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Abstract
Radar’s ability to sense under adverse conditions and at far-range makes it a
valuable alternative to vision and lidar for mobile robotic applications. However,
its complex, scene-dependent sensing process and significant noise artefacts makes
working with radar challenging. Moving past classical rule-based approaches,
which have dominated the literature to date, this thesis investigates deep and
data-driven solutions across a range of tasks in robotics.

Firstly, a deep approach is developed for mapping raw sensor measurements to
a grid-map of occupancy probabilities, outperforming classical filtering approaches
by a significant margin. A distribution over the occupancy state is captured,
additionally allowing uncertainty in predictions to be identified and managed.
The approach is trained entirely using partial labels generated automatically
from lidar, without requiring manual labelling.

Next, a deep model is proposed for generating stochastic radar measurements
from simulated elevation maps. The model is trained by learning the forward
and backward processes side-by-side, using a combination of adversarial and
cyclical consistency constraints in combination with a partial alignment loss,
using labels generated in lidar. By faithfully replicating the radar sensing process,
new models can be trained for down-stream tasks, using labels that are readily
available in simulation. In this case, segmentation models trained on simulated
radar measurements, when deployed in the real world, are shown to approach the
performance of a model trained entirely on real-world measurements.

Finally, the potential of deep approaches applied to the radar odometry
task are explored. A learnt feature space is combined with a classical correla-
tive scan matching procedure and optimised for pose prediction, allowing the
proposed method to outperform the previous state-of-the-art by a significant
margin. Through a probabilistic consideration the uncertainty in the pose is
also successfully characterised. Building upon this success, properties of the
Fourier Transform are then utilised to separate the search for translation and
angle. It is shown that this decoupled search results in a significant boost to
run-time performance, allowing the approach to run in real-time on CPUs and
embedded devices, whilst remaining competitive with other radar odometry
methods proposed in the literature.
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Abstract

Radar’s ability to sense under adverse conditions and at far-range makes it a
valuable alternative to vision and lidar for mobile robotic applications. However,
its complex, scene-dependent sensing process and significant noise artefacts makes
working with radar challenging. Moving past classical rule-based approaches, which
have dominated the literature to date, this thesis investigates deep and data-driven
solutions across a range of tasks in robotics.

Firstly, a deep approach is developed for mapping raw sensor measurements to
a grid-map of occupancy probabilities, outperforming classical filtering approaches
by a significant margin. A distribution over the occupancy state is captured,
additionally allowing uncertainty in predictions to be identified and managed. The
approach is trained entirely using partial labels generated automatically from lidar,
without requiring manual labelling.

Next, a deep model is proposed for generating stochastic radar measurements
from simulated elevation maps. The model is trained by learning the forward
and backward processes side-by-side, using a combination of adversarial and
cyclical consistency constraints in combination with a partial alignment loss, using
labels generated in lidar. By faithfully replicating the radar sensing process,
new models can be trained for down-stream tasks, using labels that are readily
available in simulation. In this case, segmentation models trained on simulated
radar measurements, when deployed in the real world, are shown to approach the
performance of a model trained entirely on real-world measurements.

Finally, the potential of deep approaches applied to the radar odometry task
are explored. A learnt feature space is combined with a classical correlative scan
matching procedure and optimised for pose prediction, allowing the proposed method
to outperform the previous state-of-the-art by a significant margin. Through a prob-
abilistic consideration the uncertainty in the pose is also successfully characterised.
Building upon this success, properties of the Fourier Transform are then utilised
to separate the search for translation and angle. It is shown that this decoupled
search results in a significant boost to run-time performance, allowing the approach
to run in real-time on CPUs and embedded devices, whilst remaining competitive
with other radar odometry methods proposed in the literature.
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1
Introduction

1.1 Motivation

In recent years Light Detection And Ranging (lidar) and cameras have become the

sensors of choice across a wide range of robotic and autonomous vehicle applications.

Cameras, similar to the human eye, are particularly suited to detecting visual cues

used – and in many instances created – by humans. Their widespread adoption

and availability makes them an affordable deployment solution. Lidar, on the

other hand, is an active sensor, allowing the world to be observed even when

natural illumination fails. In contrast to vision, it provides direct measurements of

world geometry, measuring the line-of-sight distance to objects with high accuracy.

Partially as a result of the often complementary properties of lidar and vision, a

vast amount of effort has been dedicated to developing lidar and vision systems in

order to solve a range of problems across robotics [1–4]. To this end, large datasets

and problem-specific challenges have been released by academic and industrial

stakeholders alike – to test, develop and promote lidar and vision solutions [5–7].

Concurrently, the adoption of deep methods applied to both the lidar and vision

modalities has reaped dividends. Moving away from classical rule-based methods

has allowed deep models to surpass the performance of classical methods in a wide

range of problem scenarios [1–4]. This is achieved by learning feature representations

1
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Figure 1.1 : Vision, lidar and radar under snowy conditions Vision (a), lidar
(b) and radar (c) observed under normal (i) and snowy (ii) conditions. In (b-ii) lidar
struggles to operate under snowy conditions, whilst in (a-ii) a snowflake has fallen on the
camera lens obscuring the view entirely. The scene observed in radar remains relatively
unchanged.

best suited to the task at hand from data, instead of relying on subjective and

often difficult to optimise hand-crafted approaches.

Despite this, significant challenges still persist when deploying lidar and vision in

the real world. Cameras require significant post-processing steps to answer relatively

simple questions about world geometry, such as determining the distance to an

object. When explicit three-dimensional geometry is needed, highly accurate motion

estimates (structure from motion) or calibration (multiple camera setup) are required

[8]. Relying on a passive sensor, vision solutions are also prone to fail when natural

illumination is limited, such as at night, indoors, or when working with shadows.

Lidar comes with its own challenges. Naturally increasing with distance from

the sensor, sparsity – due to the number of lasers it is physically and economically

feasible to fit in a single device – in combination with sensor noise, limit the

range of conventional lidars. This is a particular hindrance to the deployment

of lidars in situations with large scene dynamics (such as autonomous driving)

where the detection of distant but fast moving objects is crucial for safe operation.

Lidars are also often thwarted by adverse environmental conditions, such as heavy
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rain, snow and dust. An example of the limitations of lidar operating in snowy

conditions is shown in Fig. 1.1

In contrast to vision and lidar, radar offers several significant advantages. Similar

to lidar and in contrast to vision, it too is an active sensor, readily deployed

when natural illumination is limited. It also provides direct measurements of

world geometry, where the distance to objects is known explicitly. Unlike lidar,

however, it is able to detect objects at greater range and under a variety of adverse

conditions, including rain, snow, and dust (see Fig. 1.1 for an example). Radar

holds significant promise, not only as an alternative sensor to vision and lidar but

also as a complementary member of the sensing suite. This is particularly important

for guaranteeing sensor redundancy, which has a key role to play in ensuring robust

operation in safety critical scenarios, such as autonomous driving.

Open Challenges Despite this, in comparison to vision and lidar, radar has

received relatively little attention from the research community. As discussed in more

detail in Sec. 2.1.3, radar sensor observations are characterised by significant aleatoric

noise artifacts. This makes interpreting radar sensor measurements challenging,

hindering its widespread adoption. Even to a radar expert, interpreting radar

measurements often relies on complex reasoning, combining scene specific context

with past knowledge and intuition. As a motivating example, see Fig. 1.2.

Designing classical methods to overcome radar’s complex and scene dependent

acquisition process is challenging. As a result, converting and filtering the raw

power measurements to a simpler-to-work-with representation is a prerequisite step

in typical classical approaches [9–12]. Automotive radars, for example, produce

a sparse object list as their output, involving the filtering and clustering of raw

measurements in combination with tracking approaches [12]. Such representations,

whilst easier to work with, result in a significant loss of information, which may

be useful for the down-stream task.

