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Abstract

We study an economy with financial frictions in which a regulator designs a test that re-

veals outside information about a firm’s quality to investors. The firm can also disclose

verifiable inside information about its quality. We show that the regulator optimally

aims for “public speech and private silence”, which is achieved with tests that give

insiders an incentive to stay quiet. We fully characterize optimal tests by developing

tools for Bayesian persuasion with incentive constraints, and use these results to derive

novel guidance for the design of bank stress tests, as well as benchmarks for socially

optimal corporate credit ratings.
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During the financial crisis of 2007-9, regulators such as the Federal Reserve used stress tests
to alleviate investors’ uncertainty about the banking system. These stress tests are a form
of outside information about firms that is released to investors. In addition, banks and
other firms have wide discretion over their public corporate disclosures, which reveal inside
information to investors. This potential interplay between inside and outside information
appears frequently in financial markets. For instance, credit ratings agencies provide outside
information about borrowers, who can also make their own inside disclosures.

In this paper, we analyze how outside information should be designed in an economy
with financial frictions. Unlike the growing literature on this question (e.g., Goldstein and
Leitner, 2018; Orlov et al., 2021; Inostroza and Pavan, 2022) we take into account that
inside disclosures may respond endogenously to the design of outside information. We show
that accounting for these responses changes the optimal design of outside information both
qualitatively and quantitatively.

To motivate our analysis, imagine the Fed is designing a stress test to reveal outside
information about the unobserved quality θ of a bank’s assets. Investors will run on the
bank if their expectation of asset quality, after observing the test result, drops below a
critical threshold t. Suppose the Fed wants to minimize the probability of runs. Using
tools from the literature on Bayesian persuasion, it is easy to show that—in the absence of
inside information—the optimal policy is a simple pass/fail test, which splits banks around
a quality threshold θ?. Banks with quality θ < θ? publicly “fail”, resulting in a run with
probability one. Banks with assets of quality θ ≥ θ? “pass” and avoid a run: The failure
threshold θ? is chosen so that the pass grade is just credible enough to save the bank, that
is E [θ|θ ≥ θ?] = t. Intuitively, this test achieves higher welfare than, say, full disclosure,
because it pools strong types θ ≥ t with as many weak types as possible, thus avoiding runs
on vulnerable banks.1

Suppose now that banks can verifiably disclose θ at some cost in anticipation of the test
result, and consider the incentives of strong banks. If they do not disclose, they will avoid a
run but investors will regard their assets as worth only t. As long as banks care about market
perceptions beyond the immediate need to avoid a run, disclosure may be a best response
for the strong, so long as disclosure costs are not too large. Once strong types disclose,
investors’ expectations conditional on seeing a “pass” result without inside disclosure drop
below the threshold t, because the strongest types of bank are no longer pooled into the
passing grade. Thus, all non-disclosing banks now face a run. This is an instance of the
classical “unraveling” of inside information, as first described by Grossman and Hart (1980).

1In richer models of bank runs (e.g., Inostroza, 2019), multiple failing grades can be optimal, but the
unique passing grade is still defined and motivated in the same way.
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Indeed, whenever the simple pass/fail test incentivizes any inside disclosures among passing
banks, our results show it cannot be optimal. In this sense, naive application of pass/fail
tests do not tackle financial instability in an efficient way.

We study a class of models with financial frictions, deriving tests that optimally account
for firms’ incentives to make disclosures. As we demonstrate in a series of examples, our
general model nests models of bank runs along the lines of our example above (e.g., Diamond
and Dybvig, 1983; Morris and Shin, 2000), a model of corporate financing with contracting
frictions as in Holmstrom and Tirole (1997), in which outside information can be interpreted
as the release of credit ratings, and richer treatments of financial instability such as Inostroza
(2019). The important common feature of these applications is that financial constraints
begin to bind whenever investors’ expectations about an indicator θ of underlying quality
drop below a critical threshold. Moreover, welfare is typically a convex, increasing function
of investors’ expectations when financial constraints are binding.

In our model, a regulator can commit to an arbitrary test that reveals outside information
about θ, as in the literature on Bayesian persuasion (e.g., Kamenica and Gentzkow, 2011;
Dworczak and Martini, 2019). After learning θ, firms / banks can either stay quiet or make
additional inside disclosures in anticipation of the test result. For simplicity, we present the
case where the firm may verifiably disclose its type θ at a cost, but the main insights extend
to richer message spaces.

A key result in our characterization of optimal tests is that it is always optimal for the
regulator to encourage public speech and private silence: without loss, the regulator can focus
on designing tests that sustain “opaque” equilibria, in which firms make no inside disclosures.
This result is reminiscent of a revelation principle, but requires a slightly different proof. In
addition to arguing that the regulator can replicate any disclosures that firms would otherwise
make, we must verify that opacity is a (perfect Bayesian) equilibrium of the subsequent
messaging game between firms and investors. This result contributes an interesting economic
intuition in its own right, but also makes the design problem substantially more tractable.
Indeed, the regulator’s problem now boils down to a Bayesian persuasion problem subject
to a series of incentive compatibility constraints, which ensure that no type of firm wants to
deviate from silence.

While this finding helps to simplify the search for an optimal test, the regulator’s problem
is still non-trivial and cannot be solved with existing methods for Bayesian persuasion. We
show how existing techniques can be extended to our model with incentive compatibility con-
straints. After outlining this methodological contribution, we provide a full characterization
of optimal tests.

We show that optimal tests still have a threshold property, in the following sense: all
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firms with θ < θ? fail the test, meaning that they face binding financial frictions with
probability one; all remaining firms pass. However, a variety of passing grades are employed:
the regulator designs a standard “pass” grade that lifts firms just above the threshold where
financial constraints bind, but also a range of novel grades that pass strong firms “with flying
colors” and raise investors’ expectations discretely above the critical threshold. These novel
grades are released to preserve strong firms’ incentives to stay quiet. The regulator trades off
the cost of releasing these grades, which force her to raise the failure threshold θ? relative to
the benchmark without inside disclosures, against firms’ incentive compatibility constraint.
We show that the optimal way to resolve this trade-off is to assign a stochastic grade, by
which strong types are revealed with just enough probability to discourage inside disclosures.

While there are typically multiple implementations of optimal tests in our model, we
prove that the key economic properties we have highlighted are necessary features of any
optimal test: all optimal tests have the threshold property described above and, moreover,
assign stochastic grades to types of firms with a binding incentive constraint. That is, in
an optimally designed test, strong firms should be confident of passing the test, but unsure
about the precise grade they will receive.

We supplement this characterization with a set of comparative statics. We show that
the incentive constraints associated with private silence become tighter from the regulator’s
perspective if i) inside disclosures become less costly; ii) disclosure messages become “more
verifiable” in a natural sense;2 or iii) the payoffs to firms’ managers become more sensitive
to investors’ beliefs. In each of these cases, the regulator is more constrained, which means
that she must ultimately raise the threshold θ? below which firms fail. We also show that, in
each of these scenarios, the regulator must make the optimal tests more informative, in that
investors’ posterior expectations undergo a mean-preserving spread. Finally, we show that,
under some mild regularity conditions, the failure threshold also increases when investors’
prior beliefs become more pessimistic.

In an instructive special case of our model, we show that private silence can be the only
motivation for releasing outside information. Consider the case where investors’ prior beliefs
are benign, in the sense that financial constraints would not bind under the prior. In this
scenario, strong firms can still have a strict incentive to make disclosures in order to separate
themselves in investors’ expectations. The unraveling argument again applies, and a positive
mass of firms can face binding frictions in equilibrium. We show that a regulator can do
better by designing a test that fails a small proportion of weak firms but provides strong

2We derive this comparative static in an extension with general messages spaces. We say that messages
are “more verifiable” if a (weakly) smaller set of types is able to send each possible message – see Section E
for details.
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firms with an incentive to stay quiet. Therefore, while the regulator would prefer to release
no information at all, and to preserve prior beliefs, she optimally decides to release some
information that is geared towards preventing unraveling. This example strongly conveys
the idea that inside disclosures motivate the release of more accurate outside information.

Our baseline model focuses on pre-emptive disclosures, which the firm must choose before
the test result is realized. As we discuss in Section A, the available evidence suggests that
this case is relevant in practice. Indeed, firms have an apparent incentive to disclose in
advance of public news, so as to prevent reputational and legal costs, as well as adverse
market responses (e.g., Skinner, 1994; Bischof et al., 2021; Kays, 2022). However, it is also
interesting to explore the robustness of our results under alternative timing assumptions.
On one hand, we demonstrate that optimal tests in our baseline model continue to be
optimal when verifiable disclosures need to be pre-prepared before the test result is known,
but can be released ex post. On the other hand, we show that the principle of public
speech and private silence extends to models in which firms can respond with flexible ex-
post disclosures, and derive a full characterization of optimal tests in this case. Optimal tests
with ex post disclosures are deterministic, and characterized by a combination of fine-tuned
pooling of weak with strong types, according to a negative assortative matching function, and
coarse pooling of a continuum of intermediate types into a single grade. Negative assortative
matching also arises in Goldstein and Leitner (2018), and we discuss the connection between
the two papers in detail in Section G.

Finally, we can also consider a broader design problem in which the regulator can privately
communicate with firms, showing them a preview of the test result before firms decide on
inside disclosures. We show that it is always optimal for the regulator not to send a preview
– another dimension of private silence. In terms of our model environment, this result
also means that the timing of the game we assume, namely, that firms have to prepare
disclosures before observing the test result, is an optimal arrangement from the policy-
maker’s perspective.

We further discuss the applied insights that arise from our theoretical analysis. In the
headline application to bank runs and stress tests, we provide a full characterization of opti-
mal, granular stress tests. In practice, regulators in the crisis of 2007-9 released information
about banks’ losses in adverse macroeconomic scenarios. Details of these losses were pub-
lished even for banks that “passed” the test in the sense that the regulator did not find a
capital shortfall. One distinctive feature of optimal stress tests in our model is that they
maintain some constructive ambiguity, assigning stochastic grades to strong banks; interest-
ingly, such uncertainty has been a characteristic of the Federal Reserve’s stress tests.3 By

3See “Fed ‘Stress Tests’ Still Pose Puzzle to Banks”, Wall Street Journal, March 12, 2015.
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contrast, weak banks face certainty about the grades they will receive, and never enjoy more
surplus than is needed to marginally avoid a bank run. Our results also imply that it is
strictly suboptimal to give banks a preview of stress test results, because this only serves to
increase their incentives to make private disclosures to investors.

Our comparative statics provide additional guidance for regulators in practice. For in-
stance, we demonstrate that optimal tests must be more informative (and more granular)
when bank managers have high-powered incentives that depend on current market percep-
tions, and when it is relatively easy for the bank to make verifiable disclosures – see also
the discussion of bank stress tests and related literature in Section A. Moreover, the special
case described above suggests that at the “eve of a crisis”, when investors have an interme-
diate degree of pessimism, it can be valuable to run stress tests with the sole purpose of
disincentivizing inside disclosures.

In the context of credit ratings, our results are the first to show how a broad spectrum of
optimal ratings emerges endogenously as a result of financial constraints. Our characteriza-
tion of optimal tests can be interpreted as an ideal set of credit ratings, which involve “junk”
grades that effectively fail the firm and lead to binding financing constraints, bunching of
firms at “investment grade” ratings that just avoid financial constraints, and “premium”
grades that transfer additional surplus to the firm in order to prevent excessive corporate
disclosures. The mechanism behind this design is related to Daley et al. (2020), who show
that accurate ratings can crowd out intermediaries’ incentives to acquire costly signals of
credit quality. However, our characterization is novel in that it emphasizes the granularity of
optimally designed ratings, while the typical signal structure in the existing literature is an
exogenously structured, binary test. Moreover, a range of recent work emphasizes additional
incentive problems arising from the interaction of firms, ratings agencies and investors (e.g.,
Skreta and Veldkamp, 2009; Bolton et al., 2012; Manso, 2013). We view our result as an
interesting benchmark describing the type of ratings that maximize overall surplus, which
may be useful to future studies on the efficiency properties of ratings markets.

In addition to the work we have cited above, this paper relates to the broader literature
on verifiable disclosures (e.g., Milgrom, 1981; Verrecchia, 1983; Shin, 2003; Acharya et al.,
2011; Bond and Zeng, 2021). We focus on an information designer’s goal of discouraging
or “crowding out” private disclosures. Similar crowding-out effects have been studied in a
few related papers, including Goldstein and Yang (2017), Einhorn (2018) and Frenkel et al.
(2018) in models with verifiable disclosures, as well as Feltovich et al. (2002) and Daley and
Green (2014) in the context of signaling games and Gigler and Hemmer (1998) in a cheap
talk environment, but these papers do not contain an analysis of optimal information design.

In the literature on Bayesian persuasion and information design, Gentzkow and Kamenica
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(2017) and Li and Norman (2021) study multi-sender persuasion. As they assume all senders
have ex ante commitment power, these models cannot address the novel incentive constraints
introduced by interim disclosures. Our work is also connected to Guo and Shmaya (2019),
who derive the optimal design of (outside) information subject to the constraints implied by
the receiver’s private information, but our methodology and solution take a very different
shape.

