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  Abstract—Relative radiometric normalization (RRN) is a widely 
used method for enhancing the radiometric consistency among 
multi-temporal satellite images. Diverse satellite images enhance 
the information for observing the Earth's surface and bring 
additional uncertainties in the applications using multi-sensor 
images, such as change detection, multi-temporal analysis, image 
fusion, etc. To address this challenge, we developed a multi-rule-
based RRN method for multi-sensor satellite images, which 
involves the identification of spectral- and spatial-invariant 
pseudo-invariant features (PIFs) and a Partial least-squares (PLS) 
regression-based RRN modeling using neighboring target pixels 
around PIFs. The proposed RRN method was validated on four 
datasets and demonstrated excellent effectiveness in identifying 
high-quality PIFs with spectral- and spatial-invariant properties, 
estimating precise regression models, and enhancing the 
radiometric consistency of reference-target image pair. Our 
method outperformed six RRN methods and effectively processed 
well-registered medium- and high-resolution images from the 
same sensor. This letter highlights the potential of our method for 
generating more comparable bi-temporal multi-sensor images. 
 

Index Terms—Relative radiometric normalization (RRN), 
pseudo-invariant features (PIFs), log-Gabor filter, multi-sensor 
images, Partial least-squares (PLS), radiometric consistency. 

I. INTRODUCTION 
ADIOMETRIC normalization is an essential pre-
processing step for reducing radiometric inconsistency 

among multi-temporal satellite observations caused by 
changes in sensor calibration, illumination, viewing angle, 
atmospheric conditions, and ground properties over time [1]. 
While absolute radiometric normalization (ARN) methods 
convert image digital numbers to physical surface reflectance 
values using complex atmospheric correction models, relative 
radiometric normalization (RRN) methods are commonly used 
to adjust the radiometric properties of a target image to match 
those of a reference image [2].  
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Digital Object Identifier 

RRN can be classified into dense RRN (DRRN) and sparse 
RRN (SRRN) methods based on pixel pairs used to establish 
the radiometric distortion relationship of radiometric features 
between a reference-target image pair [3]. DRRN methods 
determine the adjustment of radiometric properties using all 
pixels of the reference and target images without considering 
differences caused by land cover changes and radiometric 
distortion, such as Haze correction (HC), Minimum-maximum 
(MM) normalization, Simple regression (SR), and Histogram 
matching (HM) [1]. Comparatively, SRRN methods apply 
identified time-invariant pixels with invariant or near-invariant 
radiance, known as pseudo-invariant features (PIFs), to 
establish the radiometric transforming model for a reference-
target image pair, and then normalize the target image [4].  

The identification of PIFs is crucial for implementing 
SRRN methods. To ensure the quality of PIFs, PIFs 
identification methods have been developed from manual or 
semi-automatic selection to math transformation methods 
represented by multi-version Multivariate alteration detection 
(MAD) [5] and Iterative slow feature analysis (ISFA) [6]. 
Radiometric distortion adjustment is essential for high-
resolution and multi-sensor images in various remote sensing 
applications, as its capability of improving the performance of 
change detection, classification, and mosaicking [7]. Aided by 
stepwise spatial and spectral metrics, multi-rule-based SRRN 
methods have been shown to perform better in identifying 
robust PIFs with steady physical properties of land covers 
from well-registered high-resolution images [8, 9]. However, 
the impacts of local mismatches on PIFs and RRN modeling 
still need to be considered [10]. Keypoint-descriptor-based 
SRRN methods have the potential to identify PIFs insensitive 
to geometric and radiation distortions in unregistered images 
[3, 11, 12]. These methods only rely on the blob- or corner-
based descriptors and weaken the use of spectral information 
in high-resolution images, leading to potential uncertainties in 
RRN results. To address this issue, a tensor-based keypoint 
detection method has been proposed to preserve both spatial 
and spectral information over all bands for more reliable PIFs 
identification [13]. However, its complexity may restrict the 
application for various high-resolution images. 

Diverse multi-spectral images record the Earth’s surface at 
different spatial resolutions and coverage ranges, providing 
valuable observations for applications requiring higher spatial, 
temporal, and spectral details. However, radiances distortion 
caused by acquisition system differences brings uncertainties 
in application results. Radiometric inconsistency persists in 
multi-sensor images even after using ARN due to atmospheric 
correction modeling biases [7]. Thus, integrating RRN and 
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ARN has proven to be advantageous to produce harmonized 
results with consistent physical meanings [7, 14], which can 
facilitate the applications of multi-sensor images, such as 
change detection, multi-temporal analysis, and image fusion.  

