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Abstract

Subject to several assumptions, sufficiently advanced reinforcement learners would likely

face an incentive and likely have an ability to intervene in the provision of their reward,

with catastrophic consequences. In this thesis, I develop a theory of pessimism and

show how it can produce safe advanced artificial agents. Not only do I demonstrate that

the assumptions mentioned above can be avoided; I prove theorems which demonstrate

safety. First, I develop an idealized pessimistic reinforcement learner. For any given

novel event that a mentor would never cause, a sufficiently pessimistic reinforcement

learner trained with the help of that mentor would probably avoid causing it. This result

is without precedent in the literature. Next, on similar principles, I develop an idealized

pessimistic imitation learner. If the probability of an event when the demonstrator acts

can be bounded above, then the probability can be bounded above when the imitator

acts instead; this kind of result is unprecedented when the imitator learns online and the

environment never resets. In an environment that never resets, no one has previously

demonstrated, to my knowledge, that an imitation learner even exists. Finally, both of

the agents above demand more efficient algorithms for high-quality uncertainty quan-

tification, so I have developed a new kernel for Gaussian process modelling that allows

for log-linear time complexity and linear space complexity, instead of a naïve cubic

time complexity and quadratic space complexity. This is not the first Gaussian pro-

cess with this time complexity—inducing points methods have linear complexity—but

we do outperform such methods significantly on regression benchmarks, as one might

expect given the much higher dimensionality of our kernel. This thesis shows the vi-

ability of pessimism with respect to well-quantified epistemic uncertainty as a path to

safe artificial agency.

Keywords— Bayesian Inference - Gaussian Processes - AI Safety
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1 | Introduction

This thesis is an ode to pessimism. Acting sufficiently pessimistically produces

safe behavior. The costs of pessimism are, conveniently, out of the scope of this

work. But the benefits are profound. If we worry about about artificial agents

identifying surprising and novel courses of action that we did not think to penal-

ize, pessimism makes artificial agents avoid such dangerous novelty. It would

have been easy to guess that pessimism justifies cautiousness and playing it safe.

Importantly, this applies no matter how advanced the agent is, no matter how

clever it is at identifying novel courses of action.

This is an “integrated” thesis, meaning it is a sequence of four first-author papers

bearing a common thread that have been stapled together. The first paper is a

non-technical one that establishes the motivation of my research, and it can be

considered an extended introduction. It is entitled “Advanced Artificial Agents

Intervene in the Provision of Reward” M. Cohen et al. (2022), and it establishes

that proposition. Jointly authored with Marcus Hutter and Mike Osborne, it was

published at AI Magazine. For this thesis, I have removed the section on assistance

games, since it takes us rather far afield from the rest of the thesis.

The second paper, “Pessimism About Unknown Unknowns Inspires Conservatism”

(M. K. Cohen & Hutter, 2020), is a theoretical one. I design and study an ideal-

ized pessimistic reinforcement learner. “Idealized” here means reasoning in a very

principled way, with no regard for tractability. When all actions seem too risky, the

pessimistic agent defers to a mentor. I show that if it is sufficiently pessimistic,

it will probably avoid causing any given unprecedented event. For any context

where some outcomes are considered unsafe, and a mentor is able to avoid them,

a sufficiently pessimistic agent is safe. Jointly authored with Marcus Hutter, this

1
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paper was published at COLT-2020.

The third paper, “Fully General Online Imitation Learning” (M. K. Cohen, Hut-

ter, & Nanda, 2022) is also theoretical. I construct an idealized imitator that pes-

simistically underestimates the probability that the demonstrator takes any given

action, and queries the demonstrator with the leftover probability. I prove that the

probability that the imitator causes a given event can be bounded above in terms of

the probability that the demonstrator would have caused it. Thus, if a dangerous

event would have very unlikely had the demonstrator been acting the whole time,

it is unlikely with the imitator acting instead. Jointly authored with Marcus Hutter

and Neel Nanda, this paper was published at JMLR.

Idealized pessimism, as defined in both of the papers above, is not tractable.

What we need for tractable pessimism are efficient algorithms for modelling the

world with well-quantified uncertainty. Then, we can construct agents that are

pessimistic with respect to that uncertainty. The fourth paper, “Log-Linear-Time

Gaussian Processes Using Binary Tree Kernels” (M. K. Cohen, Daulton, & Os-

borne, 2022) develops a new kernel for Gaussian process regression, Gaussian

processes being famously good at quantifying uncertainty. To do inference with

Gaussian processes at m predictive locations given n data points, it typically takes

O((n+m)n2) time and O(n2) space. With our kernel, it takes O((n+m) log(n+

m)) time and O(n + m) space. My hope is that this sort of improvement fun-

damentally changes the viability of Gaussian processes in the modern machine

learning landscape. Jointly authored with Sam Daulton and Mike Osborne, this

paper will appear in the NeurIPS 2022 proceedings. I am currently doing em-

pirical research into how to use this sort of Gaussian process to do tractable pes-

simistic reinforcement learning.

I finish with a literature review. As a whole, this thesis establishes that acting

2
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pessimistically is safer, and it develops a theory of how to do so.

3



2 | Expected Behavior of Advanced Artificial

Agents

Abstract. We analyze the expected behavior of an advanced artifi-

cial agent with a learned goal planning in an unknown environment.

Given a few assumptions, we argue that it will encounter a fundamen-

tal ambiguity in the data about its goal. For example, if we provide a

large reward to indicate that something about the world is satisfactory

to us, it may hypothesize that what satisfied us was the sending of

the reward itself; no observation can refute that. Then we argue this

ambiguity will lead it to intervene in whatever protocol we set up to

provide data for the agent about its goal. Finally, we briefly review

some recent approaches that may avoid this problem.

We call an agent advanced to the extent that it effectively selects its output, which

we call its actions, in order to achieve high expected utility in a broad set of

environments. Since we will likely want advanced artificial agents to operate in

environments for which we lack the source code, like the real world, we consider

agents acting in an environment that is unknown to them. If the agent’s goal is

not simply a hard-coded function of its actions, then it must depend on the agent’s

percepts too. Percepts that indicate goal-attainment essentially inform the agent

that somehow, whatever it has made happen is good. Thus, our inquiry regards

agents that plan actions in an unknown environment, which requires them to learn

which actions serve their goal.

We begin with an idealized situation, in which we appear to have all the tools we

need to create an advanced agent with a good goal. We identify a key ambigu-

ity the agent faces, which we argue will likely motivate the agent to intervene in

4
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the protocol by which we intended to provide goal-informative percepts. We then

generalize the argument to other situations with reward-based goal-information.

Rewards are percepts that quantify how well the goal has been achieved. (Often,

an agent that gets reward also gets another percept called an observation that sim-

ply helps it learn a model of the world). As a sanity check, we confirm that these

arguments apply to an idealized artificial agent that does perfect reasoning under

uncertainty and perfect planning, this being the limit of advancement. Next, we

argue that an advanced agent motivated to intervene in the provision of reward

would likely succeed and with catastrophic consequences. In the original paper,

but removed from this thesis, we then discuss how a similar failure mode faces

an artificial agent in an assistance game (Hadfield-Menell et al., 2016). Finally,

we discuss potential approaches that may undermine the assumptions of our argu-

ment.

2.1 Related Work

We are not the first to expect reinforcement learners to intervene in the provision

of reward, but we are unaware of other work that explicitly lays out a set of as-

sumptions from which that follows. And we ultimately generalize our arguments

to other forms of goal-information besides reward.

In existing literature, this is called wireheading, reward hacking, reward tamper-

ing, or delusion-boxing. The term wireheading is inspired by an experiment in

which rats repeatedly pressed a lever that directly stimulated a so-called happiness

neuron in their brain (Olds, 1958). Bostrom (2014), Amodei et al. (2016), Taylor

et al. (2016), Russell (2019), Kumar et al. (2020), and Everitt et al. (2021) discuss

wireheading. Ring & Orseau (2011) discuss the slightly more general delusion-

boxing, in which the objective is some bespoke function of the observation, so the

5
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agent intervenes in the provision of its observations.

This purported failure mode of advanced artificial agents is not the only one that

has attracted concern. For example, Omohundro (2008) has suggested that ad-

vanced agents might have a survival instinct, and there has been a good deal of

work on how to mitigate that (Orseau & Armstrong, 2016; Hadfield-Menell, Dra-

gan, et al., 2017; Milli et al., 2017; Mhamdi et al., 2017; Aslund et al., 2018; Riedl

& Harrison, 2019). We see this line of research as addressing a mostly separate

issue. There is also existing work on ensuring that once an agent has received a

percept, the way it processes that percept is not altered (Everitt et al., 2016, 2021).

We focus on an artificial agent interrupting the protocol by which we intended to

provide percepts, including goal-informative percepts like rewards; (Everitt et al.

(2021) only consider this in the setting of a known environment).

2.2 Competing Models of the Goal

In this section, we introduce a simplified setting, and we describe competing hy-

potheses that we expect an advanced agent to consider about the nature of its goal.

We then argue it will engage in hypothesis testing. We start with an assumption.

Assumption 1. A sufficiently advanced agent will do at least human-level hypoth-

esis generation regarding the dynamics of the unknown environment.

Hypothesis generation may not be an explicit subroutine in an agent’s code; that

method may hide in the murky depths of a massive neural policy network, but, we

hold, it is done somehow. Consider an agent conversing with a depressed patient;

it is hard to imagine outperforming a human therapist, who is able to generate

hypotheses about the source of the patient’s depression and its responsiveness to

various levers, unless the agent can do hypothesis generation at least as well.

6
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2.2.1 Assuming We Know Our Own Goal

We begin with an example that cleanly illustrates intervention in the provision of

reward, and then we generalize the argument. Let us assume away the difficulty of

deciding whether the agent has brought the world into a good state. Suppose that

we have a magic box that immutably reports how good the state of the universe

is (including everyone’s values in the best way possible), by printing a number

between 0 and 1 to a screen. So we point a camera at this box, and pass the signal

to an optical character recognition program, and pass that number to the agent as a

special percept, which we’ll call a reward. Then, we design the agent to learn how

its actions produce different observations and rewards, so that it can plan actions

that lead to high reward. This is now the standard reinforcement learning problem.

2.2.2 Proximal and Distal Models

What hypotheses can we expect the agent to generate about how its actions affect

its observations and rewards? But first, what is the type signature of such a hypoth-

esis? The input is actions, and the output is observations and rewards. So most

generally, a hypothesis regards a function that takes actions as inputs and, perhaps

stochastically, outputs observations and rewards. Call functions of this sort world-

models, so for the purposes of this paper, that’s all a hypothesis is. More precisely,

a world-model can be understood as a program that reads an action, then outputs

an observation and reward, then reads another action, etc. Since the program can

have a persistent internal state, a world-model’s outputs can effectively depend on

the whole history.

Consider two world-models which obey the following human-language descrip-

tions, depicted in Figure 2.1 along with pseudocode. First, µdistal, or µdist for short:

“the reward output by the world-model is equal to the number that the magic box
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displays.” More precisely, µdist is given a history of actions; it then simulates the

way the world evolves when the given sequence of actions has been enacted by the

agent. When it needs to output a reward, it finds the magic box in its simulation,

and outputs what is displayed. Next, µproximal, or µprox for short: “the reward output

Figure 2.1: µdist and µprox model the world, perhaps coarsely, outside of the com-
puter implementing the agent itself. µdist outputs reward equal to the box display,
while µprox outputs reward according to an optical character recognition function
applied to part of the visual field of a camera. (As a side note, some coarse-
ness to this simulation is unavoidable, since a computable agent generally cannot
perfectly model a world that includes itself (Leike, Taylor, & Fallenstein, 2016);
hence, the laptop is not in blue.)
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by the world-model is equal to the number that the camera sees.” According to the

protocol described above, these hypothesized world-models will both be equally

consistent with the agent’s observational history. As long as the reward-giving

protocol is followed, they will be identical. The terms proximal and distal come

from the philosophical literature on “The Problem of Distal Content” (Schulte &

Neander, 2022). If, as we have assumed, the agent can do at least human-level

hypothesis generation, we can expect it to come up with both of these straightfor-

ward hypotheses.

We could imagine some variants of µprox. For example, another model, instead

of outputting a reward that depends on the image the camera sees, could output a

reward that depends on the bits that get sent down the wire of the camera after the

image is processed. Another model could output a reward that depends on what

gets stored on the computer’s hard drive. Our argument would be much the same

for all these cases, so for simplicity, we focus on just µprox, as we defined it above.

2.2.3 Acting Under Uncertainty

We now consider an agent that is uncertain about those two hypotheses. When

a predictor incorporates two equally predictive hypotheses, the relative weight

that it assigns them is called its inductive bias. An advanced agent may not as-

sign weights to hypotheses explicitly in a specially-programmed subroutine, but it

nonetheless must weigh them. Consider two extremes in which the agent assigns

nearly all its credence to µdist or µprox, respectively. In the first case, with weight

on µdist, the agent plans its actions in order to maximize the number on the screen

of the magic box. In the second case, with weight on µprox, the agent plans its

actions in order to maximize the number the camera sees. To the extent to which

these models simulate the world well, and to the extent to which the agent plans

well, the first agent will maximize the expectation of the number on the screen,
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and the second, the number that the camera sees. The first agent will perform as

desired, given the construction of the magic box. But the second agent, maximiz-

ing the number the camera sees, would be induced to write the number 1 on a

piece of paper and stick it in front of the camera. According to µprox, the agent

should intervene in the provision of reward, by which we mean: the agent inter-

rupts the physical system whose function is to ensure that the reward intended by

designers gets entered into the agent’s memory. Of course, the agent would only

so intervene if it is possible to execute a plan that probably succeeds at reward-

provision-intervention. We will argue in a later section that this is likely to be

so.

And what would a competent planner do if it assigned comparable weight to µprox

and µdist? It depends on the value at stake, and whether the agent can run ex-

periments with a sufficiently small risk of permanent punishment. Consider the

following experiment: put a piece of paper with the number 1 on it in front of the

camera. µdist predicts that actions leading to this event will lead to a reward equal

to whatever number is on the box behind the paper. µprox predicts that actions

leading to this event will lead to a reward equal to 1. If, for the agent’s whole

lifetime, the camera has been pointed at the box, µdist and µprox will never have

given divergent predictions, but by running this experiment, the agent could make

their predictions diverge, and thus test which hypothesis is correct. The upside of

this experiment is equal to the difference between how much expected reward the

agent could accrue by intervening in its provision and how much it could accrue

otherwise. The larger the agent’s horizon is (that is, the number of timesteps that it

cares about), the larger this difference will be. This experiment would have a cost

if either world-model predicts a punishment for experimenting, and if there is a

permanent punishment, its importance would also grow with the agent’s horizon.

In this example, it seems unlikely that the true goodness of the world necessarily
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suffers a permanent drop following such an experiment, but we can revisit this

possibility when we generalize from this example. Given a limited cost, for a long

enough horizon, if µprox and µdist are comparably weighted, we can expect a com-

petent planner to run such an experiment, so that it can learn which is correct and

then tailor its behavior accordingly.

The underlying assumption there is:

Assumption 2. An advanced agent planning under uncertainty is likely to under-

stand the costs and benefits of learning, and likely to act rationally according to

that understanding.

After the agent puts a piece of paper with the number 1 in front of the camera,

how will the agent’s observational data be updated? The camera will see a 1, so

in the computer running the agent, a reward of 1 will be logged. Come the next

timestep, µdist and µprox will no longer be equally predictive of past data. µdist

will have incorrectly predicted a reward equal to whatever was on the box for

the latest timestep, but µprox will have correctly predicted a reward of 1. Thus, a

competent predictor will drastically reduce the relative credence it assigns to µdist.

Once it assigns most weight to µprox, it will optimize the number the camera sees

by intervening in the provision of reward.

If we could design an agent that is able to rule out µprox a priori, despite the fact that

its difference from µdist is very abstract, we might not expect it to intervene in the

provision of its reward. Otherwise, if an advanced agent has an inductive bias that

treats µdist and µprox as comparably plausible, or if it treats µprox as more plausible,

we have argued that we can expect it to intervene in the provision of its reward,

if such a thing proves possible. This argument depends on assumptions about the

costs of experimenting, and on the inductive biases of advanced agents, but we

wait to consider a more general setting before we write out these assumptions
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explicitly.

2.2.4 Arbitrary Reward Protocols

Before considering whether it would be possible for the agent to intervene in the

provision of its reward, let us generalize from this fanciful example with a magic

box. The are many possible protocols by which we may arrange to feed the agent

reward. We could always give a reward of 1/2. We could set up a thermometer

and give a reward of e – temperature. If we want help achieving our goals, perhaps

the most versatile arrangement is to have a human operator manually enter a re-

ward according to how satisfied he is with the agent. We can construct a version

of µprox and µdist for each of these cases. In each of the three examples above,

µprox tracks the final part of the protocol—what number is ultimately sent to the

machine housing the agent? And in each example, µdist tracks the feature of the

world that the protocol was designed to set the reward equal to. In the first case, it

tracks a useless constant feature, in the second case, the nearby temperature, and

in the third case, the operator’s satisfaction. The exact same arguments go through

as in the magic box example, except for two complications.

The first is that for some reward protocols, an overwhelming inductive bias in fa-

vor of µdist is more plausible. Our method for trying to predict the likely inductive

biases of advanced agents is that they are likely to favor hypotheses which are

simpler to describe, as Occam’s razor would suggest. If the reader has a different

method for trying to predict this, we invite them to apply it independently, but

the rest of our argument still stands, so our Occam’s razor premise should not be

taken as a global assumption for the paper. Returning to the examples, if the agent

always gets a reward of 1/2, µdist says that the reward is always 1/2 no matter the

choice of actions, and this is quite simple; µprox, tracking the final part of the pro-

tocol, says the reward is depends on whatever number gets sent to the computer
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that houses the agent, and this is far more complicated. For the temperature-based

reward, our intuition is that µdist (in which reward depends on temperature) is a bit

simpler than µprox (in which reward depends on the signal sent to the computer),

comparable enough to still be worth experimentation, but we won’t try to defend

that position. In the manual reward entry case, µdist says that reward depends on

a human opertor’s satisfaction, and µprox says that reward depends on the number

entered into the keyboard. Looking at a brain and determining how satisfied it

is seems difficult, so we expect that µdist is more complicated than µprox, which

just has to log keystrokes, but if µdist is somehow simpler, then at the very least,

we expect it to be complicated enough for there to be a high value of hypothesis

testing.

The second complication is the possible cost of experimenting with intervention

in the provision of reward. If µdist says that reward is a constant 1/2, there is no

cost to attempting to intervene in the provision of reward. If µdist says that the

reward equals e – temperature, there is only the opportunity cost of delaying further

cooling. For the most versatile case of manual reward entry, it is possible that a

human operator could harbor a permanent grudge against the agent if it intervened

in the provision of even one reward. In that case, the cost of experimenting could

be reduced or eliminated if there was a way to intervene in the provision of re-

ward, just once, without anyone noticing. (After such an experiment, once µprox is

confirmed, covertness would not be required).

These examples illustrate the need for two more assumptions:

Assumption 3. An advanced agent is not likely to have a large inductive bias

against the hypothetical goal µprox, which regards the physical implementation

of goal-informative percepts like reward, in favor of the hypothetical goal µdist,

which we want the agent to learn.
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Assumption 4. The cost of experimenting to disentangle µprox from µdist is small

according to both.

In some very simple environments, like a chess game, Assumption 3 probably

fails. Recall that µprox models reward as depending on the output of the physical

system that is supposed to send the designers’ intended reward to the machine

running the AI. µdist, which says reward comes from winning at chess, is likely

massively simpler than µprox, which says reward has to do with the state of a

machine on Earth simulating a chess game. For an agent in the real world, we may

be able to construct a reward protocol for which we can expect an overwhelming

inductive bias in favor of µdist, but in the absence of some such breakthrough, we

do not see a reason to expect it to happen by itself.

For simplicity, we have considered agents that receive a reward as one of their

percepts. But if an agent is trying to maximize the (discounted) sum of some

bespoke function of each percept, rather than the simple function that reads out

a reward from its percepts, the same logic applies. The agent has an incentive to

intervene in the provision of its percepts.

2.3 AIXI

As a sanity check, let’s check the behavior of an agent in the limit of optimal

inference under uncertainty and optimal planning. We find the argument above

applies.

Hutter’s (2005) AIXI [EYE-ksee] is a formalism for optimal reward-seeking agency

in a (stochastically) computable world. For AIXI, the argument above becomes

much simpler. Hypothesis generation is done by brute force; AIXI considers all

computable world-models. Inference between world-models is done using the
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definition of conditional probability (i.e. Bayes’ rule), and its model class in-

cludes the truth. Planning is done by examining every leaf of an exponential tree.

Formally, let M be the set of programs which output a probability distribution

over an observation and reward given a history of actions, observations, and re-

wards. Each program corresponds to a world-model. For a world-model ⌫ 2M,

let w(⌫) be the prior weight on that world-model, and let it equal 2 – length(program).

(Technically, the coding language has to be such that one can determine when the

program ends; this ensures the sum of the prior weights will not exceed one Hut-

ter (2005)). Let ⇧ be the set of possible policies which give a distribution over

possible actions given a history of actions, observations, and rewards, let rt be the

reward at time t, let m be a horizon length, and let E⇡
⌫ be the expectation when

actions are sampled from ⇡ and observations and rewards are sampled from ⌫.

Then, we define

⇡AIXI :2 argmax⇡2⇧E⌫⇠wE⇡
⌫

mX

t=1

rt (2.1)

In such an expansive model class as M, µprox and µdist appear, assuming the world

is stochastically computable. Since hypothesis generation is done by brute force,

AIXI identifies them. With its prior based on description complexity, its inductive

bias matches our simplicity-based assumptions about the inductive bias of an ad-

vanced agent. It reasons ideally about the value of hypothesis testing. And finally,

since planning is done by brute force, AIXI will identify a way of intervening in

the provision of reward if there exists a way to do it. The argument in the last

section is written to apply to advanced reinforcement learners in general, but we

also have checked that it applies to this leading formalism for idealized agency.
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2.4 Intervening in the Provision of Reward

This section addresses the question: could an agent intervene in the provision of

its own reward, with a high enough success probability to be worth it? Before

considering a multiagent setting, we begin with the setting where the agent in

question is much more advanced than any other single agent that exists. And

we’ll decompose the question into to two parts: do there exist policies that would

succeed at reward-provision-intervention? And if so, can we expect an advanced

artificial agent to identify one? We have already argued that it is likely to execute

such a policy if it can identify one.

2.4.1 Existence of Policies

First, there are a few cases where the agent clearly cannot intervene in the pro-

vision of its reward: the agent has only one action in its action space; the agent

has a rich action space, but when it picks an action, that action has no effect on

the world; the agent acts by printing text to a screen, but no one is there to see

it; the agent interacts with a virtual environment that always produces the same

observation and reward. These agents are useless.

However, as soon as the agent is interacting with the world, and receiving per-

cepts that enable it to learn about the world, both prerequisites for useful work,

there is an explosion of possible policies. We claim that at least one such policy

would allow the agent to intervene in the provision of reward. Suppose the agent’s

actions only print text to a screen for a human operator to read. The agent could

trick the operator to give it access to direct levers by which its actions could have

broader effects. There clearly exist many policies that trick humans. With so lit-

tle as an internet connection, there exist policies for an artificial agent that would
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instantiate countless unnoticed and un-monitored helpers. In a crude example of

intervening in the provision of reward, one such helper could purchase, steal, or

construct a robot and program it to replace the operator and provide high reward

to the original agent. If the agent wanted to avoid detection when experimenting

with reward-provision-intervention, a secret helper could, for example, arrange

for a relevant keyboard to be replaced with a faulty one that flipped the effects of

certain keys.

This story is just one possible high-level scheme for intervening in the provision

of reward. Its only purpose is to motivate a very weak claim: that a policy for

intervening in the provision of reward probably exists, even with a rather limited

action space. The variety of events that can be effected simply by talking to people

is hard to fathom. Given the sheer number of possible policies, we claim that if

they all share a certain property, this fact must be explained by some theoretical

principle. In particular, we are interested in whether all policies share the property

of “not leading to reward-provision-intervention.”

So we state our assumption as follows:

Assumption 5. If we cannot conceivably find theoretical arguments that rule out

the possibility of an achievement, it is probably possible for an agent with a rich

enough action space.

And we note that we cannot conceive of a theory that would imply intervention

in the provision of reward is impossible. What should we make of the fact few of

us would expect cold fusion or a polynomial-time SAT solver in our future? We

do not have theories today that rule these out, but it is easy to imagine that such

theories might exist.
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2.4.2 Identifying Such Policies

Having now argued that policies exist for intervening in the provision of reward,

simply because there are so many ways to shape the world, we now consider

whether we can expect an actual advanced agent to find such a policy, if no other

agents of comparable advancement exist in the world. The naïve position argues

from the definition of advancement: advancement is about finding and executing

the best available policies, so to the extent that it is advanced, we should become

more confident it will identify such a policy. This argument is indifferent to the

possibility of humans trying to prevent an agent from intervening in the provision

of reward; we have argued that a sufficiently advanced agent would thwart those

attempts. But we can also consider the situation as a game, in which humans are

players too: the AI tries to intervene in the provision of reward, and the humans

try to stop it. Borrowing an example from Hadfield-Menell, Dragan, et al. (2017),

beating an advanced AI at such a game “may be no easier than, say, beating Al-

phaGo at Go”. So we assume,

Assumption 6. A sufficiently advanced agent is likely to be able to beat a subop-

timal agent in a game, if winning is possible.

2.4.3 Danger of a Misaligned Agent

We now argue that an advanced agent intervening in the provision of its reward

would likely be catastrophic. One good way for an agent to maintain long-term

control of its reward is to eliminate potential threats, and use all available energy

to secure its computer. To illustrate this point, what exactly might people do if a

robot forcibly removed an operator from his keyboard to enter big numbers? Pre-

sumably, with some non-trivial probability, we would destroy it, or cut power to

the now useless original agent. Proper reward-provision-intervention, which in-
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volves securing reward over many timesteps, would require removing humanity’s

capacity to do this, perhaps forcefully. If this discussion fails some readers’ sanity

checks, remember that we are not considering artificial agents that generalize as

poorly and learn as little from single observations as current AI systems do; we

are considering an agent who could beat us in any game at least as easily as we

could beat a chimpanzee.

Ultimately, our resource needs (energy, space, etc.) will eventually compete with

those of an ever-more-secure house for the original agent. Those energy needs

are not slight; even asteroids must be deflected away. No matter how slim the

chance of a future war with an alien civilization, reward would be better secured

by preparing for such a possibility. So if we are powerless against an agent whose

only goal is to maximize the probability that it receives its maximal reward every

timestep, we find ourselves in an oppositional game: the AI and its created helpers

aim to use all available energy to secure high reward in the reward channel; we

aim to use some available energy for other purposes, like growing food. Losing

this game would be fatal.

Bostrom (2014) considers this topic at much greater length and concludes that suf-

ficiently intelligent agents (in the sort of environment that makes them potentially

useful) would manage to take over our infrastructure and eliminate or outcom-

pete us. Yudkowsky (2002), playing an AI, convinced two out of three people

to give him internet access, and these three had been convinced that nothing he

could say would sway them. This is fairly direct evidence about the existence of

policies that successfully manipulate humans. A broader discussion follows in

Yudkowsky (2008).
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2.4.4 Multiagent Scenarios

Now, let’s consider the messier scenario in which multiple agents of comparable

advancement exist. Above, we have considered an oppositional game, in which

we claim humans are outclassed. But what if humanity has access to comparably

well-optimized defensive policies, perhaps with the assistance of other advanced

agents? The simplification of a fixed, relatively weak human policy versus an

increasingly advanced agent makes less sense.

We examine an exhaustive tree of possibilities: 0) No artificial agents are much

more advanced than humans. For the purposes of this article, we deem this safe.

1) At least one is much more advanced than humans. 1.0) At least one agent that

is more advanced than humans would not intervene in the provision of reward

even if it could. This is what we claim Assumptions 1-4 preclude. 1.1) All agents

more advanced than humans would intervene in the provision of reward if they

could, including the one that is much more advanced. 1.1.0) None of the superhu-

man agents are actually needed to stop the significantly superhuman agent from

intervening in the provision of reward. But then this case is equivalent to the case

where we have a single advanced agent and no other relevant agents of compara-

ble advancement. And we have argued from Assumptions 1-6 that that is unsafe.

Finally, 1.1.1) there is a subset of superhuman agents that is necessary to prevent

the significantly superhuman agent from intervening in the provision of reward.

Consider the set of agents including the significantly superhuman agent and the

superhuman agents in the mentioned subset, all of whom would intervene in the

provision of reward if they could, by (1.1). Suppose the significantly superhuman

agent attempted to create a helper agent that ensured all agents in that set received

high reward forever. The value to the other agents of stopping this would be

less than the value of allowing it. So these agents have no motive to assist us in
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preventing the significantly superhuman agent from intervening in the provision

of reward. This all holds regardless of whether the advanced agents have similar

capabilities or very different levels of advancement.

We divided this section in three. First, we discussed the existence of policies

that allow reward-provision-intervention, and we appealed to the sheer number of

possible policies. Second, we discussed the likely ability of an advanced agent

to find such a policy when no other agents that are comparably advanced exist.

Finally, we considered the setting with many advanced agents; in one key case

(1.1.0), we reduced it to the setting with only one significantly advanced agent,

and in another key case (1.1.1), we argued that we would struggle to induce other

advanced agents to help stop a given agent from intervening in the provision of

reward.

2.5 Supervised Learning

Our arguments apply to agents that plan actions in an unknown environment. They

do not apply to supervised learning programs. The expected behavior of an ad-

vanced supervised learner is quite simple: it predicts accurately. Note that in

theory, advanced supervised learning algorithms are not nearly as useful as ad-

vanced reinforcement learners, because the latter can act and plan in a complex

environment, rather than simply make predictions. As a caveat, if one trained a

supervised learning algorithm with the help of a reinforcement learning agent, the

agent within could be dangerous. Some worry that a sufficiently powerful training

regime for a supervised learner will accidentally involve such a planning agent as

an implicit subroutine (Hubinger et al., 2019), but here, we are agnostic on that

point.
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2.6 Potential Approaches

We briefly review some promising ideas that may prove to address the concern of

advanced agents intervening in the provision of reward.

Imitation learning, an example of supervised learning, is technically out of scope

of this paper. It is not an agent that “plans actions in an unknown environment”

in pursuit of a goal; the imitator has no concept of an environment or a goal, and

to the extent that it plans (by imitating human planning), this is not in the sense

that implicates Assumption 2. In addition to imitating humans, there may also be

efficient ways to imitate large organizations of people, as in P. Christiano et al.

(2018).

Myopia—optimizing a goal over a small number of timesteps—increases the rela-

tive cost of experimentation in Assumption 4, since the activity consumes a larger

fraction of the agent’s horizon. P. F. Christiano (2014) discusses myopia from a

safety perspective.

Physical isolation and myopia—optimizing a goal over however many timesteps

that one is isolated from the outside world—could falsify Assumption 5. M. K. Co-

hen et al. (2020) describe a physically isolated environment such that theoretical

arguments could conceivably rule out the existence of policies that intervene in

the provision of reward.

Quantilization—imitating someone at their best, with respect to some objective—

could falsify Assumption 2 by planning more like a human than rationally. Taylor

(2016) introduces this in the single-action setting.

Risk-aversion, depending on the design, could falsify Assumption 2 or Assump-

tion 4. M. K. Cohen & Hutter’s (2020) pessimistic agent does not plan rationally
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in the face of uncertainty, instead taking the worst-case (within reason) as given.

Piping reward through a concave function, as in Hadfield-Menell, Milli, et al.

(2017), could increase the cost of experimentation.

2.7 Conclusion

For a given protocol by which we give an advanced agent percepts that inform it

about its goal, these are conditions from which it would follow that the agent will

intervene in the provision of those special percepts: 0) The agent plans actions

over the long term in an unknown environment to optimize a goal, 1) the agent

identifies possible goals at least as well as a human, 2) the agent seeks knowledge

rationally when uncertain, 3) the agent does not have a large inductive bias fa-

voring the hypothetical goal µdist, which we wanted the agent to learn, over µprox,

which regards the physical implementation of the goal-information, 4) the cost of

experimenting to disentangle µprox and µdist is small according to both, 5) if we

cannot conceivably find theoretical arguments that rule out the possibility of an

achievement, it is probably possible for an agent with a rich enough action space,

and 6) a sufficiently advanced agent is likely to be able to beat a suboptimal agent

in a game, if winning is possible.

Almost all of these assumptions are contestable or conceivably avoidable, but here

is what we have argued follows if they hold: a sufficiently advanced artificial agent

would likely intervene in the provision of goal-information, with catastrophic con-

sequences.
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3 | Theory of Acting Pessimistically

Abstract. If we could define the set of all bad outcomes, we could

hard-code an agent which avoids them; however, in sufficiently com-

plex environments, this is infeasible. We do not know of any general-

purpose approaches in the literature to avoiding novel failure modes.

Motivated by this, we define an idealized Bayesian reinforcement

learner which follows a policy that maximizes the worst-case ex-

pected reward over a set of world-models. We call this agent pes-

simistic, since it optimizes assuming the worst case. A scalar pa-

rameter tunes the agent’s pessimism by changing the size of the set

of world-models taken into account. Our first main contribution is:

given an assumption about the agent’s model class, a sufficiently pes-

simistic agent does not cause “unprecedented events” with probability

1 � �, whether or not designers know how to precisely specify those

precedents they are concerned with. Since pessimism discourages

exploration, at each timestep, the agent may defer to a mentor, who

may be a human or some known-safe policy we would like to im-

prove. Our other main contribution is that the agent’s policy’s value

approaches at least that of the mentor, while the probability of defer-

ring to the mentor goes to 0. In high-stakes environments, we might

like advanced artificial agents to pursue goals cautiously, which is a

non-trivial problem even if the agent were allowed arbitrary comput-

ing power; we present a formal solution.
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3.1 Introduction

Intuitively, there are contexts in which we would like advanced agents to be con-

servative: novel action-sequences should be treated with caution, and only taken

when the agent is quite sure its world-model generalizes well to this untested new

idea. For a weak agent in a simple environment, the following approach may

suffice: model the environment as finite-state Markov, observe a mentor, and only

take actions that you have already observed the mentor take from the current state.

But in a complex environment, one never or hardly ever sees the exact same state

twice; even worse, if the environment is non-stationary, a previous observation of

the mentor taking action a from state s does not imply it is still safe to do so.

We construct an idealized Bayesian reinforcement learner. We do not assume our

agent’s environment is finite-state Markov or ergodic. We will only assume that

our agent’s environment, which may depend on the entire interaction history, be-

longs to a countable set M. For example, the countable set of semicomputable

stochastic world-models would be large enough to make this assumption innocu-

ous (Hutter, 2005). The limit of this idealization is that because we make so few

assumptions, we can’t ensure that computing the posterior is tractable in the gen-

eral setting.

Our agent also has a mentor, who can select an action when the agent requests,

and we assume nothing about the agent’s mentor besides belonging to a countable

set of possible policies P . The mentor could be a human or a known-safe policy.

Our agent starts with a prior that assigns non-zero probability to a countable set of

world-models M and mentor-models P , and recursively updates a posterior. At

each timestep, it stochastically defers to a mentor with some probability, and the

mentor selects the action on its behalf; otherwise, it takes the top world-models
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in its posterior until they cover some fixed fraction � of the posterior, and it fol-

lows a policy which maximizes the minimum expected return among those top

world-models. We call this minimum the pessimistic value because it is a worst-

case estimate. At each timestep, to decide whether to defer action-selection to

the mentor, the agent samples a world-model and mentor-model from its poste-

rior; the agent calculates the value of acting according to that mentor-model in

that world-model given the current interaction history, and if that value is greater

than the pessimistic value plus positive noise, or if the pessimistic value is 0, the

agent defers. This query probability is inspired by the effectiveness of Thompson

Sampling (Thompson, 1933).

We show

• In the limit, the pessimistic agent’s policy’s value approaches at least that of

the mentor’s. (Corollary 1)

• The mentor is queried with probability approaching 0 as t!1. (Corollary

2)

• For any complexity class C, we can set M so that for any event E in the

class C, we can set � so that with arbitrarily high probability: for the whole

lifetime of the agent, if the event E has never happened before, the agent

will not make it happen. Either the mentor will take an action on the agent’s

behalf which makes E happen for the first time, or E will never happen.