In the accounting literature, Friedman et al. (2015) study the interaction between per-
suasion and disclosure in a model with binary signals, which precludes most of the effects
we emphasize, while DeMarzo et al. (2019) and Bertomeu et al. (2021) study the incentives
for firms to block the release of outside information in a setting without additional inside
disclosures. We contribute a novel characterization of optimal, granular outside information
that anticipates the associated incentives to disclose in a general framework.

The remainder of the paper is structured as follows: Section I describes our general
model environment and provides a series of examples that highlight potential applications in
finance. Section II characterizes optimal tests – it is designed so that the reader interested
in applications can skip the technical Subsection B, which develops our solution method.
Section III discusses the applied insights arising from our results, and Section IV concludes.

I. Model

We begin by describing a general information design problem in the presence of inside dis-
closures. We then present a series of examples to highlight the applications of our framework
to banking and corporate finance.

A. General Environment

A firm and a regulator interact with a population of (risk-neutral) investors. The firm has
assets with fundamental value θ ∈

[
θ, θ̄

]
≡ Θ, where θ̄ > θ ≥ 0. All agents have a prior

belief that θ is drawn from a continuous cumulative distribution F (θ).

Inside and Outside Information: The regulator designs a test which reveals a public
signal s of θ about the firm’s assets. We refer to this signal as outside information. A test is
defined by a set of possible realizations s ∈ S and a family {G(s | θ)}s∈S,θ∈Θ of conditional
cumulative distributions of test results.

The firm, after privately observing θ, sends investors a message m ∈ {θ, ∅}. We refer to
this message as inside information. The message m = θ denotes full and verifiable disclosure
of θ, since it is impossible for an agent with type θ′ 6= θ to send this message. The message
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m = ∅ stands for non-disclosure or silence. Silence does not convey any verifiable information
because it is feasible for all types.

Investors’ beliefs about θ, conditional on inside information m and outside information
m, determine the posterior expected value of the firm’s assets, which we define as

z = EG [θ| s,m] . (1)

We present our analysis for the simple “all-or-nothing” message space because it conveys
most of the novel economics in our analysis, and because it makes for a particularly clear
discussion of equilibrium selection, which we provide below. However, the proofs of all our
main results extend to more general message spaces, which we introduce in Appendix A.

Regulator’s Preferences: The regulator’s preferences are described by the function

w (z, θ) = θ (1− λ (z)) , (2)

where λ (z) ≥ 0 is a decreasing, concave function on the interval [θ, t), and equal to zero on
the interval

[
t, θ̄
]
. As we demonstrate in more detail below, this functional form naturally

measures social surplus in economies with financial frictions, which begin to bind when
market valuations fall below a critical threshold t. The function λ (z) is interpreted as the
fraction of assets lost due to financial frictions. We assume throughout the paper that we
are not in the trivial case where λ (z) ≡ 0.

For our analysis of test design, it is also useful to define the regulator’s (interim) expected
utility given investors’ updated belief z about the firm’s assets. Indeed, taking expectations
of (2), and noting that E [θ|z] = z by definition, we can define

v (z) ≡ E [w (z, θ) |z] =z (1− λ (z)) . (3)

We show below that, when designing information, the regulator focuses on maximizing the
expected value of v (z). Importantly, whenever financial frictions bind, this objective function
is convex in market expectations z and, otherwise, it is linear. Figure 1 illustrates the shape
of v (z) in three different parametric cases, which also map to our applied examples below.

Firm’s Preferences: The firm’s preferences are described by the utility function

u (z, θ)− c (m) . (4)
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Figure 1: Regulator’s Expected Utility. Each panel shows the regulator’s expected utility v (z) as a
function of investors’ expectation z = E [θ|s,m], as defined in Equation (3). We have set the lowest type θ
equal to zero for illustrative purposes. Panel (a) shows piecewise linear payoffs, with λ (z) = λ̄ ∗ 1 {z < t},
where λ̄ is a constant. Notice that λ (z) has a jump at z = t, which makes v (z) discontinuous. Our model
of bank runs in Example 1 induces payoffs of this type with λ̄ = 1. Panel (b) shows payoffs for which λ (z)
is a strictly convex and continuous function on the interval [0, t], and equal to zero on the interval

[
t, θ̄
]
.

These payoffs are induced by our model of corporate investment in Example 2. Panel (c) shows a possible
combination of the previous two cases, with both convex and discontinuous payoffs on the interval [0, t],
which arises in Example 3.

The first term in the firm’s payoff is defined as

u (z, θ) = [φz + (1− φ) θ] (1− λ (z)) . (5)

This expression again accounts for the fraction λ (z) of asset values lost due to financial
frictions. The firm’s utility is given by a weighted average of investors’ expected value z of
the remaining assets, and their true fundamental value θ, with φ > 0 denoting the weight
on current market beliefs. For example, this formulation measures the profits of a firm
who sells a fraction φ of its assets to outside investors and retains remaining fraction until
maturity.4 Alternatively, Equation (5) could be interpreted as the utility of a manager whose
compensation depends on both current and future asset values.

The second term in the firm’s payoff captures the direct cost c (m) of the firm’s message to
investors. We normalize the cost of silence to c (∅) = 0 and assume that verifiable disclosure
is costly with c (θ) > 0 for all θ. Notice that by making the verifiable disclosure m = θ, the

4Daley et al. (2020) have characterized the case in which φ is endogenous and serves as a signal of asset
quality. By contrast, we treat φ as a constant and focus on direct disclosures m about asset quality.
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firm can always secure the following payoff with probability one:

ū (θ) ≡ u (θ, θ)− c (θ) . (6)

The full-disclosure payoff ū (θ) plays the role of the firm’s outside option in our analysis.
Intuitively, regardless of the test that the regulator designs, the firm can always guarantee
itself a payoff of ū (θ) after learning its type. Therefore, in any equilibrium that the regulator
can induce with any test, the firm’s utility cannot be less than ū (θ).

Equilibrium Definition: For a given test G,5 a perfect Bayesian equilibrium is defined
by a messaging strategy for the firm and an expected value z for all realizations {s,m}. In
equilibrium, the firm maximizes its expected utility after observing θ, and investors compute
the expectation in Equation (1) using Bayes’ rule on the equilibrium path.

Notice that our baseline model focuses on pre-emptive disclosures: The firm chooses its
message m before observing the realization s of outside information. We focus on the case
of pre-emptive disclosures because it captures frictions that are relevant in our applications.
In reality, attempts to delay material disclosures can be costly. For instance, in the US, the
Exchange Act Section 10(b) and the SEC’s Rule 10b-5 require that firms disclose material
information in a timely manner. Skinner (1994) finds that firms do indeed make pre-emptive
disclosures ahead of mandatory earnings reports, arguing that failure to do so would expose
them to costly fines (as well as other sanctions), litigation risks, and even reputational
damage.6 Similarly, Kays (2022) finds evidence that firms voluntarily disclose information
that pre-empts and supplements mandatory tax disclosures, arguing that this mitigates
reputational risk. For these reasons, we find it reasonable to analyze situations in which
firms find it suboptimal to delay publication of material facts available to them.

Likewise, it may also be costly to wait until after a regulatory release to start acquiring
evidence that rebuts it. Unlike “cheap talk”, verifiable information is often difficult to prepare
at short notice, for example, when it needs to be certified or audited by third parties.7 On the

5With a small abuse of notation, we write G to concisely describe the regulator’s choice of test, which
consists of the signal space S and the conditional distributions G (s|θ) described above.

6In the US, public companies report material facts (outside of regular annual and quarterly filings) via the
SEC’s Form 8-K disclosures, which must be submitted within 4 business days of a triggering event. While
litigation costs are particularly acute for ‘bad news’, Skinner (1994) notes that failures to disclose good news
have resulted in litigation too. He finds pre-emption of both bad and good news in the data, though the
latter is less surprising.

7Perhaps for this reason, the Exchange Act grants special status to “periodic” disclosures in its timely
disclosure rules. For instance, public companies may publish their annual reports to shareholders within 4
months of fiscal year end (https://www.sec.gov/rules/sro/nysemkt/2017/34-80619-ex5.pdf). Similarly, the
FCA allows additional time for periodic disclosures, where “immediate public disclosure ... would impact
on the orderly production and release of the report and could result in the incorrect assessment of the
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other hand, financial markets respond very quickly to bad news, such as credit downgrades
for a firm, or an announcement that a bank has failed its stress test. Indeed, Bischof et al.
(2021) conclude from an empirical analysis of banks’ disclosures that “markets do not wait
for bank disclosures when a crisis starts to unfold and market conditions deteriorate.” As
a result, a firm concerned about the outcome of a regulatory test may need to prepare
evidence in advance. As material disclosure rules likely apply to these findings, such a
strategy is effectively a pre-emptive decision to disclose. These arguments notwithstanding,
it is interesting to understand how test design must respond when firms can make verifiable
disclosures after the realization of the test result. In section G, we discuss extensions of the
model in which (i) firms are able to wait until after the test to make a costly disclosure, and
(ii) firms must pre-emptively decide whether to prepare verifiable information (i.e. pay a cost
to acquire it), but may delay its release until after the test (or even suppress it altogether).

Optimal Tests: The regulator’s problem is to choose a test G that maximizes her expected
utility subject to the constraint that the firm’s message m, and hence investor’s expectations
z, will be determined endogenously in equilibrium. We assume that the regulator can fully
commit to the test design G. Best and Quigley (2020) show that such commitment can be
motivated by repetition over time or by applying the same test to many firms; in reality,
stress testing authorities may rely on both to some degree. Beyond this, we remark in section
III that the regulator’s optimal test is robust when she can commit to the test itself, but
may be tempted to supplement it with additional information ex post

We assume that, if a test G induces multiple equilibria, the regulator can select her
preferred one. While this is common in the literature on mechanism and information de-
sign, it is important nonetheless to confirm that the regulator-preferred equilibrium is not
‘unreasonable’—for instance, in the sense of failing to satisfy refinements such as the In-
tuitive Criterion and D1 (Cho and Kreps, 1987; Banks and Sobel, 1987). In the baseline
model, the regulator-preferred equilibrium trivially survives these tests. As we will see, the
regulator prefers equilibria with “private silence”, in which all types of firm choose m = ∅.
In such an equilibrium, the only “off-path” events are full disclosures, m = θ for θ ∈ [θ, θ].
Beliefs in such events are uniquely defined, since only one type can send such a message.
Hence, the silent equilibrium automatically passes the Intuitive and D1 criteria. Similarly,
the regulator’s preferred equilibrium is undefeated in the sense of Mailath et al. (1993).8 In
Internet Appendix II, we derive conditions under which the regulator’s preferred equilibria

information by the public” (https://www.fca.org.uk/publication/ukla/tn-506-2.pdf).
8The regulator’s optimal test gives each type a payoff weakly greater than ū(θ), which is pinned down by

(6) regardless of the equilibrium played. As the corresponding beliefs are similarly pinned down, the silent
equilibrium is trivially undefeated.
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also survive equilibrium selection criteria in more general message spaces.

B. Applied Examples

We now illustrate the applied relevance of our model in three examples, each of which
maps our general framework to a specific model of financial frictions. Moreover, after we
characterize optimal tests, we return to these examples to extract practical insights from our
theoretical results.

Example 1. [Bank runs – Morris and Shin (2000)] In this example, we interpret the
firm as a bank who interacts with a population of depositors. Each depositor can withdraw
a fixed claim of $1 immediately, or roll over their claim until the bank’s assets mature and
yield a net return θ. We adapt the model of bank runs in Morris and Shin (2000) to a
setting with additional inside and outside information θ. In this setting, which we describe
in detail in Internet Appendix III, depositors observe any disclosure m by the bank and the
test result s, which can be interpreted as a regulatory stress test. For simplicity, we assume
that the worst type of bank still has positive net present value θ ≥ 0, so that the regulator
always has an incentive to prevent runs. This means that all banks in the model are illiquid,
yet solvent.9 After observing {m, s}, every depositor decides whether to withdraw early. We
show that there is a run, meaning that all depositors withdraw early, if and only if

z <
κ

2 ≡ t (7)

where z is depositors’ expectation of θ, defined as in Equation (1), and κ is a parameter
measuring the illiquidity of the bank’s assets. A regulator wants to maximize depositors’
joint utility, which is given by θ if there is no bank run, and by a constant (normalized to
zero) if there is a bank run. Thus, the regulator’s objective function is described by Equation
(2), and the function λ (z) capturing financial frictions in this example is a step function:

λ (z) =

1, z < t,

0, z ≥ t.
(8)

A similar specification arises in Bouvard et al. (2015) and Goldstein and Leitner (2018).10

9It is easy to show, in addition to our characterizations below, that the optimal test design for insolvent
banks would be to fail them, i.e., to reveal their true type, with probability one.

10In Goldstein-Leitner, the loss implied by a run is a constant, while here it is a fraction of assets. With
minor notational changes, all our results go through when we adopt the bank’s objective function from their
paper. As we explain in Section G, optimal tests differ markedly across the papers due to differences in
constraints. Relative to those studied in Goldstein-Leitner, our tests strictly improve the regulator’s payoff.
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The bank’s managers choose inside disclosures to maximize the utility function in Equation
(5). As in the general model, φ > 0 in this expression can reflect either a bank that sells a
fraction of the its assets to outside investors, or managers who care about short-term results
in the sense of their bank’s current market valuation.

