001	high	negative	180	tissue	25714029	[278]
mm-100-5p	multivariate: OS	3.01(1.74-5.21)	< 0.001	high	negative	180	tissue	23714029	[270]
miR-190a	KM: DFS	-	0.035	low	negative	35	tissue	26314494	[279]
miR-191-5p	multivariate: OS	2.31 (1.67-9.01)	0.027	low	positive	146	tissue	31335671	[280]
miR-192-5p	KM: BPFS	-	0.007	high	positive	n/s (TCGA)	tissue	30544100	[281]
miR-194-5p	multivariate: BPFS	1.08 (0.91-1.28)	0.399	low	positive	16	serum	23846169	[176]
	multivariate: BPFS	5.96(1.18-30.02)	0.031	high	negative	140	tissue	26338045	[202]
	multivariate: OS	4.46(1.35-14.72)	0.014	high	negative	140	tissue	20338043	[202]
miR-195-5p	multivariate: BPFS	$0.61 \ (0.41 - 0.93)$	0.022	low	negative	107 (MSKCC)	tissue	26080838	[203]
mm-199-9h	KM: BPFS	-	0.009	low	negative	131 (MSKCC)	tissue	30032144	[204]
	KM: RFS	-	0.049	low	negative	98 (MSKCC)	tissue	26650737	[205]
	KM: DFS	_	< 0.010		negative	n/s (MSKCC)	tissue	27175617	[206]
miR-19a-3p	KM: BPFS	-	0.034	high	positive	328 (TCGA)	tissue	29416742	[282]

miR-200b-3p	KM: BPFS	-	0.049	low	negative	51	tissue	25409297	[283
miR-203a-3p	univariate/ KM: PS	2.52(1.14-5.55)	0.023	low	positive	44	tissue	26499781	[216
miR-204-5p	KM: bone MFS	0.25 (0.14 - 0.48)	< 0.001	low	negative	136	serum	31678733	[284]
	multivariate: BPFS	1.70(1.23-2.36)	0.001	high	negative	535	tissue	29176717	[138]
	univariate/ KM: OS	2.33(1.11-4.88)	0.030	high	negative	49	tissue	23571738	[285]
	multivariate: BPFS	2.23 (0.99-5.00)	0.05	low methylation	negative	149	tissue	22869146	[193]
miR-205-5p	multivariate: CSS	6.88(1.66-28.53)	0.001	high	negative	105 (cohort train)	tissue		
	multivariate: CSS	6.55(1.29-33.10)	0.023	high	negative	78 (cohort valida-	tissue		
						tion)		24173237	[286]
	multivariate: BPFS	1.96(0.80-4.80)	0.141	high	negative	105 (cohort train)	tissue		
	multivariate: CFFS	$0.86\ (0.08-9.16)$	0.900	high	positive	78 (cohort valida-	tissue	_	
						tion)			
	multivariate: BPFS	$0.76\ (0.35 - 2.62)$	0.472	high	positive	78 (cohort valida-	tissue		
						tion)			
	univariate: BPFS	0.37 (0.10 - 1.40)	0.128	low	negative	76	tissue	19676045	[154]
miR-20a-5p	KM: BPFS	-	< 0.001	high	positive	268 (TCGA)	tissue	31122242	[273]
miR-20b-5p	KM: BPFS	-	0.180	high	positive	268 (TCGA)	tissue	31122242	[273]
	multivariate: BPFS	2.40(1.06-5.49)	0.037	low	positive	167 (Gleason $== 6$)	stromal	-25401698	[246]
	multivariate: BPFS	1.40 (1.0-1.90)	0.089	low	positive	170 (all cohort)	stromal		
	multivariate: BPFS	2.06(1.08-3.94)	0.029	low	positive	168	tissue	22341810	[287]
miR-21-5p	multivariate: PFS	1.99 (1.03-3.82)	0.040	low	positive	85	tissue	27040772	[247]
	multivariate: RFS	6.15(1.04-36.48)	0.045	high	negative	65 (obese)	tissue		
	multivariate: RFS	1.99(0.70-5.64)	0.200	high	negative	65 (obese + non-	tissue	23353719	[245]
						obese)			
	multivariate: RFS	1.28 (0.3-5.49)	0.740	high	negative	45 (non-obese)	tissue		
miR-210-3p	multivariate: CFFS	2.76(1.25-6.09)	0.012	low	positive	535	fibroblast	27824162	[288]
miR-212-3p	KM: PS	-		low	negative	72	tissue	29917185	[289]
	univariate/ KM:	$0.44 \ (0.21 - 0.90)$	0.015	low	negative	107	serum		
miR-218-5p	bone MFS							-30870834	[290]
	univariate/ KM:	$0.38 \ (0.19-0.78)$	0.009	low	negative	107	tissue	00010001	[_00]
	bone MFS								
	univariate/ KM: OS	0.82 (0.19-3.62)	0.875	low	negative	109	serum		
	univariate/ KM: OS	$0.79\ (0.18 - 3.38)$	0.757	low	negative	109	serum		

	multivariate: CRFS	$0.53 \ (0.29 - 0.95)$	0.032	low	negative	92	tissue	19585579	[291
miR-221-3p	KM: CRPC FS	-	0.012	high	positive	45 (Gleason >= 8)	whole blood	24760272	[292
	multivariate: BPFS	0.74(0.61-0.90)	0.002	low	negative	207	tissue	31640261	[215
	univariate: BPFS	$0.36 \ (0.17 - 1.90)$	0.570	low	negative	73	tissue	22864280	[199
	KM: CRPC FS	-	0.147	low	negative	52	tissue	26325107	[293
	multivariate: BPFS	0.5(0.01-39.10)	0.757	low	negative	76	tissue	19676045	[154
	multivariate: RFS	0.56 (0.21 - 1.50)	0.250	high	positive	63 (all cases)	tissue		
	multivariate: RFS	0.40(0.09-1.84)	0.240	high	positive	44 (non-obese)	tissue	23353719	[245]
	multivariate: RFS	0.46 (0.10-2.22)	0.330	high	positive	19 (obese)	tissue	-	
	multivariate: BPFS	2.80 (1.29-6.20)	0.009	low	positive	93	serum	24583788	[250]
	multivariate: CRPC	$0.21 \ (0.07 - 0.64)$	0.006	low	negative	52	tissue	26325107	[293]
D 999 9	\mathbf{FS}								
miR-222-3p	multivariate: BPFS	5.04(0.03-940)	0.544	low	positive	76	tissue	19676045	[154]
	multivariate: RFS	0.39(0.14-1.15)	0.090	high	positive	60 (all cases)	tissue		
	multivariate: RFS	0.37 (0.09-1.59)	0.180	high	positive	42 (non-obese)	tissue	23353719	[245]
	multivariate: RFS	0.46 (0.07-3.19)	0.440	high	positive	18 (obese)	tissue	-	
	multivariate: BPFS	0.25 (0.08 - 0.74)	0.010	low	negative	114	tissue	24382668	[207]
miR-224-5p	multivariate: BPFS	0.64(0.14-2.39)	0.525	low	negative	58	tissue	23136246	[208
miR-23a-3p	multivariate: PS	1.78(1.12-2.83)	0.015	low	positive	123	tissue	25714010	[294]
miR-23a-3p rs3745453	multivariate: OS	9.67 (2.83-33.09)	0.001	CT/TT vs CC	positive	156	peripheral blood	31876746	[190
	univariate/ KM: OS	8.10 (4.00-19.00)	< 0.001	high	negative	151	tissue	00074000	[007
miR-23b-3p	univariate/ KM:	6.20 (3.00-13.00)	< 0.001	high	negative	151	tissue	- 23074286	[295
	RFS								
	KM: OS	-	0.042	high	positive	n/s (TCGA)	tissue	30027097	[268
miR-26a-3p	KM: OS	-	0.038	low	negative	140	tissue	27449037	[296
miR-27a-3p	KM: PS	-	< 0.050	high	positive	60	serum	30250598	[169
miR-27b-3p	multivariate: CRPC	$0.26 \ (0.07-0.94)$	0.041	low	negative	49	tissue	25115396	[297]
	\mathbf{FS}								
miR-301a-3p	multivariate: BPFS	1.42(1.06-1.90)	0.019	low	positive	609	tissue	26990571	[298
	multivariate: BPFS	0.34(0.17-0.68)	0.002	low	negative	103	tissue	24452717	[217
miR-30c-5p	univariate: PS	2.38 (1.09-5.22)	0.015	low	positive	44	tissue	26499781	[216
*	multivariate: BPFS	0.49 (0.28-0.85)	0.011	low	negative	207	tissue	31640261	215
miR-30d-5p	multivariate: BPFS	5.93 (1.75-20.09)	0.003	low	positive	56	tissue	23231923	[299]

	multivariate: BPFS	1.94 (0.71-5.29)	0.198	high	negative	113 (MSKCC)	tissue	28241827	[300]
	multivariate: BPFS	0.78 (0.67-0.91)	0.001	low	negative	207	tissue	31640261	[215]
miR-31-5p	multivariate: BPFS	15 (0.19-1179)	0.224	low	positive	76	tissue	19676045	[154]
miR-320e	multivariate: BPFS	3.20 (1.10-9.60)	0.034	low	positive	43	tissue	25760964	[253]
'D 200	KM: OS	-	0.027	low	negative	58	tissue	20242001	
miR-326	KM: BPFS	-	0.020	low	negative	58	tissue	- 30243091	[301]
	KM: OS	-	0.339	low	negative	20	tissue		
miR-335-5p	KM: MFS	-	0.185	low	negative	20	tissue	$^-23456549$	[302]
	KM: BPFS	-	0.713	low	negative	20	tissue	_	
miR-338-3p	univariate/ KM:	0.78(0.54-1.14)	0.020	low	negative	25 (MSKCC)	tissue	26907180	[303]
	BPFS								
miR-34b-3p	univariate/ KM:	3.30(1.30-8.70)	0.020	high	negative	74	tissue	23147995	[304]
	BPFS								
miR-34b/c	multivariate: DFS	2.76(1.24-6.15)	0.013	low	- negative	74	tissue	28143614	[194]
mm -3 40/0	multivariate: DSS	3.84(1.27-11.60)	0.017	methylation	- negative	14	ussue	20143014	[194]
miR-34c-5p	KM: PS	-	< 0.001	low	negative	49	tissue	21351256	[305]
miR-3607-5p	KM: PS	-	0.046	low	negative	100	tissue	24817628	[306]
miR-3622a-5p	KM: OS	-	0.049	low	negative	124 (TCGA)	tissue	28498363	[307]
miR-3622b-5p	KM: BPFS	-	0.032	low	negative	124	tissue	- 27611943	[308]
min-30220-3p	KM: OS	-	0.262	low	negative	94	tissue	- 27011943	[308]
miR-373-3p	KM: OS	-	0.038	low	negative	56	tissue	30338790	[309]
miR-374b-5p	multivariate: BPFS	$0.38 \ (0.17 - 0.85)$	0.018	low	negative	99	tissue	24191917	[310]
miR-375	univariate: OS	2.69(1.52-4.77)	< 0.001	low	positive	100	exosomes	25129854	[259]
11111-375							(blood)		
	multivariate: BPFS	$0.42 \ (0.03-5.60)$	0.544	low	negative	76	tissue	19676045	[154]
miR-378-3p	multivariate: DFS	4.79(1.31-15.52)	0.018	gain vs loss	negative	27 (high + v. high	tissue	25153390	[311]
mm-378-3p						$\operatorname{risk})$		20100090	[911]
	multivariate: DFS	1.72(0.82 - 3.63)	0.152	gain vs loss	negative	26	tissue	_	
miR-379-5p	KM: DFS	-	0.012	high	positive	107 (MSKCC)	tissue	25324143	[312]
miR-409-3p	KM: DFS	-	< 0.001	high	positive	107 (MSKCC)	tissue	24963047	[313]
miR-410-3p	KM: OS	-	0.011	high	positive	82	tissue	29969630	[314]
miR-423-3p	multivariate: CSS	0.64(0.40-1.01)	0.054	CC vs	negative	601	peripheral	21149617	[191]
rs6505162				CA/AA			blood		
miR-424-3p	multivariate: CFFS	$0.44 \ (0.22 - 0.87)$	0.018	low	negative	404	tissue	31337863	[315]
-					-				_