In contrast to classical approaches, where manually defining the complex rules

required to interpret radar measurements is challenging, deep methods have the
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Figure 1.2 : An example of the complex reasoning required to interpret radar
data For comparison and context (a) shows a lidar measurement of the scene. In (b-i) a
bus (⊏⊏⊏⊐⊐⊐) occludes the radar’s view and results in a complex ghost reflection, imprinted
on the lower side of the line of reflection (- - -). Once the bus has moved on the actual
radar image is revealed (b-ii). Reasoning which radar power measurements correspond
to actual objects in the scene is challenging in this case, relying on scene context (the
location of the bus) and prior knowledge of the sensing process (multi-path reflections).

capacity to learn such rules from raw data alone. Recent innovations in network

architectures and training paradigms demonstrate the feasibility of using deep

data-driven approaches to learn ever more complex mappings across a range of

tasks in robotics in both vision and lidar [1–4]. Concurrently, the development

of graphical computing hardware allows these mappings to be executed quickly

– a crucial requirement for real-world operation.

Therefore, it seems like deep data-driven approaches are a natural fit for

harnessing the full potential of raw radar sensor measurements. However, their

application to radar has some unique challenges. Firstly, in contrast to vision

and lidar, the availability of large scale and high quality radar datasets remains

limited. As well as being expensive and tedious to generate, labelling radar datasets

also requires significant specialist knowledge; the difficulty in interpreting radar

scans leads to a greater chance of mislabelling and increases subjectivity. Self-
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supervised solutions are therefore particularly attractive in the case of radar. Here,

instead, labels can be generated automatically using information from other sensing

modalities, often in combination with accurate offline processing algorithms (e.g.

mapping and localisation systems).

Secondly, as already discussed, a prominent challenge when working with radar

is the high uncertainty prevalent in its sensor measurements. Deep data-driven

models may go some way in overcoming this challenge, providing a framework

that allows for complex reasoning about the world in light of scene context and

implicit understanding of the radar sensing process. However, even in the case of

a perfect model, there will be times when inherent uncertainty in the predictions

remains as a result of the aleatoric uncertainty arising through the radar sensing

process. This is an important aspect of radar data and an observation that should

not be ignored when working with radar measurements. As a solution, probabilistic

approaches seek to quantify the uncertainty alongside the prediction, capturing

a distribution of possible outcomes. This allows the highly uncertain cases to

be identified and mitigated.

Conclusion In summary, radar holds significant promise as a viable alternative

and complementary sensor to vision and lidar. It is a geometric sensor able to

detect objects at far range, and under a variety of adverse conditions. However,

significant noise artifacts and a complex image formation process result in radar

sensor measurements which are challenging to work with. Interpreting radar scans

involves complex reasoning, combining scene specific context with prior knowledge

of the radar sensing process. This is difficult to distill into classical rule-based

approaches, which typically resort to filtering the raw radar power returns in order

to generate simpler-to-work-with but less informative representations. Instead,

drawing on their successes in the vision and lidar domain, across a range of tasks

in robotics, deep data-driven approaches offer a promising alternative. They allow

complex reasoning steps to be learnt from raw datasets, without requiring difficult-

to-define hand-crafted algorithms.
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However, whilst an attractive solution and a natural fit when considering radar

sensor measurements, applying deep data-driven approaches to the radar domain

comes with some unique challenges. Firstly, there is a significant lack of large,

diverse and high quality radar datasets available to the community. Secondly,

even in the case of a perfect model, uncertainty in the predictions of the model

still remains as a result of the intrinsic uncertainty in the sensor measurements.

This problem is particularly pertinent to radar in comparison to other modalities,

given the high uncertainty attached to its sensor measurements. In countering the

first of these problems, adopting self-supervised approaches allows deep methods

to be trained by generating training labels automatically. With regard to the

second, by adopting probabilistic models the uncertainty in predictions can also

be quantified, capturing a range of likely outcomes, and allowing highly uncertain

predictions to be identified and mitigated.

This thesis therefore investigates deep data-driven approaches applied

to radar. Specifically, solutions will be developed across the tasks

of inverse sensor modelling, simulation, and odometry. In addition,

where possible, a particular focus is given to developing self-supervised

and probabilistic approaches, allowing training labels to be generated

automatically, and the uncertainty in predictions to also be quantified.
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1.2 Contributions

The specific contributions made by this thesis are as follows.

In chapter 2 the fundamentals of the radar sensing process and the challenges it

presents, alongside key topics from deep learning and probabilistic modelling, are

summarised to provide a self-contained resource of relevant background material.

In chapter 3, a deep data-driven approach to inverse sensor modelling is developed.

Specifically, the problem of converting radar sensor measurements to a grid map

of occupancy probabilities is considered. Through our approach we side-step the

need for manual labels, relying only on partial labels generated automatically from

lidar to train our model. By using a deep neural network, the model is able to

successfully reason about the occupancy state considering a wider scene context,

successfully outperforming classical filtering approaches. All the while, the approach

remains probabilistic, quantifying the uncertainty in the occupancy state.

In chapter 4, the problem of replicating the radar sensing process in simulation

is considered. Contrary to typical approaches, we model the radar sensing process

with a deep model, allowing the complex interaction between world context and

the sensing process to be learnt from raw-data. An inherently stochastic approach

is developed allowing radar noise artifacts to be faithfully reproduced and a

distribution over possible sensor measurements to be implicitly captured. Once

again the developed approach remains self-supervised; our model is trained using a

combination of simulated datasets and real-world labels generated automatically

from lidar. Using our learnt simulator, we are able to train segmentation models in

simulation, before deploying them in the real world. To the best of our knowledge

this is the first time that the Training In Simulation (TIS) paradigm – already

exploited widely by the vision and lidar communities – has been investigated for

radar. As an added benefit, the backward model – inferring the elevation state of

the world – is also learnt, and after training can be used to cast radar observations

into a 2.5D representation with reasonable accuracy.



8 1.2. Contributions

In the final chapters deep and data-driven approaches to radar odometry are

developed. In chapter 5 a correlative scan matching radar odometry method is

proposed, utilising a deep neural network to filter raw sensor measurements to

boost performance. The entire process remains differentiable, allowing the radar

feature representation output by the network to be learnt for pose prediction,

without requiring hand-crafting or classical signal processing. As a joint project, the

particular contribution of this thesis lies in the inherently probabilistic formulation

of the approach, allowing the uncertainty in the pose estimate to be quantified

and calibrated to real-world errors.

Whilst the approach developed in chapter 5 is able to run efficiently on a

Graphical Processing Unit (GPU), the dense search across all possible combinations

of angle and translation hinders real-time performance when high-end compute is not

available. In chapter 6, therefore, the algorithm developed in chapter 5 is adapted,

splitting the search for angle and translation into two stages, using properties of

the Fourier Transform. This significantly increases the efficiency of the approach,

allowing the model to run in real-time on both Central Processing Units (CPUs)

and embedded devices, as well as requiring less time and memory resources to train.
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1.3 Publications

The following is a list of publications which are included in this thesis:

• R. Weston, S. Cen, P. Newman, I. Posner. "Probably Unknown: Deep

Inverse Sensor Modelling in radar". In: International Conference On Robotics

and Automation 2019 (ICRA Montreal 2019)

• D. Barnes, R. Weston, I. Posner. "Masking by Moving: Learning Distraction-

Free radar Odometry From Pose Information". In: Conference On Robotic

Learning 2019 (CoRL Osaka 2019)

• R. Weston, O. Parker Jones, I. Posner. "There and Back Again: Learning

to Simulate radar Data for Real-World Application". In: International

Conference On Robotics and Automation 2021 (ICRA Xi’an 2021)

• R. Weston, M. Gadd, D. De Martini, P. Newman, I. Posner. "Fast-MbyM:

Leveraging Translational Invariance of the Fourier Transform For Efficient

And Accurate radar Odometry". In: International Conference On Robotics

and Automation 2022 (ICRA Philadelphia 2022)
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1.4 Outline

In chapter 2 the necessary background material needed for a full understanding of

the subsequent chapters in this thesis is introduced. Note an introduction to the

relevant material specific to each of the chapters can be found in the introduction

and literature review of each of the publications. As a result, chapter 2 specifically

focuses on the key and over-arching background material needed to fully understand

this thesis as a whole. The fundamentals of the radar sensing process will be

discussed and several pertinent challenges of working with radar highlighted. An

overview of several key topics from deep learning is then given.