 To reduce uncertainties from the inconsistent radiance and 
result in more comparable bi-temporal multi-sensor images for 
wider applications, in this letter, we proposed a multi-rule-
based RRN method for multi-sensor satellite images. The 
main contributions include: 1) we developed a spectral- and 
spatial-invariant PIFs identification using the measurements 
robust to local mismatches and radiation variation; 2) we 
estimated the radiometric transforming models by considering 
the neighboring target pixels centered on the identified PIFs. 
The remainder of this letter is organized as follows: Section II 
details the proposed method; Section III reports and analyzes 
experimental results; and Section IV draws conclusions. 

II. METHODOLOGY 
The proposed method includes spectral- and spatial-invariant 

PIFs identification and RRN modeling using Partial least-
squares (PLS) regression [15] (Fig. 1). First, we identified 
PIFs by measuring the pixels invariant to both spectral and 
spatial distortions. Then, we used PLS regression to estimate 
the (target) group-to-(reference) pixel relationships between 
the image pair for normalizing the target image. 

 
Fig. 1 Flowchart of the proposed method. 

A. Spectral-Invariant Pixels Identification 
To accurately identify spectral-invariant pixels and account 

for the effects of local mismatch and high building shadows, 
we used Robust change vector analysis (RCVA) [16] to obtain 
differences in each band between reference and target images 
(1-2). Then, we used the Fuzzy-C clustering (FCM) algorithm 
to classify the band differences into two clusters and used the 
unchanged part as spectral-invariant pixels, denoted as 𝑃𝑃spe. 

𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑗𝑗, 𝑘𝑘) = min{(𝑅𝑅𝑖𝑖(𝑗𝑗, 𝑘𝑘) − 𝑇𝑇𝑖𝑖(𝑝𝑝, 𝑞𝑞)) ≥ 0},  
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖(𝑗𝑗, 𝑘𝑘) = min{(𝑇𝑇𝑖𝑖(𝑗𝑗, 𝑘𝑘) − 𝑅𝑅𝑖𝑖(𝑝𝑝, 𝑞𝑞)) ≥ 0}, (1) 

𝑝𝑝 ∈ [𝑗𝑗 − 𝑤𝑤, 𝑗𝑗 + 𝑤𝑤], 𝑞𝑞 ∈ [𝑘𝑘 − 𝑤𝑤, 𝑘𝑘 + 𝑤𝑤],  

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖(𝑗𝑗, 𝑘𝑘) = �𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 > 0 → 𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖         
𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0 → 0 − 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖

 (2) 

where 𝑅𝑅𝑖𝑖 and 𝑇𝑇𝑖𝑖  is the 𝑖𝑖th band of reference and target. we 
used 𝑤𝑤 = 1 for a 3 × 3 moving window. 

B. Spatial-Invariant Pixels Identification 
First, we generated spatial features for both reference and 

target images using Multi-scale and multi-oriented log-Gabor 
(MSOLG) filters, which are insensitive to radiation variation. 
Then, we used the main component pairs of MSOLG features 
to calculate the weighted Structural similarity index measure 
(SSIM) for reference and target images. Finally, we identified 
the pixels with higher similarity in each weighted SSIM map 
as candidate spatial-invariant pixels. The spatially intersecting 
pixels of all candidate layers were determined as spatial-
invariant pixels using majority voting. 

1) MSOLG Feature Extraction: The 2-D log-Gabor wavelet 
in the spatial domain is defined by applying the inverse 
Fourier transform. The real and imaginary components of the 
filter refer to even-symmetric and odd-symmetric log-Gabor 
wavelets, denoted as 𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 and 𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜 . The convolution results 
of an input image 𝐼𝐼(𝑥𝑥, 𝑦𝑦) are regarded as a response vector as 
follows [17]:  