miR-4288	KM: OS	-	0.070	low	negative	74	tissue	30874288	[316]
miR-4319	KM: OS	-	< 0.050	low	negative	40	tissue	29633185	[317]
miR-449b-5p	multivariate: BPFS	1.90(1.25-2.85)	0.003	low	positive	163	tissue	25416653	[318]
miR-4516	multivariate: BPFS	3.60 (1.30-10.00)	0.013	low	positive	43	tissue	25760964	[253]
miR-452-5p	KM: CRPC FS	-	0.041	low	negative	52	tissue	27070713	[319]
miR-4534	univariate/ KM: OS	6.00 (3.00-17.00)	0.040	low	positive	84	tissue	27634912	[320]
miR-455-5p	KM: RFS	-	0.006	low	negative	107 (MSKCC)	tissue	31111062	[321]
miR-466	KM: RFS	-	0.010	low	negative	75	tissue	28125091	[322]
miR-4723-5p	KM: PS	-	0.043	low	negative	57	tissue	24223753	[323]
miR-500a-5p	KM: OS	-	< 0.050	high	positive	148	tissue	28631332	[324]
miR-503-5p	KM: PS	-	< 0.010	low	negative	82	tissue	27267060	[325]
miR-505-3p	univariate/ KM:	$0.25 \ (0.12 - 0.56)$	0.002	low	negative	81	tissue	30365141	[326]
mint ooo op	bone MFS							_	[020]
	univariate/ KM: OS	0.50 (0.10-2.46)	0.002	low	negative	127	tissue		
miR-508-3p	multivariate: BPFS	3.00 (1.10-8.00)	0.030	low	positive	43	tissue	25760964	[253]
miR-515-5p	KM: OS	-	0.018	low	negative	96	tissue	30685303	[327]
miR-548c-3p	KM: RFS	-	0.039	low	negative	n/s (MSKCC)	tissue	25234358	[328]
miR-563	multivariate: BPFS	$0.30 \ (0.10 - 0.80)$	0.023	low	negative	43	tissue	25760964	[253]
miR-573	KM: MFS	-	0.041	low	negative	55	tissue	26451614	[329]
miR-582-3p	univariate/ KM: bone MFS	$0.31 \ (0.15 - 0.66)$	0.002	low	negative	94 (TCGA)	tissue	30852380	[218]
	univariate/ KM: OS	0.43 (0.19-1.88)	0.26	low	negative	157 (TCGA)	tissue	_	
·D *00 *	univariate/ KM:	0.21 (0.10-0.45)	< 0.001		negative	94 (TCGA)	tissue	200522200	
miR-582-5p	bone MFS				0			30852380	[218]
	univariate/ KM: OS	0.74 (0.17-3.27)	0.696	low	negative	157 (TCGA)	tissue		
miR-598	multivariate: BPFS	0.30 (0.10-0.90)	0.030	low	negative	43	tissue	25760964	[253]
miR-601	multivariate: BPFS	4.60 (1.60-12.70)	0.004	low	positive	43	tissue	25760964	[253]
miR-605 rs2043556	multivariate: BPFS	1.96 (1.16-3.30)	0.010	GG vs	positive	846	peripheral	24740842	[192]
				AA/AG			blood		
	multivariate: CSS	2.66 (1.29-5.49)	0.008	low	positive	734 (cohort 1+2+3)	tissue	_	
	multivariate: BPS	1.38 (0.84-2.26)	0.210	low	positive	239 (cohort 1)	tissue	_	
miR-615-3p	multivariate: BPS	1.05 (0.67-1.66)	0.820	low	positive	222 (cohort 2)	tissue	31539518	[330]
	multivariate: BPS	$1.31 \ (0.86-2.01)$	0.210	low	positive	$273 \pmod{3}$	tissue	_	

	multivariate: BPS	$1.46\ (0.78-2.73)$	0.240	low	positive	$387 \pmod{4}$	tissue		
miR-626	multivariate: BPFS	$0.30 \ (0.10 - 0.90)$	0.039	low	negative	43	tissue	25760964	[253]
miR-628-3p	multivariate: BPFS	6.60(1.90-23.50)	0.004	low	positive	43	tissue	25760964	[253]
miR-652-3p	multivariate: BPFS	1.47 (1.09-1.98)	0.013	low	positive	585	tissue	29721191	[331]
mm-052-5p	multivariate: MFS	1.16(0.54-2.48)	0.710	low	positive	585	tissue	- 29721191	[991]
miR-663	multivariate: PFS	2.92(1.98-4.32)	< 0.001	low	positive	127	tissue	24243035	[332]
miR-7-5p	KM: CRPC FS	-	0.004	high	positive	45 (Gleason >= 8)	whole blood	24760272	[292]
miR-708-5p	KM: PS	6.00 (2.20-16.40)	0.006	high	negative	134	tissue	22552290	[333]
miR-744-5p	multivariate: BPFS	8.27 (1.85 - 37.06)	0.006	low	positive	98 (MSKCC)	tissue	28107193	[334]
	KM: RFS	2.01 (1.49-2.71)	< 0.001	low	positive	n/s (TCGA)	tissue		
miR-93-5p	KM: MFS	$0.79 \ (0.65 - 0.57)$	0.701	low	negative	n/s (TCGA)	tissue	30582208	[335]
	KM: OS	2.11 (0.96-4.67)	0.064	low	positive	n/s (TCGA)	tissue	-	
miR-95-3p	KM: OS	-	0.012	high	positive	n/s (TCGA)	tissue	30027097	[268]
	KM: OS	2.20(1.04-4.46)	0.039	low	positive	50	tissue	23951320	[336]
miR-96	multivariate: BPFS	$3.91 \ (0.99-15.60)$	0.053	low	positive	76	tissue	19676045	[154]
	uni: BPFS	$0.71 \ (0.23-2.24)$	0.560	low	negative	73	tissue	22864280	[199]
		• 1 1 • TO NT A / 1	4 1		1 1 0 11	• • • •	· · · · DO	C 1 •14	•

Table B.1: A table of all individual miRNAs that have been investigated for their prognostic potential in PCa so far, built by performing a systematic review of relevant publications in the Pubmed database. KM, univariate and multivariate tests stand for Kaplan-Meier test, and univariate and multivariate Cox PH regressions respectively. For test entries "univariate/ KM", both univariate Cox PH and KM analysis were performed but there was no associated p-value for the Cox analysis. Thus the HR and 95% CI corresponds to outputs of the univariate Cox PH and the p-value corresponds to KM log-rank test. The values in the "Prognostic test" and "Reference group" columns refer to the statistics and the reference group used for comparison as reported in respective papers. In contrast, the "Association after reference group. Refer to B.2 for endpoint definitions and adjusted variables included in the multivariate analyses. n/s represents not-specified. Refer to Table 2.1 for the full form of the abbreviated endpoints.

PMID	! D	Trada at at	oint Endpoint definition		bles in m	ultivar	iate C	ox PH analysis	Ref
PMID	miR	Endpoint	Endpoint definition	Gleason	T stage	\mathbf{PSA}	age	others	
23798998	let-7b-5p	BPFS	$PSA \ge 0.2 \text{ ng/ml}$ on 2 consecutive follow-up vis-	х	х	х			[195]
			its						
23798998	let-7b-5p	CFFS	clinical failure declared when either local or dis-	х	х	х			[195]
			tant metastases histologically proven or con-						
			firmed by CT or bone scan						
23798998	let-7c	CFFS	clinical failure declared when either local or dis-	x	х	х			[195]
			tant metastases histologically proven or con-						
			firmed by CT or bone scan						
22210864	miR-1-3p	DFS	no definition	х			х		[248]
21255804	miR-100-5p	BPFS	$PSA \ge 0.2 \text{ ng/ml}$			х		% tumour volume	[249]
24583788	miR-103a-3p	BPFS	serum PSA of 0.2 ng/mL or greater (obtained	x		х	х	body-mass index	[250]
			6 weeks -3 months post-operatively), with a						
			second confirmatory level of PSA greater than						
			0.2 ng/mL						
22986525	miR-106b-5p	DFS	no definition						[251]
21769427	miR-10b-5p	BPFS	the first post-operative PSA of >0.1 ng/ml, as	x	х	х		surgical margin sta-	[252]
			confirmed by at least 1 subsequent increasing					tus	
			value (persistent PSA increase) after achieving						
			undetectable PSA post-operatively, defined as a						
			detection limit of <0.04 ng/ml						
25760964	miR-1193	BPFS	recurrence after salvage radiation at least twice	x				lymph node status	[253]
			consecutively following the nadir						
27267842	miR-1207-3p	RFS	time from the date of PCa diagnosis to PCa		х		х		[254]
			recurrence or non-recurrence death, whichever						
			comes first						
27267842	miR-1207-3p	CSS	PCa death		Х		х		[254]
31822000	miR-1231	OS	no definition	x	х	х	х	differentiation,	[255]
								lymph node met	
24583788	miR-125b-5p	BPFS	serum PSA of 0.2 ng/mL or greater (obtained 6	х		х	х	body-mass index	[250]
			weeks -3 months postoperatively), with a sec-						
			ond confirmatory level of PSA greater than 0.2						
			ng/mL (N=31, classified as progressors)						

19676045	miR-125b-5p	BPFS	post-operative PSA value >0.1 lg/l confirmed	х	х	х	х	surgical margin sta-	[154]
			by at least one subsequent rising value after the					tus	
			patients had reached an undetectable PSA level						
			(detection limit <0.04 lg/l) after surgery						
24350576	miR-126-3p	BPFS	the period between surgical treatment and the		х			lymph node met,	[256]
			measurement of two successive values of serum					angiolymphatic	
			$PSA level \ge 0.2 ng/ml$					invasion	
26339409	miR-128-3p	BPFS	the period between surgical treatment and the		х			lymph node met,	[257]
			measurement of two successive values of serum					angiolymphatic	
			$PSA level \ge 0.2 ng/ml$					invasion	
31788094	miR-129-5p	OS	no definition	х	х	х		met, TNM, miR139	[258]
28143614	miR-129-5p	DSS	the time elapsed since diagnosis until death or	Х					[194]
			the last follow-up						
25129854	miR-1290	OS	no definition						[259]
31772644	miR-1303	OS	no definition						[260]
31266828	miR-130b-3p	OS	the time of surgery until time of the death or	Х	х	х	х	PSA failure	[261]
			last follow-up						
31266828	miR-130b-3p	OS	the time of surgery until time of the death or	х	х	х	х		[261]
			last follow-up						
30021600	miR-133a-3p	bone MFS	no definition	Х	х	х	х	lymph node status	[262]
30021600	miR-133a-3p	OS	no definition	х	х	х	х	lymph node status	[262]
24610824	miR-133b	BPFS	the time from the date of surgery to that of BCR	х		х		RB1CC1 gene, surgi-	[263]
			(postoperative serum PSA concentration ≥ 0.2					cal tumour margins	
			ng/mL)						
30006541	miR-133b	bone MFS	no definition						[264]
30006541	miR-133b	OS	no definition	х	х	х	х	lymph node status	[264]
31788094	miR-139-5p	OS	overall survival rate	Х	х	х		lymph node met, dis-	[258]
								tant met, miR-129	
31269290	miR-139-5p	BPFS	PSA increase of at least 0.2 ng/mL on at least	х	х	х	х	surgical margin sta-	[265]
			two separate consecutive measurements that are					tus, lymph node sta-	_
			at least 3 months apart					tus	

31269290	miR-139-5p	MFS	lesions within the bone identified on radionu-	X	x	x			[265]
51209290	mnt-139-5p		clide bone scan and lymphadenopathy or vis-	А	А	л			[200]
			ceral lesions identified by computed tomography						
			imaging of the abdomen, pelvis and chest						
30674952	miR-141-3p	BPFS	the time from surgery to PSA threshold (no def-	X	x		37	positive surgical	[266]
30074932	mm-141-5p	DITS	inition of PSA threshold given)	А	А		х	margins, apical	[200]
			mitton of 1 SA timeshold given)					positive surgical	
								margins, perineural	
								infiltration	
31640261	miR-141-3p	BPFS	no definition					miR-30c-5p, miR-	[215]
31040201	mm-141-5p	DITS	no demition					30d-5p, miR-31-5p,	[210]
								miR-148a-3p, miR-	
								221-3p	
28628624	miR-143-5p	RFS	the time from surgery to BCR or death of any					221-3p	[267]
20020024	mm-145-5p		cause						[201]
30027097	miR-143-5p	OS	no definition						[268]
20332243	miR-145-5p	PFS	the time from definitive diagnosis to any of	X	x	x			[197]
20002240	mnt-140-0p	115	the following events after initial treatment:	л	л	л			[131]
			prostate-specific antigen elevation, local pro-						
			gression, metastasis, or disease-specific death as						
			failure of treatment						
23703249	miR-145-5p	BPFS	two consecutive measurements of serum $PSA >$	X	x	X	x	digital rectal exami-	[196]
20100249	mnt-140-0p	DITS	0.2 ng/ml	л	л	л	л	nation	[130]
23703249	miR-145-5p	BPFS	two consecutive measurements of serum $PSA \ge$	X	x	X	x	digital rectal exami-	[196]
25105249	mm-145-5p	DITS	0.2 ng/ml	А	А	л	л	nation	[190]
25969144	miR-145-5p	OS	no definition					nation	[198]
23909144 22864280	miR-145-5p	BPFS	$PSA \ge 0.2$ ng ml at two consecutive follow-up						[198]
22004200	mm-145-5p	DITS	$1.5A \ge 0.2$ ig in at two consecutive follow-up visits						[199]
23703249	miR-145-5p	DFS	interval between the radical prostatectomy and	X	x	x	x	digital rectal exami-	[196]
20100249	mnt-140-0p	DIS	the time of biochemical relapse, or the time pe-	л	л	л	л	nation	[130]
			riod between the surgery and the most recent					nation	
			measurement of serum PSA for the patients who						
			did not present biochemical recurrence						
			and not present biochemical recurrence						

19676045	miR-145-5p	BPFS	post-operative PSA value >0.1 lg/l confirmed						[154]
			by at least one subsequent rising value after the						
			patients had reached an undetectable PSA level						
			(detection limit $<0.04 \text{ lg/l}$) after surgery						
23846169	miR-146-3p	BPFS	biochemical disease progression with a serum	х	х	х		surgical margin sta-	[176]
			PSA concentration of 0.2 ng/ml increasing over					tus, seminal vesicle	
			a 3-month period					invasion	
26306811	miR-146a-5p	BPFS	no definition						[269]
25526182	miR-146a-5p	BPFS	post-operative PSA level $\geq 0.2 \text{ ng/mL}$	Х	х	х	х	positive surgical	[189]
								margins, perineural	
								infiltration	
31640261	miR-148a-3p	BPFS	no definition					miR-30c-5p, miR-	[215]
	-							30d-5p, miR-31-5p,	
								miR-141-3p, miR-	
								221-3p	
19676045	miR-149-5p	BPFS	post-operative PSA value >0.1 lg/l confirmed					-	[154]
			by at least one subsequent rising value after the						
			patients had reached an undetectable PSA level						
			(detection limit $< 0.04 \text{ lg/l}$) after surgery						
30009782	miR-150-5p	OS	no definition						[270]
25004396	miR-152-3p	BPFS	no definition						[200]
29599847	miR-152-3p	DFS	the date of the radical prostatectomy to the date	х	х	х	х	surgical margin sta-	[201]
	-		of relapse, or date of last follow-up or death if					tus, lymph node sta-	
			relapse-free					tus	
31490362	miR-153	OS	no definition	Х	х	х	х	TNM staging, family	[271]
								history, lymph node	
								met, bone met, type	
								of surgery	
29363862	miR-15b-5p	OS	no definition						[272]
29363862	miR-15b-5p	RFS	no definition	х	х	х			[272]
30032144	miR-16-5p	BPFS	no definition						[204]
00002111		D110							[-~]