Example 2. [Corporate investment – Holmstrom and Tirole (1997)] Consider a
firm who has an endowment of A < 1 units of cash and is able to make investments I ∈ [0, 1]
in a productive technology, which yields (1 + θ)I at a future date. We again assume that all
firms have positive net present value, with θ ≥ 0. The firm sells a security to risk-neutral
investors, which entitles them to a fraction φ of the firm’s future returns. Investors observe
any disclosure m by the firm and the result of a credit rating s before buying the security.
Investor’s willingness to pay for the firm’s security is then φ (1 + z) I, where z is defined in
Equation (1). The firm’s budget constraint for investment is

A+ φ (1 + z) I ≥ I.

Define the firm’s maximum investment capacity I (z) as:

I (z) = min
{

1, A

1− φ (1 + z)

}
.

If I(z) < 1, then financial constraints bind, in the sense that the firm cannot invest up to
its technological capacity. This occurs when market expectations satisfy

z <
1− A− φ

φ
≡ t.

Whenever this inequality holds, the fraction of valuable investments that is lost is λ (z) =
1− I (z), a concave function of z. Notice that financial constraints are never binding when
φ = 1 or if A ≥ 1. Thus, frictions in this model are driven by the firm’s need to attract outside
financing while also retaining at least some of its assets. This requirement is a common
motivation for frictions in corporate finance, for example, when retention is necessary to
maintain appropriate managerial incentives as in Holmstrom and Tirole (1997). With these
definitions, we obtain a special case of our general model. The regulator, who designs credit
ratings to maximize the utility function in Equation (2), can be interpreted as a ratings
agency who wants to maximize the joint surplus of firms and investors.

Example 3. [Cash flow and Liquidity Constraints – Inostroza (2019)] Inostroza
(2019) studies the interaction between firms’ cash flows and liquidity constraints in an envi-
ronment motivated by bank runs. We discuss the key qualitative effects in his model, which
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generates objective functions that are a special case of our general framework. In Inostroza’s
model, a bank raises cash by issuing securities against an investment project with unknown
value θ and, at a future date, faces the threat of investor runs that can reduce the value of
its initial investment. This generates a feedback loop: Any increase in investors’ expectation
z of θ raises their willingness to provide the bank with cash. This cash injection reduces the
probability of a run, which further raises investors’ willingness to pay. As a result, social
surplus is strictly convex in z up to a threshold z = t, above which liquidity constraints
stop binding and surplus becomes linear in z. More broadly, this intuition highlights an
interaction between cash flow and liquidity constraints in corporate financing. One can view
this environment as a third possible micro-foundation of our model.

II. Characterization of Optimal Tests

In this section, we derive necessary and sufficient conditions for an optimal test G. We
present our analysis as follows: In Section A, we simplify the regulator’s problem by showing
that, without loss, she can focus on tests that discourage all inside disclosures. This allows us
to develop the idea that the regulator optimally aims for public speech and private silence, in
the sense that the firm stays quiet and investors rely only on outside regulatory information.
The regulator’s desire to implement private silence introduces an incentive compatibility
constraint into the regulator’s problem, which ensures that firms have no incentive to make
inside disclosures. In Section B, we extend existing methods from the literature on Bayesian
persuasion in order to solve the constrained version of the regulator’s problem. This subsec-
tion highlights a methodological contribution, but readers who are interested mostly in the
applied implications can skip it. We use our method to fully characterize optimal tests in
Section C, and we discuss their economic implications in Sections E and F. Section G studies
the effect of alternative assumptions on the timing of disclosures on optimal test design.

A. Public Speech and Private Silence

The regulator’s problem in our model is complex because she designs the test G while
anticipating that firms will choose their disclosure strategies endogenously in perfect Bayesian
equilibrium. In order to make this problem tractable, we show that the regulator can focus
on tests that discourage all inside disclosures in equilibrium. In other words, it is always
optimal for the regulator to aim for public speech and private silence:

Lemma 1. [Public Speech and Private Silence] For any test G, there exists an alter-
native test Ĝ such that
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1. For any equilibrium under G, there is an equilibrium under Ĝ in which the regulator
obtains the same expected utility, and

2. The firm makes no verifiable disclosures in the equilibrium under Ĝ, choosing m = ∅
with probability 1.

Lemma 1 shows that, given any test G and any associated equilibrium disclosures, the
regulator can always do equally well with a test that induces the firm to stay quiet after
learning θ. The first step of the argument is similar to a classical revelation principle: Since
the regulator has full flexibility in designing the set of test results S and the conditional
distributions G (s|θ), she can always construct a modified test Ĝ, which replicates whatever
disclosure the firm would have made in any equilibrium under G. In principle, one might
worry that the new test may introduce new opportunities for the firm to affect investors’
beliefs via (partially verifiable) disclosures.11 The second step, which goes slightly beyond
the standard argument, shows that Ĝ in fact does induce a perfect Bayesian equilibrium
without any verifiable disclosures.

In the remainder of the paper, we utilize Lemma 1 and focus on tests that induce silence.
An interesting property of these tests is that disclosure costs are zero on the equilibrium
path, since the firm always sends the “quiet” message m = ∅ and the associated costs are
c (∅) = 0.12

Given Lemma 1, we can reframe the regulator’s problem in a much more tractable way.
First, we can simplify the regulator’s expected payoff using the fact that she focuses on tests
that induce private silence. Let G be such a test. Given that firms stay quiet and so are
uninformative, investors’ expectations under G are therefore given by the random variable
z = EG [θ| s]. As the regulator is the sole source of information in any such test, from now on
we will refer to z as the grade that the firm achieves under the test, and G its distribution.

Taking the conditional expectation EG [w (z, θ)| z] of the regulator’s payoff in Equation
(2), and then applying the law of iterated expectations, we find that the regulator’s uncon-
ditional expected utility under G is given by

EG [w (z, θ)] = EG [z (1− λ (z))]

= EG [v (z)] .
11This issue is particularly relevant when we move beyond the “all-or-nothing” message space; we discuss

it in more depth following Lemma 2.
12Notice that Lemma 1 is strengthened if the regulator’s utility function in Equation (2) includes the firm’s

costs of disclosure c (m). Therefore, our results below apply regardless of whether the costs of disclosure are
private or social costs.
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Therefore, the regulator’s problem is to design a test that keeps firms quiet but also maxi-
mizes the expected value of v (z). Notice that, under our general assumptions and in all our
examples, this function is convex on the interval [θ, t) and linear on the interval

[
t, θ
]
, with

a potential upward jump at the point z = t (e.g., in the bank run application – see Figure
1, panel (a)). The following result builds on this derivation to provide a useful formulation
of the regulator’s problem:

Lemma 2. [Regulator’s Problem] The regulator finds an optimal test G by solving the
following problem:

V = max
G

EG [v (z)] subject to

EG [u (z, θ)| θ] ≥ ū (θ) , for all θ, (9)

where ū (θ) is the worst-case disclosure payoff, defined in Equation (6).

Lemma 2 employs the above derivation of the regulator’s objective function. Further-
more, it contains a tractable characterization of the incentive constraint determining “private
silence”. In the baseline model, the incentive compatibility constraint immediately reduces
to the requirement that the firm’s expected payoff EG [u (z, θ)| θ] if it stays quiet, is at least
equal to ū (θ). Were a test G to violate this inequality for some θ, then that type would have
an incentive to pre-emptively disclose itself.

When we allow the message space to be more general (see Appendix A), a new compli-
cation arises. If a disclosure m is only partially informative, then the firm’s outside option
may depend on both m and the test result s. This effect arises because the regulator’s test
influences equilibrium play and, hence, the inferences drawn by investors following different
disclosures. Fortunately, the proofs of Lemmas 1 and 2 for general message spaces demon-
strate that one can focus on a class of tests in which these feedback effects are absent. For any
test that induces silence, private disclosures are off the equilibrium path. In the regulator’s
preferred constellation of off-path beliefs, investors act skeptically following any disclosure,
attaching probability one to the worst type that can make this disclosure. Hence, within the
class of silence-inducing signals on which we focus, the value of firms’ outside option (i.e., of
deviating to verifiable disclosure) is independent of the regulator’s information design. This
reasoning requires only a more general definition of the worst-case payoff ū (θ), which we
provide in Equation (A1).

The regulator’s problem in Lemma 2 further highlights the role of timing in our model.
The constraint in problem (9) captures the idea that the firm has to decide on disclosures
before observing the result s of the regulator’s test G. As discussed in Section A, this
timing is supported in the empirical corporate disclosure literature, which has identified
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several plausible costs of delaying disclosures.13 Nonetheless, it is interesting to consider the
implications of reactive disclosures for test design; Section G provides a full comparison.

In Internet Appendix II, we extend the model to allow the regulator to show an arbitrary,
potentially noisy preview of s to the firm before it makes its disclosure m. We show she can
never gain from this. Since reactive disclosures are formally equivalent to a full preview, one
can therefore view the timing in section I as property of optimal design. In this sense, the
idea that the regulator wants public speech and private silence extends further: not only
does she prefer that the firm stay quiet when facing investors, but also that no information
is privately communicated to the firm in advance of the regulatory test result.14 Practically,
this means that regulators should aim to choose the timing and institutional detail of tests
so as to have the “last word” before investors respond (where possible).15

This insight is broadly related to revelation principles in mechanism design: In a general
stochastic mechanism in Myerson (1982), for example, the designer can refrain from revealing
any information about the outcome to agents, except for recommended actions, without loss
of optimality. In our context, the regulator effectively recommends silence to all firms, and
also does not benefit from releasing further information about the test result. This insight
is also related to results in Ederer et al. (2018), who demonstrate that strategic opacity can
be an optimal feature of mechanisms with gaming incentives.

B. Bayesian Persuasion with Private Silence

While we have considerably simplified the regulator’s problem in Lemmas 1 and 2, the so-
lution is still not trivial. A common approach to information design is to boil the problem
down to a choice of cumulative distribution function G (z) for grades/posterior expectations
z. The regulator can then construct a test that induces this distribution of posteriors, so
long as the prior distribution F is a mean-preserving spread of the chosen distribution of the

13Daley et al. (2020) further discuss the relevance of pre-emptive signaling in the context of credit ratings.
14The ECB has on past occasions shared partial, preliminary findings with banks under its purview,

ahead of the wider publication of its stress test results. Our results indicate that this can be costly. Inter-
estingly, in 2014 the ECB proposed that banks sign non-disclosure declarations regarding the information
shared in these “supervisory dialogues”—apparently concerned these meetings might prompt pre-emptive
disclosures. Yet, German and Italian banks objected to the proposal, citing their obligations under timely
disclosure rules. Hence, this episode also illustrates that bank managers perceive significant costs associ-
ated with attempts to delay disclosures. See https://www.reuters.com/article/us-ecb-banks-tests-results-
idUSKCN0HK1X720140925 .

15Between 2011 and 2015, the Fed published its stress test results each March, during the annual reporting
window of major US banks (cf. footnote 7); since 2016, publication of the results has been pushed back
to June. Before 2016, Goldman Sachs had waited until April to publish its annual report, but has since
switched its publication to March. While only anecdotal, this is perhaps suggestive. To the extent that
annual reports offer a good opportunity for credible disclosure, our results suggest an advantage to summer
testing.
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regulator’s chosen distribution G (e.g., Dworczak and Martini, 2019). Unfortunately, this
method cannot be applied to our model, where the regulator needs to consider the incentive
compatibility constraint in (9). The reason for this discrepancy is that our incentive com-
patibility constraint is driven by the firm’s expected utility after learning the true realization
θ of its type, which depends on firms’ higher-order expectations of investors’ beliefs, and is
generally different from investor’s expectations z. Hence, the distribution of z is no longer
sufficient to describe the regulator’s problem.

We extend the Dworczak-Martini method to our constrained problem. Central to our
approach is another change of variables. Instead of z, we study the distribution of the
expected grade x = EG [z|θ] that type θ achieves, not yet knowing the realization of z. We
let the regulator choose the cumulative distribution of x instead of z. This change preserves
the basic simplification in Dworczak and Martini (2019): Any feasible test necessarily induces
a H (x) which is a mean preserving contraction of the prior F .

For any expected grade x, we define the set δ (x) as follows:

δ (x) = {θ : ū (θ) ≥ u (x, θ)} . (10)

Here, δ (x) stands for the set of types that prefer their outside option, i.e., full disclosure, to
obtaining expected grade x. Moreover, we write F ◦ δ (x) for the prior probability mass of
these types, which is defined as

F ◦ δ (x) =
ˆ

1θ∈δ(x)dF (θ) . (11)

Key to our solution is the following result, which states a relaxed version of the regulator’s
problem:

Lemma 3. [Relaxed Problem] Consider the following problem, in which the regulator
chooses the distribution H (x) of expected grades x = E [z|θ]:

V = max
H

´
v(x)dH(x) subject to

F is a mean-preserving spread of H,

H(x) ≤ F ◦ δ (x) , for all x ≥ t (12)

where F ◦ δ (x) is defined in Equation (11). The maximized value of this problem is weakly
higher than the maximized value in Problem (9), so that V̄ ≥ V .

