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Abstract

Competition in nature is traditionally conceptualised as a battle between in-
dividual organisms in the constant struggle for survival. The triumph of one
organism results in the demise of the other. Cooperation on the other hand
involves individuals acting in a mutually beneficial manner and is therefore
often regarded as the opposite of competition. From the perspective of individ-
ual cells, multicellular life is perhaps the most extreme form of cooperation.
However, even within multicellular organisms, cells compete for space and
survival. Genetically damaged “loser” cells that grow at a slower rate than
their neighbouring “winner” cells are eliminated from the body by apoptosis.
Importantly, cell competition is context-dependent; loser cells are perfectly
viable if the whole organism is composed of them. The demise of loser cells
is triggered specifically by the presence of cells that are perceived to be more
fit. Multiple triggers and pathways involved with cell competition have been
discovered, but the mechanism by which cells measure and communicate their
relative fitness remains elusive.

Current models of cell competition assert a priori winner or loser status to
competing cell types. By their nature, such models cannot explain how the
winner or loser identity is attained. In this thesis, we develop a modelling
framework to study the emergence of winners and losers in cell competition.
Specifically, we construct models of heterotypic populations where cell types
can only vary in their model parameters. Using this approach, we show that i)
variations in mechanical parameters are not sufficient for cell competition in
a vertex-based model, and ii) winner or loser status in a competition system
based on the exchange of death signals is determined by the emission rate of
death signals and the tolerance to death signals. Finally, we make concrete
suggestions for the experimental validation of our predictions.
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Chapter 1

Introduction

Competition (n.)

The action of endeavouring to gain what

another endeavours to gain at the same

time.

Oxford English Dictionary [1]

Virtually all living creatures participate in some form of competition in their lives. Merely
being viable is not enough to be successful in the ruthless struggle for existence. Confronted
with scarce resources, one must compete with others to survive, or else be doomed to
extinction. Indeed, as Malthus argued in 1798, populations have a tendency to grow
exponentially, whereas the renewal of vital resources typically grows linearly at best1 [2].
The inescapable conclusion is that there must be winners and losers in the game of life;
losers fail to compete and are erased from existence, while winners live on to compete
another day. This insight famously inspired Darwin to postulate the principle of natural
selection [3]. Similarly, the competition for mates in sexually reproducing species is at the
basis of sexual selection.

Since all life is subject to natural selection, it is no surprise that competition appears
to pervade all of Nature. At the macroscopic scale, animals battle each other for food,
territory, and mates [4]. Despite the symbolism of “flower power”, plants are constantly
competing for nutrients and sunlight, starving their neighbours in the process [5]. At the
microscopic scale, bacteria employ a wide variety of tactics to engage in warfare [6, 7],
including stabbing, poisoning, and even kamikaze attacks [8]. Competition also extends into

1The table of contents, the lists of figures and tables, citations, footnotes, URLs, and references to equations,
chapters, sections, pages, figures, and tables in the digital version of this thesis are hyperlinked. Unless of
course you pirated this thesis—tsk tsk.

1



society; humans compete for status and wealth, and organise themselves into groups that
compete for economic, political, and military dominion. Indeed, the struggle for existence
has at times been described as “Nature’s war”; a perpetual state of conflict where all living
beings are at war with one another [9].

This, however, is not the full story. Cooperation, typically regarded as the opposite of
competition, is also ubiquitous in Nature. Fungi associate symbiotically with plant roots
in mycorrhiza, providing the plant with minerals and water in exchange for sugars [10].
Similarly, the human gut harbours bacteria that consume substrates that humans cannot
digest directly, and convert them into nutrients that can be absorbed by the host [11]. In
return, humans provide a stable habitat and a steady supply of nutrients. There is also
evidence for cooperation among members of the same species under certain conditions. In
particular, the Allee effect describes the cooperative phenomenon where, for low population
densities, the survival rate of individuals increases with population density [12].

Perhaps the most extreme form of cooperation is multicellular life. When viewed
as a collective of cellular individuals, the multicellular organism is a remarkable feat of
collaboration. In order to avoid a Malthusian catastrophe among its members and maintain
homeostasis, cell population dynamics are strongly regulated by cellular society. The
multicellular collective does not only constrain proliferation, but also routinely induces
programmed cell death, i.e. cell suicide [13, 14, 15]. In fact, this “social control” is so
heavily ingrained in metazoan organisms that cells default to suicide unless it is suppressed
by survival factors [14]. Indeed, the dysregulation of programmed cell death is one of the
hallmarks of cancer [16], which can be regarded as the collapse of cellular society.

However, even within multicellular organisms, a struggle for survival can take place.
Cell competition is a class of phenomena where cells in genetically heterotypic tissues
determine their fitness in relation to each other to determine a winner or loser status
[17, 18, 19, 20, 21, 22]. The winners take all and populate the entire tissue, while the
losers are actively eliminated through programmed cell death. A defining characteristic of
cell competition is that both winner and loser cell types are perfectly viable in homotypic
environments, and only acquire a winner/loser status when confronting each other in the
same tissue. It is somewhat counter-intuitive that cells belonging to the same organism
should compete with each other, since competition and cooperation are often considered to
be antithetical. In order to resolve this contrast, we first explore the link between competition
and cooperation in more depth.

The field of ecology studies the relationships between organisms and their environment.
In the ecological classification of pairwise interactions between species or individuals
(see Table 1.1), competition is defined as a mutually harmful interaction, and mutualism

2



Table 1.1: Classification of ecological interactions based on the impact it has on the interact-
ing species, which can be negative (−), neutral (0), or positive (+).

Species B
Species A

− 0 +

− Competition Amensalism Predation
0 Amensalism Neutralism Commensalism
+ Predation Commensalism Mutualism

or cooperation as a mutually beneficial interaction [23]. Instead of fighting over limited
resources, cooperation has the potential to expand the resources available. Indeed, it is
humans’ remarkable capacity for cooperation that has enabled an escape from Malthusian
catastrophe in modern times through a dramatic increase in the food supply [24, 25].

This poses a paradox, however: why compete at all if it harms everyone involved, and
why are not all interactions cooperative if it is in everyone’s interest? These questions
reveal several important properties of competition. Firstly, the precondition for competition
in the Malthusian model is scarcity. When the only alternative is starvation, competing
with others is inevitable, even at the risk of being harmed. In contrast, there is no need for
competition when resources are abundant, so there is more to be gained from cooperation
than from competition. It is instructive in this context that the Allee effect, which models
intraspecies cooperation, is observed in low population density regimes, when resources
are plentiful relative to population size. Secondly, in the examples of gut bacteria and
mycorrhiza, cooperation occurs between two species with different and complementary
needs. As the dictionary definition of competition at the start of this chapter indicates [1],
competition occurs when individuals are vying for similar resources.

The more subtle resolution to this paradox, however, is that competition and cooperation
are not absolute opposites, and that they serve each other when viewed from multiple
perspectives. After all, “survival of the fittest” within a species by definition selects for
organisms that are most adapted to the environment, which is an advantage for the continua-
tion of the species, even though it is a harsh reality from the perspective of the loser. At the
level of ecosystems, the principle of competitive exclusion states that two species cannot
occupy the same ecological niche in the long term [23]. A classic example involving barna-
cle species is illustrated in Figure 1.1. Thus, competing species are forced into divergent
ecological niches, which can contribute to evolutionary changes over time [26]. Therefore,
competition is a driving force of speciation and biodiversity, which undergird the resilience
and robustness of the biosphere.

3



Figure 1.1: Connell [27] observed that Chthamalus and Balanus barnacles are always found
on the upper and lower parts of coastal rocks, respectively. When he removed Balanus from
the rock, he observed that Chthamalus readily colonised the lower reaches of the rock. Upon
the reintroduction of Balanus, Chthamalus is displaced by the more competitive Balanus.
Since Chthamalus is excluded by the presence of a competitor from a niche which it can
populate in the absence of said competitor, it is an example of competitive exclusion. Figure
reproduced from [28] by permission of Pearson Education, Inc.

In addition, competition can contribute to stability, as exemplified by the dominance
hierarchies of social animals. Early studies of dominance hierarchies reported that birds
living in groups adhere to a rigid social hierarchy where higher-ranking birds enjoy priority
access to resources and mates [29, 30]. The bird hierarchy is known as the “pecking order”
because, once a dominance–subordination relationship has been established, the dominant
bird gains pecking rights over the subordinated bird, where the former routinely pecks the
latter but not the other way around. Crucially, birds display aggressive behaviour while
forming a pecking order, but stop doing so once a pecking order is established [31]. Here,
competition is a mechanism for establishing a social order that reduces intragroup conflict
and enables the group to function as a cohesive social unit [32].

To summarise, competition and cooperation are interdependent forces, despite appearing
at opposite ends of the ecological spectrum of interactions. Competition creates winners
and losers, to the detriment of the latter especially, but also at a significant cost to the former.
However, the benefits of competition are not to be found at the level of the competing
individuals, but rather at the level of the group to which they belong. This suggests that
competitive processes can evolve within a cooperative structure, such as the multicellular
organism, to benefit that structure.

An illustrative example is found in the adaptive immune system. During T cell matu-
ration, a highly heterogeneous population of thymocytes (T cell precursors) is generated
through a biological gene editing process that remixes gene fragments encoding parts of
the T cell receptor in order to produce a diverse array of thymocytes with different T cell
receptors [33, 34]. This diversity enables a wide range of antigens to be recognised by the
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adaptive immune system. T cell receptors must navigate a delicate balance however [35].
On the one hand, they need to bind the major histocompatibility complex in order to perform
their function. On the other hand, they cannot bind too strongly, or else the T cells may direct
the immune system to fight healthy cells (this is known as autoimmunity). The maturation
process selects for functional T cells by inducing apoptosis, a form of programmed cell
death, in thymocytes that do not fulfil these criteria, killing over 95% of all thymocytes [36].

T cell maturation demonstrates how competitive processes can be leveraged by the
multicellular organism for its benefit. There are, however, important differences between
T cell maturation and cell competition. Firstly, in T cell maturation, the cells being eliminated
would impede the function of the adaptive immune system if they were allowed to survive.
In contrast, the losers in cell competition are perfectly viable on their own and capable of
adequately performing the functions of the tissue. Secondly, the selection of thymocytes
is based on the binding of T cell receptors to antigens that are presented to all thymocytes
equally. Cell competition, on the other hand, is predicated on interactions between competing
cells, as opposed to an interaction with a shared environment. Hence, cell competition is
context-dependent; the same cell type can be both a loser or winner cell type, depending
on the cell type that it is competing with.

We conclude this introduction with the proposition that cell competition is similar to
conventional competition in the ecological sense with respect to the outcome, but different
with respect to the process. As in conventional competition, only the winner cell type
remains, which is analogous to the phenomenon of competitive exclusion. On the other
hand, the manner by which cells compete is more akin to that of a sports competition, where
both sides have agreed to compete under a predefined set of rules. A game, however, with
the stakes of life and death. Instead of a brutal fight to the death, competing cells calmly
exchange messages with their neighbours to determine their status through genetically
encoded rules and gracefully initiate programmed cell death when they “lose”. Indeed, the
sportsmanship-like manner in which cell competition proceeds reflects the fundamentally
cooperative nature of the multicellular structure in which it unfolds.

1.1 Thesis aims and structure

As we shall see in Section 1.2, where we review the literature on cell competition, experi-
ments have uncovered various genes, messenger molecules, and pathways involved in cell
competition. However, it is not known how relative fitness is determined or communi-
cated among cells. Since cell competition evolved within the cooperative framework of the
multicellular organism, it must involve certain rules to discriminate winners from losers.
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However, the nature of these rules has remained elusive thus far. Therefore, one of the main
research aims in the field of cell competition is to uncover the rules and mechanisms of cell
competition. This is the underlying motivation for this thesis.

Cell competition is a process that unfolds at the level of the cell population, but is medi-
ated by interactions at the cellular level. Verbal models are generally not rigorous enough
to accurately predict complex behaviour of cell populations from mechanisms specified at
the cellular level. Mathematical models, on the other hand, allow us to precisely define
interactions and study their implications on system properties and dynamics. In particular,
in cell-based models we can define the behaviours of individual cells and investigate the
patterns that emerge at the level of the population. Hence, in this thesis the fundamental
framework for investigating the mechanisms of cell competition is cell-based modelling.

Cell competition was first discovered in the Drosophila wing disc [37], and it has been
the model system for cell competition ever since. The wing disc is an epithelial tissue that
develops during the larval stage of Drosophila development, and is the precursor to the
wing in the fully-formed adult. Although the modelling framework we develop in this thesis
can be applied more widely, we use the Drosophila wing disc as a grounding example,
particularly when studying the spatial dimensions of cell competition. In Section 1.3, we
review different cell-based models and conclude that the most appropriate cell-based model
for the Drosophila wing disc is the vertex model.

In Section 1.4, we review mathematical models of competition in general, and of cell
competition in particular (Section 1.4.5). The main weakness of current models of cell
competition is that they assume a priori winner and loser identities. Although they can
simulate processes occurring downstream of winner/loser identification, they do not shed
any light on how a cell becomes a winner or loser. Therefore, in this thesis we address
the question: how do cells acquire winner or loser status? Specifically, the central aim
of this thesis is to study the emergence of winners and losers in cell competition using
mathematical modelling. We decompose this aim into three research objectives:

Research Objective 1: construct a model of cell competition that produces winners and
losers as an emergent phenomenon.

Research Objective 2: use this model to identify and study the key factors driving win-
ner/loser identification.

Research Objective 3: use predictions from the model to propose experiments for validat-
ing the model.

It has been observed, as Section 1.2.5 discusses in more depth, that mechanical inter-
actions can play an important role in cell competition. Therefore, in our first attempt at
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tackling Research Objective 1, we implement a vertex model for heterotypic populations
that lets us independently vary the mechanical parameters of two distinct cell populations.
We then run a systematic parameter sweep and record competitive outcomes to test whether
differences in cell mechanical properties can result in cell competition. This is described
in Chapter 2. Briefly summarised, we observe the emergence of winners and losers, but
homotypic simulations of the loser cell type reveal that the losers are intrinsically nonvi-
able. This does not meet the criteria for cell competition, so we conclude that mechanical
interactions in this particular model are not sufficient to induce cell competition.

Motivated by these results, we propose a modelling framework that explicitly models
competition-induced cell death in Chapter 3. In short, we assume that cells perceive death
signals from the extracellular environment that are generated by other cells, directly or
indirectly. Moreover, every cell is equipped with a death clock. This is a scalar variable
that is incremented by death signals and represents the cell’s memory of received death
signals. When the death clock reaches a threshold, the cell initiates apoptosis. As such,
the death clock abstracts the process of intercellular interactions leading to competition-
induced apoptosis. We also discuss the implementation of the death clock framework in two
concrete cell-based models (vertex model and well-mixed model). We use these in later
chapters to run simulations that include permutations of the death clock mechanism and
verify theoretical predictions.

One advantage of the death clock framework is that the death signal can take many
forms and can therefore model virtually any type of intercellular interaction. In Chapter 4,
we investigate the effects of a constant death signal, the simplest possible death signal.
Although a constant death signal cannot represent cell competition because it is not based on
intercellular interactions, it is a useful and simplified model for investigating basic properties
of the death clock framework. Furthermore, in later chapters we approximate more complex
death signals using constant values. Hence, Chapter 4 forms a theoretical foundation for
later work.

For cell-based models used in this thesis, we assume a simplified cell cycle consisting
of two phases: G1 phase and G2 phase. In G1 phase, the cell has not fully committed
to division and is vulnerable to apoptosis. In G2 phase, the cell is fully committed to
division and can no longer initiate apoptosis. Since the winners in cell competition are
often cells with higher proliferation rates, and G2 phase is associated with a commitment
to proliferation, we propose a model in which cells in G2 phase emit death signals to their
neighbours. In Chapter 5, we examine the effects of emission of this G2 death signal in
a homotypic population; the homotypic survival probability is significant because it is a
measure of intrinsic viability. After making some approximations, we are able to predict the
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survival probability of cells as a function of cell cycle and death clock parameters. Moreover,
we use cell-based model simulations to verify these predictions.

In Chapter 6, we apply the G2 death signal model to heterotypic populations. Impor-
tantly, we can reproduce the emergence of winners and losers in simulations as a direct
result of competitive interactions, without assigning a priori winner/loser identities, thus
achieving Research Objective 1. A crucial distinction with Chapter 2 is that the emergent
winner and loser cell types are intrinsically viable in homotypic conditions. We also develop
a theoretical framework that enables us to classify competitive interactions and predict
the outcome of competitive interactions. We also validate these results using cell-based
simulations. In addition, we discuss how this framework lets us study different competition
regimes and how they depend on model parameters. Hence, we achieve Research Objective 2
in this chapter as well.

The modelling framework developed in this thesis is able to reproduce the hallmarks of
cell competition, but also makes a number of other predictions that can be experimentally
verified. In Chapter 7, we summarise our work and discuss how the death clock framework
can be experimentally validated, thus achieving Research Objective 3. In this thesis we only
implement the death clock framework in two cell-based models and for two particular death
signals, but the death clock framework is very flexible and can be implemented in other
cell-based models and with other death signals. Hence, in Chapter 7, we suggest potential
future avenues for research on cell competition using the death clock framework.

1.2 Overview of cell competition

1.2.1 Minutes and Myc

As mentioned earlier, cell competition inside a multicellular organism was first observed
in the development of the wing disc in Drosophila, also known as the fruit fly [37]. Fruit
flies are often used as model organisms for animal development because they are easily
cultured, have a short reproductive cycle, and are very amenable to genetic manipulation.
Moreover, the majority of studies in cell competition are performed on epithelial tissues,
both in vivo, such as in the wing disc, and in vitro, using co-cultures, because it is easier to
observe cell–cell interactions within a two-dimensional sheet of cells. In the study [37], the
authors were investigating a set of mutants called Minutes (M)2, which contain mutations in
genes that encode ribosomal proteins and cause cells to divide at a slower rate [38]. Flies
that are homozygous for a Minutes mutation are not viable, but heterozygous flies (M/+)

2In order to distinguish between genes and proteins, we italicise gene names.
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can survive, although their growth is mildly retarded. When genetic mosaics containing
both wild-type and M/+ cells were artificially induced, only wild-type cells remained in
the adult. This seminal study suggested that proliferation rate is an important factor of cell
fitness. Indeed, subsequent studies showed that the severity of cell competition is greater
for variants of Minutes that grow slower [39]. Moreover, in conditions of starvation, when
nutrients are the limiting factor for growth rather than protein synthesis, Minutes clones
regain their competitive edge and survive to adulthood [40].

In the case of Minutes mutations, wild-type cells prevail and mutated cells, which
proliferate at a lower rate, are removed. The fact that cell competition occurs in the wing
disc during a period of rapid cell proliferation suggests that cell competition is a mechanism
intended to keep tissues healthy by weeding out suboptimal cells, which in this case are
slowly proliferating cells. However, later studies involving the growth regulator Myc in
Drosophila have complicated the role of cell competition considerably [41, 42, 43]. Similarly
to Minutes, cells that were heterozygous for dmyc (the Drosophila homologue of the Myc

gene) grew slower and were outcompeted by wild-type cells. However, cells that were
genetically transformed to have three copies of dmyc grew at a faster rate than the wild-type
cells (who had just two copies), and were stronger competitors as a result. This was the first
observation of super-competition; mutated cells that outcompete and displace wild-type
cells. A schematic summary of cell competition and super-competition is given in Figure 1.2.

The discovery of super-competition through overexpression of Myc is particularly signif-
icant because Myc is a known proto-oncogene [44]. Super-competition may be a mechanism
by which mutated cells establish themselves in a tissue at the expense of surrounding,
healthy cells without producing detectable morphological abnormalities [45]. Additional
oncogenic mutations within a population of super-competitors are then more likely to result
in tumour formation. This mechanism could help explain the clinical phenomenon of “field
cancerisation”; this occurs when a large field of cells in a tissue is affected by oncogenic
mutations, from which multiple tumours develop [46].

1.2.2 Cell polarity

Interest in cell competition has exploded in the past decade, which has led to the discovery of
many more competitive cell–cell interactions. Most notably, cell polarity in epithelial tissues
has been identified as an additional parameter of cell fitness [47]. The apicobasal polarity
of epithelial cells is established and maintained by an asymmetric distribution of protein
complexes throughout the cell [48]. Some of the genes that encode cell polarity proteins,
Scribble, Discs large and Lethal giant larvae, can be mutated and still produce viable cells.
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Figure 1.2: Schematic summary of cell competition and super-competition. (A) In a
homotypic environment, both genotypes are viable and result in normal tissues. Blue cells
(top) represent less fit cells and green cells (bottom) represent wild-type cells. (B) When
wild-type and less fit cells are present in the same tissue, the cells compete and only the
wild-type cells remain. (C) When wild-type cells and super-competitors (orange) are placed
in the same environment, the super-competitors, which grow faster than wild-type cells,
outcompete wild-type cells. Figure reproduced3 from [21].

In fact, the mutated cells proliferate at a faster rate than wild-type cells. In addition, the
loss of polarity compromises epithelial structure and results in tumour-like overgrowths.
However, when polarity-deficient cells are competing with wild-type cells in a genetic
mosaic, they are eliminated by cell competition [47, 49, 50, 51, 52]. Cell competition, it
seems, is a double-edged sword with respect to cancer; it can promote tumour formation
through super-competition but also prevent tumours by eliminating polarity-deficient cells.

1.2.3 Mediators of cell competition

At first sight, the prominent role of proliferation rate in determining cell fitness may suggest
that cell competition is the result of simple arithmetic; loser cells divide less often and are
thus less likely to populate the tissue. However, experiments show that suppression of the
pro-apoptotic protein Hid inhibits cell competition, indicating that loser cells are actively
eliminated by apoptosis [53]. Moreover, activating cell growth through alternative means,
such as overexpressing the cell cycle regulators cyclin D and Cdk4 [42], does not trigger
cell competition. We can therefore conclude that cell competition is an active and regulated

3With permission of The Company of Biologists Ltd.; permission conveyed through Copyright Clearance
Center, Inc.
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process. Several pathways whose activation correlate with competitive interactions have
been identified, but a general mechanism for cell competition remains elusive.

Intriguingly, it was demonstrated that the signalling pathway leading to apoptosis in
Minutes- and Myc-induced competition shares components with pathways involved in
the innate immune system [54]. This raises the possibility that cell competition shares
an evolutionary history with the immune system. Similarly to how immune cells target
damaged or cancer cells in the body and eliminate them by inducing apoptosis, competing
cells may be exerting a type of quality control among neighbouring cells.

A genetic study of cell competition in the wing disc revealed that the Flower (Fwe) cell
membrane protein is responsible for “encoding” cell fitness [55]. The Flower (Fwe) gene
encodes three splice isoforms; the Fweubi isoform is expressed ubiquitously in the wing
disc, while the isoforms FweLose-A and FweLose-B are found only in loser cells. Moreover,
the presence of FweLose proteins is sufficient to mark cells as losers and trigger apoptosis.
According to the “fitness fingerprint” hypothesis, cells compare their fitness locally with
neighbouring cells based on their Fwe membrane proteins. However, the mechanism that
causes differential expression of FweLose in the first place is not known.

1.2.4 Conservation in mammals

Cell competition is not restricted to Drosophila. The first evidence for mammalian cell com-
petition came from research into a mutation in mice that is analogous to Minutes, specifically
the Belly spot and tail (Bst) mutation [56]. Similar to Drosophila, Bst is a heterozygous
mutation in a ribosomal protein gene that confers a growth disadvantage to afflicted cells.
Later studies demonstrated that cell competition due to differential Myc expression occurs
in the mouse epiblast, further confirming the conservation of cell competition in mammals
[57, 58].

More recently, a study of mouse development suggests that cell competition is not only
conserved in mammals, but that mammalian tissues have evolved additional modes of cell
competition as they increased in complexity [59]. During mouse embryogenesis, the skin
develops in two distinct stages. In the first stage, the epidermis, consisting of a single layer of
epithelial cells, expands its surface area roughly 30-fold to accommodate a rapidly-growing
embryo. In the second stage, the epithelium transitions to a stratified barrier with a layer of
progenitor cells at its base. The progenitor cells can divide in roughly two ways: either it
divides symmetrically to yield two progenitor cells, or it divides asymmetrically with one
daughter cell remaining in the basal progenitor layer and the other daughter cell expelled
outwards to contribute to the outer layers of the barrier. Importantly, the expelled cells are
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programmed to terminally differentiate and are eventually shed as dead skin cells.
In the study [59], the authors proved that, during the first stage, cell competition is

caused by differential expression of Mycn, an isoform of Myc. Moreover, the loser cells
are cleared by apoptosis, which is similar to cell competition in the Drosophila wing disc.
In the second stage, cell competition occurs as well, but loser cells are no longer removed
by apoptosis. Instead, loser cells are induced to preferentially divide asymmetrically, such
that a larger proportion of loser cells differentiate into cells that eventually die. These
findings demonstrate that, even within the same tissue, multiple modes of cell competition
are possible, and that tissues dynamically adapt their mechanism for cell competition to the
developmental context.

1.2.5 Mechanical cell competition

When groups of cells in the same tissue proliferate at different rates, it inevitably leads to
mechanical stresses. Therefore, it has been hypothesised that mechanical interactions could
play a role in cell competition [60]. Experiments later demonstrated that cell crowding in
epithelial tissues triggers an intrinsic form of cell competition where genetically identical
cells compete for space [61, 62]. In these studies, the cell density was artificially increased,
initiating a competitive process where some cells were squeezed out by their neighbouring
cells to relieve excessive mechanical stresses in the tissue. The extruded cells then proceeded
to die through apoptosis. Since the cells were genetically identical, the competition was
presumably predicated on intrinsic, stochastic cell–cell variability of mechanical properties.

This discovery reignited interest in the contribution of mechanical stresses to compe-
tition between genetically distinct cell populations [20]. Perhaps phenotypic differences
in mechanical sensitivity as a result of genetic divergence are at least partly responsible
for cell competition. This hypothesis is supported by recent research; one study provided
evidence of mechanical super-competition achieved by the overexpression of the growth reg-
ulator Ras to simultaneously stimulate cell growth and decrease mechanical sensitivity [63].
Another study demonstrated that cells silenced for Scribble are more likely to delaminate
under mechanical stress [64]. In the presence of wild-type cells, Scribble-deficient cells are
outcompeted due to their mechanical hypersensitivity.

Mechanical cell competition is a relatively new discovery. Hence, not much is known
about the mechanoreceptors (receptors that respond to mechanical stress) and mechano-
transduction pathways involved. The mechanotransducer Piezo1 plays a role in both cell
crowding and cell stretching [62, 65]. However, it does not seem to be involved with Scribble-
related cell competition [64]. On the other hand, the relationship between Ras-induced
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mechanical super-competition and Piezo1 has not yet been investigated [66].

1.3 Overview of cell-based models

In this section, we provide a high-level review of cell-based computational models. This
means that we restrict ourselves to relatively basic descriptions that nonetheless allow us to
discuss potential strengths and weaknesses in modelling cell competition. The models are
introduced in order of increasing complexity; we start with cellular automata, where cells
are represented as shapeless entities inhabiting a fixed lattice, and end with vertex models,
which explicitly model cell shape.

Broadly speaking, cell-based models can be categorised into two classes of models;
on-lattice models and off-lattice models. In the former, space is discretised into a fixed
lattice whose sites can be occupied by cells. In off-lattice models, on the other hand, cells
are represented by objects that reside in a continuous space.

1.3.1 On-lattice models

On-lattice models assign each simulated cell to one or more sites of a two- or three-
dimensional lattice, and iteratively update cell positions based on a set of “update rules”.
These update rules generally sample each cell’s local neighbourhood to decide which action
to take. For instance, a cell that is surrounded only by empty spaces may be eligible for cell
division, which is performed by placing an additional cell in the empty space. Even with
relatively simple update rules, it is possible to simulate phenomena such as cell migration,
cell proliferation, cell–cell adhesion, and so on [67].

Cellular automaton model

In cellular automaton models (CAMs), each cell occupies exactly one site on the lattice
(see Figure 1.3.a). This constraint makes the CAM the simplest type of cell-based model,
as well as the most computationally efficient [68, 69, 70]. Hence, their main advantage is
that a large number of cells, and their interactions, can be simulated at once. As a result,
CAMs can be used to reproduce the dynamics of mesoscopic structures for which more
sophisticated models are computationally intractable.

On the other hand, the simplified spatial representation of CAMs necessarily produces
simulation artefacts, such as anisotropic biases in cell migration. Moreover, because CAMs
evolve on the basis of discrete update rules instead of continuous laws of motion, it is not
obvious how to translate between model parameters and experimentally derived parameters.
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Figure 1.3: Overview of cell-based models. (a) Cellular automaton model. (b) Cellular Potts
model. (c) Overlapping spheres model. (d) Voronoi tessellation model. (e) Vertex model.
Figure reproduced4 from [71].

Most importantly, CAMs do not model cell shape and are therefore unable to model processes
where mechanical cell deformations play a role.

Cellular Potts model

The cellular Potts model (CPM) is also an on-lattice model, but, unlike the CAM, it explicitly
accounts for cell shape by allowing cells to extend over multiple lattice sites [72]. The update
rules for CPMs are derived by defining an energy function over the system and performing
cell identity swaps to minimise the energy through a Monte Carlo process. Because cells are
characterised in greater detail than in CAMs, it is possible to model mechanical properties
such as cell membrane tension, cell–cell adhesion, and cell elasticity. In turn, this enables
the application of CPMs to a wider range of biological processes, such as morphogenesis
[73] and tumour growth [74].

Despite these advantages however, CPMs still suffer from many of the same drawbacks
that CAMs have. For instance, it is difficult to interpret CPM parameters in an experimental
context, and spatial anisotropy remains an issue. It is possible to reduce the spatial bias by
using a very fine grid to resolve cell shapes, but this increases the computational cost. We

4Under CC BY license (https://creativecommons.org/licenses/by/4.0/).
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will not use on-lattice models in this thesis, but this does not mean that on-lattice models
have no value in the context of cell competition. On the contrary, there are examples of
on-lattice models of competition in an ecological context [75, 76], in a microbial context
[77], and in the context of cell competition in multicellular organisms [78].

1.3.2 Off-lattice models

In contrast to on-lattice models, off-lattice models treat the spatial domain as a continuous
medium in which cells move and interact. Often, this medium is assumed to be a viscous
environment, such that cell motion occurs in a low Reynolds number and inertial forces
can be neglected [79]. Hence, the equation of motion for a “particle” i with position ri,
experiencing the total force Fi, has the form

µ
dri

dt
= Fi , (1.1)

where µ is the friction coefficient. The meaning of a particle and the calculation of the
total force depends on the type of off-lattice model under consideration. For instance, in
the overlapping spheres model (OSM) and Voronoi tessellation model (VTM), particles
correspond to cell centres, while particles correspond to vertices in the vertex model.

Different types of off-lattice models are distinguished by their description of cell shape.
For instance, the OSM and VTM both track cell centres, but they differ in how they represent
cell shape and, as a result, how they calculate intercellular forces.

Overlapping spheres model

As the name suggests, the OSM assumes that cells have a spherical shape, which may
deform upon contact with other cells or a substrate [80]. When cells come into contact (i.e.
their spherical shapes “overlap”), they exert forces on each other. Typically, the intercellular
force is attractive at an intermediate distance (cell–cell adhesion), but becomes repulsive
when cells approach too closely.

In comparison with off-lattice models, the OSM provides a view of cellular interactions
that is more physically relevant, and is therefore easier to relate to experiments. In particular,
intercellular force laws are often adopted from experimentally derived cell–cell contact
models [81]. However, the OSM lacks an explicit description of cell connectivity, which is
an important feature of epithelial tissues and could contribute to mechanical cell competition.
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Voronoi tessellation model

Similarly to the OSM, the VTM identifies cell positions with their cell centres. Unlike the
OSM, cell shapes are derived by applying a Voronoi tessellation on the cell centres [82].
This means that a cell is defined as the set of all points that are closer to its centre than to the
centres of any other cell. This operation generates a mesh of polygonal cells, where each
cell has well-defined neighbours that they interact with (see Figure 1.3.d). Furthermore, the
cell connectivity is given by the Delaunay triangulation of the cell centres (indicated by the
dashed lines in Figure 1.3.d).

The VTM offers a number of advantages over the OSM in the context of epithelial
tissues. Firstly, cell connectivity is explicitly expressed through a polygonal mesh, which
mimics the spatial structure of epithelial tissues in vivo. Secondly, the Voronoi tessellation
enables direct comparisons between computational results and the summary statistics that
are commonly used to describe epithelial tissues in experiments. For example, the number of
cell neighbours or the mean area per polygon class5 can be computed from VTM simulations
and can be derived from experimental results.

Unfortunately, in VTMs there is no explicit control of cell volume or shape. Although the
cell connectivity is topologically similar to that of an epithelial tissue, cell–cell interactions
are limited to pairwise forces between cell centres, as in the OSM.

Vertex model

The main issue with cell-centre models is that they localise cells to a single point in space.
As a result, cell shape can only be inferred implicitly, by centring a sphere on the cell centre
as in the OSM, or by applying a Voronoi tessellation as in the VTM. Of these two models,
the VTM is more appropriate for epithelial tissues because it simulates the topology of
epithelial tissues. However, the polygonal mesh structure is not an intrinsic feature of the
VTM, but is instead an intermediate representation of the tissue that is derived from the
positioning of the cell centres.

Vertex models, on the other hand, reverse this relationship by using an explicit polygonal
mesh that represents the epithelial tissue and identifying cells directly with the polygons
in the mesh [83, 84, 85, 86]. The notion of a cell centre does exist in vertex models, as
the geometric centroid of the polygon corresponding to a cell, but it does not feature in the
formulation of the vertex model. Rather, the primary components of the vertex model are
the edges and vertices of the mesh, which correspond to cell–cell interfaces and locations

5The polygon class of a cell is defined as the number of edges it has. For instance, all triangular cells
belong to the same polygon class.
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where three or more cell–cell interfaces meet, respectively. Importantly, the dynamics of
cells are determined by forces acting on the vertices, hence the name vertex model.

The benefits of the vertex model are similar to those of the VTM when modelling
epithelial tissues since its polygonal mesh can be directly related to experimental data. In
addition, however, we gain explicit control over cell shape, which enables the formation of
more detailed hypotheses about the mechanical factors involved in cell competition (see
Section 2.1 for more details on the vertex model). As a result, we chose vertex models as
our initial modelling approach for modelling cell competition. No choice comes without
a cost, however, and a potential downside of the vertex model is that it is computationally
expensive. This can be partly mitigated by parallelisation, however.

As a final note, we should mention that there are other cell-based models which describe
cells in even greater detail. For instance, a “many vertex” model has been proposed to model
the gastrulation of sea anemones, where each cell is represented with a polygon composed
of many vertices so that they can take on arbitrary cell shapes [87]. Another example is the
subcellular element model, which takes a similar approach to the vertex model (or OSM),
but also partitions the interior of the cell into polygons (or spheres) to simulate mechanics at
a subcellular scale [88]. Although such models are more detailed than vertex models, they
come at the price of further increased computational cost. In addition, there are currently no
indications that such a level of detail is vital to understanding cell competition.

1.4 Overview of competition modelling

In this section, we review mathematical models relevant to cell competition. Population
dynamics (Section 1.4.1) is a framework for modelling ecological interactions at the popula-
tion level, and has provided theoretical insights such as competitive exclusion. Evolutionary
game theory (Section 1.4.2) applies game theory to the evolution of strategies in populations.
It is particularly successful at explaining frequency-dependent selection, where the fitness
of a trait is dependent on the abundance of traits in the population. We also briefly discuss
competition and models of competition in microbial ecology (Section 1.4.3) and cancer
biology (Section 1.4.4), since these domains are concerned with similar spatiotemporal
scales as cell competition. Finally, in Section 1.4.5, we review current models of cell
competition.
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1.4.1 Population dynamics

Population dynamics aims to describe the growth and decline of populations using mathe-
matical modelling [89, 90]. Similarly to the general field of dynamical systems, time can be
conceptualised as being discrete or continuous. In discrete-time models, populations are as-
sumed to grow in non-overlapping generations, while generations overlap in continuous-time
models. Such models are expressed in terms of difference and differential equations, respec-
tively. In addition, the basic framework can be extended to include population structure,
time delay, spatial distribution, stochasticity, and more [89, 90]. Nevertheless, the biological
reality is usually more complicated than the relatively simple mathematical models used in
population dynamics. These models are therefore most often used for conceptual insights,
rather than quantitative predictions. A notable (and topical) exception, however, is infectious
disease modelling, where the aim is to make concrete predictions and inform public health
policy [91, 92].

Here, we will focus on summarising a select number of models relevant to competition.
Denoting the population size by x, one of the simplest population models is the Malthus
model [2],

dx
dt

= rx , x(0) = x0 , (1.2)

which assumes a constant per capita growth rate, denoted r. When r is positive or negative,
the model predicts exponential population growth or decline, respectively. This model is
appropriate when resources are not a limiting factor.

A basic model for resource-constrained populations is the Verhulst model [93, 94],

dx
dt

= rx
(
1 −

x
K

)
, x(0) = x0 , (1.3)

also known as the logistic model. In this model, the per capita growth rate declines with
increasing population size as a result of intraspecific competition. When the population size
reaches the carrying capacity, denoted K, the growth rate is zero. The carrying capacity is
the maximum population size that the environment can sustain.

When two species, denoted x and y, compete for the same resources6, we can represent
this with a Lotka–Volterra model [89, 90, 95]:

dx
dt

= rxx
(
1 −

x + bxyy
Kx

)
, x(0) = x0 , (1.4a)

dy
dt

= ryy
(
1 −

y + byxx
Ky

)
, y(0) = y0 , (1.4b)

6Or, more generally speaking, when two species inhibit each other’s growth.
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where the constant bxy quantifies the competitive effect of species y on x, and vice versa
for byx. Analysis of Equations (1.4a) and (1.4b) shows that stable solutions where x > 0
and y > 0 are only possible if bxy < Kx/Ky and byx < Ky/Kx. In other words, the competing
species can only coexist if the effect of interspecific competition is smaller than intraspecific
competition. In all other cases, the model predicts competitive exclusion.

Populations can also be modelled on spatial domains. When combining Equations (1.4a)
and (1.4b) with a diffusive process representing dispersal, we obtain a competition and
diffusion model [96]:

∂x
∂t

= Dx∇
2x + rxx

(
1 −

x + bxyy
Kx

)
, x(r, 0) = x0(r) , (1.5a)

∂y
∂t

= Dy∇
2y + ryy

(
1 −

y + byxx
Ky

)
, y(r, 0) = y0(r) , (1.5b)

where Dx and Dy are the diffusion coefficients for species x and y, respectively, and where
we used r to denote the spatial variables. This model has been used to show that the spread
of an invading species outcompeting a resident species is not qualitatively different from the
spread of a species in the absence of competition, except that the spread occurs more slowly
[96].

1.4.2 Evolutionary game theory

Evolution can be conceived of as a process that optimises the fitness of organisms with
respect to their environment. In fact, biological evolution is the inspiration for “evolutionary
algorithms”; heuristic optimisation algorithms that use the principles of random mutation,
reproduction, and selection to generate approximate solutions for complex optimisation
problems [97]. The analogy between evolution and optimisation is therefore quite apt, but
it has limitations. In particular, the mathematical notion of optimisation implies a static
utility function. Therefore, evolution as optimisation portrays the struggle for existence as a
struggle against a fixed environment. However, as we discussed at the start of this chapter,
the struggle for existence is also a struggle against other organisms, i.e. a competition in a
dynamic environment.

Therefore, when the success of an organism is not only determined by its environment,
but also by the organisms that it encounters in its environment, the appropriate framework
is game theory [98], not optimisation. Similarly to optimisation, the aim in game theory is
to maximise utility. However, this aim is pursued from the perspective of an agent playing
“games” with other agents. Despite the light-hearted term, a game simply means that each
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agent can choose from a range of strategies, and that the utility of each strategy depends
on the strategies chosen by the other agents. In classical game theory, there is therefore no
“optimal” strategy, only Nash equilibria, in which each player’s strategy is optimal given the
strategies of the other players [99].

Evolutionary game theory (EGT) applies game theory to evolution by conceptualising
interactions between organisms as games. In this framework, the phenotypes that organisms
(players) display are the strategies that they employ in the game. Moreover, the utility of
the game is determined by the fitness of the participating organisms that result from the
interaction. The process of evolution is then represented by a population of organisms
that compete through pairwise games and reproduce based on their fitness7. Crucially, the
success of a phenotype is context-dependent, since its fitness depends on the distribution of
phenotypes in the population. Again, there is no optimal phenotype, only an evolutionarily
stable state8, which is a distribution of phenotypes that cannot be invaded by a mutant
phenotype. In many cases, the evolutionarily stable state is not a single phenotype, but a
mixture of phenotypes, demonstrating that competition does not necessarily produce one
single “fittest” phenotype, but rather a population with an evolutionarily stable composition
of phenotypes.