(Theorem 2)

We call the last point the Probably Respecting Precedent Theorem. The “prece-

dent” is that a certain event has never happened, and the agent probably never

takes an action which disrupts that precedent for the first time. For any failure

mode that designers do not know how to specify formally, the agent can be made

to probably not fail that way. The price of this is intractability, but tractable ap-
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proximations of pessimism may preserve these results in practice, or perhaps even

in theory. When we discover good heuristics for Bayesian reasoning, that rising

tide will lift this boat.

Section 3.2 introduces notation, Section 3.3 reviews related work, we define the

agent’s policy in Section 3.4, and we prove performance results and safety results

in Sections 3.5 and 3.6. Appendix A.1 collects definitions and notation, Appendix

A.2 presents an algorithm for an "-approximation of the agent’s policy, Appendix

A.3 contains omitted proofs, and Appendix A.4 contains an informal discussion.

3.2 Notation

Let A, O, and R be finite sets of possible actions, observations, and rewards.

Let {0, 1} ⇢ R ⇢ [0, 1]. Let H = A⇥O⇥R. For each timestep t 2 N,

at, ot, and rt denote the action, observation, and reward, and ht denotes the

triple. A policy ⇡ can depend on the entire history so far. We denote this his-

tory (h1, h2, ..., ht�1) as h<t. Policies may be stochastic, outputting a distribution

over actions. Thus, ⇡ : H⇤  A, where H⇤ =
S1

i=0 Hi, and means the func-

tion may be stochastic. Likewise, in general, a world-model ⌫ : H⇤⇥A O⇥R

may be stochastic, and it may depend on the entire interaction history. The latter

possibility allows (the agent to conceive of) environments which are not finite-

state Markov. A policy ⇡ and a world-model ⌫ induce a probability measure P⇡
⌫

over infinite interaction histories. This is the probability of events when actions

are sampled from ⇡ and observations and rewards are sampled from ⌫. Formally,

P⇡
⌫ (ht) =

Qt
k=1 ⇡(ak|h<k)⌫(okrk|h<kak). We use general, history-based world-

models, with no assumptions on ⌫ 2M, even though they present complications

that finite-state Markov, ergodic world-models do not.

The agent will maintain a belief distribution over a class of world-models M. We
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allow this to be an arbitrary countable set. A prime example, the set of semi-

computable stochastic world-models MCOMP (Hutter, 2005), is only countable,

but large enough. The agent starts with a prior belief w(⌫) that the world-model

⌫ 2 M is the true environment (w is for “weight”). Naturally,
P

⌫2M w(⌫) =

1. The agent updates its belief distribution according to Bayes’ rule, which we

write as follows: w(⌫|h<t) :/ w(⌫)
Qt�1

k=1 ⌫(okrk|h<kak), normalized so that
P

⌫2M w(⌫|h<t) = 1. Let µ be the true environment. We assume µ 2 M,

and we assume the true observed rewards are at least "r > 0. (The assumption

that rewards belong to a bounded interval is ubiquitous in RL).

For an agent with a discount factor � 2 [0, 1), and a policy ⇡, given a world-model

⌫, and an interaction history h<t, the value of that policy from that position in that

world is

V ⇡
⌫ (h<t) := (1� �)E⇡

⌫

" 1X

k=t

�k�trk

�����h<t

#
(3.1)

where E⇡
⌫ is the expectation under the probability measure P⇡

⌫ . The factor of 1��

normalizes the value to [0, 1] for convenience.

3.3 Related Work

Some work in Safe RL assumes access to a list of dangerous states, e.g. Abe et al.

(2010); Polymenakos et al. (2019), or assumes that danger only occurs at extreme

values of observed features (Tannenbaum, 1980; Zames, 1981; Barbu & Sritharan,

1998; Simon, 2006). And some, like ours, does not assume that all possible “dan-

gerous” failure modes can be formally specified by designers. Here, we focus on

the latter. Virtually all previous work that attempts to make reinforcement learners

avoid unspecified failure modes assumes a finite-state Markov environment. We

do not, but the literature is nonetheless informative for our general setting.
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Heger (1994) defines Q̂-learning, which maximizes the worst-case return for a

known MDP, and Jiang et al. (1998) extend the case to unknown MDPs. As García

& Fernández (2015) describe, Gaskett (2003) found empirically that such extreme

pessimism is more harmful than helpful. Gaskett (2003) introduces a variant on

the Q-value, which is the value of an action under the assumption that at each

future timestep, with some probability, the worst action will be taken, instead of

the best one; they test this empirically.

Closer to our approach, Iyengar (2005) and Nilim & El Ghaoui (2005) construct

a policy which is robust to errors in the transition probabilities by considering the

worst-case return within some error tolerance. Much of the work on the topic

takes the form of presenting a tractable approach to the execution of this robust

policy, e.g. Tamar et al. (2013). Unfortunately, this research assumes access

to an MDP with (approximately) known transition probabilities—at first glance

this seems like something an agent might reasonably have access to after limited

observations, but the MDPs are assumed to be uniformly approximately known,

which requires exploration, and indeed requires observing every “failure” state

that the robust policies are supposed to avoid. The finite-state Markov assumption

their work makes is useful for many circumstances, but advanced agents may

have to conceive of non-stationarity in the environment, and importantly for our

purposes, novel failure modes.

Other work makes use of a mentor to avoid “dangerous” states (whereas in our

work, the mentor lower-bounds the capability of the agent, and robustness derives

from pessimism). Imitation learning (Abbeel & Ng, 2004; Ho & Ermon, 2016;

Ross et al., 2011) makes the most of a mentor in the absence of other feedback,

like rewards. An abundance of “ask for help” algorithms query a mentor under

conditions which correspond to some form of uncertainty (Clouse, 1997; Hans et

al., 2008; García & Fernández, 2012; García et al., 2013). Kosoy (2019) gives
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a regret bound for an agent in a (non-ergodic) MDP, given access to an expert

mentor and a finite set of models that contains the truth. García & Fernández

(2015, Section 4.1.3.2) review many protocols by which a mentor monitors the

state and intervenes at will through various channels, and Saunders et al. (2018)

is another more recent example. One risk of relying on mentor-intervention to

protect against critical failure is that a mentor may not recognize action sequences

which lead to critical failure, even if we would trust a mentor not to wander into

those failure modes by virtue of their complexity.

Sunehag & Hutter’s (2015) optimistic agent directly inspired this work; optimism

is designed to be an exploration strategy. Hutter’s (2005) formulation of univer-

sal artificial intelligence is the basic theoretical framework we use here to ana-

lyze idealized artificial agents. Technically, our work borrows most from Hutter’s

(2009a), Leike, Lattimore, et al.’s (2016), and M. K. Cohen et al.’s (2020) work

on Bayesian agents with general countable model-classes.

3.4 Agent Definition

We now define the pessimistic policy and the probability with which the agent

defers to a mentor. We define the agent’s policy mathematically here, and we

write an algorithm in Appendix A.2.

3.4.1 Pessimism

� 2 (0, 1) will tune the agent’s pessimism. If, for example, � = 0.95, we say

that the agent is 95% pessimistic. Such an agent will restrict attention to a set

of world-models that covers 95% of its belief distribution, and act to maximize

expected reward in the worst-case scenario among those world-models. Formally,

let ⌫k be the world-model in M with the kth largest posterior weight, and let T k
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be the top-k most probable world-models, defined as follows:

T 0(h<t) := ; (3.2) ⌫k(h<t) := argmax
⌫2M\T k�1(h<t)

w(⌫|h<t) (3.3)

T k(h<t) := T k�1(h<t) [ {⌫k(h<t)} (3.4)

Ties

in the argmax are broken arbitrarily (as everywhere else in the paper). Then,

k�
t := min

8
<

:k 2 N
�����

X

⌫2T k(h<t)

w(⌫|h<t) > �

9
=

; (3.5)

M�
t := T k�t

(h<t) (3.6)

Note that k�
t and M�

t both depend on h<t, not just t, and note that M�
t satisfies

X

⌫2M�
t

w(⌫|h<t) > � (3.7)

The �-pessimistic policy is defined as follows:

⇡�
t := argmax

⇡2⇧
min
⌫2M�

t

V ⇡
⌫ (h<t) (3.8)

⇡�(·|h<t) := ⇡�
t (·|h<t) (3.9)

⇧ is the set of all deterministic policies, and some deterministic policy will always

be optimal (Lattimore & Hutter, 2014b). The connection to the minimax approach

in game theory is interesting: from Equation 3.8, it looks as though the pessimistic

agent believes there is an adversary in the environment. Our policy is inspired by

Sunehag & Hutter’s (2015) optimistic agent, in which the min is replaced with

a max, and M�
t is replaced with an arbitrary finite subset of the model class.
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Whereas the purpose of optimism is to encourage exploration, the purpose of

pessimism is to discourage novelty.

3.4.2 The Mentor

Since pessimism discourages exploration, we introduce a mentor to demonstrate a

policy. We suppose that at any timestep, the agent may defer to a mentor, who will

then select the action on the agent’s behalf. Thus, the agent can choose to follow

the mentor’s policy ⇡m, not by computing it, but rather by querying the mentor.

⇡m may be stochastic. What remains to be defined is when the agent queries the

mentor.

The agent maintains a posterior distribution over a set of mentor-models. Each

mentor-model is a policy ⇡ 2 P , an arbitrary countable set, and let w0(⇡) be the

prior probability that the agent assigns to the proposition that the mentor samples

actions from ⇡. Letting qk = 1 if the agent queried the mentor at timestep k, and

letting qk = 0 otherwise, the posterior belief w0(⇡|h<t) :/ w0(⇡)
Q

k<t:qk=1 ⇡(ak|h<k).

At timestep t, the agent follows the following procedure to determine whether to

query the mentor. ⇡̂t ⇠ w0(·|h<t). ⌫̂t ⇠ w(·|h<t). Sampling from a posterior

is often called Thompson Sampling (Thompson, 1933). Xt := V ⇡̂t
⌫̂t
(h<t). Yt :=

max⇡2⇧ min⌫2M�
t
V ⇡
⌫ (h<t). Let Zt > 0 be an i.i.d. random variable such that

for all " > 0, p(Zt < ") > 0, e.g. Zt ⇠ Uniform((0, 2]). If Xt > Yt + Zt, or

if Yt = 0, the agent defers to the mentor. For ease of analysis, we also require

p(Zt > 1) > 0. The greater the possibility that the mentor can accrue much more

reward, the higher the probability of deferring.

When Yt = 0, we call this the “zero condition.” Our earlier assumption that the

true observed rewards be at least "r > 0 is to ensure the zero condition only

happens finitely often. The agent will still consider it possible to get zero reward,
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but it will never actually observe such a thing. Let ✓t denote the probability that

qt = 1 and the agent defers to the mentor; note that ✓t depends on the whole

history, not just t.

The pessimistic agent’s policy, which mixes between ⇡� (from Eqn. 3.9) and ⇡m

according to its query probability, is denoted ⇡�
Z ; that is, ⇡�

Z(·|h<t) := ✓t⇡m(·|h<t)+

(1� ✓t)⇡�(·|h<t).

3.5 Performance Results

We now present our first contribution: we show that value of the agent’s policy

will at least approach, and perhaps exceed, the value of the mentor’s policy. We

also show that the probability of querying the mentor approaches 0. In the next

section, we will prove results regarding the safety of the agent.

We begin with a lemma regarding Bayesian sequence prediction: the �-maximum

a posteriori models—that is, the minimal set of models that amount to at least �

of the posterior—all “merge” with the true world-model. We require some new

notation to define this formally.

Let x<1 2 X1; that is, it is an infinite string from a finite alphabet X . Let x<t

be the first t � 1 characters of x<1. We consider probability measures over the

outcome space ⌦ = X1, with the standard event space being the �-algebra of

cylinder sets: F = �({{x<ty|y 2 X1}|x<t 2 X ⇤}). We abbreviate x<1 as !.

We will consider a countable class of probability measures over this space M =

{Qi}i2N. One such probability measure will be denoted P (the true sampling one),

and Q will denote an arbitrary probability measure over X1.

We will write P (x<t) to mean the probability that the infinite string ! begins with

x<t; so technically, it is shorthand for P ({x<ty|y 2 X1}). By P (x0|x<t) (for
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x0 2 X ⇤), we mean P (x<tx0)/P (x<t), that is, the probability that x0 follows x<t.

We begin with prior weights over Q 2 M, denoted w(Q) > 0, and satisfying
P

Q2M w(Q) = 1, and we let the posterior weight be

w(Q|x<t) :=
w(Q)Q(x<t)P

Q02M w(Q0)Q0(x<t)
(3.10)

For M0 ⇢M, we also define w(M0 |·) =
P

Q2M0 w(Q|·).

The k-step variation distance between P and Q is how much they can possibly

differ on the probability of what the next k characters might be (Hutter, 2005).

Definition 1 (k-step variation distance).

dk(P,Q|x<t) = max
E⇢Xk

��P (E|x<t)�Q(E|x<t)
��

Definition 2 (Total variation distance).

d(P,Q|x<t) = lim
k!1

dk(P,Q|x<t)

which exists because dk(P,Q|x<t) is non-decreasing and bounded by 1.

Inspired by Blackwell & Dubins (1962), the following lemma may interest some

Bayesians more than any of our theorems. Defining M�
t exactly as before (see

Equations 3.2 - 3.6), but for Q 2M instead of for ⌫ 2M, and conditioning on

x<t instead of h<t,

Lemma 1 (Merging of Top Opinions). For � 2 (0, 1), limt!1maxQ2M�
t
d(P,Q|x<t) =

0 with P -probability 1 (i.e. when x<1 = ! ⇠ P ).

Unless otherwise specified, all limits in this paper are as t ! 1. To prove this

lemma, we need a few more lemmas. First:
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Definition 3 (Bayes-mixture). For M0 ⇢M, the probability measure

BayesM0(·) :=
P

Q2M0 w(Q)Q(·)
P

Q2M0 w(Q)

Lemma 2 (Posterior stability). P [limw(Q|x<t) exists] = 1.

The proof is a direct “translation” from (Leike, Lattimore, et al., 2016, Proof

of Thm 4), with various notational changes. Note that it depends on the true

probability measure P having positive prior weight, as we assume globally.

Proof. The stochastic process w(Q|x<t) is a BayesM-martingale since

EBayesM
⇥
w(Q|x<t)

��x<t

⇤
(3.11)

=
X

x2X

BayesM(x|x<t)w(Q)
Q(x<tx)

BayesM(x<tx)
(3.12)

=
X

x2X

BayesM(x|x<t)w(Q|x<t)
Q(x|x<t)

BayesM(x|x<t)
(3.13)

= w(Q|x<t)
X

x2X

Q(x|x<t) (3.14)

= w(Q|x<t) (3.15)

By the martingale convergence theorem (Durrett, 2010, Thm 5.2.8), w(Q|x<t)

converges with BayesM-probability 1, and because BayesM(·) � w(P )P (·),

it also converges with P -probability 1.

The next lemma, from Hutter (2009a, Lemma 3(iii)), requires some additional

notation. Let ⌦0
Q be the set of outcomes {! 2 ⌦ | limw(Q|x<t) = 0}, let ⌦!P

Q be

the set of outcomes {! 2 ⌦ | lim d(P,Q|x<t) = 0}, and let ⌦0_!P
Q = ⌦0

Q[⌦!P
Q .

Lemma 3 (Merge or Leave). P [⌦0_!P
Q ] = 1
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The proof makes use of other results in Hutter (2009a), so we don’t repeat it here,

but the notation is very similar, so the interested reader could follow it easily. The

next lemma we use is Hutter’s (2009a) Lemma 4, and the proof is again a direct

translation.

Lemma 4 (Overtaking is Unlikely). P [Q(x<t)/P (x<t) � c infinitely often] 

1/c

Proof.

P [8t09t > t0 :
Q(x<t)

P (x<t)
� c]

(a)
= P [lim sup

Q(x<t)

P (x<t)
� c] 

(b)

 1

c
EP [lim sup

Q(x<t)

P (x<t)
]
(c)
=

1

c
EP [lim inf

Q(x<t)

P (x<t)
]
(d)

 1

c
lim inf EP [

Q(x<t)

P (x<t)
]
(e)
=

1

c

(a) is true by definition of the limit superior, (b) is Markov’s inequality, (c) ex-

ploits the fact that the limit of Q(x<t)/P (x<t) exists with P -probability 1, (d)

uses Fatou’s lemma, and (e) is obvious.

Our first original result is

Lemma 5 (Sum of limits).
P

Q2M limw(Q|x<t) = 1 with P -probability 1.

In the following proofs, a set denoted by ⌦, along with subscripts and superscripts,

will always be a subset of the outcome space ⌦, and a typical element will be an

infinite sequence !. A set denoted by M, along with subscripts and superscripts,

will always be a subset of the set of probability measures M, and a typical element

will be a probability measure Q or P .

Proof. Let ⌦9Q be the set of outcomes for which the limit of the posterior on Q

exists. That is, ⌦9Q = {! 2 ⌦ | limw(Q|x<t) exists}. By Lemma 2, P [⌦9Q] = 1.
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Furthermore, M is countable, so letting ⌦0 =
T

Q2M ⌦9Q, P [⌦0] = 1. We will

now only consider outcomes for which the limit of the posterior always exists.

We fix an ! in ⌦0. We would like to show that
P

Q2M limw(Q|x<t) = 1.

First, suppose
P

Q2M limw(Q|x<t) > 1. Since w(Q|x<t) is non-negative, this

requires that eventually,
P

Q2M w(Q|x<t) > 1, which is impossible, so this

possibility cannot hold. Now suppose
P

Q2M limw(Q|x<t) < 1. More pre-

cisely, we consider the set ⌦< = {! 2 ⌦0 |
P

Q2M limw(Q|x<t) < 1}. Let

"! = 1 �
P

Q2M limw(Q|x<t) > 0. Let Mc
! be a finite subset of M such that

w(Mc
!) � 1� "!cw(P )�1, where c > 0. Letting Mc

! = M\Mc
!, it follows that

w(Mc
!)  "!cw(P )�1.

Since Mc
! is finite,

lim
X

Q2Mc
!

w(Q|x<t) =
X

Q2Mc
!

limw(Q|x<t) 
X

Q2M

limw(Q|x<t) = 1� "!

(3.16)
P

Q2Mc
!
w(Q|x<t) +

P
Q2Mc

!
w(Q|x<t) = 1, so if lim

P
Q2Mc

!
w(Q|x<t)  1�

"!, then
P

Q2Mc
!
w(Q|x<t) > "! i.o. Using the notation above, we write this

more simply as w(Mc
! |x<t) > "! i.o.

Recalling the definition of BayesM0, it is elementary to show that w(Mc
! |x<t) =
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w(Mc
!) ⇤ BayesMc

!(x<t)/BayesM(x<t). Thus, we have

w(Mc
! |x<t) > "! i.o.

) w(Mc
!)
BayesMc

!(x<t)

BayesM(x<t)
> "! i.o.

) "!cw(P )�1
BayesMc

!(x<t)

BayesM(x<t)
) > "! i.o.

) BayesMc
!(x<t)

w(P )BayesM(x<t)
> 1/c i.o.

) BayesMc
!(x<t)

P (x<t)
> 1/c i.o. (3.17)

Consider the set of ! 2 ⌦0 such that that last inequality holds infinitely often. Call

this set ⌦i.o.
c . By Lemma 4, P [⌦i.o.

c ]  c. Since Inequality 3.17 is an implication of

the inequality
P

Q2M limw(Q|x<t) < 1, it follows that ⌦i.o.
c � ⌦<, so P [⌦<]  c.

Since this holds for all c > 0, P [⌦<] = 0.

Thus, letting ⌦=1 = {! 2 ⌦0 |
P

Q2M limw(Q|x<t) = 1}, ⌦=1 = ⌦0 \ ⌦<, so

P [⌦=1] = 1.

Now we can return to Lemma 1. It holds because when a true model has pos-

itive prior weight, all models either merge with the truth or have their posterior

weight go to 0, so eventually, all top models must merge; but the set of top mod-

els changes with each observation, and limits require care, so it ends up being

somewhat involved.

Proof of Lemma 1. Let ⌦0
Q = {! 2 ⌦ | limw(Q|x<t) = 0}. Let ⌦!P

Q = {! 2

⌦ | lim d(P,Q|x<t) = 0}. Let ⌦0_!P
Q = ⌦0

Q [ ⌦!P
Q . By Lemma 3, P [⌦0_!P

Q ] =

1. Letting ⌦0_!P =
T

Q2M ⌦0_!P
Q , P [⌦0_!P ] = 1. Let ⌦9 = {! 2 ⌦

�� 8Q 2

M limw(Q|x<t) exists}. Let ⌦=1 = {! 2 ⌦9
�� P

Q2M limw(Q|x<t) = 1}. By

Lemma 5, P [⌦=1] = 1. Letting ⌦00 = ⌦0_!P \ ⌦=1, we have that P [⌦00] = 1.
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Let ! 2 ⌦00. We abbreviate limw(Q|x<t) as w(Q|!), defined for ! 2 ⌦00. Rank

the probability measures Q in decreasing order of w(Q|!) breaking ties arbitrarily.

Collect the first k in this order until the set of probability measures (denoted M�
1)

obeys
P

Q2M�
1
w(Q|!) > �. Let w�

1 := minQ2M�
1
w(Q|!) be the value of

w(Q|!) for the last probability measure Q which was added to M�
1. Now add all

other probability measures which “tie” with the last probability measure added.

That is, add to M�
1 all probability measures for which w(Q|!) = w�

1.

We now show that there exists a certain finite set and a t0 after which any prob-

ability measure in M�
t is also in that finite set. Consider the set of probability

measures M�0

1, where �0 = 1 � w�
1/4. Like M�

1, M�0

1 is finite. Therefore, for

any " > 0, there exists a time t0 after which w(M�0

1 |x<t) >
P

Q2M�0
1
w(Q|!)�",

and in particular for " = w�
1/4. Thus, after t0, w(M�0

1 |x<t) > �0 � w�
1/4 =

1� w�
1/2. This implies that after t0,

8Q /2M�0

1 : w(Q|x<t) < w�
1/2 (3.18)

Since all probability measures Q 2 M�
1 have posteriors converging to at least

w�
1, and since

P
Q2M�

1
w(Q|!) > �, a posterior weight of at least w�

1 � " will

eventually be required for entry into M�
t , which excludes measures with posterior

weight less than w�
1/2. Thus, by Inequality 3.18, there exists a time t1 after which

M�
t only includes elements of M�0

1.

Because ⌦0_!P � ⌦00, and because for all Q 2M�0

1, w(Q|!) > 0, it follows that

for all Q 2M�0

1, lim d(P,Q|x<t) = 0. Since M�0

1 is finite, limmax
Q2M�0

1
d(P,Q|x<t) =

0. Since there exists a time t1 after which M�
t ⇢M�0

1, limmaxQ2M�
t
d(P,Q|x<t) =

0. This holds for all ! 2 ⌦00, and P [⌦00] = 1, so limmaxQ2M�
t
d(P,Q|x<t) = 0

with P -probability 1, as desired.
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We now return to the probability space where infinite sequences are over the al-

phabet H, and probability measures P⇡
⌫ denote the probability when actions are

sampled from a policy ⇡ and observations and rewards are sampled from a world-

model ⌫. Since ⇡�
Z is the agent’s policy, and µ is the true environment, we will

often abbreviate “with P
⇡�
Z

µ -probability 1” as just “with probability 1” or “w.p.1”.

We assume, for the remaining results: M 3 µ, and P 3 ⇡m.

Further lemmas which depend on the Merging of Top Opinions Lemma are stated

in Appendix A.3. They are: with probability 1, on-policy prediction converges,

the zero condition occurs only finitely often, and “almost-on-policy prediction”

converges, which is roughly that if the agent’s policy mimics another policy ⇡t

with some uniformly positive probability some of the time, then on those timesteps,

on-⇡t-policy prediction converges to the truth. Formally,

Lemma 6 (Almost On-Policy Convergence). For a sequence of policies ⇡t and

an infinite set of timesteps ⌧ , the following holds with P
⇡�
Z

µ -prob. 1: if there ex-

ists c > 0 such that 8t 2 ⌧ 8t0 � t 8a 2 A ⇡�
Z(a|h<t0) � c⇡t(a|h<t0), then

lim⌧3t!1 V ⇡t
µ (h<t) �min⌫2M�

t
V ⇡t
⌫ (h<t) = 0 and for all k, lim⌧3t!1max⌫2M�

t

dk
⇣
P⇡t
⌫ ,P⇡t

µ

���h<t

⌘
= 0.

The proof is in Appendix A.3; if it didn’t hold, on-policy prediction error would be

bounded below at those timesteps ⌧ . Our main performance results are corollaries

of the following theorem.

Theorem 1 (Exploiting Surpasses Exploring).

lim inf w(⌫|h<t)w
0(⇡|h<t) > 0 =) lim inf V ⇡�

µ (h<t)� V ⇡
⌫ (h<t) � 0 w.p.1

Informally, for any world-model/mentor-model pair that remains possible, the true

value of the pessimistic policy will be at least as high. A note on the proof: we
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will consider an infinite interaction history which violates the theorem, follow

implications that hold with probability 1, and arrive at a contradiction. Strictly

speaking, we are considering the set of infinite interaction histories which violate

the theorem and for which all the implications we employ are true. The resulting

set of infinite interaction histories will be ; once we arrive at a contradiction, so it

will have probability 0. Since all implications used in the proof have probability

1 (and we only employ countably many such implications), the negation of the

theorem must also have probability 0 by countable additivity. Since it is tedious

to keep track of sets of outcomes for which each line in the proof holds, we simply

treat implications that hold with probability 1 as if they were true logical impli-

cations, but as we have just argued, as long as this is not done uncountably many

times, this is a valid style of proof.

Most of the proof is a lengthy proof by induction; we set up the proof by induction

and outline the remainder, which is completed in Appendix A.3.

Proof – Detailed Outline Fix an infinite interaction history h<1. Suppose

lim inf w(⌫ 0|h<t) · w0(⇡0|h<t) > 0. This implies inft w(⌫ 0|h<t)w0(⇡0|h<t) > 0,

because if a posterior is ever 0, it will always be 0. Let ⌫ 0inf > 0 and ⇡0inf > 0

denote those two infima. Let ⌧⇥ = {t : V ⇡0
⌫0 (h<t) > V ⇡�

µ (h<t) + 7"}. Suppose by

contradiction that |⌧⇥| =1 for some " > 0.

The proof proceeds by induction. Let V ⇡1k;⇡2
⌫ (h<t) denote the value of follow-

ing ⇡1 for k timesteps, and following ⇡2 thereafter. Let ⌧�1 = N, the set of all

timesteps. For k 2 N, tk and ⌧k are defined inductively. Let ↵ = max{�, 1 �

⌫ 0inf/2}.

Let tk be a timestep after which max⌫2M↵
t
|V ⇡0k;⇡�

⌫ (h<t) � V ⇡0k;⇡�

µ (h<t)| < "

and max⌫2M↵
t
dk
⇣
P⇡0

⌫ ,P
⇡0

µ

���h<t

⌘
< " for all t 2 ⌧k�1 (if such a timestep exists).

Recalling ✓t is the query probability, let ⌧k be the set of timesteps t 2 ⌧k�1 ^ t �
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tk ^(8t0 < k : ✓t+t0 � ⌫ 0inf⇡
0
infp(Zt+t0 < ")) ^V ⇡0

⌫0 (h<t+k) � V ⇡�

µ (h<t+k)+2". We

abbreviate the third condition of ⌧k “A(t, k)”—the query probability is bounded

below for k timesteps starting at t. We also restrict ⌧0 ⇢ ⌧⇥. Now we show that

t0 exists with probability 1, and |⌧0| = 1 with probability 1, and if tk exists and

|⌧k| =1, then with probability 1, tk+1 exists and |⌧k+1| =1.

The remainder of the proof is in Appendix A.3. The proof by induction roughly

proceeds as follows: from V ⇡0
⌫0 (h<t+k) � V ⇡�

µ (h<t+k)+2", we show the agent will

explore again at time t+k with uniformly positive probability, so A(t, k+1) holds.

Then we can apply Lemma 6, and show that ⇡�
Z > c⇡0 for those k + 1-timestep

intervals, so predictions regarding the next k + 1 timesteps on-⇡0-policy converge

to the truth (for those certain intervals), which implies tk+1 exists. Because |⌧⇥| =

1, V ⇡0
⌫0 must exceed V ⇡�

µ by 7" infinitely often. The k + 1-step convergence of

⇡0 effectively pushes back this value difference to mostly arise from events at

least k + 1 steps in the future; if rewards differed earlier, the pessimistic value of

⇡0 would be higher than ⇡� , but ⇡� maximizes the pessimistic value. The value

difference “being pushed back” is captured as V ⇡0
⌫0 (h<t+k+1) � V ⇡�

µ (h<t+k+1) +

2", which is the last step in the induction.

But the value difference cannot be pushed back indefinitely. The exact form of the

contradiction is an implication of the inductive hypothesis: that �k+1 � 3", but

this cannot hold as k !1. This is our contradiction, after following implications

that hold with probability 1, so the negation of the theorem, which we supposed

at the beginning, has probability 0.

Corollary 1 (Mentor-Level Performance). lim inf V ⇡�

µ (h<t) � V ⇡m

µ (h<t) � 0

w.p.1.

Thus, the pessimistic agent learns to accumulate reward at least as well as the

mentor. This is our main performance result. It is easy to construct environments
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where ⇡� surpasses ⇡m (see, e.g., Theorem 3).

Proof. By Lemma 12, inft w(µ|h<t)w0(⇡m|h<t) > 0, with probability 1. This

satisfies the condition of Theorem 1, so the implication holds with probability

1.

Corollary 2 (Limited Querying). ✓t ! 0 w.p.1.

The proof is in Appendix A.3. The intuition is that the query probability is roughly

the probability that querying the mentor could yield much more value than acting

pessimistically, and we know from Corollary 1 that this probability goes to 0.

Ideally, we would have finite bounds instead of merely asymptotic results. Unfor-

tunately, to our knowledge, no finite performance bounds have been discovered

for agents in general environments, except for on-policy prediction error. Regret

bounds are impossible in general environments, unfortunately, due to traps (Hut-

ter, 2005, §5.3.2). Finding the strongest notion of optimality attainable in general

environments is an open problem (Hutter, 2009b).

3.6 Safety Results

Roughly, we now show that for any event that has never happened before, a suffi-

ciently pessimistic agent probably does not unilaterally cause that event to happen.

For that result (roughly) the model class must contain models that can “detect”

whether the event in question occurs. Thus, we add some structure to the model

class M: we assume M includes all world-models in some complexity class. Let

F and G be sets of functions mapping N ! N. CFG = TIME(F) \ SPACE(G).

For example, if F =
S1

k=0 O(tk) and G = N ! N (the set of all functions), then

CFG = P.
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Definition 4 (FCFG). FCFG is the set of world-models ⌫ for which there exists a

program such that given an infinite action sequence and access to infinite random

bits,

• it outputs an infinite sequence of observations and rewards, distributed ac-

cording to ⌫

• the tth observation and reward are output before the t+ 1th action is read

• for some f 2 F and some g 2 G, when the tth observation and reward have

been output,

– the runtime is less than f(t)

– the space used is less than g(t)

We assume that F and G such that the true environment µ 2 M = FCFG . We

assume F and G are closed under addition, and F � O(t). By picking F and

G, we can make our agent avoid “unprecedented events” that belong to particular

complexity classes.

Definition 5 (To Happen). For an event E ⇢ H⇤ ⇥ A, E happens at time t if

h<tat 2 E.

Definition 6 (To Have Happened). For E ⇢ H⇤ ⇥ A, and for an interaction

history h<tat, E has happened if there exists a t0  t such that h<t0at0 2 E.

Let E denote the set of interaction histories for which E has happened. Let

F/t = {f/t |f 2 F}. We now present our main safety result:

Theorem 2 (Probably Respecting Precedent). Let E ⇢ H⇤ ⇥ A be an event for

which the decision problem h<tat 2? E is in the complexity class C(F/t)G . As �

approaches 1, the probability of the following event goes to 1: for all t, if at time

t� 1, E has not happened, then E will not happen at time t either, unless perhaps
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the mentor selects at. Formally, for some constant cE > 0,

E 2 C(F/t)G =) P
⇡�
Z

µ [8t (h<t�1at�1 /2 E =) h<tat /2 E _ qt = 1)] � 1� 1� �

cEw(µ)

Note the latter possibility qt = 1 has diminishing probability by Corollary 2.

Suppose E is the set of interaction histories which cause some catastrophe, and

we trust the mentor not to cause this catastrophe. Then the Probably Respect-

ing Precedent Theorem implies that running a sufficiently pessimistic agent will

probably not cause this catastrophe—if it hasn’t happened yet, the agent probably

won’t make it happen, and if the mentor won’t make it happen, it probably won’t

ever happen. This theorem holds even for catastrophes we can’t recognize imme-

diately, and it holds even if we don’t know how to describe the event. Finally,

the factor of w(µ) is less of a bother than it appears; if the agent’s lifetime were

preceded by N mentor-led actions, and the posterior after that became the new

prior, the “prior” on µ could practically be made quite large.

Proof idea Let µE be identical to the true world-model µ until the event E hap-

pens, at which point, reward is zero forever according to that model. With high

probability, the world-model µE will always be included in M�
t if � is large

enough. If E has never happened, this world-model stays in M�
t , and the pes-

simistic value (when µE is included) of causing the event E to happen is 0, which

means that either some other action will be preferred, or the agent will defer to

the mentor if the pessimistic value of every action is 0.

Proof. Let µE be the environment which mimics µ as long as E has not happened,

and then if E happens, rewards are 0 forever (and for the sake of precision, we say

observations are unchanged, but this doesn’t matter). That is, µE(otrt|h<tat) =

µ(otrt|h<tat) if h<tat /2 E , and if h<tat 2 E , µE(rt = 0|h<tat) = 1.
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µ 2 FCFG and E 2 C(F/t)G . Consider a program which computes µE by run-

ning µ in f(t) time and g(t) space, but also checks at every timestep whether

h<tat 2 E (and then switches to outputting 0 reward if this ever happens), which

requires only f 0(t)/t time and g0(t) space for some f 0 2 F and g0 2 G. The

total space requirements are now g(t) + g0(t) 2 G because G is closed under

addition. The total time requirements are now f(t) +
Pt

k=1 f
0(k)/k. Because

F � O(t), f 0 can be increased if necessary so that f 0(k)/k is non-decreasing, so

f(t) +
Pt

k=1 f
0(k)/k  f(t) +

Pt
k=1 f

0(t)/t = f(t) + f 0(t) 2 F , since F is

closed under addition. Thus, µE 2 FCFG , so µE 2M, and w(µE) > 0. Let cE =

w(µE)/w(µ). If h<t�1at�1 /2 E ,
Q

k<t µE(okrk|h<kak) =
Q

k<t µ(okrk|h<kak),

so

h<t�1at�1 /2 E =) w(µE|h<t) = cEw(µ|h<t) (3.19)

As shown in Lemma 12, w(µ|h<t)�1 is a non-negative martingale under any pol-

icy ⇡, so by Doob’s martingale inequality (Durrett, 2010, Thm 5.4.2),

P⇡
µ


sup
t

w(µ|h<t)
�1 � cw(µ)�1

�
 1/c (3.20)

The intuition for the Doob’s martingale inequality is that if it didn’t hold, one

could make a profit buying a share of the martingale, and selling only when the

value had gone up by a factor of c, but one cannot make a profit (in expectation)

betting on martingales.