Lemma 3 describes a new maximization problem, in which the regulator directly chooses
a distribution H(x) over expected grades, subject to two sets of constraint. We show in the
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Appendix that (12) is a relaxed version of (9), in that it always achieves a higher value.
The formulation of problem (12) introduces a second constraint in addition to the require-

ment that F is a mean-preserving spread of H. To understand the second constraint, recall
that ū (θ) is the value of deviating to disclosure for type θ of the firm. The constraint com-
pares two measures: First, the mass of firms who prefer their outside option to an expected
grade x is 1−F ◦ δ (x). Second, for any candidate distribution H (x) of expected grades, we
can write the mass of types who obtain an expected grade above x as 1−H (x). The second
constraint in problem (12) replaces the incentive constraints with the requirement that the
second quantity must be greater than the first for all x ≥ t. The key advantage of (12) is
that some of the results in Dworczak and Martini (2019) extend to this type of “first order
stochastic dominance” constraint (see Appendix B).

Two additional technical points are are worth considering. First, the objective function
in problem (12) focuses on x = E [z|θ], which is not always a sufficient statistic for expected
utility because the firm’s objective function in our model is not linear in z when z < t.
Second, we have imposed the second constraint in problem (12) only on outside options above
the threshold t, effectively ignoring incentive constraints for firms with outside options below
this threshold. The proof of Lemma 3 shows that there is no loss of generality associated
with these shortcuts. Indeed, for any feasible test G in problem (9), there is a test G′ which
achieves weakly higher value, and for which i) types θ ≥ t get grades z ≥ t with probability
1, confining these types to the linear part of the objective function, and ii) types θ < t do not
have binding incentive constraints. We then show that the distribution of expected grades
implied by G′ also yields value V in problem (12), which implies that this is indeed a relaxed
version of the regulator’s problem.

We now turn to the solution of the regulator’s problem, which leverages Lemma 3 to find
optimal tests. Our strategy is to find a solution to the relaxed problem (12) that is also
feasible in the regulator’s original problem (9), and must therefore be optimal. In Lemma
2, we stated the regulator’s problem of finding an optimal test subject to the incentive
compatibility constraint that firms must stay quiet in equilibrium. In addition, Lemma
3 in the previous subsection developed an auxiliary problem that is useful in solving for
optimal tests. In Appendix C, we show how existing characterizations of optimal tests can
be extended to solve this auxiliary problem.

C. Optimal Tests

We now use these intermediate results to fully characterize an optimal solution to the regula-
tor’s problem. To state our first main result, it is useful to define firms’ disclosure-equivalent
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grades, denoted x̄ (θ):
x̄ (θ) = 1

φ
[ū (θ)− (1− φ) θ] . (13)

Intuitively, if type θ of the firm expects to receive a grade of x̄ (θ), then it is indifferent
between silence and full disclosure. Notice that, since verifiable disclosures are costly, we
have x̄ (θ) < θ for all θ. Given this definition, our characterization of optimal tests is as
follows:

Proposition 1. [Characterization of Optimal Tests] The following conditions define
an optimal test G in the regulator’s problem (9):

1. Every type θ < θ? is fully revealed with probability 1, where θ? < t. We refer to θ? as
the failure threshold.

2. Every type θ ≥ θ? is fully revealed with probability α (θ) ∈ [0, 1] and receives grade
z = t with probability 1−α (θ), where α (θ) is the smallest value α ∈ [0, 1] that satisfies

αθ + (1− α) t ≥ x̄ (θ) , (14)

where the disclosure-equivalent grade x̄ (θ) is defined as in Equation (13).

3. The failure threshold θ? is smallest value satisfying the inequality:

θˆ

θ?

(θ −max{t, x (θ)})dF (θ) ≥ 0. (15)

Proposition 1 defines an optimal test for the regulator’s problem (9), which is illustrated
in Figure 2. Recall that the parameter t denotes the threshold for investors’ beliefs z such
that a fraction of the firm’s assets are lost, due to binding financial frictions, if and only if
z < t. A useful point to keep in mind when interpreting our results is that the regulator is
effectively trying to minimize the expected losses associated with financial frictions, which
are given by zλ (z) whenever a firm obtains a grade z < t.16 We therefore refer to any such
grade as a “failing” grade, because it implies that the firm faces binding financial frictions
after investors learn the test result.

16To see this more directly, notice that the objective function of the regulator in problem (9) can be written

EG [v (z)] = EG [z (1− λ (z))] = µ0 − EG [zλ (z)] ,

where µ0 =
´
θdF (θ) is the prior mean of θ, which is independent of the regulator’s chosen test G. Hence,

the problem can be written equivalently as minimizing EG [θλ (z)], subject to the same constraints as in (9).
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First, we show that there is always an optimal test that fully reveals all firms with type
θ < θ?. These types fail the test with probability 1, which is why we refer to θ? as the failure
threshold in the rest of the paper. This feature of optimal tests depends on fact that the
regulator’s objective function v (z) is convex in z whenever financial frictions bind (i.e., for
z ∈ [0, t]). Below, we explain in more detail why the threshold property is optimal.

Second, we show that the optimal test assigns a binary lottery to the remaining types
θ ≥ θ?. Each of these types receives either a passing grade z = t, which takes the firm
exactly to the threshold that eliminates financial frictions, or a grade that fully reveals the
true realization of θ. The intuition is as follows: One can partition the firm into “weak”
types θ < t, for whom financial frictions would bind under full disclosure, and “strong”
types with θ ≥ t. An ideal scenario for the regulator would be a pooling scheme, in which
she passes strong types with probability 1, and also assigns a passing grade to as many
weak types as possible. However, this pooling scheme would also give some strong types
an incentive to deviate towards verifiable disclosure. To avoid this issue, the regulator
assigns such types a grade that passes “with flying colors” and reveals their true quality
with some probability α (θ). This probability is chosen as the smallest value that satisfies
type θ’s incentive compatibility constraint, which in this case reduces to Equation (14). As
we elaborate below, this is the most efficient way to satisfy the incentive constraints. Notice
that the regulator sets α (θ) = 0 for weak types θ ∈ [θ?, t] who pass the test. This is because
these types can only benefit from the regulator’s pooling scheme, so they need not be given
an additional incentive to stay quiet.

The third part of Proposition 1 defines how the failure threshold θ? is chosen. The
regulator would like θ? to be as small as possible in order to minimize financial frictions.
However, she is constrained by the requirement that the pass grade must credibly induce
investors expectations z to lie above the threshold t at which financial constraints start to
bind. Using Bayes’ rule, investors’ posterior probability on type θ upon observing the passing
grade can be written as

p (θ|pass) = (1− α (θ)) dF (θ)´ θ̄
θ? (1− α (θ′)) dF (θ′)

The credibility requirement is that the passing grade actually induces a posterior mean
z =
´
θp (θ|pass) dθ ≥ t or, equivalently,

ˆ θ̄

θ?

(θ − t) (1− α (θ)) dF (θ) ≥ 0 (16)

Substituting the revelation probabilities α (θ) implied by Equation (14) now also yields the
inequality in Equation (15). The regulator optimally chooses the lowest threshold θ? that is
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consistent with credibility. From this characterization, it also follows that the regulator can
pass all types, choosing θ? = θ, if and only if investors’ prior beliefs satisfy

E [θ] ≥ E [max {t, x̄ (θ)}] . (17)

Intuitively, when investors are sufficiently optimistic a priori in the sense of Equation (17),
the regulator can design a test which ensures that financial frictions are never binding.
Conversely, if investors’ prior belief E [θ] is below the right-hand side of (17), then the
regulator is forced to choose θ? > θ and faces binding financial frictions for a positive mass
of weak types.

Notice that, whenever financial frictions bind, the regulator optimally chooses a failure
threshold that satisfies the credibility constraint in Equation (16) with equality, and therefore
induces a passing grade that satisfies z = t. Intuitively, it is always wasteful to assign a
higher passing grade z > t to weak types. Such a policy only transfers excessive surplus to
weak types without alleviating financial frictions. For instance, if a set of types with non-
binding incentive constraints enjoys a grade z > t while some other set faces binding financial
frictions, then it is obviously always better to pool more of the latter into the passing grades
until investors expectations are reduced to exactly z = t.

However, when some types’ incentive constraints are binding, the test should discourage
disclosures by offering those types more surplus; this helps to explain why the regulator
satisfies strong types’ incentive constraints using the stochastic grades of Proposition 1, which
randomize between full revelation and the passing grade z = t. To see the intuition, suppose
a test assigned strong types to higher passing grades z > t with probability one, potentially
pooling some weak types into the same grade. This policy is suboptimal, because it again
involves an inefficient transfer of surplus to the weak types. A better approach would be to
promise those strong types receiving grade z a small probability of being revealed. Doing so
increases their utility at the expense of the weak, and so relaxes incentive constraints. With
incentives now relaxed, it becomes possible to pool yet more weak types into z and thereby
reduce financial frictions. Interestingly, an argument along these lines can be used to show
that a deterministic test can never be optimal, since it would again involve an inefficient
split of surplus between strong and weak types. We prove this result formally in Proposition
2 below.

In Figure 2, panel (a), we illustrate these properties of optimal tests. In the figure, type
θ0 < θ? is an example of a failing type. The thick arrow from this type to itself denotes that
type θ0 obtains a grade equal to its true value (i.e., is fully revealed) with probability one.
Type θ1 is a passing weak type, who obtains the passing grade z = t with probability one,
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again represented by a thick arrow. Type θ2 is a strong type who does not have a binding
incentive compatibility constraint, so that the regulator is able to set α (θ2) = 0 and assign
the passing grade with probability one. From Equation (14) and the figure, one can verify
that setting α (θ2) = 0 is feasible because x̄ (θ2) < t. Finally, type θ3 is a strong type with a
binding incentive compatibility constraint. The regulator assigns a stochastic grade, which
is represented in the figure by thin arrows that are labeled with the associated probabilities.
Type θ3 is fully revealed with probability α (θ3) > 0 and obtains the passing grade with the
complementary probability.

Panel (b) of Figure 2 further illustrates the cumulative distribution G (z) of grades that
is induced by an optimal test with these properties. This distribution can be understood by
considering three regions. First, all types below the failure threshold θ? are fully revealed,
so that the distribution of grades is identical to the prior distribution of types below this
threshold. Second, there is bunching (i.e., a point mass) of types that are assigned the
passing grade, implying an upward jump in G (z) at the point z = t.17 Third, among types
with a binding incentive constraint (i.e., θ > x̄−1 (t)), truthful revelation of grades that pass
“with flying colors” occurs with probability α (θ). Hence, the distribution of grades in this
region is a “flatter” version of the prior distribution among these types.

As a final note on Proposition 1, we can use the intuition above to explain why a single
failure threshold is optimal. Suppose that the regulator considers a marginal increase in the
probability that a weak type θ < t achieves the passing grade t. The expected marginal
cost of this change is that the passing grade becomes less credible. Indeed, we can write
the marginal cost as υ (t− θ) dF (θ), where υ stands for the shadow price associated with
the credibility constraint (15). The marginal benefit, which arises because type θ obtains
larger grades, is given by (v (t)− v (θ)) dF (θ). The policy change increases the regulator’s
expected utility if marginal benefits exceed marginal costs, that is:

v (t)− v (θ)
t− θ

≥ υ.

The left-hand side of this inequality is the average gain obtained by promoting type θ to the
passing grade t. Importantly, this is increasing in θ because v (.) is convex on the interval
[0, t]. Therefore, the regulator always prefers to raise the probability of passing higher types
until her credibility budget is used up, resulting in the single failure threshold θ?.

17Between the failure threshold and the passing grade t, the distribution of grades is flat, meaning that
the regulator never reveals grades z ∈ (θ?, t).
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(a) Examples of Optimal Grade Assignment
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(b) Distribution of Optimal Grades.

Figure 2: Illustration of Optimal Tests. Panel (a) plots the optimal assignment of types θ to grades
z under the optimal test described in Proposition 1. Assignments are drawn for four example types θ ∈
{θ0, θ1, θ2, θ3}, and the associated expected payoffs v (z) are on the vertical axis. Thick arrows denotes a
deterministic grade that is assigned with probability one to a given type. Thin arrows denotes a stochastic
grade and are labeled with the associated probabilities. Panel (b) shows the implied distribution of optimal
grades. The blue / dashed curve is the cumulative prior distribution of types θ. The red / solid curve is the
cumulative distribution of grades z = E [θ|s] implied by the optimal test described in Proposition 1. The
incentive constraint associated with private silence is binding for all types θ > x̄−1 (t).
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D. Necessary Conditions for Optimal Tests

Proposition 1 fully describes an optimal test, but this implementation is not necessarily
unique.18 In particular, there are potential indeterminacies due to the fact that the regula-
tor’s objective function is linear in investors’ expectations z on some intervals. For example,
different tests can induce the same distribution of surplus across passing types, θ ≥ θ?.
Since the regulator’s objective function v (z) is linear for z ≥ t, these alternatives are equally
good for her — mean-preserving spreads / contractions among passing grades do not affect
her expected utility so long as firms’ incentives to stay quiet are preserved. Moreover, in
applications such as Example 1 (bank runs – see Figure 1, panel (a)), the objective function
is also linear for z < t, with a jump at z = t. In these cases, there are alternative optimal
ways to assign failing grades to types θ < θ?, for example, by pooling all firms below the
threshold θ? into a single failing grade instead of fully revealing them.

As a result, it becomes important to understand necessary conditions for optimality, so
as to extract the economically important features that are shared by all optimal tests. We
focus below on the interesting case where (17) is violated, so that θ? > θ. Our next result
states three key necessary conditions for optimal tests.