19676045	miR-16-5p	BPFS	post-operative PSA value >0.1 lg/l confirmed	x	x	x	x	surgical margin sta-	[154]
15010045	mm-10-0p	DIIS	by at least one subsequent rising value after the	А	л	л	л	tus	
			patients had reached an undetectable PSA level					0.03	
			(detection limit < 0.04 lg/l) after surgery						
31122242	miR-17-5p	BPFS	no definition						[273]
19676045	miR-181b-5p	BPFS	post-operative PSA value >0.1 lg/l confirmed	х	x	x	x	surgical margin sta-	[154]
10010010	mit 1010 0p	DIIS	by at least one subsequent rising value after the	А	л	А	Λ	tus	
			patients had reached an undetectable PSA level					0.03	
			(detection limit < 0.04 lg/l) after surgery						
19676045	miR-182-3p	BPFS	post-operative PSA value >0.1 lg/l confirmed	X	x	x	x	surgical margin sta-	[154]
10010010	11110 102 op	DIIS	by at least one subsequent rising value after the	<u> </u>	74	1	1	tus	
			patients had reached an undetectable PSA level					U CLUS	
			(detection limit $<0.04 \text{ lg/l}$) after surgery						
27179774	miR-182-5p	OS	no definition						[274]
24518785	miR-182-5p	BPFS	PSA 0.4 ng/ml or greater during followup	x	x	x		lymph node status,	[276]
21010100	11110 10 2 op	DIIS	i sit off hg/ in of greater during followup		11	11		surgical margin sta-	[-••]
								tus	
24518785	miR-182-5p	PFS	local (prostatic fossa), regional (lymph nodes)	Х	X	x		lymph node status,	[276]
	-		or distant (metastasis) progression					surgical margin sta-	
								tus	
23383207	miR-182-5p	OS	no definition						[275]
24518785	miR-182-5p	BPFS	PSA 0.4 ng/ml or greater during followup						[276]
24518785	miR-182-5p	PFS	local (prostatic fossa), regional (lymph nodes)	х				surgical margin sta-	[276]
	-		or distant (metastasis) progression					tus	
19676045	miR-182-5p	BPFS	post-operative PSA value >0.1 lg/l confirmed	Х	х	х	х	surgical margin sta-	[154]
	_		by at least one subsequent rising value after the					tus	
			patients had reached an undetectable PSA level						
			(detection limit $< 0.04 \text{ lg/l}$) after surgery						
30027097	miR-183-3p	OS	no definition						[268]
19676045	miR-183-3p	BPFS	post-operative PSA value >0.1 lg/l confirmed	Х	х	х	х	surgical margin sta-	[154]
	_		by at least one subsequent rising value after the					tus	
			patients had reached an undetectable PSA level						
			(detection limit $<0.04 \text{ lg/l}$) after surgery						

19676045	MiR-184	BPFS	post-operative PSA value >0.1 lg/l confirmed	37	37	37	37	surgical margin sta-	[154]
19070045	WIII\-104	DITS	by at least one subsequent rising value after the	х	х	х	х	tus	
			patients had reached an undetectable PSA level					0.03	
			(detection limit $< 0.04 \text{ lg/l}$) after surgery						
27121312	miR-186-5p	PS	patient survival						[277]
25714029	miR-188-5p	BPFS	the period between surgical treatment and the	х		х		seminal vesicle inva-	[278]
			measurement of two successive values of serum					sion	[]
			$PSA level \geq 0.2 ng/ml$						
25714029	miR-188-5p	OS	no definition	Х	х	х			[278]
26314494	miR-190a	DFS	no definition						[279]
31335671	miR-191-5p	OS	no definition	Х	Х	х	х	pelvic lymph node	[280]
								met, bone met, sur-	
								gical margin status	
30544100	miR-192-5p	BPFS	no definition						[281]
23846169	miR-194-5p	BPFS	biochemical disease progression with a serum	Х	х	х		surgical margin sta-	[176]
			PSA concentration of 0.2 ng/ml increasing over					tus, seminal vesicle	
			a 3-month period					invasion	
26080838	miR-195-5p	BPFS	no definition	х	х	х	х		[203]
26650737	miR-195-5p	RFS	no definition						[205]
27175617	miR-195-5p	DFS	no definition						[206]
30032144	miR-195-5p	BPFS	no definition						[204]
26338045	miR-195-5p	BPFS	no definition	х				lymph node met	[202]
26338045	miR-195-5p	OS	no definition	х	х				[202]
29416742	miR-19a-3p	BPFS	no definition						[282]
25409297	miR-200b-3p	BPFS	PSA > 0.02 ng/mL						[283]
26499781	miR-203a-3p	PS	no definition						[216]
31678733	miR-204-5p	bone MFS	no definition						[284]
22869146	miR-205-5p	BPFS	biochemical disease progression with a serum	х	х				[193]
			PSA concentration ≥ 0.2 ng/ml increasing over						
			a 3-month period or local recurrence on digital						
			rectal examination confirmed by biopsy or by a						
			subsequent rise in PSA						

29176717	miR-205-5p	BPFS	Post-operative PSA ≥ 0.4 or intervention with salvage therapy					CAPRA-S score, tu- mour size, perineural infiltration, lympho- vascular infiltration	[138]
23571738	miR-205-5p	OS	no definition						[285]
24173237	miR-205-5p	CSS	PCa specific death	х	х				[286]
24173237	miR-205-5p	BPFS	$PSA \ge 0.2 \text{ ng/mL}$ on two consecutive follow-up visits	Х	х				[286]
24173237	miR-205-5p	CSS	PCa specific death	х	х				[286]
24173237	miR-205-5p	CFFS	histologically proven local recurrence or distant metastasis confirmed by CT or bone-scan	Х	Х				[286]
24173237	miR-205-5p	BPFS	$PSA \ge 0.2 \text{ ng/mL}$ on two consecutive follow-up visits	х	х				[286]
19676045	miR-205-5p	BPFS	post-operative PSA value >0.1 lg/l confirmed by at least one subsequent rising value after the patients had reached an undetectable PSA level (detection limit <0.04 lg/l) after surgery						[154]
31122242	miR-20a-5p	BPFS	no definition						[273]
31122242	miR-20b-5p	BPFS	no definition						[273]
22341810	miR-21-5p	BPFS	Post-operative serum PSA 0.2 ng/ml or greater	х	Х	х	х	surgical margin status, lymph node metastasis, capsular invasion	[287]
23353719	miR-21-5p	RFS	either an elevated PSA level (≥ 0.2 ng/ml) after surgical treatment, clinical metastasis or disease specific death	х	х				[245]
25401698	miR-21-5p	BPFS	PSA>0.4 ng/ mL and rising in a minimum of two different blood samples postoperatively	х	х			non-apical positive surgical margin, api- cal positive surgical margin	[246]
27040772	miR-21-5p	PFS	no definition		х				[247]
23353719	miR-21-5p	RFS	either an elevated prostate-specific antigen level $(\geq 0.2 \text{ ng/ml})$ after surgical treatment, clinical metastasis or disease specific death	х	х				[245]

23353719	miR-21-5p	RFS	either an elevated prostate-specific antigen level $(\geq 0.2 \text{ ng/ml})$ after surgical treatment, clinical metastasis or disease specific death	X	X				[245]
25401698	miR-21-5p	BPFS	$PSA \ge 0.4$ ng/mL and rising in a minimum of two different blood samples post-operatively	x	x			non-apical positive surgical margin, api- cal positive surgical margin	[246]
27824162	miR-210-3p	CFFS	symptomatic, locally advanced progression or metastasis to bone, visceral organs or lymph nodes verified by radiology	x	X	x	х	tumour size, per- ineural infiltration, lymphovascular in- filtration, non-apical positive surgical margin	[288]
29917185	miR-212-3p	PS	no definition						[289]
30870834	miR-218-5p	bone MFS	no definition						[290]
30870834	miR-218-5p	OS	no definition						[290]
30870834	miR-218-5p	bone MFS	no definition						[290]
30870834	miR-218-5p	OS	no definition						[290]
19585579	miR-221-3p	CFFS	histologically proven local recurrence or distant metastasis confirmed by CT or bone scan	х	х	х	х		[291]
24760272	miR-221-3p	CRPC FS	castration resistance was evaluated through PSA recurrence, which was defined as two con- secutive increasing PSA values of more than 1.0 ng/mL and differing by more than 0.2 ng/mL						[292]
31640261	miR-221-3p	BPFS	no definition					miR-30c-5p, miR- 30d-5p, miR-31-5p, miR-141-3p, miR- 148a-3p	[215]
22864280	miR-221-3p	BPFS	$PSA \ge 0.2 \text{ ng/ml}$ at two consecutive follow-up visits					-	[199]
23353719	miR-221-3p	RFS	either an elevated prostate-specific antigen level $(\geq 0.2 \text{ ng/ml})$ after surgical treatment, clinical metastasis or disease specific death	х	х				[245]

221-3p RFS 221-3p RFS 221-3p CRPC FS		x	x x				[245]
-	metastasis or disease specific deatheither an elevated prostate-specific antigen level $(\geq 0.2 \text{ ng/ml})$ after surgical treatment, clinicalmetastasis or disease specific deathG CRPC is defined as castrate serum testosterone	x	x				[245]
-	 either an elevated prostate-specific antigen level (≥ 0.2 ng/ml) after surgical treatment, clinical metastasis or disease specific death CRPC is defined as castrate serum testosterone 	x	x				[245]
-	$(\geq 0.2 \text{ ng/ml})$ after surgical treatment, clinical metastasis or disease specific death CRPC is defined as castrate serum testosterone	x	х				[245]
221-3p CRPC FS	metastasis or disease specific death CRPC is defined as castrate serum testosterone						1
221-3p CRPC FS	CRPC is defined as castrate serum testosterone						
221-3p CRPC FS							
							[293]
	<50 ng/dl or 1.7 nmol/l plus one of the following						
	types of progression: biochemical progression,						
221-3p BPFS	post-operative PSA value >0.1 lg/l confirmed	х	х	х	х	surgical margin sta-	[154]
	by at least one subsequent rising value after the					tus	
	patients had reached an undetectable PSA level						
	(detection limit <0.04 lg/l) after surgery						
222-3p BPFS	serum PSA of 0.2 ng/mL or greater (obtained 6	х		х	х	body-mass index	[250]
	weeks – 3 months postoperatively), with a sec-						
	ond confirmatory level of PSA greater than 0.2						
	ng/mL						
222-3p CRPC FS	CRPC is defined as castrate serum testosterone	х	х	х	х	lymph node met, dis-	[293]
	<50 ng/dl or 1.7 nmol/l plus one of the following					tant met	
	types of progression: biochemical progression,						
	radiologic progression						
222-3p RFS	either an elevated prostate-specific antigen level	х	Х				[245]
	$(\geq 0.2 \text{ ng/ml})$ after surgical treatment, clinical						
	metastasis or disease specific death						
222-3p RFS	-	x	X				[245]
1							
222-3p RFS	_	X	х				[245]
	222-3p BPFS 222-3p CRPC FS 222-3p RFS	radiologic progression221-3pBPFSpost-operative PSA value >0.1 lg/l confirmed by at least one subsequent rising value after the patients had reached an undetectable PSA level (detection limit <0.04 lg/l) after surgery	radiologic progression221-3pBPFSpost-operative PSA value >0.1 lg/l confirmed by at least one subsequent rising value after the patients had reached an undetectable PSA level (detection limit <0.04 lg/l) after surgery	radiologic progression221-3pBPFSpost-operative PSA value >0.1 lg/l confirmed by at least one subsequent rising value after the patients had reached an undetectable PSA level (detection limit <0.04 lg/l) after surgery	radiologic progression221-3pBPFSpost-operative PSA value >0.1 lg/l confirmed by at least one subsequent rising value after the patients had reached an undetectable PSA level (detection limit <0.04 lg/l) after surgery	$\begin{array}{ c c c c c c } \hline radiologic progression \\ \hline radiologic progression \\ \hline 221-3p & BPFS & post-operative PSA value >0.1 [g/l confirmed by at least one subsequent rising value after the patients had reached an undetectable PSA level (detection limit <0.04 [g/l) after surgery \\ \hline 222-3p & BPFS & serum PSA of 0.2 ng/mL or greater (obtained 6 & x & x & x & x & x & x & x & x & x &$	$\begin{array}{ c c c c c } \hline radiologic progression \\ \hline radiologic progression \\ \hline 221-3p \\ 221-3p \\ 221-3p \\ 221-3p \\ \hline 221-3p \\ 222-3p \\ \hline 222-3p \\ 222-3p $