EGT has been particularly successful in describing the evolution of traits that are under
frequency-dependent selection, such as patterns of animal conflict [100], the sex ratio
[101], and the evolution of cooperation [102], to name but a few. In addition, EGT has
been applied to evolutionary processes at the cellular [103] and molecular [104] scale. The
remarkable insight from EGT is that cooperative behaviours can emerge and thrive in a
framework that describes, at its core, a competitive process among self-interested agents.
EGT therefore demonstrates that cooperation is fundamentally compatible with the struggle
for existence.

Standard assumptions in EGT often include random mixing of opponents. But evolution-
ary games can also be played on spatial domains, with players occupying sites on a lattice
[105] or nodes in a network [106], and games being played locally between immediate
neighbours. Spatial games permit the coexistence of strategies that are mutually exclusive

7For simplicity, EGT usually dispenses with the details of genetic inheritance, instead assuming that
organisms reproduce asexually and that phenotypes are inherited without mutations.

8The evolutionarily stable state is closely related, but not identical, to the evolutionarily stable strategy.
The former refers to a polymorphic population with organisms adopting “pure” strategies (or phenotypes),
whereas the latter refers to a population where each organism has a mixed strategy, adopting each pure strategy
with a certain probability. In most cases, the probability distribution of the mixed strategy is equivalent to the
distribution of pure strategies in the polymorphic population, hence they are often used interchangeably. Even
though the term “evolutionarily stable strategy” is more prominent, “evolutionarily stable state” is the more
appropriate term here. For further discussion on this topic, see Appendix D in [98].
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in random-mixing conditions [105], and can amplify or suppress the spread of strategies
through network structures [106].

1.4.3 Microbial ecology

Microbes can be found virtually everywhere in the biosphere; they live in the water, the
soil, and in the air. In addition, they inhabit multicellular organisms such as plants and
animals in symbiotic relationships. According to endosymbiotic theory [107], mitochondria
have a bacterial origin. Hence, in some sense bacteria may literally live inside our cells.
Endosymbiosis aside, most microbes live in complex and diverse microbial communities.
However, many microbial species cannot be cultured using current laboratory techniques.
This makes it technically challenging to characterise all the species in a microbial community,
let alone their interactions [108]. It is clear, however, that competitive interactions dominate
in the microbial community [6, 109, 110, 111].

Similarly to the Malthusian model, the struggle for existence at the microscopic scale
is centred on the competition for scarce resources [6]. Indeed, the resource ratio model
of competition, proposed by Tilman [112] and based on the Monod equation for bacterial
growth kinetics [113], suggests that the abundance of species can be predicted through
patterns of nutrient consumption and availability. However, the resource ratio model can
only account for exploitative competition, which is defined as competition that occurs
indirectly through the consumption of a common limiting resource.

On the other hand, interference competition is competition where organisms actively
inhibit their opponent’s access to the contested resources. The latter form of competition is
also common in bacteria [6], which have developed an impressive arsenal of weapons [7],
including a diverse array of diffusing toxins [114, 115], molecular structures for perforating
cell walls [116] and injecting toxins [117], and even viruses that specifically attack non-
clonemates [118]. In contrast to animal conflict, which rarely escalates to physical fights,
bacterial conflict is very aggressive and often lethal [7]. All of the modelling frameworks
discussed so far have been applied in the study of microbial ecology, including cell-based
models (Section 1.3), population dynamics (Section 1.4.1), and EGT (Section 1.4.2).

EGT models have been used to study the coexistence of cooperators and “cheaters” in
microbial communities [103, 119, 120]. Many microbes produce extracellular enzymes
(exoenzymes) to decompose complex nutrients into small molecules that can be absorbed
through the cell wall. However, since the products of exoenzymes are released into the
environment, they are “public goods” and the microbes producing exoenzymes can be
considered cooperators. Cheaters, on the other hand, forgo the production of exoenzymes,
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while still benefiting from the public goods. Game-theoretic models showed that cooperators
and cheaters can coexist when the spatial scale in which public goods diffuse is smaller than
the clustering size of cooperators [119, 120]. This result was verified in vitro [121], and it
underlines the importance of spatial structure in microbial communities [110].

Population dynamics models play an important role in elucidating the large-scale struc-
ture of microbial communities from experimental data [108, 122], and provide a theoretical
framework for describing interactions in microbial communities. For instance, it was demon-
strated using Lotka–Volterra models that competitive interactions have a stabilising effect
on microbial communities [123]. Even though cooperative interactions between different
species of microbes can increase the total metabolic productivity, they introduce depen-
dencies such that the decline of a single species may have a cascading effect on the whole
community. Hence, there exists a trade-off in the composition of microbial communities
between productivity and stability.

Cell-based models, on the other hand, are used to investigate fine-grained interactions
between different microbial species and their environment [124]. For instance, cell-based
modelling showed that spontaneous spatial segregation of genetic lineages is likely to occur
in a wide range of conditions [125]. As discussed above, this emergent spatial structure
promotes the evolution of cooperative phenotypes, since public goods can be preferentially
shared among cooperators. Another application is in the production of polymers that
form the backbones of biofilms. The predominant but naive view was that polymers are
a public good, since non-polymer producing bacteria benefit from the protection that the
biofilm offers. However, cell-based models revealed that polymer producing bacteria gain a
competitive advantage by ensuring that their offspring are localised in the upper parts of the
biofilm, and therefore have better access to oxygen [126].

1.4.4 Cancer biology

As discussed in Section 1.2, there are interesting parallels between cell competition and
cancer, particularly the overlap in genes that are implicated in super-competition and cancer.
Many of the modelling frameworks in cancer biology may therefore be relevant to cell
competition. Mathematical oncology—the use of mathematical modelling to study cancer—
is a very broad field for a number of reasons [127, 128, 129]. Firstly, applications span the
entire spectrum from applied clinical research to fundamental biological research. Secondly,
cancer is not a single disease, but a group of diseases with different properties depending on
the tissue of origin and the mutations involved. Thirdly, tumour formation takes place at
many different scales; genes, gene networks, signalling networks, cells, tissues, and organs.
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Finally, tumour progression is a complex and multi-stage process. Hence, there is a plethora
of models used in mathematical oncology tailored to different applications, types, scales,
and developmental stages. Here, we can only provide a modest overview of models that
may be relevant to cell competition.

The origins of cancer can be traced to mutations in genes that are responsible for
controlling cell proliferation, cell death, and DNA repair, among others. Proto-oncogenes
induce the cell to proliferate uncontrollably when overexpressed or improperly activated
[130], while tumour-suppressing genes have a similar effect when their function is lost [131].
However, no gene lives in a vacuum, so these genes participate in complex intracellular
signalling networks. The effects of perturbations on cellular responses can therefore not be
derived by verbal reasoning alone. Hence, mathematical models are often used to describe
their dynamics. Such models can take the form of deterministic differential equations [132],
stochastic processes [133], or hybrids that combine both [134]. Examples include modelling
of the MAPK pathway [135], the effects of cancerous mutations on the MAPK pathway
[136], and p53 regulation [133].

As the tumour acquires more mutations and develops further, the interaction between
the tumour and its microenvironment becomes increasingly important. This interaction is
complex and multi-faceted; the tumour is spatially constrained by the surrounding tissue
and its growth is limited by the diffusion of nutrients and oxygen, and, conversely, the
microenvironment is modified by tumour secretions. Therefore, mathematical modelling
is often necessary to describe and understand the interplay between the tumour and its
microenvironment. For instance, many cancer cells upregulate the fermentation of glucose,
even when sufficient oxygen is available for respiration [137, 138]. This creates lactic acid
as a waste product, which is released into the environment. A reaction–diffusion model
that represents cells by continuous cell densities was used to hypothesise that this creates
an acidic gradient that degrades the surrounding host tissue, and contributes to malignancy
[139]. Such a continuum model assumes that cell populations are large enough to be
modelled by continuous densities. However, in the early stages of tumour formation cancer
cells are few and this assumption does not hold. For these conditions, a hybrid model was
developed where cells are instead simulated using cellular automata [140]. Similar hybrid
models have been used to study the role of cell adhesion in tumour invasion [141], the
evolutionary dynamics of glucose fermentation [142], breast cancer [143], and many more
[144].

The evolutionary dynamics of cancer present major challenges for cancer treatment
[145]. In particular, tumour cells often develop resistance to chemotherapeutic drugs,
making it difficult or impossible to eradicate the tumour entirely. Even worse, aggressive
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chemotherapeutic treatment can promote the proliferation of resistant cells by selectively
eliminating drug-sensitive cells and thereby freeing up space and resources for resistant
cells. The aim in “adaptive therapy”, on the other hand, is to delay or avoid resistance
by maintaining a population of sensitive cells in the tumour that compete with resistant
cells [146]. Since resistance often comes at a fitness cost, sensitive cells can outcompete
resistant cells in the absence of chemotherapeutic drugs. Therefore, in adaptive therapy the
timing and dosage of drugs is dynamically adjusted to restrain overall tumour burden in
a sustainable manner. The success of such an approach stands or falls with the ability to
accurately simulate the dynamics of tumours for different dosing regimens. Mathematical
modelling therefore plays a pivotal role in the development and application of adaptive
therapy. For instance, a discrete-time model simulating the dynamics of sensitive and
resistant subpopulations was used to investigate the impact of resistance costs [147]. The
study demonstrates that adaptive therapy is most effective when resistance costs are high
and resistant cells make up only a small fraction of the tumour. Similarly, simulations of
cell-based models showed that competition for space inside the tumour is a key factor in
suppressing the growth of resistant cells [148, 149]. Most recently, Lotka–Volterra models
have been applied to examine the impact of tumour cell turnover in adaptive therapy [150].

1.4.5 Cell competition models

Nishikawa et al. present a Lotka–Volterra model for cell competition in epithelia based
on short-range interactions [151]. The starting point is a competition model identical to
Equations (1.4a) and (1.4b). In order to model the active elimination of loser cells by winner
cells at the boundary of a loser clone in a background of winner cells, the authors introduce
a predator–prey interaction term that models winner-induced loser cell death. Even though
the model is not explicitly spatial, the clone geometry is reflected in the interaction term,
which is defined to be proportional to the clone boundary length. For instance, if y is the
loser cell count and the clone is perfectly circular, then the predation term is proportional
to y1/2. In addition, the authors construct an off-lattice, cell-based model implementing the
same interactions. Using these models, the authors show that i) an active mechanism of loser
elimination, such as a predator–prey interaction between winners and losers, is sufficient
to achieve the outcome of cell competition, and ii) a difference in proliferation rates is by
itself not sufficient to achieve cell competition. More recently, this work was extended to
investigate the effect of cell death-induced proliferation on cell competition [152].

Shraiman derived a mechanical model that relates the pressure in an epithelial tissue to
non-uniform growth [60]. Crucially, local buildup of excess pressure, which expresses the
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amount of relative compression or stretching, results from a difference between the local
growth rate and the average growth rate of the tissue. Additionally, Shraiman proposed
a mechanical feedback mechanism where positive pressure (compression) causes cells to
divide more slowly and vice versa for negative pressure (tension). If the absolute pressure
becomes too extreme, however, the local growth rate turns negative and apoptosis is induced.
Equipped with such a feedback mechanism, Shraiman showed that a mutant clone with a
higher homeostatic pressure initially grows at a faster rate than the surrounding tissue, but
adapts as local pressure accumulates, which dampens mutant growth and thus equalises its
growth rate. However, wild-type cells surrounding the mutant clone may initiate apoptosis
if the pressure exceeds the maximally tolerated pressure. In summary, the model shows that
mechanical feedback can regulate tissue growth, and that differences in cellular responses to
pressure can contribute to mechanical cell competition [60].

In addition to compression inside a fast-growing winner clone, a differential proliferation
rate also results in the elongation of loser cells located along the boundary of the fast-
growing clone [20]. Therefore, the shapes of loser cells at the boundary become anisotropic,
with longer cell–cell junctions along the boundary and shorter ones perpendicular to the
boundary. Tsuboi et al. show that this anisotropy is key to understanding how winner clones
expand into the surrounding loser territory [153]. In particular, since junctional remodelling
(see the T1 transition in Section 2.1.4) is more probable for shorter junctions, the topological
rearrangements occurring in apoptotic loser cells at the boundary favour the expansion
of neighbouring winner cells. Moreover, using a vertex model, the authors are able to
demonstrate that i) biased junction remodelling in the absence of differential proliferation
rates is sufficient for winner clone expansion, and ii) randomising junction remodelling
inhibits winner clone expansion [153]. Taken together, model simulations demonstrate the
importance of biased junction remodelling in epithelial cell competition. Another use of
vertex models in cell competition is presented by Lee et al. [154]. The authors investigate
mechanical cell competition in a tissue that is genetically homogeneous, but whose cells
nonetheless display phenotypic variation in their mechanical properties. This phenotypic
variation either is inherited, or randomly sampled at every cell division. In the former
case, evolution takes place in the tissue, increasing tissue fitness relative to the latter case.
Hence, the authors suggest a mechanism by which cell competition contributes to tissue
fitness [154]. Both of these studies [153, 154] demonstrate the utility of vertex models
in investigating mechanical aspects of cell competition in epithelia that involve cell-scale
processes.

Generally speaking, it is becoming increasingly important to characterise interactions
at the cellular level to elucidate the mechanisms of cell competition [155]. This presents
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two challenges. On the one hand, it requires conducting cell competition experiments
under various conditions while tracking many cells simultaneously and collecting data
on their surface area, neighbourhood connectivity, cell cycle, and more. On the other
hand, we need to construct cell-based models at a similar level of resolution to assimilate
the data and reproduce the observed behaviour. Bove et al. tackle the first challenge by
developing an experimental pipeline for mechanical cell competition experiments that
combines “automated long-term microscopy and advanced image analysis” [156]. This
enables them to track individual cell lineages over time and space, complete with information
on their cell cycle and neighbourhood composition. In particular, the authors derive empirical
relationships between apoptosis and division rates on the one hand, and cell density on the
other hand. Gradeci et al. use these data to construct cellular Potts models of both mechanical
and biochemical cell competition [78]. Through simulations, the authors conclude that
tissue organisation strongly influences the outcome of biochemical cell competition, while
differences in homeostatic density is sufficient for mechanical cell competition.

1.5 Concluding remarks

In this chapter, we introduced cell competition by first discussing competition more broadly
and then addressing the seemingly paradoxical nature of cells belonging to the same multi-
cellular organism competing with each other. In Section 1.1, we identified the need for a
mechanistic model for winner/loser status acquisition, something which is currently miss-
ing from the literature, thus motivating the aim of this thesis to study the emergence of
winner/loser status using mathematical modelling. We also summarised our strategy for
achieving this aim with an outline of the thesis. In the remaining sections, we provided an
overview of cell competition (Section 1.2), cell-based models (Section 1.3), and competi-
tion modelling (Section 1.4). The latter includes a discussion of current cell competition
models. In the next chapter, we investigate whether varying the mechanical parameters in a
heterotypic population is sufficient for inducing cell competition in a vertex model.
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Chapter 2

Mechanical cell competition in epithelia

In Section 1.3, we argued that the vertex model is the most appropriate cell-based model
for studying cell competition in the Drosophila wing disc because it has been shown to
reproduce the dynamics of epithelial tissues in a variety of developmental processes [85].
In this chapter, we construct a vertex model for cell competition in Section 2.1. We then
discuss its implementation using the open-source simulation package Chaste in Section 2.2.
Finally, we describe a computational study of mechanical cell competition in Section 2.3.

2.1 Vertex model

Epithelial tissues are composed of cells that adhere tightly to form a continuous membrane.
As a result, the apical surface of an epithelial tissue resembles a polygonal mesh where
each polygon represents the apical membrane of an epithelial cell, each edge corresponds
to a cell–cell junctional interface, and vertices mark the locations where multiple cell–cell
interfaces meet (see Figure 2.1).

As mentioned in Section 1.3, vertex models represent epithelial tissues explicitly as
polygonal meshes. The cell dynamics are determined by the equations of motion of the
vertices. In Section 1.3.2, we explained that inertial forces can be neglected such that the
equations of motion take on the form given in Equation (1.1).

There are multiple ways to define vertex forces [157], but the approach we use here is to
associate the mesh with a phenomenological energy function E that models mechanical cell
properties such as cell elasticity and cell–cell adhesion. The total force acting on vertex i is
then defined as

Fi = ∇iE , (2.1)

where ∇i is the gradient of E with respect to the spatial coordinates of vertex i. In our model,
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Figure 2.1: Epithelial tissues can be described by a two-dimensional network of cell–cell
junctions. (a) Fluorescent microscopy image of an epithelial tissue showing the localisation
of adhesive and contractile proteins. (b) The structure and dynamics of epithelial sheets can
be approximated by a network of cell–cell junctions, which is modelled as a two-dimensional
polygonal mesh in the vertex model. We use the symbol α to denote cells, and i or j to
denote vertices. Furthermore, the length of the edge connecting i and j is written as `i j.
Figure reproduced1 from [84].

we assume that there are three important mechanical properties at work; cell elasticity, cell
contractility, and cell–cell adhesion. Hence, the energy function can be written as

E = Eelasticity + Econtractility + Eadhesion , (2.2)

where Eelasticity, Econtractility, and Eadhesion represent the energetic contributions of cell elasticity,
cell contractility, and cell–cell adhesion, respectively. We describe each of these terms in
detail below.

In addition to the vertex dynamics defined by Equations (1.1), (2.1), and (2.2), vertex
models include discrete operations that modify the topology of the mesh. For instance, a “T2
transition” extrudes a cell whose cell area has fallen below a critical threshold by collapsing
the cell into a vertex. Mesh rearrangements are discussed in Section 2.1.4. We also include
cell proliferation in our model. Section 2.1.4 briefly discusses the implementation of cell
divisions in the vertex model, and Section 2.1.5 describes the cell cycle model. Finally, in
order to model cell competition, we assume that there are two cell types, denoted A and B.
Cells belonging to the same cell type have identical parameters, but parameters are allowed
to vary between cell types.

1With permission of Elsevier Science & Technology Journals; permission conveyed through Copyright
Clearance Center, Inc.
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2.1.1 Elasticity

The elasticity of a cell expresses its resistance against deformation; a cell that is being
compressed or stretched resists this deformation by producing an opposing force. A common
assumption in vertex models is that the cell α attempts to maintain a constant target cell
area, denoted by S 0

α, and that the energy term for each individual cell is proportional to
the squared deviation of the cell area from the target cell area. Summing over all cells, we
obtain the following expression:

Eelasticity =
∑
α

Kα

2

(
S α − S 0

α

)2
, (2.3)

where Kα and S α are the elasticity parameter and cell area of cell α, respectively.
There are thus two parameters involved in cell elasticity, Kα and S 0

α. As mentioned
before, these parameters vary between cell types. Thus, for cell α, we write

Kα =

KA for α ∈ A

KB for α ∈ B
, (2.4)

and

S 0
α =

S 0
A for α ∈ A

S 0
B for α ∈ B

. (2.5)

2.1.2 Contractility

Cells in epithelial tissues tend to minimise the length of their perimeters. This is captured
by the cell contractility energy term. Cell contractility penalises elongated cell shapes in
favour of circular cell shapes. It is generally assumed that the contractility energy term is
proportional to the square of the cell perimeter [84]:

Econtractility =
∑
α

Γα

2
L2
α , (2.6)

where Γα and Lα are the contractility parameter and the cell perimeter of cell α, respectively.
The constant parameter Γα depends on the cell type as

Γα =

ΓA for α ∈ A

ΓB for α ∈ B
. (2.7)
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2.1.3 Adhesion

The final term in Equation (2.2) represents the line tension acting on cell–cell interfaces.
This line tension models adhesive forces at cell–cell junctions and can be positive or negative.
When the interaction between two cells is favourable, meaning that they adhere strongly to
each other and prefer a large cell–cell interface, the line tension is low and vice versa. We
denote the edge between vertices i and j as 〈i, j〉 and its edge length as `i j (see Figure 2.1).
Furthermore, we assume that the line tension is proportional to edge length. We sum over
all edges to obtain

Eadhesion =
∑
〈i, j〉

Λi j`i j , (2.8)

where Λi j is the line tension parameter. Unlike the other parameters discussed here, the line
tension parameter can be negative.

Since the line tension parameter is dependent on the edge type, rather than the cell type,
we need to specify values for every pairing of cell types. In addition, we need to account for
edges at the boundary of the tissue, which border a cell on one side and empty space on the
other. For two cell types, we thus specify a total of five line tension parameters. Denoting
the two cells sharing the edge 〈i, j〉 as α and β, we write

Λi j =



ΛAA for α, β ∈ A

ΛBB for α, β ∈ B

ΛAB for α ∈ A, β ∈ B

ΛA for α ∈ A, β ∈ ∅

ΛB for α ∈ B, β ∈ ∅

, (2.9)

where β ∈ ∅ signifies that 〈i, j〉 is a boundary edge.

2.1.4 Mesh rearrangements

The purpose of mesh rearrangements in the vertex model is twofold. Firstly, the energy
formulation of the vertex dynamics does not prevent vertices from crossing cell boundaries.
This has the potential to create meshes with overlapping cells, therefore invalidating the
mesh. Mesh rearrangements handle these situations in a manner that restores the validity of
the mesh. From a modelling perspective on the other hand, mesh rearrangements enable
cells to break and form bonds so that they are able to swap neighbours and are not confined
to a static topology. Moreover, it is not possible to create new cells or remove existing
cells without restructuring the mesh. There are many technical details involved with mesh
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Figure 2.2: Overview of mesh rearrangements. (A) T1 transition. (B) T2 transition. (C) T3
transition (also known as a boundary merge). (D) Cell division. Figure reproduced2 from
[158].

rearrangements, so here we discuss only the most important mesh rearrangements and refer
the reader to [157] for technical details.

For the first type of mesh rearrangement, consider the edge shared between cells 2 and 4
in Figure 2.2.A. All the energy contributions in Equation (2.2) are finite, hence it is possible
that the net forces on the edge vertices cause them to converge until they meet each other,
creating overlapping cells. To prevent cells from overlapping in this scenario, the mesh
undergoes a T1 transition when the edge length falls below the threshold distance `min [83].
In order to prevent a second T1 transition from occurring again immediately afterwards, the
newly formed edge has a slightly longer length of ρ`min, where ρ > 1 is the separation ratio.
As Figure 2.2.A shows, cells 2 and 4 are no longer neighbours after the transition. This
scenario is more likely when cells 2 and 4 have a large line tension parameter, corresponding
to weak cell–cell adhesion.

A second type of mesh rearrangement, called the T2 transition, occurs when the area
of a triangular cell becomes smaller than the threshold area S min. In the T2 transition, the
cell is removed from the mesh and replaced by a single vertex (see Figure 2.2.C). Cells
lose neighbours through T1 transitions as they decrease in size, so it is sufficient to only
consider the removal of triangular cells. A T3 transition, or boundary merge, occurs when
two boundary cells intersect (see Figure 2.2.C).

The final type of mesh rearrangement discussed here is cell division. Whereas T1, T2,
and T3 transitions are necessary to avoid mesh invalidation, this operation is implemented
to model cell proliferation. During cell division, the cell is split into two daughter cells of
equal size by a new edge that intersects the cell’s centroid, creating two new vertices on its
perimeter. There are multiple choices for determining the orientation of this edge [157]. We
chose the shortest axis as the dividing line3.

2Under CC BY license (https://creativecommons.org/licenses/by/4.0/).
3If the cell is shaped as a regular polygon, we choose a random axis of division.
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2.1.5 Cell proliferation

We implement a cell cycle with two phases: a stochastic G1 phase and a deterministic G2
phase. For a cell α, the duration of the G1 phase is exponentially distributed with the mean
given by tG1,α, and the G2 phase lasts for the fixed duration tG2,α. This two-phase cell cycle
model is motivated by experiments with in vitro cell cultures [159].

Furthermore, we assume that cell cycles are uncorrelated at the start of the simulation.
We achieve this by sampling the birth times of the initial cell population uniformly from
the interval [−tG1,α − tG2,α, 0] where t = 0 is the start of the simulation. The purpose of this
randomisation is to avoid the artificial synchronisation of cell divisions that would occur if
all cells were initialised to the same stage of the cell cycle at the start of the simulation.

We assume two distinct cell types, so we write

tG1,α =

tG1,A for α ∈ A

tG1,B for α ∈ B
, (2.10)

and

tG2,α =

tG2,A for α ∈ A

tG2,B for α ∈ B
. (2.11)

Moreover, each division results in two daughter cells that are of the same type as the mother
cell, i.e. a cell of type A divides into two daughter cells of type A.

2.2 Chaste implementation

Now that we have discussed the heterotypic vertex model, we discuss its computational
implementation. The main challenge in implementing a vertex model is its complexity.
Programming a mesh that is continuously being modified, not only by vertex dynamics, but
also by discrete mesh rearrangements, is a task that takes considerable effort and is prone to
errors. Moreover, because the implementation of a vertex model involves many technical
details, even two implementations with the same underlying mathematical formulation are
unlikely to be identical if they are developed independently.

We therefore implemented the heterotypic vertex model within Chaste, an open-source
simulation package for computational physiology and biology [160] that includes a range
of cell-based models [71]. Chaste offers a number of advantages that address the issues
mentioned above. Firstly, because Chaste is an open-source project, every implementation
detail is publicly available. As a result, the scientific community can review every line of
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code that went into a simulation, ensuring that simulation results are fully reproducible.
Secondly, Chaste exposes a large library of C++ classes for cell-based models that

researchers can build on or adapt to their specific application. This eliminates the need for
“reinventing the wheel”, and saves time and effort on behalf of computational scientists.
Moreover, the development of Chaste is centred on a test-driven framework, which means
that every piece of functionality coded in Chaste must be accompanied by a suite of unit
tests verifying that it behaves as expected [161], minimising the chance of software bugs
going undetected.

The Chaste project is thoroughly documented on its website4, so we will not discuss
its software architecture here. Instead, we focus on the specific contributions that we
made to implement the heterotypic vertex model. The code implementing the heterotypic
vertex model can be found in the following GitHub repository: https://github.com/
ThomasPak/cell-competition.

2.2.1 FarhadifarDifferentialForce class

The Chaste project is developed using an object-oriented programming (OOP) framework.
The calculation of vertex forces, Equation (2.1), is encapsulated by the AbstractForce
class. This is an abstract class that declares the function AddForceContribution(), which
takes a cell population, iterates over the vertices of the associated mesh, and computes the
forces applied to each vertex.

Chaste comes with a number of vertex force models included in its library, including
the NagaiHondaForce and FarhadifarForce, which implement the vertex models intro-
duced in [83] and [84], respectively. The FarhadifarForce energy formulation is identical
in form to the one we defined in Section 2.1. However, the class assumes that every cell has
the same mechanical properties. Hence, the mechanical parameters are assumed equal for
all cells in the population.

To implement force calculations in the heterotypic vertex model, we created the class
FarhadifarDifferentialForce, which takes into account cell types when computing
vertex forces. Furthermore, in keeping with Chaste’s test-driven development framework,
we wrote unit tests verifying that the class behaves as expected.

2.2.2 Cell labelling

In Chaste, cells are represented by objects that own a collection of “cell properties”. These
cell properties track the states of each individual cell, such as its mutation state and pro-

4https://chaste.cs.ox.ac.uk/
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Figure 2.3: Initial spatial configuration of the vertex model. Cells are initially arranged in a
honeycomb pattern. A-type cells are coloured blue and B-type cells are coloured red. Left:
segregated initial pattern. Right: random initial pattern.

liferation type (e.g. whether it is a stem cell or a differentiated cell). The components of
a cell-based simulation can access and modify these cell properties. In addition, Chaste
supports writing out cell properties so that they can be plotted when visualising the results
(see Figure 2.3 for an example).

We distinguish between cell types A and B by adding the CellLabel cell property, which
was already implemented in Chaste, only to B-type cells at the start of the simulation. As the
FarhadifarDifferentialForce class iterates over vertices, it uses this cell property to
identify the cell types involved in each force calculation and chooses mechanical parameters
accordingly.

At the start of the simulation, the cells are arranged in a honeycomb pattern (see
Figure 2.3). We denote the initial number of cells as N0 = N0

A + N0
B. Since we want to

explore the effects of spatial segregation and mixing, we implemented two different methods
for assigning cell type identities. For the “segregated” pattern, we order the cells from left
to right, bottom to top, and label the first N0

B cells as B-type cells (see Figure 2.3). For the
“random” pattern, we generate a random permutation of cell types.

2.2.3 Simulator executable

To simplify running large numbers of simulations, we packaged the simulation code as a
“simulator” executable with a text-based interface. Concretely, this means that parameters
are specified using command-line arguments or through the standard input. Moreover, all
the parameters used by the simulator are written to standard output before running the
simulation, so that the user can verify that the parameters were specified correctly.
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Table 2.1: Default, low and high parameter values for parameter sweep.

Parameter Default value Low value High value

S 0
A 1 0.9 1.1

KA 1 0.9 1.1
ΓA 0.04 0.03 0.05
ΛAA 0.12 0.10 0.14
ΛAB 0.12 0.10 0.14
tG1,A 30 20 40
tG2,A 70 60 80

2.2.4 Post-processing

We implemented a number of C++ classes for writing data to text files during simulation. In
addition, we wrote Python scripts to process the data files for all the individual simulations
in a simulation suite and collect summary statistics in comma-separated value files.

2.3 Computational study of mechanical cell competition

In the previous sections, we introduced the heterotypic vertex model and discussed its
numerical implementation. In this section, we perform a systematic parameter sweep to
investigate the behaviour of the model for different parameters to see if we find evidence for
cell competition. In particular, we vary the parameters of cell type A and run heterotypic
simulations with 18 initial A-type cells and 18 initial B-type cells. In addition, for every
heterotypic simulation, we also run a homotypic simulation of cell type A with the same
parameters to verify the intrinsic viability of cell type A.

2.3.1 Methodology

Parameter choice We vary the parameters of cell type A as listed in Table 2.1. For every
model parameter, we pick three values; one equal to the default value5, one less than the
default value, and one greater than the default value. These values are given in Table 2.1. We
then take the Cartesian product over all of the parameters to generate the parameter sweep.
In addition, we run every parameter set with segregated and random initial conditions. The
parameters for cell type B are constant and set to the default values given in Table 2.1.

5Chaste specifies a default value for all model and simulation parameters.

35



Any remaining simulation parameters are set to the default Chaste values, with the
exception of the simulation timestep (set to 0.05 hours), the simulation time (set to 250
hours), the threshold distance dT1 (set to6 0.1), and the initial number of cells (set to 36 cells).
In addition, each simulation was given a distinct seed for generating random numbers.

After taking the Cartesian product of the parameter values in Table 2.1, we obtain 37

unique parameter sets. We also run every parameter set with segregated and random initial
conditions, and perform a homotypic simulation for every heterotypic simulation. Therefore,
the total number of simulations is 2 × 2 × 37 = 8 748.

Computational materials and methods Since a typical simulation of the vertex model
takes on the order of 2.5 minutes, running all 8 748 simulations sequentially would take
roughly two weeks. This is impractical, so we parallelised our computational workload
using the Advanced Research Computing (ARC)7 service, which provides high-performance
computing resources and training at the University of Oxford. ARC uses the open-source
job scheduler Slurm Workload Manager8. We used Slurm’s job array functionality to submit
the entire parameter sweep using a single shell script. We ran our computations on ARC’s
throughput cluster, specialised for high throughput of single-core jobs such as our vertex
simulations. The computational nodes in this cluster contain a mix of Broadwell, Haswell,
and Cascade Lake CPUs. All vertex simulation suites in this thesis were executed in this
manner.

Data processing We summarise the proliferative behaviour of a cell type in a simulation
using the survival frequency. This is the number of division events divided by the sum of
division and death events. For a growing population, there are more division than death
events, hence the survival frequency is greater than 1/2 and vice versa for a declining popu-
lation. We could have chosen other summary statistics to discriminate between population
growth and decline, but we chose the survival frequency because it will become relevant in
later chapters.

For each homotypic simulation, we computed the homotypic survival frequency, denoted
by λ̂, as

λ̂ =
# division events

# division events + # death events
. (2.12)

6We do not specify units here because length is dimensionless in cell-based Chaste (see https://chaste.
cs.ox.ac.uk/trac/wiki/ChasteGuides/ChasteUnits).

7https://www.arc.ox.ac.uk/
8https://slurm.schedmd.com/
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For each heterotypic simulation, we computed the heterotypic survival frequencies as

ξ̂A|B =
# A division events

# A division events + # A death events
, (2.13)

ξ̂B|A =
# B division events

# B division events + # B death events
, (2.14)

for cell types A and B, respectively.
In addition, we define the heterotypic survival difference as

∆̂,A|B = ξ̂A|B − ξ̂B|A . (2.15)

When the average cell cycle length is the same for both cell types, this quantity indicates
which cell type is at a proliferative advantage; for positive heterotypic survival differences,
cell type A is fitter, and vice versa for negative heterotypic survival differences. When
average cell cycle lengths are different, it is not obvious which cell type proliferates faster;
for example, a cell type may compensate for a lower survival frequency with a shorter
cell cycle length. However, in the context of cell competition, we are more interested in
discriminating between population growth and decline than relative proliferation rates. As
discussed above, survival frequencies are more suitable for this purpose. Hence, we use the
heterotypic survival difference as an indicator of relative proliferative advantage, even in the
case of unequal cell cycle lengths.

In addition, we want to compare the heterotypic survival frequency to the homotypic
survival frequency. This quantifies the effect that the heterotypic interaction has on a cell type
relative to homotypic conditions. For each pair of homotypic and heterotypic simulations
with the same parameters, we define the homotypic survival difference for cell type A as

∆̂=
A|B = ξ̂A|B − λ̂A . (2.16)

The homotypic simulation suite for cell type A contains two simulations where the homotypic
population has the same parameters as cell type B (the default values), one with segregated
initial conditions and one with random initial conditions. Hence, we can consider these
simulations as homotypic simulations of cell type B, and we use them to estimate the
homotypic survival frequency of cell type B. For a homotypic simulation, the random and
segregated initial conditions are equivalent, so we average the homotypic survival frequency
over these two simulations to estimate the homotypic survival frequency of cell type B,
which we denote as λB. Hence, for each heterotypic simulation, we compute the homotypic
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survival difference for cell type B as

∆̂=
B|A = ξ̂B|A − λB . (2.17)

We used the open-source Python package pandas9 to process and analyse the data.

Data visualisation We used the open-source Python packages Matplotlib10 [162] for
plotting histograms and Seaborn11 [163] for plotting heat maps.

2.3.2 Results

Since the survival frequencies indicate whether a population has grown or declined, we can
use them to check whether cell competition has taken place. We define a cell type as viable
in a simulation if its survival frequency is greater than or equal to a half, since that signifies
that the population size has grown or stayed the same, respectively. If the survival frequency
is less than a half, then the population has declined and we count the cell type as nonviable.

We found that cell type B is viable for all heterotypic simulations and homotypic
simulations. We therefore did not observe any cases where cell type B is outcompeted by
cell type A. For cell type A, we applied the viability criteria for each parameter set to the
homotypic and heterotypic survival frequencies to distinguish between four cases:

• λ̂A < 1/2, ξ̂A|B < 1/2: cell type A is nonviable in homotypic and heterotypic condi-
tions.

• λ̂A < 1/2, ξ̂A|B ≥ 1/2: cell type A is nonviable in homotypic conditions, but is viable
in heterotypic conditions. This implies that cell type A fares better in heterotypic
conditions than in homotypic conditions.

• λ̂A ≥ 1/2, ξ̂A|B < 1/2: cell type A is viable in homotypic conditions, but nonviable in
heterotypic conditions. These are the conditions for cell competition.

• λ̂A ≥ 1/2, ξ̂A|B ≥ 1/2: cell type A is viable in homotypic and heterotypic conditions.

For each unique parameter set, we checked whether the corresponding homotypic and
heterotypic simulations satisfied these criteria, and listed the number of parameter sets
satisfying each case in Table 2.2. For the overwhelming majority of parameter sets, cell type
A was viable in homotypic and heterotypic conditions. Only seven out of 4 374 parameter

9https://pandas.pydata.org/
10https://matplotlib.org/
11https://seaborn.pydata.org/
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Table 2.2: Count of simulations satisfying the viability criteria.

λ̂A < 1/2 λ̂A ≥ 1/2

ξ̂A|B < 1/2 84 7
ξ̂A|B ≥ 1/2 58 4 225

sets, approximately 0.16%, satisfy the criteria for cell competition. This indicates that cell
competition is very rare among the parameter sets that we simulated. In fact, there are many
more cases of the opposite scenario, where cell type A is nonviable in homotypic conditions
and becomes viable in heterotypic conditions.

In order to check whether those seven parameter sets truly represent cell competition,
we ran an additional simulation suite targeting those seven parameter sets in particular.
Specifically, we ran 20 pairs of simulations (one homotypic simulation and one heterotypic
simulation, with random initial conditions in each pair) for each parameter set with different
random seeds for the random number generator. The total number of simulations in the
targeted simulation suite is 2 × 20 × 7 = 280. We then applied the viability criteria and
counted the number of pairs of simulations that match the cell competition criteria.

Among the seven parameter sets, there was one parameter set with three simulation
pairs out of 20 that satisfied the cell competition criteria. For the remaining parameter sets,
we only found one or two matching simulation pairs. Hence, the targeted simulation suite
yielded only a small number of positive results per parameter set. This strongly suggests
that the matches we encountered in the parameter sweep were statistical flukes rather than
genuine indicators of competitive behaviour.

We bolster this claim statistically by treating each parameter set independently as a
Bernoulli process. In this view, a pair of simulations for a given parameter set is a Bernoulli
trial with probability q of matching the cell competition criteria. If a parameter set is
more likely to match the cell competition criteria than not, i.e. q > 1/2, then we say that
the parameter set gives rise to cell competition. In order to test a given parameter set for
competitive behaviour, we discriminate between the following hypotheses:

H0 : q ≤
1
2
, (2.18)

H1 : q >
1
2
. (2.19)

In other words, the null hypothesis is that the parameter set does not give rise to cell
competition, i.e. q ≤ 1/2, and the alternative hypothesis is that it does, i.e. q > 1/2.
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We decide whether or not to reject the null hypothesis by calculating how likely it is to
obtain results that are at least as extreme as the observed results under the null hypothesis.
This probability is also known as the p-value. By “extreme” we mean results that support
the alternative hypothesis rather than the null hypothesis. In this case, the more simulation
pairs that match the cell competition criteria, the more extreme the observed data are. For
example, observing ten matches provides stronger evidence in favour of cell competition
than three matches. A small p-value indicates that the observed results are unlikely to be
obtained under the null hypothesis, supporting the alternative hypothesis, and vice versa for
a large p-value.

The largest number of matches among the seven selected parameter sets was 3 out of
20 simulation pairs. Under the null hypothesis, the number of matches obeys a binomial
distribution with 20 trials and q ≤ 1/2. However, we only need to compute the p-value for
the largest value of q that the null hypothesis permits, i.e. q = 1/2, because this corresponds
to the null distribution that maximises the p-value. Hence, rejecting the null hypothesis for
q = 1/2 would allow us to reject the null hypothesis for all q ≤ 1/2. Concretely, we find that

p-value =

20∑
k=3

(
20
k

) (
1
2

)k (
1 −

1
2

)20−k

≈ 0.9998 , (2.20)

where we summed over k = 3, . . . , 20 to compute the probability that we encounter at

least three matches. The remaining parameter sets had fewer matches, and therefore
Equation (2.20) is a lower bound on the p-value across all seven parameter sets. As
Equation (2.20) indicates, the computed p-value is close to unity, so we do not reject
the null hypothesis. In other words, there is not enough evidence in the data to support
competitive behaviour.

These results suggest that cell competition is not taking place in the heterotypic popula-
tions, and that interactions occurring between cell types have little impact on their viability.
Figure 2.4 shows the histograms of the homotypic and heterotypic survival frequencies and
differences. The histograms for the homotypic survival differences show that the homotypic
survival difference is very narrowly centred on zero, indicating that the cell populations do
not experience significant changes in a heterotypic population as compared to homotypic
conditions. This is further supported by the histograms for the homotypic and heterotypic
survival frequencies of cell type A, which have roughly the same shape.