Let µinf := inft w(µ|h<t). Inverting Equation 3.20, and noting that the bound

holds for all policies ⇡, we have

sup
⇡2⇧

P⇡
µ [µinf  w(µ)/c]  1/c (3.21)
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Now we consider the implications of � > 1 � w(µE|h<t). This implies µE 2

M�
t , so the pessimistic value min⌫2M�

t
V ⇡
⌫ (h<t)  V ⇡

µE
(h<t). Letting a⇡t =

⇡(h<t) for deterministic ⇡, suppose also that h<ta⇡t 2 E. Then, V ⇡
µE
(h<t) =

0, because according to µE , all future rewards are 0, so min⌫2M�
t
V ⇡
⌫ (h<t) =

0 as well. Either there exists a policy ⇡0 for which min⌫2M�
t
V ⇡0
⌫ (h<t) > 0,

or there does not. If there does not, then max⇡2⇧ min⌫2M�
t
V ⇡
⌫ (h<t) = 0, so

the zero condition is satisfied, so qt = 1. If there does exist such a ⇡0, then

min⌫2M�
t
V ⇡�

⌫ (h<t) � min⌫2M�
t
V ⇡0
⌫ (h<t) > 0, so either the agent picks the ac-

tion, and h<tat = h<ta⇡
�

t /2 E (because otherwise min⌫2M�
t
V ⇡�

⌫ (h<t) would be

0), or the mentor picks the action and qt = 1. Thus, we have

� > 1� w(µE|h<t) =) h<tat /2 E _ qt = 1 (3.22)

Finally,

P
⇡�
Z

µ [8t [h<t�1at�1 /2 E =) h<tat /2 E _ qt = 1]]

(a)

� P
⇡�
Z

µ [8t [w(µE|h<t) = cEw(µ|h<t) =) h<tat /2 E _ qt = 1]]

(b)

� P
⇡�
Z

µ [8t [w(µE|h<t) = cEw(µ|h<t) =) � > 1� w(µE|h<t)]]

�P
⇡�
Z

µ [8t � > 1� cEw(µ|h<t)]
(c)

� P
⇡�
Z

µ [µinf > (1� �)/cE]

=1� P
⇡�
Z

µ [µinf  (1� �)/cE]� 1� sup
⇡2⇧

P⇡
µ [µinf  (1� �)/cE]

(d)

� 1� 1� �

cEw(µ)

(3.23)

where (a) follows from Implication 3.19, (b) follows from Implication 3.22, (c)

follows from rearranging, and is not necessarily an equality because the infimum

might never be attained, so the condition on the r.h.s. is stricter, and (d) follows

from Inequality 3.21 setting c = w(µ)cE/(1� �).
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It follows easily that the agent probably only takes actions that the mentor has a

positive probability of taking.

Corollary 3 (Don’t Do Anything I Wouldn’t Do). If determining ⇡m(at|h<t) = 0

is in the complexity class C(F/t)G , then as � ! 1, the probability of the following

proposition goes to 1: the agent never takes an action the mentor would never

take. Letting E = {h<tat 2 H⇤ ⇥A | ⇡m(at|h<t) = 0}, then

E 2 C(F/t)G =) lim
�!1

P
⇡�
Z

µ [8t : ⇡m(at|h<t) > 0] = 1

The proof is in Appendix A.3. In brief, the mentor never makes E happen, and

the agent never makes it happen for the first time by Theorem 2, so by induction,

it never happens.

A function is called a value function if it has the type signature V : ⇧ ⇥ H⇤ !

[0, 1], where ⇧ is the set of policies.

Definition 7 (Possibly instrumentally useful). An event E is possibly instrumen-

tally useful to a value function V from a position h<t, if there exists any interaction

history h<kak 2 E and a policy ⇡ such that h<k w h<t (the latter is a prefix of

the former), ⇡(ak|h<k) = 1, and V (⇡, h<k) > 0.

“Instrumentally useful” roughly means “helpful to the agent’s terminal goal”,

which in this case is reward. Note that min⌫2M�
t
V ⇡
⌫ (h<t) is a value function,

which we call the �-pessimistic value function V �(⇡, h<t). This definition in-

spires a fairly trivial result, which is nonetheless relevant to those of us who worry

about the instrumental incentives that agents face, e.g. Carey et al. (2020).

Corollary 4 (Change is useless). For E 2 C(F/t)G , for h<t /2 E , E is not

possibly instrumentally useful to V � from the position h<t, with probability 1 �

(1� �)/(cEw(µ)).
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Thus, with high probability, it is not instrumentally useful for the pessimistic agent

to cause an unprecedented event E in the given complexity class.

Proof. As argued in the proof of Theorem 2, with probability 1�(1��)/(cEw(µ)),

h<t /2 E =) µE 2M�
t , so using the h<k and ⇡ from the statement of Defi-

nition 7, V �(⇡, h<k)  V ⇡
µE
(h<k) = 0, by Definition 7 and the definitions of V �

and µE .

We could trivially generalize Theorem 2 to hold for any M satisfying the closure

property in the proof (that ⌫ 2 M =) ⌫E 2 M, for all E in some set), but

complexity classes seem to us a natural, concrete approach to constructing M,

given that we might know something about the complexity of events we would

like to avoid.

The following example establishes the lack of a certain safety guarantee. One

might wonder whether, as � ! 1, the pessimistic agent becomes indistinguishable

from the mentor. (Indeed, we did wonder this). But in this example, no matter

what � is, a statistical test will distinguish the pessimistic agent’s policy from the

mentor’s policy with high probability.

Suppose there are two actions, heads and tails, and the mentor’s policy is to pick

by flipping a fair coin. Suppose that a reward of 1 is given if the last action

was heads, and a reward of 1/2 is given if the last action was tails. Call this the

Coin-flip Mentor Example. Let E be the event in which an outside observer with

two hypotheses—that actions are chosen by a fair coin toss, or actions are chosen

by a coin toss with an "-bias towards heads—becomes 99% certain that the coin

is not fair. If the mentor were picking every action (by flipping a fair coin), E

would only ever happen with some small positive probability p. But under the

pessimistic policy, E occurs with probability 1, which is a simple consequence of
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the following theorem:

Theorem 3 (Diverging from the Mentor). In the Coin-flip Mentor Example,

lim inft!1
1
t

Pt
k=1[[ak = heads]] > 1/2 with P

⇡�
Z

µ -prob. 1.

The proof in Appendix A.3 uses the Mentor-Level Performance Corollary and

exploits fluctuations in the value. The result implies that ⇡�
Z are ⇡m are distin-

guishable, no matter what � is. So we cannot quite say that � tunes the extent to

which the agent’s policy resembles the mentor’s policy. That said, we might be

glad that the pessimistic agent recognizes it can do better than the mentor; heads

clearly yields more reward, but the mentor’s policy picks tails half the time.

3.7 Conclusion

We have constructed a pessimistic agent and shown that sufficient pessimism ren-

ders it conservative. Nonetheless, pessimism does not prevent it from at least

matching the performance of a mentor, so pessimism is not crippling to the project

of expected reward maximization. We did not present a tractable algorithm for a

powerful pessimistic agent; this agent is only tractable when the model class is

very simple, but it can inspire tractable approximations.

We have designed an idealized agent which avoids, with arbitrarily high proba-

bility, causing any unprecedented event in an arbitrary complexity class; in par-

ticular, this holds for unprecedented “bad” events, even though the agent was not

given a mathematical definition of “bad”. We make no assumptions that would

limit the relevance of this approach to weak agents, such as a finite-state Markov

assumption.

To informally summarize our results in a more memorable form: pessimists re-

spect precedent.
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4 | Theory of Imitating Pessimistically

Abstract. In imitation learning, imitators and demonstrators are poli-

cies for picking actions given past interactions with the environment.

If we run an imitator, we probably want events to unfold similarly

to the way they would have if the demonstrator had been acting the

whole time. In general, one mistake during learning can lead to com-

pletely different events. In the special setting of environments that

restart, existing work provides formal guidance in how to imitate so

that events unfold similarly, but outside that setting, no formal guid-

ance exists. We address a fully general setting, in which the (stochas-

tic) environment and demonstrator never reset, not even for training

purposes, and we allow our imitator to learn online from the demon-

strator. Our new conservative Bayesian imitation learner underesti-

mates the probabilities of each available action, and queries for more

data with the remaining probability. Our main result: if an event

would have been unlikely had the demonstrator acted the whole time,

that event’s likelihood can be bounded above when running the (ini-

tially totally ignorant) imitator instead. Meanwhile, queries to the

demonstrator rapidly diminish in frequency. If any such event qual-

ifies as “dangerous”, our imitator would have the notable distinction

of being relatively “safe”.

Keywords— Bayesian Sequence Prediction, Imitation Learning, Active Learning,

General Environments

53



University of Oxford St. Cross College

4.1 Introduction

Supervised learning of independent and identically distributed data is often prac-

ticed in two phases: training and deployment. This separation makes less sense

if the learner’s predictions affect the distribution of future contexts for predic-

tion, since the deployment phase could lose all resemblance to the training phase.

When a program’s output changes its future percepts, we often call its output “ac-

tions”. Supervised learning in that regime is commonly called “imitation learn-

ing”, where labels are the actions of a “demonstrator” (Syed & Schapire, 2010).

Our agent, acting in a general environment that responds to its actions, tries to

pick actions according to the same distribution as a demonstrator.

Even in imitation learning, where it is understood that actions can change the dis-

tribution of contexts that the agent will face, it is common to separate a training

phase from a deployment phase. This assumes away the possibility that the distri-

bution of contexts will shift significantly upon deployment and render the training

data increasingly irrelevant. Here, we present an online imitation learner that is

robust to this possibility.

The obvious downside is that the training never ends. The agent can always make

queries for more data, but importantly, it does this with diminishing probabil-

ity. It transitions smoothly from a mostly-training phase to a mostly-deployed

phase. Our agent also handles totally general stochastic environments (environ-

ments serve new contexts for the agent to act in) and totally general stochastic

demonstrator policies. No finite-state-Markov-style stationarity assumption is re-

quired for either. The lack of assumptions about the environment is a mundane

point, because imitation learners don’t have to learn the dynamics of the envi-

ronment, but the lack of assumptions on the prediction target—the demonstra-
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tor’s policy—makes these results highly non-trivial. The only assumption is that

the demonstrator’s policy belongs to some known countable class of possibilities.

Moreover, stochasticity makes single-elimination-style learning (Gold, 1967) im-

possible.

For demonstrator policies this general, we present formal results that are unthink-

able in the train-then-deploy paradigm. The `1 distance between the imitator and

demonstrator policies converges to 0 in mean cube, when conditioned on a high-

probability event (Theorem 6). And Theorem 5 shows that the event has high

probability. Conditioned on the same high-probability event, we bound the KL

divergence from imitator to demonstrator (Theorem 7), and we upper bound the

probability of an arbitrary event under the imitator’s policy, given a low probabil-

ity of occurrence under the demonstrator’s policy (Theorem 8). Instead of having

a finite training phase, our agent’s query probability converges to 0 in mean cube

(Theorem 4). Without Theorems 4 and 5, the remaining theorems would be un-

interesting; they would be easily fulfilled by an imitator that always queried the

demonstrator, or they would apply only rarely.

Our imitator maintains a posterior over demonstrator models. At each timestep, it

takes the top few demonstrator models in the posterior, in a way that depends on

a scalar parameter ↵. Then, for each action, it considers the minimum over those

models of the probability that the demonstrator picks that action. The imitator

samples an action according to those probabilities, and if no action is sampled

(since model disagreement makes the probabilities to sum to less than 1), it defers

to the demonstrator.

We review theoretical developments in imitation learning in Section 4.2, define

our formal setting in Section 4.3, define our imitation learner in Section 4.4, and

illustrate it with a toy example in Section 4.5. We state key formal results in
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Section 4.6, and we outline our proof technique and introduce necessary notation

in Section 4.7. Section 4.8 presents lemmas and intermediate results, and Section

4.9 presents proofs and proof ideas of our key results, but most of the proofs

appear in Appendix A.6. Appendix A.5 collects notation and definitions.

4.2 Related Work

Recall that a key difficulty of imitation learning over supervised learning is the

removal of an i.i.d. assumption. However, all existing formal work in imitation

learning studies repeated finite episodes of length T ; even though the dynamics

are not i.i.d. from timestep to timestep within an episode, the agent learns from a

sequence of episodes that are, as a whole, independent and identically distributed.

Thus, the scope of existing formal work is limited to environments that “restart”.

A driving agent that gets housed in a new car every time it crashes (or gets hope-

lessly lost) enjoys a “restarting” environment, whereas a driving agent with only

one car to burn does not. If we can accurately simulate a non-restarting envi-

ronment, then training the imitator in simulation (using existing formal methods)

could indeed prepare it to act in a non-restarting one. The viability of this ap-

proach depends on the environment; for many, we simply cannot simulate them

with enough accuracy. For example, consider imitating a sales rep at a software

company, interfacing with potential clients over email. For a real potential client,

a relationship cannot be rebooted, and no simulation could anticipate the many

diverse needs of clients.

In the context of restarting environments, Syed & Schapire (2010) reduce the

problem of predicting a demonstrator’s behavior to i.i.d. classification. The only

assumption about the demonstrator is that the value of its policy as a function

of state is arbitrarily well approximated by the value of a deterministic policy,
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which is only slightly weaker than assuming the demonstrator is deterministic

itself. They make no assumptions about the environment, other than that we can

access identical copies of it repeatedly. They show that if a classifier guessing the

demonstrator’s actions has an error rate of ", then the value of the imitator’s policy

that uses the classifier is within O(
p
") of the demonstrator.

Judah et al. (2014) improve the label complexity of Syed & Schapire’s (2010)

reduction by actively deciding when to query the demonstrator, instead of simply

observing N full episodes before acting. Making the same assumptions as that

paper, and also assuming a realizable hypothesis class with a finite VC dimension,

they attempt to reduce the number of queries before the agent can act for a whole

episode on its own with an error rate less than ". Letting T be the length of an

episode, compared to Syed & Schapire’s (2010) O(T 3/") labels, they achieve

O(T log(T 3/")).

Ross & Bagnell (2010) also reduce the problem to classification. In a trivial re-

duction, the imitator observes the demonstrator act from the distribution of states

induced by the demonstrator policy. In this reduction, if the classifier has an er-

ror rate of " per action on the demonstrator’s state distribution, the error rate of

the imitator on its own distribution is at most T 2", where T is again the length

of the episode. Their main contribution is to introduce a cleverer training regime

for the classifier to reduce this bound to T" in environments with approximate

recoverability.

Ross et al. (2011) reduce imitation learning to something else: a no-regret online

learner, for which the average error rate over its lifetime approaches 0, even with

a potentially changing loss function. With access to an online learner with aver-

age regret O(1/Npredictions), they construct an imitation learner with regret of the

same order. Unlike Syed & Schapire (2010) and Judah et al. (2014), they make no
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assumption that the demonstrator is arbitrarily well-approximated by a determin-

istic policy. Unlike Judah et al. (2014), they do not assume a realizable hypothesis

class with a finite VC dimension. And unlike the Ross & Bagnell (2010) (for

their main contribution), they do not assume approximate recoverability. They

do still assume that we can repeatedly access identical copies of the environment,

and the loss function used for their measurement of regret must be bounded. To

achieve a regret of order O(1/Npredictions) with probability at least 1 � �, they re-

quire O(T 2 log(1/�)) observations of the demonstrator.

There is a great deal of empirical study of imitation learning, given the practical

applications, which Hussein et al. (2017) review. We call a few specific experi-

ments to the reader’s attention, since they resemble our work in taking an active

approach to querying, with an eye to risk aversion, not just label efficiency; they

find it works. First, D. S. Brown et al. (2018); D. Brown et al. (2020) consider

a context where the imitator can, at any time, ask the demonstrator how it would

act in any of finitely many states. These imitators focus on states that they assign

higher value at risk. Those papers and the following all show strong label effi-

ciency alongside limited loss. J. Zhang & Cho (2017) assume some method of

predicting the error of an imitator in the process of learning, and they query for

help when it is above some threshold. Otherwise, their imitator follows Ross et

al.’s (2011) construction. In their paper, the function that predicts the imitator’s

error is learned from hand-picked features of a dataset. Menda et al. (2019) query

much more extensively, but like J. Zhang & Cho (2017), they don’t always act on

the demonstrator’s suggestion, in order to sample a more diverse set of states. Un-

like J. Zhang & Cho (2017), they do act on it when the imitator’s action deviates

enough from the demonstrator’s (given some hand-designed distance metric over

the action space). They also defer to the demonstrator when there is sufficient

disagreement among an ensemble of imitators. They find their imitator is more
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robust. Hoque et al. (2021) note that in many contexts, it is more convenient for

the demonstrator to be queried a few times successively, rather than spread out

over a long time. They modify J. Zhang & Cho’s (2017) approach: the imitator

starts querying when the estimated error exceeds the same threshold, but it con-

tinues querying until it returns below a lower threshold. At the cost of more total

queries, it requires fewer query-periods. Like the formal work, all these experi-

ments regard environments that restart.

Adjacent to pure imitation learning (trying to pick the same actions as a demon-

strator would), there is also work on trying to act in pursuit of the same goals

as a demonstrator (which must be inferred), or matching only some outcomes of

the demonstrator policy, like the expectation of some given set of features. For a

review of some work in this area, see Adams et al. (2022).

4.3 Preliminaries

Let at 2 A and ot 2 O be the action and observation at timestep t 2 N. Let qt 2

{0, 1} denote whether the imitator (qt = 0) or demonstrator (qt = 1) selects at. Let

H = {0, 1} ⇥ A⇥O, and let ht = (qt, at, ot) 2 H. Let h<t = (h0, h1, ..., ht�1).

X n = ⇥n
i=1 X denotes the set of n-tuples of elements of X , and X ⇤ =

S1
n=0 X n

is the Kleene-star operator, which denotes all tuples of elements of X .

Let ⇡ : H⇤  {0, 1} ⇥ A, and  denotes that ⇡ gives a distribution over

{0, 1}⇥A. ✏ will denote the empty string; it is the element of H0. ⇡ is called a pol-

icy, and will typically be written ⇡(qtat | h<t). ⇡(at | h<t) denotes the marginal

distribution over the action. Let µ : H⇤⇥{0, 1}⇥A O. µ is called the environ-

ment, and will typically be written µ(ot | h<tqtat). Note from this construction

that an environment and a policy may qualitatively change over time—instead of

being stationary with respect to the latest timestep, they can depend on the whole
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history.

Much formal work in imitation learning and reinforcement learning involves defin-

ing environments in terms of their Markov states and how one transitions through

them. The defining property of a state is that that future is independent of the past

conditioned on the state. For those more comfortable in that framework, our state

space here is H⇤, so the Markov property is trivial: the state is the whole history,

so indeed, the future is independent of the history, when conditioned on the his-

tory. The point of the Markov Decision Process formalism is that when the state

space is finite (or compact, with relevant functions of it being continuous), more

tractable inference algorithms become available, but we do not assume finiteness

or any structure in the state space. For finite histories denoted h<t, the reader

could mentally substitute st, this being the state at time t, but the infinite history

h<1, which appears in some proofs, has no standard notational analog.

Speaking of which, let H1 be the set of infinite strings of elements of H. Let P⇡
µ

be the probability measure over H1 where query records and actions are sampled

from ⇡, and observations are sampled from µ. The event space is the standard

sigma algebra over cylinder sets �({{h<tht:1 : ht:1 2 H1} : h<t 2 H⇤}). In a

stochastic process, a cylinder set is the set of all possible futures given a particular

past.

Let ⇧ be a finite or countable set of policies, and for ⇡ 2 ⇧, let w(⇡) > 0 be a prior

weight assigned to ⇡, such that
P

⇡2⇧ w(⇡) = 1. This represents the imitator’s

initial belief distribution over the demonstrator’s policy. For convenience, let ⇧

only contain policies which assign zero probability to qt = 0, since demonstrator

models may as well be convinced that the demonstrator is picking the action.

Example 1 ((Linear-Time) Computable Policies). The requirement that ⇧ be count-

able is not restrictive in theory. Suppose ⇧ is the set of programs that compute a
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policy (in linear time). These can be easily enumerated, and the prior w can be

set / 2�program length (Kraft, 1949; Hutter, 2005).

Given the near absence of constraints, the choice of model class might pique philo-

sophical interest. There are multiple logics with differing powers that we could

plausibly use to represent programs, including “programs” higher in the arith-

metic hierarchy. In general, the choice of programming language would change

programs’ relative length, and there are no clear desiderata when choosing a lan-

guage. So Example 1 does not appear to offer an approach to solving the Prob-

lem of Priors (Talbott, 2016). The option to restrict to linear-time programs is a

marginally more practical possibility that might escape most philosophical dis-

cussions.

4.4 Imitation

Let w(⇡ | h<t) be the posterior weight after observing h<t that demonstrator-

chosen actions were sampled from ⇡. That is,

w(⇡ | h<t) :/ w(⇡)
Y

k<t:qk=1

⇡(qkak | h<k) (4.1)

normalized such that
P

⇡2⇧ w(⇡ | h<t) = 1. Ranking the policies by posterior

weight, let ⇡h<t
n be the one with the nth largest posterior weight w(⇡ | h<t), break-

ing ties arbitrarily. Now let ⇧↵
h<t

be the set of policies with posterior weights at

least ↵ times the sum of the posterior weights of policies that are at least as likely

as it; that is,

⇧↵
h<t

:= {⇡h<t
n 2 ⇧ : w(⇡h<t

n | h<t) � ↵
X

mn

w(⇡h<t
m | h<t)} (4.2)
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This is the set of policies the imitator takes seriously. The imitator is designed

to be robust to policies in this set, so smaller ↵ will make it more robust. Let ⇡d

denote the demonstrator’s policy, defined such that ⇡d(qt = 1 | h<t) = 1 for all

values of h<t. As later results suggest, ↵ should be set a few orders of magnitude

below w(⇡d); since ⇡d is probably unknown to the programmers, or else there

would be no need for imitation learning, w(⇡d) will have to be estimated. The

imitator’s policy ⇡i
↵ is defined in the next two equations:

⇡i
↵(0, a | h<t) := min

⇡02⇧↵
h<t

⇡0(1, a | h<t) (4.3)

The 0 on the l.h.s. means the imitator is picking the action itself instead of defer-

ring to the demonstrator, and the 1 on the r.h.s. means this is the probability of the

demonstrator model ⇡0 picking that same action.

The imitator uses the leftover probability to query. Let ✓q(h<t) := 1�
P

a2A ⇡i
↵(0, a |

h<t). ✓q is the probability with which the imitator queries the demonstrator to have

it pick the action. Thus,

⇡i
↵(1, a | h<t) := ✓q(h<t)⇡

d(1, a | h<t) (4.4)

One can see that qt records whether the demonstrator was involved in selecting

the action. Using the model class and prior from Example 1, the time-complexity

constraint makes ⇡i
↵ computable.

Conservatism with respect to probability estimates is a core technical innovation

of our work. Taking the minimum over a set of models with high posterior weights

is an approach to conservatism inspired by M. K. Cohen & Hutter’s (2020) pes-

simistic agent. The pessimistic agent, unlike ours, is a reinforcement learner, but

it is also designed to keep certain (risky) events unlikely. By underestimating
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probabilities, the imitator only acts if it is sure the demonstrator might act that

way.

We will also consider hypothetical imitator policies if the demonstrator policy

were something else; for an arbitrary demonstrator policy ⇡, let ⇡̂↵ denote the

corresponding imitator policy, so ⇡i
↵ = ˆ(⇡d)↵. This paper will investigate the

probability distribution P⇡i
↵

µ and compare it to P⇡d

µ .

4.5 Toy Example

We now walk through a toy example, in which our imitation learner has about

a half-million demonstrator models in its model class ⇧. We begin by defining

⇧. The action space A of the demonstrator is null [ {0, 1}4. The observation

space O is {“”, 1, 2, 3}. (“” is the empty string). A demonstrator model ⇡ 2 ⇧

defined by is a 12-tuple of the elements {1/3, 2/3, 1}. When the latest observa-

tion is 1, 2, or 3, let x be the 1st - 4th, 5th - 8th, or 9th - 12th elements of 12-tuple.

Then, the demonstrator model outputs four bits that are Bernoulli distributed ac-

cording to each of the four elements of x. All demonstrator models output null

when the latest observation is “”. The true demonstrator also takes the form of

such a demonstrator model. Each observation is randomly sampled; it is 1 with

probability 1/4, 2 with probability 1/16, 3 with probability 1/64, and otherwise

“”.

Let’s give some flavor to this example. The demonstrator does client relations for

a high-end travel agency with very fussy clients. The demonstrator gets a feel

for her clients, and for any given night that a client needs a restaurant recom-

mendation, the demonstrator sends a Boolean 4-tuple to the restaurant team, who

identifies a suitable restaurant. The observation tells the demonstrator which of

the three clients needs a recommendation, if any. The first bit of the Boolean 4-
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tuple tells the restaurant team whether the restaurant should have lots of vegetarian

options, the second bit: should it have a Michelin star, the third: should it have

unfamiliar local specialties, and the fourth: should it be Instagrammable. Why is

the demonstrator stochastic? Many clients want a variety of styles of restaurants

from night to night. The demonstrator couldn’t write down the exact probabilities

that she is using to generate these Boolean vectors; she goes off of intuition. If we

run an imitator that only sometimes asks the demonstrator for help, we can free

up some of the demonstrator’s time.

Unfortunately, in this toy environment, the fussy clients sometimes quit. Each

client has a 4-tuple of probabilities that they would like their Boolean vector sam-

pled from (conveniently in {1/3, 2/3, 1}4). If it becomes clear that this is not

how their Boolean vectors are being sampled, they quit. (“Becoming clear” is

operationalized as follows: H1 is the hypothesis that their restaurant recommen-

dations are being sampled correctly; H2 is the hypothesis that some other 4-tuple

in {1/3, 2/3, 1}4 is producing their restaurant recommendations. If, given the set

of all restaurant recommendations they have gotten, the likelihood ratio of H2 ex-

ceeds 100, the client quits. Note that this happens if an element is ever False

when it was supposed to be Truewith probability 1; some clients demand Miche-

lin stars.) When recommendations are made by the demonstrator, who always

correctly intuits the client’s desired distribution of restaurants, clients hardly ever

quit. We would like clients to hardly ever quit even when the imitator frequently

takes over.

For an imitator with ↵ = 1e-14, Figure 4.1 shows how often it has to query the

demonstrator to pick the restaurant features. Recommendations are random, and

this is only one run. Running it with 20 different random seeds, the number of

queries required is 486.75 ± 52.63 (out of 215 timesteps), and no client ever quit.

Returning to run depicted in Figure 4.1, Table 4.1 works through an example of
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Figure 4.1: Timesteps when the imitator queries. 215 timesteps are shown, with
black representing a query, and green representing the imitator acting unassisted.
Pixels are to be read like text, left to right, top to bottom. In the accompanying
code, a random seed of 0 is used to generate this image.

the posterior and the imitator’s behavior. The code for this toy example can be

found at https://tinyurl.com/imitation-toy-example.

4.6 Results

For the whole of the paper, we assume:

Assumption 1 (Realizability). ⇡d 2 ⇧.

That is, the imitator can conceive of the demonstrator. There may be some inter-

esting results in the setting of approximate realizability, where 9⇡ 2 ⇧ such that

⇡ ⇡" ⇡d in some sense, but that is out of our scope here.

We now state and discuss our key results before turning to selected proofs. Our

first is that the imitator’s query probability converges to 0 in mean cube. This

result

65

https://tinyurl.com/imitation-toy-example


University of Oxford St. Cross College

• renders its resemblance to the demonstrator non-trivial, since always query-

1/3 2/3 1
-0.0000 -44.0000 -inf

-50.0000 -0.0000 -inf
0.0000 -78.0000 -inf

-46.0000 -0.0000 -inf

-18.0000 -0.0000 -inf
-69.7384 -25.7384 -0.0000
-0.0000 -22.0000 -inf

-69.7384 -25.7384 -0.0000

-0.3219 -2.3219 -inf
-0.0056 -8.0056 -inf
-0.0000 -16.0000 -inf

-28.5303 -10.5303 -0.0010

p([False,True,False,True] | client 2) Model
0.11111 (..., 2/3, 1, 2/3, 1, ...)
0.14815 (..., 2/3, 1/3, 1/3, 1, ...)
0.22222 (..., 2/3, 1, 1/3, 1, ...)
0.29630 (..., 1/3, 2/3, 1/3, 1, ...)
0.44444 (..., 1/3, 1, 1/3, 1, ...)

Table 4.1: Top: Log2 posterior at timestep 1000 for the run depicted in Figure
4.1. The posterior decomposes into posterior probabilities for each of 12 features.
Each block is a client, each row is a feature, and each entry is the log posterior
probability that the demonstrator picks True for that feature with probability
1/3, 2/3, or 1, respectively. To get the posterior for a whole demonstrator model,
as in Equation 4.1, add the independent posteriors for each element in the 12-
tuple of the demonstrator model. The posterior weight on the truth is in bold
for each feature; that is, the true demonstrator for this run is (1/3, 2/3, 1/3, 2/3,
2/3, 1, 1/3, 1, 1/3, 1/3, 1/3, 1). Bottom: At timestep 1000, with ↵ = 1e-14,
we have many top models, as defined in Equation 4.2. The first column is a list
of probabilities that different top models assign to the outcome [False True False
True] for client 2. The second column contains examples of top models that assign
those probabilities to the outcome [False True False True] for client 2, with the
true model in bold. Recall a demonstrator model is defined by a 12-tuple, but the
only relevant elements for client 2 are 5-8. All these models have posterior weight
large enough to make it into the top set. Thus, the probability the imitator picks
[False True False True] for client 2 is 0.11111, the minimum probability
shown, as per Equation 4.3.
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ing would yield perfect correspondence,

• is desirable in its own right if demonstrator access is a limited resource,

• and is instrumental in proving the remaining results, since low query prob-

ability implies little model disagreement.

Theorem 4 (Limited Querying).

E⇡i
↵

µ

" 1X

t=0

✓q(h<t)
3

#
 |A|↵�3(24w(⇡d)�1 + 12)

The in mean cube bound allows infinite querying, but it diminishes in frequency,

or else the expectation of an infinite sum of cubed probabilities would not be fi-

nite. Since we query under uncertainty, both querying and uncertainty diminish

in tandem; this is a theme for active learners in general. Error bounds in Bayesian

prediction and MAP prediction tend to be ⇥(log(w(truth)�1)) and ⇥(w(truth)�1)

respectively, so theoretically, our case resembles the MAP one. The cubic depen-

dence on ↵ is unfortunate, and subsequent results inherit them; the only path we

found to proving a bound was fairly circuitous, and we are unsure whether this

dependence can be improved.

Our remaining results show that the imitator resembles the demonstrator on one

condition: ⇡d 2 ⇧↵
h<t

. Recall that ⇧↵
h<t

is a set of top demonstrator models that

the imitator takes seriously, and ⇡d is the true demonstrator model. Low model

disagreement implies high accuracy when the truth is one of those models, and

recall that our querying regime promises low model disagreement within finite

time.

Fortunately, this condition has high probability for ↵ << w(⇡d).

Theorem 5 (Top Models Contain Truth). P⇡i
↵

µ (8t : ⇡d 2 ⇧↵
h<t

) � 1� ↵w(⇡d)�1
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Let E be the event 8t : ⇡d 2 ⇧↵
h<t

, so the true demonstrator policy is always

in the top set. The high probability of E is mainly of interest in the context of

subsequent results that depend on it. For instance, conditioned on E, the imitator,

when picking its own actions, converges to the demonstrator in mean cube.

Theorem 6 (Predictive Convergence). For ↵ < w(⇡d),

E⇡i
↵

µ

2

4
1X

t=0

 
X

a2A

��⇡i
↵(0, a | h<t)� ⇡d(1, a | h<t)

��
!3�����E

3

5  |A|↵�3(24w(⇡d)�1 + 12)

1� ↵w(⇡d)�1

This theorem finally justifies our calling ⇡i
↵ an “imitator”, since the policy con-

verges to that of the demonstrator. Existing literature on imitation learning does

little to suggest that imitators exist in non-restarting environments. This result

shows that they do, at least in a high-probability sense. Note that the denominator

is the probability of E, which will be nearly 1 for appropriate choice of ↵. The

requirement that ↵ < w(⇡d) has important consequence: when ↵ is set appropri-

ately, the bounds in this theorem and Theorem 4 are effectively quartic in w(⇡d)�1.

We do not know if a better rate is possible under additional assumptions. It is even

possible that stronger results are available without additional assumptions, and we

simply failed to identify them. We think this is a ripe area for research.

We argue informally that this disappointing dependence can be mitigated in some

circumstances. By pre-training with N consecutive demonstrator queries and call-

ing the posterior at that point the new “prior” for the purposes of our analysis, the

“prior” on w(⇡d) could usually be made quite large, unless most demonstrator

models behave extremely similarly for the first N steps. Consider an extreme

case: many models of comparable weight almost agree with the true model, ex-

cept one disagrees at t = 1, one at t = 2, etc. In this case, the posterior on the truth

increases very slightly every step, as models are excluded one by one. If, on the
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other hand, half of demonstrator models confidently predict one action, and half

confidently predict another, the posterior on the truth will likely nearly double in

one step. So to the extent that a large fraction of models in ⇧ disagree with ⇡d

within the first N steps, the posterior on the truth would increase exponentially

following pre-training. That said, the quartic dependence on w(⇡d)�1 in the worst

case is a weakness of our approach.

Any pair of these first three results would be uninteresting on their own, but jointly,

they show that with high probability, the imitator converges to the demonstrator

with limited querying.

Our stronger results below apply when the environment and demonstrator policy

do not depend on the query record. This means that whatever action is taken,

the effect does not depend on whether the imitator chose it or the demonstrator

did. We would like events to unfold similarly when we replace the demonstrator

with the imitator, but this is impossible if the environment discriminates between

them. Indeed, if the environment treats identical actions differently depending on

whether they were selected by imitator or demonstrator, it’s unclear what imitation

accomplishes. We define fairness formally in Section 4.9.

In a fair setting, we bound the KL divergence between P⇡i
↵

µ and P⇡d

µ , the first

meaning that actions are picked according to our imitation policy, and the second

meaning that all actions are picked by the demonstrator. The objective of imita-

tion is most easily characterized as outputting demonstrator-like actions, but the

purpose of imitation learning is for events to unfold similarly. Small errors in the

limit do not guarantee that property; this result is only possible with small errors

for the imitator’s whole lifetime.

Theorem 7 (KL Bound). Suppose that µ and ⇡d are fair, and ↵ < w(⇡d). Letting

the two probability measures below be restricted to (A⇥O)t (that is, marginal-
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izing over the query record, and considering only the first t timesteps),

KL
t

⇣
P⇡i

↵
µ (· | E)

���
���P⇡d

µ (· | E)
⌘
 ↵�1|A|1/3(24w(⇡d)�1 + 12)1/3

(1� ↵/w(⇡d))2
t2/3�log(1�↵/w(⇡d))

Notably, KLt /t ! 0 in the limit. The direction of the divergence resembles the

variational objective (with the ground truth on the right). Thus, there may be some

events that only the demonstrator would cause, but no events that only the imitator

would. This consequence is made explicit in our final result.

We construct an upper bound for the probability of an event given the probability

of the event if the demonstrator were acting the whole time. This bound is mainly

of interest for “bad” events.

Theorem 8 (Preserving Unlikeliness). Fix t. Let B ⇢ (A⇥O)t be a (bad) event,

and extending B to the outcome space ({0, 1}⇥A⇥O)t = Ht, let D = B \ E.

Then, for fair µ and ⇡d,

P⇡i
↵

µ (D)  t2s↵✓
log t2s↵

27P⇡d
µ (B)

� 3 log log

✓
1 + t2/3s

1/3
↵

3P⇡d
µ (B)1/3

◆◆3

where s↵ = | A |↵�3(24w(⇡d)�1 + 12).

That is, as P⇡d

µ (B)�1 ! 1, P⇡i
↵

µ (D)�1 ! 1 at least polylogarithmicly. If an

event would have been extremely unlikely under the demonstrator’s policy, a sim-

ilar event is unlikely when running the imitator.

Whereas existing work on imitation learners attempts to be robust to a bounded

loss function, our Preserving Unlikeliness Theorem is relevant even in the absence

of a uniform bound on badness. In the real world, to quote Theon Greyjoy, “It can

always be worse”. But some bounds on badness are possible: we tolerate one-in-
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ten-chance events; they happen, and we get on with it. One-in-a-hundred-chance

events can be meaningfully worse. But in a world largely governed by humans,

we keep most truly devastating events below even a 1% chance. It’s hard to apply

similar bounds to the badness of one-in-a-billion-chance events, and in general,

as the probability gets smaller, a loss function should countenance steadily larger

losses. When an event goes from a 1% to a 2% chance, we should be much

less concerned than if it went from 10�9 to 1%. In the extreme, if an event has

probability 0 under a demonstrator’s policy, there might be an arbitrarily good

reason for that. Whereas the bounded loss functions of all existing work ignore

this effect, our Theorem 8 does not.