		DDDG							[[]] []
19676045	miR-222-3p	BPFS	post-operative PSA value >0.1 lg/l confirmed	х	х	х	х	surgical margin sta-	[154]
			by at least one subsequent rising value after the					tus	
			patients had reached an undetectable PSA level						
			(detection limit $<0.04 \text{ lg/l}$) after surgery						
24382668	miR-224-5p	BPFS	$PSA \ge 0.2 \text{ ng/mL}$ on two occasions.	х	х	х	х		[207]
23136246	miR-224-5p	BPFS	the period between surgery and the persis-	х	х	х			[208]
			tent increase of serum PSA concentrations, ev-						
			idenced by 2 consecutive PSA results ≥ 0.2						
			ng/mL						
31876746	miR-23a-3p	OS	no definition		х		х	CRPC occurance	[190]
								time, survival time,	
								outcome, body-mass	
								index, tobacco smok-	
								ing, family history	
								of cancer, alcohol	
								consumption	
25714010	miR-23a-3p	PS	no definition	х	Х			distant met	[294]
23074286	miR-23b-3p	OS	no definition						[295]
23074286	miR-23b-3p	RFS	no definition						[295]
30027097	miR-23b-3p	OS	no definition						[268]
27449037	miR-26a-3p	OS	no definition						[296]
30250598	miR-27a-3p	PS	no definition						[169]
25115396	miR-27b-3p	CRPC FS	CRPC is defined as castrate serum testosterone	х	х	х	х	lymph node met, dis-	[297]
			<50 ng/dl or 1.7 nmol/l plus one of the following					tant met	
			types of progression: biochemical progression,						
			radiologic progression						
26990571	miR-301a-3p	BPFS	PSA increase ≥ 0.2 ng/ml on at least two occa-	х	х	х	х	surgical margin sta-	[298]
			sions, at least 3 months apart					tus, lymph node sta-	
								tus	
24452717	miR-30c-5p	BPFS	the time interval between the initial surgery	х	х	х		surgical margin sta-	[217]
			and the day of postoperative PSA 0.2 $\rm ng/ml$ or					tus	
			greater						
26499781	miR-30c-5p	PS	no definition						[216]

31640261	miR-30c-5p	BPFS	no definition					miR-30d-5p, miR- 31-5p, miR-141-3p, miR-148a-3p, miR- 221-3p	[215]
23231923	miR-30d-5p	BPFS	continuous elevation with a PSA level >0.2 ng/mL	Х	Х	х	х	SOCS1	[299]
28241827	miR-30d-5p	BPFS	no definition		Х	х	х		[300]
31640261	miR-31-5p	BPFS	no definition					miR-30c-5p, miR- 30d-5p, miR-141-3p, miR-148a-3p, miR- 221-3p	[215]
19676045	miR-31-5p	BPFS	post-operative PSA value >0.1 lg/l confirmed by at least one subsequent rising value after the patients had reached an undetectable PSA level (detection limit <0.04 lg/l) after surgery	х	х	х	х	surgical margin sta- tus	[154]
25760964	miR-320e	BPFS	recurrence after salvage radiation at least twice consecutively following the nadir	х				lymph node status	[253]
30243091	miR-326	OS	the period from radical prostatectomy to death or at the end of the last follow-up						[301]
30243091	miR-326	BPFS	two continuous values of serum PSA level ≥ 0.2 ng/ml after radical prostatectomy						[301]
23456549	miR-335-5p	OS	no definition						[302]
23456549	miR-335-5p	MFS	no definition						[302]
23456549	miR-335-5p	BPFS	no definition						[302]
26907180	miR-338-3p	BPFS	time from radical prostatectomy to PSA recurrence						[303]
23147995	miR-34b-3p	BPFS	the first postoperative PSA value greater than 0.1 ng/mL, confirmed by at least 1 undetectable PSA level (detection limit <0.04 ng/mL) after surgery						[304]
28143614	miR-34b/c	DFS	the date of the radical prostatectomy or other curative treatment to the date of biochemical re- lapse, date of last follow-up, or death if relapse- free		x				[194]

28143614	miR-34b/c	DSS	the time elapsed since diagnosis until death or		х				[194]
			the last follow-up						
21351256	miR-34c-5p	PS	survival time was measured from the time of						[305]
			TURP						
24817628	miR-3607-5p	\mathbf{PS}	no definition						[306]
28498363	miR-3622a-5p	OS	no definition						[307]
27611943	miR-3622b-5p	BPFS	no definition						[308]
27611943	miR-3622b-5p	OS	no definition						[308]
30338790	miR-373-3p	OS	no definition						[289]
24191917	miR-374b-5p	BPFS	no definition	х	х	х			[310]
25129854	miR-375	OS	no definition						[259]
19676045	MiR-375	BPFS	post-operative PSA value >0.1 lg/l confirmed	Х	х	х	х	surgical margin sta-	[154]
			by at least one subsequent rising value after the					tus	
			patients had reached an undetectable PSA level						
			(detection limit $<0.04 \text{ lg/l}$) after surgery						
25153390	miR-378-3p	DFS	no definition	х	х	х	х	digital rectal exami-	[311]
								nation	
25153390	miR-378-3p	DFS	no definition	х	х	х	х	digital rectal exami-	[311]
								nation	
25324143	miR-379-5p	DFS	no definition						[312]
24963047	miR-409-3p	DFS	no definition						[313]
29969630	miR-410-3p	OS	no definition						[314]
21149617	miR-423-3p	\mathbf{CSS}	no definition					KIF3C SNP, PALLD	[191]
								SNP,GABRA1 SNP,	
								SYT6 SNP, ZD-	
								HHC7 SNP	
31337863	miR-424-3p	CFFS	clinically palpable tumor recurrence or metasta-	х				vascular infiltration	[315]
			sis verified by radiology						
30874288	MiR-4288	OS	no definition						[316]
29633185	miR-4319	OS	no definition						[317]
25416653	miR-449b-5p	BPFS	two consecutive measurements of PSA >0.2	х	х	х	х	surgical margin sta-	[318]
			ng/mL					tus	
25760964	miR-4516	BPFS	The recurrence after salvage radiation at least	х				lymph node status	[253]
			twice consecutively following the nadir						

27070713	miR-452-5p	CRPC FS	CRPC described as castrate serum levels of			[319]
21010115	IIII1-452-5p		testosterone (testosterone <50 ng/dl); Three			[319]
			consecutive rises of prostate-specific antigen			
			(PSA), 1 wk apart, resulting in two 50% in-			
			creases over the nadir with PSA >2.0 ng/ml;			
			Antiandrogen withdrawal for at least 4 wk for			
			flutamide and for at least 6 wk for bicalutamide;			
			PSA progression, despite consecutive hormonal			
			manipulations; Progression of osseous lesions			
27634912	miR-4534	OS	no definition			[320]
31111062	miR-455-5p	RFS	no definition			
28125091	miR-466	RFS	no definition			[322]
24223753	miR-4723-5p	PS	no definition			[323]
28631332	miR-500a-5p	OS	no definition			[324]
27267060	miR-503-5p	PS	no definition			[325]
30365141	miR-505-3p	bone MFS	no definition			[326]
30365141	miR-505-3p	OS	no definition			[326]
25760964	miR-508-3p	BPFS	The recurrence after salvage radiation at least	X	lymph node status	[253]
	*		twice consecutively following the nadir			
30685303	miR-515-5p	OS	no definition			[327]
25234358	miR-548c-3p	RFS	no definition			[328]
25760964	miR-563	BPFS	The recurrence after salvage radiation at least	Х	lymph node status	[253]
			twice consecutively following the nadir			
26451614	miR-573	MFS	no definition			[329]
30852380	miR-582-3p	bone MFS	no definition			[218]
30852380	miR-582-3p	OS	no definition			[218]
30852380	miR-582-5p	bone MFS	no definition			[218]
30852380	miR-582-5p	OS	no definition			[218]
25760964	miR-598	BPFS	The recurrence after salvage radiation at least	Х	lymph node status	[253]
			twice consecutively following the nadir			
25760964	miR-601	BPFS	The recurrence after salvage radiation at least			[253]
			twice consecutively following the nadir			

24740842	miR-605	BPFS	the period of time elapsed between the date of	Х	х	x	x	surgical margin sta-	[192]
			RP and two consecutive PSA values of at least					tus	
			$0.3~\mathrm{ng/ml},$ one PSA value of at least $0.3~\mathrm{ng/ml}$						
			followed by and rogen-deprivation therapy or ra-						
			diation therapy, and a single last-recorded PSA						
			value of at least 0.3 ng/ml after RP						
31539518	miR-615-3p	CSS	PCa specific death					Capra-S score	[330]
31539518	miR-615-3p	BPFS	$\mathrm{PSA} \geq 0.2 \mathrm{~ng/mL}$					Capra-S score	[330]
31539518	miR-615-3p	BPFS	$PSA \ge 0.2 \text{ ng/mL}$					Capra-S score	[330]
31539518	miR-615-3p	BPFS	$PSA \ge 0.2 \text{ ng/mL}$					Capra-S score	[330]
31539518	miR-615-3p	BPFS	$PSA \ge 0.2 \text{ ng/mL}$					Capra-S score	[330]
25760964	miR-626	BPFS	The recurrence after salvage radiation at least	Х				lymph node status	[253]
			twice consecutively following the nadir						
25760964	miR-628-3p	BPFS	The recurrence after salvage radiation at least	Х				lymph node status	[253]
			twice consecutively following the nadir						
29721191	miR-652-3p	BPFS	PSA increase of at least 0.2 ng/mL on at least	Х	х	х	х	margin status	[331]
			two separate consecutive measurements that are						
			at least 3 months apart						
29721191	miR-652-3p	MFS	lesions within the bone identified on radionu-	х	х	х			[331]
			clide bone scan and lymphadenopathy or vis-						
			ceral lesions identified by computed tomography						
			imaging of the abdomen, pelvis and chest.						
24243035	miR-663a	PFS	histologically proven local recurrence or distant	х	х	х	х		[332]
			metastasis confirmed by CT or bone scan						
24760272	miR-7-5p	CRPC FS	castration resistance was evaluated through						[292]
			prostate-specific antigen (PSA) recurrence,						
			which was defined as two consecutive increas-						
			ing PSA values of more than $1.0~\mathrm{ng/mL}$ and						
			differing by more than 0.2 ng/mL						
22552290	miR-708-5p	PS	no definition						[333]

		BPFS	no definition	х	x	X	х	lymph node inva-	[334]
								sion, surgical margin	
								status, extracapsular	
								extension, seminal	
								vesicle invasion	
30582208	miR-93-5p	RFS	no definition						[335]
30582208	miR-93-5p	MFS	no definition						[335]
30582208	miR-93-5p	OS	no definition						[335]
30027097	miR-95-3p	OS	no definition						[268]
23951320	miR-96-5p	OS	no definition						[336]
19676045	miR-96-5p	BPFS	post-operative PSA value >0.1 lg/l confirmed	х	х	х	х	surgical margin sta-	[154]
			by at least one subsequent rising value after the					tus	
			patients had reached an undetectable PSA level						
			(detection limit $<0.04 \text{ lg/l}$) after surgery						
22864280	miR-96-5p	BPFS	$PSA \ge 0.2 \text{ ng ml}$ at two consecutive follow-up						[199]
			visits						

Table B.2: A table of endpoint definitions and adjusted variables included in multivariate Cox PH analyses for the studies in the systematic review (accompanying table for B.1). For the full form of the abbreviated endpoints, refer to Table 2.1. "x" represents the variable was included in the multi-variate analysis. Abbreviations: BMI=Body mass index; CRPC=Castration Resistant Prostate Cancer; DRE=Digital Rectal Examination; PSA=Prostate specific antigen; SNP=Single-nucleotide polymorphism, TNM=Tumour, node, metastasis

Prognostic	Prognostic test			Sample size	Sample type	PMID	Ref
${ m miR}$	test: endpoint	HR (95% CI)	р	Sample Size	Sample type	FMID	ner
	multivariate: BPFS	1.36(1.03-1.79)	0.031	$126 \pmod{1}$	tissue		
miR-185-5p, miR-221-3p, miR-326	multivariate: BPFS	1.28(1.00-1.64)	0.048	$110 \pmod{2}$	tissue	27120795	[337]
	multivariate: BPFS	1.91(1.26-2.91)	0.012	$99 \pmod{3}$	tissue		
let-7a-5p, miR-125-5p,miR-151a-5p	multivariate: BPFS	$0.61 \ (0.41 - 0.90)$	0.013	$122 \pmod{1}$	urine	28753866	[212]
let-1a-5p, mitt-125-5p, mitt-151a-5p	multivariate: BPFS	0.47 (0.28 - 0.77)	0.003	$133 \pmod{2}$	urine	28755800	
	multivariate: BPFS	2.43(1.45-4.07)	0.008	123 (cohort PCA123)	tissue	30010760	
miR-10b-5p, miR-133a, miR-23a-3p, miR-374b-5p	multivariate: BPFS	1.44(1.04-2.00)	0.029	352 (cohort PCA352)	tissue	30010700	[338]
шің-100-5р, шің-155а, шің-25а-5р, шің-5740-5р	multivariate: BPFS	1.89(1.08-3.32)	0.027	476 (cohort PCA476)	tissue	-	[၁၁၀]
	multivariate: CSS	2.43(1.45-4.07)	0.021	$352 \pmod{\text{PCA476}}$	tissue	-	
	univariate: PS	6.50 (n/s)	0.001	$49 \pmod{1}$	tissue		
miR-145-5p, miR-183-5p, miR-96-5p, miR-221-5p	univariate: PS	6.20 (n/s)	0.001	$71 \pmod{2}$	tissue	23184647	[339]
	univariate: BPFS	2.70 (n/s)	0.007	$71 \pmod{2}$	tissue	-	
miR-139-5p, miR-223, miR-301a-3p, miR-454-3p,	multivariate: BPFS	2.60(1.80-3.60)	< 0.001	491	tissue	26516365	[211]
miR-652-3p	multivariate: MFS	4.30 (1.60-11.10)	0.002	491	tissue	20310303	
ר מסה ת' ב 1 מסה ת' ב מסה ת' ב מכו ת'	multivariate: OS	3.20(1.81-5.91)	< 0.001	$97 \pmod{1}$	plasma	28278515	[160]
miR-132-3p, miR-200a-3p, miR-200b-3p, miR-200c-3p, miR-375, miR-429	multivariate: OS	3.30 (1.64-6.63)	0.001	85 (cohort 2)	plasma	20210010	[100]
miR-17-5p, miR-18a-5p, miR-19a-3p, miR-19b- 3p, miR-20a-5p, miR-92a-3p	KM: BPFS	-	< 0.050	29	tissue	29163712	[209]
let-7a-5p, miR-106a-5p, miR-107, miR-130b-3p, miR-26b-5p, miR-223, miR-451a	KM: BPFS	-	0.031	100	serum	25874774	[210]

Table B.3: A table of signature miRNAs of prognostic importance in PCa identified in the systematic review. KM, univariate and multivariate tests stand for Kaplan-Meier test, and univariate and multivariate Cox PH regressions respectively. The "Association" column was obtained after standardising the comparisons to low as the reference. TCGA and MSKCC represent cohorts provided by the respective data repositories. Refer to Table B.4 for endpoint definitions and adjusted variables included in the multivariate analyses. n/s represents not-specified. Refer to Table 2.1 for the full form of the abbreviated endpoints.