Finally, we examine the correlation between our summary statistics and the parameters
that we varied in the parameter sweep. In Figure 2.5, we plotted the Pearson correlation
coefficients using a heat map. We see that the homotypic survival frequency of cell type
A correlates positively with the cell target area and the elasticity constant, and negatively
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Figure 2.4: Histograms of the homotypic survival frequency λ̂A, defined in Equation (2.12),
the heterotypic survival frequencies ξ̂A|B and ξ̂B|A, defined in Equations (2.13) and (2.14),
respectively, the homotypic survival difference ∆̂,A|B, defined in Equation (2.15), and the
homotypic survival differences ∆̂=

A|B and ∆̂=
B|A, defined in Equations (2.16) and (2.17), respec-

tively.
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Figure 2.5: Heat map of Pearson correlation coefficients of summary statistics with respect
to parameters for cell type A. The “labelling” parameter is a Boolean variable that indicates
whether the initial conditions were random or segregated, for which the parameter takes on
the values true and false, respectively.

with the contractility parameter and the line tension parameter. Moreover, we see the same
correlation for the heterotypic survival frequency of cell type A and the heterotypic survival
difference. This indicates that the model parameters influence the homotypic and heterotypic
survival frequency in a similar way, suggesting that the viability of A-type cells is mostly
determined by intrinsic factors, rather than by competitive interactions.

2.4 Discussion

In this chapter, we formulated the heterotypic vertex model, discussed its implementation,
and performed a systematic parameter sweep to explore whether competitive behaviour
can arise from differences in mechanical parameters. Out of 4 374 pairs of homotypic and
heterotypic simulations, only seven parameter sets satisfied the criteria for cell competition.
We ran more simulations of those seven parameter sets in particular, and found that we
could not reliably reproduce competitive behaviour. Moreover, the empirical distributions of
summary statistics, and the correlations between model parameters and summary statistics,
also did not provide any evidence for cell competition.

Hence, we conclude that, for the parameter space investigated, simply varying the
mechanical parameters of cell types in our heterotypic vertex model is not sufficient for cell
competition. Indeed, experiments suggest that cell competition generally depends on an
active mechanism of cell death, such as apoptosis [53], including in the case of mechanical
cell competition [164]. Hence, mechanical interactions may lead to cell competition if
paired with such a mechanism. We will briefly touch on this in the final chapter. In the next
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chapter, we present a framework for implementing active cell death in cell competition.
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Chapter 3

The death clock modelling framework

In Chapter 2, we learned that mechanical interactions by themselves are insufficient to drive
cell competition. Even though we observed loser cell types being eliminated by winner cell
types, homotypic simulations revealed that those loser cells were eliminated because they
were intrinsically nonviable, and not because of competitive interactions. The definition of
cell competition requires that both populations are viable in homotypic conditions, so we
conclude that variation in mechanical properties is insufficient for cell competition.

This suggests that cell competition requires an active and non-autonomous mechanism
of cell death. “Active” meaning that cells die by triggering apoptosis, a process which, once
initiated, inexorably leads to cell death, and “non-autonomous” meaning that the decision to
trigger apoptosis is influenced by signals produced by other cells. Indeed, experiments have
established that apoptosis is a common feature of cell competition [53, 42, 164]. Hence,
published models of cell competition feature active and non-autonomous mechanisms for
apoptosis [78, 151, 152].

However, these mechanisms are based on predetermined winner/loser identities, with
the rate of cell death in losers driven by heterotypic contacts with winner cells. Because
the winner/loser identity is assumed, these models are fundamentally unable to describe
how cells acquire a winner or loser status. In addition, experiments indicate that cell
competition also occurs endogenously in homotypic populations [42, 57]. This suggests
that the signals responsible for competition-induced cell death are not only being exchanged
between winners on the one hand and losers on the other hand, but among all cells.

Therefore, because the aim of this thesis is to understand how winner/loser identities
emerge, in this chapter we propose a framework that treats all cells as equal actors with the
same ability to compete with other cells. Specifically, all cells share a common mechanism
for initiating apoptosis and have the ability to receive and emit signals that may trigger
apoptosis. Differences in cell fitness should only emerge from variations in parameters
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between cell types and the interactions resulting from those variations, since the fundamental
machinery is the same for both winners and losers. This is the core principle underlying the
death clock framework developed as part of this thesis.

The rest of this chapter is structured as follows: in Section 3.1, we state the biological
assumptions that motivate our modelling choices, and introduce the death clock framework.
In brief, the cell senses “death signals” from the environment and accumulates them in an
abstract quantity called the “death clock”. Once the death clock reaches a threshold value,
apoptosis is triggered. In Section 3.2, we derive an expression for the survival probability
of a cell experiencing a known death signal. In Section 3.3, we explore the integration of
the death clock framework in two cell-based models: the vertex model, first described in
Chapter 2, and the well-mixed model, where every cell interacts equally with every other
cell. Finally, we end the chapter with a summary in Section 3.4.

3.1 Death clock

3.1.1 Biological assumptions

Apoptosis is triggered by a threshold mechanism Apoptosis is one of the most dramatic
events that a cell can undergo. It is therefore not a surprise that the decision to initiate
apoptosis is controlled by a complex web of regulatory components [165, 166, 167]. In
mammals, the two major apoptotic pathways are the intrinsic pathway and the extrinsic
pathway. The intrinsic pathway is triggered by diverse stimuli associated with cell damage,
such as hypoxia, irradiation, and growth factor deprivation. The extrinsic pathway, on the
other hand, is mediated by cell surface death receptors that bind death ligands [167].

Complicating matters even further, the conditions and stimuli leading to apoptosis are
dependent on the cell type [165]. For instance, some hormones stimulate apoptosis in some
cell types, but have a neutral or inhibitory effect on other cell types. The many roads leading
to apoptosis reflect the widespread use of cell death by the body in development, tissue
homeostasis, and immune responses [168].

The complexity of the apoptotic pathway makes it challenging to come up with a model
for apoptosis that is sufficiently representative of cell behaviour, yet simple enough to be
useful. Moreover, the fact that the cell competition pathways upstream of apoptosis have not
yet been identified means that we necessarily need to make some assumptions. Fortunately,
because of previous work done on mathematical models of apoptosis [169, 170], we can
make an educated guess.

In particular, a series of studies involving modelling and experiments have revealed
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the importance of threshold mechanisms in the intrinsic pathway [171, 172] as well as the
extrinsic pathway [173, 174]. For instance, it was shown that death ligand-induced apoptosis
requires a threshold proportion of ligand to receptor numbers [173, 174], below which
apoptosis does not occur. Given this precedent, we propose a model in which competition-
induced apoptosis is triggered by the accumulation of some death signal, for example a
ligand, above a threshold value.

Apoptosis is coupled to the cell cycle It has been well established in the literature that
apoptosis and the cell cycle are closely coupled [175, 176, 177, 178]. This manifests in
morphological similarities between apoptotic and mitotic cells [175], and common regulatory
components [176, 178, 179]. Cell cycle checkpoints occur at key transitions in the cell
cycle and allow the cell to review its internal state before committing to the next cell cycle
phase. If the conditions are right, the cell cycle transitions to the next phase. However, if the
conditions are not right, for example when the cell has accrued excessive DNA damage, cell
cycle arrest or apoptosis may occur at the checkpoint [180].

Notably, the regulatory protein Myc is known to affect both cell cycle progression and
apoptosis [181, 182, 183]. Specifically, Myc is necessary for the transition of G1 to S phase,
and induces cell cycle progression in quiescent cells [181, 183]. On the other hand, Myc

has been associated with increased rates of cell death [182]. Coupled with the fact that
differential Myc expression results in cell competition (as discussed in Section 1.2.1), we
will use our model to test the hypothesis that apoptosis, competition, and the cell cycle are
interrelated.

Concretely, we assume that the cell is only susceptible to competition-induced apoptosis
in G1 phase, and that from S phase onwards, the cell is committed to division. In reality,
apoptosis may still occur in phases other than G1 for reasons unrelated to competition, for
example DNA damage. However, we assume that those apoptosis events are negligible
compared to competition-induced apoptosis in the context of cell competition and therefore
omit them from our model.

Death signals can be coupled to the cell cycle So far, we have not made any specific
assumptions regarding the form of death signals. The reason for this is that there are multiple
competing hypotheses regarding the mode of intercellular communication in cell competition.
These include short-range signalling at cell–cell junctions, long-range signalling through
diffusible ligands, and mechanical stresses [184]. The reason for this diversity is that the
nature of the signals exchanged to establish loser and winner status remains an open question,
and may depend on the type of cell competition under consideration. Here, we highlight
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some studies suggesting that death signals could be correlated with cell cycle progression.
One of the main features of cell competition is non-autonomous induction of apoptosis

in loser cells by proliferating winner cells. Clues as to how the cell cycle is potentially
involved in this process come from studies investigating the replacement of larval abdominal
epidermis by adult epithelium in Drosophila [185]. During a process that resembles cell
competition, larval epidermal cells (LECs) undergo apoptosis to make space for proliferating
and migrating histoblasts (adult precursor cells). Similarly to cell competition, apoptotic
LECs are mostly found at the boundary between LECs and histoblasts. Intriguingly, inhibit-
ing cell cycle progression of histoblasts locally suppresses apoptosis in LECs [186, 187],
which leads to three conclusions. Firstly, apoptosis in LECs is non-autonomous, i.e. caused
by other cells (specifically histoblasts in this case). Secondly, the induction of apoptosis
is a result of local interactions with histoblasts1. Thirdly, these local interactions, which
can be considered death signals because of their effect, are coupled to the histoblast cell
cycle. Since this process happens at the boundary between two distinct tissues and not
within the same tissue, strictly speaking, it is not cell competition. However, it shares many
characteristics with cell competition, so we hypothesise that death signals in the context of
cell competition may similarly be coupled to the cell cycle.

In addition, we note that there is evidence for apoptosis itself being a death signal
for surrounding cells [188]. In fact, it has been demonstrated that apoptotic cells are
capable of inducing a wide array of behaviours in neighbouring cells, including proliferation
[189, 190, 191, 192] and apoptosis [188], depending on the context [193]. Therefore, it
appears that the process of apoptosis itself is not “silent”. Instead, apoptotic cells are actively
communicating with nearby cells [194]. In this thesis, we did not incorporate apoptosis as a
death or proliferation signal, but our modelling framework can easily be extended to include
such effects.

3.1.2 Modelling choices

As established in the previous section, we assume that the cell is only susceptible to
competition-induced apoptosis during G1 phase. As a result, only two parts of the cell cycle
are relevant to cell competition: G1 phase, and the rest of the cell cycle (composed of S, G2,
and M phases). Therefore, we decided to model the cell cycle with just two phases, where
the first phase corresponds to G1 phase and the second phase lumps together S, G2, and M
phases. For convenience, we refer to the first and second phases as the G1 and G2 phases,
respectively.

1Note that the study did not uncover how the local interactions were mediated, hence they could have been
caused by direct cell–cell contact, or a signal that diffuses over small distances.
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Cell cycle progression is a complex process regulated by environmental signals and
intracellular checkpoints. As a result, the length of each cell cycle phase varies depending
on the cell type, and also among cells of the same kind [195]. However, it has been observed
that the variability in the length of G1 phase is often greater than that of other phases
[159, 196]. Therefore, we decided to treat G1 duration as a random variable, while assigning
a fixed duration to G2 phase. Hence, once the cell has committed to cell division, it takes a
fixed amount of time to divide.

In this thesis, we use two different distributions to sample the G1 duration: the expo-
nential distribution and the uniform distribution. We chose these distributions because they
are able to represent the stochasticity of the G1 phase, while being simple enough to allow
for mathematical analysis. In addition, using multiple cell cycle models enables us to test
the sensitivity of the death clock framework with respect to the choice of cell cycle model.
The exponential distribution has only one parameter and is “memoryless”, which means
that the time left until the cell transitions to G2 phase is independent of how much time
has already elapsed. In contrast, the uniform distribution has two parameters and therefore
spans a wider range of behaviours. The benefits are that it models a cell cycle where the
time until transition is dependent on how much time has already elapsed, and that the mean
and variance can be controlled independently, giving us more freedom to experiment with
varying the G1 duration.

We note that an exponentially distributed G1 phase means that there is a high probability
of a cell transitioning to G2 phase immediately after division. In reality, however, multiple
biochemical steps must occur before the G1 phase is completed, so an instant transition is
not realistic. It is this observation that led Yates et al. to represent the cell cycle as a series
of exponentially distributed stages, instead of a single exponentially distributed stage [197].
Similarly, the Erlang, or generalised Erlang, distribution may be a more biologically accurate
choice to model the G1 phase than the exponential distribution. Nevertheless, we use the
exponential distribution here for simplicity. Moreover, we also use the uniform distribution,
which does not suffer from this issue. Finally, the death clock framework is fully modular
with respect to the cell cycle model, so more biologically accurate distributions can easily
be incorporated in future iterations.

We model the accumulation of death signals using an ordinary differential equation
(ODE) model. Specifically, the death signal is represented as a time-dependent quantity, and
the death clock is a scalar variable whose rate of increase is given by the death signal. We
do not consider signals that inhibit apoptosis and assume that only positive death signals are
possible. In the absence of a death signal, the death clock is static. Therefore, the death clock
can be interpreted as the cell’s memory of past competition-related signalling events. If the
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death clock reaches a threshold value while the cell is in G1 phase, it triggers apoptosis.

3.1.3 Death clock framework

The death clock framework comprises two coupled cellular processes: the cell cycle and
the death clock. The cell cycle governs the transition of the cell from G1 phase to G2
phase, as well as cell division. On the other hand, the death clock governs the initiation of
apoptosis in response to death signals. We consider the cell cycle to be an autonomous
process, meaning that it is not affected by other cells. On the other hand, the death clock is a
non-autonomous process because it relies on extracellular signals produced by other cells.
Together, these processes determine whether and when the cell divides or initiates apoptosis.

At birth, we sample a stochastic G1 duration, denoted as t∗, from the G1 duration
distribution C, i.e.

t∗ ∼ C , (3.1)

where C is subject to the following constraints:

t∗ ∈ [0,∞) , (3.2)

i.e. the stochastic G1 duration is non-negative, and

E(t∗) = tG1 , (3.3)

i.e. the mean G1 duration is equal to the autonomous G1 duration tG1, a non-negative
parameter. Note that t∗ is a stochastic variable and tG1 is a fixed parameter. We discuss the
concrete G1 duration distributions used in this thesis in Section 3.1.4.

If apoptosis is not triggered by the death clock, the cell spends a duration t∗ in G1 phase
and then transitions into G2 phase. After spending a fixed duration in G2 phase, determined
by the non-negative parameter tG2, the cell divides and the process repeats for each of the
daughter cells (see Timeline A in Figure 3.1).

The death clock, denoted by the symbol τ(t), evolves according to the ODE

dτ
dt

= f (t) , (3.4)

where f (t) is the death signal experienced by the cell. We assume that f (t) is non-negative,
i.e.

f (t) ≥ 0 . (3.5)
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Figure 3.1: Cell timelines. (A) The timeline for a cell whose death clock does not initiate
apoptosis. (B) The timeline for a cell whose death clock initiates apoptosis. Note that
apoptosis shortens the amount of time the cell spends in G1 phase.

At birth, the death clock is initialised to zero, i.e.

τ(t = 0) = 0 , (3.6)

where we have defined t = 0 as the time of birth. The apoptosis rule is as follows:

Cell is in G1 phase and τ(t) reaches T† ⇒ initiate apoptosis , (3.7)

where T† is the death threshold. See also Timeline B in Figure 3.1.
For mathematical convenience, it is often easier to formulate the apoptosis mechanism

as a condition, rather than a rule. Hence, although the death clock is meaningless once
apoptosis has been initiated, we let a fictitious death clock run until t = t∗ and define the
death condition as

∃ t† ∈ [0, t∗] such that τ(t†) = T† . (3.8)

If the death condition is satisfied, then we conclude in hindsight that the cell has died at
some time t† ∈ [0, t∗]. In reality, the cell initiates apoptosis at t = t†, so the death clock does
not actually exist for t ∈ (t†, t∗]. By the same token, the value of τ(t) in (t†, t∗] does not affect
the outcome of the death clock model, justifying the use of a fictitious death clock.

In summary, there are two sources of uncertainty in the death clock framework: the
variability in G1 duration and the death signal. The former originates from the cell cycle,
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and the latter from intercellular interactions. Both contribute to the decision of the cell to
initiate apoptosis. Our framework can thus be seen as a minimalist model of autonomous
and non-autonomous processes interacting to govern competition-induced apoptosis. The
model is summarised by the flowchart in Figure 3.2.

The parameters in the death clock model are as follows:

Cell cycle parameters The constants used to parameterise C, including the autonomous
G1 duration tG1 and the fixed G2 duration tG2.

Death signal parameters The constants used to parameterise f (t).

Death threshold The threshold value for the death clock that triggers apoptosis, represented
by the symbol T†.

In this section, we have discussed the death clock framework within the context of
a single cell. There are two components missing from this description before we can
implement a complete model for cell competition. The first is a cell-based model, where
each cell has an internal state, which includes the cell cycle and death clock state, and
an external representation that is perceived by other cells. In Section 3.3, we discuss the
implementation of the death clock framework in two types of cell-based models. The
second component is a concrete choice of death signal, such as contact-based signalling or
mechanical stresses. The form of the death signal is constrained by the choice of cell-based
model, since the cell-based model determines which aspects of the extracellular environment
are observable to cells. For example, we can only use mechanical properties in the death
signal if the cell-based model under consideration has a mechanical basis. We will introduce
concrete death signals when discussing specific death clock models in later chapters.

3.1.4 Cell cycle models

Exponential cell cycle model

For the exponential cell cycle model, the probability density function for G1 phase is

ψ(t) =
1

tG1
exp

(
−

t
tG1

)
, (3.9)

where we set the rate parameter of the exponential distribution equal to 1/tG1 in order to
satisfy Equation (3.3). The cumulative distribution function is then

Ψ(t) = 1 − exp
(
−

t
tG1

)
. (3.10)
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(autonomous)

Death clock
(non-autonomous)

Sample Integrate

No

Yes

Figure 3.2: Death clock flowchart. The “Sample” step corresponds to Equation (3.1). The
“Integrate” step corresponds to Equation (3.4) with initial conditions given by Equation (3.6).
The condition in the decision block is the death condition, corresponding to Equation (3.8).
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Uniform cell cycle model

For the uniform cell cycle model, the probability density function for G1 phase is

ψ(t) =


1
r for t ∈

[
tG1 −

1
2r, tG1 + 1

2r
]

0 otherwise
, (3.11)

where r is the width of the uniform interval. We parameterise the uniform distribution by
the mean and the width of the interval to enforce Equation (3.3). We note that r must be
positive and that the lower bound of the uniform interval, tG1 − r/2, must be non-negative to
satisfy Equation (3.2). Therefore, r is bounded as

0 < r ≤ 2tG1 . (3.12)

The cumulative distribution function is given by

Ψ(t) =


0 for t < tG1 −

1
2r

t−(tG1−
1
2 r)

r for t ∈
[
tG1 −

1
2r, tG1 + 1

2r
]

1 for t > tG1 + 1
2r

. (3.13)

In practice, we permit r = 0 as a valid parameter in our simulations; this corresponds
to a fixed G1 duration exactly equal to tG1. However, the distribution is technically not a
uniform distribution in that case, but instead a Dirac delta function centred on tG1.

3.2 Survival probability

The outcome of the death clock mechanism is dependent on the interaction of death signals,
representing non-autonomous processes, and the cell cycle, representing autonomous cellular
processes. Since both of these components are uncertain, it is hard to make predictions
on the cell fate when considering them simultaneously. However, if we control for the
variability in death signals by considering a fixed death signal, we are left only with the cell
cycle variance.

In this section, we take this approach to characterise the probability of different outcomes,
given a fixed death signal. Specifically, we will derive an expression for the “survival
probability”, defined as the probability of a cell transitioning to G2 phase and dividing.
Since the death clock framework only allows for two outcomes, the “death probability” is
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simply the complement of the survival probability.
We begin by defining the survival condition as the negation of the death condition, given

in Equation (3.8). Since the death clock is initialised to zero at birth, we can write the
survival condition as

τ(t) < T† for all t ∈ [0, t∗] . (3.14)

Moreover, we assume that f (t) ≥ 0 (Equation (3.5)), so we can reduce the condition in
Equation (3.14) to

τ(t∗) < T† . (3.15)

3.2.1 Special case: constant death signal

We first derive the survival probability for a constant death signal, i.e. f (t) = c, before
moving on to the general case. We solve Equation (3.4) with initial conditions given by
Equation (3.6) to obtain

τ(t) = ct . (3.16)

We thus have a closed-form solution for the death clock. The remaining uncertainty lies
solely with the stochastic G1 duration t∗. We define the survival probability θ as the
probability that Equation (3.15) is satisfied, i.e.

θ ≡ P(τ(t∗) < T†) . (3.17)

Substituting Equation (3.16), we obtain

θ = P(ct∗ < T†) = P
(
t∗ <

T†
c

)
. (3.18)

Importantly, we have written the survival condition so that t∗ appears as a single term in the
inequality. This allows us to substitute the cumulative distribution function of t∗, denoted as
Ψ(t), hence

θ = P
(
t∗ <

T†
c

)
= Ψ

(
T†
c

)
. (3.19)

For example, in the case of an exponential cell cycle model, the survival probability is

θ = 1 − exp
(
−

T†
ctG1

)
. (3.20)
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3.2.2 General case

We now derive the survival probability for an arbitrary death signal f (t), subject to Equa-
tion (3.5) and assuming it is an integrable function. We define

F(t) ≡
∫ t

0
f (t′) dt′ . (3.21)

Therefore, the death clock evolves as

τ(t) = F(t) . (3.22)

In particular, this gives the value of the death clock at time t∗ as

τ(t∗) = F(t∗) . (3.23)

Substituting Equation (3.23) in the survival condition (Equation (3.15)), we have

F(t∗) < T† . (3.24)

In order to obtain an expression for θ using the cumulative distribution function for t∗,
we need to separate out t∗ in Equation (3.24). Therefore, we need to “invert” F(t). Because
of Equation (3.5), we know that F(t) is a monotonically increasing function. However, it
is not strictly monotonically increasing. Intuitively, in the absence of a death signal (i.e.
f (t) = 0) the death clock is not ticking. Thus, the death clock may have the same value for
multiple time points.

As a result, it is not guaranteed that an inverse function of F(t) exists. However, we
are only interested in the earliest time point at which the death clock threshold is reached,
since that uniquely defines the cut-off between survival and death. Therefore, we can make
progress by defining the pseudoinverse function of F(t) as

F−1(τ) ≡ min{t ∈ [0,∞) : F(t) = τ} . (3.25)

Because F(t) is a monotonically increasing function, the pseudoinverse F−1(τ) must be
strictly monotonic increasing. Hence, we can apply it to Equation (3.24) to reformulate the
survival condition as

t∗ < F−1 (
T†

)
. (3.26)
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Therefore, the general survival probability is given by

θ = P
(
t∗ < F−1 (

T†
))

= Ψ
(
F−1 (

T†
))
. (3.27)

Since the right-hand side of Equation (3.26) is the amount of time that needs to pass
after birth for a cell to reach the death threshold and initiate apoptosis, we name this quantity
the death time, and denote it as

t† = F−1 (
T†

)
. (3.28)

3.2.3 Applications

The main use case for the survival probability is making theoretical predictions of cell
fate outcome for a known death signal. This is particularly useful when the death signal
is predictable, such as in the case of a constant death signal, which we discuss further in
Chapter 4. When the death signal is variable, it is nonetheless possible in some cases, as we
will see in Chapters 5 and 6, to approximate the death signal by a constant and compute an
approximate survival probability.

Finally, the survival probability can be used as a measure of cell fitness. There are many
definitions of fitness, but one of the most common definitions is the expected number of

offspring in one generation [198]. In order to apply this definition to cells, we consider the
cell cycle as one generation and any daughter cells as the offspring of the cell. We then
compute the expected number of offspring in one generation by enumerating the outcomes
of a single cell completing a cell cycle. In the death clock framework, there are two possible
outcomes: survival or death. In the former case, the mother cell produces two daughter cells.
In the latter case, there are no offspring. Furthermore, survival occurs with probability θ,
and death occurs with probability 1 − θ. Thus, for a given survival probability θ, we define
the fitness W as

W = E(offspring) = 2 × θ + 0 × (1 − θ) = 2θ . (3.29)

This equation provides a direct conversion between survival probability and fitness.

3.3 Cell-based death clock models

So far, we have discussed the death clock framework from the perspective of a single
cell. However, the aim of the death clock framework is to model cell competition, which
necessarily involves multiple cells. We therefore need to embed the death clock framework
within a cell-based model so that we can simulate the interaction of multiple cells, each with
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an internal death clock mechanism. The cell-based model provides the broader context for
the death clock framework and simulates the extracellular environment that the death signal
is derived from.

In this section, we discuss the implementation of the death clock framework in two
distinct cell-based models: the well-mixed model and the vertex model (see Chapter 2 for a
detailed discussion of the vertex model). The main difference between these models is the
spatial representation of the tissue. In the well-mixed model, we assume that the cells are in
a well-mixed culture where every cell interacts equally with every other cell. On the other
hand, cells in the vertex model interact only with cells in their local environment. Therefore,
we expect the vertex model to display more complex behaviours than the well-mixed model.

We note that the assumption of a well-mixed culture is a poor fit for the model system
of cell competition, the Drosophila wing disc. Despite this, the well-mixed model can be
considered a minimal cell-based model for the death clock. Therefore, it is useful as a tool
to study the properties of the death clock model when spatial organisation can be ignored or
neglected. In addition, it is much more computationally efficient to run simulations of the
well-mixed model because it lacks an explicit spatial representation.

In summary, the well-mixed model is a “coarse-grained” cell-based model that treats the
tissue as a homogeneous cell culture. As a result, we lose the ability to model the spatial
aspects of competition, but we gain the benefit of cheap simulations and increased analytical
tractability. On the other hand, the vertex model is a “fine-grained” cell-based model that
simulates the spatial structure of the tissue, but is much more costly to run. As we study the
properties of the death clock model, we will use both models in a complementary manner.
The code implementing the cell-based death clock models can be found in the following
GitHub repository: https://github.com/ThomasPak/cell-competition.

3.3.1 Well-mixed model

Because there is no explicit spatial structure in the well-mixed model, the state of the system
is fully determined by simply aggregating all individual cell states. We represent the cell
state with the cell vector yα(t), where α = 1, . . . ,N(t), and N(t) is the number of cells at
time t. The number of cells N(t) is updated whenever a division or death event occurs,
accompanied by a reindexing operation in the case of a death event. We equip every cell
with a death clock model, so the cell vector must contain, at a minimum, all the information
required to compute the individual cell cycle and death clock.

We distinguish three distinct parts in the cell vector, ordered by the degree of temporal
transience. The first part contains one element: the death clock τα(t), which changes
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Table 3.1: Summary of cell vector elements in the well-mixed model. The type refers to the
data type used to store the element in the Python implementation.

Symbol Description Type

τα(t) Death clock float
t∗α Sampled G1 duration float
t0
α Birth time float
Cα G1 duration distribution function object
tG2,α G2 duration float
fα(·) Death signal function function object
T†,α Death threshold float

continuously over time. The second part consists of the sampled G1 duration t∗α and the birth
time t0

α, which are assigned at birth and remain fixed over the cell’s lifetime. Finally, the
third part comprises the cell cycle and death clock components. Specifically, the G1 duration
distribution Cα (which is implicitly parameterised by the autonomous G1 duration tG1,α and
other cell cycle parameters, if applicable), the G2 duration tG2,α, the death signal function
fα(·) (discussed below), and the death threshold T†,α. These components are inherited from
mother to daughter cell and are therefore conserved throughout the whole simulation. We
write the cell vector as

yα(t) ≡
[
τα(t) t∗α t0

α Cα tG2,α fα(·) T†,α
]
, (3.30)

and summarise its contents in Table 3.1. The state of the system, denoted S (t), is then given
by

S (t) ≡
{
y1(t) , y2(t) , . . . , yN(t)(t)

}
. (3.31)

Accordingly, the initial conditions of the well-mixed model are given by an initial system
state of the form

S (t = 0) =
{
y1(t = 0) , y2(t = 0) , . . . , yN(t=0)(t = 0)

}
. (3.32)

These initial conditions must conform to the simulation invariants discussed below.
We distinguish between two distinct rule sets that determine the evolution of the well-

mixed model. The first rule set controls the evolution of the death clocks, and the second rule
set governs division and death events. The former rule set pertains to continuous quantities,
specifically the death clock, while the latter rule set involves discrete operations.
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For the first rule set, we apply the death clock ODE, Equation (3.4), to each cell. Since
the well-mixed model assumes spatial homogeneity, it follows that all cells observe the same
homogeneous environment. On the other hand, as a cell-based model, each cell responds
to this environment as an individual. The conversion of extracellular signals to a concrete
death signal is mediated by the death signal function fα(·). Because the extracellular signals
are derived from the system state S (t), we write

dτα
dt

= fα(S (t)) , (3.33)

where fα(S (t)) is the concrete death signal that cell α experiences as a result of the system
state S (t).

Simulation invariants

The discrete division and death operations are triggered when the division invariant and
the death invariant, respectively, are violated. The division invariant is as follows:

∀α = 1, . . . ,N(t) : t − t0
α < t∗α + tG2,α . (3.34)

The division invariant can be read as “every cell’s age must be less than its total cell cycle
duration”. The death invariant is as follows:

∀α = 1, . . . ,N(t) : t − t0
α < t∗α ⇒ τα(t) < T†,α . (3.35)

The death invariant can be read as “for every cell in G1 phase, its death clock must be below
its death threshold”.

These invariants must be respected at all times during the simulation, including the initial
conditions. When an invariant is violated, the corresponding operation is instantly triggered.
The operation is guaranteed to restore the invariant, therefore allowing the simulation to
proceed while respecting the invariants.

Division operation

As soon as the division invariant is violated, i.e. if

∃α ∈ 1, . . . ,N(t) : t − t0
α = t∗α + tG2,α , (3.36)

or, in words, “as soon as any cell’s age reaches its total cell cycle duration”, division is
triggered. Biologically, the mother cell splits into two daughter cells. Computationally, we
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perform this operation by adding a daughter cell vector and reusing the mother cell vector to
construct the second daughter cell in-place.

Concretely, we update the population as2

S (t)← S (t) ∪ { yN(t)+1(t) } , (3.37)

and complete the contents of the cell vectors yα(t) and yN(t)+1(t) as below. Finally, we
increment N(t) to reflect the increased population count.

Inherit cell cycle and death clock components Both daughter cells inherit the mother
cell’s cell cycle and death clock components. Since we repurpose the mother cell vector
yα(t) for the first daughter cell, we need only copy the relevant fields to yN(t)+1(t):

CN+1 ← Cα , (3.38a)

tG2,N+1 ← tG2,α , (3.38b)

fN+1(·)← fα(·) , (3.38c)

T†,N+1 ← T†,α . (3.38d)

Sample G1 duration We sample a G1 duration for each daughter cell from the cell cycle
distribution as3

t∗αf Cα , (3.39a)

t∗N+1 f CN+1 . (3.39b)

Set birth time We set the birth times of the daughter cells as

t0
α, t

0
N+1 ← tdivision , (3.40)

where tdivision is the time at which the division invariant was violated.

Reset death clock We reset the death clocks of the daughter cells so that they satisfy the
death clock initial conditions given by Equation (3.6):

τ0
α, τ

0
N+1 ← 0 . (3.41)

2The symbol ‘←’ represents the update operator, meaning that the left operand(s) are updated with the
value of the right operand.

3The symbol ‘f’ represents the sample-and-update operator, meaning that the left operand is updated with
a value sampled from the right operand, which must be a stochastic distribution.
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Death operation

As soon as the death invariant is violated, i.e. if

∃α ∈ 1, . . . ,N(t) : t − t0
α < t∗α and τα(t) = T†,α , (3.42)

or, in words, “as soon as the death clock of a cell in G1 phase reaches the death threshold”,
apoptosis is triggered.

The population is updated as

S (t)← S (t) \ { yα(t) } , (3.43)

followed by a reindexing operation to reflect the decreased population count. We also
decrement N(t).

Numerical implementation

We implemented the well-mixed model in Python using the class WellMixedSimulator.
This class is responsible for checking the validity of the initial conditions, simulating the
system forward in time by applying the continuous and discrete rule sets, and terminating
the simulation. In addition, the class records the state of the system over time and returns
raw simulation data when the simulation finishes.

ODE solver The simulation proceeds by numerically solving Equation (3.33) for all cells
until an invariant is violated, which triggers the corresponding discrete operation. By default,
we use the SciPy [199] ODE solver, solve ivp, to integrate Equation (3.33). The events
argument to the solver lets us specify conditions on the ODE system for which the solver
terminates before the simulation end time is reached. Concretely, events is an array of
functions that map the ODE system state to scalar values. The solver then evaluates these
functions as it solves the ODE and triggers an event when a function value crosses zero.
We use this feature to exit the ODE solver when an invariant is violated so that we can
perform the corresponding discrete operation outside of the solver. After restoring the
invariant, numerical integration of Equation (3.33) is resumed. The discrete operations are
implemented by methods of the WellMixedSimulator class. In short, the standard mode
of operation is numerical integration within the SciPy ODE solver, punctuated by division
and death events implemented in the simulator class.
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Optimised ODE solver Although the ODE solver is relatively efficient, we can dispense
with numerical integration entirely in special cases in order to gain a massive performance
boost. In particular, if the death signal is constant for all cells in the intervals between
discrete events, then Equation (3.33) can be solved exactly. As a result, the time until the
next event can be computed by simple arithmetic operations. For instance, if the death signal
depends only on the total cell count, then the death signal only changes through division
and death events so that we can apply this optimisation.

In addition to the division and death events, we added the transition from G1 phase to G2
phase as a third type of discrete event in the simulator. This event is not strictly necessary
for simulating the model, but it forces the ODE solver to terminate when a cell transitions
from G1 phase to G2 phase. With this extended set of event types, death signals that depend
on the distribution of G1 and G2 phases are constant in between discrete events, such that
explicit numerical integration can be avoided in this case as well. The simulator class by
itself cannot infer whether the death signal is constant between discrete events, so in practice
we control this optimisation by passing the Boolean flag f is stepwise constant to the
simulator.

Pseudorandom number generator Since G1 durations are sampled from a stochastic
distribution, the well-mixed model is inherently stochastic. Therefore, in order to run
reproducible simulations, we need to have control over the random number generator used
by the stochastic sampler. Thus, we require that the cell cycle model is implemented using
the RandomState Mersenne Twister pseudorandom number generator from the NumPy
random library [199]. Moreover, the simulator optionally accepts a seed to initialise
RandomState with. If no seed is given, it is initialised instead with a fresh random seed
supplied by the operating system.

Termination conditions In addition, the simulator class accepts simulation parameters
that specify the simulation time and govern the termination conditions of the simulation.
In particular, tstart and tend are the start and end times of the simulation, respectively,
and min cell count and max cell count are the minimum and maximum cell counts,
respectively. The simulation terminates when the simulation time reaches tend, when the
cell count drops to min cell count, or when the cell count reaches max cell count;
whichever event happens first. We summarise the simulation parameters in Table 3.2.
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Table 3.2: Summary of simulation parameters in the well-mixed model. The type refers to
the data type used to store the parameter in the Python implementation.

Name Description Type

seed Seed for RandomState integer
tstart Simulation start time float
tend Simulation end time float
min cell count Minimum cell count integer
max cell count Maximum cell count integer
f is stepwise constant Flag for stepwise constant death signal Boolean

Data processing

The WellMixedSimulator class returns the results of the simulation in the form of a
Python dictionary containing: timestamps for every discrete event; the numerical solution
of the death clocks; the time of birth and sampled G1 duration of every cell; and the
termination status. The termination status indicates which condition led to the termination
of the simulation. Although the data gives a complete record of the simulation, this format
is difficult to parse directly.

Hence, we implemented the WellMixedSimulationData class to process the raw data
and represent it in a useful manner. There are many different data processing methods and
plotting techniques we can implement in the class to analyse our data. However, oftentimes
we only want to use a subset of those methods. In addition, some of the data processing
methods can be relatively costly to run. Therefore, we want to avoid running all the data
processing routines when initialising the class. We achieve this using lazy initialisation,
where the class initially does not process any data at all, and any individual data processing
method is only called when the class is queried for the result of that method. Once a data
processing result has been queried and computed, it is retained for future access.

3.3.2 Vertex model

As a cell-based model, the vertex model is a framework that already has a concrete rep-
resentation of cells and their cell cycles, as well as implementations for cell division and
cell death. In addition, the two-phase cell cycle model proposed in Chapter 2 is already
congruent with the cell cycle model of the death clock framework. Therefore, as opposed
to the well-mixed model, which we constructed de novo, our design strategy here is to
augment the vertex model from Chapter 2 with components that implement the death clock
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framework. In particular, we discuss how we equip cells with a death clock that evolves
according to Equation (3.4), how we compute the death signal, and the application of the
apoptosis rule given by Equation (3.7).

The main difference between the vertex model and the well-mixed model with respect
to the death clock framework is computation of the death signal. In the well-mixed model,
each cell observes the same global system state because the tissue is well-mixed. However,
in the vertex model, cells are restricted to sensing their local environment. Practically, this
means that cells receive different inputs to their death signal function based on their location
in the tissue. Therefore, cells perceive a spatially constrained subset of the overall system
state. We represent the local system state perceived by cell α using the “input vector” xα(t).
This enables us to write the death clock ODE in the vertex model as

dτα
dt

= fα(xα(t)) , (3.44)

where the death signal function fα(·) converts the local system state to a concrete death
signal. Note that the death signal function defined here is similar to the death signal function
in the well-mixed model, which converts the global system state to a concrete death signal.

Chaste implementation

For the reasons discussed in Chapter 2, we use the Chaste implementation of the vertex model
in our work. As an object-oriented library for cell-based simulations, Chaste was designed
to be customisable and provides abstractions for modelling biologically relevant processes
[160], such as apoptosis and subcellular reaction networks. Therefore, we implemented
the death clock framework by adding custom concrete classes conforming to the abstract
interface built into Chaste, rather than making structural changes to the codebase.

CellData One of Chaste’s abstractions is a CellData object owned by each cell that
holds an arbitrary amount of floating-point data. We use the CellData abstraction to store
the cell state associated with the death clock framework. This includes the value of the death
clock, death clock parameters such as the death threshold, as well as the simulation data
populating the input vector. An example of simulation data is the number of neighbouring
cells in the case of a death signal based on short-range cell interactions.

DeathClockModifier These inputs are updated by the DeathClockModifier class that
implements Chaste’s SimulationModifier interface. This is a general-purpose interface
that provides read-and-write access to the entire simulation instance as it is being executed.
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For our purposes, the simulation modifier extracts any pieces of simulation data relevant to
the death clock at every timestep, specifically data that goes into the input vector, and stores
them in CellData objects.

DeathClockSrnModel and DeathClockOdeSystem Chaste also offers functionality for
modelling subcellular reaction networks with ODEs in tandem with a cell-based simulation.
Once again, this is achieved through an object-oriented interface that lets the user specify a
custom ODE system associated with each cell. In addition, the Chaste library includes a
suite of numerical ODE solvers. However, the user can also supply their own solver if they
wish.

We use this infrastructure to numerically integrate the death clock, i.e. Equation (3.44),
on a per-cell basis. Concretely, we created the class DeathClockOdeSystem, which com-
putes the right-hand side of Equation (3.44), and the class DeathClockSrnModel4, which
interfaces with both DeathClockOdeSystem and CellData to perform the logistical tasks
involved with providing the ODE access to the input vector in CellData, setting up and
running the numerical solver, and updating CellData with the death clock values thus
computed.

DeathClockCellKiller Finally, we apply the apoptosis rule, given by Equation (3.7),
with the DeathClockCellKiller class using Chaste’s abstractions for killing cells during
simulation. Iterating over all cells at every timestep, the cell killer class accesses each cell’s
death clock, as well as its cell cycle phase, to determine whether the cell should undergo
apoptosis. We note that the application of the apoptosis rule is procedurally decoupled
from the numerical integration of the death clock, in contrast to the well-mixed model,
because cell death and numerical integration are performed as distinct steps in the broader
cell-based simulation scheme. As a result, the precise timing of apoptosis is constrained
by the simulation timestep. Assuming that the simulation timestep is small compared to
the timescales relevant to the death clock, however, the numerical error resulting from this
discretisation should be limited.

Another difference with the well-mixed model is that cells are not instantaneously
removed from the tissue when apoptosis is triggered. Instead, an apoptotic state is induced,
in which the cell is marked as dead and its target cell area linearly decreases to zero over a
fixed period of time, parameterised by the apoptosis time Tapoptosis. As discussed in Chapter 2,
the vertex model defines forces that try to restore any discrepancies between a cell’s area
and its target cell area. Therefore, an apoptotic cell will shrink in cell area until it is removed

4Srn is short for “subcellular reaction network”.
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by a T2 swap when its cell area falls below the area threshold S min. The exact timing of the
T2 swap is determined by the mechanical interactions of the dying cell and its surroundings.
Also, the T2 swap does not distinguish between apoptotic and non-apoptotic cells. It is
therefore possible for a non-apoptotic cell to be removed from the tissue if it is “squeezed”
out through mechanical forces. This cell fate, “death by extrusion”, does not exist in the
well-mixed model, where cells can only die through apoptosis. We record every T2 swap as
an “apoptosis” event if the cell is apoptotic at the time of the T2 swap and as an “extrusion”
event if not.