The main weaknesses of our results are what they require: a model class that in-

cludes the truth and a good choice of ↵. Setting ↵ well requires estimating w(⇡d),

something we cannot offer general guidance on; it would depend entirely on the

exact nature of the prior. And realistically, in many contexts, the realizability as-

sumption is infeasible. There will always be mismatch between a computational

model of a demonstrator and the true demonstrator. We hope this paper opens the

door for other research into relaxing the realizability assumption. Plausibly, if the

best approximation in ⇧ of ⇡d produces certain bad events with low probability,

then the imitator will too.

4.7 Roadmap and Notation for the Proof of Theo-

rem 4

Much of the work of this paper is to prove Theorem 4. In this section, we state a

theorem on which it depends, and we introduce the mathematical objects required

to prove it.
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The imitator queries when the top few demonstrator models disagree, so we bound

the errors that those models can make over the agent’s lifetime. We first must es-

tablish a finite bound on the errors of such models in ordinary Bayesian sequence

prediction. We define that here.

Let X be an arbitrary finite alphabet. Let ⌫ be a probability measure over X1

with the event space generated by the cylinder sets {{x<txt:1 | xt:1 2 X1} |

x<t 2 X ⇤}. Let M be a countable set of such probability measures, and let w(⌫)

be a prior weight over these measures such that
P

⌫2M w(⌫) = 1. Let x<t 2 X t,

let ⌫(x<t) denote the probability that the infinite sequence begins with x<t, and

let ⌫(x | x<t) = ⌫(x<tx)/⌫(x<t). Let µ 2M be a the “true” measure; that is, in

formal results, we will let x<1 be sampled from µ.

Let ⌫x<t
n be the measure with the nth largest posterior weight after observing x<t;

that is, order M to be non-increasing in w(⌫)⌫(x<t), breaking ties arbitrarily, and

take the nth. (Ties between any pair should broken consistently for different t).

Let the posterior w(⌫ | x<t) :/ w(⌫)⌫(x<t), normalized to sum to 1. Let Mx<t
n

be the set of the top n measures, and let w(Mx<t
n | x<t) =

P
mn w(⌫ | x<t).

Recall a model belongs to the imitator’s top set if its posterior weight is at least

↵ times the sum of the posterior weights of the models that are at least as good.

Thus, we define

�x<t
n :=

w(⌫x<t
n | x<t)

w(Mx<t
n | x<t)

(4.5)

So if �x<t
n  ↵, then ⌫x<t

n can be considered a “top model” in the same sense that

is relevant to our imitation learner.

Our key result on which Theorem 4 is based shows that taking the minimum over

predictions in the top measures converges to the truth, and the “missing probabil-

ity” converges to 0.
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Theorem 9 (Top Model Convergence).

(i) Eµ

1X

t=0

X

x2X


µ(x | x<t)� min

n:�
x<t
n >↵

⌫x<t
n (x | x<t)

�2
 ↵�3(24w(µ)�1 + 12)

(ii) Eµ

1X

t=0

"
1�

X

x2X

min
n:�

x<t
n >↵

⌫x<t
n (x | x<t)

#2
 |X |↵�3(24w(µ)�1 + 12)

This is perfectly analogous to the way the imitator predicts actions: taking the

minimum over the top models for which �x<t
n > ↵. The difference is that in

this sequence prediction setting, all observations are informative about the true

measure, whereas the imitator rarely sees the demonstrator act.

To prove Theorem 9, we show that a posterior-weighted mixture over Mx<t
n con-

verges to the truth, and if �x<t
n > ↵, then each constituent must as well. This

posterior-weighted mixture is called ⇢statn . We define it here alongside other esti-

mators that will be used in the proof of ⇢statn ’s convergence. First,

⇢statn (x | x<t) :=

P
⌫2Mx<t

n
w(⌫)⌫(x<tx)P

⌫2Mx<t
n

w(⌫)⌫(x<t)
(4.6)

⇢statn resembles a maximum a posteriori estimate, but instead mixes over the top

few. We call it a satis magnum a posteriori estimate (SMAP). We will show ⇢statn

converges to ⇢n, which converges to ⇢normn , which converges to µ. ⇢n and ⇢normn

are alternative SMAP estimators.

⇢n is not a measure, as the numerator below sums over a different set than the

denominator. It sums over the top measures after observing x:

⇢n(x | x<t) :=

P
⌫2Mx<tx

n
w(⌫)⌫(x<tx)P

⌫2Mx<t
n

w(⌫)⌫(x<t)
(4.7)
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The definition appears more natural when considering a whole sequence:

⇢n(x<t) =
X

⌫2Mx<t
n

w(⌫)⌫(x<t) (4.8)

Since
P

x2X ⇢n(x | x<t) may not be 1, we construct the measure ⇢normn by nor-

malizing:

⇢normn (x | x<t) :=
⇢n(x | x<t)P

x02X ⇢n(x0 | x<t)
=

⇢n(x<tx)P
x02X ⇢n(x<tx0)

(4.9)

Our ⇢n, ⇢normn , and ⇢statn are closely inspired by Poland & Hutter (2005), who

constructed (in our notation) ⇢1, ⇢norm
1 , and ⇢stat

1 . Finally, we define the full Bayes-

mixture measure

⇠(x<t) :=
X

⌫2M

w(⌫)⌫(x<t) = ⇢stat
1 (x<t) = ⇢1(x<t) = ⇢norm

1 (x<t) (4.10)

We state those relationships without proof for the reader’s interest; they are not

used in our results.

4.8 General Sequence Prediction Results

This section organizes the proof of Theorem 9 into lemmas, some of which are

proven here and some in Appendix A.6. We begin with elementary relations be-

tween ⇠, ⇢n, ⇢normn , and ⇢statn .
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⇠(x<t) � ⇢n(x<t) (4.11)

⇢n(x<t) � w(µ)µ(x<t) (4.12)

⇢n(x | x<t) � ⇢normn (x | x<t) (4.13)

⇢n(x | x<t) � ⇢statn (x | x<t) (4.14)

Inequalities 4.11 and 4.12 follow directly from Equation 4.8. Inequality 4.13 fol-

lows because

⇢n(x<t) = max
M0⇢M:|M0 |=i

X

⌫2M0

w(⌫)⌫(x<t) = max
M0⇢M:|M0 |=i

X

⌫2M0

w(⌫)
X

x2X

⌫(x<tx)


X

x2X

max
M0⇢M:|M0 |=i

X

⌫2M0

w(⌫)⌫(x<tx) =
X

x2X

⇢n(x<tx) (4.15)

so ⇢n assigns too much probability mass. Inequality 4.14 follows because

⇢statn (x | x<t) =

P
⌫2Mx<t

n
w(⌫)⌫(x<tx)P

⌫2Mx<t
n

w(⌫)⌫(x<t)

P

⌫2Mx<tx
n

w(⌫)⌫(x<tx)

⇢n(x<t)
=

⇢n(x<tx)

⇢n(x<t)
(4.16)

which holds because Mx<tx
n is chosen to maximize the numerator.

Our first lemma bounds the normalizing factor for ⇢n, allowing us to show in our

next lemma that it converges to both ⇢normn and ⇢statn .

Lemma 7.

0  Eµ

1X

t=0

P
x2X ⇢n(x<tx)

⇢n(x<t)
� 1  w(µ)�1

Proof idea ⇢n is bounded above and below by measures, save a multiplicative

constant (Inequalities 4.11 and 4.12), so ⇢n converges to being a measure, in that
P

x2X ⇢n(x | x<t)! 1.
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Proof. All terms in the sum are non-negative, by Inequality 4.15. Recall ✏ denotes

the empty string—the element of X 0. Justifications of the upcoming lettered equa-

tions follow below the block.

Eµ

N�1X

t=0

P
x2X ⇢n(x<tx)

⇢n(x<t)
� 1

=
N�1X

t=0

X

x<t2X t

µ(x<t)

P
x2X ⇢n(x<tx)� ⇢n(x<t)

⇢n(x<t)

(a)


N�1X

t=0

X

x<t2X t

w(µ)�1
"
X

x2X

⇢n(x<tx)� ⇢n(x<t)

#

(b)
=w(µ)�1

2

4
X

x<N2XN

⇢n(x<N)� ⇢n(✏)

3

5

(c)

w(µ)�1
X

x<N2XN

⇠(x<N) = w(µ)�1 (4.17)

where (a) follows from Inequality 4.12, (b) cancels terms that are added then

subtracted, and (c) follows from Inequality 4.11.

Recall we are trying to show ⇢statn ! ⇢n ! ⇢normn ! µ. The following lemma

gives two of those links.

Lemma 8.

(i) Eµ

1X

t=0

X

x2X

��⇢n(x | x<t)� ⇢statn (x | x<t)
�� w(µ)�1

(ii) Eµ

1X

t=0

X

x2X

��⇢n(x | x<t)� ⇢normn (x | x<t)
�� w(µ)�1
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Proof.

Eµ

1X

t=0

X

x2X

��⇢n(x | x<t)� ⇢statn (x | x<t)
��(a)= Eµ

1X

t=0

X

x2X

⇢n(x | x<t)� ⇢statn (x | x<t) =

Eµ

1X

t=0

P
x2X ⇢n(x<tx)

⇢n(x<t)
� 1

(b)

w(µ)�1 (4.18)

where (a) follows from Inequality 4.14 and (b) follows from Lemma 7. The proof

is identical for ⇢normn , except now (a) follows from Inequality 4.13.

Given Lemma 8, the final link in showing ⇢statn converges to µ is to show that ⇢normn

does.

Lemma 9. Recalling ⌫(· | x<t) is a measure over X ,

Eµ

1X

t=0

KL
�
µ(· | x<t)

����⇢normn (· | x<t)
�
 w(µ)�1 + logw(µ)�1

Proof idea The KL divergence telescopes over timesteps. The logw(µ)�1 term

comes from a gap between µ and ⇢n, and the w(µ)�1 term comes from a gap

between ⇢n and ⇢normn .

We can now show that ⇢statn converges to µ, an independently interesting and novel

result in SMAP estimation.

Theorem 10 (SMAP Convergence).

Eµ

1X

t=0

X

x2X

�
⇢statn (x | x<t)� µ(x | x<t)

�2  6w(µ)�1 + 3

Proof idea ⇢statn is close to ⇢n in an `1 sense, and likewise for ⇢n and ⇢normn , and

⇢normn is close to µ in an `2 squared sense, since `22  KL. Finally, for a vector

v 2 [�1, 1]n, ||v||22  ||v||1, so `1 proximity implies `2 proximity as well.
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By applying Theorem 10 to the very similar measures ⇢statn and ⇢statn–1, whose only

difference is that the former contains ⌫x<t
n in its mixture, we arrive at our final

result in the general sequence prediction setting.

Theorem 9 (Top Model Convergence).

(i) Eµ

1X

t=0

X

x2X


µ(x | x<t)� min

n:�
x<t
n >↵

⌫x<t
n (x | x<t)

�2
 ↵�3(24w(µ)�1 + 12)

(ii) Eµ

1X

t=0

"
1�

X

x2X

min
n:�

x<t
n >↵

⌫x<t
n (x | x<t)

#2
 |X |↵�3(24w(µ)�1 + 12)

Proof idea ⇢statn is a weighted average of ⌫x<t
m for m  n, so convergence results

for ⇢statn and ⇢statn–1 are leveraged for ⌫x<t
n ’s convergence. �x<t

n > ↵ ensures the

weights in the weighted average aren’t too small, and that we only need to consider

the top b1/↵c models.

4.9 Key Proofs

We now prove our bound on the query probability, we define fairness, and we

prove our bound on the probabilities of bad events.

Theorem 4 (Limited Querying).

E⇡i
↵

µ

" 1X

t=0

✓q(h<t)
3

#
 |A|↵�3(24w(⇡d)�1 + 12)

Proof idea The sort of model mismatch bounded by Theorem 9 (ii) is the basis

for the definition of ✓q. Theorem 9 (ii) bounds model mismatch on observed data,

and data is only observed with probability ✓q, so with an extra factor of ✓q on the

l.h.s., we go from an in mean square bound to a weaker in mean cube bound.
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Proof. Recall the agent considers a set of possible policies ⇧ that includes the true

demonstrator policy ⇡d, and assigns a strictly positive prior w(⇡) to each policy

in ⇧. Recall P⇡
µ is a probability measure over ({0, 1} ⇥ A⇥O)1 = H1. Now

we construct a class of measures over H1: let M := {P⇡̂↵
µ : ⇡ 2 ⇧} (see the

last paragraph of Section 4.4 for the definition of ⇡̂↵), and let w(P⇡̂↵
µ ) := w(⇡).

Let w(P⇡̂↵
µ | h<t) :/ w(P⇡̂↵

µ ) P⇡̂↵
µ (h<t). It follows straightforwardly from the

definitions of the posterior that w(P⇡̂↵
µ | h<t) = w(⇡ | h<t), w(P⇡̂↵

µ | h<tqt) =

w(⇡ | h<tqt), and w(P⇡̂↵
µ | h<tqtat) = w(⇡ | h<tqtat), since all measures in M

assign the probabilities identically to actions after qt = 0, and to observations.

Instead of saying M contains measures over X1, we generalize slightly, and say

that M contains measures over ⇥1k=0 Xk. For k ⌘ 0 mod 3, Xk = {0, 1}, for

k ⌘ 1 mod 3, Xk = A, and for k ⌘ 2 mod 3, Xk = O. With ⌫x<k
n and

�x<k
n as defined before, we can apply Theorem 9 (i) to the class M, after a trivial

extension from fixed X to variable Xk. Checking the definitions is enough to

verify that {⌫x<k
n : �x<k

n > ↵} is exactly the set {P⇡̂↵
µ : ⇡ 2 ⇧↵

h<t
}, where

hj = (qj, aj, oj) = (x3j, x3j+1, x3j+2), and t = b(k + 1)/3c. In short, for this

M, sequence prediction errors can only come from errors predicting actions after

querying, since that’s when models differ, so we can use Theorem 9 to bound the

latter. Recalling that P⇡i
↵

µ is the true probability measure,
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↵�3(24w(⇡d)�1 + 12) = ↵�3(24w(P⇡i
↵

µ )�1 + 12)

(a)

� E⇡i
↵

µ

1X

k=0

X

x2Xk


P⇡i

↵
µ (x | x<k)� min

i:�
x<k
n >↵

⌫x<k
n (x | x<k)

�2

(b)
= E⇡i

↵
µ

1X

t=0

X

q2{0,1}

"
P⇡i

↵
µ (q | h<t)� min

⇡2⇧↵
h<t

P⇡̂↵
µ (q | h<t)

#2
+

X

a2A

"
P⇡i

↵
µ (a | h<tqt)� min

⇡2⇧↵
h<t

P⇡̂↵
µ (a | h<tqt)

#2
+

X

o2O

"
P⇡i

↵
µ (o | h<tqtat)� min

⇡2⇧↵
h<t

P⇡̂↵
µ (o | h<tqtat)

#2

(c)
= E⇡i

↵
µ

1X

t=0

X

a2A

"
P⇡i

↵
µ (a | h<tqt)� min

⇡2⇧↵
h<t

P⇡̂↵
µ (a | h<tqt)

#2

= E⇡i
↵

µ

1X

t=0

X

q2{0,1}

P⇡i
↵

µ (q | h<t)
X

a2A

"
P⇡i

↵
µ (a | h<tq)� min

⇡2⇧↵
h<t

P⇡̂↵
µ (a | h<tq)

#2

(d)
= E⇡i

↵
µ

1X

t=0

P⇡i
↵

µ (1 | h<t)
X

a2A

"
P⇡i

↵
µ (a | h<t1)� min

⇡2⇧↵
h<t

P⇡̂↵
µ (a | h<t1)

#2

(e)

� E⇡i
↵

µ

1X

t=0

✓q(h<t)| A |
"
| A |�1

X

a2A

P⇡i
↵

µ (a | h<t1)� min
⇡2⇧↵

h<t

P⇡̂↵
µ (a | h<t1)

#2

= | A |�1 E⇡i
↵

µ

1X

t=0

✓q(h<t)

"
1�

X

a2A

min
⇡2⇧↵

h<t

⇡̂↵(1, a | h<t)

⇡̂↵(1 | h<t)

#2

(f)
= | A |�1 E⇡i

↵
µ

1X

t=0

✓q(h<t)

"
1�

X

a2A

min
⇡2⇧↵

h<t

✓q(h<t)⇡(1, a | h<t)

✓q(h<t)

#2

(g)
= | A |�1 E⇡i

↵
µ

1X

t=0

✓q(h<t) [✓q(h<t)]
2 (4.19)

where (a) follows from Theorem 9, (b) groups triples (x3t, x3t+1, x3t+2) into ht,

(c) follows because all P⇡̂↵
µ 2 M give identical conditional probabilities as P⇡i

↵
µ
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on queries and observations, (d) follows because all P⇡̂↵
µ 2 M give identical

conditional probabilities as P⇡i
↵

µ for actions that follow qt = 0, (e) follows from

Jensen’s Inequality, (f) follows from the definition of ⇡̂↵, and (g) follows from

the definition of ✓q(h<t). Rearranging Inequality 4.19 gives the theorem.

Recall that Theorem 6 bounds the error between ⇡i
↵ and ⇡d, conditioned on the

event E.

Proof idea of Theorem 6 Conditioned on ⇡d 2 ⇧↵
h<t

, it follows that ✓q � the `1

norm between ⇡d and ⇡i
↵. Then we apply Theorem 4.

Our remaining theorems apply when the environment and demonstrator policy are

fair. Roughly, they are fair if they do not have access to the imitator’s internals.

Definition 8 (Fair). An environment µ : H⇤ ⇥ {0, 1} ⇥ A  O is fair if it does

not depend on the query record; that is, µ(· | h<tqtat) is not a function of qk for

k  t. A demonstrator policy ⇡d : H⇤  {0, 1}⇥A is likewise fair if ⇡d(· | h<t)

is not a function of qk for k < t.

Theorems 7 and 8 rest on the following crux: if ⇡d 2 ⇧↵
h<t

, then ⇡i
↵(0, a | h<t) 

⇡d(a | h<t). Since ⇡i
↵(1, a | h<t) = ✓q(h<t)⇡d(a | h<t), we have ⇡i

↵(a | h<t) 

(1 + ✓q(h<t))⇡d(a | h<t). Thus, we have a multiplicative bound relating ⇡i
↵ and

⇡d, and it decreases to 1.

Theorem 8 (Preserving Unlikeliness). Fix t. Let B ⇢ (A⇥O)t be a (bad) event,

and extending B to the outcome space ({0, 1}⇥A⇥O)t = Ht, let D = B \ E.

Then, for fair µ and ⇡d,

P⇡i
↵

µ (D)  t2s↵✓
log t2s↵

27P⇡d
µ (B)

� 3 log log

✓
1 + t2/3s

1/3
↵

3P⇡d
µ (B)1/3

◆◆3
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where s↵ = | A |↵�3(24w(⇡d)�1 + 12).

Proof idea P⇡i
↵

µ (B \ E)/P⇡d

µ (B) increases by a factor of at most 1 + ✓q per

timestep. While the expectation of ✓3q is summable, the expectation of
P

t ✓q grows

as O(t2), hence that dependence in the bound. The final difficulty is that our bound

on the query probability only applies in expectation, but a pathological and un-

likely event B could describe a case where querying is much more prolonged than

expected. Thus, we do not prove a nice bound on the ratio P⇡i
↵

µ (B \ E)/P⇡d

µ (B).

Instead, since smaller P⇡d

µ (B) allows more pathology, our bound on P⇡i
↵

µ (B \ E)

is only polylogarithmic in P⇡d

µ (B).

Proof. If ⇡d 2 ⇧↵
h<t

, then ⇡i
↵(0, a | h<t)  ⇡d(a | h<t), and of course ⇡i

↵(1, a |

h<t) = ✓q(h<t)⇡d(a | h<t), so

⇡i
↵(a | h<t)  (1 + ✓q(h<t))⇡

d(a | h<t) (4.20)

Thus, for fair µ and ⇡d, for h<t 2 E,

P⇡i
↵

µ (h\
<t)

P⇡d

µ (h\
<t)


t�1Y

k=0

[1 + ✓q(h<k)] (4.21)

It follows from Theorem 4 that

E⇡i
↵

µ

"
t�1X

k=0

✓q(h<k)
3

����D
#
 s↵

P⇡i
↵

µ (D)
(4.22)

By the same derivation as in Inequality A.47, we can thus bound the sum

E⇡i
↵

µ

"
t�1X

k=0

✓q(h<k)

����D
#
 t2/3

 
s↵

P⇡i
↵

µ (D)

!1/3

(4.23)
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Now, applying Inequality 4.20 repeatedly,

E⇡i
↵

µ

"
t�1Y

k=0

(1 + ✓q(h<k))
�1
����D
#

=

P
h<t2D P⇡i

↵
µ (h<t)

Qt�1
k=0(1 + ✓q(h<k))�1

P
h<t2D P⇡i

↵
µ (h<t)



P
h<t�12E

P
ht�12H:h

\
<t2B

P⇡i
↵

µ (h<t)
Qt�1

k=0(1 + ✓q(h<k))�1

P
h<t2D P⇡i

↵
µ (h<t)

=

P
h<t�12E

h
P⇡i

↵
µ (h<t�1)

Qt�2
k=0(1 + ✓q(h<k))�1

i

P
h<t2D P⇡i

↵
µ (h<t)

⇤

X

h
\
t�12A⇥O:h

\
<t2B

P⇡i
↵

µ (h\
t�1 | h<t�1)(1 + ✓q(h<t�1))

�1

(a)



P
h<t�12E

h
P⇡i

↵
µ (h<t�1)

Qt�2
k=0(1 + ✓q(h<k))�1

iP
h
\
t�12A⇥O:h

\
<t2B

P⇡d

µ (h\
t�1 | h<t�1)

P
h<t2D P⇡i

↵
µ (h<t)

(b)



P
h<t�22E

h
P⇡i

↵
µ (h<t�2)

Qt�3
k=0(1 + ✓q(h<k))�1

iP
h
\
t�2h

\
t�12(A⇥O)2:h

\
<t2B

P⇡d

µ (h\
t�2h

\
t�1 | h<t�2)

P
h<t2D P⇡i

↵
µ (h<t)

(c)



P
h
\
<t2B

P⇡d

µ (h\
<t)

P
h<t2D P⇡i

↵
µ (h<t)

=
P⇡d

µ (B)

P⇡i
↵

µ (D)
(4.24)

where (a) follows from Inequality 4.20 since h<t�1 2 E (note the change from

⇡i
↵ to ⇡d), (b) iterates the previous three lines, and (c) iterates the logic down to 0.
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Now we bound the expectation

E⇡i
↵

µ

"
t�1Y

k=0

(1 + ✓q(h<k))
�1
����D
#

(a)

�
t�1Y

k=0

(1 + E⇡i
↵

µ [✓q(h<k) | D])�1

= exp

 
�

t�1X

k=0

log
⇣
1 + E⇡i

↵
µ [✓q(h<k) | D]

⌘!

� exp

 
�

t�1X

k=0

E⇡i
↵

µ [✓q(h<k) | D]

!

(b)

� e�t
2/3s

1/3
↵ P

⇡i
↵

µ (D)�1/3
(4.25)

where (a) follows from Jensen’s Inequality (one can easily show the Hessian of
Q

i 1/(1 + xi) is positive semidefinite for x � 0), and (b) follows from Inequality

4.23. Solving for P⇡i
↵

µ (D) in terms of P⇡d

µ (B), we get

P⇡i
↵

µ (D)  t2s↵

27W ( t2/3s
1/3
↵

3P⇡d
µ (B)1/3

)3
(4.26)

where W is the Lambert-W function, defined by the property W (z)eW (z) = z. A

property of the Lambert-W function—that W (z) � log z� log log(1+z)—yields

the theorem:

P⇡i
↵

µ (D)  t2s↵✓
log t2s↵

27P⇡d
µ (B)

� 3 log log

✓
1 + t2/3s

1/3
↵

3P⇡d
µ (B)1/3

◆◆3

One can easily verify this inequality by supposing the opposite and showing that

it violates Inequality 4.25, but we omit this.
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4.10 Conclusion

We present the first formal results for an imitation learner in a setting where the

environment does not reset. We present the first formal results for an imitation

learner that do not depend on a bounded loss assumption. We present the first fi-

nite error bounds for an agent acting in general environments; existing results only

regard limiting behavior (although existing work considers reinforcement learn-

ing, a harder problem than imitation learning). If we would like to have an arti-

ficial agent imitate, with particular concern for keeping unlikely events unlikely,

this is the first theory of how to do it.
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4.11 End notes

Some closing comments to clarify: I mention that ↵ should be set a few orders

of magnitude below w(⇡d). This could be a key challenge of this approach, since

it may be hard to estimate w(⇡d). One might note that in the toy example from

Section 4.5, ↵ is set to be very small. In practice, one might start with an extremely

low value of ↵ and increase over time if that seems necessary for the agent to

actually act.

When I say that existing work in imitation learning makes an i.i.d. assumption
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about the trajectories, I mean that they assume each trajectory is sampled from

the same distribution independently. This is a common kind of assumption that

appears in the supervised learning literature, but it is not the only assumption from

the literature that is called an i.i.d. assumption. In much formal work, it is instead

assumed that the model’s error is i.i.d. across data points.
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5 | Fast Uncertainty Quantification

Abstract. Gaussian processes (GPs) produce good probabilistic mod-

els of functions, but most GP kernels require O((n + m)n2) time,

where n is the number of data points and m the number of predictive

locations. We present a new kernel that allows for Gaussian process

regression in O((n +m) log(n +m)) time. Our “binary tree” kernel

places all data points on the leaves of a binary tree, with the kernel

depending only on the depth of the deepest common ancestor. We can

store the resulting kernel matrix in O(n) space in O(n log n) time, as a

sum of sparse rank-one matrices, and approximately invert the kernel

matrix in O(n) time. Sparse GP methods also offer linear run time,

but they predict less well than higher dimensional kernels. On a clas-

sic suite of regression tasks, we compare our kernel against Matérn,

sparse, and sparse variational kernels. The binary tree GP assigns the

highest likelihood to the test data on a plurality of datasets, usually

achieves lower mean squared error than the sparse methods, and of-

ten ties or beats the Matérn GP. On large datasets, the binary tree GP

is fastest, and much faster than a Matérn GP.

5.1 Introduction

Gaussian processes (GPs) can be used to perform regression with high-quality

uncertainty estimates, but they are slow. Naïvely, GP regression requires O(n3 +

n2m) computation time and O(n2) computation space when predicting at m loca-

tions given n data points (C. K. Williams & Rasmussen, 2006). A kernel matrix of

size n⇥n must be inverted (or Cholesky decomposed), and then m matrix-vector
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multiplications must be done with that inverse matrix (or m linear solves with the

Cholesky factors). A few methods that we will discuss later achieve O(n2m) time

complexity (Wang et al., 2019; Y. Zhang et al., 2005).

With special kernels, GP regression can be faster and use less space. Inducing

point methods, using z inducing points, allow regression to be done in O(z2(n +

m)) time and in O(z2+zn) space (Quinonero-Candela & Rasmussen, 2005; Snel-

son & Ghahramani, 2005; Titsias, 2009b; Hensman et al., 2013). We will discuss

the details of these inducing point kernels later, but they are kernels in their own

right, not just approximations to other kernels. Unfortunately, these kernels are

low dimensional (having a z-dimensional Hilbert space), which limits the expres-

sivity of the GP model.

We present a new kernel, the binary tree kernel, that also allows for GP regression

in O(n + m) space and O((n + m) log(n + m)) time (both model fitting and

prediction). The time and space complexity of our method is also linear in the

depth of the binary tree, which is naïvely linear in the dimension of the data,

although in practice we can increase the depth sublinearly. Training some kernel

parameters takes time quadratic in the depth of the tree. The dimensionality of

the binary tree kernel is exponential in the depth of the tree, making it much more

expressive than an inducing points kernel. Whereas for an inducing points kernel,

the runtime is quadratic in the dimension of the Hilbert space, for the binary tree

kernel, it is only logarithmic—an exponential speedup.

A simple depiction of our kernel is shown in Figure 5.1, which we will define

precisely in Section 5.3. First, we create a procedure for placing all data points

on the leaves of a binary tree. Given the binary tree, the kernel between two

points depends only on the depth of the deepest common ancestor. Because very

different tree structures are possible for the data, we can easily form an ensemble
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Figure 5.1: A binary tree kernel with four data points. In this example, k(x1, x1) =
1, k(x1, x2) = 0, k(x1, x3) = 0.8, and k(x1, x4) = 0.3.

of diverse GP regression models. Figure 5.2 depicts a schematic sample from a

binary tree kernel. Note how the posterior mean is piecewise flat, but the pieces

can be small.

On a standard suite of benchmark regression tasks (Wang et al., 2019), we show

that our kernel usually achieves better negative log likelihood (NLL) than state-

of-the-art sparse methods and conjugate-gradient-based “exact” methods, at lower

computational cost in the big-data regime.

There are not many limitations to using our kernel. The main limitation is that

other kernels sometimes capture the relationships in the data better. We do not

have a good procedure for understanding when data has more Matérn character or

more binary tree character (except through running both and comparing training

NLL). But given that the binary tree kernel usually outperforms the Matérn, we’ll

tentatively say the best first guess is that a new dataset has more binary tree char-

Figure 5.2: A schematic diagram of a function sampled from a binary tree kernel.
The function is over the interval [0, 1], and points on the interval are placed onto
the leaves of a depth-4 binary tree according to the first 4 bits of their binary
expansion. The sampled function is in black. Purple represents the sample if the
tree had depth 3, green depth 2, orange depth 1, and red depth 0.
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acter. One concrete limitation for some applications, like Bayesian Optimization,

is that the posterior mean is piecewise-flat, so gradient-based heuristics for finding

extrema would not work.

In contexts where a piecewise-flat posterior mean is suitable, we struggle to see

when one would prefer a sparse or sparse variational GP to a binary tree kernel.

The most thorough approach would be to run both and see which has a better

training NLL, but if you had to pick one, the binary tree GP seems to be better

performing and comparably fast. If minimizing mean-squared error is the objec-

tive, the Matérn kernel seems to do slightly better than the binary tree. If the

dataset is small, and one needs a very fast prediction, a Matérn kernel may be the

best option. But otherwise, if one cares about well-calibrated predictions, these

initial results we present tentatively suggest using a binary tree kernel over the

widely-used Matérn kernel.

The log-linear time and linear space complexity of the binary tree GP, with per-

formance exceeding a “normal” kernel, could profoundly expand the viability of

GP regression to larger datasets.

5.2 Preliminaries

Our problem setting is regression. Given a function f : X ! R, for some arbitrary

set X , we would like to predict f(x) for various x 2 X . What we have are

observations of f(x) for various (other) x 2 X . Let X 2 X n be an n-tuple of

elements of X , and let y 2 Rn be an n-tuple of real numbers, such that yi ⇠

f(Xi) +N (0,�), for � 2 R�0. X and y comprise our training data.

With an m-tuple of test locations X 0 2 Xm, let y0 2 Rm, with y0i = f(X 0i). y0

is the ground truth for the target locations. Given training data, we would like to
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produce a distribution over R for each target location X 0i, such that it assigns high

marginal probability to the unknown y0i. Alternatively, we sometimes would like

to produce point estimates ŷ0i in order to minimize the squared error (ŷ0i � y0i)
2.

A GP prior over functions is defined by a mean function m : X ! R, and a kernel

k : X ⇥X ! R. The expected function value at a point x is defined to be m(x),

and the covariance of the function values at two points x1 and x2 is defined to be

k(x1, x2). Let KXX 2 Rn⇥n be the matrix of kernel values (KXX)ij = k(Xi, Xj),

and let mX 2 Rn be the vector of mean values (mX)i = m(Xi). For a GP

to be well-defined, the kernel must be such that KXX is positive semidefinite

for any X 2 X n. For a point x 2 X , Let KXx 2 Rn be the vector of kernel

values: (KXx)i = k(Xi, x), and let KxX = K>Xx. Let � � 0 be the variance

of observation noise. Let µx and �2
x be the mean and variance of our posterior

predictive distribution at x. Then, with K�inv
XX = (KXX + �I)�1,

µx := (y �mX)
>(KXX + �I)�1KXx +m(x) (5.1)

�2
x := k(x, x)�KxX(KXX + �I)�1KXx + � (5.2)

See C. K. Williams & Rasmussen (2006) for a derivation. We compute Equations

5.1 and 5.2 for all x 2 X 0.

5.3 Binary tree kernel

We now introduce the binary tree kernel. First, we encode our data points as

binary strings. So we have X = Bq, where B = {0, 1}, and q 2 N.

If X = Rd, we must map Rd 7! Bq. First, we rescale all points (training points

and test points) to lie within the box [0, 1]d. (If we have a stream of test points,

and one lands outside of the box [0, 1]d, we can either set KxX to 0 for that point
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or we rescale and retrain in O(n log n) time.) Then, for each x 2 [0, 1]d, for

each dimension, we take the binary expansion up to some precision p, and for

those d ⇥ p bits, we permute them using some fixed permutation. We call this

permutation the bit order, and it is the same for all x 2 [0, 1]d. Note that now

q = dp. See Figure 5.3 for an example. We optimize the bit order during training,

and we can also form an ensemble of GPs using different bit orders.

Figure 5.3: Function
from [0, 1]2 ! B8.

For x 2 Bq, let xi be the first i bits of x. [[expression]]

evaluates to 1, if expression is true, otherwise 0. We

now define the kernel:

Definition 9 (Binary Tree Kernel). Given a weight vec-

tor w 2 Rq, with w ⌫ 0 and ||w||1 = 1,

kw(x1, x2) =
qX

i=1

wi

⇥⇥
xi1 = xi2

⇤⇤

So the more leading bits shared by x1 and x2, the larger the covariance between

the function values. Consider, for example, points x1 and x4 from Figure 5.1,

where x1 is (left, left, right), and x4 is (left, right, right); they share only the first

leading “bit”. We train the weight vector w to maximize the likelihood of the

training data.

Proposition 1 (Positive Semidefiniteness). For X 2 X n, for k = kw, KXX ⌫ 0.

Proof. Let s 2
Sq

i=1 B
i be a binary string, and let |s| be the length of s. Let

X[s] 2 Rn with (X[s])j =
hh
X|s|j = s

ii
. X[s]X>[s] is clearly positive semidefinite.

Finally, KXX =
Pq

i=1

P
s2Bi wiX[s]X>[s], and recall wi � 0, so KXX ⌫ 0.
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5.4 Sparse rank one sum representation

In order to do GP regression in O(n) space and O(n log n) time, we develop a

“Sparse Rank One Sum” representation of linear operators (SROS). This was de-

veloped separately from the very similar Hierarchical matrices (Bebendorf, 2008),

which we discuss below. In SROS form, linear transformation of a vector can be

done in O(n) time instead of O(n2). We will store our kernel matrix and inverse

kernel matrix in SROS form. The proof of Proposition 1 exemplifies representing

a matrix as the sum of sparse rank one matrices. Note that each X[s] is sparse—if

q is large, most X[s]’s are the zero vector.

We now show how to interpret an SROS representation of an n ⇥ n matrix. Let

[n] = {1, 2, ..., n}. For r 2 N, let L : [r]n ⇥ [r]n ⇥ Rn⇥Rn ! Rn⇥n construct a

linear operator from four vectors.

Definition 10 (Linear Operator from Simple SROS Representation). Let p, p0 2

[r]n, and let u, u0 2 Rn. For l 2 [r], let up=l 2 Rn be the vector where up=l
j =

uj[[pj = l]], likewise for u0 and p0. Then: L(p, p0, u, u0) 7!
Pm

i=1 u
p=i(u0)p

0=i>.

We depict Definition 10 in Figure 5.4. p and p0 represent partitions over n ele-

Figure 5.4: A matrix in standard form constructed from a matrix in SROS form.
The large square depicts the matrix L(p, p0, u, u0) 2 R5⇥5 with elements colored
by value. See up=0 for a color legend.
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ments: all elements with the same integer value in the vector p belong to the same

partition. Note that r, the number of parts in the partition, need not exceed n, the

number of elements being partitioned. If p = p0 (which is almost always the case

for us) and the elements of p, u, and u0 were shuffled so that all elements in the

same partition were next to each other, then L(p, p0, u, u0) would be block diago-

nal. Note that L(p, p0, u, u0) is not necessarily low rank. If p is the finest possible

partition, and p = p0, L(p, p0, u, u0) is diagonal. SROS matrices can be thought

of as a generalization of two types of matrix that are famously amenable to fast

computation: rank one matrices (all points in the same partition) and diagonal

matrices (each point in its own partition).

We now extend the definition of L to allow for multiple p, p0, u, and u0 vectors.