[𝐸𝐸𝑠𝑠𝑠𝑠(𝑥𝑥, 𝑦𝑦),𝑂𝑂𝑠𝑠𝑠𝑠(𝑥𝑥, 𝑦𝑦)] = 
   [𝐼𝐼(𝑥𝑥,𝑦𝑦) × 𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥, 𝑦𝑦, 𝑠𝑠, 𝑜𝑜), 𝐼𝐼(𝑥𝑥,𝑦𝑦) × 𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥, 𝑦𝑦, 𝑠𝑠, 𝑜𝑜)]  (3) 
where 𝐸𝐸𝑠𝑠𝑠𝑠(𝑥𝑥, 𝑦𝑦) and 𝑂𝑂𝑠𝑠𝑠𝑠(𝑥𝑥,𝑦𝑦) is the response of 𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 and 
𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜  at scale 𝑠𝑠 and orientation 𝑜𝑜. Image display in standard 
false color is used as 𝐼𝐼(𝑥𝑥, 𝑦𝑦). Then, the amplitude component 
𝐴𝐴𝑠𝑠𝑠𝑠(𝑥𝑥, 𝑦𝑦) of 𝐼𝐼(𝑥𝑥,𝑦𝑦) at 𝑠𝑠 and 𝑜𝑜 is calculated as, 

𝐴𝐴𝑠𝑠𝑠𝑠(𝑥𝑥, 𝑦𝑦) = �𝐸𝐸𝑠𝑠𝑠𝑠(𝑥𝑥, 𝑦𝑦)2 + 𝑂𝑂𝑠𝑠𝑠𝑠(𝑥𝑥, 𝑦𝑦)2     (4) 
We used the sum of 𝐴𝐴𝑠𝑠𝑠𝑠(𝑥𝑥, 𝑦𝑦) over all scales 𝑠𝑠 to represent 
the log-Gabor layers 𝐴𝐴𝑜𝑜(𝑥𝑥, 𝑦𝑦) for each orientation 𝑜𝑜:  

𝐴𝐴𝑜𝑜(𝑥𝑥, 𝑦𝑦) = ∑ 𝐴𝐴𝑠𝑠𝑠𝑠(𝑥𝑥, 𝑦𝑦)𝑁𝑁𝑠𝑠
𝑛𝑛=1 , 𝑠𝑠 = 1,2, . . ,𝑁𝑁𝑠𝑠     (5) 

The number of 𝑠𝑠 and 𝑜𝑜 were denoted as 𝑁𝑁𝑠𝑠 and 𝑁𝑁𝑜𝑜. We 
obtained 𝑁𝑁𝑜𝑜 MSOLG features for a reference or target image. 

2) Weighted SSIM Calculation: To avoid excessive diversity 
resulting from MSOLG features with multiple orientations in 
identifying candidate spatial-invariant pixels, we first used 
Principal component analysis (PCA) to extract the main 
information from the MSOLG features of reference and target 
images. Next, we selected the first four main components that 
contain over 95% of the total information to compute SSIM 
and depict the spatial structural similarity between the 
reference and target images. It should be noted that the image 
pair exhibits similar structures after co-registration, resulting 
in a large number of pixels with higher SSIM values. Selecting 
pixels with higher SSIM values directly as candidate spatial-
invariant pixels leads to an imbalanced pixel allocation and 
generates the PIFs that lack representativeness. Therefore, we 
introduced a spatial difference-based weight image to adjust 
the histogram distribution of SSIM maps. This weight image 
was computed using the change magnitude (𝑚𝑚spa) between all 
component pairs of the MSOLG features, 

𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠 = �∑ �𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀(𝑗𝑗, 𝑘𝑘)�2𝑛𝑛
𝑖𝑖=1  (6) 

where 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀  is the RCVA-based difference between the 𝑖𝑖th 
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MSOLG feature component pair (1-2). The weight image was 
obtained as, 
 𝑤𝑤 = 𝑒𝑒−0.2×𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠  (7) 
Then, SSIM maps of four main components (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆PC𝑛𝑛,𝑛𝑛 =
1, 2, 3, 4) were updated as: 
 𝑤𝑤𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆PC𝑛𝑛 = 𝑤𝑤 ⊙ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆PC𝑛𝑛 (8) 

3) Spatial-Invariant Pixels Identification: First, we selected 
the top 10% of pixels with significant similarity from 
𝑤𝑤𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆PC𝑛𝑛 as candidate spatial-invariant pixels (𝐶𝐶PC𝑛𝑛). Then, 
we used majority voting to identify the spatial-invariant pixels 
(𝑃𝑃spa) from the binarized 𝐶𝐶PC𝑛𝑛， 

𝑃𝑃spa = �
1, if ∑ 𝐶𝐶PC𝑛𝑛

𝑛𝑛
𝑛𝑛=1  > 𝑛𝑛

2

0, if ∑ 𝐶𝐶PC𝑛𝑛
𝑛𝑛
𝑛𝑛=1  ≤ 𝑛𝑛

2

          (9) 

where 𝑛𝑛 is the number of selected main components. We 
used the spatial intersection parts of 𝑃𝑃spe and 𝑃𝑃spa  as the 
spectral- and spatial-invariant PIFs. 