PMID	Endpoint	Endpoint definition Variables in multivariate Cox PH analysis			PH analysis	Ref		
I MID	Enapoint	Endpoint demition	Gleason	T stage	\mathbf{PSA}	age	others	nei
27120795	BPFS	$PSA \text{ cut-off} \ge 0.2 \text{ ng/ml}$	х	Х	х	х	SMS	[337]
28753866	BPFS	$PSA \ge 0.2 \text{ ng/ml}$	Х		х			[212]
30010760	BPFS	a postoperative PSA test ≥ 0.2 ng/ml					Capra-s	[338]
23184647	\mathbf{PS}	patient/ percent survival						[339]
26516365	BPFS	a PSA increase of at least 0.2 ng/mL on at least	х	Х	х			[211]
		two separate consecutive measurements that are						
		at least 3 months apart						
28278515	OS	the time from initiation of the first cycle of do-			х		haemoglobin, alka-	[160]
		cetaxel to the time of death or last follow-up					line phosphatase	
29163712	BPFS	no def						[209]
25874774	BPFS	no def						[210]

Table B.4: A table of endpoint definitions and adjusted variables for the studies in the systematic review (accompanying table for B.3). "x" represents the variable was included in the multi-variate analysis. For the full form of the abbreviated endpoints, refer to Table 2.1. Abbreviations: BMI=Body mass index; CRPC=Castration Resistant Prostate Cancer; DRE=Digital Rectal Examination; PSA=Prostate specific antigen; SNP=Singlenucleotide polymorphism, TNM=Tumour, node, metastasis

Features	Coefficients
(Intercept)	0.507
Gleason group 2 VS Gleason group 1	0.0703
Gleason group 5 VS Gleason group 1	-0.72
T2 stage VS T1 stage	0.59
T3 stage vs T1 stage	-0.515

Coefficients of features selected for the final models

Table B.5: The coefficients of features for clinical variables (CVs) model (model i). Only variables Gleason group and tumour stage were predictive of recurrence.

Features	Coefficients
(Intercept)	-1.11
hsa-miR-200a-5p:14CA:0:0:0	-0.00434
hsa-miR-214-5p:0:0:0:0	-1.01
hsa-let-7a-3p:0:0:0:0	0.254
hsa-miR-132-3p:0:A:0:0	0.117
hsa-miR-320a:0:0:a:0	0.826
hsa-miR-143-3p:3GA:AA:0:tc	0.0554
hsa-let-7f-1-3p:0:T:0:c	-0.46
hsa-miR-629-5p:0:0:T	0.106
hsa-let-7f-5p:0:AG:0:t	-0.514
hsa-miR-151a-3p:0:TA:0:gg	-0.452
hsa-miR-126-3p:0:A:0:g	-0.786
hsa-miR-15b-5p:0:0:0:0	-0.404
hsa-miR-222-3p:0:0:0:0	0.352
hsa-miR-106b-3p:0:0:A:c	0.455
hsa-miR-29a-3p:8TA:0:0:a	-0.0173
hsa-miR-664a-3p:0:0:0:a	0.564
hsa-miR-143-3p:0:TA:0:A	0.516
hsa-miR-151a-3p:3GA:A:0:A	0.771
hsa-miR-379-5p:4CT:0:0:0	-0.307
hsa-miR-148a-3p:16GA:0:0:t	0.000229
hsa-miR-99b-5p:13TC:0:0:0	0.00244
hsa-miR-99b-5p:15CA:0:0:0	-0.0358
hsa-miR-223-3p:0:0:0:a	-0.383
hsa-miR-30e-3p:8AT:T:0:c	-0.0885
hsa-miR-25-3p:19TC:0:0:0	-0.0564
hsa-miR-152-3p:0:A:0:0	0.0743
hsa-miR-30a-3p:9TG:0:c:0	-0.0923
hsa-let-7f-5p:2TG:0:0:0	0.0396
hsa-miR-30e-3p:0:CC:0:gc	0.919
hsa-miR-28-3p:0:C:0:ga	-0.0207
hsa-miR-340-5p:0:0:0:0	-0.654
hsa-miR-21-5p:4GC:A:0:0	-0.131
hsa-miR-19a-3p:0:0:0:0	0.161
hsa-miR-30e-5p:11TC:0:0:0	0.677
hsa-miR-197-3p:0:A:0:c	-0.482
hsa-miR-181a-3p:0:0:0:0	-0.0993

hsa-miR-22-3p:0:T:0:T	0.0721
hsa-miR-182-5p:14CG:0:0:ct	-0.0082
hsa-miR-30a-5p:0:A:t:0	-0.0691
hsa-miR-30a-3p:1TC:0:0:gc	-0.128
hsa-miR-30e-3p:0:A:c:c	0.0272
hsa-miR-182-5p:14AG:0:0:ct	-0.17
hsa-miR-151a-3p:3GA:A:0:g	0.00717
hsa-miR-10b-5p:0:0:0:T	0.158
hsa-miR-3065-3p:0:0:0:0	0.0839
hsa-miR-361-5p:0:GA:0:c	0.048
hsa-miR-29a-3p:6GC:0:0:a	-0.402
hsa-let-7a-5p:6GT:GT:0:tt	-0.227
hsa-miR-143-3p:7TG:A:0:tc	0.155
hsa-miR-17-5p:4CA:0:0:0	0.26
hsa-miR-223-3p:0:G:0:0	-0.219
hsa-let-7f-5p:6CT:0:0:t	0.653
hsa-miR-625-3p:0:0:0:ca	0.24
hsa-miR-148a-3p:7TC:0:0:t	0.102
hsa-miR-10b-5p:16GA:0:0:g	0.0687
hsa-miR-101-3p:9GT:0:0:a	-0.125
hsa-miR-143-3p:7CG:GT:0:c	-0.0387
hsa-miR-199b-5p:0:0:0:ttc	0.167
hsa-miR-29a-3p:0:A:C:tta	0.139
hsa-miR-25-3p:0:AT:0:0	-0.223
hsa-miR-2355-5p:0:0:0:T	0.147
hsa-miR-22-3p:0:AA:0:t	-0.377
hsa-miR-148a-3p:0:0:G:0	0.017
hsa-miR-1307-3p:0:0:0:GT	0.0484
hsa-miR-99b-5p:16TC:0:0:0	0.00404
hsa-miR-532-5p:010.0.0	0.00807 0.0597
hsa-miR-145-5p:16TG:0:0:0	0.0397 0.0305
	0.0305 0.376
hsa-miR-361-5p:0:0:00	-0.47
hsa-miR-99b-5p:8TA:0:0:g hsa-miR-128-3p:0:AG:0:0	-0.47
hsa-miR-590-5p:0:0:0:0	0.00877
hsa-miR-92a-3p:14TC:0:0:0	0.231
hsa-miR-10b-5p:0:A:t:g	-0.727
hsa-let-7c-5p:0:GT:0:tt	-0.045 0.219
hsa-miR-148a-3p:7GC:0:0:0	
hsa-miR-101-3p:4TA:T:0:0	-0.169
hsa-miR-21-5p:12GA:0:0:0	-0.0966
hsa-miR-378a-3p:0:A:0:gc	0.286
hsa-miR-10a-5p:0:0:0:T	0.385
hsa-let-7b-5p:2CG:0:0:tt	-0.2
hsa-miR-182-5p:12GT:0:0:act	-0.0272
hsa-miR-148a-3p:16TA:0:0:0	0.012
hsa-miR-182-5p:16CA:0:0:t	-0.0217
hsa-let-7b-5p:0:AT:0:tt	-0.306
hsa-miR-10b-5p:8AT:CT:0:gtg	0.241
hsa-miR-30e-3p:0:AA:0:gc	-0.000759
hsa-miR-582-3p:0:0:t:0	0.412
hsa-miR-23b-3p:0:AGA:0:cc	-0.21
hsa-miR-182-5p:0:0:t:0	-0.981

hsa-miR-1296-5p:0:0:0:0	0.328
hsa-miR-99b-5p:0:A:c:0	0.498
hsa-let-7a-5p:0:0:G:0	-0.157
hsa-miR-143-3p:14AT:TT:0:0	-0.0644
hsa-miR-7-1-3p:0:0:0:0	0.399
hsa-let-7d-3p:0:A:0:t	0.0856
hsa-miR-375:9TG:0:T:0	-0.0186
hsa-miR-143-3p:10AG:AT:0:c	-0.636
hsa-miR-1287-5p:0:0:0:0	0.261
hsa-miR-29c-3p:0:GT:0:tta	0.477
hsa-miR-140-3p:0:0:0:AC	-0.0886
hsa-miR-744-5p:0:A:0:ca	-0.178
hsa-miR-151a-3p:0:TT:0:g	-0.201
hsa-miR-151a-3p:0:TT:0:A	0.268
hsa-miR-30b-5p:0:A:0:0	-0.0503
hsa-miR-101-3p:0:C:G:0	0.306
hsa-miR-23a-3p:9TG:0:0:0	-0.0836
hsa-miR-29b-3p:0:A:0:tt	0.0114
hsa-miR-22-3p:17CA:A:0:t	0.0313
hsa-miR-363-3p:0:0:a:0	-0.213
hsa-let-7c-5p:1AT:0:0:0	-0.343
hsa-let-7c-3p:0:0:0:c	0.0712
hsa-miR-200b-3p:0:T:0:a	-0.233

 Table B.6: The coefficients of features for all miR species model (model ii). All together

 112 variables miR species were predictive of recurrence.

Features	Coefficients
(Intercept)	0.692
hsa-miR-30e-3p:0:CC:0:gc	0.107
hsa-miR-30e-5p:11TC:0:0:0	0.000179
hsa-miR-99b-5p:8TA:0:0:g	-0.0367
hsa-miR-21-5p:12GA:0:0:0	-0.0968
hsa-miR-21-5p:6GT:0:0:C	-0.0274
hsa-miR-143-3p:7TG:0:0:A	0.0667
T2 stage VS T1 stage	0.55
T3 stage VS T1 stage	-0.267
Gleason group 5 VS Gleason group 1	-0.519

Table B.7: The coefficients of features for all miR species and clinical variables (model iii). Altogether 8 variables: 6 isomiRs and clinical variables Gleason group and tumour stage, were predictive of recurrence.

Features	Coefficients
intercept	0.22
hsa-miR-148a-3p:0:AC:0:t	-0.0109
hsa-miR-148a-3p:11TA:0:0:0	-0.0498
hsa-miR-148a-3p:8TA:0:0:0	-0.02
hsa-miR-148a-3p:11TA:A:0:t	-0.0125
hsa-miR-148a-3p:6TG:T:0:0	-0.0295
hsa-miR-148a-3p:14TG:A:0:t	0.0681
hsa-miR-148a-3p:6TG:0:0:CT	-0.00236
hsa-miR-148a-3p:5AT:CT:0:gt	0.04
hsa-miR-148a-3p:0:0:G:0	0.0554
hsa-miR-148a-3p:16CA:0:0:t	-0.0177
hsa-miR-148a-3p:7GC:0:0:0	0.0777
hsa-miR-148a-3p:16CA:0:0:0	-0.0267
hsa-miR-148a-3p:0:C:0:gt	0.0272
hsa-miR-148a-3p:17TC:0:0:0	0.104
hsa-miR-148a-3p:8TA:0:0:t	-0.0779
T2 stage VS T1 stage	0.583
T3 stage VS T1 stage	-0.611
Gleason group 2 VS Gleason group 1	0.195
Gleason group 5 VS Gleason group 1	-0.729
PSA at diagnosis	0.000431

Table B.8: The coefficients of features for model based on miR-148a-3p isomiRs and clinical variables (model iv). Altogether 18 variables: 15 isomiRs of miR-148a-3p, and clinical variables Gleason group, tumour stage and serum PSA, predictive of recurrence.

Features	Coefficients
(Intercept)	0.422
hsa-miR-582-5p:0:0:0:t	0.0779
T2 stage VS T1 stage	0.658
T3 stage VS T1 stage	-0.635
Gleason group 2 VS Gleason group 1	0.314
Gleason group 4 VS Gleason group 1	-0.0516
Gleason group 5 VS Gleason group 1	-0.764
PSA at diagnosis	0.00105

Table B.9: The coefficients of features for model based on miR-582-5p isomiRs and clinical variables (model v). Altogether 4 variables: hsa-miR-582-5p:0:0:0:t isomiR and clinical variables Gleason group, tumour stage and serum PSA, predictive of recurrence.