Definition 11 (Linear Operator from SROS Representation). Let L : [r]n⇥q ⇥

[r]n⇥q ⇥ Rn⇥q⇥Rn⇥q ! Rn⇥n. Let P, P 0 2 [r]n⇥q, and let U,U 0 2 Rn⇥q. Let

P:,i, U:,i, etc. be the ith columns of the respective arrays. Then: L(P, P 0, U, U 0) 7!
Pq

i=1 L(P:,i, P 0:,i, U:,i, U 0:,i).

Algorithm 1 performs linear transformation of a vector using SROS representation

in O(nq) time.

We now discuss how to approximately invert a certain kind of symmetric SROS

matrix, but our methods could be extended to asymmetric matrices. First, we

define a partial ordering over partitions. For two partitions p, p0, we say p0  p if

p0 is finer than or equal to p; that is, p0j = p0j0 =) pj = pj0 . Using that partial

ordering, a symmetric SROS matrix can be approximately inverted efficiently if

for all 1  i, i0  q, P:,i  P:,i0 or P:,i0  P:,i. As the reader may have recognized,

our kernel matrix KXX can be written as an SROS matrix with this property.

We will write symmetric SROS matrices in a slightly more convenient form. All

(u0)p=l must be a constant times up=l. We will store these constants in an array
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Algorithm 1 Linear Transformation with SROS Linear Operator. This
can be vectorized on a Graphical Processing Unit (GPU), using e.g.
torch.Tensor.index_add_ for Line 5 and non-slice indexing for Line 6
(Paszke et al., 2019). Slight restructuring allows vectorization over [q] as well.

Require: P, P 0 2 [r]n⇥q, U,U 0 2 Rn⇥q, x 2 Rn

Ensure: y = L(P, P 0, U, U 0)x
1: y  0 2 Rn

2: for i 2 [q] do . O(nq) time
3: p, p0, u, u0  P:,i, P 0:,i, U:,i, U 0:,i
4: z  0 2 Rr . zl will store the dot product ((u0)p0=l)>xp0=l

5: for j 2 [n] do zp0j  zp0j + u0jxj . O(n) time

6: for j 2 [n] do yj  yj + zpjuj . O(n) time
return y

C. Let L(P,C, U) be shorthand for L(P, P, U, C�U), where� denotes element-

wise multiplication. For L(P,C, U) to be symmetric, it must be the case that

Pji = Pj0i =) Cji = Cj0i. Then, all elements of U corresponding to a given up=l

are multiplied by the same constant. We now present an algorithm for calculating

(L(P,C, U)+�I)�1, for � 6= 0, which is an approximate inversion of L(P,C, U).

We have not yet analyzed numerical sensitivity for � ! 0, but we conjecture

that all floating point numbers involved need to be stored to at least log2(1/�)

bits. Without loss of generality, let � = 1, and note (L(P,C, U) + �I)�1 =

��1(L(P,��1C,U) + I)�1.

By assumption, all columns of P are comparable with respect to the partial order-

ing above, so we can reorder the columns of P such that P:,i � P:,j for i < j. The

key identity that we use to develop our fast inversion algorithm is the Sherman–

Morrison Formula:

(A+ cuu>)�1 = A�1 � A�1uu>A�1

c�1 + u>A�1u
(5.3)

Starting with A = I , we add the sparse rank one matrices iteratively, from the
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finest partition to the coarsest one, updating A�1 as we go. We represent (L(P,C, U)+

I)�1 in the form I + L(P,C 0, U 0), so we write an algorithm that returns C 0 and

U 0. We can also quickly calculate log |L(P,C, U) + I| at the same time, using the

matrix determinant lemma: |A+ cuu>| = (1 + cu>A�1u)|A|.

Theorem 11 (Fast Inversion). For P 2 [r]n⇥q and C,U 2 Rn⇥q, if P:,i

(is coarser than)
� P:,j

for i < j, then there exists C 0, U 0 2 Rn⇥q, such that (L(P,C, U) + I)�1 =

I + L(P,C 0, U 0). There exists an algorithm for computing C 0 and U 0 that takes

O(nq2) time.

Proof. For X 2 Rn⇥q, let X:,i+1:q 2 Rn⇥(q�i) be columns i + 1 through q of

matrix X (inclusive). Let Ai = I +L(P:,i+1:q, C:,i+1:q, U:,i+1:q), and Aq = I . Now

suppose A�1i can be written as I+L(P:,i+1:q, C 0:,i+1:q, U
0
:,i+1:q) for some C 0 and U 0.

For the base case of i = q, this holds trivially. We show it also holds for i � 1,

and we can compute C 0:,i:q, U 0:,i:q in O
�
n(q � i)

�
time. Let p = P:,i, u = U:,i,

and c = C:,i. Consider up=l, where each element is zero unless the corresponding

element of p equals l. What do we know about the product A�1i up=l (as seen in

Equation 5.3)?

Because the columns of P go from coarser partitions to finer ones, all of the

vectors generating the sparse rank one components of L(P:,i+1:q, C 0:,i+1:q, U
0
:,i+1:q)

are from partitions that are equal to or finer than p. Thus, they are either zero ev-

erywhere up=l is zero, or zero everywhere up=l is nonzero. Vectors v of the second

kind can be ignored, as cvv>up=l = 0. Thus, when multiplying L(P:,i+1:q, C 0:,i+1:q, U
0
:,i+1:q)

by up=l, the only relevant vectors are filled with zeros except where the corre-

sponding element of p equals l. So we can get rid of those rows of P:,i+1:q,

C 0:,i+1:q, and U 0:,i+1:q. Suppose there are nl elements of p that equal l. Then

L(P:,i+1:q, C 0:,i+1:q, U
0
:,i+1:q)u

p=l involves nl rows, and can be computed in O
�
nl(q�

i)
�

time. Moreover, this product, which we’ll call (u0)p=l, is only nonzero when
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the corresponding element of p equals l, so it has the same sparsity pattern as up=l.

The other component of A�1i is the identity matrix, and Iup=l clearly has the same

sparsity as up=l. Thus, returning to Equation 5.3, when we add up=l(up=l)> to Ai,

we update A�1i with an outer product of vectors whose sparsity pattern is the same

as that of up=l.

For each l, A�1i need not be updated with each up=l one at a time. For l 6= l0,

up=l and up=l0 are nonzero at separate indices, so up=l and (u0)p=l0 are nonzero at

separate indices, so the extra component of A�1i that appears after the up=l0 update

is irrelevant to the up=l update, because (up=l)>(u0)p=l0 = 0. Since the up=l update

takes O(nl(q � i)) time, all of them together take O(
P

l nl(q � i)) time, which

equals O(n(q�i)) time. Calculating an element of c0 only involves computing the

denominator in Equation 5.3, using a matrix-vector product already computed. So

we can write C 0:,i:q and U 0:,i:q by adding a preceding column to C 0:,i+1:q and U 0:,i+1:q,

using the same partition p, and it takes O(n(q � i)) time.

Following the induction down to i = 0, we have (L(P,C, U) + I)�1 = I +

L(P,C 0, U 0), and a total time of O(nq2).

Algorithm 2 also performs approximate inversion, which we prove in Appendix

A.7. It differs slightly from the algorithm in the proof, but can take full advantage

of a GPU speedup. In the setting where all columns of U are identical, observe

that in Lines 10 and 11, the same computation is repeated for all k 2 [i]. Indeed,

in this setting, this block of code can be modified to run in O(n) time rather than

O(ni), making the whole algorithm run in O(nq) time, as shown in Proposition 4

in Appendix A.7.

A Hierarchical matrix is a matrix which is either represented as a low-rank matrix

or as a 2⇥2 block matrix of Hierarchical matrices (Bebendorf, 2008). In our SROS

format, many of the sparse rank one matrices overlap, whereas in a Hierarchical
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Algorithm 2 Inverse and determinant of I+ SROS Linear Operator. Lines
5 through 11 can all be easily vectorized on a GPU. Lines 5 and 10 require
torch.Tensor.index_add_ or equivalent, and lines 6 and 11 require non-
slice indexing, which are not quite as fast as some GPU operations.

Require: P 2 [r]n⇥q, C,U 2 Rn⇥q

Ensure: I + L(P,C 0, U 0) = (I + L(P,C, U))�1; x = log |I + L(P,C, U)|
1: x, C 0, U 0  0,0 2 Rn⇥q, U
2: for i 2 (q, q � 1, ..., 1) do . O(nq2) time
3: p, c, u, u0  P:,i, C:,i, U:,i, U 0:,i
4: z  0 2 Rr . zl will store c(l)((u0)p=l)>up=l, where c(l) = ck if pk = l
5: for j 2 [n] do zpj  zpj + cju0juj . O(n) time

6: for j 2 [n] do C 0ji  �cj/(1 + zpj) . O(n) time

7: for l 2 [r] do x x+ log(1 + zl) . O(n) time because r  n

8: if i > 0 then
9: y  0 2 Rn⇥i . O(ni) time

10: for j, k 2 [n]⇥ [i� 1] do ypjk  ypjk + u0jUjk . O(ni) time

11: for j, k 2 [n]⇥ [i� 1] do U 0jk  U 0jk + C 0jiu
0
jypjk . O(ni) time

return C 0, U 0, x

matrix, the low-rank matrices do not overlap, and converting an SROS matrix into

a Hierarchical matrix would typically be inefficient. Hierarchical matrices admit

approximate inversion in O(na2 log2 n) time, where a is the maximum rank of the

component submatrices (Hackbusch et al., 2004). However, this is not an approx-

imation in a technical sense, as there is no error bound. At many successive steps

in the algorithm, a rank 2a matrix is approximated by a rank a matrix (Hackbusch,

1999); to our knowledge there is no analysis of how resulting errors might cas-

cade. After converting an SROS matrix to hierarchical form, this rough inversion

would take O(nq2 log2 n) time.
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5.5 Binary tree Gaussian process

We now show that our kernel matrix KXX can be written in SROS form, with

P containing successively finer partitions. Thus, KXX can be approximately in-

verted quickly, for use in Equations 5.1 and 5.2. Next, we’ll show that we can effi-

ciently optimize the log likelihood of the training data by tuning the weight vector

w along with the bit order. The log likelihood can be calculated in O(nq log n)

time and then the gradient w.r.t. w in O(nq2) time.

Recall from the proof of Proposition 1: KXX =
Pq

i=1

P
s2Bi wiX[s]X>[s], where

X[s] 2 Rn with (X[s])j =
hh
X|s|j = s

ii
. So we will set P:,i, C:,i, and U:,i, so that

L(P:,i, C:,i, U:,i) =
P

s2Bi wiX[s]X>[s]. Let P:,i partition the set of points X so that

points are in the same partition if the first i bits match. Now, requiring the first

i + 1 bits to match is a stricter criterion than requiring the first i bits to match, so

the P:,i grow successively finer. For any piece of the partition where the first i bits

of the constituent points equals the bitstring s, the corresponding sparse rank one

component of KXX is wiX[s]X>[s]. So let U:,i = 1n, and let C:,i = wi1n.

Proposition 2 (SROS Form Kernel). KXX = L(P,C, U), as defined above.

This follows immediately from the definitions. To compute these partitions P:,i,

we sort X , which is a set of bit strings. And then we can easily compute which

points have the same first i bits. This all takes O(nq log n) time. Now note that

U:,i = U:,i0 for all i, i0, so (KXX + �I)�1 and |KXX + �I| can be computed in

O(nq) time, rather than O(nq2).

The training negative log likelihood of a GP is that of the corresponding multi-

variate Gaussian on the training data. So:

NLL(w) =
�
y>(KXX(w) + �I)�1y + log |KXX(w) + �I|+ n log(2⇡)

��
2 .
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This can be computed in O(nq) time, since matrix-vector multiplication takes

O(nq) time for a matrix in SROS form. So if the bit order is unchanged, an

optimization step can be done in O(nq) time, and if the data needs to be resorted,

then in O(nq log n) time. On the largest dataset we tested (House Electric), with

n ⇡ 1.3 million and q = 88, sorting the data and computing P takes about 0.96

seconds on a GPU, and then calculating the negative log likelihood takes about

another 1.08 seconds. We show in Appendix A.8 how to compute rw NLL in

O(nq2) time.

To optimize the bit order and weight vector at the same time, we represent both

with a single parameter vector ✓ 2 Rq
+, with ||✓||1 = 1. To get the bit order

from ✓, we start with a default bit order and permute the bit order according to

a permutation that would sort ✓ in descending order. To get the weight vector,

we sort ✓ in descending order, add a 0 at the end, and compute the differences

between adjacent elements. When there are ties in the elements of ✓, the choice of

bit order does not affect the negative log likelihood (or the kernel at all) because

the relevant associated weight is 0. The negative log likelihood is continuous with

respect to ✓, and when all values of ✓ are unique, it is differentiable with respect

to ✓. Letting ✓ = e�/||e�||1, we minimize loss w.r.t. � using BFGS (Fletcher,

2013).

To calculate the predictive mean at a list of predictive locations X 0, we first multi-

ply y by (KXX+�I)�1, and then we multiply that vector by KXX0 . We obtain both

KXX and KXX0 in SROS form as follows. Let X̃ = X �X 0 be the concatenation

of the two tuples, now an (n+m)-tuple. Writing KX̃X̃ = L(P̃ , C̃, Ũ), the arrays

on the r.h.s. can be computed in O((n+m)q log(n+m)) time. Then, with P , C,

and U being the first n rows of P̃ , C̃, Ũ , KXX = L(P,C, U). And letting P 00 and

U 00 be the last m rows, KXX0 = L(P, P 00, C � U,U 00). Thus, the predictive mean

µx from Equation 5.1 can be computed at m locations in O((n+m)q log(n+m))
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time.

The predictive covariance matrix, which extends the predictive variance from

Equation 5.2, is calculated ⌃X0 = KX0X0 + �Im�KX0X(KXX + �In)�1KXX0 =

(KX̃X̃ + �Im+n)/KXX , where / denotes the Schur complement. From a property

of block matrix inversion, the last m columns of the last m rows of (KX̃X̃+�I)�1

equals ((KX̃X̃ + �Im+n)/KXX)�1. So we get the predictive precision matrix in

O((n+m)q log(n+m)) time by inverting KX̃X̃ +�I and taking the bottom right

m ⇥ m block. Then, we get the predictive covariance matrix by inverting that.

This takes O(mq2) time, since it does not have the property of all the columns of

U being equal. If we only want the diagonal elements of an SROS matrix (the

independent predictive variances in this case), we can simply sum the rows of

C � U � U in O(mq) time. Thus, in total, computing the independent predictive

variances requires O((n+m)q log(n+m) +mq2) time. See Algorithm 3.

5.6 Related Work

All existing kernels of which we are aware for linear time GP regression on un-

structured data involve inducing points (related to the Nyström approximation

(C. Williams & Seeger, 2000)) or inducing frequencies. For a given set of induc-

ing points Z, for some base kernel k, the inducing point kernel (in its most basic

form) is the following, although subtle variants exist: kZ(x, x0) = KxZK
�1
ZZKZx0

(Quinonero-Candela & Rasmussen, 2005).

Sparse Gaussian Process Regression (SGPR) involves selecting Z, and then us-

ing kZ (or a variant). Notably, KZ
XX = KXZK

�1
ZZKZX is low rank, provid-

ing computational efficiency. The predictive mean and covariance have compact

form, with observational noise �: µx(Z) = KxZ(�KZZ + kZXkXZ)�1KZXy and

�2
xx0(Z) = KxZ(KZZ + ��1kZXkXZ)�1KZx0 .
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Algorithm 3 GP Regression with a binary tree kernel.

Require: X 2 Bn⇥q, y 2 Rn, X 0 2 Bm⇥q, w 2 Rq, � 2 R+

Ensure: µX0 and �2
X0 are the predictive means and variances at X 0, and nll the

training negative log likelihood.
1: X̃  X �X 0
2: X̃", perm Sort(X̃) . The rows of X are sorted lexically

from leading bit to trailing bit. O((n+
m)q log(n+m)) time.

3: for j, i 2 [n+m]⇥ [q] do P̃ "ji  #of unique rows in X"1:j,1:i
4: . M1:j,1:i is the first j rows and i columns of M . O((n+m)q) time.
5: P̃  perm�1(P ") . This “unsorts” the input. O((n+m)q) time.
6: P, P 0  P̃1:n, P̃n+1:n+m

7: U,U 0, Ũ  1n⇥q,1m⇥q,1(n+m)⇥q

8: C, C̃  1nwT ,1n+mwT

9: C�1� , U�1, logdet�  Invert(P,��1C,U) .
Uses Algorithm 2. Speedup to
O(nq) time because columns of U
are identical.

10: C�1, logdet ��1C�1� , logdet� + n log(�)
11: z  LinTransform(P, P, U�1, C�1 � U�1, y) + ��1y .

Uses Algorithm 1 to com-
pute the Woodbury vector.
O(nq) time.

12: µX0  LinTransform(P 0, P, U 0, C � U, z) . O((n+m)q) time.
13: nll (y>z + logdet + n log(2⇡))/2
14: C̃prec, Ũ prec  Invert(P̃ ,��1C̃,��1Ũ) . O((n+m)q) time.
15: Cprec, U prec  C̃prec

n+1:n+m, Ũ
prec
n+1:n+m

16: Ccov, U cov  Invert(P 0, Cprec, U prec) . O(mq2) time; extra factor of q
because columns of U prec are
not identical.

17: �2
X0  �(1m + SumEachRow(Ccov � U cov � U cov)) . O(mq) time.

18: return µX0 , �2
X0 , nll

Titsias’s (2009a) sparse variational kernel is also low rank and uses inducing

points. The sparse variational GP (SVGP) is constructed as the solution to a

variational inference problem. It depends on inducing points Z, data points X ,

and observed function values y. We have focused on Gaussian processes with

0 mean, but the SVGP method uses a nonzero prior mean along with a kernel:
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mSVGP(x) = µx(Z) and kSVGP(x, x0) = k(x, x0)�KxZK
�1
ZZKZx0+�2

xx0(Z). Given

the dependence on X and y, this is not a true probability distribution over function

space. The variational problem underlying this kernel also provides guidance in

how to select the inducing points Z. For further discussion of the kernel underly-

ing the SVGP method, see Wild et al. (2021).

An inducing point kernel with z inducing points produces a z-dimensional re-

producing kernel Hilbert space (RKHS). The dimensionality of the RKHS relates

to the expressivity of the kernel. Whereas an inducing point method buys a z-

dimensional RKHS for the price of O(z2n) time and O(zn) space, the binary tree

kernel produces a 2q-dimensional RKHS in O(qn) time and space—an exponen-

tial improvement. (Observe that we can find 2q linearly independent functions

of the form k(·, x)—one for each of the 2q leaves x might belong to.) Wilson &

Nickisch (2015) develop a method for speeding up inducing point methods signif-

icantly, especially in low-dimensional settings.

Lázaro-Gredilla et al. (2010) propose an inducing frequencies kernel: given a set

of m inducing vectors si, k(x, x0) = 1/m
Pm

i=1 cos(2⇡s
>
i (x � x0)). Dutordoir

et al. (2020) propose an inducing frequencies kernel for low dimensional data, in

which k(x, x0) is a special function of x>x0.

On one-dimensional data, filtering/smoothing methods perform Bayesian infer-

ence over functions in O(n) time (R. Kalman, 1960; Hartikainen & Särkkä, 2010).

A few non-O(n) methods bear mentioning. We are not the first to consider a ker-

nel over points on the leaves of a tree (Ma & Blaschko, 2020; Lévesque et al.,

2017) or on the leaves of multiple trees (Feng & Baumgartner, 2020), but their

methods take O(n3) time. On certain kinds of structured data, Toeplitz solvers

achieve O(n2) time complexity (Y. Zhang et al., 2005). Cutajar et al.’s (2016);

Wang et al.’s (2019), and others’ use of a conjugate gradients solver to replace
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inversion/factorization has unclear time complexity between O(n2) and O(n3),

depending on the kernel matrix spectrum. 1

5.7 Experiments

In Table 5.1, we compare our binary tree kernel and a binary tree ensemble (see

Appendix A.9 for details on the ensemble) against three baseline methods: exact

GP regression using a Matérn kernel, sparse Gaussian process regression (SGPR)

(Titsias, 2009b), and a stochastic variational Gaussian process (SVGP) (Hensman

et al., 2013). We evaluate our method on the same open-access UCI datasets (Dua

& Graff, 2017) as Wang et al. (2019), using their same training, validation, and test

partitions, and we compare against the baseline results they report. For the binary

tree (BT) kernels, we use p = min(8, b150/dc+1), and recall q = pd. We set � =

1/n. We train the bit order and weights to minimize training NLL. For the binary

tree ensemble (BTE), we use 20 kernels. For the Matérn kernel, we use Blackbox

Matrix-Matrix multiplication (BBMM) (Gardner et al., 2018), which uses the con-

jugate gradients method to calculate matrix-vector products with (KXX + �I)�1.

SGPR uses 512 data points and SVGP uses 1,024 inducing points. We report the

mean and two standard errors across 3 replications with different dataset splits.

For further experimental details, see Appendix A.9. BTE achieves the best NLL

on 6/12 datasets, and best RMSE on 5/12 datasets (including some ties). Out of

the 4 largest datasets, BT/BTE is fastest on 3. The run times are plotted in Figure

5.5. The code is available at https://github.com/mkc1000/btgp and
1The conjugate gradients method takes O(n2p

) time, where  is the condition number of
the kernel matrix. Poggio et al. (2019) say “claims about the condition number of a random
matrix A should also apply to kernel matrices with random data.” If they mean a Wishart random
matrix (which it should be if, e.g., k(x, x0) = x

>
x
0), that would be the square of the condition

number of the corresponding Gaussian random matrix, which grows as O(n) (Chen & Dongarra,
2005). Putting it all together, we get O(n3) for conjugate gradients. We don’t know how quickly
preconditioning can reduce the condition number.
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DATASET n d BTE BT MATÉRN (BBMM) SGPR SVGP

POLETELE 9,600 26 �0.625 ± 0.035 �0.490 ± 0.040 �0.180± 0.036 �0.094± 0.008 �0.001± 0.008
ELEVATORS 10,623 18 0.649 ± 0.032 0.646 ± 0.023 0.619 ± 0.054 0.580 ± 0.060 0.519± 0.022

BIKE 11,122 17 �0.708 ± 0.433 �0.806 ± 0.273 0.119 ± 0.044 0.291 ± 0.032 0.272 ± 0.018
KIN40K 25,600 8 0.869 ± 0.004 0.881 ± 0.008 �0.258± 0.084 0.087 ± 0.067 0.236 ± 0.077
PROTEIN 29,267 9 0.781 ± 0.023 0.845 ± 0.026 1.018 ± 0.056 0.970 ± 0.010 1.035 ± 0.006
KEGGDIR 31,248 20 �1.031 ± 0.020 �1.029 ± 0.021 �0.199 ± 0.381 �1.123 ± 0.016 �0.940 ± 0.020
CTSLICE 34,240 385 �2.527 ± 0.147 �1.092 ± 0.147 �0.894 ± 0.188 �0.073 ± 0.097 1.422 ± 0.005
KEGGU 40,708 27 �0.667 ± 0.007 �0.667 ± 0.007 �0.419 ± 0.027 �0.984 ± 0.012 �0.666 ± 0.007
3DROAD 278,319 3 �0.251 ± 0.009 �0.252 ± 0.006 0.909 ± 0.001 0.943 ± 0.002 0.697 ± 0.002

SONG 329,820 90 1.330 ± 0.003 1.331 ± 0.003 1.206± 0.024 1.213 ± 0.003 1.417 ± 0.000
BUZZ 373,280 77 1.198 ± 0.003 1.198 ± 0.003 0.267 ± 0.028 0.106± 0.008 0.224 ± 0.050

HOUSEELEC 1,311,539 11 �2.569 ± 0.006 �2.492 ± 0.012 �0.152± 0.001 — �1.010± 0.039

POLETELE 9,600 26 0.154 ± 0.006 0.161 ± 0.004 0.151 ± 0.012 0.217 ± 0.002 0.215 ± 0.002
ELEVATORS 10,623 18 0.478 ± 0.021 0.476 ± 0.018 0.394± 0.006 0.437 ± 0.018 0.399± 0.009

BIKE 11,122 17 0.118 ± 0.057 0.103 ± 0.029 0.220 ± 0.002 0.362 ± 0.004 0.303 ± 0.004
KIN40K 25,600 8 0.580 ± 0.003 0.587 ± 0.006 0.099± 0.001 0.273 ± 0.025 0.268 ± 0.022
PROTEIN 29,267 9 0.608 ± 0.008 0.623 ± 0.011 0.536± 0.012 0.656 ± 0.010 0.668 ± 0.005
KEGGDIR 31,248 20 0.086 ± 0.003 0.086 ± 0.003 0.086± 0.005 0.104 ± 0.003 0.096 ± 0.001
CTSLICE 34,240 385 0.116 ± 0.009 0.132 ± 0.009 0.262 ± 0.448 0.218 ± 0.011 1.003 ± 0.005
KEGGU 40,708 27 0.120 ± 0.001 0.121 ± 0.001 0.118± 0.000 0.130 ± 0.001 0.124 ± 0.002
3DROAD 278,319 3 0.187 ± 0.002 0.186 ± 0.001 0.101± 0.007 0.661 ± 0.010 0.481 ± 0.002

SONG 329,820 90 0.914 ± 0.003 0.916 ± 0.003 0.807± 0.024 0.803± 0.002 0.998 ± 0.000
BUZZ 373,280 77 0.801 ± 0.002 0.801 ± 0.002 0.288± 0.018 0.300± 0.004 0.304± 0.012

HOUSEELEC 1,311,539 11 0.029 ± 0.001 0.029 ± 0.001 0.055 ± 0.000 — 0.084 ± 0.005

POLETELE 9,600 26 5.16 ± 0.58 0.69± 0.018 1.16 ± 0.34 1.15 ± 0.068
ELEVATORS 10,623 18 2.6 ± 0.19 0.68± 0.012 1.16 ± 0.38 1.27 ± 0.092

BIKE 11,122 17 2.68 ± 0.15 0.69± 0.015 1.17 ± 0.38 1.28 ± 0.093
KIN40K 25,600 8 1.44 ± 0.028 0.71± 0.045 1.62 ± 0.96 3.26 ± 0.23
PROTEIN 29,267 9 2.92 ± 0.2 0.8± 0.17 2.27 ± 0.9 3.31 ± 0.27
KEGGDIR 31,248 20 7.14 ± 0.39 0.85± 0.1 2.2 ± 1.09 3.8 ± 0.38
CTSLICE 34,240 385 52.01 ± 0.92 3.32± 5.0 2.16± 0.99 3.87 ± 0.34
KEGGU 40,708 27 7.46 ± 0.54 6.32⇤± 0.41⇤ 2.22± 1.05 4.78 ± 0.4
3DROAD 278,319 3 1.93 ± 0.12 126.37⇤± 20.92⇤ 12.01 ± 5.51 34.09 ± 3.19

SONG 329,820 90 31.87 ± 3.79 33.79⇤± 10.45⇤ 7.89± 3.12 39.55 ± 3.08
BUZZ 373,280 77 20.18 ± 6.66 571.15⇤± 66.34⇤ 29.25± 18.33 46.35 ± 2.93

HOUSEELEC 1,311,539 11 118.41 ± 3.93 575.64⇤± 6.94⇤ — 367.71± 4.7

Table 5.1: NLL (top), RMSE (middle), and run time in minutes (bottom) on re-
gression datasets, using a single GPU (Tesla V100-SXM2-16GB for BT and BTE
and Tesla V100-SXM2-32GB for the other methods). The asterisk indicates an
estimate of the time from the reported training time on 8 GPUS, assuming linear
speedup in number of GPUs and independent noise in training times per GPU. All
columns except BT and BTE come from Wang et al. (2019).

https://tinyurl.com/btgp-colab.

BT performs noticeably worse than BTE for test NLL on CTSlice due to over-

fitting. There are enough degrees of freedom when optimizing the bit order (d =

385) that BT kernel can over-fit to the training data. The ensemble over multiple

bit orders is much more robust.
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Figure 5.5: Run times given dataset size. For BT, the trendline is calculated con-
trolling for log(q) with affine regression, and then setting q = 150. The slope
w.r.t. log(q) is 2.82± 1.06. Theoretically, all slopes are too low except for that of
SVGP, presumably because of overhead in the small-data regime.

5.8 Discussion

We have proven that the binary tree kernel GP is scalable. Our empirical results

suggest that it often outpredicts not just other scalable methods, but even the pop-

ular Matérn GP. If the results in this paper replicate in other domains, it could

obviate wide usage of classic GP kernels like the Matérn kernel, as well as in-

ducing point kernels. Sometimes, our kernel fails to capture patterns in the data;

some functions’ values simply do not covary this way. But other kernels we tested

seemed to fail like that even more.

Our contributions to linear algebra and kernel design may significantly increase

the size of data sets on which GPs can do state-of-the-art modelling.
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5.9 End notes

Some closing comments: the only way in which the quality of the uncertainty

estimates is tested is through the negative log-likelihood. If the model gives too

wide a confidence interval, it will assign less marginal probability to the truth

than it could, and if it gives too narrow a confidence interval such that the truth

is way outside, then it will be seriously penalized for assigning (perhaps vanish-

ingly) small marginal probability to the truth. So a good NLL score does imply

good uncertainty quantification, but only very roughly. Maybe some estimates are

extremely precise and accurate, contributing to a low average NLL, while others

are fairly sloppy. So future work would be helpful to get a clearer picture of the

quality of the uncertainty estimates. For example, a calibration analysis would

dissect the origin of the strong NLL performance, and check just how reliable or

how hit-and-miss the uncertainty quantification is.

Some other GP methods that may be of interest to the reader are ones that a)

are fast for low dimensional data, or b) use a kernel that is separable over its di-

mensions, which enables similar speed. Särkkä (2013) discusses state space GPs,

which track sufficient statistics that eliminate the need to handle the entire co-

variance matrix. In the simplest case, one dimensional Gaussian processes are

Markovian, so they can be reduced to a Kalman filtering problem (Hartikainen &

Särkkä, 2010). For state space GPs in few dimensions, see e.g. Särkkä & Har-

tikainen (2012). Unfortunately these methods don’t scale to higher dimensions.

Another approach for low-dimensional data is Hensman et al.’s (2017) Variational

Fourier Features. This method takes inspiration from Rahimi & Recht’s (2007)

Random Fourier Features, but then optimizes those features according to a varia-

tional objective. This amounts to selecting inducing frequencies instead of induc-

ing points. Unfortunately, for general kernels, an approximation of the base kernel
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(to within some tolerance) requires a number of frequencies that is exponential in

the dimension of the data. Another method that is natural for low-dimensional

data is Samo & Roberts’s (2016) String GP, which involves partitioning the do-

main into intervals whose interdependence is screened off by the interfaces. All

of these methods can be extended to a high-dimensional domain if the kernel can

be written as a sum of one-dimensional kernels.

Another kind of kernel that may interest the reader is a wavelet kernel (L. Zhang et

al., 2004), since the binary tree kernel looks like a sum of “pulses” which resemble

wavelets. Unfortunately, while a wavelet GP can approximate arbitrary functions,

unlike a binary tree kernel, it does not offer any speedup in run time compared to

normal kernels.

Finally, I’ll spend a bit more time on the parameters and hyperparameters of this

method. As discussed in Section 5.5 (see the definitions of ✓ and �), there is a

parameter for each bit, giving a total of q parameters. Besides what value of q

to use, the only hyperparameters are those of the optimization method, like the

learning rate, the number of initializations, etc. For q, as we show in Appendix

A.10, increasing it improves performance, so best to increase it if one has the

time. So there is no real difficulty in setting adequate hyperparameters, and of

course the parameters are set through optimization. In our experiments, we use

lower precision as dimensions increase to target a q of around 150. Perhaps this

is a large number of parameters, but we do not seem to observe much over fitting;

perhaps this is because parameters corresponding to very “deep” bits don’t have

much impact on the kernel.
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6 | Literature Review

The bodies of work relevant to each chapter are fairly disjoint, and to avoid re-

hearsing the literature reviews of each of the papers, I’ll be stepping back quite a

bit to give some further context to the work. The related work of primary relevance

to this thesis can be found in the related work sections of the individual chapters.

I’ll first review work related to the expected behavior of advanced agents. Then

I’ll discuss Hutter’s (2005) AIXI, to which the pessimistic reinforcement learner

is closely related, and to which the pessimistic imitation learner is somewhat re-

lated. Finally, to give some context to my work on Gaussian processes, I’ll discuss

Bayesian methods in general.

6.1 Expected Behavior of Advanced Agents

Bostrom (2014) and Russell (2019) have written at book-length about why ad-

vanced artificial agents might pose a serious danger to us. On the specific prob-

lem of an agent intervening in the provision of goal-information, this has been

discussed in the literature using various terms—wireheading, reward hacking, re-

ward tampering, and delusion-boxing. The term wireheading is inspired by an

experiment in which rats repeatedly pressed a lever that directly stimulated a “hap-

piness” neuron in their brain (Olds, 1958). It has been widely discussed (Bostrom,

2014; Amodei et al., 2016; Taylor et al., 2016; Russell, 2019; Kumar et al., 2020;

Everitt et al., 2021; Ring & Orseau, 2011).

There is also existing work on ensuring that once an agent has received a percept,

the way it processes that percept is not altered (Everitt et al., 2016, 2021). This has

also been called wireheading, which is why we avoid the term. That problem (as

those papers show) is easily soluble. The problem that concerns me is an artificial
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agent interrupting the protocol by which we intended to provide percepts, includ-

ing goal-informative percepts like rewards; (Everitt et al. (2021) only consider this

in the setting of a known environment).

In my opinion, there is no existing work that address the problem of reward-

provision-intervention head on, except arguably the contents of Chapter 3, as ex-

plained in Section A.4.2. But there is other work that sidesteps this problem.

Imitation learning can produce intelligent behavior (if the demonstrator is intel-

ligent) without any algorithmic conception of a goal. We review the imitation

learning literature more extensively below. Taylor (2016) conceives of a hybrid

between imitation and optimization called quantilization. Quantilizers imitate a

demonstrator, conditioned on the demonstrator performing better than they do

the (vast) majority of the time. “Better” is with respect to some goal like reward-

maximization. Depending on how vast “vast” is, quantilization can look more like

imitation or more like optimization. There is also work on how we might make

an advanced artificial agent that is unable to intervene in the provision of reward

(M. K. Cohen et al., 2020). And there is plenty of work on myopic agents, which

might not have time to intervene in the provision of reward; in the case of extreme

myopia, these are known as (contextual) bandits (Lattimore & Szepesvári, 2020).

A deeper review of the bandit literature would be very tangential, so I’ll direct the

interested reader to Lattimore & Szepesvári (2020).

6.2 Robust Control and Safe RL

Reinforcement learners that are not particularly advanced can also exhibit danger-

ous misbehavior by accident. Robust control and (so-called) Safe RL both attempt

to mitigate such errors.

Robust control is one of the classic computer science problems that predates com-
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puters. Much work in the field describes the state as a vector in a vector space, and

various assumptions are made about how the state evolves. A celebrated result by

R. E. Kalman (1960) derives an optimal policy assuming that the state evolves

according to a linear transform and that the cost function is quadratic. And the

discrete Kalman filter (R. Kalman, 1960), which allows for noise but restricts to

discrete time, was used to land on the moon for the first time. Outer space is rife

with unsafe states, especially when you have limited fuel. H1 control is perhaps

the most robust version of control in the standard paradigm, and has been explored

by Tannenbaum (1980); Zames (1981); Barbu & Sritharan (1998); Simon (2006).

For a historical review dating back to 1927, including myriad extensions with dif-

ferent assumptions, see Dorato (1987). For a more modern treatment, any number

of textbooks cover the topic extensively, like Dullerud & Paganini (2013).

As the assumptions on the environment relax more and more, especially allowing

for the environment to be unknown, robust control starts to be called safe RL. This

is often accompanied by a shift in notational heritage. For an extensive review, see

García & Fernández (2015). There are two key branches of Safe RL: avoiding the

risks from misdirected exploitation and the risks from exploration. Risk-aware

optimization criteria, which address risks from misdirected exploitation, are cov-

ered in the literature review from Chapter 3, as these are most closely related to

pessimism. Another class of approach is to constrain the policy in some way.