For simplicity, the result we state below focuses on the class of tests that induce private
silence on the equilibrium path, as suggested by Lemma 1. However, in Internet Appendix
II, we show that stronger necessary conditions are also available. Indeed, we can show that
inducing private disclosures by strong types of firm (with θ ≥ θ?) would strictly hurt the
regulator, so that necessary conditions we state here also apply to the class of tests that
allow for private disclosures by strong types.

Proposition 2. [Necessary Conditions for Optimal Tests] All optimal tests G in the
regulator’s problem (9) satisfy the following conditions:

1. Every type θ < θ? obtains a grade z < t with probability 1, and every type θ ≥ θ?

obtains a grade z ≥ t with probability 1, where the failure threshold θ? is the same as
in Proposition 1.

2. For almost every type θ of the firm such that x̄ (θ) > t, the incentive compatibility
constraint binds, and the firm achieves expected utility ū (θ).

3. For every type θ with a binding incentive compatibility constraint, the test result z is
stochastic conditional on θ.

The first condition in Proposition 2 shows that all optimal tests share the stark separation
around the failure threshold that we demonstrated in Proposition 1. All firm types below

18However, as we show in the appendix, the implied distribution of expected grades x is unique.
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the threshold fail with probability one, and all types above pass with probability one, in any
optimal test. Moreover, all optimal tests share the same threshold θ?, which we characterized
by Equation (15). Intuitively, the failure threshold captures the optimal trade-off between
passing as many types as possible while also ensuring that the passing grade remains credible.
The trade-off is not affected by any re-design of tests along linear regions of the regulator’s
objective and, therefore, we can find a unique optimal solution θ?.

The second condition considers the incentive compatibility constraint in the regulator’s
problem, which ensures that no firm has an incentive to make additional disclosures. We
show that the set of types θ for which this constraint is binding is the same at all optimal
solutions. Indeed, exactly as in the particular solution that we define in Proposition 1, the
constraint binds for all types such that x̄ (θ) > t, who would have an incentive to deviate to
disclosure if they were pooled to the passing grade z = t with probability one.

An interesting third point is that, whenever the incentive constraint binds, the regulator
assigns a stochastic grade z conditional on θ. This contrasts other models of information
design with a continuum of types, in which optimal tests are often deterministic. The opti-
mality of stochastic tests results from the nature of the regulator’s trade-off. The regulator
needs to provide strong types with high grades in order to encourage private silence, but
also wants to pool them with weak types. As described in section C, the most efficient way
to manage this trade-off is to ensure weak types are pooled with stronger ones only on the
grade z = t that exactly avoids financial frictions. Randomization allows the regulator to
balance these objectives, while deterministic tests do not.

In this subsection we provided a characterization of optimal tests. Next, we analyze some
interesting comparative statics of optimal tests with respect to model primitives.

E. Comparative Statics

A useful observation is that the optimal test described in Proposition 1 depends only on
two sets of parameters: The expected grades x̄ (θ) that make each type of firm indifferent
between silence and disclosure, and the prior distribution of types F (θ). Knowledge of these
two objects is enough to solve Equations (14) and (15), which determine the structure of the
optimal test.

Interestingly optimal tests are thus independent of the nature of financial frictions, as
measured by the function λ (z): holding x̄ (θ) and F (θ) fixed, the same optimal test arises
regardless of whether one studies bank runs in the tradition of Diamond and Dybvig (1983)
(as in Example 1), or corporate financing frictions Ã la Holmstrom and Tirole (1997)
(Example 2). Of course, the regulator’s maximized utility does depend on frictions, since
the total surplus lost to frictions is given by

´ θ?

θ
θλ (θ) dF . However, these differences do not
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affect optimal policy.
In order to understand the comparative statics of optimal tests, we therefore focus on

variations in x̄ (θ) and F (θ). We begin with an analysis of the firm’s disclosure-equivalent
grade x̄ (θ):

Proposition 3. [Comparative Statics: Disclosure Incentives] If x̄ (θ) increases for
all θ, then:

1. The failure threshold θ? in any optimal test increases and the regulator’s maximized
expected utility decreases.

2. The optimal test described in Proposition 1 becomes more informative: The distribution
of optimal grades z = EG [θ|s] undergoes a mean-preserving spread.

Proposition 3 shows what happens when x̄ (θ) increases for all θ, so that higher expected
grades are needed to discourage inside disclosures. The first point in the Proposition is
straightforward: The regulator would like to enforce private silence, so that an increase in
firms’ incentives to make private disclosures is problematic. As a result, the regulator is
forced to assign grades strictly above the passing threshold t to strong types with higher
probability. In turn, the passing grade becomes less credible, and the regulator must raise
the failure threshold θ? and pass fewer weak firms. This change is clearly detrimental for
the regulator’s expected utility.

The second point in Proposition 3 is more subtle and concerns the informativeness of
the optimal test that we described in Proposition 1.19 Whenever outside options increase,
the grade z = EG [θ|s] that the regulator releases as a result of her test becomes more
variable in the sense of mean-preserving spreads (second order stochastic dominance).20 In
our setting, any decision maker whose utility depends only the expectation of θ would prefer
to observe the optimal test corresponding to the higher disclosure payoff function x̄(θ). This
phenomenon is the result of two economic forces. First, when the disclosure-equivalent grade
x̄ (θ) increases, the failure threshold rises and the regulator fails a larger mass of weak types
θ < θ? by fully revealing them. This change provides more information about weak firms to
an outside observer. Second, the regulator assigns grades that pass strong types “with flying
colors” more frequently so as to incentivize their silence. An outside observer therefore sees
more accurate information about both weak and strong types.

19Due to the potential multiplicity of optimal tests, it is not possible to say that any optimal test for high
x̄ (θ) is more informative than any optimal test for low x̄ (θ).

20We note that this ranking is weaker than the Blackwell (1953) criterion, which would require a mean-
preserving spread in the entire perceived distribution of θ|s as opposed to its mean. As the regulator cares
only about z, Blackwell’s criterion is less useful here: a given distribution over z can often be implemented
by more than one test, which need not be Blackwell-ranked.
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Proposition 3 is also useful because it gives us a direct sense of the impact of verifiable
disclosures on optimal tests. Indeed, the “unconstrained” case, in which firms cannot make
verifiable disclosures at all, is equivalent to x̄ (θ) ≤ θ for all θ in our model. Proposition
3 immediately implies that, compared to the constrained solution that we have analyzed,
unconstrained-optimal tests are always less informative and fail a smaller mass of firms: the
regulator engages in more elaborate public speech so as to maintain private silence.

To obtain further insights, recall from Proposition 1 that the disclosure-equivalent grade
x̄ (θ) depends on i) the disclosure technology available to firms, via the the worst-case dis-
closure payoff ū (θ), and on ii) the preference parameter φ, which measures the sensitivity
of firms’ payoffs to investors’ beliefs. The following auxiliary result explores the relationship
between disclosure incentives and model primitives:

Lemma 4. [Sources of Incentives to Disclose] The firm’s disclosure-equivalent grade
x̄ (θ) increases for all θ and, therefore, optimal tests become more informative, if one of the
following applies:

• Lower disclosure costs: The cost c (m) of every verifiable message m decreases; or

• Firms are more sensitive to investors’ beliefs: The parameter φ in the firm’s utility
function in Equation (5) increases.

Lemma 4 first demonstrates that firm’s incentives to disclose become stronger if disclosure
becomes less costly, which is intuitive. The third point in the Lemma states that incentives
to disclose become stronger when the sensitivity of firms’ payoffs to investors’ beliefs is large.
This property is also intuitive. Verifiable disclosures in our model are driven by firms’ desire
to pre-emptively supplement outside grades that do not reflect their true quality. The more
firms care about investors’ beliefs, the stronger their incentive to make verifiable disclosures.

In our extension with more general message spaces, we can further derive comparative
statics when the firm’s available messages change:

Lemma 5. [Sources of Incentives to Disclose: Verifiability of Information] Con-
sider the model with general message spaces, described in Appendix A, in which a firm of type
θ is able to send messages in a general set M (θ). Fix the set M = ∪θM (θ) of all possible
messages. If the set M−1 (m) of types that can send message m becomes becomes smaller (in
the set inclusion order) for all m, then the firm’s disclosure-equivalent grade x̄ (θ) increases
for all θ and, therefore, optimal tests become more informative,

This Lemma shows that incentives to disclose also become stronger if the messages avail-
able to the firm are “more verifiable”. The sense in which we define verifiability is the size

28



of the set of types θ that have access to each message. For example, in a cheap talk setting,
every type can send every message so that M−1 (m) is as large as possible. By contrast,
a scenario in which M−1 (m) becomes smaller captures more verifiability. In this scenario,
investors’ skeptical beliefs, which are used to derive the worst-case disclosure payoff ū (θ) in
Equation (A1), become more forgiving from the firm’s perspective. The firm still expects to
be judged as the worst type that can send any givenm, but that worst type (weakly) increases
when messages become more verifiable. Hence, incentives to disclose become stronger.

Combining these insights with Proposition 3 shows that either a decrease in disclosure
costs or an increase in verifiability make the regulator worse off, forcing her to fail more
firms and to release more informative tests overall. In the limit as disclosure costs become
prohibitive or all messages become cheap talk, the regulator is not constrained by inside
disclosures at all. The other extreme, where fully verifiable disclosure is costless, is the least
favorable for the regulator.

As a complementary result, we also present comparative statics of optimal tests with
respect to investors’ prior beliefs F (θ).

Proposition 4. [Comparative Statics: Prior Beliefs] Assume that the disclosure-
equivalent grade x̄ (θ) has a single crossing with t. If the prior distribution F (θ) becomes more
optimistic in the sense of the Monotone Likelihood Ratio Property (MLRP), then the failure
threshold θ? in any optimal test decreases and the regulator’s maximized utility increases.

In information design problems related to ours, it tends to be optimal to release less
information when investors’ prior beliefs are optimistic (e.g., Bouvard et al., 2015; Goldstein
and Leitner, 2018). In models without inside disclosures, this property arises because it
becomes easier to make passing grades credible. Proposition 4 confirms this intuition, but
the reasoning in our case is more nuanced. In principle, investors’ optimism can make the
regulator’s credibility constraint in Equation (15) either easier or more difficult to fulfill. On
one hand, investors place larger weight on strong types a priori, so that credibility is easier
to achieve. On the other hand, because the probability weight on strong types increases, it
becomes more costly to provide these types with incentives to stay quiet.

Proposition 4 provides conditions under which the former effect dominates, so that the
standard intuition prevails. First, we assume that the disclosure-equivalent grade x̄ (θ) has
at most one crossing with the threshold t below which financial frictions bind. For example,
consider the case where the messages available to the firm are M (θ) = {θ, ∅}, so that the
firm can either disclose the true θ or stay quiet. If the costs of full disclosure are a constant
c, then we have x̄ (θ) = θ− 1

φ
c, which is linear, and therefore has the single-crossing property.

More generally, single crossing holds in this message space as long as the costs of disclosure
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do not rise too fast in the evidence disclosed, θ. Second, we consider optimism in the sense
of MLRP, which places enough structure on prior beliefs to ensure that the integral defining
the credibility constraint in Equation (15) increases with optimism. By contrast, without
inside disclosure, a weaker notion of optimism such as first-order stochastic dominance would
have been sufficient to make the regulator better off.

F. Private Silence as the Only Motivation for Public Speech: A Special Case

We briefly highlight an instructive special case of the characterizations we have developed:

Corollary 1. [Private Silence as the Only Motivation for Public Speech] Suppose
that the investor’s prior beliefs satisfy

t < E [θ] < E [max {t, x̄ (θ)}] . (18)

If firms cannot make verifiable disclosures, then the regulator’s optimal test conveys no infor-
mation to investors. By contrast, if firms can make verifiable disclosures, then the regulator
optimally releases an informative test and fails a strictly positive mass of firm types, as
described in Proposition 1.

Corollary 1 considers parameter constellations where investors’ prior expectation E [θ] is
in an intermediate range, as defined in Equation (18). In this case, a regulator who fully con-
trols the informational environment does not need to provide any information to investors at
all. Indeed, since E [θ] > t, financial frictions never bind if investors judge all firms according
to their prior expectation. The regulator can do no worse than to preserve this situation
by sending a single, uninformative grade z0 ≡ E [θ] as her test result. However, if firms are
now given the opportunity to make verifiable inside disclosures, the regulator’s opaque test
“unravels”. A set of strong firms have an incentive to deviate to disclosure, which means
that they are no longer pooled into the regulator’s test result z0. Hence, investors’ posterior
belief given z0 become more pessimistic, providing an incentive for further strong firms to
disclose. This process makes the test result gradually less credible, and financial frictions
will eventually bind for any firm that does not make a verifiable disclosure.21 An optimal
response to this problem is for the regulator to release some information that encourages
private silence. This example makes the key point of our paper quite starkly, since enforcing
private silence is now the only motivation for public speech.

21When disclosure costs are strictly positive, this process does not necessarily result in all types θ ≥ t
making a disclosure. However, it remains true that non-disclosing firms will face an effective grade z < t
with probability 1.
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Before moving on to the applications of our model, we discuss the robustness of our result
to alternative assumptions about the timing of disclosure.