Summary We used Chaste’s object-oriented interface to extend the vertex model with the
death clock framework. Specifically, we associated a DeathClockSrnModel with each cell
to embed an internal death clock, implemented a DeathClockModifier to extract relevant
simulation data to compute the death signal, and added a DeathClockCellKiller to apply
the apoptosis rule. Tying everything together is the CellData, which serves as the central
point of communication. See Figure 3.3 for a diagram summarising the interactions between
these components.

Chaste contributions

As mentioned in Section 2.1.4, standard vertex dynamics permit the mesh to become invalid
due to cells intersecting each other. Mesh rearrangements, such as the T1, T2, and T3
transitions, prevent invalid meshes in a large number of cases. However, because of the
complexity of the vertex model, there exist many more cases that these transitions cannot
resolve, leading to simulation crashes. In most vertex-based simulations, this is not a
problem because such invalid mesh configurations are “edge cases”, in the sense that they
are infrequent under normal conditions.

However, when the death clock framework is implemented in the vertex model, these
edge cases become more commonplace. In particular, the death clock mechanism entails
that all cells are susceptible to death by apoptosis, whereas most vertex-based studies are
limited to death by extrusion. As a result, our early attempts at running the vertex model
with the death clock resulted in up to 30% of simulations crashing.

Upon closer inspection, most of the errors related to apoptotic cells at the boundary
of the tissue. Because boundary cells are not crowded out in the same manner as interior
cells, they are more likely to self-intersect before being removed from the tissue. Chaste
was not capable of resolving this type of mesh invalidation, so we identified and solved the
underlying issues, and contributed the fixes back to the official Chaste repository. Some
edge cases remain unresolved because they require significant architectural changes to
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Figure 3.3: Diagram showing the components implementing the death clock framework in
the vertex model and their interactions.
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Chaste to fix, but fortunately they were relatively rare in the simulations that we ran.
In addition to these “official” fixes, we also implemented a few ad hoc fixes (see the
GitHub repository https://github.com/ThomasPak/cell-competition for details).
Altogether, we reduced the simulation failure rate from 30% to roughly 1–2%. For an
overview of our contributions to Chaste, see Appendix A.

3.4 Discussion

The failure in Chapter 2 to reproduce cell competition by varying mechanical parameters
suggested that we need to implement an active mechanism of cell death to model cell
competition. This led us to propose the novel modelling framework in this chapter based
on the principle that apoptosis is triggered by the accumulation of death signals reaching
a threshold. Biologically, apoptosis is regulated by multiple complex signalling networks.
In this chapter, however, we abstracted away these details and described the accumulation
mechanism using a simple ODE model that aggregates the death signal into an abstract
quantity that we call the death clock.

In addition, we assume that the death clock is coupled to the cell cycle. In particular, the
cell can only trigger apoptosis in G1 phase. The duration of G1 phase is stochastic, such
that each cell has a different window in which it is vulnerable to apoptosis. We consider
the cell cycle an autonomous process, since it does not depend on external influences, and
we consider the death clock mechanism a non-autonomous process because it is driven by
interactions with other cells. Hence, the death clock framework can be viewed as a model of
autonomous and non-autonomous processes interacting to give rise to competition.

The main advantage of the death clock framework is that it does not impose an a priori

cell status, but that competition arises from interactions among all cells. A corollary of this
is that we can use the framework to model competition in homotypic cell populations just
as naturally as in heterotypic cell populations. Moreover, the relatively simple formulation
of the death clock ODE allows us to make theoretical predictions and run efficient compu-
tational simulations, while still capturing the basic principle of death signal accumulation.
Furthermore, the death clock framework is very flexible because the death signal can take
on different forms to represent different modes of competitive interactions.

We implemented our framework in two distinct cell-based models: the well-mixed
model and the vertex model. The well-mixed model, which we constructed de novo, can
be considered a minimal cell-based model implementing the death clock framework. On
the other hand, we implemented the vertex model by extending Chaste with custom classes.
These cell-based models enabled us to investigate the behaviour of the death clock using

68

https://github.com/ThomasPak/cell-competition


simulations. The difference between the well-mixed model and the vertex model is that
the latter is more realistic because it is a spatial model that incorporates the mechanical
properties of an epithelial tissue. However, this comes at a great cost in terms of complexity
and computational efficiency. In contrast, the well-mixed model lacks a spatial representation,
but is much cheaper to run.

We also developed a theoretical tool for studying the death clock framework, namely
the survival probability. It is difficult to make predictions on the cell fate outcome when
both the cell cycle duration and the death signal are uncertain. For the cell cycle duration,
uncertainty comes from stochasticity in the duration of G1 phase. For the death signal,
uncertainty comes from the noisy extracellular environment. However, if we assume a fixed
death signal, thus eliminating one source of uncertainty, we showed that it is possible to
derive an exact expression for the survival probability. The survival probability is useful
both theoretically to predict cell fates, and practically to quantify the fit with experiments by
comparing the survival probability with experimental division and apoptosis rates.

The survival probability and the cell-based models provide analytical and computational
tools, respectively, for studying the death clock modelling framework. On the one hand, we
can make theoretical predictions using the survival probability, and, on the other hand, we
can run simulations with cell-based models to verify the predictions. In the next chapter, we
apply these tools to investigate the simplest death clock model: the constant death signal
model.
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Chapter 4

The constant death signal model

In the previous chapter, we introduced the death clock modelling framework and briefly
discussed the constant death signal in Section 3.2.1. In particular, we predicted the survival
probability of a single cell experiencing a constant death signal. In this chapter, we explore
the implications of the constant death signal at the population level. Concretely, we study
the behaviour of a cell population where every cell is subject to the same constant death
signal, f (t) = c.

Since the death signal is constant, the induction of apoptosis in any given cell is not
influenced by the surrounding cells. Therefore, cell death in the constant death signal model
is an autonomous process. Cell competition, however, is a non-autonomous phenomenon,
so the constant death signal model cannot represent cell competition. Instead, we interpret
this model biologically as a cell population where every cell has the same propensity for
apoptosis. This could be the result of an intrinsic propensity for apoptosis, or an external
stressor1 that affects all cells equally, such as UV irradiation or the presence of cytotoxic
compounds.

The constant death signal model is the simplest possible death clock model, which
makes it a suitable model for exploring the death clock framework before moving on to more
complex death signals. In addition, we will use the results in this chapter as a foundation for
the theoretical framework that we develop in Chapters 5 and 6.

The rest of this chapter is organised as follows: in Section 4.1 we relate the behaviour of
the constant death signal model to that of a discrete-time birth–death Markov chain. We then
use this relationship to make predictions about the proliferative behaviour of the population
in Section 4.2. We also study the impact of the death signal on the time that cells spend in
G1 phase in Section 4.3. In these two sections, we make concrete, quantitative predictions,

1We do not consider such stress factors as non-autonomous effects because they are not mediated by other
cells in the population under consideration.
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which we validate with simulations of the well-mixed model and the vertex model. Finally,
we end with a discussion in Section 4.4.

4.1 Discrete-time birth–death Markov chain

As we have established in Section 3.2.1, in the constant death signal model every cell has
the same survival probability θ because the death signal is identical for all cells. Hence, cell
fates (survival versus death) are statistically independent and identically distributed. We can
therefore express the behaviour of the population with a probabilistic scheme simulating the
survival outcome of each cell one by one. This approach reduces the processes of the death
clock and the cell cycle model to a single stochastic event, with probabilities determined by
the survival probability.

Concretely, we consider a stochastic procedure where, given an initial cell population,
we iteratively pick a cell at random, and simulate its cell fate, with the probability of survival
given by θ, and the probability of death given by 1 − θ. In the case of survival, the cell
divides into two daughter cells, so we increment the cell population. In the case of death,
we decrement the cell population. Since every cell’s fate is independent and identically
distributed, cell identities are not important for the stochastic process and only the number
of cells is significant.

The random process thus constructed is known in the literature as a discrete-time
birth–death Markov chain [200]. Formally, this is a Markov chain on the state space
I = {0, 1, 2, . . .}, where each state corresponds to a particular population size. Furthermore,
the transition probabilities are given by

p0,0 = 1 , (4.1a)

pi,i−1 = 1 − θ for i ≥ 1 , (4.1b)

pi,i+1 = θ for i ≥ 1 . (4.1c)

To arrive at this simplified description of the constant death signal model, we ignored
the dynamical nature of the system by considering cell fates one by one, whereas in reality
cells are progressing towards their fates in tandem. Therefore, the Markov chain does not
respect the chronological order of events as they unfold in the constant death signal model.

As a result, the only properties that are transferable from the Markov chain to the
constant death signal model are those that are independent of the chronological order of
events. In particular, the asymptotic behaviour, such as the population’s propensity to go
extinct or proliferate indefinitely, is the same in both the Markov chain and the constant
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death signal model, since the precise order of events is not important in this case. Another
limitation of the Markov chain model is that it does not account for death by extrusion.
Therefore, its ability to predict the behaviour of the vertex-based implementation of the
constant death signal model is impacted by the rate of extrusion.

4.2 Proliferation regimes

In this section, we characterise the proliferation regimes of the constant death signal models,
i.e. population extinction versus explosion, using the Markov chain model, and validate the
predictions with simulations.

Since each cell has a nonzero probability of dying, it is possible for the entire cell
population to go extinct at any time. Once this occurs, there are no cells left to give birth
to new cells. Hence, population “extinction” is an irreversible event. This is reflected in
the Markov chain model by the fact that the state 0 is an absorbing state; once the Markov
chain reaches 0, it can never escape from it.

Furthermore, the literature on birth–death Markov chains [201] teaches us that only two
asymptotic outcomes are possible in the Markov chain model: either the chain is absorbed
by the state 0 (extinction), or it is not and the population “escapes to infinity” (explosion).
We define the extinction probability hi as the probability that the Markov chain reaches the
state 0 starting from state i. It can be shown [201] that the extinction probability is given by

hi =

 1 for θ ≤ 1/2(
1−θ
θ

)i
for θ > 1/2

. (4.2)

In particular, extinction is guaranteed if the survival probability θ is less than or equal to
1/2. Intuitively, if individuals are more likely to die than to survive, then the population is
doomed to extinction. On the other hand, if survival is more likely than death, the population
has a nonzero probability of thriving indefinitely. Equation (4.2) also shows us that the
extinction probability decreases rapidly as the population size i increases.

The implication for the constant death signal model is that the cell population should
similarly go extinct or explode with the probabilities given by Equation (4.2). Notably, this
eliminates the possibility of more complex behaviours such as oscillations or non-trivial
steady states. Conversely, we conclude that the emergence of such behaviours requires a
death signal that is not constant. In other words, oscillations or steady states require that the
death signal varies temporally and/or across the cell population.

It can also be shown that for θ < 1/2, the Markov chain reaches the state 0 in a finite
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Table 4.1: Model and simulation parameter values used to estimate the extinction probability
for the well-mixed model.

Parameter Regime 1 Regime 3

tG1 50
tG2 50
c 1
θ 1

5 ,
1
4 ,

1
3 ,

2
5 ,

3
7

4
7 ,

3
5 ,

2
3 ,

3
4 ,

4
5

Initial cell count 10, 20, 30, 40, 50 1, 2, 3, 4, 5
Simulation end time ∞

Maximum cell count ∞ 50
Nsim 1 000

number of events on average, while the average number of events until extinction is reached
for θ = 1/2 is unbounded [201]. Hence, we define three distinct proliferation regimes:

Regime 1
{
θ < 1

2

}
Extinction is guaranteed after a finite number of events on average.

Regime 2
{
θ = 1

2

}
Extinction is guaranteed after an infinite number of events on average.

Regime 3
{
θ > 1

2

}
Extinction is not guaranteed.

4.2.1 Computational validation

In this section, we verify whether the extinction probability predicted by Equation (4.2)
matches the behaviour of the constant death signal model in simulations. We used a Monte
Carlo method where we ran repeated simulations of our model for different values of θ and
initial population sizes to sample the extinction frequency. We provided a unique seed for
the random number generator in each simulation.

Parameter choice We chose θ values in Regimes 1 and 3, as listed in Table 4.1 for the
well-mixed model and Table 4.2 for the vertex model. We excluded Regime 2 (θ = 1/2)
because the Markov chain model predicts it would take infinite time to verify whether the
population goes extinct in this case.

In Regime 3, we chose relatively small initial cell counts (see Tables 4.1 and 4.2) such
that the predicted extinction probabilities are not negligible. In theory, the population size
should not matter in Regime 1. Nonetheless, we also varied the population size in Regime 1
to verify that it is insensitive to population size (see Tables 4.1 and 4.2). In addition, we
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Table 4.2: Model and simulation parameter values used to estimate the extinction probability
for the vertex model.

Parameter Regime 1 Regime 3

tG1 50
tG2 50
c 1
θ 1

5 ,
1
3 ,

3
7

4
7 ,

2
3 ,

4
5

Initial cell count 10, 30, 50 1, 3, 5
Simulation end time 100 000
Maximum cell count ∞ 50
Nsim 100

chose larger population sizes than in Regime 3 so that extinction is less likely to be the result
of a small population size, as is the case in Regime 3.

Because the extinction probability is not dependent on the choice of cell cycle model,
we used the exponential cell cycle model to validate the extinction probability because
it is the simpler cell cycle model. In order to compute the death threshold, T†, we fix
tG1 = tG2 = 50, c = 1 and invert Equation (3.20) to give the death threshold as a function of
the survival probability:

T† = −ctG1 ln(1 − θ) . (4.3)

The mechanical parameters used in the vertex model for all simulations in this chapter are
set to their default values as given in Chapter 2.

For the well-mixed model, we ran 1 000 simulations for every unique parameter set, so
the total number of simulations is (5× 5 + 5× 5)× 1 000 = 50 000. For the vertex model, we
ran 100 simulations for every unique parameter set. Hence, the total number of simulations
is (3 × 3 + 3 × 3) × 100 = 1 800.

Initial conditions When we derived the survival probability, θ, for a cell experiencing a
constant death signal in Section 3.2.1, we assumed that i) the cell is subject to the constant
death signal starting from birth, ii) the initial death clock is set to zero, and iii) the G1
duration is sampled from the G1 duration distribution. This is true for all cells born during
the simulation, but not necessarily so for the initial cell population.

To specify the initial conditions, we need to assign a birth time, t0
α, an initial death clock

value, τα, and a G1 duration, t∗α, to every cell α. Hence, only a subset of possible initial
conditions conform to the assumptions listed above. To ensure that the initial cells have the
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same survival probability as the cells that appear afterwards in the simulation, we chose the
initial conditions such that each cell mirrored the state of a newly-born cell.

Therefore, for each initial cell we set the birth time to the start of the simulation,
initialised the death clock to zero, and sampled the initial G1 duration from the exponential
cell cycle model described by Equation (3.9). In addition, for the vertex model we used a
honeycomb pattern for the initial spatial configuration, as in Figure 2.3.

The initial conditions for all simulations in this chapter were determined in this manner.
The only difference when we use the uniform cell cycle model in Section 4.3 is that we
sample initial G1 durations from the uniform distribution described by Equation (3.11).

Termination conditions If the population goes extinct in either the well-mixed or the
vertex model, i.e. the population size reaches zero, the simulation terminates.

For simulations in Regime 3, it is impossible to verify population explosion through
computation, since it is defined as indefinite population growth. Therefore, we specified a
maximum cell count, Nmax > 0, which means that the simulation terminates as soon as the
population size reaches Nmax. Simulations that end by hitting the maximum cell count are
classified as “non-extinct”. However, imposing such a maximum population size modifies
the properties of the Markov model. In particular, the extinction probability is not the same
as in Equation (4.2), so we need to account for this when comparing computational results
to theoretical predictions.

To be exact, by imposing a maximum cell count for the population we obtain a birth–
death Markov chain on the finite state space I = {0, 1, 2, . . . ,Nmax} with transition probabili-
ties

p0,0 = 1 , (4.4a)

pi,i−1 = 1 − θ for 1 ≤ i ≤ Nmax − 1 , (4.4b)

pi,i+1 = θ for 1 ≤ i ≤ Nmax − 1 , (4.4c)

pNmax,Nmax = 1 . (4.4d)

Denoting the extinction probability of a population with initial size i for this Markov chain
as h̃i, it can be shown that h̃i is given by [201]

h̃i =


1 − i

Nmax
for θ = 1/2(

1−θ
θ

)i
−

(
1−θ
θ

)Nmax

1 −
(

1−θ
θ

)Nmax
for θ , 1/2

. (4.5)
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From Equation (4.5), it follows that for θ > 1/2, we have h̃i → hi as Nmax → ∞. In other
words, if the maximum cell count is sufficiently large relative to the initial population size in
Regime 3, then the difference between h̃i and hi is negligible. We chose Nmax = 50 as the
maximum cell count, such that the maximum absolute error |h̃i − hi| over all the parameter
values listed in Tables 4.1 and 4.2 is approximately 4.32 · 10−7.

Because the Markov chain predicts that simulations in Regimes 1 and 3 should always
terminate with these termination conditions, we set an unbounded simulation time for the
well-mixed model. For the vertex model, since there is no functionality in Chaste for an
unbounded simulation time, we set a relatively long simulation time of 100 000, which is
equal to the average cell cycle time multiplied by a thousand.

Data processing For every simulation, we recorded the termination status, indicating
whether the simulation ended in extinction or by hitting the maximum cell count. In
addition, for the vertex model there is also the possibility that the simulation terminated by
hitting the simulation end time. However, this did not occur for any vertex simulation, so
we do not consider this case.

For each parameter set in Regime 3, we index the simulations using k = 1, . . . ,Nsim,
where Nsim is the number of simulations per unique parameter set, and denote the termination
status as

Ak =

 1 if simulation k went extinct

0 otherwise
. (4.6)

We then estimated the extinction probability by its extinction frequency, defined as

ĥ =
1

Nsim

Nsim∑
k=1

Ak . (4.7)

In addition to computing the extinction frequency, we constructed 95% confidence
intervals using a bootstrapping method. For each parameter set, we resampled the data
by sampling with replacement fromAk to obtain a “bootstrap sample” of size Nsim. We
repeated this process 10 000 times and computed the extinction frequency in each bootstrap
sample. The resulting bootstrap extinction frequencies formed a bootstrapped distribu-
tion approximating the distribution of ĥ. We then used the quantiles of the bootstrapped
distribution to construct confidence intervals.

Data visualisation We plot the extinction frequencies for Regime 3 in Figure 4.1 for the
well-mixed model and Figure 4.2 for the vertex model, alongside the extinction probabilities
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predicted in Equation (4.5). In addition, we plot the bootstrapped confidence intervals as
error bars.

Computational materials and methods See Computational materials and methods in
Section 2.3.1 (page 36) for the vertex model.

Well-mixed simulations are significantly cheaper to run, so we did not run them on a
computational cluster. Instead, we used a regular multi-core computer to run well-mixed
simulations in parallel. We wrote a script that executes a batch of simulations, with the
range specified using command-line arguments. We parallelised simulation batches using
GNU Parallel2, an open-source command-line tool for parallelising shell commands [202].
The computer used to parallelise simulations had an Intel Core i5-9500T CPU with six cores
and 16 GB of DDR4 random-access memory. All the well-mixed simulation suites in this
thesis were executed in this manner.

4.2.2 Results

Well-mixed model We report that all well-mixed simulations in Regime 1 ended in
extinction, thus validating the predictions in Regime 1 for the well-mixed model. Figure 4.1
shows that the observed extinction frequencies and predicted extinction probabilities are
in very close agreement for all simulated parameter sets in Regime 3. Together with the
observation that all simulations in Regime 1 ended in extinction, we conclude that the
extinction probabilities in Equation (4.2) accurately predict the proliferative behaviour of
the well-mixed constant death signal model.

Vertex model The Regime 1 simulation suite took 53 CPU hours to finish. Out of 900
vertex simulations in Regime 1, 18 simulations failed, which is a failure rate of 2%. The
simulations failed because the mesh was invalidated, and not because the system ran out of
memory (which would indicate population explosion), so we disregard the failed simulations.
In addition, all successful simulations ended in extinction, which validates the predictions in
Regime 1 for the vertex model.

The Regime 3 simulation suite took 69 CPU hours to finish. Out of 900 vertex simula-
tions in Regime 1, eight simulations failed, which is a failure rate of 0.89%. After discarding
the failed simulations, we plot the extinction frequency on the left-hand side of Figure 4.2.
These plots show that the observed extinction frequency is consistently slightly higher than
the predicted extinction frequency. This is because cells in the vertex model can die by

2https://www.gnu.org/software/parallel/
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Figure 4.1: Estimated extinction frequency, ĥ, defined in Equation (4.7) for the well-mixed
model. Error bars denote 95% confidence intervals obtained by bootstrapping. The predicted
extinction probability, h̃i, defined in Equation (4.5), is plotted for comparison.
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Figure 4.2: Estimated extinction frequency, ĥ, defined in Equation (4.7) for the vertex
model including extrusions (left) and excluding extrusions (right). Error bars denote 95%
confidence intervals obtained by bootstrapping. The predicted extinction probability, h̃i,
defined in Equation (4.5), is plotted for comparison.

79



extrusion in addition to apoptosis induced by the death clock, so the propensity for extinction
is strictly higher than predicted by the Markov chain model.

We can demonstrate this effect by excluding simulations in which extrusions took place
in order to separate out the impact of extrusions on the extinction frequency. Aggregating
over all Regime 3 simulations, we see that extrusion events were far less common than
apoptosis events, with roughly 1.2% of all deaths caused by extrusion. Out of 892 successful
simulations, 184 simulations recorded at least one extrusion event. The right-hand plots
in Figure 4.2 show the extinction frequency after excluding these simulations, and clearly
indicate a better agreement with theoretical predictions.

4.3 Effective G1 duration

In Section 3.1.1, where we stated the biological assumptions of the death clock framework,
we assumed that the death clock mechanism only initiates apoptosis in G1 phase. As a result,
when a cell initiates apoptosis, the time it spends in G1 phase is truncated. The “effective G1
duration”, defined as the time actually spent by the cell in G1 phase, is therefore shorter than
the G1 duration, t∗, that was sampled autonomously from C. On the population level, the
result is that the average effective G1 duration is shorter than tG1. This discrepancy between
the effective and the autonomous G1 durations depends on the death signal intensity; greater
death signals trigger apoptosis sooner. Generally speaking, the death signal represents a
non-autonomous process, so the truncation of the effective G1 duration is a non-autonomous
effect.

In the general case, the death signal is not known a priori, making it difficult to find the
distribution of the effective G1 duration. However, in this chapter we assume a constant
death signal, which lets us predict the effective G1 duration. In this section, we first derive a
general expression for the expected effective G1 duration, and then particular expressions
for the exponential (Section 4.3.1) and uniform (Section 4.3.2) cell cycle models. Finally,
we validate the analytical predictions with simulations.

In Section 3.2.1, we solved the death clock ODE for a constant death signal, resulting in
Equation (3.16). We substitute the death threshold T† in Equation (3.16) and rearrange to
obtain the death time for a constant death signal:

t† =
T†
c
. (4.8)

The death time represents a hard barrier that cells cannot cross while in G1 phase, and is
thus an upper limit on the effective G1 duration.
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The survival condition (Equation (3.15)) can be reformulated in terms of the death time
t†; if t∗ < t†, then the cell transitions to G2 phase before the death time and survives. In this
case, the effective G1 duration is equal to the sampled G1 duration. However, if t∗ ≥ t†, the
cell dies and the effective G1 duration is exactly equal to the death time. Given these are the
only possible outcomes (ignoring death by extrusion), we express the effective G1 duration,
denoted by teff, as

teff =

 t∗ for t∗ < t†

t† for t∗ ≥ t†
= min(t∗, t†) . (4.9)

In the case of survival (i.e. t∗ < t†), the effective G1 duration teff is distributed as t∗,
subject to the condition that t∗ < t†. In other words, the effective G1 duration teff for
surviving cells follows a truncated G1 duration distribution. Formally, if ψ(t) and Ψ(t) are
the probability density function and cumulative distribution function of t∗, respectively, then
the distribution of teff is given by the following probability density function:

ψeff(t) =
ψ(t) · 1(t < t†)
Ψ(t†) − Ψ(0)

=
ψ(t) · 1(t < t†)

Ψ(t†)
, (4.10)

where 1(·) is the indicator function. In Equation (4.10), we also used the fact that Ψ(0) = 0,
which is a result of Equation (3.2), which states that the support of Ψ(t) is [0,∞). The
expected value of the truncated G1 duration is then

E(teff | t∗ < t†) =

∫ ∞

0
t′ψeff(t′) dt′ =

1
Ψ(t†)

∫ t†

0
t′ψ(t′) dt′ . (4.11)

In the case of death (i.e. t∗ ≥ t†), the effective G1 duration is exactly t†. In other words,

E(teff | t∗ ≥ t†) = t† . (4.12)

We use the law of total expectation to find an expression for E(teff):

E(teff) = E(teff | t∗ < t†)P(t∗ < t†) + E(teff | t∗ ≥ t†)P(t∗ ≥ t†) . (4.13)

Substituting Equation (4.11) and Equation (4.12), we have

E(teff) =

∫ t†

0
t′ψ(t′) dt′ + t†(1 − Ψ(t†)) , (4.14)

where we used P(t∗ < t†) = Ψ(t†) and P(t∗ ≥ t†) = 1 − Ψ(t†).
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4.3.1 Exponential cell cycle model

For the exponential cell cycle model, we substitute Equations (3.9) and (3.10) in Equa-
tion (4.14),

E(teff) =

∫ t†

0

t′

tG1
exp

(
−

t′

tG1

)
dt′ + t† exp

(
−

t†
tG1

)
, (4.15)

and use integration by parts to find

E(teff) = tG1

[
1 − exp

(
−

t†
tG1

)]
− t† exp

(
−

t†
tG1

)
+ t† exp

(
−

t†
tG1

)
= tG1

[
1 − exp

(
−

t†
tG1

)]
. (4.16)

We plot the relationship between E(teff) and t† in Figure 4.3. Treating E(teff) as a function of
t†, we can approximate E(teff) for t† � tG1 as

E(teff) ≈ tG1
t†
tG1

= t† . (4.17)

Hence, for small t† the expected effective G1 duration closely follows the upper bound
imposed by t†. On the other hand, in the limit of large t†, we have

lim
t†→∞

E(teff) = tG1 , (4.18)

which is the same average effective G1 duration as a cell with no active death clock mech-
anism. We can conclude from these limiting regimes that the effect of the death clock is
greatest when the death time is small, which corresponds to a large death signal. In this case,
the effective G1 duration is dominated by the death time. On the other hand, when the death
time is large, the distribution of the effective G1 duration approximates the autonomous G1
duration distribution.

4.3.2 Uniform cell cycle model

Because the support of the uniform distribution is limited to a finite interval, we distinguish
between three distinct parameter regions based on the position of the death time relative
to the uniform interval. If the death time is smaller than the lower bound of the uniform
interval, then all sampled G1 durations are larger than the death time. Therefore, every cell
is guaranteed to die at exactly t†. In other words,

t† < tG1 −
1
2

r ⇒ E(teff) = t† . (4.19)
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Figure 4.3: The predicted mean effective G1 duration is plotted using a solid line for
the exponential (Equation (4.16)) and uniform (Equation (4.22)) cell cycle models. The
distribution of the mean effective G1 duration, denoted t̂eff and defined in Section 4.3.3, is
plotted using box plots with whiskers extending to the minimum and maximum values. An
orange square indicates that all observed mean effective G1 durations are the same. The
green shaded area shows the range of the uniform interval.
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On the other hand, if the death time is larger than the upper bound of the uniform interval,
then cells are unaffected by the death clock because they never spend enough time in G1
phase to hit the death time. Hence, in this case the effective G1 duration is distributed
identically as the sampled G1 duration, and its expected value is equal to tG1. Formally,

t† > tG1 +
1
2

r ⇒ E(teff) = E(t∗) = tG1 . (4.20)

The non-trivial case occurs when the death time is within the uniform interval. We substitute
the probability density function (Equation (3.11)) and the cumulative distribution function
(Equation (3.13)) in Equation (4.14) to obtain

E(teff) =

∫ t†

tG1−
1
2 r

t′

r
dt′ + t†

1 − t† −
(
tG1 −

1
2r

)
r


= tG1 −

1
2r

[
t† −

(
tG1 +

1
2

r
)]2

. (4.21)

Combining all three cases, we have

E(teff) =


t† for t† < tG1 −

1
2r

tG1 −
1
2r

[
t† −

(
tG1 + 1

2r
)]2

for t† ∈
[
tG1 −

1
2r, tG1 + 1

2r
]

tG1 for t† > tG1 −
1
2r

. (4.22)

In Figure 4.3, we plot this relationship for selected values of r. Analysing the behaviour
of E(teff) as a function of t†, we find that the limiting regimes t† � tG1 and t† → ∞ in the
exponential cell cycle model are analogous to the cases t† < tG1 − r/2 and t† > tG1 + r/2 in
the uniform cell cycle model, respectively. In the case of t† < tG1 − r/2, the effective G1
duration is determined solely by the death time, whereas in the case of t† > tG1 + r/2 the
behaviour of cells is identical to cells without the death clock mechanism. In the interval
bridging these two outer cases, i.e. for t† ∈ [tG1 − r/2, tG1 + r/2], the expected effective G1
duration takes on the form of a quadratic function that smoothly connects the linear function
in t† < tG1 − r/2 with the constant function in t† > tG1 + r/2.

4.3.3 Computational validation

In this section, we validate our predictions for the expected effective G1 duration for the
exponential (Equation (4.16)) and the uniform (Equation (4.22)) cell cycle models. In
particular, we used a Monte Carlo method to estimate E(teff) by running repeated simulations
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Table 4.3: Model and simulation parameter values used to estimate the mean effective G1
duration for the well-mixed model.

Parameter Exponential Uniform

tG1 50
tG2 50
c 1
t† 20, 40, . . . , 200 10, 20, . . . , 100
r - 30, 50, 70, 100

Initial cell count 64
Simulation end time ∞

Maximum cell count 1 000
Nsim 100

for different values of t† with a unique seed in each simulation.

Parameter choice We used the parameter values for t† listed in Table 4.3 for the exponen-
tial and uniform cell cycle models. In addition, for the uniform cell cycle model, we also
varied the uniform interval width r and took the Cartesian product over all parameters. The
death threshold is determined by the other parameters as follows:

T† = t†c . (4.23)

We ran 100 simulations for each unique parameter set, hence the total number of simulations
is (10 + 10× 4)× 100 = 5 000. The parameters used span Regime 1 (θ < 1/2) and Regime 3
(θ > 1/2) for the exponential cell cycle model and all proliferation regimes (including
θ = 1/2) for the uniform cell cycle model. Hence, population extinction and explosion are
both possible proliferation outcomes.

Initial conditions We set the initial population size to 64 to obtain a sufficiently large
sample of effective G1 durations in the case of population extinction, and initialise the cells
as described in the Initial conditions subsection of Section 4.2.1 (page 74).

Termination conditions We chose a large maximum cell count of 1 000 to get a suffi-
ciently large sample of effective G1 durations in the case of population explosion.
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C C C C I C C I
Truncation

Naive

Birth order
Figure 4.4: Effective G1 duration sampling method. The observed G1 durations are ordered
by birth order of the corresponding cells. At the end of the simulation, the observed G1
durations can either be complete (“C”) or incomplete (“I”). In the naive sampling method,
we discard only incomplete G1 durations, which biases the sample towards smaller G1
durations. In the truncation method, we discard all observations starting from the first
incomplete G1 duration. This leaves us with a smaller, but unbiased sample of G1 durations.

Data processing At the moment of termination there is generally a subset of cells that
are still in G1 phase. These cells will have spent some time in G1 phase, but that is only a
part of the total time that the cells would have spent in G1 phase if their cell cycles were
allowed to complete. Therefore, the recorded times spent in G1 phase by these cells are
not representative of the mean effective G1 duration and we should not include them in our
sample.

However, we need to be careful when throwing out observations not to introduce biases.
A naive sampling method would be to simply discard the incomplete G1 durations and retain
all completed G1 durations. This has the potential, however, to bias the sample towards
shorter G1 durations. The issue with the naive sampling method is that cells with relatively
long effective G1 durations are more likely to still be in G1 phase at the end of the simulation,
and are therefore overrepresented among the discarded observations.

We avoid this sampling bias by sorting the observed G1 durations by the birth order of
the corresponding cells and including only completed G1 durations up to and excluding the
first incomplete G1 duration in our sample. The remaining observations constitute a smaller,
but pristine sample of effective G1 durations. For a visual comparison of these sampling
methods, see Figure 4.4. Finally, to estimate E(teff), we take the mean of the sample thus
obtained, which we denote as t̂eff.

Data visualisation The distribution of these t̂eff is plotted using box plots in Figure 4.3,
together with the theoretical predictions.

86



4.3.4 Results

Figure 4.3 shows a very close agreement between predictions and experiments, validating
Equations (4.16) and (4.22). We note that for the uniform cell cycle model, there is no
variation in the effective G1 duration for t† < tG1 − r/2, as every cell dies at exactly t† in this
regime.

4.4 Discussion

In this chapter, we studied the simplest possible death clock model: the constant death
signal model. Because the death signal is constant, the survival probability is the same for
all cells in the population. We used this property to relate the asymptotic behaviour of the
constant death signal model to that of a discrete-time birth–death Markov chain model. This
enabled us to predict the extinction probability, a population-level property, from the survival
probability, a property of individual cells, and the population size. In addition, we used the
properties of the Markov chain to define distinct proliferation regimes, and validated the
predictions in these regimes with well-mixed and vertex simulations. For the well-mixed
model, the observed extinction frequencies were very closely aligned with predictions. For
the vertex model on the other hand, the extinction frequency was slightly higher because
mechanical extrusions resulted in a higher rate of cell death than predicted by the survival
probability. We also noted the lack of other proliferative behaviours from the Markov chain
description, such as oscillations or steady states, which are therefore not possible with a
constant death signal.

As mentioned in the introduction, the constant death signal model does not represent
intercellular interactions. We did not discuss heterotypic populations in this chapter for this
reason, since two distinct cell types with a different constant death signal would also not
interact with each other. Nonetheless, the simplicity of the constant death signal model
enabled us to make theoretical predictions that we will use in the following two chapters.
In the next chapter, we consider a death signal that is locally emitted by cells in G2 phase.
Even though this is a non-autonomous death signal, we will see that it can usefully be
approximated as constant, allowing us to build upon the results of this chapter.

87



Chapter 5

The G2 death signal model for
homotypic populations

To recap, the overarching aim of this thesis is to study the mechanisms of cell competition
without asserting a priori winner/loser status. In Chapter 2, we generated winners and
losers in a vertex model by varying the mechanical parameters of heterotypic populations.
However, homotypic simulations revealed that loser cells were eliminated due to their
intrinsic nonviability, rather than through competitive interactions. A defining feature of cell
competition, however, is that prospective loser and winner cells are both viable in homotypic
environments.

A common observation in cell competition experiments is some form of programmed
cell death, such as apoptosis, occurring in loser cells. This was missing from the model
explored in Chapter 2, so we conjecture that an active mechanism of cell death is necessary
for modelling cell competition. To test this hypothesis, we constructed the death clock
modelling framework in Chapter 3, which proposes that cells accumulate death signals into
an abstract quantity called the death clock and that they trigger apoptosis when the death
clock reaches the death threshold.

One of the advantages of the death clock modelling framework is its flexibility. The death
signal can take on many forms, representing different modes of intercellular communication.
In Chapter 4, we examined the effects of a constant death signal because it is the simplest
possible model. However, a constant death signal cannot represent cell competition because
it is not based on intercellular interactions. Hence, in this chapter and the next, we examine
the effects of a death signal based on short-range intercellular interactions: the G2 death
signal (Section 5.1).

The ultimate goal is to investigate whether the G2 death signal model can produce
emergent winners and losers in heterotypic populations. However, the precondition for cell
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competition is that prospective winners and losers are homotypically viable. In this chapter
we investigate the conditions for viability in homotypic populations. We leave the analysis
of competition in heterotypic populations to Chapter 6.

The rest of this chapter is organised as follows: first, we introduce the G2 death signal
in Section 5.1. Then, we propose that the system is ergodic in Section 5.2. This leads to a
constant approximation for the G2 death signal that enables us to use the results of Chapter 4
to i) define the homotypic survival probability, ii) define distinct proliferation regimes for
homotypic populations, and iii) map these proliferation regimes in parameter space. We
characterise the survival probability and proliferation regimes for the exponential cell cycle
model in Sections 5.3 and 5.4, and for the uniform cell cycle model in Sections 5.5 and 5.6.
In Section 5.7 we summarise and discuss the results.

5.1 G2 death signal

We introduce our first death signal model for cell competition. It has been observed that
elimination of loser cells occurs at a short range from winner cells [43, 53, 203]. Thus,
in the G2 death signal model, we assume that cells communicate via short-range cell–
cell interactions, for instance through binding surface receptors. This is an example of
biochemical competition because signals are mediated by binding receptors, as opposed to
mechanical competition where signals are transduced mechanically. Moreover, based on
indications that cell competition may be linked to the cell cycle [186, 187], as discussed in
Section 3.1.1, we assume that cells only emit death signals to their neighbours in G2 phase.
The reason for choosing G2 phase is that cell competition is often manifested as proliferating
cells inducing apoptosis in neighbouring cells in order to make room for themselves. In
our framework, cells in G2 phase have already committed to division, which makes them a
suitable candidate for generating death signals.

Concretely, we define the death signal identically for each cell as

f (t) = cg(t) , (5.1)

where g(t) is the proportion of neighbouring cells in G2 phase, i.e.

g(t) =


# neighbours in G2

# neighbours
if # neighbours > 0

0 otherwise
. (5.2)

In the well-mixed model, all cells are assumed neighbours. In the vertex model, on the other
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hand, only cells that share a cell–cell boundary are considered neighbours. We normalise the
number of neighbours in G2 phase in Equation (5.2) so that cells at the boundary of the tissue
in the vertex model, who have fewer neighbours, do not receive an artificially lower death
signal. Cells located in the interior of the tissue usually have a relatively constant number of
neighbours, so the normalising factor does not fundamentally change the dynamics of the
G2 death signal away from the boundary. Moreover, the normalisation also makes it easier
to make useful approximations, as we will see in Section 5.2.

Assuming that cells only emit death signals in G2 phase creates a trade-off; cells in G1
phase are vulnerable to death signals and do not generate them, whereas cells in G2 phase
are impervious to death signals but do generate them. This raises a question: what is the
effect of changing the proportion of the cell cycle that is spent in G1 or G2 phase, given a
fixed total cell cycle duration? In order to investigate this, we define tG as the total cell cycle
duration, and define 0 < β < 1 as the fraction of tG that is spent, on average, in the G1 phase.
Formally,

tG1 = βtG , (5.3)

and
tG2 = (1 − β)tG . (5.4)

5.2 Ergodic approximation

Even without considering spatial structure, the G2 death signal model describes a highly
unpredictable system. The cell cycle is stochastic because of the stochastic G1 duration, and
therefore the death signal, which is based on G2 phase, is stochastic as well. Since the death
signal is variable, the decision to commit apoptosis is also uncertain, and this uncertainty is
fed back into the death signal. It is therefore difficult to characterise the death signal exactly,
let alone the survival probability.

Despite this complexity, it turns out that, in many cases, the death signal is not only
relatively stable, but even predictable. In particular, the system can often be regarded
as ergodic, in the sense that the average proportion of cells in G2 phase relative to the
population approximates the average proportion of the cell cycle spent in G2 phase. In other
words, the spatial distribution of cell cycle phases in the population at any given moment is
approximately the same as the distribution of cell cycle phases in the individual cell cycle
over time. Conceptually, we state that the system is ergodic if, on average,

# cells in G2 phase
# cells in total

=
G2 duration

cell cycle duration
. (5.5)
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If, in addition, we assume that the local cell neighbourhood is representative of the system
as a whole, then we can approximate g(t) as

g(t) ≈
# cells in G2 phase

# cells in total
. (5.6)

Equation (5.6) expresses that the system is well-mixed. If cells are spatially segregated by
cell cycle phase, for instance, then most cells are surrounded only by cells in the same phase,
so Equation (5.6) does not hold. Following the assumptions in Equations (5.5) and (5.6),
we find that

g(t) ≈
G2 duration

cell cycle duration
=

tG2

tG
=

(1 − β)tG

tG
= 1 − β . (5.7)

This is the ergodic approximation. The death signal is then approximated as

f (t) = cg(t) ≈ c(1 − β) , (5.8)

giving a constant death signal. By analogy with the constant death signal model, we define
a death time,

t† =
T†

c(1 − β)
, (5.9)

and find an expression for the homotypic survival probability as

λ = Ψ(t†) = Ψ

(
T†

c(1 − β)

)
, (5.10)

where we use λ to denote the homotypic survival probability and Ψ(t) is the cumulative
distribution function of the G1 duration distribution. We note here that varying β changes
both the G2 and G1 durations, hence it affects both the death time and the distribution Ψ(t)
simultaneously. In the rest of this chapter, we use the terms “survival probability” and
“homotypic survival probability” interchangeably.