Chapters 3 to 6 are dedicated to the technical contributions of this thesis,

presenting the publications listed in Sec. 1.3 in manuscript format. Finally, in

chapter 7 limitations of the current work is discussed, and future research directions

are identified.



2
Background

2.1 Radar Fundamentals

The foundations of radar (Radio Detection And Ranging) can be traced back as

far as 1886 when Heinrich Hertz showed that radio waves are reflected by solid

objects [13]. In 1904 Christian Hülsmeyer filed perhaps the first patent for a

device using radio waves as a means of detecting physical objects. His device,

the tele-mobiloscope, was specifically designed to detect ships through dense fog

[14]. Just before and during the Second World War (WW2) agencies around the

world raced to develop military technology using radio waves, such as early warning

systems capable of detecting approaching aircraft.

Unlike other Electro-Magnetic (EM) wavelengths, such as visible, infrared

and ultraviolet wavelengths, radio waves are particularly suited for these appli-

cations as they are only weakly absorbed by weather phenomena such as fog,

rain, and snow. Radar also interacts strongly with conductive materials such

as metals. Since then, radar has been exploited in a wide range of applications

such as astronomy, air traffic control, meteorology and more recently robotics

and autonomous vehicle applications.

Whilst, radars have been developed operating over a wide range of wavelengths

(from 100 m all the way down to 1 mm), the size of object that it is possible to

11



12 2.1. Radar Fundamentals

(easily) detect is typically limited to a few multiples of the wavelength. In robotics

applications short-wave radars operating with mm wavelenths are deployed. This

allows objects down to a few cm in size to be detected at the expense of higher

absorption rates, limiting the range of the radar to a few km. Smaller wavelengths

also mean smaller antennas which are more practical to deploy on mobile robots. In

line with this, the radar used in this thesis is a Frequency-Modulated Continuous-

Wave (FMCW) radar operating at 76 GHz to 77 GHz corresponding to a ∼4 mm

wavelength and with a range resolution of ∼4 cm.

The long range and the ability of radar to sense in a variety of adverse conditions

where other sensors typically fail make it an attractive solution for robotic tasks.

However, a complex image formation process and significant noise artifacts result

in radar sensor measurements that are challenging to work with. In preparation for

a more in depth discussion of the challenges presented by radar, the transmission

and the FMCW sensing process are now discussed in more detail.

2.1.1 Transmission To Reception

The transmission process takes place as follows [15]:

1. A transmitter emits a radio wave. As the wave travels its power P0 will be

distributed over a sphere of radius ρ0 = cτ0 (where c is the speed of light

[m s−1] and τ0 is the travel time [s]). The power falling on an object at distance

ρ0 is therefore given as

S = G0

4πρ2
0
P0 [W m−2] (2.1)

where the antenna gain G0 > 1 is used to account for the fact that the antenna

is designed to be directional. In the case of the radar used in this thesis, this

allows the power returns from precise locations in the world to be determined,

executing a full "scan" of the scene by rotating the transmitter.

2. On encountering an object a change in material occurs and the wave is

scattered. The amount of power reflected by the object is determined by the
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Radar Cross Section (RCS) σ [m2] which is a function of the object shape

and material properties. The object therefore radiates a power

Pσ = σS [W] (2.2)

back to the receiver.

3. After travelling a distance ρ1 = cτ1 the amount of power at the receiver is

given as

P1 = A1

4πρ2
1
Pσ [W] (2.3)

where A1 [m2] is the area of the aperture of the receiver which governs how

much power is intercepted. It can be shown [15] that the antenna aperture is

related to the gain G1 as A1 = G1λ
2/4π where λ [m] is the wavelength of the

wave respectively.

The Radar Equation Combining Eqs. (2.1) to (2.3), grouping like terms and

substituting A1 = G1λ
2/4π gives

P1 = k
G0G1λ

2σ

(4π)3ρ2
0ρ

2
1
P0 (2.4)

a relationship commonly referred to as the radar equation. The additional constant

k ∈ [0, 1] is used to account for path loss effects dependent on the scanned

environment. Note that, for the sake of clarity the discussion so far has considered

the general case where the transmitter and receiver are separate from one another.

However, in many instances, (as is the case for the radar used in this thesis)

the antenna is shared between the receiver and transmitter and so G0G1 = G2

and ρ2
0ρ

2
1 = ρ4.

Time Of Flight The total time between transmission and reception is given as

τ = τ0 + τ1 = ρ0

c
+ ρ1

c
(2.5)
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where ρ0 is the distance from the transmitter to the object and ρ1 is the distance from

the object back to the receiver. Considering a shared transmitter and receiver gives

τ = 2ρ
c

. (2.6)

where ρ0 + ρ1 = 2ρ.

2.1.2 The Sensing Process

Whilst, the transmission process is common to all types of radar, radars typically

differ in how they measure the received power. When considering robotic applications

the Time of Flight (ToF) and FMCW radars are most common. In a ToF radar

set-up a short pulse of energy is emitted and after a time delay of τ is returned to

the receiver. The distance to an object is determined as ρ = cτ/2 in accordance with

Eq. (2.6). However, to ensure a sufficiently high range resolution, a large amount of

energy must be emitted over a short time period requiring a high peak power which

may be challenging to implement in practice (see [16] Pg. 52 for more details).

In contrast, FMCW radars allow a finer resolution to be achieved for a reduced

peak power, a particular advantage when considering robotic applications such as au-

tonomous driving where detecting smaller objects is important and power is limited.
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Figure 2.1 : A typical FMCW radar sensing pipeline A Voltage Controlled
Oscillator (VCO) is used to generate the signal v0(t) in step 1 . This signal is then
propagated into the world using a transmitting antenna and converted back to an electronic
signal v1(t) using the receiving antenna, in steps 2 and 3 . To extract the beat frequency
component, the signal is amplified and mixed to give m(t) = v0(t)v1(t) before a low pass
filter is applied to extract only the low frequency component v−(t) (steps 4 , 5 and 6 ).
After more amplification, the power spectrum of v−(t) is calculated in the Fourier domain
using an analogue to digital converter and the Fast Fourier Transform (steps 7 , 8 and
9 ). Adapted from [17].
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2.1.2.1 FMCW Radar

FMCW radars transmit a frequency modulated signal

v0(t) ≜ A0 cosψ0(t) where ψ0(t) ≜
∫ t

0
f(t′)dt′ (2.7)

to determine the power received from a target as shown in Fig. 2.1. In perhaps

the most common set up the instantaneous frequency is linearly increased from a

carrier frequency ωc to a maximum frequency of ωc+αT over a time period T using

a Voltage Controlled Oscillator (VCO).1 In this case the instantaneous frequency

at a time t is given as f(t) ≜ ωc + αt. For this choice of f(t):

• The transmitted waveform becomes

v0(t) ≜ A0 cosψ0(t) = A0 cos(ωct+ 1
2αt

2) (2.8)

(after substituting f(t) into Eq. (2.7)).

• The received signal (Fig. 2.1 at 3 ) given as v1(t) ∝ v0(t − τ) is scaled (see

Eq. (2.4)) and offset (see Eq. (2.6)) to give:

v1(t) ≜ A1 cosψ1(t) = A1 cos(ωc (t− τ) + 1
2α (t− τ)2) (2.9)

• The mixed signal m(t) ≜ v0(t)v1(t) (Fig. 2.1 at 5 ) can be expressed as

m(t) = A cosψ−(t) + A cosψ+(t) (2.10)

ψ−(t) = ατt+ ϕ (2.11)

ψ+(t) = 2ωct− ατt+ αt2 − ϕ (2.12)

using ψ1(t) = ψ0(t− τ) where A ≜ A1A0/2 and ϕ ≜ ωcτ − 1
2ατ

2. (This result

derives from the trigonometric identity 2cacb = ca+b + ca−b with ca ≜ cos(a)

and defining ψ±(t) = ψ0 ± ψ1.)