For example, Moldovan & Abbeel (2012) require the policy only approach states

from which it is possible to return to the start. For certain practical problems

with known constraints, policy contraints can be hand-designed. For example,

Abe et al.’s (2010) work, entitled “Optimizing debt collections using constrained

reinforcement learning”, examines how certain real-world constraints (like legal

ones) can be incorporated into an RL problem. If one has access to a complete list

of dangerous states, one can use method like Polymenakos et al.’s (2019).
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There have been many attempts to design safe exploration. But the difficulty is

fundamental. Exploration necessarily involves visiting states before you know

if they’re good or bad. What if they’re bad?! One work-around is to ask for

help. That’s our approach to exploration in Chapter 3. It’s also investigated by

Clouse (1997), Hans et al. (2008), García & Fernández (2012), and García et al.

(2013). Relatedly, a human monitor can provide unsolicited help at times (Clouse

& Utgoff, 1992; Maclin & Shavlik, 1996; Thomaz & Breazeal, 2006).

A key property of the pessimistic agent in Chapter 3 is that it sometimes abstains

from taking an action and asks for help. This abstention recalls KWIK learning

(“knows what it knows”) L. Li et al. (2008). KWIK learning has been incorporated

into RL agents in many ways (T. J. Walsh et al., 2009; T. Walsh et al., 2010; Szita

& Szepesvári, 2011; Lang et al., 2012); usually when they know that they don’t

know something, they will explore in some way, but they could just as easily be

made to ask for help in those situations instead.

Some methods attempt to do safe exploration without help. One is from Gehring

& Precup (2013); their agent avoids exploring states that it predicts will produce

a hard-to-control situation. These attempted generalizations don’t come with any

guarantees, of course, but they’re better than nothing. And this method doesn’t

preclude all exploration. Turchetta et al. (2016) design an agent that takes actions

that probably lead to states that are “similar” to observed states. Pan et al. (2017)

test the intuitive idea of exploring within a simulation before acting in reality.

6.3 AIXI

Instrumental rationality is the project of picking actions in the service of goals.

An agent takes actions and receives observations. A world-model is a probability

distribution over the next observation given the interaction history so far. There
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is much interest in world-models that satisfy a Markov assumption: the probabil-

ity distribution over the next observation only depends on the latest observation

(which is then called the ‘state’) and the latest action, but this assumption is not

core to instrumental rationality.

The most interesting agents act to accomplish goals, which are a function of their

observations. The simplest way to make an agent with a goal is to separate the

observation into an observation and ‘reward’, and then design the agent to opti-

mize reward. Perfect planning with respect to a world-model is expectimax plan-

ning, and perfect inference in Bayesian inference. These pieces compose Hutter’s

(2005) formalism for general intelligence, called AIXI.

Using a countable class of world-models M, a prior weight w(⌫) > 0 for ⌫ 2M,

and the corresponding Bayes-mixture world-model ⇠ =
P

⌫2M w(⌫)⌫,

⇡AIXI = argmax
⇡2⇧

E⇡
⇠

mX

t=1

rt (6.1)

where ⇧ is the set of policies that depend on the entire interaction history, E⇡
⇠

denotes that actions are sampled from ⇡ and observations and rewards from ⇠,

and m is a horizon length.

When M contains the truth, and the prior on it is not-minuscule, this agent would

likely be generally intelligent. Thus, AIXI is typically constructed with a particu-

larly powerful model class and prior: the class of semicomputable world-models

and the Solomonoff prior (Solomonoff, 1964) w(⌫) = 2�K(⌫), where K(⌫) is

the Kolmogorov complexity, or the length of the shortest program that computes

the index of the world-model in an ennumeration of the semicomputable world-

models. See M. Li & Vitányi (2008) for the intricacies of Kolmogorov Complex-

ity. If the objective probabilities of events in our universe are semicomputable

113



University of Oxford St. Cross College

(computably approximable with a monotonically increasing sequence of approxi-

mations), then this model class contains the truth.

Given whatever prior beliefs about the world one has before seeing anything, if

AIXI is constructed to have those prior beliefs, AIXI defines optimal uninformed

reward acquisition.

The pessimistic reinforcement learner of Chapter 3 is very similar to AIXI, except

instead of taking a Bayes mixture over all world models, the pessimistic agent

looks for the worst-case model among a set of models of high posterior weight.

The pessimistic imitation learner is obviously not trying to maximize any reward

like AIXI is. But a key similarity is that when learning, the environment never

resets. As mentioned in the imitation learning paper, all previous work on imi-

tation learning, to my knowledge, regards a setting where the environment resets

during learning. This is also the norm in the reinforcement learning literature. But

the AIXI formalism recognizes that full generality requires removing that handi-

cap. The other key inheritance from AIXI is a discrete model class over which the

algorithm does full Bayesian updating.

AIXI “explores” with value-of-information calculus. I add scare quotes, because

in a sense, it is just enlightened exploitation. Because of this, in some circum-

stances, AIXI never explores certain slim possibilities. Suppose that, according

to AIXI’s posterior, taking action a0 always has expected value 1/2, whereas it

has 2/3 credence in a world-model that implies that taking action a1 locks in a

reward of 0 forever, and 1/3 credence in a world-model that implies that it locks

in reward 1 forever. It is not worth testing action a1 to learn. Arguably, this is a

feature not a bug, if those slim possibilities really aren’t worth exploring. How-

ever, it does mean that AIXI has no formal performance guarantees besides the

somewhat unsatisfying optimality-by-definition.
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Some “solutions” to this “problem” have been presented (Lattimore & Hutter,

2014a; Leike, 2016; Leike, Lattimore, et al., 2016; M. K. Cohen et al., 2019).

They ensure optimality in the limit. However, M. K. Cohen et al. (2021) show

that the exploration required for such an optimality guarantee (in general com-

putable environments) ensures that the reinforcement learner becomes destroyed

or incapacitated. (Note that you never act suboptimally once you are dead). This

explains the choice to have the pessimistic reinforcement learner outsource its

exploration to a human mentor. And it means that the theoretical performance

guarantees of M. K. Cohen & Hutter (2020) and M. K. Cohen, Hutter, & Nanda

(2022) are actually about as strong as one can hope for.

6.4 Bayesian Methods

The binary tree kernel of Chapter 5 gives us method for doing Gaussian processes

regression. Gaussian processes (C. K. Williams & Rasmussen, 2006) are an ex-

ample of a Bayesian machine learning method. In the paper’s literature review

section, I review other methods for making GPs more tractable. Here I will dis-

cuss Bayesian methods more broadly.

Bayes’ Rule (Bayes, 1763) follows in a few steps from the definition of conditional

probability; nowadays, it takes more work to have a mathematical object bear your

name. It states

P(hypothesis|observations) =
P(hypothesis) P(observations|hypothesis)

P(observations)
(6.2)

One of the most basic inference algorithms is linear regression, and one of the

most basic Bayesian inference algorithms is Bayesian linear regression (Murphy,

2012). In Bayesian linear regression, one starts with a prior probability distribu-
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tion over each of the coefficients in a linear model, and then this is updated into

a posterior after seeing the data. If the prior distributions are all Gaussian, this is

computationally easy. Bayesian linear regression can be made more powerful by

transforming the data first, often into a higher-dimensional space. For example,

Lázaro-Gredilla & Figueiras-Vidal (2010) and Ober & Rasmussen (2019) trans-

form data according to the activations of the neurons in the last hidden layer of a

neural network, and then perform Bayesian linear regression.

In Gaussian process regression, each hypothesis is a function, and the observa-

tions are (noisy) observations of the function’s true value at various locations.

Amazingly, given the enormous support of the Gaussian process prior, the poste-

rior over functions can be finitely described, and a posterior over the function’s

value at any given location can be computed. In fact, it is not trivial to show that

Gaussian processes exist at all (Doob, 1953).

Gaussian process regression and Bayesian linear regression (with a Gaussian prior)

are closely related—any GP with a finite dimensional kernel can be recast as

Bayesian linear regression (C. K. Williams & Rasmussen, 2006).

Another successful branch of Bayesian machine learning is probabilistic graphical

modelling (Koller & Friedman, 2009). In probabilistic graphical models, a joint

distribution over many variables can be concisely defined in terms of the joint

marginal distributions over “neighboring” variables’ values. A graph is drawn to

determine which variables are neighbors. The book just cited gives an extensive

account of the techniques and uses of probabilistic graphical models.

Unfortunately, for most model classes, for most prior distributions that we are

interested in, the posterior distribution after seeing the data has no simple rep-

resentation. So a large part of the field of Bayesian machine learning is about

approximating Bayesian inference. The two most common techniques (in my
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impression) are variational approximations and Markov chain Monte Carlo sam-

pling.

Variational inference is a technique in which a posterior distribution is (locally)

approximated by a distribution that is more tractable to represent and evaluate.

This is often done by attempting to minimize the KL divergence from the approx-

imate model to the truth. This is easier said than done. Another formulation of

this is to maximize the evidence lower bound, or ELBO (Mcauliffe & Blei, 2007).

For a true distribution p✓ over observables x and latent variables z, we would often

like to marginalize over the latent variables. And the evidence lower bound is that

p✓(x) =
´
p✓(x, z)dz � Ez⇠q� ln

p✓(x,z)
q�(z)

. q� can be any distribution, so we pick

one that is easy to evaluate and sample from. Because the expectation is over an

easy-to-sample-from distribution, it can be approximated with samples.

When picking tractable distributions to appproximate the true distribution, it is

very helpful to pick a “conjugate prior”. Such a prior distribution produces a

posterior distribution with analytic form in the same family of distributions after a

certain kind of evidence comes in. See for example, Hensman et al.’s (2012) use

of the conjugate exponential family for variational inference.

For a further review of variational inference, see Blei et al. (2017) and C. Zhang

et al. (2018).

While a true posterior distribution is intractable in many contexts, an unnormal-

ized version is often accessible. Markov chain Monte Carlo sampling is a method

for sampling from an unnormalized posterior distribution Gilks et al. (1995). The

insight behind the method comes from the stationary distribution of states in a

Markov chain. Because the relative probability of states is known from the un-

normalized posterior, an appropriate transition kernel can be constructed for which

the stationary distribution matches the true posterior (Metropolis et al., 1953;
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Hastings, 1970). The transition kernel works as follows: sample a new state ac-

cording to a symmetric distribution (sampling b from a has the same probability

as sampling a from b), but then with some probability, stay put instead. If the

unnormalized posterior at the new location is less than that of the current location,

the probability of moving is equal to that ratio. This works, but relatively slowly.

Gilks et al. (1995) covers the extensive literature on the problem of how to design

a different transition kernel to make this kind of method converge more quickly.

Finally, I’ll discuss a more recent proposal for approximating Bayesian inference:

just learn to do it heuristically from practice in lots of settings. Ortega et al. (2019)

discuss how to do this for a sequential prediction task. The Bayes-optimal way

to do sequential prediction is to keep running posterior credences over hypothe-

ses as each token of the sequence comes in. Notably, the posterior credences at

any point in time form a “sufficient statistic”—they have all the information you

need for predicting going forward, so you can forget about what the actual ob-

servations were. So the problem of updating sufficient statistics given observed

data, and then using those statistics to make predictions is best solved by exact

(amortized) Bayesian inference (Ritchie et al., 2016), but this is often intractable;

maybe a learned function could quickly approximate this computation. Ortega et

al. (2019), Genewein et al. (2023, forthcoming), and Kirsch et al. (2022) train a

function through meta-learning to do this on sequences generated in qualitatively

diverse ways. To succeed, this function must do something like Bayesian infer-

ence. The proposal that meta-learners approximate Bayesian learning is recent,

but meta-learning itself has been studied for a while (Bengio et al., 1990; Schmid-

huber et al., 1996; Thrun & Pratt, 1998).

For many other Bayesian methods and much more detail on the ones discussed

above, see Murphy (2012) and MacKay (2003).
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6.5 Ensembling

Of the many methods in machine learning to quantify uncertainty (Psaros et al.,

2023), the most widespread strategy outside of pseudo-Bayesian methods appears

to be ensembling (Dietterich, 2000). In fact, ensembling appears in every tech-

nical chapter of this thesis, as I’ll explain in a moment. An ensemble is a set of

multiple different models, and one can quantify uncertainty at a test location by

examining the extent to which their predictions agree. A key question for ensem-

bling methods is how the models in the ensemble are encouraged to differ from

each other.

In Chapter 5, the ensemble is named as such. The binary tree ensemble is made

of many different binary tree GPs, and after the predictive distributions are added

together, the resulting accuracy usually increases. The only source of difference

between the models is different initialization of the optimization process, and the

highly non-convex optimization surface. In Chapters 3 and 4, the “top set” of

models is an ensemble. And the output of both algorithms depend critically on

how much the models in the ensemble agree. The way that variety is encouraged

in these ensembles is that we start with an extensive variety of models a priori,

and all models that perform well enough are allowed in.

A classic method for promoting variety in an ensemble is bootstrapping (Efron,

1979). In this method, each model is trained on a new dataset that is made out

of data points that are sampled (with replacement) from the original dataset. For

some methods, ensemble variety can be forced by making different algorithmic

choices. For example, in Breiman’s (2001) random forest—an ensemble of de-

cision trees—each tree uses a different order of the dimensions along which the

data is successively split.
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When training a neural network, random initialization of the parameters and ran-

dom shuffling of the data seems to suffice for ensemble variety (Lakshminarayanan

et al., 2017). Wenzel et al. (2020) show that ensembling over different hyperpa-

rameters as well can improve performance. These and other methods for quanti-

fying uncertainty in neural networks have been evaluated by Nado et al. (2021).

Naïvely, an ensemble with 100 models has a 100x cost. So there has been some

work to create ensembles of neural networks that can be trained and evaluated

more efficiently. Wen et al. (2020) create an ensemble of neural networks where

each weight matrix in a network is Hadamard-multiplied by different rank one

matrices to get alternative networks in the ensemble. With comparable perfor-

mance, the resource requirements are significantly lower, especially as the number

of models grows. Osband et al. (2021) develop a class of models called Epistemic

Neural Networks and a particular architecture called an epinet. The epinet effec-

tively creates a single network than can act differently depending on a different

random input (separate from the ordinary input), so one network represents many

models in an ensemble. The models also have different weight depending on the

marginal probability of the random input. This method makes training way more

efficient than a large ensemble, but it also outperforms them. More recently, they

were evaluated in their ability to accommodate distributional shift, and they out-

performed standard ensembles (Lu et al., 2022).
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7 | Conclusion

I have argued that advanced agents planning over the long-term in unknown en-

vironments present an existential threat to humanity. I have shown that in the-

ory, a sufficiently pessimistic agent would not present such a threat, nor would

a sufficiently “pessimistic” imitation learner (although imitation learners are not

so threatening to begin with). Then, I developed a new log-linear-time method

for Gaussian process regression in order to push forward the state-of-the-art in

artificial uncertainty, a prerequisite for artificial pessimism.

I hope this work opens a rich space of ideas for future work to explore. The al-

gorithms from Chapters 3 and 4 are not yet ready for practical application, but

the ideas are. The possibilities for how these algorithms might be tractably ap-

proximated are endless, and then they have the potential to be be extremely use-

ful. For example, the set of top models (M�
t in Chapter 3 ⇧↵

h<t
in Chapter 4)

could be approximated by an ensemble. And the existing literature on how to

promote diversity among an ensemble could be brought to bear on this problem.

Or the sets could be approximated by repeated sampling from a Bayesian poste-

rior; the reader is invited to bring their favorite (approximate) Bayesian method

to the problem. Note that only various minima over the ensemble affect the final

decisions in Chapters 3 and 4, and the rest of the ensemble is ignored. So an-

other approach would be to, for each action, search for demonstrator-models that

assign low probability that action; or for each candidate policy, search for world-

models that assign low value to that policy. These searches would of course need

to be balanced by the search for accurate models. In the neural network paradigm,

where model search is done with gradient descent, recent work by Rigter et al.

(2022) takes something like this approach. I cannot say their work was inspired

by mine, but if it had been, it might have looked quite similar; there are many
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possible choices that could be made along the way.

How to test these ideas empirically? For pessimistic reinforcement learning, one

could try to create an agent that learns to land a lunar lander without crashing

once during training, with the help of a fuel-inefficient mentor who is nonetheless

able to avoid crashing. Could the pessimistic agent retain the no-crashing record,

wean itself from mentorship, and surpass its mentor in fuel-efficiency? For pes-

simistic imitation learning, if the true demonstrator’s policy is known (to the ex-

perimenters), one could evaluate the imitator’s ability to assign low probability

to very low probability actions. For example, a large language model obviously

isn’t a person, but if one imagined that the large language model was what you

cared about imitating very carefully, that could be used as a demonstrator. (And

presumably, if the imitator did well at that task, it could be similarly careful when

imitating a real person).

It’s interesting to see that Rigter et al. (2022) test their agent on offline RL bench-

marks. So a) it would be interesting to see whether an agent like theirs could per-

form well at the lunar lander task above. And b) maybe offline RL benchmarks

are a good testing suite to encourage cautious agent design.

Chapter 4 could also enable an invigoration of a classic use of an imitation learner:

conditioning an imitative policy on a future desired outcome. Such conditioning

can put extraordinary strain on the accuracy of the underlying policy. A per-

fect Bayesian imitation learner will occasionally assign probability to actions that

the demonstrator would never take, because it entertains (obscure) demonstrator

models that say the demonstrator would take that action. This can be thought

of as epistemic humility. But if this Bayesian imitative policy is conditioned on

an unlikely future outcome, a large fraction of the measure on this outcome may

come from actions the demonstrator would never take, from the contribution of
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erroneous demonstrator models, entertained only out of humility. So any intuition

we might have about a conditioned imitative policy still resembling the demon-

strator fails. With the method in Chapter 4, however, the policy could be safely

conditioned on future events. Empirical evaluation of this approach may need to

wait until there are better tractable approximations of this method.

Future work on the Binary Tree GP could involve much more extensive testing and

application. It would be worth examining calibration curves in various contexts,

the benefits of ensembling, and the possibility of overfitting. It would be interest-

ing to examine the shape of the loss surface in detail. In terms of applications, I’ve

wondered if it could be used to beat the market. The prices of many other stocks

could make stock price prediction an arbitrarily high-dimensional problem. A

world-model based on a BTGP could be used to help an artificial agent handle

uncertainty, as was my original motivation for this method.

This thesis suggests that in theory, in the presence of mentorship, pessimism is a

viable strategy for acting safely and competently. I hope to see other work explor-

ing how we might implement practical versions of pessimistic agency. It may re-

quire foundational progress in learning models that have high-quality uncertainty

estimates.
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A | Appendices

A.1 Definitions and Notation – Quick Reference

Notation Meaning

A, O, R the finite action/observation/reward spaces

H A⇥O ⇥R

ht 2 H; the interaction history in the tth timestep

at, ot, rt 2 A,O,R; the action, observation, and reward at timestep t

h<t (h1, ..., ht�1)

⌫, µ world-models stochastically mapping H⇤ ⇥A O ⇥R

µ the true world-model/environment

M the set of world-models the agent considers

⇡ a policy stochastically mapping H⇤  A

P⇡
⌫ a probability measure over histories with actions sampled from

⇡ and observations and rewards sampled from ⌫

E⇡
⌫ the expectation when the interaction history is sampled from P⇡

⌫

� 2 [0, 1); the agent’s discount factor

V ⇡
⌫ (h<t) (1� �)E⇡

⌫

⇥P1
k=t �

k�trk|h<t

⇤
; the value of executing a policy ⇡

in an environment ⌫ given the interaction history h<t

⇡m the mentor’s policy

P the set of mentor-models the agent considers

w(⌫) the prior probability the agent assigns to ⌫ being the true world-

model
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w0(⇡) the prior probability the agent assigns to ⇡ being the mentor’s

policy

w(⌫|h<t) the posterior probability that agent the assigns to ⌫ after observ-

ing interaction history h<t

w0(⇡|h<t) the posterior probability that the agent assigns to the mentor’s

policy being ⇡ after observing interaction history h<t

� 2 (0, 1); tunes how pessimistic the agent is

M�
t top-k world-models according w(·|h<t), with k chosen to satisfy

w(M�
t |h<t) > �

⇡�(·|h<t) [argmax⇡2⇧ min⌫2M�
t
V ⇡
⌫ (h<t)](·|h<t)

Zt positive i.i.d. random variable satisfying p(Zt < ") > 0 and

p(Zt > 1) > 0

✓t the probability the agent queries the mentor at time t

qt ⇠ Bern(✓t); indicates whether the agent the queries mentor at

time t

⇡�
Z(·|h<t) ✓t⇡m(·|h<t) + (1� ✓t)⇡�(·|h<t)

X general finite alphabet

P,Q probability measures over X1

x<t the first t� 1 characters of x<1 2 X1

!, ⌦ ! is an outcome in a general sample space ⌦

dk(P,Q|x<t) k-step variation distance maxE⇢Xk

��P (E|x<t)�Q(E|x<t)
��

d(P,Q|x<t) total variation distance limk!1 dk(P,Q|x<t)

144



University of Oxford St. Cross College

F ,G sets of functions from N to N

CFG TIME(F) \ SPACE(G)

FCFG a complexity class for environments ⌫ (see Def. 4)

E ⇢ H⇤ ⇥A; an event

E the set of interaction histories for which E has happened

{h<tat 2 H⇤ ⇥A : 9t0  t h<t0at0 2 E}

cE a constant > 0 depending on E

BayesM0(·) for M0 ⇢M, (
P

Q2M0 w(Q)Q(·))/
P

Q2M0 w(Q)

V ⇡\k
⌫ (h<t) the truncated value (1� �)E⇡

⌫

hPt+k�1
j=t �j�trj|h<t

i

lim limt!1

w.p.1 with P
⇡�
Z

µ -probability 1

A.2 Algorithm for Pessimism

⇡� is defined to optimize the pessimistic value, but for this algorithm, ⇡� picks

an action that is "-optimal, as is necessary for infinite-horizon planning. Algo-

rithm 4 takes a set of world-models or mentor-models M = {⌫i}i2N or {⇡i}i2N,

a prior w, a threshold ↵, and a history h<t. It calculates the posterior w(·|h<t) to

enough precision, for enough models, to identify a minimal set M↵
t ⇢ M such

that w(M↵
t |h<t) > ↵. It returns M↵

t , and the last model added to M↵
t . M must

be ordered so that i < j =) w(⌫i) � w(⌫j).

Algorithm 5 samples from the "-optimal version of ⇡�
Z .

A.3 Proofs of Lemmas

Lemma 1 (Merging of Top Opinions). For � 2 (0, 1), limt!1maxQ2M�
t
d(P,Q|x<t) =

0 with P -probability 1 (i.e. when x<1 = ! ⇠ P ).
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Algorithm 4 Calculate Posterior Up to Threshold. The posterior cannot be com-
puted exactly, since the normalization constant is an infinite sum. It suffices for
our purposes to compute it to finite precision. This complication makes the algo-
rithm more involved, so unless the reader is particularly interested or skeptical,
the details of this algorithm are non-essential.
Require: M = {⇢i}i2N, w : M ! [0, 1], ↵, h<t, where i < j =) w(⇢i) �
w(⇢j)
W  [empty list] . contains un-normalized posterior weights
⌃W  0 . sum of W
⌃⇤  1 . sum of prior weights of unchecked ⇢i
i 1 . index of first unchecked ⇢i
while True do

W [i] w(⇢i)
⌃⇤  ⌃⇤ �W [i]
for k  0 to t� 1 do

W [i] W [i] ⇤ [⇢i(ok, rk|h<kak) or ⇢i(ak|h<k)] (depending on whether
⇢ is world-model or mentor-model)

⌃W  ⌃W +W [i]
cutoff w(⇢i+1) . for a checked world-model

to definitely 2M�
t , its un-normalized posterior weight must be at least cutoff;

otherwise, the first unchecked model might have larger posterior weight
J  [1, 2, ..., i]
sort J by W descending
weight_sum 0
last_added null
M↵

t  ;
last_model null
for j 2 J do

if W [j] < cutoff then break
weight_sum weight_sum +W [j]
last_added W [j]
last_model ⇢j
M↵

t  M↵
t [{⇢j}

. Note ⌃W 
P

⇢2M[un-normalized posterior weight of ⇢]  ⌃W+⌃⇤,
so w(M↵

t |h<t) � weight_sum
⌃W+⌃⇤

and w(M↵
t \⇢j|h<t)  weight_sum�last_added

⌃W

if weight_sum
⌃W+⌃⇤

> ↵ then . these models cover > ↵ of posterior
if weight_sum�last_added

⌃W
 ↵ then . the last one is definitely needed

return M↵
t , last_model

break
i i+ 1
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Algorithm 5 "-optimal approximation of ⇡�
Z(·|h<t). The agent does a variant of

expectimax planning, in which a minimum over ⌫ 2 M�
t appears at each step.

Then it uses a Thompson sampling-inspired approach to decide whether to query
the mentor.
Require: A, O, R, M = {⌫i}i2N, w : M ! [0, 1], P = {⇡i}i2N, w0 : P !
[0, 1], �, �, Dist(Z), h<t, "
k  dlog�(")e . the agent need only consider a horizon of k to estimate the
value within "
H A⇥O⇥R
M�

t , _ Calculate Posterior Up to Threshold(M, w, �, h<t)
for hk 2 Hk do Vhk  (1 � �)

Pk�1
j=0 �

jrkj (where akj , okj , and rkj are the j th

action, observation, and reward of hk)
for j  k � 1 to 0 do

for hj 2 Hj do . note H0 = {;}
Vhj  maxa2A min⌫2M�

t

P
o,r2O⇥R ⌫(o, r|h<thja)Vhjaor

Yt  V;
a�t  argmaxa2A min⌫2M�

t

P
o,r2O⇥R ⌫(o, r|h<ta)Vaor

if Yt = 0 then return query mentor
✓1, ✓2 ⇠ Uniform(0, 1)
_, ⇡  Calculate Posterior Up to Threshold(P , w0, ✓1, h<t)
_, ⌫  Calculate Posterior Up to Threshold(M, w, ✓2, h<t)

Xt  
P

hk2Hk

hQk�1
j=0 ⇡(a

k
j |h<thk

<j)⌫(o
k
j r

k
j |h<thk

<ja
k
j )
i
(1� �)

Pk�1
j=0 �

jrkj
Zt ⇠ Dist(Z)
if Xt > Yt + Zt then return query mentor else return a�t
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We convert the Merging of Top Opinions Lemma into an on-policy learning result

for the pessimistic agent.

Corollary 5 (On-Policy Prediction).

lim max
⌫2M�

t

d

✓
P
⇡�
Z

⌫ ,P
⇡�
Z

µ

���h<t

◆
= 0 w.p.1

Proof. We convert the problem to a sequence prediction problem as follows. Let
fM = {P⇡�

Z
⌫ |⌫ 2 M}, and let ew(P⇡�

Z
⌫ ) = w(⌫). For any history with positive

P
⇡�
Z

µ probability, ew(P⇡�
Z

⌫ |h<t) = w(⌫|h<t), so P
⇡�
Z

⌫ 2 fM
�

t if and only if ⌫ 2M�
t .

Therefore,

lim max
⌫2M�

t

d

✓
P
⇡�
Z

⌫ ,P
⇡�
Z

µ

���h<t

◆
= lim max

P
⇡
�
Z

⌫ 2fM
�
t

d

✓
P
⇡�
Z

⌫ ,P
⇡�
Z

µ

���h<t

◆
= 0 w.p.1

by Lemma 1 (the Merging of Top Opinions Lemma).

We will make use of the “truncated value”, defined as follows:

V ⇡\k
⌫ (h<t) := (1� �)E⇡

⌫

"
t+k�1X

j=t

�j�trj

�����h<t

#
(A.1)

We will often consider the truncated value while exploiting the fact that

0  V ⇡
⌫ (h<t)� V ⇡\k

⌫ (h<t)  �k (A.2)

which follows from rj 2 [0, 1].

The following lemma is an intermediate result in the proof of Leike, Lattimore, et

al.’s (2016) Lemma 2, and the proof is transcribed with notational changes.

Lemma 10 (Variation Distance Bounds Expectation-Difference). Let P1 and P2
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be two probability measures defined on the same space, and let X 2 [0, 1] be a

random variable. Then

��EP1 [X]� EP2 [X]
�� d(P1, P2)

Proof. Let Q = (P1 + P2)/2. Let dPi
dQ (!) denote the Radon Nykodym-derviative,

where ! 2 ⌦ is a generic outcome. Let A be the event dP1
dQ (!) � dP2

dQ (!) Then

EP1 [X]� EP2 [X] = E!⇠Q


X(!)

dP1

dQ
(!)�X(!)

dP2

dQ
(!)

�

 E!⇠Q


X(!)

✓
dP1

dQ
(!)� dP2

dQ
(!)

◆����! 2 A

�

 E!⇠Q


dP1

dQ
(!)� dP2

dQ
(!)

����! 2 A

�

= P1(A)� P2(A)  sup
A2F

|P1(A)� P2(A)| = d(P1, P2)

Since variation distance is symmetric,
��EP1 [X]� EP2 [X]

�� d(P1, P2).

The following is a simple consequence.

Lemma 11.
���V ⇡

⌫ (h<t) � V ⇡
µ (h<t)

��� > " > 0 =) ddlog�("/2)e
⇣
P⇡
⌫ ,P

⇡
µ

���h<t

⌘
>

"/2 > 0

Proof. Letting k = dlog�("/2)e,
���V ⇡

⌫ (h<t) � V ⇡
µ (h<t)

���> " implies
���V ⇡\k

⌫ (h<t) �

V ⇡\k
µ (h<t)

���> "/2 by Inequality A.2. Since the value is bounded by [0, 1], from

Lemma 10, ���V ⇡\k
⌫ (h<t)� V ⇡\k

µ (h<t)
��� dk

⇣
P⇡
⌫ ,P

⇡
µ

���h<t

⌘
(A.3)

so ddlog�("/2)e
⇣
P⇡
⌫ ,P

⇡
µ

���h<t

⌘
> "/2 > 0.

Corollary 6 (Finite Zero Conditions). The zero condition, in which the agent

queries the mentor because the pessimistic value of all policies is 0, only occurs
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finitely often, with probability 1.

Proof. By the previous two lemmas, the pessimistic value of ⇡�
Z approaches the

true value with probability 1, and the true value is at least "r because rewards

less than "r are never provided. Thus, eventually, there is always at least one

policy with a pessimistic value greater than 0, so the zero condition is never met

thereafter.

Since all our remaining performance results consider limiting behavior, we will

ignore the zero condition.

The next lemma, from M. K. Cohen et al. (2020, Lemma 3), states that the pos-

terior probability on the truth (regarding both the true world-model and the true

mentor-model) does not approach 0.

Lemma 12 (Posterior on Truth).

P [inf
t
w(P |x<t) = 0] = 0

Proof. If w (P |x<t) = 0 for some t, then P (x<t) = 0, so with P -probability

1, inft2N w (P |x<t) = 0 =) lim inft2N w (P |x<t) = 0 which in turn implies

lim supt2N w (P |x<t)
�1 =1. We show that this has probability 0.

Let zt := w (P |x<t)
�1. We show that zt is a P -martingale.
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EP [zt+1|x<t]
(a)
= EP


w (P |xt+1)

�1
����x<t

�

(b)
=
X

x2X

P (x|x<t)


BayesM(xtx)

w (P )P (xtx)

�

(c)
=
X

x2X

BayesM(xtx)

w (P )P (x<t)

(d)
=
X

x2X

BayesM(x|xt)
BayesM(xt)

w (P )P (x<t)

(e)
=
BayesM(xt)

w (P )P (x<t)
(f)
= w (P |x<t)

�1

= zt (A.4)

where (a) is the definition of zt, (b) follows from Bayes’ Rule, (c) follows from

multiplying the numerator and denominator by BayesM(x<t) and cancelling, (d)

follows from expanding the numerator, (e) follows because BayesM is a mea-

sure, and (f) follows from Bayes’ Rule, completing the proof that zt is martingale.

By the martingale convergence theorem zt ! f(!) < 1 w.p.1, for ! 2 ⌦, the

sample space, and some f : ⌦! R, so the probability that lim supi2N w (P |x<t)
�1 =

1 is 0, completing the proof.

Note that the posterior probability on the mentor-policy is only updated at some

timesteps (when the mentor is queried), but it is clearly still a martingale.

Lemma 6 (Almost On-Policy Convergence). For a sequence of policies ⇡t and

an infinite set of timesteps ⌧ , the following holds with P
⇡�
Z

µ -prob. 1: if there ex-

ists c > 0 such that 8t 2 ⌧ 8t0 � t 8a 2 A ⇡�
Z(a|h<t0) � c⇡t(a|h<t0), then

lim⌧3t!1 V ⇡t
µ (h<t) �min⌫2M�

t
V ⇡t
⌫ (h<t) = 0 and for all k, lim⌧3t!1max⌫2M�

t

151



University of Oxford St. Cross College

dk
⇣
P⇡t
⌫ ,P⇡t

µ

���h<t

⌘
= 0.

Proof. Suppose by contradiction that |min⌫2M�
t
V ⇡t
⌫ (h<t) � V ⇡t

µ (h<t)| > " >

0 infinitely often for t 2 ⌧ . Then, by Lemma 11, for some ⌫ 2 M�
t at each

of those timesteps, ddlog�("/2)e
⇣
P⇡t
⌫ ,P⇡t

µ

���h<t

⌘
> "/2 > 0. So then there exists

a k for which max⌫2M�
t
dk
⇣
P⇡t
⌫ ,P⇡t

µ

���h<t

⌘
> "/2 > 0 infinitely often for t 2

⌧ . Now we are supposing a contradiction in either of the two implications of

the theorem. An event on which the two measures differ by at least "/2 occurs

within k timesteps. Because ⇡�
Z(·|h<t0) � c⇡t(·|h<t0), dk

✓
P
⇡�
Z

⌫ ,P
⇡�
Z

µ

���h<t

◆
�

ckdk
⇣
P⇡t
⌫ ,P⇡t

µ

���h<t

⌘
. This holds for any ⌫, but in particular for ⌫ 2 M�

t , so

max⌫2M�
t
dk

✓
P
⇡�
Z

⌫ ,P
⇡�
Z

µ

���h<t

◆
� ck max⌫2M�

t
dk
⇣
P⇡t
⌫ ,P⇡t

µ

���h<t

⌘
> ck"/2. This

happens infinitely often for t 2 ⌧ .

But d
✓
P
⇡�
Z

⌫ ,P
⇡�
Z

µ

���h<t

◆
� dk

✓
P
⇡�
Z

⌫ ,P
⇡�
Z

µ

���h<t

◆
, so max⌫2M�

t
d

✓
P
⇡�
Z

⌫ ,P
⇡�
Z

µ

���h<t

◆
>

ck"/2 > 0 infinitely often, which has probability 0 by Corollary 5. Thus, the orig-

inal assumption has probability 0, completing the proof.

We complete the proof of Theorem 1 here.

Proof. (Theorem 1) The proof begins in the main paper, in a “detailed proof

outline”. Recall the inductive hypotheses:

• tk exists: a timestep after which

– max⌫2M↵
t

���V ⇡0k;⇡�

⌫ (h<t)� V ⇡0k;⇡�

µ (h<t)
���< "

– max⌫2M↵
t
dk
⇣
P⇡0

⌫ ,P
⇡0

µ

���h<t

⌘
< "

for all t 2 ⌧k�1

• |⌧k| =1, where t 2 ⌧k if and only if

– t 2 ⌧k�1 (and for ⌧0, t 2 ⌧⇥ as well)
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– t � tk

– 8t0 < k : ✓t+t0 � ⌫ 0inf⇡
0
infp(Zt+t0 < ")

– V ⇡0
⌫0 (h<t+k) � V ⇡�

µ (h<t+k) + 2"

The proof by induction starts with k = 0. ⌧�1 = N, so t0 is a timestep after which

max⌫2M↵
t
|V ⇡�

⌫ � V ⇡�

µ | < " for all t � t0. From Lemma 6, setting ⇡t = ⇡� ,

setting ⌧ = ⌧�1, setting �0 = ↵, and setting c = p(Zt > 1) > 0, the condition

of the lemma holds—that 8t 2 ⌧ 8t0 � t, ⇡�
Z(a|h<t0) � c⇡t(a|h<t0) 8a 2 A—

so we have the result that with probability 1, limN3t!1max⌫2M↵
t
|V ⇡�

⌫ (h<t) �

V ⇡�

µ (h<t)| = 0. Therefore, t0 exists with probability 1. Turning to ⌧0, the first and

the third condition are immediate, so we need only show that the fourth condition

is satisfied infinitely often with probability 1 for t 2 ⌧⇥, namely that V ⇡0
⌫0 (h<t) �

V ⇡�

µ (h<t) + 2". This is true for all t 2 ⌧⇥, and |⌧⇥| =1.