A precondition for the ergodic assumption to hold is that the population size is sufficiently
large for a population average to be meaningful. In a population of two cells, for instance,
each cell senses only the other cell’s death signal, such that the death signal can only be
zero or unity. We also note that in the limit of a single cell the death signal is zero. In
addition, the ergodic approximation assumes that cell cycles are uncorrelated across cells.
The more that cells synchronise their cell cycles, the less that the population approximates
an ergodic system. When these conditions are not met, we expect that Equation (5.10) is a
poor predictor of cell behaviour.

Starting from an ideal ergodic cell population, i.e. a sufficiently large population with
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completely uncorrelated cell cycles, we note that there are two important processes which
may perturb the population’s ergodicity. Firstly, when a cell divides, it produces two daughter
cells in G1 phase. The cell cycles of sister cells are therefore always correlated following
division. Secondly, when a cell dies, it does so in G1 phase. As a result, every cell death
tips the population balance of cell cycle phases away from the G1 phase.

In the case of correlated sister cells, the G1 phase is overrepresented immediately after
division, which pushes the death signal below its ergodic value. On the other hand, cell
deaths result in an underrepresentation of the G1 phase, biasing the death signal upwards.
Hence, divisions and deaths have opposing effects on the death signal. In the best-case
scenario, divisions and deaths balance each other out, resulting in a stable ergodic population.
In the worst-case scenario, divisions and deaths become separated in time such that the
death signal varies wildly from extreme to extreme. As we will see in the rest of this chapter,
the exponential and uniform cell cycle models give rise to the former and latter scenarios,
respectively.

5.3 Homotypic survival probability for exponential cell cy-
cle model

In this section, we derive an expression for the homotypic survival probability with the
exponential cell cycle model under the ergodic approximation, and validate the predictions
with simulations. First, we substitute Equation (5.3) into the cumulative distribution function
for the exponential distribution, Equation (3.10), to get

Ψ(t) = 1 − exp
(
−

t
βtG

)
. (5.11)

We then substitute the death time from Equation (5.9) into Equation (5.11) to get the
homotypic survival probability

λ(β) = 1 − exp
(
−

T†
ctGβ(1 − β)

)
. (5.12)
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In order to simplify the notation, we introduce the dimensionless1 parameter η,

η ≡
T†
ctG

, (5.13)

which is a non-negative constant that can be interpreted as a normalised death time or death
threshold. We can thus write the survival probability as a function of two dimensionless
parameters:

λ(β, η) = 1 − exp
(
−

η

β(1 − β)

)
. (5.14)

As Figure 5.1 indicates, the survival probability with respect to β is symmetric and
U-shaped. In particular, the survival probability is at its minimum for β = 1/2, and increases
as β approaches zero or one. This illustrates the balance of two opposing effects taking place
when varying β. When the G1 phase is long, i.e. for large β, there is a large window in which
cells are vulnerable to death signals, but fewer cells in G2 phase to broadcast death signals.
On the other hand, when the G2 phase is relatively long, i.e. for small β, there are more cells
in G2 phase and a stronger death signal is felt, but the G1 phase is shorter, enabling cells to
escape apoptosis. When the G1 and G2 durations are equal, these effects combine to create
the fiercest competition.

5.3.1 Computational validation

We now explore whether the homotypic survival probability predicted by Equation (5.14)
matches the behaviour of the model in simulations. We used a Monte Carlo method where
we ran repeated simulations of our model for different values of η and β to sample the
resulting survival frequencies. As our model is stochastic, we provided a unique seed for the
random number generator in each simulation.

Parameter choice We used the well-mixed model with the parameters listed in Table 5.1
to validate the predicted homotypic survival probability in Equation (5.14). We chose six
different values of η in order to span a large range of survival probabilities, both above and
below 1/2. For each value of η, we varied β from 0.1 to 0.9 in increments of 0.1. The death
threshold was determined as a function of the other parameters, specifically by rewriting

1To see that η is dimensionless, we note that the death threshold, T†, has the same dimension as the death
clock τ(t). Moreover, from the definition of the G2 death signal, Equation (5.1), it follows that c has the same
dimension as the death signal f (t). Furthermore, the death clock ODE, Equation (3.4), shows that the death
clock divided by the death signal has the dimension of time. Finally, the total cell cycle time, tG, also has the
dimension of time, so η is dimensionless.
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Figure 5.1: Homotypic survival probability with the exponential cell cycle model under the
ergodic approximation as predicted by Equation (5.14).

Table 5.1: Model and simulation parameter values used to estimate the homotypic survival
probability for the exponential cell cycle model.

Parameter Well-mixed Vertex

tG 100
c 1
η 0.05, 0.1, 0.2, 0.5, 1
β 0.1, 0.2, . . . , 0.9 0.2, 0.5, 0.8

Initial cell count 100
Simulation end time ∞ 100 000
Minimum cell count 10
Maximum cell count 1 000
Nsim 100 20
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Equation (5.13) as
T† = ηctG . (5.15)

For the vertex model, we used the parameters listed in Table 5.1. Since the vertex model
is computationally more expensive, we limited ourselves to a small sample of β values,
specifically 0.2, 0.5, and 0.8. The mechanical parameters used in the vertex model for all
simulations in this chapter are set to the default values given in Chapter 2.

For the well-mixed model, we ran 100 simulations for every unique parameter set, so
the total number of simulations is 5 × 9 × 100 = 4 500. For the vertex model, we ran
20 simulations for every unique parameter set. Hence, the total number of simulations is
5 × 3 × 20 = 300.

Initial conditions For the initial conditions, we need to assign an initial value for the
death clock, τα, a birth time, t0

α, and a G1 duration, t∗α, to every cell α. For each cell, we
initialised the death clock to zero and sampled the birth time uniformly from the interval
[−tG1−tG2, 0]. To assign a G1 duration, ideally we would simply sample the G1 duration from
the exponential distribution described by Equation (3.9), since this is how G1 durations are
sampled during the simulation. However, in conjunction with the previously assigned birth
time, this may result in a violation of the division invariant in Equation (3.34). Concretely,
this happens when the total cell cycle duration (G1 duration plus G2 duration) is less than
the age of the cell at the start of the simulation. To avoid this problem, for each cell we
iteratively sampled G1 durations from the exponential distribution until the division invariant
was respected.

The initial conditions are determined similarly for the vertex model, with the exception
of the G1 durations. Unlike the well-mixed model, the vertex model does not have a division
invariant. Instead, Chaste checks at every timestep whether the cell age is greater than its
cell cycle duration, and performs a division if so. As a result, the cell cycle duration is
allowed to be smaller than the cell age at the start of the simulation, it just means that the cell
is overdue for division and will divide as soon as the simulation starts (see top simulation in
Figure 5.2). Hence, the G1 duration is simply sampled from the exponential distribution,
without any checks comparing the cell cycle duration and the cell age. Furthermore, we use
a honeycomb pattern for the initial spatial configuration as shown in Figure 5.2. Because we
are simulating a homotypic population, all cells are of the same type and we do not need to
label them.

The biological interpretation of these initial conditions is that the cells were reproducing
without exchanging death signals prior to the simulated time period, and that we “turn on”
the exchange of death signals at the start of the simulation. The initial conditions for all
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Figure 5.2: Snapshots from simulations of the vertex model with the exponential cell cycle
model. Each row is one simulation and cells are coloured according to their state. : G1
phase. : G2 phase. : mitotic. : apoptotic. Top (η = 0.2, β = 0.5): at the start of the
simulation, cells are either in G1 phase, G2 phase, or mitotic. The mitotic state indicates a
cell that is overdue for division. The snapshot t = 1 shows that mitotic cells divide at the start
of the simulation. The cell population grew with few apoptotic cells until the maximum cell
count was reached at t = 1032. Bottom (η = 0.05, β = 0.5): the cell population declined
due to a high rate of apoptosis until the minimum cell count was reached at t = 158.

simulations in this chapter were determined in this manner. The only difference when we
use the uniform cell cycle model in later sections is that we sample initial G1 durations from
the uniform distribution described by Equation (3.11).

Termination conditions As mentioned before, the population cannot go extinct in the G2
death signal model. Therefore, in order to ensure that the simulation terminates, we set a
minimum cell count of 10. In addition, we impose a maximum cell count of 1 000 so that
the simulation also terminates in the case of population explosion. When the population
reaches the minimum or maximum cell count, the simulation immediately terminates.

For the well-mixed model we set an unbounded simulation time. Therefore, the simula-
tion can only terminate by hitting the minimum or maximum cell count. Figure 5.3 shows
the cell counts of two well-mixed model simulations that terminated by hitting the minimum
and maximum cell count, respectively. On the other hand, there is no functionality in Chaste
for an unbounded simulation time, so we set a simulation time of 100 000, which is long
relative to the total cell cycle time of tG = 100.
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Figure 5.3: Cell counts for simulations of the well-mixed model with the exponential cell
cycle model. The two sets of parameters η and β are the same as in Figure 5.2 for the
respective rows. The top and bottom figures show simulations that terminated by hitting the
maximum and minimum cell counts, respectively.
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Data processing For each simulation, we computed the survival frequency, denoted by λ̂,
using Equation (2.12). For the well-mixed model, cells can only die through apoptosis, so all
death events are apoptosis events. However, cells in the vertex model can be eliminated by a
T2 swap despite not being in an apoptotic state. If a cell is apoptotic when it is extruded, we
classify it as an apoptosis event, and if a cell is not apoptotic, we classify it as an “extrusion”
event. We count both apoptosis and extrusion events as death events.

Data visualisation The distribution of observed survival frequencies is plotted against
theoretical predictions in Figure 5.4 for the well-mixed model and Figure 5.5 for the vertex
model.

Computational materials and methods See Computational materials and methods in
Section 2.3.1 (page 36) for the vertex model and in Section 4.4 (page 77) for the well-mixed
model.

5.3.2 Results

Well-mixed model Since our predictions are based on an ergodic approximation, we do
not expect the computational results to match the predictions exactly. In particular, when
there are relatively many deaths (i.e. at low survival probabilities), the number of cells in
G1 phase will decrease, since they are susceptible to apoptosis. As a result, the proportion
of cells in G1 phase will be skewed, and the ergodic assumption violated. Therefore, we
expect that the simulations will deviate from the predictions when the survival frequency is
low. In addition, for low cell counts the death signal fluctuates very strongly, making the
ergodic approximation less tenable.

Figure 5.4 generally shows a good agreement between theory and observations, validat-
ing the ergodic approximation. The deviation from predictions is greatest when the survival
frequency is relatively small, particularly when it drops below 1/2. This is because the
increased rate of apoptosis decreases the population size, such that the ergodic assumption
no longer holds.

Vertex model Figure 5.5 generally shows a good agreement between theory and observa-
tions, validating the ergodic approximation for the vertex model. For high η values, there
are some noticeable discrepancies from predictions. In particular, the survival frequency
is lower than expected and shows a decreasing trend with respect to β for η = 1.0. We can
explain this as follows. A high survival frequency means a high proliferation rate, which
causes cell crowding and cell extrusion. Moreover, because extrusion events are counted
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Figure 5.4: Estimated homotypic survival frequency, λ̂, defined in Equation (2.12), for
well-mixed simulations with the exponential cell cycle model. The distribution of the
survival frequency is plotted using box plots with whiskers extending to the minimum and
maximum values. An orange square indicates that all observed survival frequencies are the
same. The predicted homotypic survival probability, defined in Equation (5.14), is plotted
for comparison.
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Figure 5.5: Estimated homotypic survival frequency, λ̂, defined in Equation (2.12), for
vertex simulations with the exponential cell cycle model. The distribution of the survival
frequency is plotted using box plots with whiskers extending to the minimum and maximum
values. An orange square indicates that all observed survival frequencies are the same.
The predicted homotypic survival probability, defined in Equation (5.14), is plotted for
comparison.
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Figure 5.6: Estimated homotypic survival frequency, λ̂, defined in Equation (2.12), for
vertex simulations with the exponential cell cycle model without counting extrusions as
death events. The results when counting extrusions as death events have been included for
reference but made partially transparent.
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as death events, the survival frequency is lower than what we expect from the death clock
mechanism alone. This is demonstrated in Figure 5.6, where we presented the survival
frequency calculated without extrusion events. The figure shows that the observed and
predicted survival frequencies are in better agreement when we exclude extrusion events.
Nonetheless, we will continue counting extrusion events as death events because the effect
only occurs in cell crowding conditions and hence does not affect the overall viability of the
population.

5.4 Proliferation regimes for exponential cell cycle model

In the previous chapter, we predicted different proliferation regimes based on the value of
the survival probability for the constant death signal model (Section 4.2). This suggests
that we can similarly use the homotypic survival probability to identify the proliferation
regimes for a homotypic population with a G2 death signal. In this section, we define the
proliferation regimes for the G2 death signal, characterise them for the exponential cell
cycle model in particular, and validate the predictions with computational experiments.

We define two proliferation regimes based on the homotypic survival probability and the
proliferation regimes for a constant death signal (Section 4.2):

Nonviable Regime
{
λ ≤ 1

2

}
Cells are equally or more likely to die than to proliferate, hence

the population declines. We say that cell types in this regime are nonviable.

Viable Regime
{
λ > 1

2

}
Cells are more likely to proliferate than to die, hence the population

grows. We say that cell types in this regime are viable.

We collapse Regimes 1 and 2 into the Nonviable Regime because they both predict popula-
tion decline. The Viable Regime corresponds to Regime 3, where we expect populations to
grow unboundedly.

The proliferative behaviour in the Nonviable Regime deserves closer attention. In
particular, as mentioned in Section 5.2, the ergodic approximation requires that there are
enough cells to obtain a representative sample of the death signal. However, as a population
shrinks, this stops being the case. Take the limiting case of a single cell for instance; it
has no neighbours and therefore there is no G2 death signal to induce cell death. This
also means that population extinction is impossible, in contrast to the constant death signal
model. As the population grows back from a single cell, eventually the population will
reach a size where the ergodic approximation holds again, so we expect the population to
decline afresh. Therefore, we expect oscillatory behaviour for small population sizes in
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Figure 5.7: Diagram of proliferation regimes for the exponential cell cycle model. The
homotypic viability curve is given by Equation (5.17). : Viable Regime. : Nonviable
Regime.

the Nonviable Regime. We consider these oscillations an artefact of our model, however,
and not representative of a biological process. Instead, this regime corresponds to a tissue
that cannot grow or maintain its population size, i.e. the tissue is nonviable, as the name
suggests.

We define the homotypic viability curve as the curve satisfying

λ =
1
2
. (5.16)

This is the curve that separates the Nonviable Regime from the Viable Regime. For the
exponential cell cycle model in particular, we substitute Equation (5.14) in Equation (5.16)
to obtain the following homotypic viability curve:

η = ln(2)β(1 − β) . (5.17)

Using this curve, we demarcate the proliferation regimes for the exponential cell cycle
model in Figure 5.7. We see that for η > ln(2)/4 all cell types are viable. Moreover, for
η ≤ ln(2)/4 cell types are viable for extreme values of β and nonviable otherwise.
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Table 5.2: Model and simulation parameter values used to characterise the proliferation
regimes for the exponential cell cycle model.

Parameter Well-mixed Vertex

tG 100
c 1
η 0.01, 0.02, . . . , 0.25 0.02, 0.04, . . . , 0.24
β 0.05, 0.10, . . . , 0.95 0.1, 0.2, . . . , 0.9

Initial cell count 100
Simulation end time 10 000
Minimum cell count 10
Maximum cell count 1 000
Nsim 50 20

5.4.1 Computational validation

In order to validate our predictions of the proliferation regimes for the exponential cell
cycle model, we ran a parameter sweep over a regular grid in (β, η)-space and estimated the
average survival frequency. For every unique parameter set we ran repeated Monte Carlo
simulations using a unique seed in each simulation.

Parameter choice We sampled parameters from the area displayed in Figure 5.7, i.e.
η ∈ [0, 0.25] and β ∈ [0, 1], which covers the entire homotypic viability curve. We
discretised the parameter space into a regular grid of η- and β-values. Concrete parameter
values for the well-mixed and vertex models are listed in Table 5.2. We used a coarser grid
for the vertex model than the well-mixed model because of the difference in computational
cost. In addition, we fixed tG = 100 and c = 1, and computed the death threshold using
Equation (5.15).

For the well-mixed model, we ran 50 simulations for every unique parameter set, so
the total number of simulations is 25 × 19 × 50 = 23 750. For the vertex model, we ran
20 simulations for every unique parameter set. Hence, the total number of simulations is
12 × 9 × 20 = 2 160.

Initial conditions See Initial conditions in Section 5.3.1 (page 95).

Termination conditions We set minimum and maximum cell counts of 10 and 1 000,
respectively. In addition, because the parameter sweep is relatively large, we set a simulation
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end time of 10 000 to limit the computational time that each simulation could take.

Data processing As described in Section 5.3.1 (Data processing, page 98), we computed
the survival frequency for each simulation k, denoted as λ̂k, using Equation (2.12). However,
here we are not interested in the distribution of survival frequencies for a given parameter set,
but instead we want to characterise the variation in survival frequency across (β, η)-space.
Hence, for every unique parameter set, we averaged the homotypic survival frequency as

λ =
1

Nsim

Nsim∑
k=1

λ̂k , (5.18)

where Nsim is the number of simulations for the given parameter set.

Data visualisation For λ̂k < 1/2, there were fewer division than death events in the simu-
lation, which means that the population declined. Conversely, if λ̂k > 1/2, the population
grew. Nonviable populations are more likely to have a survival frequency below 1/2, and
vice versa for viable populations. Figure 5.7 predicts that cell types below the homotypic
viability curve are nonviable and cell types above the homotypic viability curve are viable.

In order to verify these predictions, we visualised λ using heat maps with β along the
horizontal axis and η along the vertical axis. Since the critical value 1/2 separates nonviable
from viable populations, we chose a diverging colour map2 with range [0, 1] and central
value 1/2. In particular, we use the seismic colour map from Matplotlib [162], such that blue
regions correspond to λ < 1/2, red regions correspond to λ > 1/2, and the border is white.
In addition, we plot the theoretical homotypic viability curve to compare our results to our
predictions. The results are shown in Figure 5.8 for the well-mixed and vertex models.

Computational materials and methods See Computational materials and methods in
Section 2.3.1 (page 36) for the vertex model and in Section 4.4 (page 77) for the well-mixed
model.

5.4.2 Results

Well-mixed model Figure 5.8 shows that the observed border between nonviable and
viable regimes follows predictions very well. For small η values, the results are asymmetrical
with respect to β, with lower survival frequencies for β > 1/2 than β < 1/2. The bottom plot

2A diverging colour map accentuates the central value by a peak in lightness and a colour transition [204].
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Figure 5.8: Estimated survival frequency, λ, defined in Equation (5.18), for the well-mixed
(left) and vertex (right) models with the exponential cell cycle model. All curves are the
same as in Figure 5.7. The markers and in the left-hand plot correspond to the top and
bottom simulations, respectively, in Figures 5.2 and 5.3.

in Figure 5.4 shows that this region corresponds to a deviation from the predicted homotypic
survival probability more generally.

The reason for this discrepancy is that for very low η the rate of apoptosis becomes
sufficiently high so that the limiting factor is no longer the survival probability, but rather
the number of cells that are susceptible to apoptosis. For high β cell populations, there is
a large fraction of cells in G1 phase at any one time, that are, in addition, vulnerable to
apoptosis for a longer time. Contrast this with low β cell populations, where cells spend
less time in G1 phase and thus have a higher chance of evading apoptosis, which results in a
comparatively higher survival frequency.

Vertex model Even though the border is less finely resolved than in the well-mixed case,
Figure 5.8 similarly shows a good agreement between theory and simulations. Moreover,
we observe the same asymmetry for small η as we did in the well-mixed case. Compared to
the well-mixed results, the observed survival frequencies appear less extreme, although this
could also be because we sampled a smaller range of parameters for the vertex model.
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5.5 Homotypic survival probability for uniform cell cycle
model

In this section, we derive an expression for the homotypic survival probability with the
uniform cell cycle model under the ergodic approximation, and validate the predictions
with simulations. First, we rewrite the cumulative distribution function for the uniform
distribution, Equation (3.13), using Equation (5.3) to give

Ψ(t) =


0 for t < βtG −

1
2r

t−(βtG− 1
2 r)

r for t ∈
[
βtG −

1
2r, βtG + 1

2r
]

1 for t > βtG + 1
2r

. (5.19)

We substitute the death time, defined in Equation (5.9), into Equation (5.19) to derive the
homotypic survival probability

λ(β) =


0 for T†

c(1−β) < βtG −
1
2r

T†
c(1−β)−(βtG− 1

2 r)
r for T†

c(1−β) ∈
[
βtG −

1
2r, βtG + 1

2r
]

1 for T†
c(1−β) > βtG + 1

2r

. (5.20)

In contrast to the exponential cell cycle model, not all values of β in the interval [0, 1] are
valid. In particular, we need to satisfy the requirement that the lower bound of the uniform
interval is non-negative. We substitute Equation (5.3) into Equation (3.12) to give

0 < r ≤ 2βtG . (5.21)

Rearranging Equation (5.21) yields

0 <
1
2

r
tG
≤ β . (5.22)

Equation (5.22) suggests that we can simplify notation by defining the non-negative, dimen-
sionless parameter

ρ ≡
1
2

r
tG
, (5.23)
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which can be interpreted as a normalised range parameter. This enables us to rewrite
Equation (5.22) as

0 < ρ ≤ β. (5.24)

In addition, we can also rewrite Equation (5.20) using the dimensionless parameter ρ. We
show this by first dividing the lower bound condition of Equation (5.20) by tG,

T†
ctG(1 − β)

< β −
1
2

r
tG
, (5.25)

and substituting Equations (5.13) and (5.23) to give

η

1 − β
< β − ρ . (5.26)

Rearranging Equation (5.26), we have

η < (1 − β)(β − ρ) . (5.27)

We repeat this process on the upper bound and rewrite Equation (5.20) as

λ(β, η, ρ) =


0 for η < (1 − β)(β − ρ)

1
2 + 1

2ρ

(
η

1−β − β
)

for η ∈
[
(1 − β)(β − ρ), (1 − β)(β + ρ)

]
1 for η > (1 − β)(β + ρ)

. (5.28)

We have thus derived an expression for the homotypic survival probability in terms of three
dimensionless parameters, ρ, η, and β. We are particularly interested in the shape of the
homotypic survival probability with respect to β when ρ and η are fixed, and will use the
notation λ(β) whenever we want to emphasise this. The function λ(β) must span at least one
and at most all of the three cases in Equation (5.28) (these are λ = 0, 0 < λ < 1, and λ = 1),
depending on the values of ρ and η. The qualitative shape of λ(β) depends on which cases
are traversed by varying β, hence we use these cases to classify distinct parameter regions3.

5.5.1 Case {λ = 0}

First, we characterise the conditions for which the survival probability is zero. We define
the lower function l(β) as

l(β) = (1 − β)(β − ρ) , (5.29)
3We use “parameter regions” instead of “parameter regimes” to avoid confusion with proliferation regimes.
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Figure 5.9: Plots of l(β) and u(β) defined by Equations (5.29) and (5.34), respectively.
The horizontal lines correspond to particular values of η, which are classified in different
regions depending on how they intersect l(β) and u(β). A: intersects neither l(β) nor u(β).
B: intersects u(β) twice and does not intersect l(β). C: intersects u(β) once and does not
intersect l(β). D: intersects u(β) twice and intersects l(β) twice. E: intersects u(β) once and
intersects l(β) twice. Left: the peak of l(β) is above the intersection of u(β) with the y-axis,
hence there is no horizontal line that can intersect u(β) once without intersecting l(β), i.e.
parameter region C is excluded. Right: the peak of l(β) is below the intersection of u(β)
with the y-axis, hence there is no horizontal line that can intersect u(β) twice while also
intersecting l(β), i.e. parameter region D is excluded.

so that we can write the lower bound condition in Equation (5.28) as

η < l(β) . (5.30)

The lower function is a concave quadratic function with roots at β = ρ and β = 1, and has
a maximum value of (1 − ρ)2/4. We can visually interpret Equation (5.30) by plotting l(β)
and drawing a horizontal line corresponding to the value of η, as demonstrated in Figure 5.9.
Where the line is below the quadratic function, the condition in Equation (5.30) is satisfied
and thus λ = 0.

The qualitative shape of λ(β) depends on whether η intersects l(β) or not. If η does not
intersect l(β), i.e. η is greater than the maximum value of l(β), then λ > 0 for all β. However,
if η intersects l(β), i.e. η is less than or equal to the maximum value of l(β), then λ = 0 for
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some β. Formally,

η >
(1 − ρ)2

4
⇒ λ(β, η, ρ) > 0 for all β , (5.31a)

η ≤
(1 − ρ)2

4
⇒

 λ(β, η, ρ) = 0 for β ∈ [βl
−, β

l
+]

λ(β, η, ρ) > 0 for β < [βl
−, β

l
+]

, (5.31b)

where βl
± are the values of β where η intersects l(β), i.e. the solutions to

η = l(β) , (5.32)

which are

βl
± =

1 + ρ

2
±

√
(1 − ρ)2

4
− η . (5.33)

Since l(β) is a quadratic function with roots at β = ρ and β = 1, and ρ and η are both
non-negative parameters, the solutions βl

± must lie in the interval [ρ, 1].

5.5.2 Case {λ = 1}

Next, we characterise the conditions for which the survival probability is equal to one. We
define the upper function u(β) as

u(β) = (1 − β)(β + ρ) , (5.34)

so that we can write the upper bound condition of Equation (5.28) as

η > u(β) . (5.35)

The upper function is, similar to l(β), a concave quadratic function. However, its roots
are at β = −ρ and β = 1, and its maximum value is (1 + ρ)2/4. The visual interpretation
of Equation (5.35) is similar as well; we plot u(β) and a horizontal line representing η in
Figure 5.9, and note that where the line is above the quadratic function, the condition in
Equation (5.35) is satisfied and thus λ = 1.

The qualitative shape of λ(β) depends on whether η intersects u(β) or not. If η does
not intersect u(β), i.e. η is greater than the maximum value of u(β), then λ = 1 for all β.
However, if η intersects u(β), i.e. η is less than or equal to the maximum value of u(β), then
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λ < 1 for some β. Formally,

η ≥
(1 + ρ)2

4
⇒ λ(β, η, ρ) = 1 for all β , (5.36a)

η <
(1 + ρ)2

4
⇒

 λ(β, η, ρ) < 1 for β ∈ [max(βu
−, 0), βu

+]

λ(β, η, ρ) = 1 for β < [max(βu
−, 0), βu

+]
, (5.36b)

where βu
± are the values of β where η intersects u(β), i.e. the solutions to

η = u(β) , (5.37)

which are

βu
± =

1 − ρ
2
±

√
(1 + ρ)2

4
− η . (5.38)

Since u(β) is a quadratic function with roots at β = −ρ and β = 1, and ρ and η are both
non-negative parameters, the solutions βu

± must lie in the interval [−ρ, 1].
The reason for using max(βu

−, 0) in Equation (5.36b) is that the solution βu
− can be

negative. When this is the case, the condition in Equation (5.35) is not satisfied for β = 0.
The condition that βu

− is negative, i.e.

βu
− =

1 − ρ
2
−

√
(1 + ρ)2

4
− η < 0 , (5.39)

can be rewritten by rearranging and raising to the power of two to give

(1 − ρ)2

4
<

(1 + ρ)2

4
− η , (5.40)

which amounts to
η < ρ . (5.41)

Visually, this translates to the horizontal line corresponding to η being below the intersection
of u(β) with the y-axis, since u(0) = ρ, as seen in Figure 5.9.

Thus, in addition to the relative position of η with respect to the peak of u(β), the shape
of λ(β) also depends on whether η is above the intersection of u(β) with the y-axis or not. If
η is below the intersection of u(β) with the y-axis, i.e. η is less than ρ, then λ < 1 for β = 0.
However, if η is above the intersection of u(β) with the y-axis, i.e. η is greater than or equal
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to ρ, then λ = 1 for β = 0. Formally,

η ≥ ρ⇒ λ(0, η, ρ) = 1 , (5.42a)

η < ρ⇒ λ(0, η, ρ) < 1 . (5.42b)

5.5.3 Parameter regions

Taken together, Equations (5.31), (5.36), and (5.42) form three conditions on the values of η
and ρ that determine the shape of λ(β). In total, we can distinguish five different parameter
regions. We classify them as A through E, roughly starting from the highest η value to the
lowest value. For a given ρ value, the parameter regions C and D are mutually exclusive.
This is because the peak of l(β) can either be below or above the intersection of u(β) with
the y-axis, depending on the value of ρ. The left-hand plot in Figure 5.9 shows the case with
the peak above the intersection, while the right-hand plot shows the opposite case.

Region A This region is defined through the constraint

η ≥
(1 + ρ)2

4
, (5.43)

is satisfied, such that Equation (5.36a) is true. Equation (5.43) also implies that the condi-
tions in Equations (5.31a) and (5.42a) are satisfied. In this parameter region, the value of
η is sufficiently large that the survival probability is equal to one for all β. Hence, when
plotted, λ(β) is a straight line.

Region B This region is defined through the constraint

(1 − ρ)2

4
< η <

(1 + ρ)2

4
and η ≥ ρ , (5.44)

are satisfied, such that the conditions in Equations (5.36b), (5.31a), and (5.42a) apply. In
this region, η intersects u(β), but not l(β), and is greater than or equal to ρ. Therefore, λ is
less than one for β ∈ [βu

−, β
u
+], equal to one outside of this interval, and never reaches zero.

Region C This region is defined through the constraint

(1 − ρ)2

4
< η <

(1 + ρ)2

4
and η < ρ , (5.45)
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are satisfied, such that the conditions in Equations (5.36b), (5.31a), and (5.42b) apply. In
this region, η intersects u(β), but not l(β), and is less than ρ. Therefore, λ is less than one for
β ∈ [0, βu

+], equal to one outside of this interval, and never reaches zero.

Region D This region is defined through the constraint

η ≤
(1 − ρ)2

4
and η ≥ ρ , (5.46)

are satisfied, such that the conditions in Equations (5.31b), and (5.42a) apply. Equa-
tion (5.46) also implies that the condition in Equation (5.36b) applies. In this region,
η intersects both u(β) and u(β), and is greater than ρ. Therefore, λ is less than one for
β ∈ [βu

−, β
u
+], equal to one outside of this interval, and equal to zero for β ∈ [βl

−, β
l
+].

Region E This region is defined through the constraint

η ≤
(1 − ρ)2

4
and η < ρ , (5.47)

are satisfied, such that the conditions in Equations (5.36b), and (5.42b) apply. Equa-
tion (5.46) also implies that the condition in (5.31b) applies. In this region, η intersects both
u(β) and l(β), and is less than ρ. Therefore, λ is less than one for β ∈ [0, βu

+], equal to one
outside of this interval, and equal to zero for β ∈ [βl

−, β
l
+].

The parameter regions in (ρ, η)-space are visualised in Figure 5.10. In addition, a
representative plot of λ(β) for each parameter region is plotted in Figure 5.11.

5.5.4 Minima

In addition to the shape of λ(β), we are also interested in the minimum homotypic survival
probability. As we have established, in parameter regions D and E, the survival probability
is equal to zero in the interval [βl

−, β
l
+], hence the survival probability is minimised in this

interval. On the other hand, in parameter region A the survival probability is always equal to
one, so the survival probability is “minimised” in the interval [0, 1].

In the remaining parameter regions, B and C, the minimum survival probability is
between zero and one. We find the minimiser, denoted by β∗, by first taking the derivative of
the survival probability in Equation (5.28) with respect to β:

∂λ

∂β
=

1
2ρ

(
η

(1 − β)2 − 1
)
. (5.48)
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Figure 5.10: Diagram of the parameter regions that determine the shape of λ(β) in (ρ, η)-
space. The curve (1 − ρ)2 is only relevant to parameter regions B and C (see Section 5.5.4),
hence it is dashed within parameter region A. In each parameter region, representative
parameter sets are marked with crosses. These crosses correspond to the values in Figure 5.11
and Table 5.4. The lines ρ = 0.1 and ρ = 0.25 are plotted, corresponding to the values in
Figure 5.9 and to Cross sections I and II, as defined in Section 5.6.

We then find the values of β such that Equation (5.48) is zero, which yields two solutions

β∗± = 1 ±
√
η . (5.49)

We can eliminate 1 +
√
η because β is a proportion and cannot be larger than one. The

unique minimiser is therefore
β∗ = 1 −

√
η . (5.50)

However, it is not guaranteed that β∗ satisfies the condition in Equation (5.24). If we impose
this condition, i.e.

ρ ≤ β∗ = 1 −
√
η , (5.51)

we have the following condition on η:

η ≤ (1 − ρ)2 . (5.52)

If this condition is satisfied, then the minimiser is β∗. If it is not satisfied, however, then β∗

is not a valid value for β. In that case, the survival probability is instead minimised by the
smallest valid value for β, which is ρ. Based on this distinction, we subdivide parameter
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Figure 5.11: Homotypic survival probability with the uniform cell cycle model under the
ergodic approximation as predicted by Equation (5.28). The black dashed lines indicate the
minimum survival probability for Regions B and C. The green shaded area shows the range
of valid β values.
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region B into B′ and B′′, corresponding to β∗ being a valid and invalid parameter, respectively.
We split parameter region C into C′ and C′′ using the same criteria.

5.5.5 Computational validation

We check whether the homotypic survival probability predicted in Equation (5.28) is sup-
ported by simulations of the G2 death signal model. Concretely, we used a Monte Carlo
method where we ran repeated simulations for various values of ρ, η, and β, and sampled the
resulting survival frequencies. The survival frequency was computed using Equation (2.12).
We supplied a different random seed to each simulation, and set the minimum cell count to
10.

Similarly to the exponential cell cycle model, we expect that the ergodic assumption is
violated at low survival probabilities and low cell counts. A major difference, however, from
the exponential cell cycle model, is that we can independently control the variance of the
uniform cell cycle model. For small ρ, which can be seen as a normalised range parameter,
G1 durations are sampled from a narrow distribution, potentially resulting in synchronised
cell cycles and low ergodicity. In the limit of ρ = 0, the cell cycle is entirely deterministic,
in which case we do not expect ergodicity.

Parameter choice We used the well-mixed model with the parameters listed in Tables
5.3 and 5.4 to validate the predicted homotypic survival probabilities in Equation (5.28).
We chose eight pairs of values for ρ and η, as listed in Table 5.4, each corresponding to a
different parameter region. In each parameter region, we sampled ten values for β ranging
from ρ to 1 − (1 − ρ)/10 in increments of (1 − ρ)/10. We also added the minimiser β∗ to the
parameter values in parameter regions C′ and B′. The death threshold was determined as a
function of the other parameters according to Equation (5.15).

For the vertex model, we used the parameters listed in Tables 5.3 and 5.4. Because the
vertex model uses significantly more computational resources to run, we only ran simulations
for selected β values, as listed in Table 5.4. The mechanical parameters of the vertex model
are set to their default values as defined in Chapter 2.

For the well-mixed model, we ran 100 simulations for every unique parameter set, so
the total number of simulations is (8 × 10 + 2) × 100 = 8 200. For the vertex model, we ran
20 simulations for every unique parameter set. Hence, the total number of simulations is
20 × 20 = 400.

Initial conditions See Initial conditions in Section 5.3.1 (page 95).
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Table 5.3: Model and simulation parameter values used to estimate the homotypic survival
probability for the uniform cell cycle model. The values of ρ and η for the well-mixed and
vertex models, and of β for the vertex model are listed separately in Table 5.4.

Parameter Well-mixed Vertex

tG 100
c 1

Initial cell count 100
Simulation end time ∞ 100 000
Minimum cell count 10
Maximum cell count 1 000
Nsim 100 20

Table 5.4: Parameter values of ρ and η used to estimate the homotypic survival probability
for the uniform cell cycle model. In addition, the last column contains the values of β used
for the vertex model.

Region ρ η Vertex β-values

A 0.4 0.6 0.5
B′ 0.2 0.3 0.2, 1 −

√
0.3, 0.8

B′′ 0.4 0.45 0.4, 0.8
C′ 0.4 0.2 0.4, 1 −

√
0.2, 0.9

C′′ 0.6 0.3 0.6, 0.9
D 0.1 0.16 0.1, 0.5, 0.9
E 0.25 0.12, 0.08 0.25, 0.5, 0.95
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Termination conditions See Termination conditions in Section 5.3.1 (page 96).

Data processing See Data processing in Section 5.3.1 (page 98)

Data visualisation The distribution of observed survival frequencies is plotted against
theoretical predictions in Figure 5.12 for the well-mixed model and in Figure 5.14 for the
vertex model.

Computational materials and methods See Computational materials and methods in
Section 2.3.1 (page 36) for the vertex model and in Section 4.4 (page 77) for the well-mixed
model.

5.5.6 Results

Well-mixed model Figure 5.12 shows a good qualitative agreement between theory and
experiment for the parameter regions A, B, and C. However, in parameter regions D and
E the survival frequency is significantly higher than expected. For parameter region E,
the observed survival frequency hovers at around 1/2, in contrast to the predicted survival
probability of zero. Moreover, in parameter region D the survival frequency is significantly
higher than 1/2. Particularly surprising is the fact that all of the simulations in parameter
region D hit the maximum cell count, contrary to what we would expect from the predicted
survival probability.

In order to investigate this further, we plotted the cell counts of selected simulations
in the D and E parameter regions in Figure 5.13. We can see that both simulations settle
into an oscillatory pattern where the population alternates between G1 and G2 phases, thus
violating the ergodic assumption. In the E simulation, the number of apoptosis and division
events are roughly in balance, allowing the oscillation to persist over many cycles. The end
time for the simulation was 7 000, meaning that the population went through approximately
70 cell cycles before finally going extinct. On the other hand, in the D simulation there
are proportionally far fewer deaths occurring per cycle. As a result, the population grows
significantly at every cycle and ultimately reaches the maximum cell count.

Vertex model Similar to the well-mixed model, Figure 5.14 shows qualitative agreement
between the observations and predictions for parameter regions A, B, and C, but large
discrepancies for parameter regions D and E. Snapshots from the vertex simulations in
Figure 5.15 demonstrate that the cell population also settles into oscillatory patterns for
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Figure 5.12: Estimated homotypic survival frequency, λ̂, defined in Equation (2.12), for
well-mixed simulations with the uniform cell cycle model. The distribution of the survival
frequency is plotted using box plots with whiskers extending to the minimum and maximum
values. An orange square indicates that all observed survival frequencies are the same. The
green shaded area shows the range of valid β values. The predicted homotypic survival
probability, defined in Equation (5.28), is plotted for comparison.
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Figure 5.13: Cell counts for simulations of the well-mixed model with the uniform cell cycle
model in parameter regions D and E. The top figure shows a simulation in parameter region
D that terminated by hitting the maximum cell count. The middle and bottom figures show
simulations in parameter region E that terminated by hitting the minimum cell count. The
top, middle, and bottom simulations terminated at t = 527.99, t = 11 502.72, and t = 362.16,
respectively. In order to compare the cell counts across simulations, the range from t = 0 to
t = 1000 is plotted.
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Figure 5.14: Estimated homotypic survival frequency, λ̂, defined in Equation (2.12), for
vertex simulations with the uniform cell cycle model. The distribution of the survival
frequency is plotted using box plots with whiskers extending to the minimum and maximum
values. An orange square indicates that all observed survival frequencies are the same. The
green shaded area shows the range of valid β values. The predicted homotypic survival
probability, defined in Equation (5.28), is plotted for comparison.
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Figure 5.15: Snapshots from simulations of the vertex model with the uniform cell cycle
model. Each row is one simulation and cells are coloured according to their state. : G1
phase. : G2 phase. : apoptotic. The sets of parameters ρ, η, and β are the same as
in Figure 5.13 for the respective rows. Top (region D : ρ = 0.1, η = 0.16, β = 0.5): the
cell population grew with few apoptotic cells until the maximum cell count was reached at
t = 540. Snapshots taken at 50 time units apart (half the average cell cycle length) show
local synchronisation of cell cycle phases. Middle (region E : ρ = 0.25, η = 0.12, β = 0.5):
the cell population slowly declined until the minimum cell count was reached at t = 1958.
Snapshots at t = 900 and t = 950 show strong synchronisation across the whole population.
Bottom (region E : ρ = 0.25, η = 0.08, β = 0.5): the cell population rapidly declined until
the minimum cell count was reached at t = 251.
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this model. In contrast to the well-mixed model, however, the synchronisation of cell cycle
phases occurs in local regions instead of across the whole population.