1other waveforms can also be used
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Assuming that the carrier frequency ωc and ramp gradient α are chosen such that

ωc ≫ αt (∀t ∈ [0, T ]) the signal m(t) in Eq. (2.10) is composed of a low frequency

component v− ≜ A cosψ−(t) and a high frequency component v+(t) ≜ A cosψ+(t).

Therefore, passing m(t) through a low pass filter (Fig. 2.1 at 6 ), leaves only

the low-frequency component

v−(t) ≜ A cosψ−(t) = A cos(ατt+ ϕ) ≜ A cos(ωt+ ϕ) (2.13)

where the beat frequency ω ≜ ατ is directly proportional to the range to the

target ω ≜ ατ = α(2ρ/c).

The power P1(ρ, θ) received from a target at range ρ and observation angle θ can

therefore be measured as P1(ρ, θ) ∝ Sv−(ω) = Sv−(2αρ/c) where Sv− is the power

spectral density2 of the signal v−(t). Repeating, this procedure at ranges ρ1 . . . ρR and

observation angles θ1 . . . θΘ (by electronically steering the sensor through a sequence

of azimuths) allows a dense set of power measurements P ∈ RR×Θ to be determined.

2.1.3 Sources of Uncertainty

Armed with knowledge of radar’s transmission and measurement processes, several

important sources of uncertainty arising through the radar sensing process may now

be discussed. Some of these are common to all radars (e.g. interference, speckle noise,

RCS variability, and multi-path phenomena) and are a natural consequence of how

radar transmits and receives energy from the world. Others derive from hardware

limitations in the sensing pipeline (e.g. phase noise, saturation and non-ideal beam

artifacts). Several of these sources of uncertainty are exemplified in Fig. 2.2.

Interference Like any EM device, sources of radiation not originating from the

sensor have the potential to interfere with the perceived power measurements and

may arise from a combination of both natural (eg. the sun) and man-made sources

(e.g. switching artifacts). External radiation sources may operate over the entire

operational range or may correspond to only very specific wavelengths. When
2Sv− = limT →∞

1
T v̂−(ω)v̂∗

−(ω) where v̂−(ω) denotes the Fourier transform of v−(t) and ∗
denotes complex conjugation.
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a

b

c

d
e

Figure 2.2 : Sources of uncertainty in radar At a a ghost reflection of a wall can be
seen arising through multi-path reflections in the opposite wall. At b a strong response
from an object has caused the amplifier to saturate leading to bright radial streaks in the
radar power field. Constructive and destructive interference as a result of integrating the
radar power measurements over a finite range results in speckle noise as can be seen in c .
A halo artifact is observed at d . The power returns at e correspond to actual objects
in the scene and are observed as the absolute height of the spreading beam grows with
range. The height of such objects is difficult to infer depending on the size of objects
observed downstream.

considering FMCW the latter manifests as a high perceived return at a fixed range

irrespective of beam angle, and results in halo artifacts such as can be seen in

Fig. 2.2 at d . A closely related problem to interference is clutter. In this case the

returns originate from radiation emitted by the radar but correspond to unhelpful

returns from distractor objects in the scene.

Speckle The finite resolution of the radar in range, ∆ρ, means that a power

measurement P̄r(ρi) at range ρi is generated from a combination of the responses

P1(ρ) for |ρ− ρi| < ∆ρ. Over this range the change in beat frequency is negligible

and so the received waveforms are coherent when they reach the receiver. In

this case the responses P1(r) will sum to give P̄r(ρi)ejϕi =
∫ ρi+∆ρ
ρi−∆ρ P1(ρ)ejϕ(ρ)dρ,

interacting either constructively or destructively depending on the phase variation,
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ϕ(ρ). Indeed, in practice ϕ(ρ) can change drastically over |ρ − ρi| < ∆ρ and is

highly sensitive to properties, such as the antenna directivity [18].3 This results in

random fluctuations in power returns – from dark black to bright white – referred

to as speckle noise. In the limit of an infinite number of waveforms interfering

in this manner the observed power P̄r(ρi) will follow an exponential distribution

p(P̄r|λ) = λe−λP̄r where 1/λ is the average power return.

Radar Cross-Section Variability The RCS σ of a target (discussed in Eq. (2.4))

is a complex function of wave incidence angle, material properties, and geometry.

As the radar or target move relative to one another the RCS can vary significantly.

Targets are also rarely composed of a single scattering element and, similar to the

discussion of speckle noise, as a result of the coherent nature of radar over small

length scales, multiple scatterers may interact either constructively or destructively

depending on their highly varying phase. A varying RCS results in a varying power

response, even when considering the same target in accordance with Eq. (2.4).

Multi-Path Reflections In practice, radiation from the transmitter may take

one of a number of paths when travelling back to the receiver, reflecting off multiple

targets along the way. The same target may therefore be perceived at multiple

ranges resulting in ghost objects – false images of the target. This phenomenon

is particularly prevalent when considering surfaces which are smooth relative to

the radar’s wavelength. Planar surfaces act as mirrors to visible light in this

instance exemplified in Fig. 2.2 at a .

Beam Width Unlike the sparse measurements of lidar, which senses the world

using a finite number of lasers with narrow beams, radar observes the world using

a wider lobe with power distributed over a range of azimuth and elevation. This

allows radar to capture a denser measurement, observing more of the world at
3An insight in this effect can be gained by considering adding together N unit vectors all with

different angles. The magnitude of the vector in this case will be random, ranging from 0 where
the contributions from each vector cancel, right through to N when the vectors are aligned and
super-impose on top of one another.
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any time instance, but comes at the expense of greater ambiguity in the sensor

measurements, as power measurements from a range of elevations are projected

into a single power reading.

In addition to the main beam emitted by the transmitting antenna side lobes

are also present. Power detected at a particular range and angle may also contain

power from other angles covered by side lobes.

Phase Noise The analysis in Sec. 2.1.2.1 was conducted assuming it is feasible to

generate a perfect ramp signal f(t) = ωc+αt. In reality, this process is implemented

using a VCO (step 1 in Fig. 2.1). In this case the ramp signal is typically given

as f(t) = ωc + αt+ η(t) where the phase noise η(t) is a consequence of the finite

bandwidth of the VCO [16, 19]. The appearance of phase noise manifests as a

blurring of the power measurement in the radial direction as responses from targets

at different ranges are mixed together.

Saturation Considering Eq. (2.4) the power received from a target can vary

greatly varying as P1 ∝ 1/ρ4 with range and P1 ∝ σ with RCS, which itself can

also vary over several magnitudes, depending on the material and geometry of the

target. As the returned power is such that P1 ∝ 1/ρ4, it is relatively small and must

be amplified (step 4 in Fig. 2.1) to be converted to a usable signal. Practically,

implementing amplifiers over such a large magnitude range is challenging, and very

large power returns cause the amplifier to saturate. Amplifier saturation causes

a clipping of the signal and results in a splitting of its frequency into multiple

harmonics. The effect of varying degrees of amplifier saturation on the frequency

components of the signal is shown in Fig. 2.3 and leads to the bright azimuthal

streaks seen at b in Fig. 2.2.

Doppler Shift When considering a target moving away from a radar with velocity

v the beat frequency is actually given as ω = ατ + ωd where ωd = 2v/cωc is

the Doppler shift. As a result, when the Doppler shift is not accounted for, an

error eρ ≜ ρ̃ − ρ between the measured range ρ̃ ≜ ωc/2α and the true range
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Figure 2.3 : Amplifier saturation and the Spectral components of a sinusoidal
signal Large power signals at the receiver result in waveforms with a large amplitude
which fall beyond the operating range of the amplifier ([−1, 1] in (a)). This causes a
clipping of the waveform at all magnitudes beyond the operating range, as can be seen in
(a). Clipping causes the power in the signal to be split over multiple harmonics as can
be seen in (b). When considering FMCW radar each harmonic will be perceived as a
different target. Superimposing such effects, as the instantaneous frequency ramps over a
cycle, results in the bright azimuthal streaks seen in Fig. 2.2 at b

ρ is introduced, given as eρ = v/ωcα. It is therefore impossible to distinguish

between power from a stationary target at range ρ+ eρ and power from a target

moving with velocity v at range ρ.