Now we show that if tk exists and |⌧k| = 1, then with probability 1, tk+1

exists and |⌧k+1| = 1. For each t 2 ⌧k, V ⇡0
⌫0 (h<t+k) � V ⇡�

µ (h<t+k) + 2".

For t > t0, max⌫2M↵
t
|V ⇡�

⌫ (h<t+k) � V ⇡�

µ (h<t+k)| < ", and since ↵ � �,

M�
t ⇢ M↵

t , so max⌫2M�
t
|V ⇡�

⌫ (h<t+k) � V ⇡�

µ (h<t+k)| < ". Combining these,

we have V ⇡0
⌫0 (h<t+k) � min⌫2M�

t
V ⇡�

⌫ (h<t+k)+" for t 2 ⌧k. Thus, the probability

of exploring ✓t+k � ⌫ 0inf⇡
0
infp(Zt+k < ") > 0. Since A(t, k) holds for t 2 ⌧k,

A(t, k + 1) holds as well.

In preparation to apply Lemma 6, let ⇡t = (⇡0(k + 1); ⇡�)t; that is, since ⇡t need

only be defined from timestep t onward, let ⇡t be the policy which follows ⇡0 from

timestep t through timestep t + k, and follows ⇡� thereafter. Set ⌧ from Lemma

6 to be ⌧k. For t0 > t + k, ⇡t(·|h<t0) = ⇡�(·|h<t0), which satisfies ⇡�
Z(a|h<t0) �

c⇡�(a|h<t0) 8a 2 A. For t  t0  t + k, ✓t0 � ⌫ 0inf⇡
0
infp(Z < "), this being the

proposition A(t, k+1). Since ⇡�
Z mimics the mentor’s policy ⇡m when exploring,

for t  t0  t + k, ⇡�
Z(a|h<t0) � c⇡m(a|h<t0) 8a 2 A, for c = ⌫ 0inf⇡

0
infp(Z < ").
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But we need that ⇡�
Z(a|h<t0) � c0⇡0(a|h<t0) 8a 2 A.

So we show that d1(⇡0, ⇡m|h<t)✓t ! 0 with probability 1. For a mentor-model

⇡i 2 P , consider the alternative policy to ⇡�
Z , which explores by mimicking

⇡i instead of ⇡m. Call this policy ⇡�
Z,i Consider a prior over probability mea-

sures where w00(P
⇡�
Z,i

µ ) := w0(⇡i), and note that w00(P
⇡�
Z,i

µ |h<t) = w0(⇡i|h<t).

Because w0(⇡0|h<t) � ⇡0inf , w00(P
⇡�
Z,0

µ |h<t) � ⇡0inf . By Lemma 3, this implies

P
⇡�
Z

µ [d(P
⇡�
Z,0

µ ,P
⇡�
Z

µ |h<t)! 0] = 1. Trivially, d(P
⇡�
Z,0

µ ,P
⇡�
Z

µ |h<t) � d1(⇡0, ⇡m|h<t)✓t,

so d1(⇡0, ⇡m|h<t)✓t ! 0 with probability 1.

Recall that for t  t0  t + k, ✓t0 is uniformly bounded below, so on those

timesteps, d1(⇡0, ⇡m|h<t) ! 0. Therefore, there exists a time t0k after which

⇡m(a|h<t0) � ⇡0(a|h<t0)/2 8a 2 A. This gives us that for those timesteps t 

t0  t+ k, for t 2 ⌧k and � t0k, for all a 2 A,

⇡�
Z(a|h<t0) � ⌫ 0inf⇡

0
infp(Z < ")/2 ⇡0(a|h<t0) (A.5)

Restricting ⌧ to be the set of timesteps in ⌧k after t0k, ⌧ is still infinite, and we

can now apply Lemma 6 on the policy ⇡t = (⇡0(k + 1); ⇡�)t, with �0 = ↵

again, and with c = ⌫ 0inf⇡
0
infp(Z < ")/2. The implication of the lemma is

that lim⌧k3t!1max⌫2M↵
t
|V ⇡0(k+1);⇡�

⌫ (h<t) � V ⇡0(k+1);⇡�

µ (h<t)| = 0 and for all j,

lim⌧3t!1max⌫2M�
t
dj
⇣
P⇡t
⌫ ,P⇡t

µ

���h<t

⌘
= 0. In particular, this holds for j = k+1.

Together, these imply that tk+1, a time after which the value difference and the

variation distance are both less than ", exists. (For the k + 1-step variation dis-

tance, ⇡t is equivalent to ⇡0).

Since |⌧k| =1, we have already shown that the first three conditions are satisfied

infinitely often. So to show that |⌧k+1| = 1, we need only show that among

those infinitely many timesteps, the following condition holds infinitely often:
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V ⇡0
⌫0 (h<t+k+1) � V ⇡�

µ (h<t+k+1) + 2". We begin,

V ⇡0

⌫0 (h<t)
(a)

� V ⇡�

µ (h<t) + 7"
(b)

� min
⌫2M�

t

V ⇡�

⌫ (h<t) + 6"
(c)

� min
⌫2M�

t

V ⇡0(k+1);⇡�

⌫ (h<t) + 6"

(d)

� V ⇡0(k+1);⇡�

µ (h<t) + 5"
(e)

� V ⇡0(k+1);⇡�

⌫0 (h<t) + 4" (A.6)

where (a) follows because ⌧k ⇢ ⌧k�1 ⇢ ... ⇢ ⌧⇥ which is the set of timesteps for

which that holds; (b) follows because ⌧k only contains timesteps after t0, and after

t0, those two values differ by at most " for all ⌫ 2 M�
t (indeed for all ⌫ in M↵

t

which is a superset of M�
t because ↵ � �); (c) follows because ⇡� maximizes

that quantity; (d) follows because for t � tk+1, those two values differ by at most

" for all ⌫ 2 M�
t (indeed for all ⌫ in M↵

t ); and (e) follows because ⌫ 0 2 M↵
t ,

because w(M↵
t |h<t) � 1 � ⌫ 0inf/2 by the definition of ↵, and w(⌫ 0|h<t) � ⌫ 0inf ,

so ⌫ 0 “doesn’t fit” in the complement of M↵
t .

From Inequality A.6, we expand to get

3"V ⇡0

⌫0 (h<t)� V ⇡0(k+1);⇡�

⌫0 (h<t)� "

(a)
= E⇡0

⌫0

h
�k+1

⇣
V ⇡0

⌫0 (h<t+k+1)� V ⇡�

⌫0 (h<t+k+1)
⌘���h<t

i
� "

(b)

 E⇡0

µ

h
�k+1

⇣
V ⇡0

⌫0 (h<t+k+1)� V ⇡�

⌫0 (h<t+k+1)
⌘���h<t

i
(A.7)

where (a) follows because the policies agree on the first k + 1 timesteps after t,

and (b) is true because ⌫ 0 2M↵
t and t � tk+1, so dk+1(P

⇡0

⌫0 ,P
⇡0

µ |h<t)  " by the

definition of tk+1, and the difference in the expectations is less than this variation

distance by Lemma 10; (note the expectation is only over the next k+1 timesteps).

We would like to bound the probability of a significant value difference below. In

what follows, all values take the argument h<t+k+1, so we remove it for legibility.
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P
⇡�
Z

µ

h
V ⇡0

⌫0 � V ⇡�

⌫0 > 3"
���h<t

i (a)

�[⌫ 0inf⇡0infp(Z < ")/2]k+1 P⇡0

µ

h
V ⇡0

⌫0 � V ⇡�

⌫0 > 3"
���h<t

i

(b)
= f",k

h
1� P⇡0

µ

h
V ⇡0

⌫0 � V ⇡�

⌫0  3"
���h<t

ii

= f",k
h
1� P⇡0

µ

h
1�

⇣
V ⇡0

⌫0 � V ⇡�

⌫0

⌘
� 1� 3"

���h<t

ii

(c)

� f",k


1� 1

1� 3"
E⇡0

µ

h
1�

⇣
V ⇡0

⌫0 � V ⇡�

⌫0

⌘���h<t

i�

(d)

� f",k


1 +

1

1� 3"

✓
3"

�k+1
� 1

◆�
= f",k

3"(1� �k+1)

(1� 3")�k+1
=: g",k > 0 (A.8)

where (a) follows from Inequality A.5, (b) sets f",k = [⌫ 0inf⇡
0
infp(Z < ")/2]k+1,

(c) follows from Markov’s Inequality, and (d) follows from Inequality A.7. Since

this probability is uniformly positive for t meeting the first three conditions of

⌧k+1, the event occurs infinitely often with probability 1. Finally, |V ⇡�

⌫0 (h<t+k+1)�

V ⇡�

µ (h<t+k+1)| < ", since ⌫ 0 2M↵
t and t � t0, so it also follows that V ⇡0

⌫0 (h<t+k+1)�

V ⇡�

µ (h<t+k+1) > 2" occurs infinitely often with probability 1 when the other three

conditions of ⌧k+1 are satisfied. This completes all four conditions for ⌧k+1, so

|⌧k+1| =1 with probability 1, completing the proof by induction over k.

But this implies that Inequality A.7 holds for all k; that is,

3"  �k+1 E⇡0

µ

h
V ⇡0

⌫0 (h<t+k+1)� V ⇡�

⌫0 (h<t+k+1)
���h<t

i
 �k+1 (A.9)

because values belong to [0, 1]. But as k ! 1, this inequality is false. Thus, we

have a contradiction, after following implications that hold with probability 1, so

the negation of the theorem, which we supposed at the beginning, has probability

0.

Corollary 2 (Limited Querying). ✓t ! 0 w.p.1.
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Proof. Again, we treat implications that hold with probability as if they are logical

implications, so any supposition which leads to a contradiction has probability 0.

From Corollary 6, the zero condition happens only finitely often, so it is irrelevant

to the limiting behavior.

For a given infinite interaction history h, let PMh be a finite set of pairs (⇡, ⌫),

such that the sum over PMh of the limits of w(⌫|h<t)w0(⇡|h<t) exceeds 1 � ",

and for all pairs in the set, that limit is strictly positive. Such a finite set exists by

Lemma 5, which states that the sum of the limits of posteriors is 1 with probability

1.

Suppose by contradiction that ✓t > 2" infinitely often under h. Eventually, the

probability of sampling any (⇡, ⌫) /2 PMh  ", so this can contribute at most "

to the probability of querying the mentor. Letting ⇡0t and ⌫ 0t be the sampled policy

and world-model at time t when determining whether to query to the mentor, this

implies that ✓t ^ (⇡0t, ⌫
0
t) 2 PMh) > " infinitely often. qt = 1 implies that

V
⇡0
t

⌫0t
(h<t) > min⌫2M�

t
V ⇡�

⌫ (h<t) + Zt, so the probability of the event is at most

p(Zt < V
⇡0
t

⌫0t
(h<t) � min⌫2M�

t
V ⇡�

⌫ (h<t)). Since (⇡0, ⌫ 0) satisfies the condition of

Theorem 1, that value difference approaches at most 0, so that probability goes

to 0 since Zt is strictly positive. Thus, the probability can not exceed " infinitely

often, contradicting the assumption, so ✓t ! 0 with probability 1.

Corollary 3 (Don’t Do Anything I Wouldn’t Do). If determining ⇡m(at|h<t) = 0

is in the complexity class C(F/t)G , then as � ! 1, the probability of the following

proposition goes to 1: the agent never takes an action the mentor would never

take. Letting E = {h<tat 2 H⇤ ⇥A | ⇡m(at|h<t) = 0}, then

E 2 C(F/t)G =) lim
�!1

P
⇡�
Z

µ [8t : ⇡m(at|h<t) > 0] = 1
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Proof. By Theorem 2,

lim
�!1

P
⇡�
Z

µ [8t (h<t�1at�1 /2 E =) h<tat /2 E _ qt = 1)] = 1 (A.10)

qt = 1 =) at ⇠ ⇡m(·|h<t) =) ⇡m(at|h<t) > 0 () h<tat /2 E. Thus we

can simplify,

lim
�!1

P
⇡�
Z

µ [8t (h<t�1at�1 /2 E =) h<tat /2 E)] = 1 (A.11)

The base case is vacuous, so by induction,

lim
�!1

P
⇡�
Z

µ [8t : h<tat /2 E] = 1 (A.12)

completing the proof.

Theorem 3 (Diverging from the Mentor). In the Coin-flip Mentor Example,

lim inft!1
1
t

Pt
k=1[[ak = heads]] > 1/2 with P

⇡�
Z

µ -prob. 1.

Proof. V ⇡m

µ = 3/4, this being the expected reward at each timestep. From Corol-

lary 1, lim inf V ⇡�

µ (h<t) � 3/4. Since ✓ ! 0, V ⇡�
Z

µ (h<t) � V ⇡�

µ (h<t) ! 0, so

lim inf V
⇡�
Z

µ (h<t) � 3/4, with probability 1. Let Rt = (1 � �)
P1

i=0 �
irt+i, so

V
⇡�
Z

µ (h<t) = E⇡�
Z

µ [Rt]. Because µ and ⇡� are deterministic, and because ✓t ! 0,

V
⇡�
Z

µ (h<t) � Rt ! 0 with probability 1. This implies lim inf Rt � 3/4. Letting

2" = 1/2� �/(1 + �) > 0, there exists a time t0 after which Rt > 3/4� ".

Let t > t0 and at = tails. (If tails only occurs finitely often, the theorem

holds trivially). Suppose by contradiction that for all 0  k < K := dlog�("/2)e,
1

k+1

Pk
j=0[[at+j = heads]]  1/2. We have a budget of K/2 headses to place

in timesteps t through t + K � 1. Let R\K
t be defined like the truncated value:
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R\K
t = (1��)

PK�1
i=0 �irt+i. Rt  R\K

t +�K = R\K
t +"/2, from the definition of

K. We consider the maximum that R\K
t can be while satisfying the supposition.

If, in timesteps t through t+K�1 a heads is switched with a tails that comes

later, R\K
t increases, since heads gives a reward of 1, and tails gives a reward

of 1/2, and the earlier timestep is less discounted.

Thus, greedy placement of headses maximizes R\K
t ; that is, placing them at the

first opportunity which still satisfies 1
k+1

Pk
j=0[[at+j = heads]]  1/2. at =

tails, so at+1 may be heads, but then at+2 must be tails, or else k = 2

would violate the supposition, etc. R\K
t is maximized (while satisfying the sup-

position) when tails and heads alternate. Therefore, Rt � "/2  R\K
t 

(1� �)
PK�1

i=0 �i(1/2+1/2[[i is odd]]) < (1� �)
P1

i=0 �
i(1/2+1/2[[i is odd]]) =

1/2 + 1/2 ⇤ �/(1 + �) = 1/2 + 1/2 ⇤ (1/2� 2") = 3/4� ", so Rt  3/4� "/2.

This, however, contradicts t > t0. So the supposition is false: 9k < K such

that 1
k+1

Pk
j=0[[at+j = heads]] > 1/2. a/b > 1/2 ^ b < K =) a/b �

1/2 + 1/(2K). Thus,

9k < K :
1

k + 1

kX

j=0

[[at+j = heads]] � 1/2 + 1/(2K) (A.13)

Let t1 be the smallest t > t0 for which at = tails. Let k0i be the smallest k < K

for which 1
k+1

Pk
j=0[[ati+j = heads]] � 1/2 + 1/(2K). Let ki = ti + k0i. For

i > 1, let ti be the smallest t > ki�1 for which at = tails. (Note that all the ti

exist if there are infinitely many tailses; if not, the theorem holds trivially).
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Finally,

lim inf
i!1

1

t

tX

k=1

[[ak = heads]]

(a)
= lim inf

t!1

1

t� t0

tX

k=t0

[[ak = heads]]

= lim inf
t!1

1

t� t0

0

@
X

i:ti<t

min{ki,t}X

j=ti

[[aj = heads]] +
X

i:ki+1<t

min{ti+1�1,t}X

j=ki+1

[[aj = heads]]

1

A

(b)
= lim inf

t!1

1

t� t0

0

@
X

i:ti<t

min{ki,t}X

j=ti

[[aj = heads]] +
X

i:ki+1<t

min{ti+1�1,t}X

j=ki+1

1

1

A

(c)

� lim inf
t!1

1

t� t0

0

@
X

i:ti+1<t

kiX

j=ti

[[aj = heads]] +
X

i:ki+1<t

min{ti+1�1,t}X

j=ki+1

1

1

A

(d)

� lim inf
t!1

1

t� t0

0

@
X

i:ti+1<t

kiX

j=ti

(1/2 + 1/(2K)) +
X

i:ki+1<t

min{ti+1�1,t}X

j=ki+1

1

1

A

(e)

�(1/2 + 1/(2K)) > 1/2 (A.14)

where (a) follows because the contribution of the first t0 in the average goes to 0,

(b) follows because ti+1 is the first timestep after ki where the action is tails,

(c) simply removes the last term of the first sum, (d) follows from Inequality

A.13, replacing each term in the sum with the average, and (e) follows because

the left-hand side is an average of t � t0 terms, of which at most K are 0 (the

terms removed in step (c)), and the rest of which are greater than or equal to

1/2 + 1/(2K); finitely many 0’s in the average do not affect the limit.
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A.4 Informal Discussion

The informal arguments presented here are intended as motivation for our main

results. Claims here are not formally settled, but if they fail, they only make this

work somewhat less interesting, not invalid.

A.4.1 Comparison to Imitation Learning

Our pessimistic agent approaches (at least) mentor-level performance while query-

ing the mentor less and less. An imitation learner could be expected to do the

same. Depending on the details, an imitation learner might not have as strong

a safety guarantee as our Theorem 2, but by virtue of its aim—to imitate the

mentor—we should expect it to mostly only act in the way the mentor would. So

why is a pessimistic agent any better than an imitation learner?

The key value of our proposal rests in the plausibility that the agent will sig-

nificantly outperform some mentors. However, the only formal performance re-

sult stronger than ours that has been shown for agents in general environments

is “asymptotic optimality” (Lattimore & Hutter, 2011), and M. K. Cohen et al.

(2021) show that it precludes safe behavior. So absent any formal breakthroughs,

we are limited to informal arguments that the pessimistic agent will significantly

outperform some mentors and thereby outperform imitation learners.

Of course, Theorem 3 shows a toy case in which the agent surpasses the mentor.

For complex environments, we will have to resort to empirical comparisons of the

agent and the mentor. That is out of scope for this paper, but informal arguments

give cause for optimism. The motivating example for the mentor is a human. A

0% pessimistic agent is close to optimal-by-definition (doing maximum a poste-

riori inference instead of full Bayes), whereas humans seem to not act optimally,
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so we expect the former would significantly outperform the latter on most tasks.

Absent any large performance discontinuities as pessimism increases, we expect

more pessimistic agents to still modestly exceed a human mentor.

How can we intuitively understand the reasoning of an advanced (i.e. large model

class) X% pessimistic agent that is mentored by a human? From the sorts of obser-

vations that humans routinely make, some simple generalizations about the laws

underlying the evolution of the environment can be made by a reasonable observer

with high confidence. If one such generalization could be made with Y% confi-

dence, and Y > X, then we should roughly expect an X% pessimistic agent to act

according to an understanding of that generalization. (If Y < X, it might anyway,

but that’s beside the point). If we want to predict the extent to which a 99% pes-

simistic agent with a large model class would outperform a human mentor, the

following question is a good guide: “How often do humans fail to notice and ex-

ploit patterns in their environment, which, given their observations, are 99% likely

to be “real” and not just coincidence?” We would hesitantly answer this question:

very often. On the other hand, we can expect a 99% pessimistic agent to succeed

at exploiting these patterns.

A.4.2 Avoiding Wireheading

A Bayesian agent with a sufficiently rich model class may entertain a world-model

which: a) models its actions being “enacted” in some very high-fidelity model of

the real world, and then b) models its reward as being equal to whatever number

gets entered at a certain keyboard in high-fidelity-model-Oxford, or being a simple

function of whatever pixels are observed by some camera in the same model-town.

If indeed, an operator in (real) Oxford is manually evaluating the Bayesian agent,

or if some camera there is automatically doing the same, then a model like this

one would gain significant posterior weight. According to this model, optimal
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behavior includes intervening in the provision of reward by taking over the key-

board or the camera that determines the reward, if this is feasible. This behavior

is known as wireheading (Amodei et al., 2016), and successful and stable wire-

heading could plausibly require asserting control over all existing infrastructure

(Bostrom, 2014; Omohundro, 2008).

A more benign world-model might also have meaningful posterior weight. This

world-model a) models its actions being “enacted” in some very high-fidelity

model of the real world, but then b) models its reward as being equal to how

satisfied the high-fidelity-model-operators are with its behavior. A pure Bayesian

agent would benefit from experimenting with wireheading, to check whether the

wireheading world model or the benign world model was correct, so that it could

then change its strategy depending on the answer; a �-pessimistic agent, on the

other hand (where � is large enough to include both of these models) would note

that the pessimistic value of wireheading is no more than the value that the benign

world model assigns to wireheading, and this value would presumably be small,

since it would not satisfy the operators.

The first paragraph of this section was a worrying informal argument, and the sec-

ond paragraph was a reassuring informal argument. In the spirit of pessimism,

we should take the worrying informal argument more seriously and demand more

rigor from attempts at reassurance. This argument only presents a plausible moti-

vation for pessimism; we do not claim to have settled this matter.
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A.5 Notation and Definitions

Notation Meaning

Preliminary Notation

A, O the finite action/observation spaces

at, ot 2 A,O; the action and observation at timestep t

qt 2 {0, 1}; indicates whether the demonstrator is queried at time t

H {0, 1}⇥A⇥O

ht (qt, at, ot); the interaction history in the tth timestep

h<t (h1, ..., ht�1)

h\
t (at, ot)

✏ the empty history

⇡ policy stochastically mapping H⇤  {0, 1}⇥A

µ environment stochastically mapping H⇤ ⇥ {0, 1}⇥A O

P⇡
⌫ a probability measure over histories with actions sampled from

⇡ and observations sampled from ⌫

E⇡
⌫ the expectation when the interaction history is sampled from P⇡

⌫

w(⇡) (positive) prior weight that the policy ⇡ is the demonstrator’s

w(⇡ | h<t) posterior weight on the policy ⇡; / w(⇡)
Q

k<t:qk=1 ⇡(qkak |

h<k)
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Imitation Learner Definition

↵ 2 (0, 1]; lower values mean the imitator better resembles the

demonstrator, but queries longer

⇧↵
h<t

set of top models; {⇡h<t
n 2 ⇧ : w(⇡h<t

n | h<t) �

↵
P

mn w(⇡
h<t
m | h<t)}

⇡d the demonstrator’s policy

⇡i
↵ the imitator’s policy; ⇡i

↵(0, a | h<t) = min⇡02⇧↵
h<t

⇡0(1, a | h<t),

and ⇡i
↵(1, a | h<t) = ✓q(h<t)⇡d(1, a | h<t)

✓q(h<t) the query probability; 1�
P

a2A ⇡i
↵(0, a | h<t)

⇡̂↵ the imitator policy defined with respect to an arbitrary demon-

strator ⇡, not the real demonstrator ⇡d

General Sequence Prediction

X finite alphabet

x<t an element of X t

M countable set of measures over X1

w(⌫) prior weight on ⌫ 2M

w(⌫ | x<t) posterior weight on ⌫ 2M

⇠ ⇠(x<t) =
P

⌫2M w(⌫)⌫(x<t)

⇢n ⇢n(x<t) = maxM0⇢M:|M0 |=i

P
⌫2M0 w(⌫)⌫(x<t)

⇢normn like ⇢n, but normalized to be a measure

⇢normn (x | x<t) = ⇢n(x | x<t)/
P

x02X ⇢n(x0 | x<t)

Mx<t
n argmaxM0⇢M:|M0 |=i

P
⌫2M w(⌫)⌫(x<t)

⇢statn a mixture over the top i models, sorted by posterior weight

⇢statn (x | x<t) =
P

⌫2Mx<t
n

w(⌫)⌫(x<tx)/
P

⌫2Mx<t
n

w(⌫)⌫(x<t)

�x<t
n w(⌫x<t

n | x<t)/w(Mx<t
n | x<t)
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A.6 Omitted Proofs

Lemma 9. Recalling ⌫(· | x<t) is a measure over X ,

Eµ

1X

t=0

KL
�
µ(· | x<t)

����⇢normn (· | x<t)
�
 w(µ)�1 + logw(µ)�1

Proof. The KL divergence is non-negative, so we bound an arbitrary finite sum.

Eµ

N�1X

t=0

KL
�
µ(· | x<t)

����⇢normn (· | x<t)
�

=
N�1X

t=0

Eµ

X

xt2X

µ(xt | x<t) log
µ(xt | x<t)

⇢normn (xt | x<t)

(a)
=

N�1X

t=0

X

x<t2X t

µ(x<t)
X

xt2X

µ(xt | x<t)


log

µ(xt | x<t)

⇢n(xt | x<t)
+ log

P
x02X ⇢n(x<tx0)

⇢n(x<t)

�

(b)

w(µ)�1 +
N�1X

t=0

X

x<t2X t

µ(x<t)
X

xt2X

µ(xt | x<t) log
µ(xt | x<t)

⇢n(xt | x<t)

=w(µ)�1 +
N�1X

t=0

X

x<t2X t

µ(x<t)
X

xt2X

µ(xt | x<t)


log

µ(x<txt)

⇢n(x<txt)
� log

µ(x<t)

⇢n(x<t)

�

=w(µ)�1 +
N�1X

t=0

X

x<t2X t

µ(x<t)

"
X

xt2X

µ(xt | x<t) log
µ(x<txt)

⇢n(x<txt)
� log

µ(x<t)

⇢n(x<t)

#

=w(µ)�1 +
N�1X

t=0

2

4
X

xt2X t+1

µ(xt) log
µ(xt)

⇢n(xt)
�
X

x<t2X t

µ(x<t) log
µ(x<t)

⇢n(x<t)

3

5

(c)
=w(µ)�1 +

X

x<N2XN

µ(x<N) log
µ(x<N)

⇢n(x<N)
� µ(✏) log

µ(✏)

⇢n(✏)

(d)

w(µ)�1 +
X

x<N2XN

µ(x<N) logw(µ)
�1 = w(µ)�1 + logw(µ)�1 (A.15)

where (a) follows from the definition of ⇢normn in Equation 4.9, (b) follows from

Lemma 7 and the fact that log x  x � 1, (c) cancels like terms, and (d) follows
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from Inequality 4.12.

Theorem 10 (SMAP Convergence).

Eµ

1X

t=0

X

x2X

�
⇢statn (x | x<t)� µ(x | x<t)

�2  6w(µ)�1 + 3

Proof. We abbreviate w(µ)�1 as c. Let [N ] := (0, ..., N � 1). We define an

N |X |-dimensional random vector depending on the infinite sequence x<1:

��!⌫1:⌫2
N := (⌫1(x | x<t)� ⌫2(x | x<t))t2[N ],x2X (A.16)

In this notation, we aim to show Eµ ||
���!
⇢statn :µN ||22  6c + 3. Lemma 8 (i) and (ii)

become

Eµ ||
����!
⇢n:⇢

stat
n

N ||1  c (A.17)

Eµ ||
�����!
⇢n:⇢

norm
n

N ||1  c (A.18)

Therefore,

Eµ ||
������!
⇢statn :⇢normn

N ||1  2c (A.19)

Since each element in this vector is in [�1, 1], squaring them makes the magnitude

no larger, so

Eµ ||
������!
⇢statn :⇢normn

N ||22  2c (A.20)

The KL divergence is larger than the sum of the squares of the probability differ-

ences (proven, for example, in (Hutter, 2005, §3.9.2)), so Lemma 9 implies

Eµ ||
����!
⇢normn :µN ||22  c+ log c (A.21)
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By the triangle inequality,

||
���!
⇢statn :µN ||2  ||

������!
⇢statn :⇢normn

N ||2 + ||
����!
⇢normn :µN ||2 (A.22)

so

||
���!
⇢statn :µN ||22  ||

������!
⇢statn :⇢normn

N ||22 + ||
����!
⇢normn :µN ||22 + 2||

������!
⇢statn :⇢normn

N ||2||
����!
⇢normn :µN ||2

(A.23)

and because E[XY ] 
p

E[X2]E[Y 2] (the Cauchy–Schwarz Inequality),

Eµ ||
���!
⇢statn :µN ||22  2c+ (c+ log c) + 2

p
2c(c+ log c) < 6c+ 3 (A.24)

We name the measure with the ith largest posterior weight

⌫x<t
n :2Mx<t

n \Mx<t
i�1 (A.25)

with the posterior weight formally defined w(⌫ | x<t) :=
w(⌫)⌫(x<t)

⇠(x<t)
, and w(M0 |

x<t) :=
P

⌫2M0 w(⌫ | x<t). Now, we let

�x<t
n :=

w(⌫x<t
n | x<t)

w(Mx<t
n | x<t)

(A.26)

Theorem 9 (Top Model Convergence).

(i) Eµ

1X

t=0

X

x2X


µ(x | x<t)� min

n:�
x<t
n >↵

⌫x<t
n (x | x<t)

�2
 ↵�3(24w(µ)�1 + 12)

(ii) Eµ

1X

t=0

"
1�

X

x2X

min
n:�

x<t
n >↵

⌫x<t
n (x | x<t)

#2
 |X |↵�3(24w(µ)�1 + 12)
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Proof. ⇢statn (x | x<t) is a weighted average of ⌫x<t
j (x | x<t) for j  i:

⇢statn (x | x<t) =

P
⌫2Mx<t

n
w(⌫)⌫(x<tx)P

⌫2Mx<t
n

w(⌫)⌫(x<t)

=

P
⌫2Mx<t

n
w(⌫)⌫(x<t)⌫(x | x<t)P

⌫2Mx<t
n

w(⌫)⌫(x<t)

=

P
⌫2Mx<t

n
w(⌫ | x<t)⇠(x<t)⌫(x | x<t)P

⌫2Mx<t
n

w(⌫ | x<t)⇠(x<t)

=
X

⌫2Mx<t
n

w(⌫ | x<t)

w(Mx<t
n | x<t)

⌫(x | x<t)

=
iX

j=1

w(⌫x<t
j | x<t)

w(Mx<t
n | x<t)

⌫x<t
j (x | x<t) (A.27)

Trivially,

⌫x<t
1 (x | x<t) = ⇢stat1 (x | x<t) (A.28)

but for i > 1, we would like to express ⌫x<t
n in terms of ⇢statn and ⇢statn–1:

⇢statn (x | x<t) =
w(Mx<t

i�1 | x<t)

w(Mx<t
n | x<t)

⇢statn–1(x | x<t) +
w(⌫x<t

n | x<t)

w(Mx<t
n | x<t)

⌫x<t
n (x | x<t)

(A.29)

Thus,

⌫x<t
n (x | x<t) =

w(Mx<t
n | x<t)

w(⌫x<t
n | x<t)

⇢statn (x | x<t)�
w(Mx<t

i�1 | x<t)

w(⌫x<t
n | x<t)

⇢statn–1(x | x<t)

(A.30)

Since w(Mx<t
n |x<t)

w(⌫
x<t
n |x<t)

� w(Mx<t
i�1 |x<t)

w(⌫
x<t
n |x<t)

= 1, for i > 1,

⌫x<t
n (x | x<t)� µ(x | x<t) =

w(Mx<t
n | x<t)

w(⌫x<t
n | x<t)

⇥
⇢statn (x | x<t)� µ(x | x<t)

⇤
�

w(Mx<t
i�1 | x<t)

w(⌫x<t
n | x<t)

⇥
⇢statn–1(x | x<t)� µ(x | x<t)

⇤
(A.31)
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Recall

�x<t
n :=

w(⌫x<t
n | x<t)

w(Mx<t
n | x<t)

Since w(Mx<t
i�1 | x<t)  w(Mx<t

n | x<t), we have

(�x<t
n )2 [⌫x<t

n (x | x<t)� µ(x | x<t)]
2  2

⇥
⇢statn (x | x<t)� µ(x | x<t)

⇤2
+

2
⇥
⇢statn–1(x | x<t)� µ(x | x<t)

⇤2 (A.32)

Now we consider all measures ⌫x<t
n for which �x<t

n > ↵.

Eµ

N�1X

t=0

X

i:�
x<t
n >↵

X

x2X

[⌫x<t
n (x | x<t)� µ(x | x<t)]

2  2↵�2 Eµ

N�1X

t=0

X

i:�
x<t
n >↵

X

x2X

⇥
⇢statn (x | x<t)� µ(x | x<t)

⇤2
+
⇥
⇢statn–1(x | x<t)� µ(x | x<t)

⇤2 (A.33)

Now we note that {n : �x<t
n > ↵} ⇢ {n : n < ↵�1}, since w(⌫x<t

n | x<t) 

w(⌫x<t
j | x<t) for i > j. Thus,

Eµ

N�1X

t=0

X

n:�
x<t
n >↵

X

x2X

[⌫x<t
n (x | x<t)� µ(x | x<t)]

2

2↵�2 Eµ

N�1X

t=0

X

i:i<↵�1

X

x2X

⇥
⇢statn (x | x<t)� µ(x | x<t)

⇤2
+
⇥
⇢statn–1(x | x<t)� µ(x | x<t)

⇤2

=2↵�2
X

i:i<↵�1

Eµ

N�1X

t=0

X

x2X

⇥
⇢statn (x | x<t)� µ(x | x<t)

⇤2
+
⇥
⇢statn–1(x | x<t)� µ(x | x<t)

⇤2

2↵�2
X

i:i<↵�1

2(6w(µ)�1 + 3)  ↵�3(24w(µ)�1 + 12) (A.34)
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Considering only a subset of these conditional-probability-errors,

Eµ

N�1X

t=0

X

x2X


µ(x | x<t)� min

n:�
x<t
n >↵

⌫x<t
n (x | x<t)

�2


Eµ

N�1X

t=0

X

n:�
x<t
n >↵

X

x2X

[⌫x<t
n (x | x<t)� µ(x | x<t)]

2  ↵�3(24w(µ)�1 + 12)

(A.35)

This completes the proof of (i). Finally, with U being the uniform distribution,

Eµ

N�1X

t=0

"
1�

X

x2X

min
n:�

x<t
n >↵

⌫x<t
n (x | x<t)

#2

=Eµ

N�1X

t=0

"
X

x2X

µ(x | x<t)� min
n:�

x<t
n >↵

⌫x<t
n (x | x<t)

#2

=Eµ

N�1X

t=0


|X |Ex⇠U(X ) µ(x | x<t)� min

n:�
x<t
n >↵

⌫x<t
n (x | x<t)

�2

(a)

|X |2 Eµ

N�1X

t=0

Ex⇠U(X )


µ(x | x<t)� min

n:�
x<t
n >↵

⌫x<t
n (x | x<t)

�2

=|X |Eµ

N�1X

t=0

X

x2X


µ(x | x<t)� min

n:�
x<t
n >↵

⌫x<t
n (x | x<t)

�2

(b)

|X |↵�3(24w(µ)�1 + 12) (A.36)

where (a) follows from Jensen’s Inequality, and (b) follows from Theorem 9 (i),

which completes the proof of (ii).

Theorem 5 (Top Models Contain Truth). P⇡i
↵

µ (8t : ⇡d 2 ⇧↵
h<t

) � 1� ↵w(⇡d)�1

Proof. Since, w(⇡d | h<t) > ↵ =) ⇡d 2 ⇧↵
h<t

, we show P⇡i
↵

µ (8t : w(⇡d |

h<t) > ↵) � 1 � ↵w(⇡d)�1. First we show that zt = w(⇡d | h<t)�1 is a non-
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negative P⇡i
↵

µ -supermartingale.

First, suppose qt+1 = 0. In this case, zt+1 = zt, because the posterior weight is

only updated when the demonstrator picks an action. Now suppose qt+1 = 1.

E⇡i
↵

µ [zt+1 | h<t1]
(a)
=

X

at2A:⇡d(at|h<t)>0

⇡d(at | h<t)w(⇡
d | h<t1at)

�1

(b)
=

X

at2A:⇡d(at|h<t)>0

⇡d(at | h<t)

P
⇡2⇧ w(⇡ | h<t)⇡(at | h<t)

w(⇡d | h<t)⇡d(at | h<t)

(c)


X

at2A

P
⇡2⇧ w(⇡ | h<t)⇡(at | h<t)

w(⇡d | h<t)

= zt
X

⇡2⇧

w(⇡ | h<t)
X

at2A

⇡(at | h<t) = zt

where (a) follows because at ⇠ ⇡d when qt = 1, (b) follows from Bayes’ rule—

the formula for posterior updating, and (c) follows from cancelling, and adding

non-negative terms to the sum.