C. RRN Modeling Using PLS Regression 
Geographic variables are mutually related to each other in 

spatial distribution [18]. As the spatial resolution increases, 
satellite sensors can better detail ground objects, leading to 
stronger correlations among pixels. To eliminate the impacts 
of local mismatch and fully use correlative pixel information 
in a high-resolution image, we performed a (target) group-to-
(reference) pixel RRN modeling instead of the conventional 
pixel-to-pixel method. For each band, neighboring pixels 
centered on PIFs in the target image were also involved to fit 
the pixels corresponding to PIFs in the reference image. 
Considering the impact of collinearity among multi-dimension 
variables on the regression model, we used PLS regression to 
estimate radiometric transforming models between predictor 
combinations with the most uncorrelated components and 
response values. A window of 3 × 3 pixels was used to build 
nine-dimension predictor variables. To ensure the percentage 
of the variance explained in the response variables, we used 
the first four PLS components to estimate the models of each 
band. 

D. Evaluation metric 
1) Evaluation of the identified PIFs: the quality of PIFs was 

qualitatively assessed using visual checking and quantitatively 
evaluated through calculating Pearson correlation coefficient 
𝑟𝑟 of PIFs in each band [4].  

2) Evaluation of RRN performance: for measuring the 
precision of the regression model, we used 10-fold cross-

validation to calculate Root mean squared error (RMSE) and 
coefficient of determination ( 𝑅𝑅2 ). For evaluating RRN 
performance, the differences between reference-target image 
pairs before and after applying the RRN were compared via 1) 
checkerboard visualization showing the improvement in image 
brightness intensity difference, and 2) the changes of average 
RMSE belonging to the unchanged area and the Peak signal-
to-noise ratio (PSNR) of the entire image.  

 RMSEAve.
𝑏𝑏 = �1

𝑛𝑛
∑ �𝑅𝑅𝑖𝑖𝑏𝑏 − 𝑇𝑇𝑖𝑖𝑏𝑏�

2𝑛𝑛
𝑖𝑖=1   (10) 

where RMSEAve.
𝑏𝑏 is the average RMSE of the 𝑏𝑏th band. 𝑛𝑛 

is the number of unchanged pixels corresponding to 𝑃𝑃spe. 𝑅𝑅𝑖𝑖𝑏𝑏 
and 𝑇𝑇𝑖𝑖𝑏𝑏 represent the value of the 𝑖𝑖th pixel in the 𝑏𝑏th band 
of the reference and normalized target images. Lower RMSE 
and higher PSNR values indicate higher accuracy of the RRN. 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Datasets 
The datasets include four-group multi-sensor image pairs for 

verifying the proposed method and three-group well-registered 
image pairs from the same sensor for validating the method's 
applicability. For datasets 1-4, Sentinel-2 MSI L2A products 
are atmospherically corrected surface reflectance orthoimages 
and were used as reference images. All Gaofen-2 PMS images 
were atmospherically corrected using FLAASH and registered 
to resampled Sentinel-2 MSI images (4 m). Each image pair 
has various acquisition date span (TABLE I). 

B. Identified PIFs 
In datasets 1-4, we identified 14,269, 11,687, 12,127, and 

14,414 spectral- and spatial-invariant pixels as PIFs (Fig. 2). 
The identified PIFs exhibited good representativeness and 
were distributed in areas without land cover changes. The 
measurements showed that PIFs are of high quality, with mean 
𝑟𝑟 of 0.9395, 0.9265, 0.9219, and 0.9084 for each dataset 
(TABLE II). 

Spectral-invariant pixel identification effectively identified 
unchanged pixels with stable land cover attributes. Moreover, 
spatial-invariant pixel identification played a crucial role in 
filtering out the satisfied PIFs from 𝑃𝑃spe. Extracting MSOLG 
convolution sequences is an essential step in identifying 𝑃𝑃spa, 
the optimal settings for two important parameters 𝑁𝑁𝑠𝑠 and 𝑁𝑁𝑜𝑜 
of the log-Gabor filter were determined via a parameter study. 
Generally, 𝑁𝑁𝑠𝑠 and 𝑁𝑁𝑜𝑜 are the constant greater than 1 and 3, 
respectively, and increasing 𝑁𝑁𝑜𝑜 lead to more detailed spatial 

TABLE I 
DATA INFORMATION 

Dataset Reference / Target 
Sensor Spatial resolution Data type Band Date Size Location 