2.1.4 Challenges

Despite the significant benefits that working with radar measurements brings to

robotic deployments, it is evident that significant challenges exist, which must be

overcome to realise the full potential of radar. The superposition of each of the

noise artifacts and sources of uncertainty described in the previous section makes

interpreting and working with raw radar sensor measurements challenging.

In many instances, classical approaches attempt to overcome these challenges by

first filtering the raw power measurements into a simpler but easier to work with

representation [11]. This is a common procedure in automotive radars, for example,

which instead of returning raw power measurements typically provide the user with

point representations of objects in the scene, generated through a combination of

filtering and clustering approaches [12]. Perhaps the simplest approach to filtering

raw measurements is to apply a static threshold to the radar power returns. However,
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the highly scene-dependent and heterogeneous nature of the radar sensing process

makes finding a suitable threshold challenging, either resulting in a high number

of false or otherwise missed detections. Constant False Alarm Rate (CFAR) [20]

approaches attempt to overcome this limitation by setting the power threshold

dynamically using statistics of the radar power field to achieve a desired probability

of false alarm. These statistics are typically estimated empirically based on local

observations of the power field from neighboring grid cells. Several CFAR variants

have been developed, depending on the assumed distribution of power returns in

the presence of or absence of a target [21–23]. Other variants propose alternative

methods for determining local statistics other than the average (which is known

to be highly sensitive to outliers), such as Ordered statistic (OS-CFAR) [24] and

Greatest Of (GO-CFAR) [25] approaches.

In practice, these classical filtering approaches have several shortfalls. The

underlying distribution of radar power returns is typically unknown and complex

due to the noise sources just described. When, the assumed distribution of power

returns is incorrect, there are no guarantees that the constant rate of false alarm

may be achieved by CFAR approaches in practice. Methods relying on local

information struggle to correctly identify targets in more challenging cases. For

example, ghost objects appearing in the radar sensor measurement as a result of

multi-path reflection, appear locally identical, whilst they do not correspond to

a valid target. In this and other examples, the validity of detections may only

be made by accounting for the wider context of the power returns in the scene.

Finally, designing perfect filtering algorithms is challenging, and any suboptimal

algorithm will naturally involve a loss of potentially useful information. When

pre-processing radar sensor measurements, this information is irretrievably lost

even before the deployment task is considered.

In addition to presenting significant challenges to the deployment of radar on

real-world robots, its complex scan formation process is also challenging to replicate

in simulation. In turn, this poses additional challenges for real-world deployment,

making the safety case difficult to prove, particularly when considering scenarios
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which are too expensive or dangerous to test in the real world. As discussed in

more detail in chapter 4, hand-crafted phenomenological models typically fail to

capture radar’s complex image formation process in practice. On the other hand,

ray-tracing approaches are computationally expensive and rely on having specialized

models of the world, alongside an accurate characterisation of radar hardware –

such as antenna geometry and the downstream sensing process [26].

Conclusion

In the face of the challenges introduced in this section, deep models offer a

valuable alternative to the classical approaches just described. This thesis develops

methods that operate on raw power measurements – directly mapping from sensor

measurement to system outputs in an end-to-end fashion. In this way, models

are able to reason about radar power measurements in the presence of a wider

scene context. The capacity of deep neural networks to capture highly non-linear

mappings offers a valuable solution for overcoming radar’s complex and scene-

dependent image formation process, alongside its stochastic and heterogeneous

noise artifacts. In this instance, the feature representation is explicitly optimised

for the task at hand using any relevant information in the raw measurement, which

might otherwise have been lost through a pre-filtering step.

In addition to providing motivation for the deep modelling approaches developed

in later chapters, the notable sources of uncertainty in the radar sensing process

provide significant motivation for a probabilistic approach. Even when considering

a perfect model, uncertainty in predictions is likely to still persist. This is in

part a result of impartial knowledge such as the difficult to measure and highly

variable radar cross-section of a target, or unknown target geometry which, in

combination with a beam covering a range of heights and widths, makes determining

occlusion challenging. In other cases, this uncertainty derives from an inherent

ambiguity between high power returns and the presence of actual targets in the

scene, resulting from a combination of radar’s significant capacity for multipath

reflections, amplifier saturation, phase noise, and speckle artifacts. Characterising
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and managing the uncertainty in radar sensor measurements through probabilistic

approaches is therefore important.



24 2.2. Technical Background

2.2 Technical Background

The relevant background material for chapters 3 to 6 is now presented. Letting

D = {(xn,yn)}Nn=1 denote a dataset of observations generated from a real process

(x,y) ∼ p⋆(y|x)p⋆(x) (2.14)

in this section we consider how we might learn a model pϕ(y|x), using a neural

network with parameters ϕ (which approximates the true process p⋆(y|x) as closely as

possible), a problem which emerges throughout the remainder of this thesis. Several

approaches are of particular importance for what is is to follow and are now detailed.

The discussion begins with assumed density models, where a particular distribu-

tional form for the model pθ(y|x) is fixed (eg. Gaussian, Bernoulli etc.) a priori. As

described in Sec. 2.2.1, adopting a a maximum likelihood approach, several important

loss functions naturally emerge in this case, depending on the choice of distribution

pθ(y|x). This section provides the foundation for the approaches developed in

chapters 5 and 6 and sets the scene for the discussion in Sec. 2.2.2 and Sec. 2.2.3.

Building upon the homoscedastic case introduced in Sec. 2.2.1, in which the

uncertainty in each prediction is assumed fixed, next the heteroscedastic case is

considered. The uncertainty in the prediction is now captured as a function

of the input. This is detailed in Sec. 2.2.2 in preparation for the approach

developed in chapter 3.

Finally, in preperation for chapter 4, implicit modelling approaches are discussed.

Here, instead of explicitly assuming a particular distributional form for the model,

a distribution is implicitly captured; samples x ∼ pθ(y|x) are generated from a

simpler base distribution ϵ ∼ p(ϵ) using a neural network y ≜ fθ(x, z). In this

case it is no longer possible to evaluate the density pθ(y|x). Whilst deep implicit

models offer a powerful approach for capturing real world processes (such as the

radar sensing process in chapter 4), a likelihood-free training approach must now

be adopted. To this end, the the framework of Generative Adversarial Networks

(GANs) is presented, a likelihood free training approach which will be utilised
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Title Chapter Relevance
Assumed Density Models Sec. 2.2.1 chapters 5 and 6
Heteroscedastic Models Sec. 2.2.2 chapter 3
Deep Implicit Models Sec. 2.2.3 chapter 4
Architecture Design Sec. 2.2.4 chapters 3 to 6

Table 2.1 : A Summary of the technical background material and its relevance
to later chapters

extensively in chapter 4. Particular, attention is given to the cycle GAN paradigm

which allows models to be learnt from pairs of examples which are unaligned in space

and time, by modelling both the forward and backward mappings and imposing

cyclical consistency between the two.

Having detailed specific background material in Secs. 2.2.1 to 2.2.3 to support

the presentation of the technical chapters chapters 3 to 6 the final part of this

chapter is dedicated to a more general discussion of network architectures applied

to the radar datatype and relevant to all of the approaches developed in this thesis.

This can be found in Sec. 2.2.4. A summary of the background material and its

relevance to the approaches developed later on is given in Tab. 2.1.