Features	Coefficients
(Intercept)	0.329
T2 stage VS T1 stage	0.54
T3 stage VS T1 stage	-0.312
Gleason group 5 VS Gleason group 1	-0.59

Table B.10: The coefficients of features for model based on isomiRs of miR-148a-3p and miR-582-5p and clinical variables (model vi). Only clinical variables Gleason group and tumour stage were predictive of recurrence.

Features	Coefficients
(Intercept)	0.443
miR-222-3p	0.134
miR-664a-3p	0.0725
miR-27a-3p	-0.0571
miR-181a-3p	-0.0703
T2 stage VS T1 stage	0.507
T3 stage VS T1 stage	-0.413
Gleason group 5 VS Gleason group 1	-0.597

Table B.11: The coefficients of features for model based on parent miRs signature and clinical variables (model vii) Altogether 6 variables: 4 parent miRs, and clinical variables Gleason group and tumour stage, were predictive of recurrence.

Features	Coefficient
(Intercept)	0.199
T2 stage VS T1 stage	0.605
T3 stage VS T1 stage	-0.182
Gleason group 5 VS Gleason group 1	-0.546

Table B.12: The coefficients of features for model based on clusters signature and clinical variables (model viii). Only Gleason group and tumour stage, and no clusters signature were predictive of recurrence.

Features	Coefficients
intercept	0.641
3' end templated AND within seq non-templated	-0.927
5' end templated AND 3' end non-templated	0.174
AND within seq non-templated	0.174
T2 stage VS T1 stage	0.685
T3 stage VS T1 stage	-0.595
Gleason group 2 VS Gleason group 1	0.0859
Gleason group 5 VS Gleason group 1	-0.899
PSA at diagnosis	0.00019

Table B.13: The coefficients of features for model based on isotypes signature and clinical variables (model ix). Altogether 5 variables: 2 isotype signatures, and clinical variables Gleason group, tumour stage and serum PSA, were predictive of recurrence.

Features	Coefficients
(Intercept)	0.659
-1	-1.07
T2 stage VS T1 stage	0.679
T3 stage VS T1 stage	-0.611
Gleason group 2 VS Gleason group 1	0.0627
Gleason group 5 VS Gleason group 1	-0.946

Table B.14: The coefficients of features for model based on 3' end size variations signature and clinical variables (model x). Only 3 features: signature group of isomiRs with 1 base deletion at their 3' end, and clinical variables Gleason group and tumour stage, were predictive of recurrence.

Features	Coefficients
(Intercept)	6.13
0	-5.48
-1	0.555
1	4.12
2	-0.305
-3	0.399
-2	-1.83
pT.grpT2	-0.701
pT.grpT3	-2.56
pT.grpT4	-2.32
Gleason group 2 VS Gleason group 1	-3.14
Gleason group 3 VS Gleason group 1	-3.69
Gleason group 4 VS Gleason group 1	-3.95
Gleason group 5 VS Gleason group 1	-5
PSA at diagnosis	0.0108

Table B.15: The coefficients of features for model based on 5' end size variations signature and clinical variables (model xi). Altogether 9 variables: signature groups of isomiRs with 0 base changes, 1 base and 2 base additions, -2 and -3 base deletions at their 5' end; and clinical variables Gleason group, tumour stage and PSA at diagnosis, were predictive of recurrence.

Features	Coefficients
(Intercept)	0.344
AGCTGAT	-0.0534
GAGATTA	0.0363
CTTTCAG	0.0347
TTGGCAG	-0.00444
ACCCGTT	-0.059
T2 stage VS T1 stage	0.421
T3 stage VS T1 stage	-0.354
Gleason group 5 VS Gleason group 1	-0.46

Table B.16: The coefficients of features for model based on 7mer-m8 seeds signature and clinical variables (model xii). Altogether 7 variables: 5 7mer-m8 seed signature groups, and clinical variables Gleason group and tumour stage, were predictive of recurrence.

Features	Coefficients
(Intercept)	0.343
AGCTGA	-0.058
GAGATT	0.0455
CTTTCA	0.0489
T2 stage VS T1 stage	0.426
T3 stage VS T1 stage	-0.354
Gleason group 5 VS Gleason group 1	-0.47

Table B.17: The coefficients of features for model based on 6mer seeds signature and clinical variables (model xiii). Altogether 5 variables: 3 6mer seed signature groups, and clinical variables Gleason group and tumour stage, were predictive of recurrence.

Features	Coefficients
(Intercept)	0.53
iso.5p	0.0362
iso.5p+mism	0.0815
T2 stage VS T1 stage	0.615
T3 stage VS T1 stage	-0.589
Gleason group 2 VS Gleason group 1	0.225
Gleason group 5 VS Gleason group 1	-0.758
PSA at diagnosis	0.000361