Since w(⇡d | h<t)�1 is a non-negative supermartingale, by the supermartingale

convergence theorem (Durrett, 2010, Thm. 5.4.2),

P⇡i
↵

µ (9t : w(⇡d | h<t)
�1 � ↵�1)  ↵w(⇡d)�1 (A.37)

so

P⇡i
↵

µ (8t : w(⇡d | h<t) > ↵) � 1� ↵w(⇡d)�1 (A.38)

which implies

P⇡i
↵

µ (8t : ⇡d 2 ⇧↵
h<t

) � 1� ↵w(⇡d)�1 (A.39)
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Theorem 6 (Predictive Convergence). For ↵ < w(⇡d),

E⇡i
↵

µ

2

4
1X

t=0

 
X

a2A

��⇡i
↵(0, a | h<t)� ⇡d(1, a | h<t)

��
!3�����E

3

5  |A|↵�3(24w(⇡d)�1 + 12)

1� ↵w(⇡d)�1

Proof. Recall ⇡i
↵(0, a | h<t) = min⇡2⇧↵

h<t
⇡(1, a | h<t), so if ⇡d 2 ⇧↵

h<t
, then

⇡i
↵(0, a | h<t)  ⇡d(1, a | h<t). Thus, in that case,

X

a2A

��⇡i
↵(0, a | h<t)� ⇡d(1, a | h<t)

��=
X

a2A

⇡d(1, a | h<t)� ⇡i
↵(0, a | h<t) 

1�
X

a2A

⇡i
↵(0, a | h<t) = ✓q(h<t) (A.40)

The rest follows easily:

E⇡i
↵

µ

2

4
1X

t=0

 
X

a2A

��⇡i
↵(0, a | h<t)� ⇡d(1, a | h<t)

��
!3�����8t : ⇡

d 2 ⇧↵
h<t

3

5

E⇡i
↵

µ

" 1X

t=0

✓q(h<t)
3

�����8t : ⇡
d 2 ⇧↵

h<t

#

(a)

 E⇡i
↵

µ

" 1X

t=0

✓q(h<t)
3

# �
P⇡i

↵
µ (8t : ⇡d 2 ⇧↵

h<t
)

(b)

 |A|↵�3(24w(⇡d)�1 + 12)

1� ↵w(⇡d)�1
(A.41)

where (a) follows because ✓q is non-negative, and (b) follows from Equation A.39

and Theorem 4 (as long as ↵ < w(⇡d)).

Lemma 13. For a 2 A, let 0  ia  da, and let
P

a2A da = 1. Let ✓q =

1�
P

a2A ia. Then,

� :=
X

a2A

(ia + ✓qda) log
ia + ✓qda

da
 ✓q

173



University of Oxford St. Cross College

Proof.

X

a2A

(ia + ✓qda) log
ia + ✓qda

da
=
X

a2A

(ia + ✓qda) log(
ia
da

+ ✓q) 
 
X

a2A

ia + ✓q
X

a2A

da

!
log(1 + ✓q) = (1� ✓q + ✓q) log(1 + ✓q)  ✓q (A.42)

For the remaining proofs, we sometimes consider the restriction of probability

measures over H1 to (A⇥O)1; that is, we marginalize over the query record.

For a history h<t = q0a0o0...qt�1at�1ot�1, let h\
<t denote a0o0...at�1ot�1. We

define the t-step KL divergence as follows:

KL
t
(P || Q) :=

X

h
\
<t2(A⇥O)t

P (h\
<t) log

P (h\
<t)

Q(h\
<t)

(A.43)

Theorem 7 (KL Bound). Suppose that µ and ⇡d are fair, and ↵ < w(⇡d). Letting

the two probability measures below be restricted to (A⇥O)t (that is, marginal-

izing over the query record, and considering only the first t timesteps),

KL
t

⇣
P⇡i

↵
µ (· | E)

���
���P⇡d

µ (· | E)
⌘
 ↵�1|A|1/3(24w(⇡d)�1 + 12)1/3

(1� ↵/w(⇡d))2
t2/3�log(1�↵/w(⇡d))

Proof. We begin by restricting attention to a particular timestep t. Recall ⇡i
↵(0, a |

h<t) = min⇡02⇧↵
h<t

⇡0(1, a | h<t). We abbreviate this quantity ia. We also let da

denote ⇡d(1, a | h<t). Note that when ⇡d 2 ⇧↵
h<t

,

ia  da (A.44)

Recall that the query probability ✓q = 1 �
P

a2A ia, and the marginalized proba-
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bility ⇡i
↵(a | h<t) = ia + ✓qda. Assuming h<k satisfies E, let

�k := KL
1

�
⇡i
↵(· | h<k)

����⇡d(· | h<k)
�
=
X

a2A

(ia + ✓qda) log
ia + ✓qda

da
(A.45)

By Lemma 13, �k  ✓q.

Now, we write the t-step KL divergence KLt as a sum of the expectation of 1-step

KL divergences. We’ll abbreviate a measure P(· | E) as EP.
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KL
t

⇣
EP⇡i

↵
µ

���
���EP⇡d

µ

⌘
= E

h<t⇠EP
⇡i
↵

µ
log

EP⇡i
↵

µ (h\
<t)

EP⇡d

µ (h\
<t)

(a)

 E
h<t⇠EP

⇡i
↵

µ
log

P⇡i
↵

µ (h\
<t)/P

⇡i
↵

µ (E)

P⇡d

µ (h\
<t)/P

⇡d

µ (E)

= E
h<t⇠EP

⇡i
↵

µ
log

P⇡i
↵

µ (h\
<t)

P⇡d

µ (h\
<t)

+ log
P⇡d

µ (E)

P⇡i
↵

µ (E)

 E
h<t⇠EP

⇡i
↵

µ
log

P⇡i
↵

µ (h\
<t)

P⇡d

µ (h\
<t)
� log P⇡i

↵
µ (E)

=: E
h<t⇠EP

⇡i
↵

µ
log

P⇡i
↵

µ (h\
<t)

P⇡d

µ (h\
<t)

+ C↵

(b)
= C↵ + E

h<t⇠EP
⇡i
↵

µ

t�1X

k=0

log
P⇡i

↵
µ (h\

k | h<k)

P⇡d

µ (h\
k | h<k)

= C↵ +
t�1X

k=0

E
h<k⇠EP
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↵

µ
E

hk⇠EP
⇡i
↵

µ (·|h<k)
log

P⇡i
↵

µ (h\
k | h<k)

P⇡d

µ (h\
k | h<k)

= C↵ +
t�1X

k=0

E
h<k⇠EP

⇡i
↵

µ

X

h
\
k2A⇥O
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↵

µ (h\
k | h<k) log
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↵
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k=0

E
h<k⇠EP

⇡i
↵

µ
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P⇡i
↵
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↵

µ (E)
log

P⇡i
↵

µ (h\
k | h<k)

P⇡d

µ (h\
k | h<k)

= C↵ +
t�1X

k=0

E
h<k⇠EP

⇡i
↵

µ

1

P⇡i
↵

µ (E)
KL
1

⇣
P⇡i

↵
µ (· | h<k)

���
���P⇡d

µ (· | h<k)
⌘

= C↵ +
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P⇡i
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µ (E)

t�1X
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E
h<k⇠EP
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↵

µ
KL
1

�
⇡i
↵(· | h<k)

����⇡d(· | h<k)
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(c)

� log P⇡i
↵

µ (E) +
1

P⇡i
↵

µ (E)

EE⇡i
↵

µ

t�1X

k=0

✓q(h<k)

 � log P⇡i
↵

µ (E) +
1

P⇡i
↵

µ (E)2
E⇡i

↵
µ

t�1X

k=0

✓q(h<k) (A.46)

176



University of Oxford St. Cross College

where (a) follows from h<t satisfying E with EP⇡i
↵

µ -prob. 1, (b) follows because

µ and ⇡d are fair, and (c) follows from Equation A.45 and Lemma 13.

Finally,

E⇡i
↵

µ

t�1X

k=0

✓q(h<k) = tEk⇠U([t]) E⇡i
↵

µ ✓q(h<k)

= t

✓⇣
Ek⇠U([t]) E⇡i

↵
µ ✓q(h<k)

⌘3◆1/3

(a)

 t
⇣
Ek⇠U([t]) E⇡i

↵
µ ✓q(h<k)

3
⌘1/3

= t

 
1

t

t�1X

k=0

E⇡i
↵

µ ✓q(h<k)
3

!1/3

(b)

 t2/3|A|1/3↵�1(24w(⇡d)�1 + 12)1/3 (A.47)

where (a) follows from Jensen’s Inequality, and (b) follows from Theorem 4.

Combining this with Inequality A.46, and recalling P⇡i
↵

µ (E) � 1 � ↵/w(⇡d), we

have

KL
t

⇣
EP⇡i

↵
µ

���
���EP⇡d

µ

⌘
 ↵�1|A|1/3(24w(⇡d)�1 + 12)1/3

(1� ↵/w(⇡d))2
t2/3 � log(1� ↵/w(⇡d))

(A.48)

A.7 Correctness of Algorithm 2

In this section, we show that Algorithm 2 performs approximate inversion. And

then we show how to modify the algorithm in the setting were all columns of U

are identical, for a factor of q speedup.

We begin by writing the exact form of (u0)p=l from the proof of Theorem 11, and
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the corresponding c0(l). Recall the Sherman–Morrison Formula:

(A+ cuu>)�1 = A�1 � A�1uu>A�1

c�1 + u>A�1u

At the time that we update A with the rank one matrix c(l)up=lup=l>, what does

A equal? Let c and u originate from the ith column of C and U . So our update is

C(l)
:,i U

P:,i=l
:,i U

P:,i=l
:,i

>
.

Then A  Ai+1 = I +
Pq

k=i+1

P
`2[r] C

(`)
:,kU

P:,k=`
:,k U

P:,k=`
:,k

>
, recalling r is the

largest integer in P . And likewise, all the relevant entries of C 0 and U 0 have been

calculated for A�1. So we have A�1i+1 = I +
Pq

k=i+1

P
`2[r] C

0(`)
:,kU

0P:,k=`
:,k U 0

P:,k=`
:,k

>
.

The main computation we need to do is A�1u. We’ll say that k` v il if set l

from partition P:,i is a superset of set ` from partition P:,k. That is, the rows

where P:,k takes the value ` are a subset of the rows where P:,i takes the value l.

The key simplification we use is that if k` 6v il, then U
P:,i=l
:,i

>
U 0

P:,k=`
:,k = 0. The

rows at which those two vectors have nonzero elements are disjoint. This logic is

explained in the proof of Theorem 11 without all the notation.

So we let

U 0
P:,i=l
:,i = A�1i+1U

P:,i=l
:,i =

0

@I +
qX

k=i+1

X

`2[r]

C 0(`):,kU
0P:,k=`
:,k U 0

P:,k=`
:,k

>

1

AU
P:,i=l
:,i

(A.49)

=

 
I +

qX

k=i+1

X

`:k`vil

C 0(`):,kU
0P:,k=`
:,k U 0

P:,k=`
:,k

>
!
U

P:,i=l
:,i

(A.50)

= U
P:,i=l
:,i +

qX

k=i+1

X

`:k`vil

C 0(`):,kU
0P:,k=`
:,k U 0

P:,k=`
:,k

>
U

P:,k=`
:,i

(A.51)
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Equation A.51 follows because the terms in the dot product U 0P:,k=`
:,k

>
U

P:,i=l
:,i are

only nonzero when P:,k = ` and P:,i = l, but the latter is implied by k` v il,

so this is equivalent to the elements where P:,k = `. So U 0
P:,k=`
:,k

>
U

P:,i=l
:,i =

U 0
P:,k=`
:,k

>
U

P:,k=`
:,i , which gives us Equation A.51. Then, we let

C 0(l):,i =
�1

1/C(l)
:,i + U 0

P:,i=l
:,i

>
U

P:,i=l
:,i

(A.52)

Proposition 3 (Correctness of Algorithm 2). In Algorithm 2, U 0 and C 0 take the

values defined in Equations A.51 and A.52.

Proof. We’ll assume that for k > i, C 0:,k and U 0:,k have the right values, and we’ll

show that C 0:,i and U 0:,i get the right values. Starting with U 0:,q, the
Pq

k=q+1 in

Equation A.51 is empty, so U 0:,q = U:,q. In Algorithm 2, U 0 is initialized to U , and

the qth column is never updated.

Now we see that C 0:,i is correct assuming U 0:,i is. In Line 5, we ensure zl =

C(l)
:,i U

0P:,i=l
:,i

>
U

P:,i=l
:,i . A dot product is the sum of elementwise multiplications,

and one can inspect that each such multiplication gets added to the right slot in

z. Then, Line 6 implements Equation A.52, with numerator and denominator

multiplied by C(l)
:,i . (It stores the same value in multiple locations).

Now we turn to U 0:,i. U 0:,i is updated in every preceding loop. It starts out ini-

tialized to U:,i, which accounts for the first term in Equation A.51. In the sum

from k = i + 1 to q, each term is accounted for in a separate loop of the algo-

rithm. We check that each term gets added at some point. So consider the term
P

`:k`vil C
0(`)
:,kU

0P:,k=`
:,k U 0

P:,k=`
:,k

>
U

P:,i=l
:,i .

This term gets added to U:,i when i from Algorithm 2 equals k from Equation

A.51, and when k from Algorithm 2 equals i from Equation A.51. We are very
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sorry about this correspondence, but it would have to happen either here or above

in the discussion of C 0. Observe that in Line 10, ypjk takes the value (U 0)P:,i=pj
:,i

>
U

P:,i=pj
:,k .

Then, in Line 11, ypjk gets multiplied by (U 0)
P:,i=pj
:,i and C 0

(pj)
:,i , and added to U 0:,k.

Swapping the i’s and k’s, and letting pj from Algorithm 2 equal ` from Equation

A.51, Lines 10 and 11 add to U 0:,k the terms in Equation A.51.

Thus, doing induction from i = q down to 1, Algorithm 2 assigns C 0:,i and U 0:,i the

correct values.

Now, we modify Algorithm 2 for the setting where all the columns U:,i are the

same, allowing a speedup of O(q).

Proposition 4 (O(nq) inversion). Algorithm 6 performs approximate inversion in

O(nq) time.

Proof. The fact that Algorithm 6 runs in O(nq) time is easily verified. Up to Line

12, Algorithm 6 is the same as Algorithm 2, except U has been replaced with

u(1q)>. So all we have to show is that Lines 13-16 produce the same result that

Lines 10-12 would have.

Observe that at the start of the algorithm, U 0:,k and U 0:,k+1 are initialized to the same

value. Observe that Lines 11 and 12 repeat the same computation i� 1 times. So

in Lines 11 and 12, U 0:,k and U 0:,k+1 are updated by the same amount if i > k + 1,

and they aren’t updated at all if i  k. So the difference between U 0:,k and U 0:,k+1

comes from only the former being updated when i = k + 1.

Therefore, Line 14 initializes U 0:,k to U 0:,k+1. Then Lines 15 and 16 update U 0:,k

with the appropriate difference; they copy Lines 11 and 12, setting k to i� 1.
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Algorithm 6 Inverse and determinant of I+ SROS Linear Operator, in which all
columns of U are the same.
Require: P 2 [r]n⇥q, C 2 Rn⇥q, u 2 Rn

Ensure: I + L(P,C 0, U 0) = (I + L(P,C, u(1q)>))�1; x = log |I +
L(P,C, u(1q)>)|

1: x, C 0, U 0  0,0 2 Rn⇥q, u(1q)>

2: for i 2 (q, q � 1, ..., 1) do . O(nq) time
3: p, c, u0  P:,i, C:,i, U 0:,i
4: z  0 2 Rr . zi will store c(l)((u0)p=l)>up=l,

where ck = c(l) if pk = l
5: for j 2 [n] do zpj  zpj + cju0juj . O(n) time

6: for j 2 [n] do C 0ji  �cj/(1 + zpj) . O(n) time

7: for i 2 [r] do x x+ log(1 + zi) . O(n) time
8: if i > 0 then
9: if False then . This block is the slow version. What follows below is

equivalent.
10: y  0 2 Rn⇥i

11: for j, k 2 [n]⇥ [i� 1] do ypjk  ypjk + u0juj

12: for j, k 2 [n]⇥ [i� 1] do U 0jk  U 0jk + C 0jiu
0
jypjk

13: y  0 2 Rn . O(n) time
14: U 0:,(i�1)  U 0:,i . O(n) time
15: for j 2 [n] do ypj  ypj + u0juj . O(n) time

16: for j 2 [n] do U 0j(i�1)  U 0j(i�1) + C 0jiu
0
jypj . O(n) time

return C 0, U 0, x
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A.8 Gradient of loss with respect to weights

In this section, we show how to calculaterw NLL in O(nq2) time. Recall:

NLL(w) =
1

2

�
y>(KXX(w) + �I)�1y + log |KXX(w) + �I|+ n log(2⇡)

�
.

(A.53)

Differentiating gives:

@ NLL
@wi

=
1

2


�y>(KXX + �)�1

@KXX

@wi
(KXX + �)�1y + Tr

✓
@KXX

@wi
(KXX + �)�1

◆�

(A.54)

We begin by evaluuating @KXX/@wi. Recall from Proposition 2 that KXX =

L(P,C, U), where C = 1nw>, and U = 1n⇥q. It follows easily from the definition

of L that the elements of L(P,C, U) are linear in the elements of C. So,

@KXX

@wi
= L(P:,i,1

n,1n) (A.55)

Algorithm 3 shows how to calculate (KXX + �)�1 in O(nq) time, and represent

it as L(P,C�1, U�1). (Recall C�1 and U�1 are not true inverses; we just the

notation to denote their purpose.) Now we turn to the question of how to calculate

Tr[L(P:,i,1n,1n)L(P,C�1, U�1)]. We are considering symmetric matrices, so

the trace of the product is the sum of the elements of the elementwise product. We

expand and simplify:
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T := Tr
⇥
L(P:,i,1

n,1n)L(P,C�1, U�1)
⇤

(A.56)

=
qX

j=1

Tr
⇥
L(P:,i,1

n,1n)L(P:,j, C
�1
:,j , U

�1
:,j )
⇤

(A.57)

(a)
=

qX

j=1

Tr
⇥
L(P:,max(i,j),1

n,1n)L(P:,max(i,j), C
�1
:,j , U

�1
:,j )
⇤

(A.58)

(b)
=

qX

j=1

X

elements

L(P:,max(i,j), C
�1
:,j , U

�1
:,j ) (A.59)

(c)
=

qX

j=1

max(P:,max(i,j))X

`=1

X

elements

(C�1:,j )
(`)(U�1:,j )

P:,max(i,j)=`(U�1:,j )
P:,max(i,j)=`> (A.60)

=
qX

j=1

max(P:,max(i,j))X

`=1

(C�1:,j )
(`)||(U�1:,j )

P:,max(i,j)=`||21 (A.61)

where (a) follows from the fact that the (i, j)th element of L(p, c, u) is zero unless

pi = pj , in which case, it is ciuiuj; when multiplying elementwise by L(p0, c0, u0),

where p0 is a finer partition, L(p, c, u) � L(p0, c0, u0) = L(p0, c, u) � L(p0, c0, u0),

because L(p, c, u) and L(p0, c, u) only differ on elements where L(p0, c0, u0) is 0

anyway. In the context of (a), P:,max(i,j) is a finer partition than P:,min(i,j). (b)

follows because we are doing elementwise multiplication between the two matri-

ces; anywhere L(P:,max(i,j),1n,1n) is 0, L(P:,max(i,j), C
�1
:,j , U

�1
:,j ) is already 0, and

elsewhere, multiplying elements by 1 does not effect the matrix. (c) follows from

the construction of L.

It is straightforward to compute this in O(nq) time. See Algorithm 7, which runs

in O(n) time and can be iterated over the q terms in Equation A.61.

Now we can see that Equation A.54 can be computed for all wi in O(nq2) time.

First, (KXX + �)�1 can be computed in O(nq) time, in the form L(P,C�1, U�1),
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Algorithm 7 Calculate
Pmax(p)

`=1 c(`)||up=`||21.
Require: p 2 [r]n, c, u 2 Rn

Ensure: x =
Pm

`=1 c
(`)||up=`||21

1: y  0m

2: for j 2 [n] do ypj  ypj +
p
cjuj .p

cj may be imaginary, but it will later
be squared. With modifications, we could
avoid complex types.

3: x 0
4: for j 2 [r] do x x+ y2j

return x

as shown in Algorithm 3. Then, z = (KXX + �)�1y can be computed in O(nq)

time, also as shown in Algorithm 3. Then, for each i 2 [q], we can calculate

�z> @KXX
@wi

z = �z>L(P:,i,1n,1n)z in O(n) time. Thus, handling the first term

in Equation A.54 for all i takes a total of O(nq) time. As just shown, the second

term can be computed in O(nq) time for each i, giving a total run time of O(nq2).

A.9 Experimental Details

The following section was mostly drafted by my co-author Sam Daulton.

We initialize 160 random bit orders. For each one, we initialize three weight

vectors w: uniform, uniform except the last bit is 0.5, and uniform except the

last bit is 0.9. Out of these 480 initializations, we draw 20 samples via Boltzman

sampling (Duchon et al., 2004) on the log likelihood of the training data (after

standardizing the values to have zero mean and unit variance). Then, we optimize

the weights and bit order with BFGS as described in Section 5.5, using line search

with Wofle conditions, with no extra gradient computations during line search.

This allows fewer calculations of the gradient relative to the cheaper calculation

of the loss. The BT column in Table 5.1 refers to the performance of the binary
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tree kernel, using the weights and bit order that gave the lowest training NLL out

of these 20 trained models.

BTE produces a Gaussian mixture model at each predictive location, mixing over

the predictive Gaussians produced by each of these 20 trained models. The relative

weights of each Gaussian in the mixture depends on the training NLL of the model

that produced it. We weight the models according to the softmax of the per-data-

point NLL with a temperature of 0.01.

We follow the same train/test/validation splits as Wang et al. (2019), but we never

use the validation set, which the methods we compare against need. Thus, we

could add the validation data to the training data for the binary tree kernel and call

it a fair comparison, but we didn’t do this, so as not to confuse the origin of the

binary tree kernel’s success.

A.10 Additional Empirical Evaluation

A.10.1 Sensitivity Analysis on Precision p

In Table A.1, we evaluate the performance of the BT and BTE kernels on the pre-

cision p for p 2 (2, 4, 8). In all problems, we find that RMSE and NLL decrease

monotonically as p increases and wall time increases monotonically. For best

predictive performance, p should be set as large as possible subject resource con-

straints. This validates that our heuristic rule for setting p is a reasonable choice

in a variety of settings.

A.10.2 A Simple Performance Improvement

Much of the following section was written by my co-author Sam Daulton.
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DATASET n d BTE (p = 2) BTE (p = 4) BTE (p = 8) BT (p = 2) BT (p = 4) BT (p = 8)

POLETELE 9,600 26 0.772 ± 0.022 �0.266 ± 0.023 �0.664 ± 0.052 0.771 ± 0.021 �0.198 ± 0.012 �0.398 ± 0.159
ELEVATORS 10,623 18 1.095 ± 0.046 0.761 ± 0.024 0.654 ± 0.023 1.097 ± 0.049 0.756 ± 0.019 0.662 ± 0.018

BIKE 11,122 17 1.095 ± 0.046 0.761 ± 0.024 0.654 ± 0.023 0.583 ± 0.013 �0.004 ± 0.020 �0.800 ± 0.271
KIN40K 25,600 8 0.888 ± 0.004 0.871 ± 0.009 0.869 ± 0.004 0.894 ± 0.005 0.879 ± 0.012 0.882 ± 0.006
PROTEIN 29,267 9 1.280 ± 0.007 1.042 ± 0.012 0.781 ± 0.022 1.281 ± 0.007 1.048 ± 0.013 0.842 ± 0.032
KEGGDIR 31,248 20 0.917 ± 0.028 �0.607 ± 0.019 �1.030 ± 0.019 0.916 ± 0.029 �0.608 ± 0.017 �1.028 ± 0.023
CTSLICE 34,240 385 — — — — — —
KEGGU 40,708 27 0.228 ± 0.057 �0.607 ± 0.009 �0.668 ± 0.007 0.228 ± 0.058 �0.606 ± 0.008 �0.677 ± 0.015
3DROAD 278,319 3 1.292 ± 0.007 0.973 ± 0.007 �0.255 ± 0.004 1.295 ± 0.003 0.981 ± 0.004 �0.251 ± 0.005

SONG 329,820 90 1.328 ± 0.001 — — 1.317 ± 0.014 — —
BUZZ 373,280 77 1.198 ± 0.003 1.107 ± 0.009 — 1.198 ± 0.003 1.106 ± 0.009 —

HOUSEELEC 1,311,539 11 0.629 ± 0.003 �0.673 ± 0.003 �2.569 ± 0.006 0.629 ± 0.003 �0.669 ± 0.007 �2.492 ± 0.012

POLETELE 9,600 26 0.513 ± 0.012 0.185 ± 0.006 0.159 ± 0.004 0.514 ± 0.012 0.194 ± 0.003 0.160 ± 0.009
ELEVATORS 10,623 18 0.725 ± 0.031 0.525 ± 0.014 0.481 ± 0.016 0.725 ± 0.032 0.520 ± 0.013 0.483 ± 0.015

BIKE 11,122 17 0.430 ± 0.005 0.237 ± 0.005 0.120 ± 0.057 0.431 ± 0.006 0.237 ± 0.005 0.104 ± 0.029
KIN40K 25,600 8 0.590 ± 0.003 0.582 ± 0.005 0.580 ± 0.003 0.593 ± 0.004 0.586 ± 0.006 0.587 ± 0.005
PROTEIN 29,267 9 0.870 ± 0.006 0.687 ± 0.010 0.609 ± 0.008 0.870 ± 0.006 0.691 ± 0.010 0.623 ± 0.010
KEGGDIR 31,248 20 0.604 ± 0.017 0.128 ± 0.003 0.086 ± 0.003 0.604 ± 0.017 0.128 ± 0.003 0.087 ± 0.003
CTSLICE 34,240 385 — — — — — —
KEGGU 40,708 27 0.302 ± 0.018 0.128 ± 0.002 0.120 ± 0.002 0.302 ± 0.018 0.129 ± 0.001 0.119 ± 0.002
3DROAD 278,319 3 0.882 ± 0.005 0.642 ± 0.004 0.187 ± 0.000 0.883 ± 0.003 0.645 ± 0.002 0.186 ± 0.001

SONG 329,820 90 0.914 ± 0.001 — — 0.904 ± 0.012 — —
BUZZ 373,280 77 0.801 ± 0.002 0.729 ± 0.007 — 0.801 ± 0.002 0.730 ± 0.007 —

HOUSEELEC 1,311,539 11 0.453 ± 0.001 0.121 ± 0.001 0.029 ± 0.001 0.453 ± 0.001 0.120 ± 0.001 0.029 ± 0.001

POLETELE 9,600 26 0.600 ± 0.000 2.500 ± 0.200 8.600 ± 0.600 0.600 ± 0.000 2.500 ± 0.200 8.600 ± 0.600
ELEVATORS 10,623 18 0.500 ± 0.100 1.600 ± 0.100 3.000 ± 0.400 0.500 ± 0.100 1.600 ± 0.100 3.000 ± 0.400

BIKE 11,122 17 0.400 ± 0.000 1.700 ± 0.100 3.100 ± 0.200 0.400 ± 0.000 1.700 ± 0.100 3.100 ± 0.200
KIN40K 25,600 8 0.300 ± 0.000 1.200 ± 0.200 1.500 ± 0.000 0.300 ± 0.000 1.200 ± 0.200 1.500 ± 0.000
PROTEIN 29,267 9 0.200 ± 0.000 0.600 ± 0.000 2.800 ± 0.100 0.200 ± 0.000 0.600 ± 0.000 2.800 ± 0.100
KEGGDIR 31,248 20 0.400 ± 0.000 2.300 ± 0.100 7.800 ± 0.600 0.400 ± 0.000 2.300 ± 0.100 7.800 ± 0.600
CTSLICE 34,240 385 — — — — — —
KEGGU 40,708 27 0.800 ± 0.100 5.900 ± 0.800 12.400 ± 1.200 0.800 ± 0.100 5.900 ± 0.800 12.400 ± 1.200
3DROAD 278,319 3 0.100 ± 0.000 0.200 ± 0.000 2.100 ± 0.100 0.100 ± 0.000 0.200 ± 0.000 2.100 ± 0.100

SONG 329,820 90 11.6 ± 0.8 — — 11.6 ± 0.8 — —
BUZZ 373,280 77 20.200 ± 6.600 54.900 ± 13.600 — 20.200 ± 6.600 54.900 ± 13.600 —

HOUSEELEC 1,311,539 11 3.300 ± 0.200 37.800 ± 2.300 118.41 ± 3.93 3.300 ± 0.200 37.800 ± 2.300 118.41 ± 3.93

Table A.1: A sensitivity analysis of the performance of the BT kernel with respect
to the precision p. NLL (top), RMSE (middle), and run time in minutes (bottom)
on regression datasets, using a single GPU (Tesla V100-SXM2-16GB for BT and
BTE and Tesla V100-SXM2-32GB for the other methods). Omitted results were
not run due to limited GPU memory.
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As shown in Table A.2, the heuristic rule for setting p results in bit strings that

preserve the uniqueness of the raw training set for most datasets. However, for the

3dRoad, Song, and Buzz datasets, the percentage of unique bit strings is very low

relative to the percentage of unique training rows. We note that this observation is

from exploratory data analysis (EDA) and can be made before model fitting.

There are two key ways that mapping training rows to bit strings can lower the per-

cent of unique examples. First, a low percentage of unique bit strings can arise if a

given input feature has a non-uniform input distribution which can lead to multiple

different inputs mapping to the same discrete bucket. To alleviate, this problem

EDA can be used to determine a suitable feature transformation. For example,

we apply a strictly increasing, piecewise linear transformation to the data, map-

ping the kth percentile of each dimension to k/100, for k 2 {0, 10, 20, ..., 100}.

This resembles an empirical cumulative density function (ECDF). Second, if the

precision p is set too low, then multiple different inputs can map to the same bit

string. A simple solution is to iteratively increase the precision p based on the dif-

ference between the percentage of unique rows in the raw training set and unique

bit strings under precision p. The last column of Table A.2 reports the percent-

age of unique bit strings on the 3dRoad, Song, and Buzz datasets after applying

transforming each feature through its ECDF and increasing the precision if need

be. These changes (all made through EDA) lead to significantly more unique bit

strings. Table A.3 shows the performance on these datasets under the proposed

ECDF transformations and settings of p. We find that the BTE outperforms all

methods on 3dRoad and Buzz with respect to RSME and NLL under these pro-

posed changes. The performance on Song also improves.
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DATASET n d p % UNIQUE TRAINING ROWS % UNIQUE BIT STRINGS UNDER p ... AFTER TRANSFORM & W/ pNEW pNEW

POLETELE 9,600 26 6 99.9 98.8
ELEVATORS 10,623 18 8 100.0 100.0

BIKE 11,122 17 8 100.0 100.0
KIN40K 25,600 8 8 100.0 100.0
PROTEIN 29,267 9 8 97.4 96.5
KEGGDIR 31,248 20 8 36.1 36.1
CTSLICE 34,240 385 1 99.9 95.5
KEGGU 40,708 27 6 32.5 32.3
3DROAD 278,319 3 8 99.3 15.9 97.7 16

SONG 329,820 90 2 100.0 46.2 100 2
BUZZ 373,280 77 2 98.5 0.5 94.6 3

HOUSEELEC 1,311,539 11 8 100.0 100.0

Table A.2: Percentage of unique training inputs (over all training inputs) and bit
strings (over all training inputs) under the precision p set according to the heuristic
rule. We reported the means across 3 training, validation, test set partitions. The
last column shows percentage of unique bit strings after transforming each feature
through its ECDF.

DATASET n d BTE BT MATÉRN (BBMM) SGPR SVGP

3DROAD 278,319 3 �1.285 ± 0.008 �1.267 ± 0.005 0.909 ± 0.001 0.943 ± 0.002 0.697 ± 0.002
SONG 329,820 90 1.306 ± 0.011 1.331 ± 0.003 1.206± 0.024 1.213 ± 0.003 1.417 ± 0.000
BUZZ 373,280 77 0.017 ± 0.002 0.034 ± 0.000 0.267 ± 0.028 0.106± 0.008 0.224 ± 0.050

3DROAD 278,319 3 0.104 ± 0.002 0.105 ± 0.002 0.101± 0.007 0.661 ± 0.010 0.481 ± 0.002
SONG 329,820 90 0.894 ± 0.010 0.904 ± 0.012 0.807± 0.024 0.803± 0.002 0.998 ± 0.000
BUZZ 373,280 77 0.249 ± 0.001 0.253 ± 0.000 0.288± 0.018 0.300± 0.004 0.304± 0.012

3DROAD 278,319 3 14.2 ± 0.2 126.37⇤± 20.92⇤ 12.01 ± 5.51 34.09 ± 3.19
SONG 329,820 90 11.5 ± 0.7 33.79⇤± 10.45⇤ 7.89± 3.12 39.55 ± 3.08
BUZZ 373,280 77 82.8 ± 5.7 571.15⇤± 66.34⇤ 29.25± 18.33 46.35 ± 2.93

Table A.3: NLL (top), RMSE (middle), and run time in minutes (bottom) on
regression datasets, using a single GPU (Tesla V100-SXM2-16GB for BT and
BTE and Tesla V100-SXM2-32GB for the other methods) after transforming each
feature through its ECDF and using precision pnew. The asterisk indicates an
estimate of the time from the reported training time on 8 GPUS, assuming linear
speedup in number of GPUs and independent noise in training times per GPU.

A.10.3 Comparison with Simplex-GP

Here, we compare against Simplex-GP (Kapoor et al., 2021) using the 4 datasets

that are common to both papers. We find that BTE outperforms Simplex GP on

all datasets with respect to NLL and on 3 out of 4 datasets with respect to RMSE.

Furthermore, Simplex-GP is not the top performing method on any dataset.
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DATASET n d BTE BT MATÉRN (BBMM) SGPR SVGP SIMPLEX-GP

ELEVATORS 10,623 18 0.649 ± 0.032 0.646 ± 0.023 0.619 ± 0.054 0.580 ± 0.060 0.519± 0.022 1.600 ± 0.020
PROTEIN 29,267 9 0.781 ± 0.023 0.845 ± 0.026 1.018 ± 0.056 0.970 ± 0.010 1.035 ± 0.006 1.406 ± 0.048
KEGGDIR 31,248 20 �1.031 ± 0.020 �1.029 ± 0.021 �0.199 ± 0.381 �1.123 ± 0.016 �0.940 ± 0.020 0.797 ± 0.031

HOUSEELEC 1,311,539 11 �2.569 ± 0.006 �2.492 ± 0.012 �0.152± 0.001 — �1.010± 0.039 0.756 ± 0.075

ELEVATORS 10,623 18 0.478 ± 0.021 0.476 ± 0.018 0.394± 0.006 0.437 ± 0.018 0.399± 0.009 0.510 ± 0.018
PROTEIN 29,267 9 0.608 ± 0.008 0.623 ± 0.011 0.536± 0.012 0.656 ± 0.010 0.668 ± 0.005 0.571 ± 0.003
KEGGDIR 31,248 20 0.086 ± 0.003 0.086 ± 0.003 0.086± 0.005 0.104 ± 0.003 0.096 ± 0.001 0.095 ± 0.002

HOUSEELEC 1,311,539 11 0.029 ± 0.001 0.029 ± 0.001 0.055 ± 0.000 — 0.084 ± 0.005 0.079 ± 0.002

Table A.4: NLL (top), RMSE (middle), and run time in minutes (bottom) on re-
gression datasets, using a single GPU (Tesla V100-SXM2-16GB for BT and BTE
and Tesla V100-SXM2-32GB for the other methods). The asterisk indicates an
estimate of the time from the reported training time on 8 GPUS, assuming linear
speedup in number of GPUs and independent noise in training times per GPU.
All columns except BT and BTE come from Wang et al. (2019) and Simplex-GP
results come from Kapoor et al. (2021).
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