2.2.1 Assumed Density Models

Assumed density models are constructed by choosing a distributional form for pϕ(y|x)

[27]. For example a Gaussian density might be chosen pϕ(y|x) ≜ Nor(y|fϕ(x), σ2I)

using a neural network fϕ to capture the mean of the distribution (where ϕ is used

to denote the parameters of the network). By construction, assumed density models

have well-defined likelihoods and are easily trained, exploiting the simplicity and

theoretical guarantees of maximum likelihood approaches

ϕ̂ ≜ arg min
ϕ

− log p(D|ϕ) = arg min
ϕ

1
N

N∑
n=1

ℓ(ϕ; xn,yn) (2.15)

where ℓ(ϕ) ≜ − log pϕ(y|x). As shown in Sec. 8.2.1.1 maximum likelihood estimation

guarantees that if pϕ(y|x) has the capacity to perfectly capture the true process

p⋆(y|x) using parameter setting ϕ⋆ (such that pϕ⋆(y|x) = p⋆(y|x)), then in the

limit as N → ∞ then ϕ̂ → ϕ⋆.
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Different likelihoods pϕ(y|x) give rise to different loss functions ℓ(ϕ) ≜ − log pϕ(y|x)

and many common loss functions typically used to train deep models can be derived

in this way. For example considering

pϕ(y|x) ≜ Nor(y|fϕ(x), σ2I) =⇒ ℓ(ϕ; y,x) = ∥y − µϕµ(x)∥2
2 (2.16)

pϕ(y|x) ≜ Lap(y|fϕ(x), σ2) =⇒ ℓ(ϕ; y,x) = ∥y − µϕµ(x)∥1 (2.17)

pϕ(y|x) ≜ Cat(y|πϕ(x)) =⇒ ℓ(ϕ; y,x) =
∑
i

yi log πϕ(x)i (2.18)

and substituting ℓ(ϕ; y,x) for each case, the Mean Squared Error (MSE), Mean

Absolute Error (MAE) and Cross Entropy (CE) training criteria naturally emerge

(see Sec. 8.4.1 for proofs). Here, fϕ : Rnin → Rnout is a neural network with

parameters ϕ and πϕ(x) ≜ softmax(fϕ(x)) where softmax(a)i = eai/
∑
k e

ak is

the softmax activation function.

Whilst any distribution pϕ(y|x) may be chosen, different choices of pϕ(y|x) may

lead to networks fϕ that capture different properties of the true data generating

process p⋆(y|x). For example, when considering a Gaussian likelihood it can be

shown that the optimum function fϕ(x) found by minimising [27] corresponds to

the mean of p⋆(y|x) such that fϕ̂(x) = Ep⋆(y|x){y}. In contrast, when considering

a Laplace likelihood the optimum function fϕ(x) found by minimising Eq. (2.15)

corresponds to the median of p⋆(y|x).4 If we know that p⋆(y|x) is approximately

Gaussian then the mean and median should be aligned; both MAE and MSE should

lead to similar results. If this is not the case then MAE may be a better choice,

as the median is less sensitive to outliers than the mean. This observation in part

motivates the shift from MSE to a MAE training criterion between chapter 5 and

chapter 6 when training radar odometry systems. In this case, whilst the dataset

consists of generally small poses, on rare occasions much larger poses are also

observed, resulting in significant error outliers.

4Note that multiple definitions exist for the median in the multivariate case. The marginal
median is equivalent to taking the scalar median along each dimension.
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2.2.2 Heteroscedastic Models

Whilst, so far the discussion has focused on homoscedastic models in which the

uncertainty in the prediction is fixed a priori, it is also possible to define models where

the uncertainty in the prediction is allowed to vary as function of the input. Such

models are referred to as heteroscedastic and are utilised extensively in chapter 3.

An example of a heteroscedastic model for regression is given as

pϕ(y|x) ≜ Nor(y|fϕ(x), σϕ(x)2I) (2.19)

where the uncertainty σϕ(x) is now allowed to vary as a function of the input x. (Here

σϕ : Rnin → [0,∞)nout is modelled using a neural network and the output constraint

is typically enforced using a softplus activation function hL(a) = log (1 + exp(a)).)

Heteroscedastic models for classification Of particular importance to chap-

ter 3 are heteroscedastic models for classification, which are now discussed for the

slightly more general case y ∈ {0, 1}K (treated here as a 1 of K coded vector).

One approach to modelling the heteroscedastic uncertainty [28] in this case is

to consider a model of the form

pϕ(z|x) ≜ Nor(z|fϕ(x), σϕ(x)2I) model (2.20)

πϕ(z) ≜ softmax(z) (2.21)

p(y|z) ≜ Cat(y|πϕ(z)) likelihood (2.22)

pϕ(y|x) =
∫
p(y|z)pϕ(z|x)dz model evidence (2.23)

treating z ∈ RK (input to the softmax) as a Gaussian distributed random variable.

The model is trained by maximising the model evidence

ℓ(ϕ) ≜ − log pϕ(y|x) (2.24)

marginalising out the uncertainty attached to the latent variable z (see Eq. (2.23)).

However, no closed form solution to the integral in Eq. (2.23) is known to exist.

As an alternative, the model evidence is approximated as

pϕ(y|x) ≈ Cat(y|π̄) with π̄ = Epϕ(z|x)[πϕ(z)] ≈ 1
K

∑
k

πϕ(zk) (2.25)
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where π̄ is formed using Monte-Carlo integration (with zk ∼ pϕ(z|x)). Substituting

pϕ(y|x) ≈ Cat(y|π̄), Eq. (2.24) is now easily estimated as

ℓ(ϕ) ≈ −
∑
c

yc log π̄c = −
∑
c

yc

(
1
K

exp(zc,k − log
∑
c′

exp zc′,k)
)

(2.26)

using the log-sum-exp trick for numerical stability and the reparameterisation trick

(see Sec. 8.1.3.2) to generate samples zk ≜ fϕ(x) + σϕ(x)2 ◦ ϵ with ϵ ∼ Nor(0, I)

to ensure ℓ(ϕ) remains differentiable in the parameters ϕ.

2.2.2.1 The Semi-Supervised Case

In chapter 3, a closely related approach is developed for the binary classification

task y ∈ {0, 1} where the likelihood becomes

p(y|z) = Ber(y|z) with π(z) ≜ sigmoid(z) (2.27)

where z ∈ R. In this instance, however, to facilitate a self-supervised formulation,

labels are only sometimes available (see chapter 3 for more details).

In response, a modified training objective is proposed

ℓ(ϕ) ≜ −γEpϕ(z|x){log p(y|z)} + ω(1 − γ)KL[pϕ(z|y)∥p(z)] (2.28)

where KL denotes the Kullback-Leibler Divergence (KLD) (see Sec. 8.1.4) and

γ ∈ {0, 1} is used to denote whether a label is available. Here, as a stand-in5 for

Eq. (2.23), the first term now corresponds to the (binary) cross-entropy loss

Epϕ(z|x){log p(y|z)} ≈ 1
K

∑
k

y log{π(zk)} + (1 − y) log{1 − π(zk)} (2.29)

averaged over different logit values zk = fϕ(x) + σϕ(x)ϵk with ϵk ∼ Nor(0, 1) (using

the reparameterisation trick).

On the other hand, when labels are unavailable (γ = 0) the KL term forces pϕ(z|x)

to resort back to a prior p(z) ≜ Nor(z|0, σ2
0) which for the case of two Gaussian

models can be evaluated analytically [29]. The constant ω ≥ 0 is used to trade off

the contribution between the two terms as ℓ(ϕ) is summed over multiple examples.
5Applying Jensen’s inequality we have log pϕ(y|x) = logEpϕ(z|x){p(y|z)} ≥ Epϕ(z|x){log p(y|z)}
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Note, whilst this approach is designed to facilitate semi-supervised training, the

form of the loss given in Eq. (2.28) can alternatively be derived as a variational

lower bound (see Sec. 8.2.2.1)

ℓ(ϕ) ≜ −Epϕ(z|y) {log p(y, z) − log pϕ(z|y)} (2.30)

induced through a joint distribution p(y, z) ≜ p(y|z)p(z) and treating pϕ(z|y) as

a variational posterior. Using the identity presented in Eq. (8.36) we find that

Eq. (2.30) is exactly equivalent to Eq. (2.28). For the unfamiliar reader, further

discussion about the variational lower bound and variational inference approaches

can be found in Sec. 8.2.2.1.
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2.2.3 Deep Implicit Models

The final modelling paradigm discussed in this chapter is presented in preparation

for the approach developed in chapter 4, in which a model is sort with the aim of

replicating the radar measurement process. Before this it is worth briefly considering

the limitations of assumed density models when applied to this problem.