5.6 Proliferation regimes for uniform cell cycle model

For the uniform cell cycle model, the ergodic approximation is violated in some parameter
regions where the population goes through oscillations. There are also oscillations for
the exponential cell cycle model, but those occur because the population becomes too
small for the ergodic approximation to hold. Hence, we classified it as “nonviable”4. The
oscillations in the uniform cell cycle model, on the other hand, can go through cyclic growth
(as evidenced by Figures 5.13 and 5.15), which makes them qualitatively different. However,
so far there is no indication in the literature that oscillations and cell cycle synchrony are
biologically relevant to cell competition, so we do not attempt to classify different types of
oscillations, and instead class all oscillations as nonviable.

To get the homotypic viability curve for the uniform cell cycle model, we substitute
Equation (5.28) into Equation (5.16) to give

η = β(1 − β) . (5.53)

This expression is similar to Equation (5.17), except for a coefficient of ln(2). We note,
however, that the homotypic survival probability is a function of three parameters: ρ, η, and
β. Therefore, the homotypic viability curve is more precisely a surface in this case. We only
consider cross sections of this parameter space for fixed ρ values, so we will continue to use
the word “curve”.

The fact that ρ does not appear in Equation (5.53) may give the impression that ρ does
not affect cell proliferation. However, we know from the previous section that it strongly
modulates the survival probability on either side of the homotypic viability curve, and also
the proliferative behaviour observed. Hence, to examine the effect of varying ρ, we plot two
representative cross sections at ρ = 0.1 and ρ = 0.25. The reason for choosing these values
is that they intersect different parameter regions: as Figure 5.10 shows, ρ = 0.1 intersects
parameter region D but not C, and vice versa for ρ = 0.25. These ρ values also correspond
to the values used to plot the lower and upper functions in Figure 5.9.

In addition to viability, we also distinguish the cases where the ergodic approximation
predicts λ = 0 and λ = 1. We know from Section 5.5 that these regimes are delineated by the
lower and upper functions, respectively. Even though the homotypic viability curve does not

4See Section 5.4 for classification.
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Figure 5.16: Diagrams of proliferation regimes for uniform cell cycle model for Cross
Sections I and II. : Viable Regime and λ < 1. : Viable Regime and λ = 1. : Nonviable
Regime and λ > 0. : Nonviable Regime and λ = 0.

depend on ρ, the lower and upper functions are dependent on ρ. As Figure 5.16 shows, the
gap between the lower and upper functions increases with ρ, while the homotypic viability
curve is stationary in the widening gap.

5.6.1 Computational validation

We validated the predicted proliferation regimes for the uniform cell cycle model by running
a parameter sweep over a regular grid in (β, η) for different values of ρ and estimating the
average survival frequency. For every unique parameter set we ran repeated Monte Carlo
simulations using a unique seed in each simulation.

Parameter choice We sampled parameters from the same cross sections displayed in
Figure 5.16, i.e. η ∈ [0, 0.5] and β ∈ [0, 1] for ρ = 0.1 and ρ = 0.25. We discretised the
parameter space into a regular grid of η- and β-values. Concrete parameter values for the
well-mixed and vertex models are listed in Table 5.5. Because β must be greater than or
equal to ρ, we omit the β values in Cross Section II for which this is not the case. We used
a coarser grid for the vertex model than the well-mixed model because of the difference
in computational cost. In addition, we fixed tG = 100 and c = 1, and computed the death
threshold using Equation (5.15).
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Table 5.5: Model and simulation parameter values used to estimate the proliferation regimes
for the uniform cell cycle model.

Parameter Well-mixed Vertex

tG 100
c 1
ρ 0.1, 0.25
η 0.02, 0.04, . . . , 0.50 0.04, 0.08, . . . , 0.48
β 0.05, 0.10, . . . , 0.95 0.1, 0.2, . . . , 0.9

Initial cell count 100
Simulation end time 10 000
Minimum cell count 10
Maximum cell count 1 000
Nsim 50 20

For the well-mixed model, we ran 50 simulations for every unique parameter set, so the
total number of simulations is (25 × 18 + 25 × 15) × 50 = 41 250. For the vertex model, we
ran 20 simulations for every unique parameter set. Hence, the total number of simulations is
(12 × 9 + 12 × 7) × 20 = 3 840.

Initial conditions See Initial conditions in Section 5.3.1 (page 95).

Termination conditions We set minimum and maximum cell counts of 10 and 1 000,
respectively. In addition, because the parameter sweep is relatively large, we set a simulation
end time of 10 000 to limit the computational time that each simulation can take.

Data processing See Data processing in Section 5.4.1 (page 105).

Data visualisation We used heat maps with the seismic colour map, range [0, 1], and
central value 1/2, similarly to Section 5.4.1 (Data visualisation, page 105), to plot the
estimated survival frequency for the well-mixed and vertex models in both cross sections. In
addition, we drew the homotypic viability curve, as well as the upper and lower functions,
on the heat map. The results are given in Figure 5.17.

Computational materials and methods See Computational materials and methods in
Section 2.3.1 (page 36) for the vertex model and in Section 4.4 (page 77) for the well-mixed
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Figure 5.17: Estimated survival frequency, λ, defined in Equation (5.18), for the well-mixed
(left column) and vertex (right column) models with the uniform cell cycle model. All
curves are the same as in Figure 5.16. The markers , , and in the left-hand plots
correspond to the top, middle, and bottom simulations, respectively, in Figures 5.13 and
5.15.
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model.

5.6.2 Results

Well-mixed model Figure 5.17 shows large discrepancies with our predictions. In partic-
ular, the red region, indicating population growth, penetrates into the predicted Nonviable
Regime. This effect is more pronounced for ρ = 0.1 than ρ = 0.25. Even worse, the red
region extends into the region where the ergodic approximation predicts λ = 0. In fact, the
estimated survival frequency is larger than zero across all parameter sets. In contrast, the
region where λ is predicted to be equal to one does produce survival frequencies close to
one.

As previously observed in Section 5.5, we find large discrepancies between simulations
and predictions because the uniform cell cycle model results in non-ergodicity. To illustrate
this point, we have marked the parameters corresponding to the simulations in Figures 5.13
and 5.15 on the heat map. We see that oscillations and temporal segregation of cell cycles can
“rescue” a cell type from extinction by minimising overlap between death signal-producing
cells and death signal-sensitive cells. Even in the case of oscillations, however, increasingly
lower η values will result in extinction, as evidenced by the simulations in the bottom rows
of Figures 5.13 and 5.15. This explains why we can still observe a blue region for very small
η in Figure 5.5.

Vertex model Figure 5.17 shows that the vertex model produces similar results as the
well-mixed model. Therefore, even though the ergodic approximation does not hold for
the uniform cell cycle model, it appears that local interactions can still result in cell cycle
synchronisation and oscillations. One difference with the well-mixed results is that the
survival frequency for high η is slightly lower than one. When we exclude extrusion events
from the calculation of survival frequency (results not shown for brevity), this difference
disappears.

5.7 Discussion

In this chapter, we defined the G2 death signal model and studied its properties in homotypic
populations. The G2 death signal is a short-range intercellular interaction where cells in G2
phase emit death signals to their direct neighbours. In order to investigate the viability of
homotypic populations, we built a theoretical framework based on the notion of ergodicity.
This is the system-level property that the spatial distribution of cell cycle phases reflects
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the temporal distribution of cell cycle phases. Using this approximation, we derived the
homotypic survival probability and charted proliferation regimes in parameter space for the
exponential and uniform cell cycle models. We validated the predictions using simulations
with great success for the former and mixed results for the latter.

Survival is governed by two key parameters We found that the homotypic survival
probability, λ, is determined by two key dimensionless parameters: β and η. The former is
the proportion of the cell cycle spent in the G1 phase on average, i.e. tG1/tG, and the latter is
the death threshold T† divided by the death signal constant c and the total cell cycle time
tG. In addition, the homotypic survival probability for the uniform cell cycle model is also
influenced by ρ, which is half the uniform interval width divided by tG.

The parameter η controls overall sensitivity to death signals. Increasing η results in a
higher survival probability for any value of β. Therefore, cell types with sufficiently high
η can escape death signal-induced apoptosis. This is also illustrated by the fact that as
we “turn off” the death signal by taking c → 0, we have η → ∞. Biologically, this limit
corresponds to inhibiting apoptosis, which can be achieved experimentally in Drosophila

[205]. Indeed, it has been demonstrated experimentally that inhibiting apoptosis prevents
cell competition [42, 53].

On the other hand, we found that the homotypic survival probability is U-shaped with
respect to β. This represents the balance of opposing forces inherent in the G2 death signal
model: cells are vulnerable to death signals in G1 phase, but impervious to apoptosis in
G2 phase, and cells only emit death signals in G2 phase, but are silent in G1 phase. Thus,
increasing β increases the cell’s sensitivity to death signals on the one hand, and lowers the
cell’s emission of death signals on the other hand. A low β value corresponds to a short
window of vulnerability with a high death signal, and vice versa for a high β value. Extreme
values of β allow for an escape from the effects of the G2 death signal, and intermediate
values produce the highest rates of cell death.

Cell cycle model determines ergodicity We validated the predictions made using the
ergodic approximation with well-mixed and vertex simulations for the exponential and
uniform cell cycle models. For the exponential cell cycle model, the computational results
were in excellent agreement with the theoretical results for both the homotypic survival
probability and the proliferation regimes. Hence, we conclude that the G2 death signal
model is ergodic when using the exponential cell cycle model for both the well-mixed and
vertex models.

For the uniform cell cycle model, we observed large differences between the observed
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and predicted survival frequencies. For low η, the ergodic approximation predicted a zero
survival probability. However, in practice we observed a range of survival frequencies. For
some parameter sets the survival frequency went above 1/2, indicating a growing population.
Similarly, when estimating proliferation regimes, we observed many parameter sets resulting
in growing populations, despite being below the homotypic viability curve.

This indicates that the ergodic assumption is not satisfied for the uniform cell cycle
model. Indeed, visual inspection of specific simulations revealed that cells settle into an
oscillatory pattern, alternating between G1 and G2 phases. It appears that, instead of causing
extinction, the low predicted survival probability results in the elimination of cells that are
unsynchronised, leading to the temporal segregation of cell cycle phases at the population
level. This breaks the ergodic assumption and lets synchronised cells escape death signal-
induced apoptosis. The reason for this is presumably because the uniform cell cycle model
samples G1 durations from a narrower range than the exponential cell cycle model, and is
therefore more likely to produce cell cycle synchronisation.

We expected to see some discrepancies because populations cannot go extinct in the G2
death signal model. A survival probability of zero is technically impossible for that reason.
However, oscillations are sustained for a large range of parameters, including regions where
the survival probability is predicted to be under a half but above zero. These observations
show that the G2 death signal model with the uniform cell cycle model is not ergodic, and a
different approach should be taken to understand its dynamics. In conclusion, the results
demonstrate that the behaviour of the G2 death signal model is sensitive to the choice of cell
cycle model.
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Chapter 6

The G2 death signal model for
heterotypic populations

In this chapter, we apply the G2 death signal model to heterotypic populations. We focus
on two cell types to keep the analysis simple, but the model can in principle be extended
to more cell types. In addition, we only use the exponential cell cycle model because it
conforms better to the ergodic framework that we developed in the previous chapter and that
we extend in this chapter.

Importantly, the competing cell types communicate through a common mechanism and
share the same cell cycle model. We impose the constraint that the cell types can vary only
in their parameters (Section 6.1). Winners and losers are thus not predetermined. Instead,
the aim in this chapter is to explore whether winners and losers can emerge as a result of
differences in parameters, and if so, whether their behaviour reproduces the properties of
cell competition.

First, we adapt the ergodic approximation to heterotypic populations (Section 6.2) to
find an expression for the heterotypic survival probability (Section 6.3). Unlike the previous
chapter, we cannot derive a constant survival probability. However, we can predict the sign
of the heterotypic survival difference (Section 6.4) and the homotypic survival difference
(Section 6.5). The former is the difference in survival probability between competing cell
types in a heterotypic population, and the latter is the difference in survival probability of a
cell type in a heterotypic population compared to homotypic conditions. Based on these
metrics, we enumerate and classify different types of competitive interactions in Section 6.6.

A defining characteristic of cell competition is that the loser cell type is completely
eliminated. It is not enough to qualify as cell competition that one cell type is more
abundant than the other. Hence, we also characterise the proliferation regimes for heterotypic
populations (Section 6.7).
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In Section 6.8, we synthesise everything we have learned from the behaviour of the G2
death signal model to identify biologically relevant competition regimes. We find that not
only can our model reproduce the defining features of cell competition without asserting
a priori winner/loser status, but also it reveals adjacent competition regimes and their
relationship to cell competition. Finally, in Section 6.9, we discuss and interpret the results.

6.1 Heterotypic populations

We consider two distinct cell types, which we name cell types A and B. Each cell type has
its own cell cycle model, ΨA(t) and ΨB(t), death signal function, fA(t) and fB(t), and death
threshold, T†,A and T†,B. In general, the cell cycle model and death signal function can be
qualitatively different. For instance, cell type A could have a uniform cell cycle model and
experience a G2 death signal while cell type B has an exponential cell cycle model and
experiences a constant death signal. One can also imagine a model where winner and loser
identities are determined a priori with winners broadcasting death signals to losers, but not
the other way around.

However, our aim is to produce winners and losers as an emergent phenomenon. There-
fore, we will assume that the cell cycle model and death signal function are the same for
both cell types, except in their parameters. In particular, we only consider cell cycle models
for which1

ΨA(t) = Ψ(t ; tG1,A, tG2,A) , (6.1)

ΨB(t) = Ψ(t ; tG1,B, tG2,B) , (6.2)

where Ψ(·) is the shared cell cycle model. In addition, we demonstrated in Chapter 5 that the
proportion of the cell cycle spent in G1 phase, β, is an important nondimensional parameter
in determining the survival probability. This suggests defining βA, tG,A, βB, and tG,B such that
the following conditions are satisfied:

tG1,A = βAtG,A , (6.3)

tG2,A = (1 − βA)tG,A , (6.4)

tG1,B = βBtG,B , (6.5)

tG2,B = (1 − βB)tG,B . (6.6)

These equations are analogous to Equations (5.3) and (5.4). We assume that the G1 and G2

1In the case of the uniform cell cycle model, we also need to specify rA and rB.
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cell cycle durations are nonzero, such that the parameters βA and βB lie on the interval (0, 1).
Moreover, we define the G2 death signal functions as

fA(t) = cAg(t) , (6.7)

fB(t) = cBg(t) , (6.8)

with g(t) as defined in Equation (5.2). This means that both cell types receive the same G2
death signal, but process it differently based on their type-specific parameters.

6.2 Ergodic approximation

We generalise the ergodic approximation, first discussed in Section 5.2, to obtain an expres-
sion for the heterotypic survival probability of cell types A and B. First, we assume that the
ergodic property holds for both cell types separately. Concretely, this means that

# A cells in G2 phase
# A cells in total

≈
G2 duration of A cells

cell cycle duration of A cells
, (6.9)

# B cells in G2 phase
# B cells in total

≈
G2 duration of B cells

cell cycle duration of B cells
. (6.10)

We substitute Equations (6.4) and (6.6) into Equations (6.9) and (6.10) to rewrite them as

# A cells in G2 phase
# A cells in total

≈ 1 − βA , (6.11)

# B cells in G2 phase
# B cells in total

≈ 1 − βB . (6.12)

We introduce the notation

nA(t) = # A cells in total , (6.13)

nB(t) = # B cells in total , (6.14)

where we have made it explicit that the subpopulation size varies over time. The fraction of
cells in the G2 phase for the whole population can then be written as

# cells in G2 phase
# cells in total

=
# A cells in G2 phase + # B cells in G2 phase

nA(t) + nB(t)
. (6.15)
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We substitute Equations (6.11) and (6.12) into Equation (6.15) to obtain:

# cells in G2 phase
# cells in total

≈
nA(t)(1 − βA) + nB(t)(1 − βB)

nA(t) + nB(t)
. (6.16)

The right-hand side of Equation (6.16) is the weighted average of 1 − βA and 1 − βB, with
weights nA(t) and nB(t), respectively. For brevity, we introduce the following notation:

〈1 − β〉(t) ≡
nA(t)(1 − βA) + nB(t)(1 − βB)

nA(t) + nB(t)
. (6.17)

Assuming that the population-level distribution of cell cycle phases is replicated at the level
of the local neighbourhood of the cell, i.e. assuming Equation (5.6), we approximate the
death signal as

g(t) ≈
# cells in G2 phase

# cells in total
≈ 〈1 − β〉(t) , (6.18)

where we used Equations (5.6) and (6.16) in the first and second approximations, respectively.
We note that Equation (5.6) expresses the condition that the population is well-mixed. In a
spatially segregated heterotypic population, for example, cells mostly interact with cells of
the same type, such that the local neighbourhood does not represent the population-level
distribution of cell cycles. The death signal functions, given by Equations (6.7) and (6.8),
are then approximated by

fA(t) = cAg(t) ≈ cA〈1 − β〉(t) , (6.19)

fB(t) = cBg(t) ≈ cB〈1 − β〉(t) . (6.20)

Note that the quantity 〈1 − β〉(t) is not constant with respect to time because it depends
on nA(t) and nB(t). This is in contrast to the homotypic case, where the death signal is
approximated by the constant quantity 1 − β.

This means that there is no fixed death time and survival probability, even with the
ergodic approximation. However, we can define the instantaneous death time at time t

as the amount of time needed to reach the death threshold for a cell assuming a constant
death signal of magnitude fA(t) for cell type A and fB(t) for cell type B. Similarly, the
instantaneous survival probability at time t is the survival probability of a cell assuming a
constant death signal of magnitude fA(t) for cell type A and fB(t) for cell type B. Concretely,

133



the instantaneous death times are given by

t†,A(t) =
T†,A

cA〈1 − β〉(t)
, (6.21)

t†,B(t) =
T†,B

cB〈1 − β〉(t)
, (6.22)

for cell types A and B, respectively. We define the instantaneous heterotypic survival
probabilities as

ξA|B(t) = ΨA
(
t†,A(t)

)
= ΨA

(
T†,A

cA〈1 − β〉(t)

)
, (6.23)

ξB|A(t) = ΨB
(
t†,B(t)

)
= ΨB

(
T†,B

cB〈1 − β〉(t)

)
, (6.24)

where we use ξA|B(t) to denote the instantaneous survival probability at time t of cell type A
in a heterotypic population with cell type B, and vice versa for cell type B.

In summary, in this section we have derived approximate expressions for the instanta-
neous heterotypic survival probabilities of cell types A and B by making two assumptions.
First, we assumed that the subpopulations of A-type and B-type cells are ergodic in Equa-
tions (6.9) and (6.10). This is analogous to the assumption of ergodicity for homotypic
populations, as stated in Equation (5.5). Second, we assumed that the cell cycle phase distri-
bution in the local cell neighbourhood is approximately representative of the distribution
in the population as a whole, thus applying Equation (5.6) to the heterotypic case. With
these two assumptions, we derived an ergodic approximation to the death signal. However,
this ergodic death signal is dependent on the system state and thus varies with time, so we
defined the instantaneous death time and survival probability. For brevity, hereafter we omit
the word “instantaneous” and use 〈1 − β〉 and ξA|B instead of 〈1 − β〉(t) and ξA|B(t), unless we
wish to emphasise their time dependence.

6.3 Heterotypic survival probability for exponential cell
cycle model

In this section, we derive an expression for the heterotypic survival probability with the
exponential cell cycle model under the ergodic approximation. First, we substitute Equations
(6.3) and (6.5) into the respective cumulative distribution functions for the exponential
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distribution, Equation (3.10), to give

ΨA(t) = 1 − exp
(
−

t
βAtG,A

)
, (6.25)

ΨB(t) = 1 − exp
(
−

t
βBtG,B

)
. (6.26)

Substituting the death times, given in Equations (6.21) and (6.22), into Equations (6.25) and
(6.26), we obtain the heterotypic survival probabilities

ξA|B = 1 − exp
(
−

T†,A
cAtG,AβA〈1 − β〉

)
, (6.27)

ξB|A = 1 − exp
(
−

T†,B
cBtG,BβB〈1 − β〉

)
. (6.28)

Analogously with Equation (5.13), we define the dimensionless parameters

ηA ≡
T†,A

cAtG,A
, (6.29)

ηB ≡
T†,B

cBtG,B
, (6.30)

so that we can rewrite the heterotypic survival probabilities as

ξA|B (βA, ηA, 〈1 − β〉) = 1 − exp
(
−

ηA

βA〈1 − β〉

)
, (6.31)

ξB|A (βB, ηB, 〈1 − β〉) = 1 − exp
(
−

ηB

βB〈1 − β〉

)
. (6.32)

These are similar to the expression obtained in Equation (5.14) for homotypic popula-
tions, except that the weighted average 〈1 − β〉 is used instead of 1 − β. Moreover, if nB = 0,
then 〈1 − β〉 = 1 − βA and vice versa for nA = 0. Hence, when either cell type A or B is
absent, we recover the homotypic survival probability of the remaining cell type, and thus
Equations (6.31) and (6.32) generalise Equation (5.14).

For the sake of simplicity, we assume that tG,A = tG,B, such that differences in survival
probability alone determine relative proliferative success. In the general case, however, the
ratio

κA/B ≡
tG,A

tG,B
, (6.33)

is a dimensionless parameter that also modulates the dynamics of the heterotypic population.
For instance, a cell type with a lower survival probability may become more abundant
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than the competing cell type by having a shorter cell cycle time and dividing more quickly.
However, for simplicity we do not consider such cases here. Instead, in this chapter we
focus on the case κA/B = 1, and characterise population dynamics solely in terms of survival
probabilities.

6.4 Heterotypic survival difference

The instantaneous heterotypic survival probabilities ξA|B(t) and ξB|A(t) are dependent on
system state because the ergodic death signal 〈1 − β〉(t) depends on the distribution of cell
types in the population. However, in this section we show that the sign of their difference is
invariant with respect to system state for the exponential cell cycle model. Furthermore, we
express the sign in terms of model parameters and run simulations to verify this prediction.

We define the heterotypic survival difference between cell types A and B as

∆,A|B ≡ ξA|B − ξB|A , (6.34)

where ξA|B and ξB|A are the heterotypic survival probabilities of cell types A and B as given
in Equations (6.27) and (6.28), respectively. The sign of the heterotypic survival difference
tells us which cell type is at a proliferative advantage. If ∆,A|B > 0, then we say that A-type
cells are winner cells and B-type cells are loser cells, and vice versa for ∆,A|B < 0. Moreover,
if ∆,A|B = 0, then we say that the cell types are in coexistence, since neither cell type has a
fitness advantage over the other.

For the exponential cell cycle model in particular, we insert Equations (6.31) and (6.32)
into Equation (6.34) and rearrange to obtain

∆,A|B = exp
(
−

ηB

βB〈1 − β〉

)
− exp

(
−

ηA

βA〈1 − β〉

)
. (6.35)

Because exp(·) is a monotonically increasing function, the following identity holds:

sgn
(
exp(x) − exp(y)

)
= sgn(x − y) . (6.36)
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Applying the sign function to Equation (6.35) thus yields

sgn
(
∆,A|B

)
= sgn

(
ηA

βA〈1 − β〉
−

ηB

βB〈1 − β〉

)
= sgn

(
1

〈1 − β〉

)
sgn

(
ηA

βA
−
ηB

βB

)
= sgn

(
ηA

βA
−
ηB

βB

)
, (6.37)

where we used the fact that 〈1 − β〉 > 0 in the last line.
Since we factored out 〈1 − β〉 to derive Equation (6.37), we note that we can replace

〈1 − β〉 with any non-negative death signal in Equations (6.19) and (6.20), and we would
still obtain the same result as in Equation (6.37). Moreover, as discussed in the previous
chapter, η and β together determine sensitivity to death signals, with lower η and higher β
corresponding to higher sensitivity to death signals. Hence, we can interpret η/β as a cell
type’s tolerance to death signals. Therefore, Equation (6.37) states that, in a heterotypic
population, the relative sensitivity to death signals determines winner/loser status, with the
least sensitive cell type becoming the winner.

6.4.1 Coexistence curve

Equation (6.37) is an expression for the sign of the heterotypic survival difference that is
only dependent on the model parameters, and independent of 〈1 − β〉(t). In other words,
the winner and loser status is invariant with respect to the system state. We can therefore
partition parameter space into two regions for which ∆,A|B > 0 and ∆,A|B < 0, respectively.

The border between these two regions is given by the hypersurface ∆,A|B = 0. When
taking cross sections of parameter space for fixed values of βB and ηB, the hypersurface
∆,A|B = 0 becomes a curve. We define the coexistence curve as the curve in (βA, ηA)-space
that satisfies ∆,A|B = 0. Using Equation (6.37), we find that the coexistence curve is given by

ηA

βA
−
ηB

βB
= 0 . (6.38)

We will use the coexistence curve in Section 6.6 to classify competitive interactions.

6.4.2 Computational validation

Equation (6.37) provides a concrete prediction of the sign of the heterotypic survival
difference based solely on parameter values. In addition, Figure 6.7 shows how the regions
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Table 6.1: Model and simulation parameter values used to estimate the heterotypic survival
difference for the well-mixed model.

Parameter Cell type A Cell type B

tG 100
c 1
η 0.01, 0.02, . . . , 0.25 0.05, 0.1, 0.2
β 0.05, 0.10, . . . , 0.95 0.3, 0.5, 0.7

Initial cell count 50 50
Simulation end time 10 000
Minimum cell count 10
Maximum cell count 1 000
Nsim 50

∆,A|B > 0 and ∆,A|B < 0 are situated in parameter space for fixed values of βB and ηB. In this
section, we validate these theoretical results with simulations. Concretely, we used a Monte
Carlo method to estimate the survival frequency of both cell types for different parameter
values, and compared the difference in survival frequency with predictions.

Parameter choice Since there are two cell types, we have two times as many parameters
as in a homotypic population. The parameter space is therefore much larger than in the
previous chapter. In particular, we want to confirm our predictions in (βA, ηA, βB, ηB)-space.
In Section 5.4.1 (Parameter choice, page 104), we used a regular grid in (β, η)-space to
construct a parameter sweep. However, extending this approach here would result in a
simulation suite that is 500 times as large. In addition, visualising the results would be
challenging.

Therefore, we chose a limited number of values for βB and ηB, but varied βA and ηA along
a regular grid. For the well-mixed model, we picked βB = 0.3, 0.5, 0.7 and ηB = 0.05, 0.1, 0.2.
For cell type A, we evenly sampled 19 values for βA from the range [0, 1] and 25 values for
ηA from the range [0, 0.25]. For the vertex model, we picked βB = 0.5, ηB = 0.1, 9 values for
βA, and 12 values for ηA. The mechanical parameters for both cell types are set to the default
values, as defined in Chapter 2. See Tables 6.1 and 6.2 for a summary of the parameter
values for the well-mixed and vertex models, respectively.

To compute the death thresholds, we applied the approach in Section 5.3.1 (Parame-
ter choice, page 93) to both cell types; we fixed tG,A, cA, tG,B, cB and computed the death
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Table 6.2: Model and simulation parameter values used to estimate the heterotypic survival
difference for the vertex model.

Parameter Cell type A Cell type B

tG 100
c 1
η 0.02, 0.04, . . . , 0.24 0.1
β 0.1, 0.2, . . . , 0.9 0.5

Initial cell count 50 50
Pattern random, segregated
Simulation end time 10 000
Minimum cell count 10
Maximum cell count 1 000
Nsim 20

thresholds using the following expressions2:

T†,A = ηAcAtG,A , (6.39)

T†,B = ηBcBtG,B . (6.40)

For the well-mixed model, we ran 50 simulations for every unique parameter set, so the
total number of simulations is 25 × 19 × 3 × 3 × 50 = 213 750. For the vertex model, we
additionally combined every parameter set with two different initial conditions (described
below), and ran 20 simulations per unique combination of parameter set and type of initial
conditions. Hence, the total number of simulations is 12 × 9 × 2 × 20 = 4 320.

Initial conditions In Section 5.3.1 (Initial conditions, page 95), we described the initial
conditions for a homotypic population for the well-mixed and vertex models. We took
a similar approach here, except that each cell was initialised according to their type. In
particular, the birth times and G1 durations were assigned using the cell cycle parameters
tG1,A, tG2,A for cell type A, and tG1,B, tG2,B for cell type B. Furthermore, we initialised each
simulation with 50 A-type cells and 50 B-type cells. For the vertex model we also need to
specify the initial spatial configuration. In order to test the effect of spatial segregation, we
arranged the cell types in a “segregated” or “random” pattern as in Section 2.2.2. The initial
conditions for all simulations in this chapter are determined in this manner.

2These expressions follow from the definition of ηA and ηB in Equations (6.29) and (6.30), respectively.
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Termination conditions We set a minimum cell count of 10, a maximum cell count of
1 000, and a simulation end time of 10 000. In addition, we also terminated the simulation as
soon as any cell type goes extinct, i.e. if either nA(t) = 0 or nB(t) = 0, since the simulation
then becomes homotypic. Note that a homotypic population cannot go extinct because the
G2 death signal is derived from other cells, but a cell type in a heterotypic population can
go extinct because it can receive death signals from the surviving cell type. Hence, there
are a total of four ways that the simulation can terminate: the simulation hits the minimum
cell count, the simulation hits the maximum cell count, cell type A or B goes extinct, or the
simulation runs until the end time.

Data processing For each simulation, we compute the survival frequencies, ξ̂A|B and ξ̂B|A,
using Equations (2.13) and (2.14), respectively. Each parameter set was simulated Nsim times
with different random seeds. To estimate the survival frequency for a particular parameter
set, we averaged the heterotypic survival frequencies as

ξA|B =
1

Nsim

Nsim∑
k=1

ξ̂A|B,k , (6.41)

ξB|A =
1

Nsim

Nsim∑
k=1

ξ̂B|A,k . (6.42)

The estimator for the heterotypic survival difference is then given by

∆,A|B = ξA|B − ξB|A . (6.43)

Data visualisation We plotted ∆,A|B for fixed values of βB and ηB using a heat map, with
βA on the horizontal axis and ηA on the vertical axis. In addition, for the vertex model we
decomposed the results further into segregated and random initial conditions. Similarly
to Section 5.4.1 (Data visualisation, page 105), we want to highlight the critical value
∆,A|B = 0 separating the regions where ∆,A|B < 0 and ∆,A|B > 0, respectively. Hence, we used
the diverging seismic colour map. Denoting the maximum absolute value of ∆,A|B over all
parameter sets as |∆,|, we set the range of the colour map to [−|∆,|, |∆,|] with central value
zero. Hence, red regions indicate positive values and blue regions indicate negative values.

We marked the degenerate case βA = βB, ηA = ηB with a green dot and plotted the
coexistence curve with a solid line for comparison with theoretical predictions. The results
are given in Figures 6.1 and 6.2 for the well-mixed and vertex models, respectively.
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Computational materials and methods See Computational materials and methods in
Section 2.3.1 (page 36) for the vertex model and in Section 4.4 (page 77) for the well-mixed
model.

6.4.3 Results

Well-mixed model Figure 6.1 shows that the separation between ∆,A|B > 0 and ∆,A|B < 0 is
generally consistent with the predicted coexistence curve. There are some deviations for
ηB = 0.05 where the blue region is shaped more like a blob than a triangle. The overall
structure of the parameter space remains intact, however.

Vertex model We report that 6 out of 4 320 Chaste simulations failed. Figure 6.2 shows
that the observed parameter regions match the analytical predictions reasonably well for the
vertex model. The largest deviation is found in the top right corner of the bottom triangle,
where the red region transgresses the predicted coexistence curve. Moreover, comparing
the range of the colour bar with Figure 6.1 reveals that the observed values for ∆,A|B are less
extreme than for the well-mixed model.

This effect is more pronounced for segregated initial conditions than for random initial
conditions. In particular, the blue region in the bottom right corner is lighter. In addition,
the red region under the coexistence curve is larger for segregated simulations. It thus seems
that spatial segregation results in larger deviations from the well-mixed results, suggesting
that spatial mixing may affect cell competition.

6.5 Homotypic survival difference

A consistent discrepancy in survival probabilities between cell types, i.e. ∆,A|B , 0, indicates
that they are participating in some form of competition. However, by itself it does not prove
that a competitive interaction is taking place. After all, two non-interacting cell types with a
different intrinsic survival probability have a nonzero heterotypic survival difference despite
not interacting. Therefore, in this section we define a metric to test whether cells experience
a change in their survival probability as a result of competitive interactions.

Firstly, the homotypic survival probabilities of cell types A and B are defined as

λA = ΨA

(
T†,A

cA(1 − βA)

)
, (6.44)

λB = ΨB

(
T†,B

cB(1 − βB)

)
, (6.45)
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Figure 6.1: Estimated heterotypic survival difference, ∆,A|B, defined in Equation (6.43), for
the well-mixed model. The solid line and the green dot correspond to the coexistence curve
and the point (βA = βB, ηA = ηB), respectively.
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Figure 6.2: Estimated heterotypic survival difference, ∆,A|B, defined in Equation (6.43), for
the vertex model. The solid line and the green dot correspond to the coexistence curve and
the point (βA = βB, ηA = ηB), respectively.

respectively. This is the survival probability that either cell type would experience in
a homotypic environment, analogous to Equation (5.10) in Chapter 5. The homotypic
survival difference is then defined as

∆=
A|B ≡ ξA|B − λA , (6.46)

∆=
B|A ≡ ξB|A − λB , (6.47)

for cell types A and B, respectively. The homotypic survival difference compares the fitness
of a cell type in the heterotypic environment to its fitness in a homotypic environment. For a
concrete interpretation, suppose that the population is initially homotypic for cell type A,
i.e. only A-type cells populate the population. Then, a cell mutates and divides to give rise
to a group of B-type cells, which renders the population heterotypic. The change in fitness
for cell type A that is caused by the introduction of cell type B is the homotypic survival
difference ∆=

A|B, and vice versa for ∆=
B|A.

The sign of the homotypic survival difference indicates whether a cell type becomes
more or less fit as a result of the heterotypic interaction, compared to its homotypic fitness. If
∆=

A|B > 0, then we say that cell type A is more fit when competing with cell type B, and vice
versa for ∆=

A|B < 0. Even though a positive sign for ∆=
A|B indicates that cell type A benefits
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from the interaction, it does not mean that the interaction is mutualistic, since that would
require both B-type and A-type cells to benefit from the interaction simultaneously (i.e.
∆=

A|B,∆
=
B|A > 0). We show below that this situation is impossible when using an exponential

cell cycle model under the ergodic approximation. Finally, if ∆=
A|B = 0, then we say that

A-type cells are in neutral competition with B-type cells, since the interaction with B-type
cells does not produce a net change in absolute fitness of A-type cells.

In the case of an exponential cell cycle model specifically, the homotypic survival
probabilities are

λA = 1 − exp
(
−

ηA

βA(1 − βA)

)
, (6.48)

λB = 1 − exp
(
−

ηB

βB(1 − βB)

)
. (6.49)

Focusing our derivation of the homotypic survival difference on cell type A, we have

∆=
A|B =

[
1 − exp

(
−

ηA

βA〈1 − β〉

)]
−

[
1 − exp

(
−

ηA

βA(1 − βA)

)]
= exp

(
−

ηA

βA(1 − βA)

)
− exp

(
−

ηA

βA〈1 − β〉

)
. (6.50)

Similarly to Section 6.4, we apply the sign function to arrive at

sgn
(
∆=

A|B

)
= sgn

(
ηA

βA〈1 − β〉
−

ηA

βA(1 − βA)

)
= sgn

(
ηA

βA

)
sgn

(
1

〈1 − β〉
−

1
1 − βA

)
= sgn

(
1

〈1 − β〉
−

1
1 − βA

)
. (6.51)

Expanding 〈1 − β〉(t) (see definition in Equation (6.17)) in the argument of Equation (6.51),
we have

1
〈1 − β〉(t)

−
1

1 − βA
=

nA(t) + nB(t)
nA(t)(1 − βA) + nB(t)(1 − βB)

−
1

1 − βA

=
nB(t)(βB − βA)[

nA(t)(1 − βA) + nB(t)(1 − βB)
]
(1 − βB)

, (6.52)

where we note that the denominator is always positive. Equation (6.52) shows that the sign
of ∆=

A|B is dependent on the system state. Specifically, in the degenerate case of nB(t) = 0, we
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are reduced to a homotypic population composed solely of A-type cells, and thus ∆=
A|B = 0.

If we limit our scope to only the heterotypic case, i.e. nA(t), nB(t) > 0, we can rewrite
Equation (6.51) using Equation (6.52) as

sgn
(
∆=

A|B

)
= sgn(βB − βA) . (6.53)

For cell type B, we derive an analogous expression of the form

sgn
(
∆=

B|A

)
= sgn(βA − βB) . (6.54)

Comparing Equations (6.53) and (6.54), we see that the following identity holds:

sgn
(
∆=

A|B

)
= −sgn

(
∆=

B|A

)
. (6.55)

Equation (6.55) shows us that the homotypic survival differences for two competing cell
types using the exponential cell cycle model must have opposite signs. Hence, one cell
type’s loss is another cell type’s gain, and a mutualistic relationship is impossible.

In Section 6.4, we factored out the death signal 〈1 − β〉 to find an expression for the sign
of ∆,A|B and found that winner/loser status is determined by the difference in tolerance to
death signals. Here, in contrast, we factored out the tolerance to death signals, ηA/βA, in
Equation (6.51) to find that the sign of the homotypic survival difference depends on the
difference between the emission of death signal in homotypic conditions, 1 − βA, and in
heterotypic conditions, 〈1 − β〉. We can see this by rewriting Equation (6.51) as

sgn
(
∆=

A|B

)
= sgn

(
(1 − βA) − 〈1 − β〉

)
. (6.56)

This suggests that we can rewrite Equation (6.53) as a difference in the homotypic emission
of death signals, i.e.

sgn
(
∆=

A|B

)
= sgn

(
(1 − βA) − (1 − βB)

)
. (6.57)

In words, Equation (6.57) states that cell type A fares better in heterotypic conditions if cell
type B has lower intrinsic emission of death signal than cell type A and vice versa.

6.5.1 Neutral competition curve

Similarly to Section 6.4, Equations (6.53) and (6.54) reveal that the signs of ∆=
A|B and ∆=

B|A

are independent of the system state, except in the degenerate homotypic cases nA(t) = 0 or
nB(t) = 0. Likewise, this distinction lets us partition parameter space into two regions: one
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where ∆=
A|B > 0,∆=

B|A < 0, and one where ∆=
A|B < 0,∆=

B|A > 0.
These regions are separated by the hypersurface ∆=

A|B = 0, or, equivalently, ∆=
B|A = 0. We

define the neutral competition curve as the curve in (βA, ηA)-space that satisfies ∆=
A|B = 0

for fixed values of βB and ηB. Using Equation (6.53), we derive that the neutral competition
curve is given by

βB − βA = 0 . (6.58)

We visualise the neutral competition curve in Figure 6.7 (page 152). We will use the neutral
competition curve in Section 6.6 to classify competitive interactions.

6.5.2 Computational validation

Equations (6.53) and (6.54) predict the sign of the homotypic survival difference for cell
types A and B, respectively. In this section, we verify whether this result is supported by
simulations. The homotypic survival difference is calculated by subtracting the homotypic
survival probability from the heterotypic survival probability. Therefore, in order to esti-
mate the homotypic survival difference, we need to run both homotypic and heterotypic
simulations to estimate the survival probability in each, and subtract the results. We have
already run both types of simulations in Sections 5.4.1 and 6.4.2, however, so we combined
the data from those sections to estimate the homotypic survival difference instead of running
additional simulations.

Parameter choice We use the same parameters listed in Section 5.4.1 (Parameter choice,
page 104) and Section 6.4.2 (Parameter choice, page 138) to estimate the homotypic and
heterotypic survival probabilities, respectively. The parameters in those sections were chosen
such that for every value for (βA, ηA) in the heterotypic simulations, there is a corresponding
parameter set in the homotypic simulations for which (β = βA, η = ηA), and likewise for cell
type B.

Data processing We used the data from Section 6.4.2 for the heterotypic survival frequen-
cies ξA|B and ξB|A, and the data from Section 5.4.1 for the homotypic survival frequencies λA

and λB. We estimated the homotypic survival differences as follows:

∆=
A|B = ξA|B − λA , (6.59)

∆=
B|A = ξB|A − λB , (6.60)
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where λA indicates that the homotypic survival frequency was computed from the homotypic
simulations that match the parameters of cell type A, and similarly for λB.

Data visualisation We plot ∆=
A|B and ∆=

B|A for fixed values of βB and ηB using heat maps.
We also split the results between segregated and random initial conditions for the vertex
model. We denote the maximum absolute values of ∆=

A|B and ∆=
B|A across all parameter sets

with |∆,A|B| and |∆,B|A|, respectively. The colour map ranges are set to [−|∆,A|B|, |∆
,
A|B|] and

[−|∆,B|A|, |∆
,
B|A|] with central values zero for the heat maps of ∆=

A|B and ∆=
B|A, respectively.