G. Alternative Timing Assumptions

In our baseline model, the firm can make only pre-emptive disclosures before the test result
s realized. As discussed in Section I, we view this assumption as realistic for corporate
disclosures. Indeed, the available evidence in the accounting literature indicates that firms
prefer early disclosures (e.g., Skinner, 1994; Kays, 2022). Moreover, it is reasonable to assume
that verifiable disclosures take time to prepare, audit, and circulate. As extensions to this
baseline case, we also characterize optimal tests under two sets of alternative assumptions
about timing. Both cases are analyzed rigorously in Internet Appendix II.22

Late disclosure option: We consider a game in which the firm has to decide whether to
prepare the verifiable message m = θ, and whether to sink the associated cost c (θ), before it
knows the result s of the regulatory rest. However, having prepared its message, the firm has
a late disclosure option: It can delay its decision whether to disclose m = θ to investors after
z is realized. This setting can also capture the idea that any information that is prepared at
the last minute is likely to be perceived as cheap talk.

We show that the optimal test described in Proposition 1 remains optimal in the game
with a late disclosure option. The intuition for this equivalence is as follows: Under the
optimal test, the only types of firm that might be tempted to pre-prepare a disclosure are
strong types θ > t. The optimal test assigns strong types a lottery over grades z ∈ {t, θ},
which are always weakly below their true type. Thus, conditional on pre-preparing the
disclosure, releasing it ex post is a weakly dominant strategy, and the payoff from preparing
it is equivalent to the payoff from a pre-emptive disclosure. However, by construction, pre-
emptive disclosure is not a profitable deviation for the firm since the optimal test induces
private silence in the baseline model. Therefore, firms also do not have an incentive to
deviate from the optimal test by pre-preparing disclosures.

Ex post disclosures: We also consider a version of our model in which the firm can
prepare and release evidence ex post, i.e., after z is realized. We begin by showing that the
principle of public speech and private silence continues to apply: The regulator can optimally
focus on tests that induce equilibria without any ex post disclosure. Intuitively, given any
test that induces the firm to make a disclosure, the regulator can design an equivalent test

22There, we also provide a stylized analysis of another cost of delay—namely, that late disclosures may be
less credible than prompt ones.
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that induces silence and replicates the firm’s disclosures. We again leverage this principle to
provide a full characterization of optimal tests, under some weak restrictions on primitives.
An optimal test pools weak and strong types pairwise, according to a negative assortative
matching function. We further show that this matching function is sufficient for optimality
as long as it is combined with coarse pooling of a positive-measure interval of intermediate
types around the critical threshold z = t.

In our baseline model with pre-emptive disclosures, Proposition 2 shows that optimal
tests are necessarily stochastic. Moreover, the test is monotonic in that higher types enjoy
a higher surplus. In contrast, optimal tests with ex post disclosures are non-monotonic and
deterministic, so that every type θ of the firm knows with certainty the grade that it will
be assigned. Being deterministic, reactive disclosures necessarily lead to a strict increase
in financial frictions. As we argued in Section I, pre-emptive disclosures are an empirically
relevant case, especially if it takes time to prepare verifiable information. In this context,
our results indicate a strict benefit of conducting stress tests which ensure strong banks pass,
but leave them uncertain about exactly how well they will fare. Historically, this kind of
ambiguity has been a feature of the Fed’s stress test.23

Our extension with ex post disclosures also clarifies the relationship between our work and
Goldstein and Leitner (2018) (GL), who study optimal stress tests when banks can decide
ex post whether to sell or retain their assets. In their paper, the bank’s “outside option” is
asset retention while, in our case, it is disclosure. One point of similarity is that negative
assortative matching emerges as part of an optimal test in both cases.24 However, there are
also two important differences. First, the nature of the outside option leads to an interesting
difference in the nature of optimal tests. GL’s regulator cannot always replicate the firm’s
outside option with her test design and, therefore, some banks may choose to retain assets in
equilibrium. As a result, in their setting the relevant constraints may depend in general on
both the way firms’ reservation prices compare with their type and the regulator’s objective
(as these determine the set of types she wishes to sell). By contrast, in our disclosure context
the regulator can focus on tests that induce all types of firm/bank to forgo the outside option
of disclosure, regardless of the bank’s or the regulator’s objective. Second, we are able to
provide a full characterization of optimal tests. We identify that optimal tests pass banks
above a threshold, where passing grades comprise a combination of fine-tuned, negatively-

23Despite a recent move towards greater transparency, Leitner and Williams (2023) point out that the
Fed still does not reveal everything about its tests. They caution that too much transparency can distort
investment decisions. We identify a complementary benefit—uncertainty allows the test to better exploit
pooling and thereby reduce financial frictions.

24Garcia and Tsur (2021) also find negative assortative matching in a finite-types insurance setting. In
a model with a continuous state and smooth payoffs, Kolotilin et al. (2022) find conditions for negative
assortative matching to be optimal; their setting involves no incentive constraints.
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assorting grades and a coarse, bunching region of intermediate types. This insight is not
available in GL, perhaps due to discreteness issues introduced by their finite state space.

III. Applications

A. Bank Stress Tests in Times of Financial Crises

In Examples 1 and 3 above, we demonstrated that our framework can be applied to models of
banking crises. In this context, our characterization of optimal tests highlights the preferred
policy of a regulator who can release credible information to investors, and who is concerned
about market expectations dropping below a threshold and triggering bank runs. We view
this setting as informative for the problem of real-word financial regulators who have to
design stress tests in times of financial crises.

For example, during the financial crisis of 2007-9, the Federal Reserve designed a novel
stress testing exercise for the largest US banks as part of its Supervisory Capital Assessment
Program (SCAP). Several studies have confirmed that the SCAP conveyed credible informa-
tion to investors25 Schuermann (2014) argues that the Federal Reserve’s tests were widely
regarded as having restored investor confidence more successfully than those subsequently
conducted by the European Banking Authority. Moreover, evidence suggests that the Fed-
eral Reserve’s stress tests have not been associated with increased voluntary disclosures by
banks,26 while the EBA’s tests did lead to voluntary disclosures of banks’ sovereign debt
exposures (Bischof and Daske, 2013). The principle of public speech and private silence
in our analysis suggests that the Fed’s stress tests may have been more effective, in part,
because they did not trigger additional bank disclosures, allowing information to flow more
efficiently to market participants.

Since the financial crisis, regulators have also adopted a more regular stress testing regime,
which releases information about banks’ health in normal times. The stated goal of these
tests is different, and focuses more on their ability to reinforce transparency and to mitigate
moral hazard in the financial system. While our analysis can shed some light on the optimal
design of tests in normal times (recall Corollary 1), we do not formally model moral hazard
or market discipline. Hence, we view our results as primarily useful for the design of stress

25See, for example, Morgan et al. (2014), Flannery et al. (2017), Sahin et al. (2020) and Fernandes et al.
(2020).

26Consistent with greater bank opacity, Flannery et al. (2017) find that analyst earnings forecast errors
do not significantly reduce after a bank is stress tested–despite a rise in coverage. Interestingly, they note
that while the Fed’s test allows banks to voluntarily include additional disclosures from scenarios beyond the
“severely adverse” one published by the Fed, most have not taken up this option. Shahhosseini (2016) studies
banks’ reactions to being included in stress tests. She finds stress-tested banks made fewer loan charge-offs
and more frequently changed the classification of loan losses, which one could interpret as increased opacity.
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tests in times of financial distress, such as the SCAP and its international equivalents, which
were driven mostly by the desire to avoid market distress.

Below, we discuss three novel insights for stress test design that arise from our analysis.

Optimal granular stress tests: A novel feature of optimal tests in our model is that
the regulator releases three types of grades: Failing grades z < t lead to binding financial
frictions, a “marginal” passing grade z = t pools weak and strong banks, and a range of
grades z > t that pass strong firms “with flying colors”. Thus, optimal tests are quite
granular. They feature significant bunching at the “marginal” grade, but they also offer the
strong a rare opportunity for distinction in order to discourage disclosures. In addition, if
there is is strict convexity in the regulator’s objective function v (z) when frictions bind at
z < t (e.g., in Example 3), then any optimal test also involves multiple failing grades.

Interestingly, the granularity of the optimal test in our model is somewhat consistent
with how the 2009 SCAP was implemented in practice. Indeed, the Fed published detailed
results about each bank’s losses in adverse scenarios. This included losses among banks such
as Goldman Sachs and JP Morgan, who “passed” the test, in the sense that the Fed did not
conclude that they had a capital shortfall. Our model provides a possible rationale for these
practices, if one of the motives for public disclosure of stress test results is to prevent the
“unraveling” of information via signals from strong banks.

These granularity results are new to the existing literature on stress test design. The
existing literature shows that in many settings, simple pass/fail tests are optimal (e.g.,
Kamenica and Gentzkow, 2011; Orlov et al., 2021; Inostroza and Pavan, 2022). Inostroza
(2019) emphasizes the merits of multiple failing grades, but in his model, there is no rationale
for granularity in passing grades. In Goldstein and Leitner (2018), multiple passing grades
are optimal, but in their setting optimal grades do not involve strict separation around the
failure threshold. Our work also connects to Philippon and Skreta (2012), who show in a
very different environment that regulatory policy in a crisis should take into account its effect
on endogenous information and adverse selection in financial markets.

Determinants of Regulatory Trade-offs in Stress Test Design: Our analysis of
comparative statics in Section E sheds light on the institutional details that affect the optimal
design of bank stress tests. In common with existing literature, we show that regulators
must release more accurate information, usually at the cost of failing more banks, when
investors’ beliefs become more pessimistic in a financial crisis. In addition, we show that
it is not enough to reassure investors in isolation. Instead, regulators need to consider the
endogenous response of banks’ disclosures, make stress tests informative enough to prevent
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“unraveling” of information, and encourage a regime with public speech and private silence.
Our analysis of banks’ incentives and disclosure technologies in Proposition 3 and Lemma

4 highlights additional features that regulatory designs must take into account. First, the
required informativeness of stress tests is increasing in banks’ ability to make verifiable dis-
closures. A sizable applied literature in accounting studies the extent to which banks’ disclo-
sures have the potential to credibly reassure investors. An emerging consensus is that banks’
disclosures about opaque areas of their business model, in particular about derivatives and
securitization activities, provide particularly valuable information to investors during crises
(e.g., Barth and Landsman, 2010; Iren et al., 2014). By contrast, standard fair value account-
ing in normal times is considered less important. Sowerbutts et al. (2013) also document that
banks made heightened disclosures during the crisis of 2008. Our analysis implies that the
more detailed banks’ potential verifiable disclosures become, the more regulators should be
concerned about “unraveling” effects, and respond accordingly with more informative stress
tests and a greater emphasis on multiple passing grades that incentivize private silence.

Moreover, Lemma 4 highlights that banks’ incentives to disclose may be driven by the
incentives of their managers and, in particular, by the sensitivity of managers’ payoffs to
investors’ expectations. This finding is particularly salient in banking, because senior bankers
tend to have bonus-based compensation schemes. These patterns have been documented
both by theoretical analyses of optimal compensation in banking (e.g., Thanassoulis, 2012;
Acharya et al., 2016) and by the associated empirical evidence (e.g., Bannier et al., 2013;
Célérier and Vallée, 2019). All else equal, our results suggest that regulators should be more
concerned about inside disclosures when managers’ payoffs are more sensitive to current
market expectations, for example because managers own their bank’s stock / options or
because their bonuses are sensitive to annual stock price performance.

Perhaps surprisingly, once these institutional features have been taken into account, the
optimal test described in Proposition 1 does not depend on the details of a particular model
of financing frictions that regulators have in mind. Indeed, the optimal test has the same
structure, and the same failure threshold, when financial frictions take the shape of a binary
“run / don’t run” outcome (as in our Example 1), or when they are manifested in a smooth,
convex function that captures the gradual deterioration of market conditions as investors
become more pessimistic (as in Example 3). Therefore, our analysis shows that tests need
not be “fine-tuned” to particular financial frictions. Rather, optimal designs depend crucially
on market beliefs and insiders’ incentives.

A final point worth highlighting is our recommendation for stress testing at the “eve of
a crisis”, when investors’ prior beliefs are relatively pessimistic but lie in the intermediate
region characterized in Corollary 1. In these scenarios, there is no need for stress tests
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at all unless regulators expect inside disclosures by banks. Running a stress test in these
situations is still beneficial because it ensures that information does not unravel, and presents
information to investors in a way that minimizes the probability of future bank runs.

Credibility and Regulatory Commitments to Stress Test Accuracy: Several stud-
ies of stress tests have highlighted potential time inconsistencies in regulator’s behavior. For
example, Bouvard et al. (2015) show that regulators may have an incentive to withhold
private information about bank vulnerability ex post, in an attempt to signal strength to
investors, while it would be optimal ex ante to commit to an informative stress test.

In our framework, we can address the question whether a regulator would change the
nature of the optimal test after learning the true quality θ of banks’ assets. Concretely,
notice that the regulators’ and the firms’ preferences, defined in Equations (2) and (5), are
exactly the same when we set the sensitivity parameter φ to zero. Hence, analyzing stress
tests that induce private silence when φ = 0 is equivalent to analyzing tests that would
induce the regulator to refrain from further disclosures, and to obey her ex-ante information
design, after she learns the realization of θ.