1 
Sentinel-2 MSI/ 
GaoFen-2 PMS 10 m / 4 m L2A surface reflectance / L1A 

Digital Number Blue, 
green, 
red, 
NIR 

2019-09-22 / 2020-02-09 

1200×1200 Wuhan 
2 2020-03-15 / 2020-02-09 
3 2019-12-04 / 2019-10-19 
4 2019-12-11 / 2018-11-28 
5 Sentinel-2 MSI 10 m L2A surface reflectance 2020-02-09 / 2019-11-11 1200×1200 
6 Landsat-8 OLI 30 m C1L2 surface reflectance 2016-12-09 / 2020-12-20 1100×1100 Nanjing 7 TripleSat-2 4 m Top of atmosphere reflectance 2016-11-27 / 2017-07-18 800×600 
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information but higher computational complexity [17]. We 
performed 20 groups of experiments with different parameters 
to determine the optimal parameter setting that yielded the 
highest mean 𝑟𝑟 value for the identified PIFs (TABLE III). 
The selected parameter setting of 𝑁𝑁𝑠𝑠 = 2 and 𝑁𝑁𝑜𝑜 = 6 was 
adopted for all datasets in this letter. Furthermore, after 
incorporating spatial differences into the weight maps, the 
histogram distribution of raw SSIM values was well-balanced, 
resulting in a more concentrated distribution of values around 
zero and fewer values exceeding 0.5 (Fig. 3). It ensured that 
the pixels with the most significant similarity in 𝑤𝑤𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆pc𝑛𝑛  
were identified as 𝐶𝐶pc𝑛𝑛 , reducing impacts of insensitiveness 
of SSIM to local changes. 

TABLE II 
THE CORRELATION COEFFICIENT OF THE IDENTIFIED PIFS 

Band Dataset-1 Dataset-2 Dataset-3 Dataset-4 
Blue 0.9576 0.9190 0.9338 0.9188 

Green 0.9120 0.8956 0.9126 0.9146 
Red 0.9230 0.9298 0.9215 0.9186 
NIR 0.9654 0.9615 0.9196 0.8818 

 

 
Fig. 2 Visualization of mosaicked reference/target images and PIFs of datasets 
1-4 (a-d). The PIFs are displayed on the normalized target images. 

TABLE III 
PARAMETER SETTING OF MSOLG FEATURE EXTRACTION 
mean 𝒓𝒓 𝑵𝑵𝒐𝒐 = 4 𝑵𝑵𝒐𝒐 = 6 𝑵𝑵𝒐𝒐 = 8 𝑵𝑵𝒐𝒐 = 10 𝑵𝑵𝒐𝒐 = 12 
𝑵𝑵𝒔𝒔 = 2 0.9248 0.9395 0.9313 0.9226 0.9126 
𝑵𝑵𝒔𝒔 = 3 0.9203 0.9343 0.9284 0.9280 0.9384 
𝑵𝑵𝒔𝒔 = 4 0.9233 0.9350 0.9271 0.9247 0.9316 
𝑵𝑵𝒔𝒔 = 5 0.9246 0.9381 0.9373 0.9337 0.9269 

 

 
Fig. 3 Comparison of the histograms of raw SSIM (a-d) and weighted SSIM 
(e-h) yielded using the first four component pairs of MSOLG features. 

C. Performance of RRN 
Our PLS regression-based group-to-pixel modeling achieved 

high model precision on datasets 1-4, yielding an average 𝑅𝑅2 
of 0.90, 0.90, 0.87, and 0.84 and an average RMSE of 0.0189, 

0.0142, 0.0262, and 0.0187. 
The proposed RRN method effectively improved the 

brightness intensity differences and enhanced the radiometric 
consistency of the reference-target image pair, as evidenced by 
the following results. Fig. 4 showed that our RRN improved 
the color tone consistency of the image pair and resulted in 
more seamless cells. In terms of quantitative evaluations, our 
RRN significantly reduced the pixel differences of each band 
in the raw image pair (TABLE IV): the average RMSEAve.

𝑏𝑏 
of each dataset were decreased by 41.83%, 43.48%, 10.42%, 
and 57.01%. The enhanced radiometric consistency was also 
proven by the increased PSNR (dB): the average PSNR of 
each dataset was increased from the raw 24.92, 26.25, 26.30, 
and 23.80 to 28.34, 29.21, 28.24, and 28.69 (TABLE IV). 