Limitations of Assumed Density Models Consider an assumed density

model of the form

pϕ(y|x) ≜ Nor(y|yϕ(x), σ2I) (2.31)

tasked with generating radar observations y ∈ RR×Θ given simulated world states

x (for example an elevation map as in chapter 4). As just discussed, the maximum

likelihood objective is equivalent to MSE in this case, and, the optimum parameter

setting ϕ⋆ will result in yϕ⋆(x) capturing the mean of the true data generating

process yϕ⋆(x) = Ep⋆(y|x)[y].

Assuming that the optimum parameters ϕ⋆ can be found, new radar scans

are sampled from the model as

pϕ(y|x) ≜ Nor(y|yϕ(x), σ2I) ⇔ y = ȳ + ϵ with ϵ ∼ N (0, σ2I) (2.32)

where ȳ = yϕ(x). This corresponds to perturbing individual power values about

the mean. Even in the ideal case, where it is possible to determine ϕ⋆ exactly it

is clear y ∼ pϕ⋆(y|x) is unlikely to simulate realistic radar scans, unless real radar

scans y ∼ p⋆(y|x) are also generated as in Eq. (2.32). In practice, many of the noise

artifacts (described in Sec. 2.1.3) are poorly captured by considering independent

perturbations to pixel intensities. RCS variability, for example, results in varying

power returns from a target across multiple power measurements simultaneously.

Variability in saturation and halo artifacts, appearing as bright streaks in either

range or azimuth, are also poorly captured in this case. Whilst the model is able to

learn how to regress to average radar measurements, the distributional form of the

model – fixed a priori – in this case fails to align well with the real world.
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Deep Implicit Models Deep implicit models offer a powerful alternative. Instead

of assuming a density pϕ(y|x), a density is captured implicitly, allowing samples

to be generated as

y ∼ pϕ(y|x) ⇔ y = gϕ(x, ϵ), ϵ ∼ Nor(ϵ|0, I) (2.33)

using a deep neural network gϕ. A potentially vast set of distributions may be

captured using this approach, which vastly increases the chances of capturing a

density which aligns well with the real world.

This comes at the expense however of maximum likelihood objectives; as the

density pϕ(y|x) is only implicit, it can no-longer be evaluated, making maximum

likelihood approaches infeasible. Instead, implicit modelling approaches rely on

optimising ϕ using likelihood-free approaches.

2.2.3.1 Generative Adversarial Networks

A successful and powerful approach to likelihood-free inference is afforded by the

GAN framework [30, 31] which will be used extensively in chapter 4. The original

GAN formulation is now discussed in more detail, in preparation. The Least Squares

GAN formulation is then introduced, which is used in chapter 5 in an attempt to

overcome some of the challenges presented by the original formulation.

The Original GAN Formulation In the original GAN formulation proposed in

[30] the model pϕ(y|x) is found as the solution of a two-player min-max game

ϕ⋆, β⋆ = max
β

min
ϕ

Ep⋆(x)
{
Ep⋆(y|x) {log πβ(y,x)} + Epϕ(y|x) {log [1 − πβ(y,x)]}

}
.

(2.34)

Here, another neural network is introduced – referred to as the discriminator

πβ : Y × X → [0, 1]. The discriminator is tasked with distinguishing between

examples generated by the model y ∼ pϕ(y|x) and the real process y ∼ p⋆(y|x). It

is trained as in Eq. (2.34) using a maximum likelihood criterion. The model (typically

referred to as the generator) on the other hand is trained to fool the discriminator.
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Optimisation Considering Eq. (2.34) separately for both ϕ and β gives objectives

C(β) ≜ Ep⋆(x)
{
Ep(y|x) {log πβ(y,x)} + Epϕ(y|x) {log [1 − πβ(y,x)]}

}
(2.35)

G(ϕ) ≜ Ep⋆(x)
{
Epϕ(y|x) {log [1 − πβ(y,x)]}

}
(2.36)

and the optimisation is solved iteratively maximising C(β) and minimising G(ϕ).

In practice, the training objectives Eq. (2.35) and Eq. (2.36) are estimated us-

ing Monte Carlo (see Sec. 8.1.3.1) and using the reparameterisation trick (see

Sec. 8.1.3.2), re-writing

Epϕ(y|x) {log [1 − πβ(y,x)]} = Ep(ϵ) {log [1 − πβ (gϕ (ϵ,x) ,x)]} (2.37)

to maintain differentiability. Given a dataset of observations D = {(xn,yn)}Nn=1

the training objectives become

C(β; D) ≜ 1
N

N∑
n=1

log{πβ(yn,xn)} + log {1 − πβ(ỹn,xn)} (2.38)

G(ϕ; D) ≜ 1
N

N∑
n=1

log {1 − πβ(ỹn,xn))} (2.39)

where ỹn ≜ gϕ(ϵn,xn) with ϵn ∼ p(ϵ).

Crucially, this approach allows the model to be trained without ever requiring the

likelihood of a particular example pϕ(y|x) to be evaluated. The objectives C(β; D)

and G(ϕ; D) remain differentiable and so can be optimised using the conventional

first-order approaches described in Sec. 8.3.

Optimality Guarantees Provided πβ(y,x) and pϕ(y|x) have sufficient capacity,

solving Eq. (2.34) guarantees that the generator pϕ(y|x) will converge to the true

process p⋆(y|x) such that pϕ = p⋆.

This result is derived in two stages. In the first, Eq. (2.34) is solved with respect

to the discriminator parameters β. Provided that πβ has sufficient capacity, it can

be shown that the optimum discriminator πβ′ in this case is given as

πβ′(y,x) = p⋆(y|x)
p⋆(y|x) + pϕ(y|x) (2.40)

where β′ = maxβ C(β) [30].
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In the second stage, the optimum discriminator given by Eq. (2.40) is substituted

into Eq. (2.36) to give

G̃(ϕ) = log 4 − KL[p⋆∥p̄] + KL[pϕ∥p̄] (2.41)

= log 4 − 2 · JSD[p⋆, pϕ] (2.42)

where p̄(y|x) = 1
2 [p⋆(y|x) + pϕ(y|x)] [30]. Noting that the Jensen-Shannon Diver-

gence (JSD) JSD[p, q] ≥ 0 and is 0 if and only if p = q, provided that pϕ(y|x) has

sufficient capacity6 to capture p⋆(y|x), minimising G̃(ϕ) with respect to ϕ solves

the global optimisation problem given in Eq. (2.34) and guarantees that pϕ⋆ = p⋆.

Challenges Several challenges still present themselves in this problem setting

in practice [32]. Early on in training when the model pϕ(y|x) is suboptimal

it is relatively easy for the discriminator to distinguish between real and gen-

erated examples. In this case πβ(y,x) ≈ 0 for all generated y ∼ pϕ(y|x) and

the generator criterion G(ϕ) saturates. To counter this, instead of minimising

G(ϕ) ≜ Ep(x)
{
Epϕ(y|x) {log 1 − πβ(y,x)}

}
, one option is to train the discrimina-

tor to maximise

G(ϕ) ≜ Ep(x)
{
Epϕ(y|x) {log πβ(y,x)}

}
(2.43)

which provides the same fixed point in the optimisation but with much stronger

gradients earlier on in training [30].

Unlike maximum likelihood approaches, there is no guarantee that the generator

or discriminator training objectives will decrease or converge as training progresses.

This makes debugging and terminating training challenging.

Another common difficulty is referred to as mode collapse. In this case the

generator gϕ(ϵ,x) resorts to predicting a single realistic example, successfully fooling

the discriminator, but failing to capture any variation in x or ϵ.