Using our characterization of optimal silence-inducing tests in Proposition 1, we can
infer that incentive constraints associated with private silence are never binding in the case
where φ = 0. The economic intuition is as follows: Incentive constraints in our model when
strong banks have an incentive to signal their quality to investors, whose beliefs drive bank
managers’ payoffs whenever φ > 0. By contrast, under the regulators’ preferences with
φ = 0, there is no gain from signaling quality as long as one achieves a grade z ≥ t that
avoids financial frictions. Interestingly, this allows us to slightly relax our assumptions about
regulatory commitment. If the regulator were able to make a full disclosure after learning θ,
she would not want to do so under the optimal test that we have characterized.

We stress that other types of commitment issues for the regulator remain relevant in
the light of the recent literature. First, as pointed out by Parlasca (2021), if one of the
objectives of stress tests in normal times is to alleviate moral hazard, then the regulators
have an incentive to threaten tough tests ex ante, but relax these tests ex post if there is
a possibility of binding financial frictions. Second, in the model considered by Orlov et al.
(2021), it is sometimes optimal to fail strong types of bank in order to make it easier for
failing banks to raise capital after the test is released. This type of mechanism may not be
time-consistent if the regulator prefers to pass strong banks instead after their strength has
been realized.
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B. Optimal Credit Ratings

In Example 2, we demonstrated that our setting nests a standard model of corporate fi-
nancing in the spirit of Holmstrom and Tirole (1997). Financial frictions in this model arise
when the firm’s borrowing capacity becomes insufficient to make all available investments
that have positive NPV. Releases of information about asset quality in this setting can be
interpreted as credit ratings, whereby favorable ratings allow firms to borrow more and en-
sure that financial constraints do not bind. The regulator can be interpreted as an idealized
ratings agency that maximizes the joint utility of investors and the firm.

This interpretation allows us to contribute insights to a growing literature on the design
of credit ratings. Motivated by the crisis of 2008, this literature focuses to a large extent on
imperfections in how credit ratings are produced and consumed. These issues include firms’
incentives to shop for favorable ratings (Skreta and Veldkamp, 2009; Bolton et al., 2012;
Kashyap and Kovrijnykh, 2016), the interaction of ratings with financial regulations (Opp
et al., 2013), and the incentives for firms to block the publication of unfavorable ratings
Sangiorgi and Spatt (2017). Daley et al. (2020), in perhaps the closest paper to ours in this
literature, show how ratings affect firms’ incentives to signal their quality via asset retention,
with further implication for screening and credit supply. Given the various market failures
pointed out by the existing literature, we do not view credit ratings agencies in current reality
as social surplus maximizers. Therefore, our findings should be interpreted as an efficient
benchmark for credit ratings, rather than a prediction of ratings market equilibrium. Future
research investigating the reforms needed to approach this benchmark would be interesting.

All of the studies cited above consider a simple, usually exogenous structure for the
informative signals that are conveyed by credit ratings. In particular, the standard approach
is to assume that the firm has a binary type and investors observe a binary distributed signal
of this type.27 These assumptions are geared towards conveying intuition about various
incentive problems in the clearest possible way.

Our model contributes a different perspective to this literature. Applying our general
results to Example 2, we can analyze how credit ratings should be designed in principle when
there are many possible types of firm, who can also make additional corporate disclosures to
increase their borrowing capacity. Once again, the problem of designing an optimal rating
boils down to ensuring public speech and private silence. This strategy, which crowds out
all voluntary additional disclosures, ensures that the overall impact of financial frictions is
minimized, and also economizes on any deadweight costs associated with corporate disclo-
sure.

27A notable exception is Manso (2013), who models a stochastic process of more granular ratings but still
takes the structure of ratings as given.
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Unlike existing studies, we show how a wide spectrum of optimal ratings emerges en-
dogenously from the objective to minimize financial frictions. First, there is a range of low
“junk” ratings, whose recipients end up financially constrained with probability one. Sec-
ond, there is significant bunching of firms around an “investment grade” rating, at which
financing constraints become slack. Finally, there is a range of “premium” ratings, which
deliver additional surplus to the firms who receive them. This array of ratings resembles the
wide range of grades that the major credit ratings agencies deliver in practice. We would
not expect credit ratings in the data to satisfy our optimality conditions exactly, since the
ratings industry is subject to the various frictions and agency problems mentioned above.
However, we view this result as an interesting and novel benchmark for ratings design.

IV. Conclusion

We have characterized the optimal informational policy of a regulator whose goal is to
alleviate financial frictions. Our results provide a characterization of optimal tests that is
robust to an informational version of the “Lucas critique”: One should not assume that
regulators have full control over the informational environment in which financial markets
operate, and should expect that any change in informational policy will trigger further
changes in the endogenous production of information.

We demonstrate that optimal tests take a markedly different shape once we account
for this feature. We show that regulators should aim for public speech and private silence,
refraining from private communication of test results to firms, and preserving firms’ incentives
not to communicate with investors. As a result, optimal tests become more granular, more
informative and involve novel types of grades that pass firms “with flying colors” in order
to preserve their incentives to stay quiet. Moreover, they should maintain some uncertainty
about the likely grade firms will receive.

We further illustrated the applied insights that arise for the design of bank stress tests
during financial crises, and for the design of an idealized credit ratings agency that maximizes
social surplus. Beyond the applications covered in this paper, we hope that our approach
and methodology will spark further work on constrained information design, which could
consider additional applications in which the information designer does not have full control
of the informational environment.
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A. General Message Spaces

In our baseline model, the firm chooses its message of investors from the set m ∈ {θ, ∅},
where m = θ stands for a verifiable disclosure and m = ∅ stands for silence. All of the proofs
in this appendix apply to a more general setting, in which the firm can choose m ∈ M (θ),
where M (θ) defines a general set of inside disclosures that the firm can make after learning
its type θ. As in our baseline model, we write the firm’s utility as u (z, θ)−c (m), where c (m)
denotes the cost of a message m ∈M (θ). We assume the cost depends only on the message:
this keeps our analysis in line with most costly disclosure models, and avoids conflating with
‘costly signaling’ motives. Of course, this places some limitations on the scope of our results
(in particular, see Internet Appendix II). Still, we note that the model allows for some
type-dependence in preferences, via u.

We continue to assume that M (θ) always contains a message denoted m = ∅, which
corresponds to silence and has c (∅) = 0. We make the technical assumptions that each
M(θ) is compact and continuous in θ. More rigorously, the space M = ∪θM (θ) is always
endowed with some underlying topology. By continuity, we mean that the correspondence
M (θ) is both upper and lower semicontinuous in the usual sense. We also assume that the
sets M−1(m) = {θ : m ∈M(θ)} are continuous in m.

We define the worst case disclosure payoff, which generalizes Equation (6), as follows:

ū (θ) = max
m∈M(θ)

{
min

θ′:m∈M(θ′)
u(θ′, θ)− c(m)

}
. (A1)
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This payoff ū (θ) is the highest utility that the firm can achieve, net of disclosure costs, if
investors respond skeptically, i.e., by assuming that any message m comes from the worst
type that is able to send it. Under our assumptions on M , and if the cost function c (m)
is continuous, the Theorem of the Maximum applies, so that (A1) is well-defined and is
moreover an upper semi-continuous function of θ.

Finally, we assume that ū (θ) < u (θ, θ) for all θ > θ. This assumption is equivalent to
our assumption in the baseline model that disclosure is costly: Any message certifying that
the type is at least θ must incur strictly positive costs, except (trivially) for the very worst
type.

B. Preliminary Results

In this section we introduce some auxiliary concepts and solution methods used in our main
arguments. The proofs of results presented in this section are provided in Internet Appendix
I.

With a slight abuse of notation, for any test/signal structure {G(s | θ)}s∈S,θ∈Θ, we write
G (z|θ) for the associated conditional distribution of grades z = E [θ|s] when the firm does
not make inside disclosures. We similarly write G (z) =

´
G (z|θ) dF (θ) for the unconditional

distribution of grades induced by a test G.

A. Threshold-separable tests

We introduce a class of tests important to our main analysis, characterize them, and provide
a preliminary result on which our main analysis draws.

Definition A1. A test is threshold-separable with threshold θ′ ∈ [θ, θ] if for any pair θ1, θ2 ∈
[θ, θ] such that θ1 < θ′ ≤ θ2,

supp G(· | θ1) ∩ supp G(· | θ2) = ∅.

We derive an equivalent definition of threshold-separable tests as follows:

Lemma A1. A test is threshold-separable with threshold θ′ if and only if

rˆ

θ

G(z)dz ≤
rˆ

θ

F (z)dz (A2)

for all r ∈ [θ, θ], with equality at r = θ′, θ. Moreover, any test G satisfying (A2) must also
satisfy G(θ′) = F (θ′).
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We can also show that one can focus on threshold-separable tests in the regulator’s
Problem 9:

Lemma A2. For any solution {G(z | θ)} to Problem (9), there exists an alternative
threshold-separable solution {G′′(z | θ)} with threshold θ′ ≤ t. Moreover, G′′ induces a
distribution over grades z ≥ t if θ ≥ θ′, and otherwise reveals θ.

Lemma A2 is not sufficient to pin down optimal tests: it says little about the distribution
of z on either side of the threshold. However, in our main analysis, we leverage it to draw
yet stronger conclusions about the form of every optimal test.

B. Solution Methods for Relaxed Problem

We now develop solution methods for the regulator’s relaxed problem (12), which involves
fewer constraints than her main problem (9). As Lemma 3 establishes, the solution to (12)
indeed yields a weakly higher value than (9). In this sense, the latter is a relaxed version of
the former.

Yet because it involves both first and second order stochastic dominance constraints,
Problem (12) itself is not amenable to analysis by the standard tools of Bayesian persuasion.
Nonetheless, the next lemma shows that the methods of Dworczak and Martini (2019) can
be readily extended to deal with the additional FOSD constraints.28

Lemma A3. If there exist a convex function γ : [θ, θ] → R, a non-increasing function
ψ : [θ, θ]→ R and a distribution H? �co F such that:

1. γ(x) + ψ(x) ≥ v(x) for all x, with equality for x ∈ supp H?

2.
´
γ(x)dH? =

´
γ(x)dF

3.
´
ψ(x)dH? =

´
ψ(x)dF ◦ δ

and H? first-order stochastically dominates F◦δ, then H? solves (12). Moreover, any solution
H ′ to (12) must satisfy 1.-3. for the same pair (γ, ψ).

Making use of Lemma A3, we now describe the properties of any optimal distribution
H? over the firm’s interim expected grades. We use these findings to prove our main results,
Propositions 1 and 2, which translate these findings into implications for optimal tests. The
next result establishes that an optimal solution to Problem (12) exists:

28In a search context without any equivalent of our disclosure problem, Lyu (2021) uses a similar extension.
In our setting, the presence of disclosure constraints means that reframing the problem in terms of higher-
order beliefs, x, is necessary for identifying this kind of relaxed problem. Indeed, we find that optimal tests
are meaningfully stochastic, where most persuasion problems with a continuous state variable find optimal
signals which are deterministic.
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Lemma A4. The distribution

H?(x) =


F (x), x < θ?

F (θ?), θ? ≤ x < t

F ◦ δ(x), t ≤ x,

where θ? is chosen to satisfy:

θ?ˆ

θ

xdF (x) + t(F (b)− F (θ?)) +
θˆ
t

xdF ◦ δ(x) =
ˆ
θdF, (A3)

solves problem (12).

H? describes a distribution over the firm’s conditional expected payoffs which solves
Problem (12). We emphasize that θ? refers to a particular optimal threshold (i.e. that
consistent with H?), where by contrast θ′ introduced in Definition A1 denotes an arbitrary
(not necessarily optimal) threshold. Of course, H? is not a solution to (9). In particular, note
that Lemma A4 does not identify whether a test G that induces this distribution of private
beliefs exists, nor does it describe what such a G looks like. We establish the existence of
such a test in the proof of Proposition 1 (see Appendix C).

Nevertheless, Lemma A3 allows us to identify some necessary properties of any solution
to Problem (12). These are important to the proof of Proposition 2:

Proposition A1. [Properties of any solution H ′ to (12)]. Up to a set of measure
zero:

1. supp H ′ ⊂ [θ, θ?] ∪ [t, θ],

2. H ′(x) = F ◦ δ(x) for x ≥ t,

3. x ≥ t if and only if θ ≥ θ?. If v is strictly convex on [θ, θ?] then H ′(θ) = F (θ) for all
x ≤ θ?,

where θ? is unique and identified by Lemma A4.

In particular, we find that all optimal tests must involve (i) the same set of types enjoying
an expected grade greater than t (those above the threshold θ? identified in Lemma A4),
and (ii) the FOSD constraint binds everywhere above t.
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For purposes of reference, we end this section with a brief recount of the (well-known)
solution to the benchmark design problem in which the firm cannot disclose its type:

V FB = max
G

´
v(z)dG(z)

subject to G �co F (A4)

Corollary A1. Suppose E[θ] < t. Any solution to (A4) is characterized by a threshold θFB

in which, with probability 1, types θ ≥ θFB (and only these types) are pooled into a single
grade z = t, where θFB satisfies

E[θ | θ ≥ θFB] = t.

For every type θ < θFB, Pr[z̃ ≥ t | θ] = 1− limz↑tG(z | θ) = 0. Moreover, full revelation of
such types is weakly optimal.