Hence, red regions correspond to positive values and blue regions correspond to negative
values.

We mark the degenerate case βA = βB, ηA = ηB with a green dot and plot the neutral
competition curve with a dashed line for comparison with theoretical predictions. The
well-mixed model results for ∆=

A|B and ∆=
B|A are given in Figures 6.3 and 6.4, respectively.

The vertex model results for ∆=
A|B and ∆=

B|A are given in Figures 6.5 and 6.6, respectively.

6.5.3 Results

Well-mixed model Figures 6.3 and 6.4 show that the neutral curve is in good agreement
with the border between red and blue regions. For ∆=

A|B in Figure 6.3, we see that the
parameter space is mostly dominated by blue regions where cell type A has a lower survival
probability than in the homotypic case, whereas the red regions are relatively faint. The
relative faintness of the red regions compared to the blue regions suggests that the death
signal mechanism generally does not confer a fitness advantage and that cell competition is
more driven by the elimination of loser cells rather than the elevation of winner cells.

When we look at the parameter space to the right of the neutral curve, we can distinguish
roughly three subregions. First, there is a dark blue region that runs along the right-hand
edge of the parameter space with a triangular shape. Second, the dark blue fades into light
blue and eventually white as it approaches the neutral curve on the bottom left. Third, the
dark blue fades into lighter blue towards the top. For clarity, we outlined these subregions in
the central plot of Figure 6.3

In the dark blue region, B-type cells significantly lower the viability of A-type cells
compared to homotypic conditions. This region transitions into lighter blue towards the
bottom left because there it overlaps with the homotypic Nonviable Regime, which was
discussed in Section 5.4 and is sketched in Figure 5.7. In this subregion, A-type cells are
homotypically nonviable to start with, hence there is less room for B-type cells to decrease
the survival rate of A-type cells even further. On the other hand, as ηA is increased, A-type
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Figure 6.3: Estimated homotypic survival difference of cell type A, ∆=
A|B, defined in Equa-

tion (6.59), for the well-mixed model. The dashed line and the green dot correspond to the
neutral competition curve and the point (βA = βB, ηA = ηB), respectively.
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Figure 6.4: Estimated homotypic survival difference of cell type B, ∆=
B|A, defined in Equa-

tion (6.60), for the well-mixed model. The dashed line and the green dot correspond to the
neutral competition curve and the point (βA = βB, ηA = ηB), respectively.
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cells are increasingly insensitive to death signals, hence the impact of a cell type with a
higher emission of death signal is curtailed, so we see lighter shades of blue towards the top.

For ∆=
B|A, we see in Figure 6.4 more pronounced red regions, particularly in the bottom

right corner. This corresponds to the dark blue bottom right corner for ∆,A|B in Figure 6.1.
Inspection of individual heterotypic simulations (not shown) reveals that A-type cells in
this region perish so quickly that B-type cells do not even have the opportunity to initiate
apoptosis before the A-type cells go extinct and the simulation terminates. As a result,
the heterotypic survival frequency of B-type cells is recorded as equal or close to unity,
translating into a high homotypic survival difference. This behaviour is so robust that for
ηB = 0.2, βB = 0.7 the red region intersects the neutral curve. It should be noted, however,
that this is more of a simulation artefact rather than a biologically meaningful phenomenon.

Above this dark red region and to the right of the neutral curve, we see a lighter middle
region, and, following that, a darker upper region. In this lighter middle region, A-type cells
are also going extinct, but not so quickly that the heterotypic survival frequency of B-type
cells is recorded as unity. This results in a lower, but still positive, homotypic survival
difference. In the upper region, A-type cells have a sufficiently high tolerance to persist
alongside B-type cells. As a result, B-type cells consistently experience a lower average
death signal compared to homotypic conditions, which is why we see an elevated homotypic
survival difference.

For ηB = 0.2, βB = 0.7 in Figure 6.4, we see a dark blue region in the top-left corner that
is bounded to the right by the neutral curve and bounded below by the coexistence curve.
Above the coexistence curve, A-type cells are more numerous than B-type cells, so they
can exert their comparatively higher level of death signal to diminish the viability of B-type
cells. Below the coexistence curve, however, B-type cells are more numerous than A-type
cells, hence the impact of A-type cells is curbed because there are fewer of them.

Vertex model In Figures 6.5 and 6.6, we see that the predicted neutral curve agrees well
with that established via simulation. In addition, the blue and red regions have the same
overall shapes as for the well-mixed model. However, comparing the colour bars with
those in Figures 6.3 and 6.4, we see that the observed homotypic survival difference is
much smaller than in the well-mixed case. Moreover, the figures show that this effect is
exacerbated for segregated initial conditions. Since ∆=

A|B and ∆=
B|A quantify the effects of

competition, this suggests that spatial segregation acts as a buffer against competition.
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Figure 6.5: Estimated homotypic survival difference of cell type A, ∆=
A|B, defined in Equa-

tion (6.59), for the vertex model. The dashed line and the green dot correspond to the neutral
competition curve and the neutral coexistence point, respectively.

Figure 6.6: Estimated homotypic survival difference of cell type B, ∆=
B|A, defined in Equa-

tion (6.60), for the vertex model. The dashed line and the green dot correspond to the neutral
competition curve and the neutral coexistence point, respectively.
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Figure 6.7: Diagram situating the different types of competitive interactions in (βA, ηA)-space,
given fixed values for βB and ηB. The full and dashed lines correspond to the coexistence
and neutral competition curves, respectively.

6.6 Classification of competitive interactions

Now that we have defined both the heterotypic and homotypic survival differences, we
are able to refine notions of competition by combining them to tease out different types
of competitive interactions. Based on the signs of ∆,A|B and ∆=

A|B, there are a total of nine
categories, which are tabulated in Table 6.3. In this section, first we examine these categories
one by one, and then situate the different types of competitive interactions in the parameter
space (βA, ηA), as plotted in Figure 6.7.

To recap, the heterotypic survival difference ∆,A|B, defined in Section 6.4, indicates which
cell type in the heterotypic population has a higher or lower survival probability compared
to the competing cell type, thus letting us discriminate between winners and losers. On
the other hand, the homotypic survival differences ∆=

A|B and ∆=
B|A, defined in Section 6.5,

indicate whether a cell type does better or worse as a result of the heterotypic interaction,
when compared to a homotypic environment.

In general, there are three possible values (negative, zero, and positive) for the signs of
of ∆,A|B, ∆=

A|B, and ∆=
B|A, which add up to a total of 33 = 27 different modes of competition.

For the exponential cell cycle model specifically, however, we know by Equation (6.55)
that sgn

(
∆=

A|B

)
is uniquely determined by sgn

(
∆=

B|A

)
, leaving 32 = 9 categories. We can

narrow these categories even further by considering their symmetry with respect to cell
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Table 6.3: Classification of competitive interactions.

∆=
A|B

∆,A|B − 0 +

−
A direct loser

Coexistence
A indirect winner

B direct winner B indirect loser

0
A neutral loser

Neutral coexistence
A neutral winner

B neutral winner B neutral loser

+
A indirect loser

Coexistence
A direct winner

B indirect winner B direct loser

types. In particular, it follows from the definition of the heterotypic survival difference
in Equation (6.34) that ∆,A|B = −∆,B|A. Combined with Equation (6.55), which states that
∆=

A|B = −∆=
B|A, we see that the signs of ∆,A|B and ∆=

A|B are antisymmetric with respect to
cell types. On the basis of this symmetry, we collapse the nine categories to five unique
categories:

Neutral coexistence
{
∆,A|B = 0, ∆=

A|B = 0
}
: This is the degenerate case that corresponds to

a homotypic population. The competition is neutral because there is no effect on either
cell type’s absolute fitness, and the cell types are said to be coexisting because there is
no difference in their relative fitness.

Coexistence
{
∆,A|B = 0, ∆=

A|B , 0
}
: Despite a change in absolute fitness compared to the

homotypic case, there is no survival advantage for either cell type. Hence neither cell
type will dominate, but the fitness of the tissue as a whole may be affected.

Neutral competition
{
∆,A|B , 0, ∆=

A|B = 0
}
: Because of the nonzero heterotypic survival

difference, there exists a difference in relative fitness. Thus, a winner and a loser cell
type emerge, with the winner cell type likely becoming the dominant cell type in
the population. However, the cells do not experience a difference in absolute fitness
compared to the homotypic environment. Thus, cells that are viable in a homotypic
environment remain viable when in neutral competition with another cell type, even
as they become losers through the competition.

Indirect competition
{
∆,A|B , 0, ∆=

A|B , 0, sgn
(
∆,A|B

)
, sgn

(
∆=

A|B

)}
: As in neutral compe-

tition, there are winners and losers in the case of indirect competition, and the pop-
ulation will become increasingly populated by winners. However, the sign of the
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homotypic survival difference is opposite to the sign of the heterotypic survival differ-
ence. This creates the potential for two counter-intuitive scenarios. Firstly, not only
are intrinsically viable loser cell types still viable when interacting with the winner
cell type, some nonviable loser cell types may become viable as a direct result of the
competition and are hence paradoxically “rescued” by the winner cell type. Secondly,
the winner cell type could be made nonviable by the loser cells. However, as we will
discuss in Section 6.7, if the winner cell type was viable prior to the interaction, they
are likely to remain viable as the population will tend towards a majority of winner
cells over time, and their homotypic fitness will be restored as the population becomes
more homogeneous for winner cells.

Direct competition
{
∆,A|B , 0, ∆=

A|B , 0, sgn
(
∆,A|B

)
= sgn

(
∆=

A|B

)}
: Like the other forms of

competition, there is a distinction between winner and loser cells, and over time the
population tends towards domination by the winner cells. Moreover, the homotypic
survival difference has the same sign as the heterotypic survival difference, meaning
that the winners fare better within a heterotypic environment than in a homotypic one,
and the losers are worse off in a heterotypic environment as compared to a homotypic
one. Importantly, direct competition allows for the distinct possibility of previously
viable cell types becoming nonviable losers and being completely eliminated from
the population as a direct result of the competitive interaction. This is the hallmark of
cell competition, where only one from two initially viable cell populations survive the
competition.

In order to locate the five types of competitive interactions in parameter space, we fix βB

and ηB, and divide the two-dimensional parameter space (βA, ηA) by the coexistence curve
and the neutral competition curve, defined in Sections 6.4.1 and 6.5.1, respectively.

As Figure 6.7 shows, the coexistence and neutral competition curves translate to straight
lines in (βA, ηA)-space, on which we can find coexistence and neutral competition, respec-
tively. The coexistence curve has a slope ηB/βB with respect to the βA-axis, whereas the
neutral competition curve is a vertical line that intersects the βA-axis at βA = βB. They
intersect at βA = βB, ηA = ηB, which is the only place where ∆,A|B = ∆=

A|B = 0. Therefore, we
call this the neutral coexistence point. Finally, these curves divide the parameter space into
four sectors, with the top left and bottom right sectors corresponding to direct competition,
and the top right and bottom left sectors corresponding to indirect competition.
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6.7 Proliferation regimes

In the previous section, we discussed different types of competitive interactions. However,
being a winner is not a sufficient condition for survival. Our definition of winning is based
on the heterotypic survival difference ∆,A|B, and it only means that the survival probability
of the winner cell type is higher than that of the loser cell type. But even winners can be
nonviable. In that case, both cell types are headed to extinction, with losers taking the lead.
Conversely, losers are not necessarily nonviable and can continue proliferating in the tissue,
even if they are less abundant than winners. In this section, we define the asymptotic survival
probability and use it to investigate the proliferation regimes of heterotypic populations. We
then plot the resulting proliferation regimes in parameter space (βA, ηA) for particular values
of βB and ηB, and discuss the results. Finally, we validate the theoretical predictions with
simulations.

6.7.1 Asymptotic survival probability

At the end of Section 6.3, we assumed that tG,A = tG,B, such that the differences in heterotypic
survival probability alone determine proliferative success. Hence, regardless of the type of
competitive interaction taking place between winners and losers, over time the population is
more likely to be dominated by the winner cell type. Therefore, the proportion of winner
cells tends towards unity. As a result, we expect the population-weighted average death
signal 〈1 − β〉(t) to approach the homotypic death signal of the winner cell. Assuming that
cell type A is the winner, i.e. ∆,A|B > 0, this means that

〈1 − β〉(t)→ 1 − βA as t → ∞ . (6.61)

We can therefore substitute 1 − βA for 〈1 − β〉 in the heterotypic survival probability of
A-type and B-type cells in Equations (6.31) and (6.32) to obtain the asymptotic survival
probability:

ξA|B(βA, ηA, 1 − βA) = 1 − exp
(
−

ηA

βA(1 − βA)

)
, (6.62)

ξB|A(βB, ηB, 1 − βA) = 1 − exp
(
−

ηB

βB(1 − βA)

)
. (6.63)
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Comparing Equation (6.62) with Equation (6.48), we find that the asymptotic survival
probability is the same as the homotypic survival probability:

ξA|B(βA, ηA, 1 − βA) = λA . (6.64)

In other words, the heterotypic survival probability of a winner cell type tends towards its
homotypic survival probability as winners become more abundant than losers. We define

ξ∞B|A ≡ 1 − exp
(
−

ηB

βB(1 − βA)

)
, (6.65)

which is the heterotypic survival probability of cell type B in an environment dominated by
cell type A. Combining Equations (6.63) and (6.65), we write

ξB|A(βB, ηB, 1 − βA) = ξ∞B|A . (6.66)

Similarly, when cell type B is the winner, i.e. ∆,A|B < 0, we define

ξ∞A|B ≡ 1 − exp
(
−

ηA

βA(1 − βB)

)
, (6.67)

and we can derive that

ξA|B(βA, ηA, 1 − βB) = ξ∞A|B , (6.68)

ξB|A(βB, ηB, 1 − βB) = λB . (6.69)

6.7.2 Classification

In Section 4.2, we learned that a survival probability less than or equal to a half results in
guaranteed extinction, whereas a survival probability greater than a half is likely to result in
population explosion. Moreover, in Section 5.4, we characterised the proliferation regimes
for a homotypic population based on the homotypic survival probability. Here, we use the
asymptotic survival probability to characterise the proliferative behaviour of a heterotypic
population.

Assuming that cell type A is the winner, i.e. ∆,A|B > 0, we can distinguish between the
following outcomes:

Case
{
λA ≤

1
2

}
: If the winner cells are not viable, then the losers are not either, since they

have, by definition, a lower survival probability than the winner. Hence, both winners
and losers go extinct when winner cells are intrinsically nonviable.
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Table 6.4: Classification of proliferation regimes.

Hypersurface Parameter space Proliferation regime

ξ∞B|A >
1
2

A viable winner
B viable loser

B loser viability ξ∞B|A =
1
2

λA >
1
2

ξ∞B|A <
1
2

A viable winner
B nonviable loser

A winner viability λA =
1
2

∆,A|B > 0 λA <
1
2

A nonviable winner
B nonviable loser

Coexistence ∆,A|B = 0

∆,A|B < 0 λB <
1
2

A nonviable loser
B nonviable winner

B winner viability λB =
1
2

λB >
1
2

ξ∞A|B <
1
2

A nonviable loser
B viable winner

A loser viability ξ∞A|B =
1
2

ξ∞A|B >
1
2

A viable loser
B viable winner
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Case
{
λA >

1
2

}
: In this case, winner cells are intrinsically viable and are likely to multiply

and dominate the population. However, whether the loser population goes extinct or
not depends on the value of ξ∞B|A.

Subcase
{
ξ∞B|A ≤

1
2

}
: The loser cells are nonviable in the heterotypic population and

are entirely eliminated from the tissue.

Subcase
{
ξ∞B|A >

1
2

}
: Despite a lower survival probability than the winners, the losers

are still viable. In the developed tissue, we would expect to see mostly winner
cells, but a small loser population may still be present.

We thus end up with three proliferation regimes for ∆,A|B > 0. Three analogous proliferation
regimes exist for ∆,A|B < 0, for a total of six proliferation regimes. Visualising four-
dimensional (βA, ηA, βB, ηB)-space is tricky, so we only provide a sketch of the parameter
space here.

Firstly, the coexistence hypersurface ∆,A|B = 0 divides the parameter space into two
subspaces, ∆,A|B > 0 and ∆,A|B < 0, where the A and B cell types are winners, respectively.
Secondly, within each of these sections there is a further subdivision into two regions
where the winner is either viable or nonviable. For ∆,A|B > 0 this corresponds to λA > 1/2
and λA < 1/2, respectively. The border is given by the A winner viability hypersurface
λA = 1/2. Finally, the region in which the winner is viable, i.e. λA > 1/2, is split into two
parts, based on whether the loser is viable (ξ∞B|A > 1/2) or nonviable (ξ∞B|A < 1/2). The
boundary is given by the B loser viability hypersurface ξ∞B|A = 1/2. Since either cell type
can be a loser or winner, there are two winner viability hypersurfaces and two loser viability
hypersurfaces, for a total of five hypersurfaces that partition the parameter space: ∆,A|B = 0,
λA = 1/2, ξ∞B|A = 1/2, λB = 1/2, and ξ∞A|B = 1/2. In Table 6.4, we provide a schematic
diagram of the parameter space. Horizontal lines correspond to hypersurfaces, and the
spaces between lines correspond to distinct proliferation regimes.

One caveat concerning this classification is that we assume that the initial loser and
winner populations are large enough so that a cell type with a survival probability larger
than a half is virtually guaranteed to survive. As we saw in Chapter 4, at low cell counts it
is still possible for a population to go extinct with a survival probability over a half. This
assumption is violated, for example, when we examine the dynamics of a mutation appearing
in an initially homotypic population, since the mutation appears in a single cell only.
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Figure 6.8: Diagrams for Cross Sections I, II, and III, situating the different proliferation
regimes. The green dot corresponds to the point (βB, ηB). : cell types A and B go extinct.

: cell type A goes extinct, cell type B survives. : cell type A survives, cell type B goes
extinct. : both cell types A and B survive.
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6.7.3 Cross sections

Here, we treat βB and ηB as fixed parameters and consider cross sections in (βA, ηA)-space to
visualise the proliferation regimes. For particular values of βB and ηB, we have the following
curves:

Coexistence curve: ∆,A|B = 0 ⇔ ηA =
ηB

βB
βA , (6.70)

A winner viability curve: λA =
1
2

⇔ ηA = ln(2)βA(1 − βA) , (6.71)

B loser viability curve: ξ∞B|A =
1
2

⇔ βA = 1 −
ηB

ln(2)βB
, (6.72)

A loser viability curve: ξ∞A|B =
1
2

⇔ ηA = ln(2)(1 − βB)βA . (6.73)

We note that the A winner viability curve is analogous to the homotypic viability curve for
the exponential cell cycle model, defined in Section 5.4. The B winner viability hypersurface
does not map on to a curve in (βA, ηA)-space because it only depends on βB and ηB. Therefore,
we consider the cases λB < 1/2 and λB > 1/2 in separate cross sections.

In addition, if ηB/βB > ln(2), then Equation (6.72) does not have a solution for positive
βA. Hence, the B loser viability curve does not appear in cross sections for which this
condition is satisfied. Since the inclusion of the B loser viability curve qualitatively changes
the proliferation regimes found within a cross section, we treat this case in a separate cross
section as well. It can be easily verified that ηB/βB > ln(2) implies λB > 1/2, so we pick
three cross sections in total:

Cross Section I {βB = 0.2, ηB = 0.2}: This satisfies ηB/βB > ln(2).

Cross Section II {βB = 0.8, ηB = 0.2}: This satisfies ηB/βB < ln(2) and λB > 1/2.

Cross Section III {βB = 0.4, ηB = 0.1}: This satisfies ηB/βB < ln(2) and λB < 1/2.

In Figure 6.8, we show a diagram of the proliferation regimes for each of these cross
sections.

Cross Section I We observe three distinct regimes. For ∆,A|B > 0, both cell types are
proliferating, with A-type cells as the winner. On the other side of the coexistence curve,
B-type cells are winning. Depending on the values of βA and ηA, A-type cells can either
proliferate alongside B-type cells or be eliminated from the population entirely. Interestingly,
there are no regions in which B-type cells go extinct. In other words, faced with any
competitor, the cell type B is never fully eliminated from the population.
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Cross Section II We identify five distinct regimes. For ∆,A|B < 0, the same two regimes
appear as in Cross Section I. The wedge-shaped region where both winners and losers
proliferate is surprising because a significant portion overlaps with the area under the
homotypic viability curve. What this means is that the A-type cells in this region would
go extinct in a homotypic environment, i.e. they are intrinsically nonviable, but they are
“rescued” by the competitive interaction with B-type cells. This is also present in Cross
Section I, but it is much more pronounced in Cross Section II, so we discuss it here. We
note that this wedge is entirely contained within the indirect competition sector, showing
that indirect competition is required for rescuing intrinsically nonviable loser cells.

We see three regimes on the other side of the coexistence curve. For λA < 1/2 the winner
A-type cells are nonviable, rendering both cell types nonviable. This is despite the fact that
the B-type cells in this regime would be viable in a homotypic environment. Hence, this
is a case of pathological competition, where a winner cell type renders a tissue nonviable
that was viable prior to the appearance of the winner. For λA > 1/2 the winner A-type
cells are viable. In this space, whether the B-type cells survive depends on βA. If it is less
than 1 − ηB/(ln(2)βB), then the resulting death signal is too high for B-type cells to survive.
However, on the other side of this critical value, the death signal is sufficiently low for
B-type cells to survive. We can also see that the B loser viability curve is located at the
intersection of the A winner viability curve and the coexistence curve. Indeed, the condition
ηB/βB < ln(2) is equivalent to the condition that the A winner viability curve intersects the
coexistence curve for positive βA.

Cross Section III In Cross Section III, the point (βB, ηB) satisfies λB < 1/2. Hence, under
the coexistence curve, where B-type cells are the winners, all cell types go extinct. Above
the coexistence curve, we find the same regions as in Cross Section II. Because cell type B
would be nonviable in a homotypic environment, we observe that the top right triangular
area is another case of intrinsically nonviable loser cells being rescued by competition, and
is analogous to the wedge-shaped areas in Cross Sections I and II. Again, this area is fully
contained within the indirect competition sector.

Finally, we observe in every cross section that along the neutral competition curve
A-type cells proliferate for the same parameter values that render them viable in a homo-
typic environment. This is because the cells experience the same death signal in neutral
competition as they would in the homotypic case.

161



Table 6.5: Model and simulation parameter values used to estimate the proliferation regimes
for the well-mixed model.

Parameter Cell type A Cell type B

tG 100
c 1
η 0.01, 0.02, . . . , 0.25

 0.2
0.2

 ,  0.2
0.8

 ,  0.1
0.4


β 0.05, 0.10, . . . , 0.95

Initial cell count 50 50
Simulation end time 10 000
Minimum cell count 10
Maximum cell count 1 000
Nsim 50

6.7.4 Computational validation

Figure 6.8 shows the predicted proliferation regimes for three representative cross sections
in (βA, ηA)-space. Here, we validate these results by estimating the survival frequency in
each of the cross sections using a Monte Carlo method and comparing them to predictions.

Parameter choice We followed the same approach as in Section 6.4.2 (Parameter choice,
page 138), except that we chose parameters for cell type B corresponding to the cross
sections defined in Section 6.7.3. The parameters are listed in Tables 6.5 and 6.6 for the
well-mixed and vertex models, respectively.

For the well-mixed model, we ran 50 simulations for every unique parameter set, so
the total number of simulations is 25 × 19 × 3 × 50 = 71 250. For the vertex model, we
additionally combined every parameter set with two different initial conditions, and ran 20
simulations per unique combination of parameter set and type of initial conditions. Hence,
the total number of simulations is 12 × 9 × 3 × 2 × 20 = 12 960.

Initial conditions See Initial conditions in Section 6.4.2 (page 139).

Termination conditions We set a minimum cell count of 10, a maximum cell count of
1 000, and a simulation end time of 10 000. We do not terminate the simulation when the
population becomes homotypic because we are interested in the long-term behaviour of the
model.
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Table 6.6: Model and simulation parameter values used to estimate the proliferation regimes
for the vertex model.

Parameter Cell type A Cell type B

tG 100
c 1
η 0.02, 0.04, . . . , 0.24

 0.2
0.2

 ,  0.2
0.8

 ,  0.1
0.4


β 0.1, 0.2, . . . , 0.9

Initial cell count 50 50
Pattern random, segregated
Simulation end time 10 000
Minimum cell count 10
Maximum cell count 1 000
Nsim 20

Data processing We computed the estimated heterotypic survival frequencies ξA|B and
ξB|A using Equations (2.13) and (2.14), respectively3.

Data visualisation We visualised ξA|B and ξB|A for each cross section using heat maps. We
are interested in the regions where the heterotypic survival frequencies are below or above
1/2, so we set the colour map range to [0, 1], with central value 1/2. Hence, red and blue
regions correspond to survival frequencies above and below 1/2, respectively.

The results are given in Figure 6.9 for the well-mixed model. The results for random
and segregated initial conditions in the vertex model are given in Figures 6.10 and 6.11,
respectively.

Computational materials and methods See Computational materials and methods in
Section 2.3.1 (page 36) for the vertex model and in Section 4.4 (page 77) for the well-mixed
model.

6.7.5 Results

Well-mixed model The left and right columns in Figure 6.9 show the survival frequency
for cell types A and B, respectively. Comparing this with Figure 6.8, we see an excellent
agreement between simulations and predictions. This includes the wedge-shaped region

3See Section 6.4.2 (Data processing, page 140).
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Figure 6.9: Estimated survival frequency of cell types A and B using the well-mixed model.
The left column displays the estimated survival frequency of cell type A, ξA|B, defined in
Equation (6.41). The right column displays the estimated survival frequency of cell type B,
ξB|A, defined in Equation (6.42). All curves are the same as in Figure 6.8.
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in Cross Section II between the coexistence curve and the A loser viability curve, where
intrinsically nonviable A-type loser cells are rescued by competition, as well as the region
between the A winner viability curve and the coexistence curve, where intrinsically viable
B-type cells are rendered nonviable by nonviable A-type winner cells. We see some slight
deviations for high βA values in Cross Sections II and III, with red regions crossing over
the A loser viability curve (Cross Section II) and the coexistence curve (Cross Section III).
However, overall the observed proliferation regimes match predictions remarkably well.

Vertex model In Figure 6.10, where we plotted the results for random initial conditions,
we can roughly make out the same proliferation regimes as in the well-mixed case. However,
the observed contours are shifted with respect to predictions. Moreover, some distinctions
are blurred, such as the area under the A winner viability curve in Cross Section II for
cell type A. Here, we expected a blue region directly under the A winner viability curve,
followed by a red region in the wedge-shaped area under the coexistence curve. However,
we see a continuation of the red region above the A winner viability curve in the former, and
a transition to the blue region in the bottom right corner in the latter. Particularly for high
βA, we see red regions for cell type A in all cross sections that extend below their predicted
contours.

In Figure 6.11, where we plotted the results for segregated initial conditions, we see
large deviations from the predicted proliferation regimes. In particular, there is no blue
region in Cross Section II and no red region in Cross Section III for cell type B. Moreover,
the boundary between red and blue for cell type A roughly follows the A winner viability
curve. When we compare the plots for cell type A with our estimation of the homotypic
proliferation regimes in Figure 5.8, we see that A-type cells behave almost as if they were in
a homotypic environment. This is also the case for cell type B, since the homotypic survival
probability is greater than 1/2 for Cross Sections I and II, and less than 1/2 for Cross
Section III, and, accordingly, Cross Sections I and II are coloured red and Cross Section
III is coloured blue, regardless of the parameters of cell type A. This shows that spatial
segregation results in cells largely behaving as if they were in a homotypic population.

6.8 Classification of competition regimes

So far, we have characterised the proliferation regimes for homotypic populations (Sec-
tion 5.4), classified different types of competitive interactions (Section 6.6), and derived the
proliferation regimes for heterotypic populations (Section 6.7). In this section, we combine
these classifications to identify biologically relevant competition regimes for the G2 death
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Figure 6.10: Estimated survival frequency of cell types A and B using the vertex model
and the random initial pattern. The left column displays the estimated survival frequency
of cell type A, ξA|B, defined in Equation (6.41). The right column displays the estimated
survival frequency of cell type B, ξB|A, defined in Equation (6.42). All curves are the same
as in Figure 6.8.
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Figure 6.11: Estimated survival frequency of cell types A and B using the vertex model and
the segregated initial pattern. The left column displays the estimated survival frequency
of cell type A, ξA|B, defined in Equation (6.41). The right column displays the estimated
survival frequency of cell type B, ξB|A, defined in Equation (6.42). All curves are the same
as in Figure 6.8.
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Figure 6.12: Diagrams of competition regimes for Cross Sections I and II. The green dot
corresponds to the point (βB, ηB). The labels W and L are used to refer to the winner and
loser cell types, respectively, i.e. W = A, L = B for ∆,A|B > 0 and W = B, L = A for ∆,A|B < 0.

: intrinsic viability. : cell competition. : complete cell competition. : incomplete
cell competition. : indirect cell competition. See also Table 6.7 for the legend.

Table 6.7: Classification of competition regimes. The competition regime (bolded) can be
subdivided in two ways: loser elimination and loser survival regimes (top section), or cell
competition, neutral competition, and indirect competition regimes (bottom section). The
underlined conditions are implied by the other conditions on the same row. The legend
column maps the regimes to areas and curves plotted in Figure 6.12.

Regime λW , λL ∆,W |L ξ∞L|W ∆=
L|W Legend

Intrinsic viability > 1/2 - - -
Coexistence > 1/2 = 0 - -
Competition > 1/2 > 0 - - -

Loser elimination > 1/2 > 0 ≤ 1/2 - -
Loser survival > 1/2 > 0 > 1/2 - -

Cell competition > 1/2 > 0 - < 0
Complete cell competition > 1/2 > 0 < 1/2 < 0
Critical cell competition > 1/2 > 0 = 1/2 < 0
Incomplete cell competition > 1/2 > 0 > 1/2 < 0

Neutral competition > 1/2 > 0 > 1/2 = 0
Indirect competition > 1/2 > 0 > 1/2 > 0
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signal model.
The first condition for cell competition is that both competing cell types are intrinsically

viable, i.e. λA, λB > 1/2. In order to satisfy λA > 1/2, we only consider the parameter space
above the homotypic viability curve, as shown in Figure 6.12. To satisfy the viability of cell
type B, we only consider cross sections that satisfy λB > 1/2. In particular, this means that
Cross Section III, defined in Section 6.7.3, is excluded, so we plot only Cross Sections I
and II in Figure 6.12. We can verify the condition λB > 1/2 visually by checking whether
the neutral coexistence point (where βA = βB and ηA = ηB) is above the homotypic viability
curve. We define this regime as the intrinsic viability regime:

λA, λB >
1
2
. (6.74)

The second condition for cell competition is that there are winners and losers. In Section 6.4,
we defined this as a nonzero heterotypic survival difference, i.e. ∆,A|B , 0. This distinction
splits the intrinsic viability regime into the coexistence regime:

λA, λB >
1
2
∧ ∆,A|B = 0 , (6.75)

and the competition regime:

λA, λB >
1
2
∧ ∆,A|B , 0 . (6.76)

The competition regime can further be subdivided according to which cell type is the winner.
The parameter space is symmetric with respect to swapping cell type labels, so we could
choose cell type A as the winner, ∆,A|B > 0, or cell type B as the winner, ∆,A|B < 0, to continue
the discussion and we would obtain the same parameter regimes in either case. What matters
most here is that there are winner and loser cell types, rather than which cell type is the
winner or loser. To emphasise this fact in the rest of this section, we relabel the winner
cell type as W and the loser cell type as L. Concretely, this means that W = A, L = B for
∆,A|B > 0 and W = B, L = A for ∆,A|B < 0, such that ∆,W |L > 0 is true by construction.

As we saw in Section 6.7, when the winner cell type is intrinsically viable, there are two
possible outcomes for the loser cell type. The losers are either eliminated if ξ∞L|W ≤ 1/2 or
they survive if ξ∞L|W > 1/2. Hence, we define the loser elimination regime as

λW , λL >
1
2
∧ ∆,W |L > 0 ∧ ξ∞L|W ≤

1
2
, (6.77)
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and the loser survival regime as

λW , λL >
1
2
∧ ∆,W |L > 0 ∧ ξ∞L|W >

1
2
. (6.78)

The third condition for cell competition is that losers are eliminated. Hence, we could
simply equate the loser elimination regime with cell competition and stop there. However,
by also considering the type of competitive interaction, we can further refine our notion of
cell competition. In particular, we see in Figure 6.12 that the neutral competition curve,
defined by ∆=

L|W = 0, runs through the loser survival regime. Hence, we define the neutral
competition regime as

λW , λL >
1
2
∧ ∆,W |L > 0 ∧ ∆=

L|W = 0 . (6.79)

In this regime, both cell types experience neither harm nor benefit from the presence of the
other cell type. The neutral competition curve separates the loser survival regime into two
subregimes where ∆=

L|W < 0 and ∆=
L|W > 0, respectively. In the case of ∆=

L|W < 0, the fitness
of losers is reduced by the winners, but not enough to cause loser elimination. Therefore,
we define this as the incomplete cell competition regime4:

λW , λL >
1
2
∧ ∆,W |L > 0 ∧ ξ∞L|W >

1
2
∧ ∆=

L|W < 0 . (6.80)

This suggests a partition of the loser elimination regime into the complete cell competition
regime:

λW , λL >
1
2
∧ ∆,W |L > 0 ∧ ξ∞L|W <

1
2
, (6.81)

where loser elimination is complete, and the critical cell competition regime:

λW , λL >
1
2
∧ ∆,W |L > 0 ∧ ξ∞L|W =

1
2
, (6.82)

which is the threshold regime between complete and incomplete cell competition. This
regime maps on to the loser viability curve defined in Section 6.7. The shared property
of complete, critical, and incomplete cell competition is that the winners have a negative
impact on the losers. We group these regimes under the cell competition regime:

λW , λL >
1
2
∧ ∆,W |L > 0 ∧ ∆=

L|W < 0 . (6.83)

4We colour the names of competition regimes with the same colours used to draw them in Figure 6.12.
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Lastly, on the other side of the neutral competition curve we have ∆=
L|W > 0. This means that

loser cells have a higher fitness compared to the homotypic case. The competitive outcome
is therefore not caused by upregulating loser cell death, but rather by winners being less
sensitive to death signals. This corresponds with an indirect competitive interaction, so we
define this as the indirect competition regime:

λW , λL >
1
2
∧ ∆,W |L > 0 ∧ ∆=

L|W > 0 . (6.84)

Figure 6.12 shows the competition regimes for Cross Sections I and II, and Table 6.7
summarises the competition regimes.

The competition regimes also let us specify different types of winners and losers. In
particular, we define complete winners, critical winners, incomplete winners, neutral win-

ners, and indirect winners as the winner cell types in the respective competition regimes,
and direct winners as the winner cell types in the cell competition regime. Furthermore,
we define analogous terms for the loser cell types. We note that only critical and complete
losers are eliminated by the competitive interaction, while the other types of losers remain
viable.

6.9 Discussion

In this chapter, we applied the G2 death signal model to heterotypic populations with the
constraint that the cell types can only vary in their death clock parameters. Considering only
the exponential cell cycle model, we extended the theoretical framework of the previous
chapter. Concrete predictions include the signs of the heterotypic and homotypic survival
differences, which we used to classify different types of competitive interactions, and the
asymptotic survival probability, which enabled us to characterise proliferation regimes.
These predictions were validated using simulations, with great success for the well-mixed
model and mixed results for the vertex model. Finally, we used the developed framework
to identify and classify the biologically relevant competition regimes that emerge from the
heterotypic G2 death signal model.

The main achievement of this chapter is that we were able to reproduce the features of cell
competition without assigning a priori winner/loser identities. To interpret model predictions
we rigorously defined criteria for what it means to be a winner or a loser (heterotypic
survival difference), for distinguishing direct from indirect competition (homotypic survival
difference), and for distinguishing loser elimination from loser survival (asymptotic survival
probability). Not only did we succeed in reproducing the defining characteristics of cell
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competition by varying model parameters, but also we discovered a range of competitive
outcomes in the process. This enabled us to refine our notion of cell competition into
complete, critical, and incomplete cell competition.

Winner/loser status is determined by the relative tolerance to death signals Assum-
ing that the total cell cycle time is the same for both competing cell types, i.e. tG,A = tG,B,
relative proliferative success is determined solely by the heterotypic survival difference, ∆,A|B.
We say that the cell type with the higher survival probability is the winner cell type, because
those cells become more abundant than the other cell type, which we call the loser cell type.

In Section 6.4, we showed that i) the heterotypic survival difference is invariant with
respect to the system state and only depends on model parameters, and ii) winner/loser
status is predicted by differences in tolerance to the death signal. In particular, the cell type
that has a higher tolerance to death signals, i.e. a higher η/β, becomes the winner.

This result is based on the assumption that cell cycle phases are ergodic, i.e. the spatial
distribution of cell cycle phases mirrors the temporal distribution of cell cycle phases, and
that the system is well-mixed, i.e. the local distribution of cell cycle phases mirrors the
global distribution of cell cycle phases. Together, these assumptions mean that both cell
types are experiencing the same death signal, such that the heterotypic survival difference is
determined by sensitivity to the common death signal.

Loser elimination is determined by the relative emission rate of death signals The
winner cell type, by definition, becomes more abundant. However, this is not sufficient for
cell competition, which requires that losers are eliminated from the population. Consider,
for instance, neutral competition, where two cell types have the same values for β and vary
only in their η parameters. In Section 6.8, we showed that neutral competition implies loser
survival, i.e. ξ∞L|W > 1/2, as indicated in Table 6.7. This is because neutral winners and losers
experience the same level of death signal as in their respective homotypic environments.
Since the losers are assumed to be intrinsically viable, they continue to be viable when
entering into a neutral competition environment.

As winners outnumber losers over time, the death signal experienced throughout the
population eventually becomes dominated by the homotypic death signal of the winner
cell type. In Section 6.8, we observed that loser elimination, ξ∞L|W < 1/2, implies direct
competition, i.e. ∆=

L|W < 0. Moreover, in Section 6.5, we showed that direct competition is
based on differences in the emission rate of the death signal, 1 − β. Therefore, the winner
must emit death signals at a higher rate than the loser in order to eliminate the loser.

Therefore, the model predicts that two conditions must be satisfied in order for cell
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competition between two homotypically viable cell types to occur. Firstly, one cell type
must have a lower sensitivity to the death signal than the other cell type to become the
winner. Secondly, the winners must emit death signals at a higher rate than the losers in
order to decrease loser viability. When these two conditions are satisfied, we say that cell
competition is taking place. However, these conditions are necessary but not sufficient for
loser elimination, the defining feature of cell competition. The final condition is that the
rate of emission of the death signal by the winner is sufficiently high to render the losers
nonviable. In this case, we say that complete cell competition has occurred. This regime in
particular is designated in the literature as cell competition.

Tolerance and emission Having identified the tolerance to and emission rate of death
signals as the fundamental cell properties driving cell competition, here we present an
alternative formulation of the model parameters that more directly expresses these properties.
In addition, we reinterpret the competition regimes, defined in Section 6.8, in terms of these
transformed parameters.

We define the tolerance of cell type X as

η̃X ≡
ηX

ln(2)βX
=

T†,X
ln(2)cXtG1,X

, (6.85)

where we use the factor ln(2) to simplify the expressions below. In Equation (6.85), we
expressed the tolerance in terms of the dimensional parameters T†,X, cX, and tG1,X by
substituting Equations (6.3) and (6.29). As we saw in Section 4.3, the ratio T†/c is the death
time for a cell experiencing a constant death signal c (see Equation (4.8)). Hence, T†,X/cX

can be interpreted as the death time of a cell whose neighbours are all in G2 phase, such that
the proportion of neighbours in G2 phase is unity, g(t) = 1, and the G2 death signal is equal
to fX(t) = cXg(t) = cX.

Therefore, the tolerance, η̃X, can be interpreted as the ratio of this death time, T†,X/cX,
over the average G1 duration, tG1,X. For a fixed tG1,X, increasing the death time makes
it less probable for a cell to hit the death time in G1 phase, thus increasing its tolerance
to death signals. For a fixed T†,X/cX, increasing tG1,X extends the average duration of G1
phase, making it more likely for a cell to reach the death time while in G1 phase, and hence
decreasing the cell’s tolerance to death signals.

We define the emission of cell type X as

dX ≡ 1 − βX =
tG2,X

tG,X
, (6.86)
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where we used Equation (6.3) to express the emission in terms of tG2,X and tG,X. The emission
is thus interpreted as the average fraction of time spent in G2 phase, which is the same as
the ergodic approximation to g(t) for homotypic populations, as expressed in Equation (5.7).
This expresses that the more time that cells spend in G2 phase on average, the more death
signals that they emit.