Table B.18: The coefficients of features for model based on miR-148a-3p isotypes signature and clinical variables (model xiv). Altogether 5 variables: 2 miR-148a-3p isotypes signatures, and clinical variables Gleason group, tumour stage and PSA at diagnosis, were predictive of recurrence.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3p targ
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
SMARCA4 ENST00000643296 -3.14 5.27e-08 0.000441 N PLLP ENST00000613167 -2.43 5.92e-08 0.0006441 N KPNB1 ENST00000619578 -2.14 1.29e-07 0.000688 N CCT3 ENST00000619466 -3.09 4.41e-07 0.00112 Y NKRF ENST00000373740 2.45 7.13e-07 0.00243 N ERO1A ENST000006504019 -2.3 7.18e-07 0.00243 N CLPTM1 ENST00000540679 2.52 8.49e-07 0.00243 N DID01 ENST00000540679 2.52 8.49e-07 0.00243 N SMIM7 ENST00000593409 -1.85 1.08e-06 0.00288 Y DE ENST000005934051 1.88 1.82e-06 0.00384 N SGSM1 ENST000000427845 -1.81 1.86e-06 0.00384 Y LSS ENST00000042785 -1.12 2.78e-06 0.00607 N MRCQL	1
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1
$\begin{array}{llllllllllllllllllllllllllllllllllll$	7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
DIDO1 ENST00000354665 1.85 1.08e-06 0.00288 Y IDE ENST00000650060 -1.92 1.19e-06 0.00296 N SMIM7 ENST00000593409 -1.85 1.65e-06 0.00384 N ARF1 ENST00000427845 -1.81 1.86e-06 0.00384 Y LSS ENST00000427845 -1.81 1.86e-06 0.00384 Y LSS ENST00000427845 -1.81 1.86e-06 0.00384 Y LSS ENST00000420358 -2.11 2.87e-06 0.00607 N RECQL ENST00000217315 -1.91 3.74e-06 0.00607 N TM95F4 ENST00000217315 -1.91 3.74e-06 0.00607 Y HBB ENST00000427652 1.85 7.26e-06 0.011 Y GOLGA2 ENST00000426652 1.85 7.26e-06 0.0121 N MAP4K4 ENST00000427643 2.7 8.05e-06 0.0121 N SPIN3 E	
IDE ENST0000650060 -1.92 1.19e-06 0.00296 N SMIM7 ENST00000593409 -1.85 1.65e-06 0.00384 N ARF1 ENST00000427845 -1.81 1.86e-06 0.00384 Y LSS ENST00000407845 -1.81 1.86e-06 0.00384 Y LSS ENST00000400358 -2.11 2.87e-06 0.00486 N SGSM1 ENST00000400358 -2.11 2.87e-06 0.00607 N HNRNPU ENST00000217315 -1.91 3.73e-06 0.00607 N TM9SF4 ENST00000335295 -1.58 6.38e-06 0.0014 Y HBB ENST00000425652 1.85 7.26e-06 0.0107 Y GOLGA2 ENST00000426652 1.85 7.26e-06 0.0117 Y GOLGA2 ENST00000429411 2 9.86e-06 0.0121 N FN1 ENST00000429411 2 9.86e-06 0.0121 N GOLGA2 ENST00	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
EIF4G1 ENST0000427845 -1.81 1.86e-06 0.00384 Y LSS ENST0000630761 1.95 2.48e-06 0.00486 N SGSM1 ENST00000401358 -2.11 2.87e-06 0.00535 N RECQL ENST00000421138 -2.38 3.52e-06 0.00607 N HNRNPU ENST00000217315 -1.91 3.74e-06 0.00607 Y PHLPP2 ENST0000033524 -1.77 3.95e-06 0.00614 Y HBB ENST00000335295 -1.58 6.38e-06 0.00915 N MAP4K4 ENST00000426652 1.85 7.26e-06 0.011 Y RGL2 ENST00000421699 -1.04 9.72e-06 0.0121 N HPS4 ENST00000638289 -1.78 1e-05 0.0121 N SPIN3 ENST00000533238 -3.03 1.44e-05 0.0126 Y RPL8 ENST00000533238 -3.03 1.44e-05 0.0133 Y DDX5 EN	
LSS ENST0000630761 1.95 2.48e-06 0.00486 N SGSM1 ENST0000400358 -2.11 2.87e-06 0.00535 N RECQL ENST00000421138 -2.38 3.52e-06 0.00607 N HNRNPU ENST00000217315 -1.91 3.73e-06 0.00607 N TM9SF4 ENST0000033524 -1.77 3.95e-06 0.00614 Y PHLPP2 ENST00000456652 1.85 7.26e-06 0.01 Y RGL2 ENST00000456652 1.85 7.26e-06 0.017 Y GOLGA2 ENST00000421699 -1.04 9.72e-06 0.0121 N HPS4 ENST00000429411 2 9.86e-06 0.0121 N SPIN3 ENST00000529163 0.986 1.19e-05 0.0134 N COL3A1 ENST00000533238 -3.03 1.44e-05 0.0153 Y MDX5 ENST00000533034 -2.19 1.77e-05 0.0183 Y WIP12 ENST	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
HNRNPU ENST0000640056 -1.3 3.73e-06 0.00607 N TM9SF4 ENST0000217315 -1.91 3.74e-06 0.00607 Y PHLPP2 ENST0000033524 -1.77 3.95e-06 0.00614 Y HBB ENST00000436652 1.85 7.26e-06 0.01 Y RGL2 ENST00000421699 -1.04 9.72e-06 0.0107 Y GOLGA2 ENST00000421699 -1.04 9.72e-06 0.0121 N HPS4 ENST00000429411 2 9.86e-06 0.0121 N SPIN3 ENST00000429411 2 9.86e-05 0.0126 Y RPL8 ENST00000429041 2.31 1.23e-05 0.0134 N COL3A1 ENST00000533238 -3.03 1.44e-05 0.0153 Y DDX5 ENST00000578804 -2.19 1.77e-05 0.0183 Y WIP12 ENST00000495537 1.04 2.25e-05 0.0215 N KCTD3 ENST0000045	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
PHLPP2 ENST0000393524 -1.77 3.95e-06 0.00614 Y HBB ENST00000335295 -1.58 6.38e-06 0.00915 N MAP4K4 ENST00000456652 1.85 7.26e-06 0.01 Y RGL2 ENST00000487403 2.7 8.05e-06 0.0107 Y GOLGA2 ENST00000421699 -1.04 9.72e-06 0.0121 N HPS4 ENST00000429411 2 9.86e-06 0.0121 N SPIN3 ENST00000429411 2 9.86e-05 0.0121 N FN1 ENST00000446046 -1.59 1.08e-05 0.0126 Y RPL8 ENST00000529163 0.986 1.19e-05 0.0134 N COL3A1 ENST00000533238 -3.03 1.44e-05 0.0153 Y DDX5 ENST00000578804 -2.19 1.77e-05 0.0209 Y RACK1 ENST00000495537 1.04 2.25e-05 0.0215 N FOLH1 ENST000004567	
HBBENST00000335295-1.586.38e-060.00915NMAP4K4ENST00004566521.857.26e-060.01YRGL2ENST00004874032.78.05e-060.0107YGOLGA2ENST0000421699-1.049.72e-060.0121NHPS4ENST0000638289-1.781e-050.0121NSPIN3ENST0000638289-1.781e-050.0126YRPL8ENST000005291630.9861.19e-050.0134NCOL3A1ENST00000533238-3.031.44e-050.0153YDDX5ENST00000578804-2.191.77e-050.0183YWIP12ENST000005128050.8882.2e-050.0215NKCTD3ENST00000533034-1.12.53e-050.0236NMAPKBP1ENST000004567632.042.68e-050.0244NTMPOENST000004666221.443.32e-050.0284YRNF208ENST000003928271.793.72e-050.0308NCCNL2ENST00004826211.534.2e-050.034Y	
MAP4K4ENST000004566521.857.26e-060.01YRGL2ENST000004874032.78.05e-060.0107YGOLGA2ENST00000421699-1.049.72e-060.0121NHPS4ENST00000638289-1.781e-050.0121NSPIN3ENST0000638289-1.781e-050.0126YRPL8ENST000005291630.9861.19e-050.0134NCOL3A1ENST0000053238-3.031.44e-050.0153YDDX5ENST00000578804-2.191.77e-050.0183YWIP12ENST000005128050.8882.2e-050.0215NKCTD3ENST00000533034-1.12.53e-050.0215NFOLH1ENST000004667632.042.68e-050.0244NTMPOENST000004666221.443.32e-050.0284NPLCG1ENST00000692571.813.36e-050.0284YRNF208ENST000004862211.534.2e-050.034Y	
RGL2ENST000004874032.78.05e-060.0107YGOLGA2ENST00000421699-1.049.72e-060.0121NHPS4ENST0000042941129.86e-060.0121NSPIN3ENST00000638289-1.781e-050.0121NFN1ENST00000446046-1.591.08e-050.0126YRPL8ENST000005291630.9861.19e-050.0134NCOL3A1ENST00000533238-3.031.44e-050.0153YDDX5ENST00000578804-2.191.77e-050.0183YWIP12ENST000005128050.8882.2e-050.0215NKCTD3ENST000004955371.042.25e-050.0215NFOLH1ENST000004567632.042.68e-050.0244NTMPOENST000004636221.443.32e-050.0284NPLCG1ENST00000492571.813.36e-050.0284YRNF208ENST000003928271.793.72e-050.0308NCCNL2ENST000004826211.534.2e-050.034Y	
GOLGA2ENST0000421699-1.049.72e-060.0121NHPS4ENST0000042941129.86e-060.0121NSPIN3ENST00000638289-1.781e-050.0121NFN1ENST00000446046-1.591.08e-050.0126YRPL8ENST000005291630.9861.19e-050.0134NCOL3A1ENST000004870102.311.23e-050.0135NHSPA8ENST00000533238-3.031.44e-050.0153YDDX5ENST00000578804-2.191.77e-050.0209YRACK1ENST000005128050.8882.2e-050.0215NKCTD3ENST00000533034-1.12.53e-050.0236NMAPKBP1ENST000004567632.042.68e-050.0244NTMPOENST000004636221.443.32e-050.0284NPLCG1ENST00000692571.813.36e-050.0284YRNF208ENST000003928271.793.72e-050.0308NCCNL2ENST000004826211.534.2e-050.034Y	
HPS4ENST0000042941129.86e-060.0121NSPIN3ENST00000638289-1.781e-050.0121NFN1ENST00000446046-1.591.08e-050.0126YRPL8ENST000005291630.9861.19e-050.0134NCOL3A1ENST000004870102.311.23e-050.0135NHSPA8ENST00000533238-3.031.44e-050.0153YDDX5ENST00000578804-2.191.77e-050.0183YWIP12ENST000005128050.8882.2e-050.0215NKCTD3ENST000004955371.042.25e-050.0215NFOLH1ENST000004567632.042.68e-050.0244NTMPOENST000004667632.042.68e-050.0284NPLCG1ENST00000692571.813.36e-050.0284YRNF208ENST000003928271.793.72e-050.0308NCCNL2ENST000004826211.534.2e-050.034Y	
SPIN3ENST00000638289-1.781e-050.0121NFN1ENST00000446046-1.591.08e-050.0126YRPL8ENST00005291630.9861.19e-050.0134NCOL3A1ENST00004870102.311.23e-050.0135NHSPA8ENST0000533238-3.031.44e-050.0153YDDX5ENST0000578804-2.191.77e-050.0183YWIP12ENST000005128050.8882.2e-050.0209YRACK1ENST00000495371.042.25e-050.0215NKCTD3ENST000004567632.042.68e-050.0244NMAPKBP1ENST000004567632.042.68e-050.0244NTMPOENST000004636221.443.32e-050.0284NPLCG1ENST000003928271.793.72e-050.0308NCCNL2ENST000004826211.534.2e-050.034Y	
FN1ENST00000446046-1.591.08e-050.0126YRPL8ENST000005291630.9861.19e-050.0134NCOL3A1ENST000004870102.311.23e-050.0135NHSPA8ENST00000533238-3.031.44e-050.0153YDDX5ENST00000578804-2.191.77e-050.0183YWIP12ENST00000404704-1.742.07e-050.0209YRACK1ENST000005128050.8882.2e-050.0215NKCTD3ENST000004955371.042.25e-050.0215NFOLH1ENST000004567632.042.68e-050.0244NTMPOENST000004567632.042.68e-050.0262NSCFD1ENST000004636221.443.32e-050.0284YPLCG1ENST000003928271.793.72e-050.0308NCCNL2ENST000004826211.534.2e-050.034Y	
RPL8ENST000005291630.9861.19e-050.0134NCOL3A1ENST000004870102.311.23e-050.0135NHSPA8ENST00000533238-3.031.44e-050.0153YDDX5ENST00000578804-2.191.77e-050.0183YWIP12ENST00000404704-1.742.07e-050.0209YRACK1ENST000005128050.8882.2e-050.0215NKCTD3ENST000004955371.042.25e-050.0215NFOLH1ENST000004567632.042.68e-050.0244NTMPOENST000004636221.443.32e-050.0284NPLCG1ENST000006092571.813.36e-050.0284YRNF208ENST000004826211.534.2e-050.034Y	
COL3A1ENST000004870102.311.23e-050.0135NHSPA8ENST00000533238-3.031.44e-050.0153YDDX5ENST00000578804-2.191.77e-050.0183YWIP12ENST00000404704-1.742.07e-050.0209YRACK1ENST000005128050.8882.2e-050.0215NKCTD3ENST000004955371.042.25e-050.0236NFOLH1ENST000004567632.042.68e-050.0244NTMPOENST000004636221.443.32e-050.0284NPLCG1ENST00000692571.813.36e-050.0284YRNF208ENST000004826211.534.2e-050.034Y	
HSPA8ENST00000533238-3.031.44e-050.0153YDDX5ENST00000578804-2.191.77e-050.0183YWIPI2ENST00000404704-1.742.07e-050.0209YRACK1ENST000005128050.8882.2e-050.0215NKCTD3ENST000004955371.042.25e-050.0215NFOLH1ENST00000533034-1.12.53e-050.0236NMAPKBP1ENST000004567632.042.68e-050.0244NTMPOENST000004636221.443.32e-050.0284NPLCG1ENST00000692571.813.36e-050.0284YRNF208ENST000003928271.793.72e-050.0308NCCNL2ENST000004826211.534.2e-050.034Y	
DDX5ENST00000578804-2.191.77e-050.0183YWIPI2ENST0000404704-1.742.07e-050.0209YRACK1ENST00005128050.8882.2e-050.0215NKCTD3ENST00004955371.042.25e-050.0215NFOLH1ENST0000533034-1.12.53e-050.0236NMAPKBP1ENST00004567632.042.68e-050.0244NTMPOENST0000393053-2.532.95e-050.0262NSCFD1ENST00004636221.443.32e-050.0284NPLCG1ENST0000692571.813.36e-050.0284YRNF208ENST00003928271.793.72e-050.0308NCCNL2ENST00004826211.534.2e-050.034Y	
WIPI2ENST0000404704-1.742.07e-050.0209YRACK1ENST00005128050.8882.2e-050.0215NKCTD3ENST00004955371.042.25e-050.0215NFOLH1ENST0000533034-1.12.53e-050.0236NMAPKBP1ENST00004567632.042.68e-050.0244NTMPOENST0000393053-2.532.95e-050.0262NSCFD1ENST00004636221.443.32e-050.0284NPLCG1ENST00006092571.813.36e-050.0284YRNF208ENST00003928271.793.72e-050.0308NCCNL2ENST00004826211.534.2e-050.034Y	7
RACK1ENST000005128050.8882.2e-050.0215NKCTD3ENST00004955371.042.25e-050.0215NFOLH1ENST0000533034-1.12.53e-050.0236NMAPKBP1ENST00004567632.042.68e-050.0244NTMPOENST0000393053-2.532.95e-050.0262NSCFD1ENST00004636221.443.32e-050.0284NPLCG1ENST00006092571.813.36e-050.0284YRNF208ENST00003928271.793.72e-050.0308NCCNL2ENST00004826211.534.2e-050.034Y	7
KCTD3ENST000004955371.042.25e-050.0215NFOLH1ENST0000533034-1.12.53e-050.0236NMAPKBP1ENST00004567632.042.68e-050.0244NTMPOENST0000393053-2.532.95e-050.0262NSCFD1ENST00004636221.443.32e-050.0284NPLCG1ENST00006092571.813.36e-050.0284YRNF208ENST00003928271.793.72e-050.0308NCCNL2ENST00004826211.534.2e-050.034Y	7
FOLH1ENST00000533034-1.12.53e-050.0236NMAPKBP1ENST000004567632.042.68e-050.0244NTMPOENST00000393053-2.532.95e-050.0262NSCFD1ENST00004636221.443.32e-050.0284NPLCG1ENST00006092571.813.36e-050.0284YRNF208ENST000003928271.793.72e-050.0308NCCNL2ENST000004826211.534.2e-050.034Y	1
MAPKBP1ENST00004567632.042.68e-050.0244NTMPOENST0000393053-2.532.95e-050.0262NSCFD1ENST00004636221.443.32e-050.0284NPLCG1ENST00006092571.813.36e-050.0284YRNF208ENST00003928271.793.72e-050.0308NCCNL2ENST00004826211.534.2e-050.034Y	1
TMPOENST00000393053-2.532.95e-050.0262NSCFD1ENST00004636221.443.32e-050.0284NPLCG1ENST00006092571.813.36e-050.0284YRNF208ENST000003928271.793.72e-050.0308NCCNL2ENST00004826211.534.2e-050.034Y	1
SCFD1ENST000004636221.443.32e-050.0284NPLCG1ENST00006092571.813.36e-050.0284YRNF208ENST00003928271.793.72e-050.0308NCCNL2ENST00004826211.534.2e-050.034Y	1
PLCG1ENST00006092571.813.36e-050.0284YRNF208ENST00003928271.793.72e-050.0308NCCNL2ENST00004826211.534.2e-050.034Y	1
PLCG1ENST00006092571.813.36e-050.0284YRNF208ENST000003928271.793.72e-050.0308NCCNL2ENST00004826211.534.2e-050.034Y	1
RNF208ENST000003928271.793.72e-050.0308NCCNL2ENST000004826211.534.2e-050.034Y	
CCNL2 ENST00000482621 1.53 4.2e-05 0.034 Y	
SPATS2 ENST00000549412 -1.64 4.36e-05 0.0346 N	
TBC1D14 ENST00000446947 0.93 4.56e-05 0.0354 N	
HNRNPK ENST00000351839 1 4.79e-05 0.0358 N	
LDLR ENST00000558518 -1.66 4.8e-05 0.0358 Y	
LDLR ENST00000538518 -1.00 4.8e-05 0.0358 1 AC073111.5 ENST0000641234 1.72 5.14e-05 0.0368 N	
CCDC106 ENST00000588740 1.44 5.23e-05 0.0368 N	

		• • •			1 4 2 2 3 3 2 2
AADAT	ENST00000515480	1.79	0.000109	0.0497	N
QARS	ENST00000494984	1.46	0.000108	0.0497	N
MPV17	ENST00000486898	-1.6	0.000107	0.0497	N
EWSR1	ENST00000360091	0.889	0.000107	0.0497	N
PHTF2	ENST00000275575	1.64	0.000107	0.0497	N
TPM3	ENST00000473036	-1.94	9.8e-05	0.0481	Ν
ABCA2	ENST00000371605	-1.84	9.75e-05	0.0481	Ν
IL6ST	ENST00000336909	-1.2	9.71e-05	0.0481	Y
NCAPH	ENST00000435975	-1.63	9.6e-05	0.0481	Ν
MPP7	ENST00000496637	-1.59	9.55e-05	0.0481	N
WDR4	ENST00000398208	-1.72	9.09e-05	0.0477	N
TBL1XR1	ENST00000636864	0.823	8.19e-05	0.0436	Y
MAN1B1	ENST00000474902	1.33	7.95e-05	0.0429	Ν
SMN2	ENST00000628642	1.49	7.53e-05	0.0413	Ν
TTC14	ENST00000465065	-1.66	7.38e-05	0.041	Ν
RNF40	ENST00000324685	1.19	7.21e-05	0.041	Ν
GCH1	ENST00000536224	2.1	7.18e-05	0.041	Ν
HIPK1	ENST00000340480	-1.66	6.63e-05	0.0392	Υ
DNMT1	ENST00000586588	1.75	6.48e-05	0.0389	Y
CMC2	ENST00000565108	-1.84	6.39e-05	0.0389	Ν
N4BP2L2	ENST00000446957	1.53	6.22e-05	0.0387	Ν
LIN9	ENST00000481685	-1.72	6.2e-05	0.0387	Y
M6PR	ENST00000539143	1.88	6.11e-05	0.0387	Ν
DHX38	ENST00000567142	2.13	5.76e-05	0.0377	Ν
LSR	ENST00000427250	1.23	5.53e-05	0.0368	Ν
ALG11	ENST00000649651	-1.68	5.46e-05	0.0368	Ν
PUM1	ENST00000257075	-1.98	5.37e-05	0.0368	Y

Table B.19: Differentially expressed genes (n=79) between the ASO-27a and ASO-TNC treated groups. Putative miR-27a-3p targets (n=22), identified after consulting six miR targets databases, are labelled with a Y (yes) or N (no) in the column titled "miR-27a-3p target".