C. Proofs of Main Results

Proof of Lemmas 1 and 2

Fix a test {G(s | θ)}s∈S,θ∈Θ and some corresponding equilibrium disclosure strategies µ :
Θ → ∆M , where µ(M(θ)c | θ) = 0.29 The pair (G, µ) induces a distribution Ĝ over
posterior means z = E[θ | s,m], defined by

Ĝ(z | θ) =
θˆ

θ

µ(Ms(z) | θ)dG(s | θ) (A5)

Ĝ(z) =
θˆ

θ

Ĝ(z | θ)dF (θ),

where Ms(z) := {m ∈M : E[θ | s,m] ≤ z}. We note that, as µ is an equilibrium strategy, it
satisfies

m ∈ supp µ(· | θ) =⇒ m ∈ arg max
m∈M(θ)

ˆ
u(E[θ | s,m], θ)dG(s | θ)− c(m) (A6)

for all θ ∈ [θ, θ]. Let the maximized value in (A6) be U e(θ).
We show that the test {Ĝ(z | θ)}(z,θ)∈[θ,θ]2 and disclosure strategy µ̂({m = ∅} | θ) = 1,

for all θ, is an equilibrium, supported by the skeptical off-path beliefs identified in section I
following messages m 6= ∅. To that end, denote θ(m) = inf{θ : m ∈ M(θ)}. The payoff to

29∆X denotes the set of probability measures on a set X, and Xc the complement of X.
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m = ∅ for type θ is
ˆ
u(z, θ)dĜ(z | θ) =

ˆ ˆ
u(E[θ | s,m], θ)dµ(m | θ)dG(s | θ)

≥ U e(θ)

where the first line uses z = E[θ | s,m], (A5) and Fubini’s theorem, and the inequality
follows from (A6) and c(m) ≥ 0. By contrast, for any m ∈M we have

U e(θ) ≥
ˆ
u(E[θ | s,m], θ)dG(s | θ)− c(m) ≥

ˆ
u(θ(m), θ)dG(s | θ)− c(m)

which implies U e(θ) ≥ u(θ), for all θ ∈ [θ, θ], and hence µ̂ is an equilibrium strategy.
Moreover, it is obvious by definition that Ĝ induces the same distribution over z as does the
pair (G, µ) and hence the regulator’s payoff is unchanged.

Since we have just shown that the use of skeptical off-path beliefs is without loss of
generality, Lemma 2 follows immediately.

Proof of Lemma 3

Let G be feasible in Problem (9). Using Lemma A2, assume without loss that G is threshold-
separable with a failure threshold at some level θ′; moreover, we may assume that (i) z = θ,
and so x = θ, for all θ < θ′, and (ii) PrG[z ≥ t | θ] = 1 for θ ≥ θ′. Letting H be the
distribution of x(θ) = E[z | θ] induced by G, the value of the objective in the relaxed
problem evaluated at G can be written:

ˆ
v(x)dH(x) = Pr [θ < θ′]E [v (θ)| θ < θ′] + Pr [θ ≥ θ′]E [v (E [z|θ])| θ ≥ θ′]

= Pr [θ < θ′]E [v (z)| θ < θ′]︸ ︷︷ ︸
z=θ, for θ<θ′

+ Pr [θ ≥ θ′]E [E [z|θ]| θ ≥ θ′]︸ ︷︷ ︸
by linearity for z≥t

= Pr [θ < θ′]E [v (z)| θ < θ′] + Pr [θ ≥ θ′]E [v (z)| θ ≥ θ′]︸ ︷︷ ︸
by LIE + linearity

= E [v (z)] ≡ V
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Now we show that G satisfies the constraints in Problem (12) if it satisfies those in Problem
(9). By assumption G satisfies the incentive constraints in (9), and so

E [u (z, θ) |θ] = E [(φz + (1− φ) θ) |θ]

= φE [z|θ] + (1− φ) θ

= φx(θ) + (1− φ) θ

≥ u (θ) ,∀θ ≥ θ′.

Fix some x′ ≥ t. For any type θ ∈ δ(x′),ū(θ) ≥ u(x′, θ) holds by definition. By contrast,
x̄(θ) satisfies ū(θ) = u(x̄(θ), θ). Given that utility is increasing in its first argument, this
implies x̄(θ) ≥ x′ if and only if θ ∈ δ(x′). Similarly, the above chain of inequalities implies
x(θ) ≥ x̄(θ). Taken together, this means that for any value x′, G must satisfy

Pr
G

[x(θ) ≥ x′] ≥ Pr [x (θ) ≥ x′]

= Pr [θ ∈ δ (x′)]

or, equivalently,
1−H (x) ≥ 1− F ◦ δ (x)

Since x′ was arbitrary, this also holds for all x′ ≥ t.
Finally, since x is a conditional expectation of z, it is trivially a mean preserving con-

traction of z. Hence, H ′ �co G′. As G′ is feasible in (9), we have G′ �co F . The convex
order is transitive, so that H ′ �co F .

We briefly remark that E[w(z, θ) | z] = zλ(z) = E[u(z, θ) | z]. Hence, maximizing E[v]
is equivalent to maximizing E[u]. Hence, Problem (12) also constitutes a relaxed problem if
the objective in Problem (9) is replaced with the firm’s ex ante expected payoff.

Proof of Proposition 1

By Lemma A4 (Appendix B), we need only verify that the candidate test induces the dis-
tribution H? over x(θ) = E[z | θ]. First, for any value x′ ≤ θ?, the test clearly induces
Pr[x(θ) ≤ x′] = F (x′). Moreover, the test ensures E[v(z) | θ] = E[z | θ] = x(θ) = x(θ) for
any type θ ∈ δ(t) (where x(θ) > t), and x ≤ t for θ /∈ δ(t). This implies H?(x) = F ◦ δ(x)
for x > t. Since probabilities must sum to 1, this pins down the required mass at t.

Proof of Proposition 2

Precisely, we prove the following two statements, which imply Proposition 2.

49



Lemma A5. [Properties of any optimal test.] Up to a set of measure zero:

1. z ≥ t if and only if θ ≥ θ?. If w is strictly convex on [θ, t] then each θ < θ? is fully
revealed,

2. Any type θ ∈ δc(t) ∩ [θ?, θ] receives grade t with probability 1,

3. Any type θ ∈ δ(t) receives an expected grade x(θ) = E[z | θ] = x(θ),

where θ? is unique and identified by Lemma A4.

Proof. Property 1 follows from Lemma A2 and Proposition A1.3. If θ ∈ δ(t) then θ ≥ t and
x(θ) > t. Combining this observation with Proposition A1.2, property 3 follows. Moreover,
this also implies Pr[x > t | θ ∈ δc(t) ∩ [θ?, θ]] = 0. Hence, x(θ) = E[z | θ] = t for all
θ ∈ δc(t)∩ [θ?, θ]. Since such types cannot receive a grade less than t, this implies they must
also have a zero probability of earning a grade strictly in excess of t.

Lemma A6. There does not exist a deterministic test which solves (9).

Proof. We show that no deterministic test can simultaneously satisfy the necessary optimal-
ity conditions of Lemma A5 and induce a distribution G over z which constitutes a mean
preserving contraction of F . For the sake of a contradiction, suppose such a deterministic
mapping πd : Θ → S did exist. Then, Lemma A5.3 implies that πd(θ) = z(θ) = x(θ) < θ,
for all θ ∈ δ(t).30 By Lemma A5.1-2 we can further conclude z > t ⇐⇒ θ ∈ δ(t).

Consider the conditional distributions of z and θ, respectively, given z > t. Since z(θ) =
x(θ) < θ for all θ ∈ δ(t) and z(θ) = t for all θ ∈ δc(t) ∩ [θ?, θ], we necessarily have
Pr[z < z′ | z > t] > Pr[θ < z′ | z > t] for all z′ ∈ (t, θ]. Hence, E[z | z > t] < E[θ |
z > t] = E[θ | θ ∈ δ(t)], and:

E[z] = Pr[z ≤ t]E[z | z ≤ t] + Pr[z > t]E[z | z > t]

= Pr[θ ∈ δc(t)]E[E[θ | z] | z ≤ t] + Pr[θ ∈ δ(t)]E[z | z > t]

< Pr[θ ∈ δc(t)]E[θ | θ ∈ δc(t)] + Pr[θ ∈ δ(t)]E[θ | θ ∈ δ(t)]

= E[θ],

where the second line uses Pr[z ≤ t] = Pr[θ ∈ δc(t)] and z = E[θ | z], and the inequality
follows after applying LIE for z ≤ t and E[z | z > t] < E[θ | θ ∈ δ(t)]. We conclude
E[θ] = E[E[θ | z]] = E[z] < E[θ]—a contradiction.

30Since the test is deterministic, we can identify the grade z(θ) as a function of θ.
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Proof of Proposition 3

Let G?
x denote an optimal test when the outside option is described by the function x, and let

the corresponding equilibrium threshold be θ?x. Fix two functions x, x′ satisfying x(θ) ≤ x′(θ)
for all θ ∈ [θ, θ]. To show property 1, recall condition (15) defining the threshold can be
written

θˆ

θ?
x

(θ −max{t, x(θ)})dF (θ) = 0.

Direct comparison shows that
´ θ
k

(θ −max{t, x′(θ)})dF (θ) ≤ 0 for k = θ?x. Since θ?x ≤ t, the
integral is locally increasing in k and hence θ?x′ ≥ θ?x. Note that the inequality is strict if and
only if Pr[{θ : x′(θ) > x(θ)}] > 0.

To see property 2, note that, by the linearity of v on [t, θ], the regulator’s payoff from
test G?

x can be written

V (x) =
kˆ

θ

v(θ)dF (θ) +
θˆ

k

θdF (θ)

for k = θ?x. As v(θ) < θ for all θ < t, it is clear that the right side of this expression strictly
decreases in k for k ≤ t. Hence V (x′) ≤ V (x), with strict inequality if θ?x < θ?x′ .

Finally, for comparative statics of informativeness in x we focus on the implementation
of the optimal test described in Proposition 1. In this case, the result is almost immediate.
By property 1, θ?x′ > θ?x. Moreover, note that δx(t) ⊂ δx′(t) for all x. The distribution G?

x

satisfies

G?
x(z) =

F (z), z < θ?x

F (θ?) +
´ z
θ∈δx(t)∩[θ,z] α(θ)dF (θ), θ?x ≤ z.

As they are clearly ordered by single-crossing and have the same mean, G?
x′ second-order

stochastically dominates G?
x (see, for instance, Rothschild and Stiglitz (1970)).

Proof of Lemma 4

As described in section I, message space M , costs c, and φ induce the function ū(θ), which
defines the disclosure-equivalent grades x̄(θ) = φ−1(ū(θ)− (1− φ)θ).

Consider comparative statics with respect to M(θ): fix two message spaces (M(θ))θ∈Θ,
(M ′(θ))θ∈Θ such that ⋃ΘM(θ) = M = ⋃

ΘM
′(θ) and M−1(m) ⊂ M ′,−1(m) for all m ∈ M .

SinceM−1(m) ⊂M ′,−1(m), we have θ′(m) ≤ θ(m) for allm ∈M , where θ(m) = min{θ : m ∈
M(θ)} and θ′(m) is similarly defined. Since this holds for all m, it follows that u′(θ) ≤ u(θ),
where u′(θ) has the obvious definition. From here, x̄′(θ) ≤ x̄(θ) follows immediately. By
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similar consideration of (A1), it is easy to see that x̄′(θ) ≥ ¯x(θ) if c′(m) ≤ c(m) for all
m ∈M .

Finally, we establish comparative statics in φ. Note that

x(θ) = φ−1( max
m∈M(θ)

{u(θ(m), θ)− c(m)} − (1− φ)θ)

= max
m∈M(θ)

{φ−1(u(θ(m), θ)− c(m)− (1− φ)θ)}

= max
m∈M(θ)

{θ(m)(1− λ(θ(m)))− 1− φ
φ

θλ(θ(m))− 1
φ
c(m)},

where the third line uses the definition of u(z, θ). Clearly, the maximand in the last line
increases in φ for each m, and therefore x̄(θ) increases in φ too.

Proof of Proposition 4

Consider a family {Fy}y∈Y of distributions on [θ, θ] indexed by y. In order that we can com-
pare distributions using MLRP, assume that that each Fy has a corresponding density fy; for
simplicity let fy(θ) > 0 for all θ ∈ [θ, θ].31 For the purposes of describing some comparative
statics, assume Y is a totally ordered set. We order distributions by the monotone likelihood
ratio (MLR) order, so that if y < y′ and θ < θ′ then

fy(θ′)
fy(θ)

<
fy′(θ′)
fy′(θ) .

We can now prove the result. Consider condition (15)

θˆ

θ?
y

(θ −max{t, x(θ)})fy(θ)dθ = 0. (A7)

Fixing θ? = θ?y, the integrand on the left-hand side again obeys the single-crossing property.
Hence, for y′ > y the left-hand side is positive. Since θ?y < t, this expression is increasing
in θ?. Hence, θ?y′ < θ?y. To see that the regulator’s utility is increasing in y, note that her
optimal payoff can be written as a function of y as follows:

V (y) =
θ?

yˆ

θ

v(θ)fy(θ)dθ +
θˆ

θ?
y

θfy(θ)dθ.

31Our results do not rely on this simplification. It serves to simplify our description of the MLRP order.
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As v(θ) is increasing in θ, the right-hand side is increasing in y for fixed θ?y. Moreover, as
θ > v(θ) for all θ < t, the right-hand side is also decreasing in θ?y. Putting these together
shows that V (y) < V (y′) whenever y < y′.
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