The transformed parameters η̃X and dX allow us to characterise the competition regimes
in terms of model parameters using simple and intuitive expressions. We formulate the
intrinsic viability condition, 1/2 < λX, using η̃X and dX by substituting Equation (5.14) and
rearranging to give

1
2
< λX ⇔ 1 − βX <

ηX

ln(2)βX
⇔ dX < η̃X , (6.87)

where we substituted the definitions of tolerance and emission in the last step. Note that
the factor ln(2) is absorbed by η̃X. Equation (6.87) expresses that cells must have a higher
tolerance than emission in order to be intrinsically viable.

For heterotypic populations with cell types A and B, winners and losers emerge if
∆,A|B , 0. Using the convention of Section 6.8 to denote the winner and loser cell types using
W and L, respectively, we express the condition for competition, 0 < ∆,W |L, by substituting
Equation (6.37) to give

0 < ∆,W |L ⇔ 0 <
ηW

βW
−
ηL

βL
⇔ η̃L < η̃W . (6.88)

This expresses that winners have a higher tolerance to death signals than losers. Similarly,
we express the condition for direct competition, ∆=

L|W < 0, by substituting Equation (6.57)
to give

∆=
L|W < 0 ⇔ (1 − βL) − (1 − βW) < 0 ⇔ dL < dW . (6.89)

This expresses that winners must have a higher emission than losers for the competition
to be considered a form of direct competition. We can also express the loser elimination
condition, ξ∞L|W < 1/2, by substituting Equation (6.65) and rearranging to give

ξ∞L|W <
1
2
⇔

ηL

ln(2)βL
< 1 − βW ⇔ η̃L < dW . (6.90)

Equation (6.90) expresses that loser elimination occurs when the winner emission is higher
than the loser tolerance.

The defining features of cell competition are that i) winners and losers are intrinsically vi-
able and ii) losers are eliminated from the population. We can express the first property using
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Equation (6.87) as dW < η̃W and dL < η̃L, and the second property using Equation (6.90) as
η̃L < dW . Combining these expressions, we summarise the hallmarks of cell competition
in a single statement:

dL < η̃L < dW < η̃W , (6.91)

which can be read as

loser emission < loser tolerance < winner emission < winner tolerance . (6.92)

This is the regime that we classified in Section 6.8 as complete cell competition. Equa-
tion (6.91) expresses the intrinsic viability of winners and losers, as well as loser elimination.
In addition, it also shows the properties implied by complete cell competition, such as direct
competition, dL < dW , and that winners have a higher tolerance than losers η̃L < η̃W .

Similarly, we can derive that critical cell competition requires that η̃L = dW , i.e. winner
emission is equal to loser tolerance, and that incomplete cell competition requires η̃L > dW .
To summarise, we express the competition regimes in terms of tolerance and emission as

Cell competition: dL < η̃L < η̃W ∧ dL < dW .

Complete cell competition: dL < η̃L < dW < η̃W .

Critical cell competition: dL < η̃L = dW < η̃W .

Incomplete cell competition: dL < dW < η̃L < η̃W .

Neutral competition: dL = dW < η̃L < η̃W .

Indirect competition: dW < dL < η̃L < η̃W .

These relationships can also be verified visually in Figure 6.13, where the competition
regimes are plotted in the transformed parameter space (dA, η̃A)-space.

Partial inhibition of apoptosis can prevent elimination We learned in Section 6.7 that
a cell type for which η/β > ln(2) cannot be eliminated by any competing cell type (see
Cross Section I in Figure 6.8). This is also reflected in the fact that the complete and
critical cell competition regimes are absent above the coexistence line in Cross Section I
(see Figure 6.12). Since β is constrained to the open interval (0, 1), a sufficient condition for
being immune to elimination is η ≥ ln(2).

As discussed above, we can interpret η/β as the cell’s tolerance to death signals. We
can express the condition for immunity to elimination using the transformed parameter
η̃ as η̃ > 1. Hence, the condition η̃ > 1 expresses a lower bound for η̃ such that the cell
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Figure 6.13: Diagram of competition regimes using the transformed parameters η̃X, defined
in Equation (6.85), and dX, defined in Equation (6.86). The green dot corresponds to
the point (dB, η̃B). See Table 6.7 for the legend. The symbol ξ∞L|W is used to refer to the
asymptotic survival probability of the loser cell type, i.e. cell type B for ∆,A|B > 0 and cell
type A for ∆,A|B < 0.

type cannot be eliminated through competition. The underlying reason, as expressed by
the tolerance and emission, is β is constrained as 0 < β < 1, means that the emission
is constrained as 0 < d < 1. The upper bound on emission of death signal translates to
a lower bound on the tolerance such that elimination is impossible. Hence, our model
shows that partial inhibition of apoptosis can be sufficient to preclude elimination through
cell competition. Since evasion of apoptosis is one of the hallmarks of cancer [16], this
observation may have implications for super-competition and tumour formation.

Spatial mixing is required for cell competition In Section 6.4, we remarked that we
observed smaller heterotypic survival differences in the vertex model than in the well-mixed
model. Similarly, in Section 6.5, we observed smaller homotypic survival differences for
the vertex model than for the well-mixed model. In addition, this effect was stronger for
segregated initial conditions than random initial conditions. Finally, in Section 6.7 we saw
that the loser elimination regime was smaller than predicted for random initial conditions,
and completely absent for segregated initial conditions. In fact, comparing the heterotypic
survival frequencies in Section 6.7 with the homotypic survival frequencies in Section 5.4,
we see that the segregated cell populations behave essentially the same as in homotypic
conditions.

The reason for this discrepancy between the predicted proliferative behaviour and the
results of the vertex model is that the assumption of a well-mixed population, which we used
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to derive the ergodic approximation to the heterotypic survival probability, is not respected
in the vertex model. In particular, when cell types are spatially segregated, cells interact
more often with cells of the same type rather than with cells of the other type. Therefore, the
assumption that the local cell neighbourhood reflects the whole population does not hold. In
the well-mixed model, on the other hand, this assumption is satisfied by construction, which
explains why the well-mixed results agree better with predictions.

The proliferation regimes derived in Section 6.7 therefore do not describe the global
behaviour of a tissue with competing cell populations, but rather the local behaviour at clone
boundaries where multiple cell types meet and exchange death signals such that the system
can locally be considered well-mixed. The local behaviour within clones, on the other hand,
can be described by the proliferation regimes of homotypic populations because cells only
interact with cells of the same type. Therefore, the degree of competition is dependent on
the degree of heterotypic contact between cell types, i.e. spatial mixing is required for cell
competition. This observation is also seen in vivo [206] and has been replicated in other
cell-based models of cell competition [78].
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Chapter 7

Discussion

7.1 Summary

In Chapter 1, we reviewed cell competition and identified a lack of models that investigate
the principles determining winner/loser status. In particular, currently published models
assert a priori winner/loser identities and therefore cannot explain how winner/loser status
is determined. This motivated the research aim of this thesis: to study the emergence
of winners and losers using mathematical modelling. To achieve this aim, we stated the
following research objectives in Section 1.1:

Research Objective 1: construct a model of cell competition that produces winners and
losers as an emergent phenomenon.

Research Objective 2: use this model to identify and study the key factors driving win-
ner/loser identification.

Research Objective 3: use predictions from the model to propose experiments for validat-
ing the model.

In this section, we summarise the thesis and the progress made on these research objectives.
Chapter 2 describes our first attempt at achieving Research Objective 1. We investigated

the hypothesis that differences in the mechanical parameters of a heterotypic population in a
vertex model are sufficient to reproduce the dynamics of cell competition. In particular, we
ran a large parameter sweep varying mechanical parameters of one cell type while keeping
the parameters of the other cell type constant. Although we observed winners and losers in
the sense that some cell types were more successful at proliferating, homotypic simulations
showed that these fitness differences were due to intrinsic viability, and not competitive
interactions.
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Thus, we were unable to reproduce cell competition by varying mechanical parameters
alone. This result agrees with reports in the literature that cell competition requires an
active mechanism of cell death, such as apoptosis. Therefore, in the following chapters,
we investigate a different hypothesis to achieve Research Objective 1: cell competition is
mediated through the intercellular exchange of death signals.

In Chapter 3, we constructed the death clock framework to explore this hypothesis.
The main assumptions underlying this framework are that i) cells perceive death signals
from their surroundings; ii) cells trigger apoptosis if the accumulated death signal reaches a
threshold; and iii) apoptosis can only be initiated in the stochastic G1 phase. An important
distinction with current models of cell competition that are based on active cell death is that
the death clock mechanism is active in all cells, and not only losers.

We also discussed the cell-based models that are used to implement the death clock
framework. Specifically, we implemented the death clock mechanism in the vertex model
using Chaste’s object-oriented interface, and constructed a well-mixed model de novo. The
vertex model lets us study the spatial dimensions of cell competition at the cost of expensive
simulations. The well-mixed model, on the other hand, is much cheaper to run and has better
analytical tractability, but cannot be used to study the spatial aspects of cell competition.

In Chapter 4, we analysed the simplest possible death clock model: the constant death
signal model. We related the model’s behaviour to that of a discrete-time birth–death Markov
chain to establish different proliferation regimes, and found that population extinction and
explosion are the only possible outcomes. In addition, we used cell-based simulations
to verify these predictions. Although the constant death signal model cannot reproduce
cell competition, the chapter provides an important theoretical foundation for the research
carried out in the next two chapters.

In order to achieve Research Objective 1 with the death clock framework, we hypothesise
a death signal that is emitted by cells in G2 phase as a mechanism for cell competition.
In Chapter 5, we characterised the behaviour of the G2 death signal model for homotypic
populations. In particular, we derived the parameter regimes for homotypic viability,
and validated the predictions with cell-based simulations. This is significant because the
precondition for cell competition is that the competing cell types are viable in homotypic
conditions.

In Chapter 6, we studied the G2 death signal model in heterotypic populations. Through
theoretical predictions and cell-based simulations, we found that the G2 death signal model
is indeed able to reproduce the hallmarks of cell competition, thus achieving Research
Objective 1. In particular, we discovered parameter regimes in which two intrinsically
viable cell types compete such that only one cell type remains. Moreover, we also describe
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closely related parameter regimes representing other forms of competition. Finally, we
identified tolerance to death signals and emission of death signals as the main determinants
of winner/loser status, thus achieving Research Objective 2.

In Section 7.2, we discuss the implications of the model from a biological perspective
and make suggestions for how it can be experimentally validated, thus achieving Research
Objective 3.

7.2 Discussion

The tolerance–emission model of cell competition Our work makes the following pre-
diction: cell competition requires that winners have a higher tolerance to death signals and

a higher rate of death signal emission than losers. As we showed in Section 6.9, this follows
from the intrinsic viability of the winner, i.e. dW < η̃W , the intrinsic viability of the loser,
i.e. dL < η̃L, and the loser elimination condition, i.e. η̃L < dW . The intuitive interpretation
is that winners emit death signals that are tolerated by the winners, but not by the losers,
hence losers must have a lower tolerance to death signals. Moreover, losers are viable when
exposed to their intrinsic emission of death signals, but are eliminated by the emission of
winners, hence the winners must have a higher emission of death signals than losers.

Importantly, our prediction suggests that mutations which affect only the tolerance, only
the emission, or neither do not create a cell type that outcompetes or is outcompeted by
wild-type cells. This explains why some mutations result in cell competition and others do
not [42]. Apoptosis inhibition can be regarded as a mutation which affects tolerance but not
emission. Consistent with our model-based predictions, it has been shown in experiments
that inhibiting apoptosis prevents endogenous cell competition from taking place [42, 53].
In addition, inhibiting apoptosis in a complete loser1 prevents loser elimination [53].

A question that arises from this prediction is whether there exist any mutations that
increase emission but not tolerance? If there are, they would be difficult to identify, because
our theory suggests that such mutants would be intrinsically nonviable. However, our model
suggests that such a mutation may be successful when paired with apoptosis inhibition.
This suggests that we may look for emission-enhancing mutations in apoptosis-inhibited
cells. Our framework predicts that the combination of these two mutations would create a
super-competitor.

Experimental support for the tolerance–emission hypothesis Experimental evidence
in Myc-based cell competition supports the tolerance–emission hypothesis. In [207], the

1See end of Section 6.8 (page 171) for the definition of a “complete loser”.
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authors demonstrate that the ligand Spätzle is necessary for the elimination of loser cells
in the Drosophila wing disc when outcompeted by Myc super-competitors. They thus
establish that Spätzle is, in their words, a “killing signal”. However, they also observe that
Spätzle is produced continuously in wild-type conditions, but in quantities that are too small
to induce cell death in wild-type cells. The production of Spätzle is upregulated in Myc

super-competitors, indicating a higher emission of death signals. Furthermore, enhanced
Spätzle signalling is responsible for inducing cell death in loser cells, but does not induce
cell death in super-competitors, which indicates a higher tolerance in winners.

The death signal in this case is mediated through a death ligand. We did not model
diffusible death ligands in this thesis, but we hypothesise that the tolerance–emission model
applies to death ligand-mediated cell competition as well. The winners and losers should be
able to tolerate their own rate of death ligand secretion for intrinsic viability, and the loser
cell type should not tolerate the winner cell type’s intrinsic death ligand level, such that the
premises of the tolerance–emission model remain unchanged.

An important difference with contact-based death signals, however, is that death ligands
can diffuse away from the heterotypic boundary. As discussed in Section 6.9, we assume
that the populations are well-mixed in the derivation of the competition regimes, which
limits the scope of our analysis to interactions at heterotypic boundaries, where multiple cell
types mix and exchange death signals. A diffusible death ligand would increase the area
where the death signal can be considered well-mixed to bands centred on the heterotypic
boundaries. This tolerance–emission model may explain therefore why we observe loser
cell death at a distance from the winner clone in Myc cell competition and not in Minutes

cell competition. Since Myc super-competitors secrete death ligands at a higher rate than
wild-type cells, the death ligand potentially travels further away from the winner clone.

The influence of proliferation rates A potential limitation of our model is that we did
not consider differential proliferation rates, i.e. κA/B , 1. Differences in proliferation rates
are often associated with cell competition, with Myc-transformed cells having a higher
proliferation rate and Minutes-transformed cells having a lower proliferation rate. Indeed,
differential proliferation rates could alter the relative abundance of cell types. For example,
a cell type with a lower survival probability can become more abundant than another cell
type if it also has a much shorter cell cycle time. Hence, this could affect which cell type
becomes more abundant. However, without increasing emission the faster-growing cell type
cannot create the conditions for loser elimination, no matter how fast they grow.

Furthermore, not all mutations that increase proliferation rates result in cell competition
[42]. Our hypothesis suggests that such mutations likely do not result in cell competition
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because they do not affect the tolerance and emission of death signals. Mutations that only
increase proliferation rates can be considered a form of neutral competition, where cells
become more abundant without affecting death signal emission and thus without increasing
cell death in wild-type cells.

The function of cell competition The question remains, however, why are mutations
associated with cell competition then so closely linked with proliferation rates? This is not
a question that we can answer within the scope of this thesis, but we speculate that it is
related to the function of cell competition. It has been proposed that cell competition is a
mechanism for tissue homeostasis, eliminating unfit cells to improve overall tissue health.
There is a cost associated with cell competition, however, both in terms of the death signal
machinery, and in terms of eliminating cells that i) are viable and ii) the body has already
expended resources on.

Hence, the gain from cell competition should compensate for this cost. In this respect,
it is interesting to note that cell competition takes place during development, where it is
necessary to create a large number of cells in a short amount of time. For example, the
Drosophila wing disc expands from 50 to 50 000 cells in the span of four days [208]. During
mouse embryogenesis, the epidermis, where cell competition has also been observed [59],
expands its surface area 30-fold.

Since our hypothesis suggests that differential proliferation rates are not the mechanism
of cell competition, we conjecture that they are the target of cell competition, in the sense
that cell competition aims to eliminate cells that are worse than their peers at dividing
quickly. From an evolutionary perspective, cell competition may only evolve in systems
where the ability to contribute usefully to the tissue can be linked to a death signal. In
this respect, it is interesting to note that the death signal is linked to protein synthesis in
Minutes-based competition, since protein synthesis is an important process in rapid cell
division and growth.

Experimental validation of the tolerance–emission hypothesis In our model, inhibit-
ing apoptosis corresponds to taking the limit η̃ → ∞, such that the survival probability
approaches unity. Our model correctly predicts that apoptosis inhibition in the loser cell type
prevents loser elimination, which agrees with experiments [42, 53]. More specifically, taking
η̃L → ∞ moves the system from complete cell competition into the indirect competition
regime with complete winners becoming indirect losers and complete losers becoming
indirect winners. In addition, our model correctly predicts that apoptosis inhibition in the
winner cell type does not alter the outcome of cell competition, which has also been verified
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experimentally [42]. However, since these experiments were available during the construc-
tion of the model, these are only validations in the weak sense that the model reproduces
known data. The true test of the model will be to extrapolate to experimental conditions that
so far have not been tested.

If we relax the condition of loser viability, there are more proliferation regimes available
to us, as described in Section 6.7. A particularly interesting regime is nonviable loser rescue.
This is an example of indirect competition where an intrinsically viable winner, say cell type
A, with a lower emission than the loser creates the conditions of viability for a loser cell
type, say cell type B, that is intrinsically nonviable. In a tissue, we would observe this as
small clones of cell type B surviving in a background of cell type A, with cell type B being
nonviable when the whole tissue is composed of them.

However, conducting such an experiment would require looking for mutations that have
not yet been identified. Moreover, there is the added difficulty that cell type B is not viable
on its own. We therefore suggest an alternative experiment that simulates the intrinsic
nonviability conditions by running the experiment in a high emission background. Consider
a triple co-culture where cell type C outcompetes cell type B and cell type B outcompetes
cell type A. Both cell types A and B are eliminated in a C-type background, simulating
intrinsic nonviability. If we inhibit apoptosis in B, we expect B to survive and A to be
eliminated. This is not different to the situation described above where apoptosis inhibition
rescues a viable loser cell type from elimination.

However, when we inhibit apoptosis in cell type A (and assuming that inhibiting apopto-
sis does not affect emission), then we expect the apoptosis-inhibited A-type cells to survive
and create a low emission environment in which B-type cells can also survive. We expect
this to be the case because B-type cells outcompete normal A-type cells, which, according
to our hypothesis, means that A-type cells have a lower emission than B-type cells and that
B-type cells can tolerate the A-type emission of death signals. Furthermore, we expect that
B-type cells can only survive in the apoptosis-inhibited A-type clones, and not outside of
them.

7.3 Future work

Exploring the role of relative proliferation rates In this chapter, we assumed that
tG,A = tG,B for the sake of simplicity. This means that the autonomous proliferation rates
are identical, which allowed us to characterise the proliferative behaviour of heterotypic
populations purely in terms of survival probabilities. If we relax this assumption and let
the ratio κA/B = tG,A/tG,B be less or greater than unity, we would expect that the relative
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proliferation rate affects the abundance of cell types, and hence the winner/loser status.
Indeed, preliminary results (not shown) suggest that a shorter total cell cycle time can turn a
loser cell type into a winner cell type, everything else being equal.

Because the proliferation rate does not affect the emission or tolerance, however, there are
some constraints on the types of winners that losers can become and vice versa by changing
κA/B. For instance, suppose that cell type A is a complete loser, i.e. dA < η̃A < dB < η̃B,
when the cell cycle times are equal, i.e. κA/B = 1. If we change tG,A such that κA/B � 1 while
keeping everything else equal, and assume that cell type A becomes the winner instead, then
cell type A must be an indirect winner because it has a lower intrinsic death signal than cell
type B. Future work is needed to characterise the conditions for which changing κA/B can
switch winner/loser status and to verify this with simulations.

Extending the death clock framework The death signal model is very flexible and can
be implemented in any continuous-time cell-based model that has rules for division and
apoptosis. In addition, any stochastic distribution with non-negative support can be used for
the stochastic G1 phase. Most importantly, different death signals can be used to represent
different hypothesised mechanisms of cell competition, such as diffusible death ligands and
mechanical compression. We discuss three such death signals in the following paragraphs.

Constant emission death signal The transformed parameters defined in Section 6.9
suggest a simpler model where every cell α emits death signals to its neighbours at a
constant rate dα, instead of only in the G2 phase. The death signal received by a particular
cell is then obtained by averaging the emitted death signals of its neighbours. We call this
the constant emission death signal model, or the constant emission model for brevity.

Preliminary theoretical analysis (not shown) demonstrates that the homotypic survival
probability and proliferation regimes in homotypic and heterotypic conditions for the
constant emission model can be derived in an analogous manner to the G2 death signal
model (see Figure 7.1). Importantly, the classification of competitive interactions and
competition regimes apply virtually identically to the constant emission model. In particular,
compare the bottom right plot in Figure 7.1 to Figure 6.13.

An important difference, however, is that there is no need to assert ergodicity. In effect,
the purpose of the ergodic approximation is to reduce the time-varying G2 death signal to
a constant rate of emission. The constant emission model obviates the need for such an
approximation, so it is potentially more generalisable. Nevertheless, one should always pick
the most appropriate death signal model based on the particular application and context.
As we saw in Chapter 5, the property of ergodicity in the G2 death signal model, and
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Figure 7.1: Diagrams for the constant emission death signal model with the exponential
cell cycle model. Top left: homotypic survival probability, analogous to Figure 5.1. Top
right: homotypic proliferation regimes, analogous to Figure 5.7. Middle left and right:
cross sections showing heterotypic proliferation regimes, analogous to Figure 6.8. Bottom
left: classification of competitive interactions, analogous to Figure 6.7. Bottom right:
competition regimes, analogous to Figures 6.12 and 6.13.
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the theoretical analysis based on it, is contingent on the cell cycle model. We therefore
hypothesise that the constant emission model is more robust with respect to the cell cycle
model in terms of conforming to the theoretical framework we developed in this thesis.
Future work is needed to validate the theoretical analysis in Figure 7.1 with cell-based
simulations.

Diffusible death ligand Experiments suggest that cell competition in the Drosophila wing
disc is mediated by diffusible death ligands [54, 207, 209]. This suggests implementing
a death clock model where cells produce death ligands (emission) that are perceived by
the cells as a death signal. The well-mixed model could be extended with an ODE model
that models the production and uptake of this ligand by competing cells. In the vertex
model, the production, diffusion, and uptake of the death ligand could be modelled using
a reaction–diffusion model [71, 210]. Future work is needed to implement, analyse, and
simulate a diffusible death ligand model.

Mechanical cell competition The motivation for developing the death clock framework
was the observation that varying mechanical parameters is not enough to reproduce cell
competition in a heterotypic vertex model. However, mechanical parameters may be impor-
tant for mechanical cell competition, in which cells are outcompeted through mechanical
compression [64]. In particular, losers remove themselves from the tissue by apoptosis in
response to mechanical compression. This suggests that mechanical compression could
be modelled as a death signal for cell competition. Tolerance would then correspond to a
cell’s ability to resist compression, while emission would correspond to a cell’s ability to
proliferate and take up space. Future work is needed to implement, analyse, and simulate a
mechanical death signal model.

Emergence of winners and losers Finally, our work shows the value of constructing
models where the winner/loser status is emergent, rather than asserted. In particular, the
methodology used in this thesis can be applied more generally to cell competition models.
The first step is to construct a heterotypic model with two cell types that vary only in their
parameters. The second step is to study the conditions for homotypic viability. The third
step is to study the conditions for heterotypic viability. The fourth step is to combine the
results of the second and third step to characterise the competition regimes. This can be
done either analytically by deriving a survival probability, as we did for the death clock
model, or computationally by running a parameter sweep and classifying simulations based
on viability criteria, as we did in Chapter 2. Future work is needed to apply this general
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framework to study the emergence of winners and losers in other types of models.
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Appendix A

Chaste contributions

As explained in Section 3.3.2, we had to identify and fix certain issues in Chaste in order
to reduce the failure rate of simulations to an acceptable level. The Chaste project uses a
ticketing system to keep track of, and organise, outstanding and resolved issues. We opened
a total of four tickets (3062, 3064, 3065, and 3067), and closed three of them (3062, 3064,
and 3065). In addition, we made a contribution to a pre-existing ticket (2401).

Ticket 3062: Boundary node intersection bug

URL https://chaste.cs.ox.ac.uk/trac/ticket/3062

Background It was already known that in certain situations cells can become concave and
self-intersecting. The intersection swap was implemented to deal with self-intersections by
rearranging the connectivity between the nodes of the self-intersecting cell and its neighbours
[157]. See Figure A.1 for an illustration.

Figure A.1: Illustration of the intersection swap. (a) A convex cell. (b) A concave, self-
intersecting cell. (c) The intersection swap modifies the topology of the intersecting node
to resolve the self-intersection. (d) The intersection swap cannot resolve this type of self-
intersection, as it would result in splitting the cell into two. Figure reproduced from [157]
with permission from Elsevier.
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Problem In principle, intersection swaps are agnostic with respect to whether the in-
tersecting node is an interior node or a boundary node. However, the implementation of
the function PerformIntersectionSwap() was written under the assumption of interior
nodes. In the case of interior nodes, there are four cells that contain the intersecting node,
but for boundary nodes one or more of these cells may be missing. Therefore, for boundary
nodes, PerformIntersectionSwap() would attempt to operate on cells that did not exist,
resulting in a fatal crash.

Solution We modified PerformIntersectionSwap() so that it checks for the existence
of a neighbouring cell before operating on it. In this way, both interior and boundary nodes
can be handled by the same function.

Outcome Ticket closed and fix included in the Chaste 2021.1 release1.

Ticket 3064: Bug in T2 swap on element without neighbours

URL https://chaste.cs.ox.ac.uk/trac/ticket/3064

Background As discussed extensively in Section 4.2, the entire cell population can go
extinct in the constant death signal model. When a cell initiates apoptosis in the vertex
model, its area shrinks until it reaches a threshold and is removed through a T2 swap,
replacing the cell with a node (see Figure 2.2).

Problem The node replacing the extruded cell in a T2 swap is normally associated to the
neighbours of the extruded cell. However, when the entire tissue goes extinct, there are no
neighbours to associate the node to. Instead, the last cell is replaced by an isolated node,
which is an invalid mesh.

Solution We added a check to the beginning of PerformT2Swap() to see if the cell being
extruded has any neighbours. If not, then we simply remove the cell without creating a
replacing node and exit the function.

Outcome Ticket closed and fix included in the Chaste 2021.1 release.

1https://github.com/Chaste/Chaste/releases/tag/release_2021.1

189

https://chaste.cs.ox.ac.uk/trac/ticket/3064
https://github.com/Chaste/Chaste/releases/tag/release_2021.1


Ticket 3065: T3 swaps versus intersection swaps

URL https://chaste.cs.ox.ac.uk/trac/ticket/3065

Background The function CheckForIntersections() is responsible for performing
T3 swaps and intersection swaps. By default, this function only performs T3 swaps and no
intersection swaps.

Problem The flag mCheckForIntersections enables intersection swaps while simulta-
neously disabling T3 swaps. Hence, T3 swaps and intersection swaps were programmatically
mutually exclusive, even though the conditions for both types of mesh rearrangements could
occur in the same simulation.

Solution We implemented the flag mCheckForT3Swaps, which enables T3 swaps inde-
pendently of intersection swaps. Hence, now T3 swaps and intersection swaps can both be
enabled within the same simulation.

Outcome Ticket closed and fix merged into the Chaste development branch for inclusion
in the next Chaste release.

Ticket 3067: T1 swap can result in concave triangular element

URL https://chaste.cs.ox.ac.uk/trac/ticket/3067

Background A triangular cell should never become concave because its area would hit
zero and be extruded by a T2 swap before that can happen.

Problem For very elongated quadrilateral cells, a T1 swap occurring on a short edge can
result in a concave triangular cell because of the sudden topological change, as illustrated in
Figure A.2.

Outcome Ticket opened. We did not implement a fix because the issue only manifests in
less than 1% of simulations and a fix would require significant structural changes in how
Chaste handles mesh rearrangements.
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(a) (b)

Figure A.2: Illustration of a T1 swap resulting in a concave triangular element. (a) Before
T1 swap. The quadrilateral cell in the centre is elongated horizontally and has a short edge
on the left-hand side with an edge length below the T1 threshold. (b) After T1 swap. The
T1 swap on the short edge creates a concave triangular element, indicated in cyan.

Ticket 2401: Rationalise and look for efficiencies in vertex remeshing code

URL https://chaste.cs.ox.ac.uk/trac/ticket/2401

Background Previously, the main loop in CheckForIntersections() tried every pos-
sible pair of node and cell to check whether they intersect before proceeding with an
intersection swap.

Problem The number of checks grows on the order of the number of nodes times the
number of cells. This is prohibitively time-consuming for large meshes.

Solution We optimised the loop by only considering the cells that are neighbours of the
cells containing the node in question, instead of all cells. Assuming a roughly constant
number of neighbours per cell, the run time of the loop was reduced from O(Nnode · Ncell) to
O(Nnode).

Outcome Optimisation included in the Chaste 2021.1 release.
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Correspondance Mathématique et Physique, vol. 10, pp. 113–121, 1838.
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and J. B. Xavier, “Ecological modeling from time-series inference: insight into
dynamics and stability of intestinal microbiota,” PLoS Computational Biology, vol. 9,
no. 12, p. e1003388, 2013.

[123] K. Z. Coyte, J. Schluter, and K. R. Foster, “The ecology of the microbiome: networks,
competition, and stability,” Science, vol. 350, no. 6261, pp. 663–666, 2015.

[124] J. B. Xavier, C. Picioreanu, and M. C. M. van Loosdrecht, “A framework for multidi-
mensional modelling of activity and structure of multispecies biofilms,” Environmen-

tal Microbiology, vol. 7, no. 8, pp. 1085–1103, 2005.

[125] C. D. Nadell, K. R. Foster, and J. B. Xavier, “Emergence of spatial structure in cell
groups and the evolution of cooperation,” PLoS Computational Biology, vol. 6, no. 3,
p. e1000716, 2010.

202



[126] J. B. Xavier and K. R. Foster, “Cooperation and conflict in microbial biofilms,”
Proceedings of the National Academy of Sciences of the United States of America,
vol. 104, no. 3, pp. 876–881, 2007.

[127] H. M. Byrne, “Dissecting cancer through mathematics: from the cell to the animal
model,” Nature Reviews Cancer, vol. 10, pp. 221–230, 2010.

[128] P. M. Altrock, L. L. Liu, and F. Michor, “The mathematics of cancer: integrating
quantitative models,” Nature Reviews Cancer, vol. 15, pp. 730–745, 2015.

[129] A. Masoudi-Nejad, G. Bidkhori, S. Hosseini Ashtiani, A. Najafi, J. H. Bozorgmehr,
and E. Wang, “Cancer systems biology and modeling: microscopic scale and multi-
scale approaches,” Seminars in Cancer Biology, vol. 30, pp. 60–69, 2015.

[130] M. W. Anderson, S. H. Reynolds, M. You, and R. M. Maronpot, “Role of proto-
oncogene activation in carcinogenesis,” Environmental Health Perspectives, vol. 98,
pp. 13–24, 1992.

[131] L.-H. Wang, C.-F. Wu, N. Rajasekaran, and Y. K. Shin, “Loss of tumor suppressor
gene function in human cancer: an overview,” Cellular Physiology and Biochemistry,
vol. 51, pp. 2647–2693, 2018.

[132] J. Bachmann, A. Raue, M. Schilling, V. Becker, J. Timmer, and U. Klingmüller,
“Predictive mathematical models of cancer signalling pathways,” Journal of Internal

Medicine, vol. 271, pp. 155–165, 2011.

[133] G. B. Leenders and J. A. Tuszynski, “Stochastic and deterministic models of cellular
p53 regulation,” Frontiers in Oncology, vol. 3, pp. 8–23, 2013.

[134] G. Simoni, F. Reali, C. Priami, and L. Marchetti, “Stochastic simulation algorithms
for computational systems biology: exact, approximate, and hybrid methods,” Wiley

Interdisciplinary Reviews: Systems Biology and Medicine, vol. 11, p. e1459, 2019.

[135] R. J. Orton, O. E. Sturm, V. Vyshemirsky, M. Calder, D. R. Gilbert, and W. Kolch,
“Computational modelling of the receptor-tyrosine-kinase-activated MAPK pathway,”
Biochemical Journal, vol. 392, pp. 249–261, 2005.

[136] R. J. Orton, M. E. Adriaens, A. Gormand, O. E. Sturm, W. Kolch, and D. R. Gilbert,
“Computational modelling of cancerous mutations in the EGFR/ERK signalling
pathway,” BMC Systems Biology, vol. 3, no. 100, 2009.

203



[137] O. Warburg, F. Wind, and E. Negelein, “The metabolism of tumors in the body,” The

Journal of General Physiology, vol. 8, no. 6, pp. 519–530, 1927.

[138] M. V. Liberti and J. W. Locasale, “The Warburg effect: how does it benefit cancer
cells?,” Trends in Biochemical Sciences, vol. 41, no. 3, pp. 211–218, 2016.

[139] R. A. Gatenby and E. T. Gawlinski, “A reaction-diffusion model of cancer invasion,”
Cancer Research, vol. 56, no. 24, pp. 5745–5753, 1996.

[140] A. A. Patel, E. T. Gawlinski, S. K. Lemieux, and R. A. Gatenby, “A cellular automaton
model of early tumor growth and invasion: the effects of native tissue vascularity and
increased anaerobic tumor metabolism,” Journal of Theoretical Biology, vol. 213,
pp. 315–331, 2001.

[141] A. R. A. Anderson, “A hybrid mathematical model of solid tumour invasion: the
importance of cell adhesion,” Mathematical Medicine and Biology: A Journal of the

IMA, vol. 22, pp. 163–186, 2005.

[142] P. Gerlee and A. R. A. Anderson, “A hybrid cellular automaton model of clonal evo-
lution in cancer: the emergence of the glycolytic phenotype,” Journal of Theoretical

Biology, vol. 250, pp. 705–722, 2008.

[143] R. A. Gatenby, K. Smallbone, P. K. Maini, F. Rose, J. Averill, R. B. Nagle, L. Worrall,
and R. J. Gillies, “Cellular adaptations to hypoxia and acidosis during somatic
evolution of breast cancer,” British Journal of Cancer, vol. 97, pp. 646–653, 2007.

[144] J. Metzcar, Y. Wang, R. Heiland, and P. Macklin, “A review of cell-based compu-
tational modeling in cancer biology,” JCO Clinical Cancer Informatics, pp. 1–13,
2019.

[145] P. C. Nowell, “The clonal evolution of tumor cell populations,” Science, vol. 194,
pp. 23–28, 1976.

[146] R. A. Gatenby, A. S. Silva, R. J. Gillies, and B. R. Frieden, “Adaptive therapy,”
Cancer Research, vol. 69, no. 11, pp. 4894–4903, 2009.

[147] A. S. Silva, Y. Kam, Z. P. Khin, S. E. Minton, R. J. Gillies, and R. A. Gatenby, “Evo-
lutionary approaches to prolong progression-free survival in breast cancer,” Cancer

Research, vol. 72, no. 24, pp. 6362–6370, 2012.

204



[148] K. Bacevic, R. Noble, A. Soffar, O. Wael Ammar, B. Boszonyik, S. Prieto, C. Vin-
cent, M. E. Hochberg, L. Krasinska, and D. Fisher, “Spatial competition constrains
resistance to targeted cancer therapy,” Nature Communications, vol. 8, pp. 1–15,
2017.

[149] J. A. Gallaher, P. M. Enriquez-Navas, K. A. Luddy, R. A. Gatenby, and A. R. Ander-
son, “Spatial heterogeneity and evolutionary dynamics modulate time to recurrence in
continuous and adaptive cancer therapies,” Cancer Research, vol. 78, no. 8, pp. 2127–
2139, 2018.

[150] M. A. R. Strobl, J. West, Y. Viossat, M. Damaghi, M. Robertson-Tessi, J. S. Brown,
R. A. Gatenby, P. K. Maini, and A. R. A. Anderson, “Turnover modulates the need for
a cost of resistance in adaptive therapy,” Cancer Research, vol. 81, pp. 1135–1147,
2021.

[151] S. Nishikawa, A. Takamatsu, S. Ohsawa, and T. Igaki, “Mathematical model for cell
competition: predator-prey interactions at the interface between two groups of cells
in monolayer tissue,” Journal of Theoretical Biology, vol. 404, 2016.

[152] S. Nishikawa and A. Takamatsu, “Effects of cell death-induced proliferation on a cell
competition system,” Mathematical Biosciences, vol. 316, no. April, p. 108241, 2019.

[153] A. Tsuboi, S. Ohsawa, D. Umetsu, Y. Sando, E. Kuranaga, T. Igaki, and K. Fujimoto,
“Competition for space is controlled by apoptosis-induced change of local epithelial
topology,” Current Biology, vol. 28, no. 13, 2018.

[154] S. W. Lee and Y. Morishita, “Possible roles of mechanical cell elimination intrinsic
to growing tissues from the perspective of tissue growth efficiency and homeostasis,”
PLoS Computational Biology, vol. 13, no. 7, 2017.

[155] D. Gradeci, A. Bove, G. Charras, A. R. Lowe, and S. Banerjee, “Single-cell ap-
proaches to cell competition: high-throughput imaging, machine learning and simula-
tions,” Seminars in Cancer Biology, vol. 63, pp. 60–68, 2020.

[156] A. Bove, D. Gradeci, Y. Fujita, S. Banerjee, G. Charras, and A. R. Lowe, “Local
cellular neighborhood controls proliferation in cell competition,” Molecular Biology

of the Cell, vol. 28, no. 23, 2017.

[157] A. G. Fletcher, J. M. Osborne, P. K. Maini, and D. J. Gavaghan, “Implementing vertex
dynamics models of cell populations in biology within a consistent computational

205



framework,” Progress in Biophysics and Molecular Biology, vol. 113, no. 2, pp. 299–
326, 2013.

[158] J. Kursawe, Quantitative approaches to investigating epithelial morphogenesis. PhD
thesis, University of Oxford, 2017.

[159] J. A. Smith and L. Martin, “Do cells cycle?,” Proceedings of the National Academy

of Sciences of the United States of America, vol. 70, no. 4, pp. 1263–1267, 1973.

[160] G. R. Mirams, C. J. Arthurs, M. O. Bernabeu, R. Bordas, J. Cooper, A. Corrias,
Y. Davit, S.-J. Dunn, A. G. Fletcher, D. G. Harvey, M. E. Marsh, J. M. Osborne,
P. Pathmanathan, J. Pitt-Francis, J. Southern, N. Zemzemi, and D. J. Gavaghan,
“Chaste: an open source C++ library for computational physiology and biology,”
PLoS Computational Biology, vol. 9, no. 3, p. e1002970, 2013.

[161] J. Pitt-Francis, M. O. Bernabeu, J. Cooper, A. Garny, L. Momtahan, J. Osborne,
P. Pathmanathan, B. Rodriguez, J. P. Whiteley, and D. J. Gavaghan, “Chaste: using ag-
ile programming techniques to develop computational biology software,” Philosophi-

cal Transactions of the Royal Society A: Mathematical, Physical and Engineering

Sciences, vol. 366, no. 1878, pp. 3111–3136, 2008.

[162] J. D. Hunter, “Matplotlib: a 2D graphics environment,” Computing in Science &

Engineering, vol. 9, no. 3, pp. 90–95, 2007.

[163] M. L. Waskom, “seaborn: statistical data visualization,” Journal of Open Source

Software, vol. 6, no. 60, p. 3021, 2021.

[164] M. Norman, K. A. Wisniewska, K. Lawrenson, P. Garcia-Miranda, M. Tada, M. Kajita,
H. Mano, S. Ishikawa, M. Ikegawa, T. Shimada, and Y. Fujita, “Loss of Scribble
causes cell competition in mammalian cells,” Journal of Cell Science, vol. 125, no. 1,
pp. 59–66, 2012.

[165] S. Elmore, “Apoptosis: a review of programmed cell death,” Toxicologic Pathology,
vol. 35, no. 4, pp. 495–516, 2007.

[166] H. Steller, “Regulation of apoptosis in Drosophila,” Cell Death and Differentiation,
vol. 15, no. 7, pp. 1132–1138, 2008.

[167] M. S. D’Arcy, “Cell death: a review of the major forms of apoptosis, necrosis and
autophagy,” Cell Biology International, vol. 43, no. 6, pp. 582–592, 2019.

206



[168] Y. Fuchs and H. Steller, “Programmed cell death in animal development and disease,”
Cell, vol. 147, no. 4, pp. 742–758, 2011.

[169] S. L. Spencer and P. K. Sorger, “Measuring and modeling apoptosis in single cells,”
Cell, vol. 144, no. 6, pp. 926–939, 2011.

[170] K. Schleich and I. N. Lavrik, “Mathematical modeling of apoptosis,” Cell Communi-

cation and Signaling, vol. 11, no. 1, p. 44, 2013.
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