Appendix C

Appendix methods

Signature sets for isomiR signature-based models

IsomiRs grouped into isotype signatures

For the isotypes biological criteria (criteria iii; model ix), there were a total of 16 modules the isomiRs could be grouped into, according to the different combinations of the four main isotypes. These were:

- i) no changes (canonical)
- ii) 5' end templated isotype
- iii) 3' end templated isotype
- iv) 3' end non-templated isotype
- v) within seq non-templated isotype
- vi) 5' end templated AND 3' end templated isotypes
- vii) 5' end templated AND 3' end non-templated isotypes
- viii) 5' end templated AND within seq non-templated isotypes
- ix) 3' end templated AND 3' end non-templated isotypes
- x) 3' end templated AND within seq non-templated isotypes

- xi) 3' end non-templated AND within seq non-templated isotypes
- xii) 5' end templated, 3' end templated AND 3' end non-templated isotypes
- xiii) 5' end templated, 3' end non-templated AND within seq non-templated isotypes
- xiv) 5' end templated, 3' end non-templated AND within seq non-templated isotypes
- xv) 3' end templated, 3' end non-templated AND within seq non-templated isotypes
- xvi) 5' end templated, 3' end templated, 3' end non-templated AND within seq non-templated isotypes

IsomiRs grouped into signatures based on identical size variations at their 3' end

For the identical size variations at the 3' end biological criteria (criteria iv; model x), there were seven signatures the isomiRs could be grouped into. These were:

- i) no changes at the 3' end compared to their canonical form
- ii) any 1 base added at the 3' end compared to their canonical form
- iii) any 2 bases added at the 3' end compared to their canonical form
- iv) any 3 bases added at the 3' end compared to their canonical form
- v) any 1 base deleted at the 3' end compared to their canonical form
- vi) any 2 bases deleted at the 3' end compared to their canonical form
- vii) any 3 bases deleted at the 3' end compared to their canonical form

IsomiRs grouped into signatures based on identical size variations at their 5' end

For the identical size variations at the 5' end biological criteria (criteria v; model xi), there were six signatures the ismiRs could be grouped into. These were:

- i) no changes at the 5' end compared to their canonical form
- ii) any 1 base added at the 5' end compared to their canonical form

- iii) any 2 bases added at the 5' end compared to their canonical form
- iv) any 1 base deleted at the 5' end compared to their canonical form
- v) any 2 bases deleted at the 5' end compared to their canonical form
- vi) any 3 bases deleted at the 5' end compared to their canonical form

IsomiRs of miR-148a-3p grouped into signatures according to their isotypes

For miR-148a-3p isomiRs grouped according to isotypes (criteria viii; model xiv), miRs were grouped according to the different combinations of the four main isotypes of miR-148a-3p. These were:

- i) all miR species that are not miR-148a-3p isomiRs
- ii) canonical miR-148a-3p
- iii) miR-148a isomiRs with 5' end templated isotype
- iv) miR-148a isomiRs with 3' end templated isotype
- v) miR-148a isomiRs with 3' end non-templated isotype
- vi) miR-148a isomiRs with within seq non-templated isotype
- vii) miR-148a isomiRs with 5' end templated AND 3' end templated isotypes
- viii) miR-148a isomiRs with 5' end templated AND within seq non-templated isotypes
- ix) miR-148a isomiRs with 3' end templated AND 3' end non-templated isotypes
- x) miR-148a isomiRs with 3' end templated AND within seq non-templated isotypes
- xi) miR-148a isomiRs with 3' end non-templated AND within seq non-templated isotypes
- xii) miR-148a isomiRs with 3' end templated, 3' end non-templated AND within seq non-templated isotypes

Appendix D

Permission to republish third party copyrighted works

For Figure 1.4, which originated from Kim *et al.* (2016) [95], the figure was freely available online through the PNAS open access option (Creative commons licence).

For Table 1.3, which originated from Prostate cancer diagnosis and management guidelines by NICE [26], usage was permitted after reviewing and agreeing to the terms and conditions specified on the website: https://www.nice.org.uk/terms-and-conditions#notice-of-%20rights

Permission granted for Figure 1.1 from RightsLink.

FW: Autoreply - Acknowledgement of receipt

Sylvia Lesage <LesageS@iarc.fr> on behalf of IARC Publications <Publications@iarc.fr> Mon 02/11/2020 07:24 To: Rana. Sharmila <sharmila.rana11@imperial.ac.uk>

This email from Publications@iarc.fr originates from outside Imperial. Do not click on links and attachments unless you recognise the sender. If you trust the sender, add them to your safe senders list to disable email stamping for this address.

Dear Ms Rana,

Thank you for your request for permission to reproduce, reprint or translate certain IARC/WHO copyrighted material.

On behalf of the International Agency for Research on Cancer/World Health Organization, we are pleased to authorize your request to reproduce the IARC/WHO materials as detailed in the form below, subject to the terms and conditions of the non-exclusive licence below.

If you have questions regarding this authorization, please contact publications@iarc.fr.

We thank you for your interest in IARC/WHO published materials.

Kind regards, IARC Permissions team

Permission granted for Figure 1.2 from RightsLink.

License Number	4936600375903
License date	Oct 26, 2020
Licensed Content Publisher	Springer Nature
Licensed Content Publication	Nature Reviews Cancer
Licensed Content Title	Inflammation in prostate carcinogenesis
Licensed Content Author	Angelo M. De Marzo et al
Licensed Content Date	Dec 31, 1969
Type of Use	Thesis/Dissertation
Requestor type	academic/university or research institute
Format	print and electronic
Portion	figures/tables/illustrations
Number of figures/tables/illustrations	1
Will you be translating?	no
Circulation/distribution	1 - 29
Author of this Springer Nature content	no
Title	Systematic analysis of prognostic miRNAs and isomiRs in prostate cancer
Institution name	Imperial College London
Expected presentation date	Oct 2020
Portions	Figure 1
Requestor Location	Ms. Sharmila Rana
	10 Delvan Close
	London SE18 2TA

London, SE18 3TA United Kingdom Attn: Ms. Sharmila Rana **0.00 USD**

Total

Permission granted for Figure 1.3 from RightsLink.

License Number	4936600626277
License date	Oct 26, 2020
Licensed Content Publisher	Springer Nature
Licensed Content Publication	Nature Reviews Cancer
Licensed Content Title	The development of androgen-independent prostate cancer
Licensed Content Author	Brian J. Feldman et al
Licensed Content Date	Oct 1, 2001
Type of Use	Thesis/Dissertation
Requestor type	academic/university or research institute
Format	print and electronic
Portion	figures/tables/illustrations
Number of figures/tables/illustrations	1
Will you be translating?	no
Circulation/distribution	1 - 29
Author of this Springer Nature content	no
Title	Systematic analysis of prognostic miRNAs and isomiRs in prostate cancer
Institution name	Imperial College London
Expected presentation date	Oct 2020
Portions	Figure 1
Requestor Location	Ms. Sharmila Rana
	10 Delvan Close
	London, SE18 3TA
	United Kingdom
	Attn: Ms. Sharmila Rana

0.00 USD

Total

Permission granted for Figures 1.5 and 1.6 from RightsLink.

License Number	4936610290444
License date	Oct 26, 2020
Licensed Content Publisher	Elsevier
Licensed Content Publication	Cell
Licensed Content Title	Metazoan MicroRNAs
Licensed Content Author	David P. Bartel
Licensed Content Date	Mar 22, 2018
Licensed Content Volume	173
Licensed Content Issue	1
Licensed Content Pages	32
Type of Use	reuse in a thesis/dissertation
Portion	figures/tables/illustrations
Number of figures/tables/illustrations	2
Format	both print and electronic
Are you the author of this Elsevier article?	No
Will you be translating?	No
Title	Systematic analysis of prognostic miRNAs and isomiRs in prostate cancer
Institution name	Imperial College London
Expected presentation date	Oct 2020
Portions	Figures 1 and 5.
Requestor Location	Ms. Sharmila Rana
	10 Delvan Close
	London, SE18 3TA
	United Kingdom

United Kingdom Attn: Ms. Sharmila Rana GB 494 6272 12

Publisher Tax ID Total

0.00 USD

Permission granted for Figure 1.7 directly from the author [122].

30/10/2020

Dear Ms Drozdz,

I am completing my PhD thesis at Imperial College London entitled 'Systematic analysis of prognostic miRNAs and isomiRs in prostate cancer'.

I seek your permission to reprint, in my thesis an extract from: The impact of PTEN loss on the isomiR landscape in prostate cancer. The extract to be reproduced is: Figure 1C (page number 2).

I would like to include the extract in my thesis which will be added to Spiral, Imperial's institutional repository <u>http://spiral.imperial.ac.uk/</u> and made available to the public under a Creative Commons Attribution-Non Commercial 4.0 International Licence (CC BY-NC).

If you are happy to grant me all the permissions requested, please return a signed copy of this letter. If you wish to grant only some of the permissions requested, please list these and then sign.

Yours sincerely,

Sharmila Rana

Permission granted for the use requested above:

I confirm that I am the copyright holder of the extract above and hereby give permission to include it in your thesis which will be made available, via the internet, for non-commercial purposes under the terms of the user licence.

[please edit the text above if you wish to grant more specific permission]

Signed:

Name: Magdalena Drożdż

Organisation: University of Oxford, Ludwig Institute for Cancer Research

Job title: PhD student

Permission granted for Figure ?? directly from the author [340].

16/11/2020

Dear Dr Sita-Lumsden,

I am completing my PhD thesis at Imperial College London entitled 'Systematic analysis of prognostic miRNAs and isomiRs in prostate cancer'.

I seek your permission to reprint, in my thesis an extract from your PhD thesis: The role of prohibitin and miR-27a in prostate cancer progression and therapy response. The extracts to be reproduced are: Figure 5.2C (page number 141), Figure 5.4 (page number 144) and figure 5.5 (page number 145).

I would like to include the extracts in my thesis which will be added to Spiral, Imperial's institutional repository <u>http://spiral.imperial.ac.uk/</u> and made available to the public under a Creative Commons Attribution-Non Commercial 4.0 International Licence (CC BY-NC).

If you are happy to grant me all the permissions requested, please return a signed copy of this letter. If you wish to grant only some of the permissions requested, please list these and then sign.

Yours sincerely,

Sharmila Rana

Permission granted for the use requested above:

I confirm that I am the copyright holder of the extract above and hereby give permission to include it in your thesis which will be made available, via the internet, for non-commercial purposes under the terms of the user licence.

[please edit the text above if you wish to grant more specific permission]

Name: ALSA SITA - LUMIDON Organisation: CUY'S & ST THOMAS' NHS FOUNDATION TRUST Job title: MEDICAL UNCOLOGY CONSULTANT

A BELLET TO THE STREET OF THE TRUE WITH THE STREET OF T

Permission granted for Table $1.1~{\rm from~RightsLink}.$

License Number	4936610913198
License date	Oct 26, 2020
Licensed Content Publisher	Elsevier
Licensed Content Publication	European Urology
Licensed Content Title	A Contemporary Prostate Cancer Grading System: A Validated Alternative to the Gleason Score
Licensed Content Author	Jonathan I. Epstein,Michael J. Zelefsky,Daniel D. Sjoberg,Joel B. Nelson,Lars Egevad,Cristina Magi-Galluzzi,Andrew J. Vickers,Anil V. Parwani,Victor E. Reuter,Samson W. Fine,James A. Eastham,Peter Wiklund,Misop Han,Chandana A. Reddy,Jay P. Ciezki et al.
Licensed Content Date	Mar 1, 2016
Licensed Content Volume	69
Licensed Content Issue	3
Licensed Content Pages	8
Type of Use	reuse in a thesis/dissertation
Portion	figures/tables/illustrations
Number of figures/tables/illustrations	1
Format	both print and electronic
Are you the author of this Elsevier article?	No
Will you be translating?	No
Title	Systematic analysis of prognostic miRNAs and isomiRs in prostate cancer
Institution name	Imperial College London
Expected presentation date	Oct 2020
Portions	Table 4
Requestor Location	Ms. Sharmila Rana 10 Delvan Close
Publisher Tax ID Total	London, SE18 3TA United Kingdom Attn: Ms. Sharmila Rana GB 494 6272 12 0.00 USD

Permission granted for Table 1.2 from RightsLink.

Order Number: 1073093 Order Date: 27 Oct 2020				Print order
Payment Informatio	n			
Sharmila Rana sharmila.rana11@ic.ac.uk Payment method: Invoice	Ms. Sh 10 Del Londo United +44 74	Address: armila Rana van Close n, SE18 3TA Kingdom 82090604 ila.rana11@ic.ac.uk	Customer Location: Ms. Sharmila Rana 10 Delvan Close London, SE18 3TA United Kingdom	
Order Details				
1. AJCC cancer stag	ing handbook			Billing Status: Open
Order license ID	1073093-1	Type of use	Republish in	Print License a thesis/dissert
Order detail status	Completed	Publisher	Springer	
ISBN-13	978-0-387-88442-4	Portion	Chapter/artic	le
1 View Details				0.00 GBP cation Permission ms and Conditions
Total Items: 1			Subtotal: Order Total:	0.000 0.00

Permission granted for Table 1.3 from RightsLink.

License Number	4937011227563
License date	Oct 27, 2020
Licensed Content Publisher	Elsevier
Licensed Content Publication	European Urology
Licensed Content Title	EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent
Licensed Content Author	Nicolas Mottet, Joaquim Bellmunt, Michel Bolla, Erik Briers, Marcus G. Cumberbatch, Maria De Santis, Nicola Fossati, Tobias Gross, Ann M. Henry, Steven Joniau, Thomas B. Lam, Malcolm D. Mason, Vsevolod B. Matveev, Paul C. Moldovan, Roderick C.N. van den Bergh et al.
Licensed Content Date	Apr 1, 2017
Licensed Content Volume	71
Licensed Content Issue	4
Licensed Content Pages	12
Type of Use	reuse in a thesis/dissertation
Portion	figures/tables/illustrations
Number of figures/tables/illustrations	1
Format	both print and electronic
Are you the author of this Elsevier article?	No
Will you be translating?	No
Title	Systematic analysis of prognostic miRNAs and isomiRs in prostate cancer
Institution name	Imperial College London
Expected presentation date	Oct 2020
Portions	Table 1
Requestor Location	Ms. Sharmila Rana 10 Delvan Close
Publisher Tax ID	London, SE18 3TA United Kingdom Attn: Ms. Sharmila Rana GB 494 6727 12

0.00 GBP

Total