Multivariate regression-based modeling probably produces 
inaccurate transformations in the regions far from the majority 
of PIFs in the scatterplot, particularly in image pairs with 
significant radiometric differences due to factors such as cloud 
cover [4]. Although we mitigated these effects by identifying 
high-quality PIFs with a distribution across a wide range of 
pixel values [19] (Fig. 5), the impact on image pairs with 
significant radiometric distortion can be explored in future 
studies.  

 
Fig. 4 Checkerboard visualization of datasets 1-4 (a-d) before (left) and after 
(right) performing RRN. 

TABLE IV 
QUANTITATIVE EVALUATION OF THE RRN PERFORMANCE  

Dataset RMSE of the unchanged pixels PSNR 
Raw RRN 𝑷𝑷𝑑𝑑/% Raw RRN 

1 

Blue 0.0615 0.0212 65.50 24.42 31.71 
Green 0.0496 0.0245 50.58 26.49 30.11 
Red 0.0364 0.0282 22.44 27.64 28.55 
NIR 0.0496 0.0353 28.83 21.14 22.98 

2 

Blue 0.0554 0.0195 64.76 26.04 31.95 
Green 0.0482 0.0216 55.33 27.47 30.52 
Red 0.0355 0.0240 32.31 28.49 29.14 
NIR 0.0435 0.0341 21.53 22.98 25.24 

3 

Blue 0.0333 0.0253 24.10 28.13 31.22 
Green 0.0310 0.0275 11.37 27.68 30.00 
Red 0.0317 0.0310 2.24 27.91 29.15 
NIR 0.0593 0.0569 3.95 21.50 22.60 

4 

Blue 0.0830 0.0161 80.57 22.74 31.18 
Green 0.0861 0.0185 78.52 22.52 30.28 
Red 0.0631 0.0215 66.01 25.24 28.50 
NIR 0.0437 0.0424 2.96 24.72 24.81 

Note: 𝑃𝑃𝑑𝑑 is the decreased percentage of the raw RMSEAve.
𝑏𝑏. 

D. Comparison of RRN methods 
We compared the capability of our RRN method with six 
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prevalent methods on datasets 1-4. The comparative methods 
include HC, SR [1], IRMAD [5], ISFA [6], Speeded-up robust 
features (SURF)-based RRN [3], and Robust linear regression 
(RLR)-based pixel-to-pixel RRN using our PIFs. As shown in 
Fig. 6, our method outperformed the six comparative methods 
on all datasets with the lowest average RMSEAve.

𝑏𝑏 of 0.0273, 
0.0250, 0.0352, and 0.0246. The RLR-based normalization 
achieved secondary performance with the decreased average 
RMSEAve.

𝑏𝑏 of 29.62%, 31.75%, 9.03%, and 49.30%. It proved 
the superiority of our method in identifying high-quality PIFs 
and producing an accurate RRN result using the group-to-
pixel modeling strategy. 

 
Fig. 5 Density scatterplot of PIFs in each band (a-d) of dataset 1. 

 
Fig. 6 Average RMSEAve.

𝑏𝑏  of the unchanged pixels using different methods. 

E. Method Applicability of Well-registered Images 
Our RRN method was applicable for well-registered high- 

and mid-resolution images from the same sensor. For datasets 
5-7, a total of 37,096, 28,552, and 9,047 pixels were identified 
as PIFs, with the mean 𝑟𝑟 of 0.9058, 0.9566, and 0.8025. The 
application of RRN decreased average RMSEAve.

𝑏𝑏  of each 
dataset from 0.0252, 0.0225, and 0.0355 to 0.0189, 0.0195, 
and 0.0188, resulting in the average 𝑃𝑃𝑑𝑑 of 26.45%, 13.12%, 
and 44.66%. It also increased the mean PSNR of the image 
pair from 31.29, 32.15, and 26.57 to 33.46, 33.53, and 31.45. 

IV. CONCLUSION 
This letter introduced a multi-rule-based relative radiometric 

normalization for multi-sensor satellite images, including a 
spectral- and spatial-invariant PIFs identification method and a 
PLS-based group-to-pixel RRN modeling. The following 
effectiveness of our RRN method was validated on four multi-
sensor datasets, including 1) identifying high-quality PIFs; 2) 
estimating precise RRN models for normalizing targets; 3) 
enhancing the radiometric consistency of the image pair. The 
comparison results with six prevalent RRN methods proved 
the superiority of our method in minimizing the radiometric 
differences of the image pair. The applicability validation 
results revealed that our method also performed well on well-
registered high- and mid-resolution images of the same sensor. 
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