6In this case guaranteed by ensuring gϕ has sufficient capacity
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Least Squares GAN In an attempt to overcome some of these limitations, the

Least Squares GAN formulation [33, 34] is adopted in chapter 4 as an alternative

to the original GAN criteria proposed in [30]. Instead of considering the Binary

Cross Entropy (BCE) criterion given in Eq. (2.34) a least squares formulation

is adopted defining

C(β) ≜ Ep⋆(x)
{
Ep⋆(y|x)

{
(πβ(y,x) − b)2

}
+ Epϕ(y|x)

{
(πβ(y,x) − a)2

}}
(2.44)

G(ϕ) ≜ Ep⋆(x)
{
Epϕ(y|x)

{
(πβ(y,x) − c)2

}}
(2.45)

for constants a, b, c. It can be shown that if b − c = 1 and b − a = 2 iteratively

optimising C(β) and G(ϕ) with respect to the discriminator β and model ϕ param-

eters is equivalent to minimising the χ2[p⋆ + pϕ∥2pϕ] which is minimised if and

only if the model pϕ(y|x) is equal to the true data generating process p⋆(y|x) such

that pϕ⋆ = p⋆ (where χ2 denotes the χ2 divergence) [33]. The advantage of this

approach is that the gradient of the generator loss is always well-defined even early

on in training and so helps to avoid the saturation problem of the original GAN

formulation. The least squares GAN framework has been widely adopted by the

domain transfer community [35, 36] and inspired by this is adopted in chapter 4.

Normalising Flows (An aside)

Whilst outside the scope of this thesis, the method of normalising flows is one

exception where it is possible to evaluate the likelihood pϕ(y|x) adopting a model

of the form Eq. (2.33) [37]. If gϕ is bijective and differentiable then p(y|x) is

given explicitly as

pϕ(y|x) = p (hϕ(y; x)) |det ∇yhϕ(y; x)| (2.46)

using the change of variables formula where hϕ(y; x) ≜ g−1
ϕ (ϵ; x) [38].

However, a general neural network gϕ is not typically invertible, and for high

dimensional y calculating |det ∇yhϕ(y; x)| (which in the worst case scales as O(n3
out))

is intractable. Instead, gϕ is defined using invertible layers and such that ∇yhϕ(y; x)

has a particular structure (e.g. upper diagonal) allowing the Jacobian-determinant
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|det ∇yhϕ(y; x)| to be calculated efficiently. This normally comes with significant

restrictions on what layers are considered permissible which in turn limits the

representational power of gϕ. Nevertheless, normalising flows could offer a powerful

approach for modelling general distributions pϕ(y|x) in the future.

2.2.3.2 CycleGAN

We now look ahead to the problem setting of chapter 4 in which the objective

is to learn a radar sensor model capable of replicating radar’s sensing process in

simulation. Whilst it is possible to generate radar measurements in the real world

Y ≜ {yj}
Ny
j=1, and world states in simulation X ≜ {xi}Nxn=1, example pairs (xi,yj) are

now temporally and spatially unaligned. How might a radar sensor model be learnt

in this case? When training the discriminator πβ to distinguish between real, yj,

and simulated, ỹi = fϕy(ϵ,xi), examples as the real input xj is no longer available,

the discriminator must now be optimised using a modified version of Eq. (2.35)

C(β; D) ≜ 1
N

N∑
n=1

log{πβ(yn)} + log {1 − πβ(ỹn)} (2.47)

dropping the discriminators conditioning on the input x. The discriminator is now

tasked with determining whether an example y is real independent of the input

x. As a result, the generator fϕy is now significantly less constrained, and in the

worse case could learn to ignore the input, x, entirely.

The CycleGAN framework offers a valuable remedy to this problem [35]. Along-

side the forward process y = fϕy(ϵy,x) the backward process is also modelled

x = fϕx(ϵx,y)7 and a second discriminator πβx : X → [0, 1] introduced. The

advantage of this approach is that a cyclical consistency constraint

x′ = fϕx(ϵx,y) y′′ = fϕy(ϵy,x′) ℓy(ϕx, ϕy) ≜ ∥y − y′′∥1 (2.48)

y′ = fϕy(ϵy,x) x′′ = fϕx(ϵx,y′) ℓx(ϕy, ϕx) ≜ ∥x − x′′∥1 (2.49)

may also be imposed between the two models too further constrain the forward and

backward processes to be inverses of one another. Combining the cyclical consistency
7Note here we consider the general case where the generators fϕx

and fϕy
are conditioned on

auxiliary random variables ϵx and ϵy rather than the deterministic case originally presented in [39]
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constraints above with the training criteria given in Eq. (2.45) for ϕx and ϕy, the

generative parameters ϕ ≜ {ϕx, ϕy} are optimised simultaneously. Meanwhile, πβx
and πβy are trained by optimising Eq. (2.44). This approach is built upon in chapter 4

to learn a model capable of generating stochastic radar measurements in simulation.

2.2.4 Architecture Design

When designing neural networks applied to radar for mobile robotic applications,

several design constraints must be accounted for. To run on a real robot, the model

must be able to run in real-time. The scan frequency achieved by the radar used

in this thesis is 4 Hz which provides a bound on the permissible execution time of

the network. As motivated in chapter 1 concatenating together multiple azimuth

readings to form a radar sensor measurement f ∈ RR×Θ is desirable, providing the

model with a full 360° top-down view of the scene. This allows the model to more

readily overcome radars complex image formation process (outlined in Sec. 2.1.3),

by providing it with power measurements in their wider scene context. However,

this comes at the expense of the dimensionality of the input to the model f ∈ RR×Θ.

Convolutional Neural Networks (CNNs) are particularly suited for modelling high

dimensional mappings between inputs and outputs which are represented as tensors

(eg. x ∈ RC×H×W ). The convolution operation is readily parallelised on modern

graphical processing hardware allowing CNNs to be easily executed in real time.

Drawing on their wide success in the image domain for robotic applications, CNN

architectures will be widely exploited for radar signal processing in chapters 3 to 6.

CNNs are defined by chaining together multiple convolutional layers

yϕi(yi) = hi
(
Wi ∗ yi−1 + bi

)
(2.50)

which map inputs yi−1 ∈ RCi−1×Hi−1×Wi−1 to outputs yi ∈ RCi×Hi×Wi where

(W ∗ y)c,v ≜
∑

k∈{1...C}

∑
u∈U

Wc,k,uyk,v+u+u0 (2.51)

is the convolution operation defining U ≜ {1 . . . hi} × {1 . . . wi} and u0 ∈ N2 as a

fixed offset. The parameters of the layer ϕi ≜ {Wi,bi} are in this instance shared
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between pixels reducing the size of the parameter space considerably. Any non-linear

function may be used as the activation hi such as (tanh, sigmoid, polynomials) [40],

however, in recent years ReLU activations hi(a) ≜ max(0, a) [41, 42] have become

a popular choice thanks to their well-defined gradients for any input a > 0.8

Stacking multiple convolutional layers together yϕ = yϕL ◦ · · · ◦ yϕ1 allows the

convolutional kernel to gradually distribute information spatially through the image.

Spatial information propagation is aided further through pooling strategies. In this

case the output from Eq. (2.50) is down-sampled to distribute information more

quickly through the feature space using a pooling layer

p : RCi×Hi−1×Wi−1 → RCi×Hi×Wi (2.52)

where Hi < Hi−1 and Wi < Wi−1. Different down-sampling strategies may be

deployed such as taking the maximum value over a window (i.e max-pooling)

[45, 46], summing over the window, or considering only one in every k pixels

(using strided convolutions).

Whilst, pooling layers are necessary to ensure each pixel in the output covers a

sufficiently large receptive field in the input (in a tractable number of layers), this

comes at the expense of spatial resolution which is gradually reduced through the

network. When considering mappings to high-dimensional outputs, such as those in

chapters 3 to 6, the spatial dimension is restored using up-sampling strategies. In

the simplest case bi-linear sampling can be used to up-sample feature maps. More

sophisticated up-sampling approaches utilise the convolutional transpose operation

(sometimes referred to as de-convolutions) [47]. In this case the network is often

composed of an encoder – distributing information spatially through the feature

space using a combination of convolutional layers and pooling – and a decoder –

using an up-sampling strategy (e.g. sampling or de-convolutions) to restore the

spatial dimension to the desired output resolution [47].

It is sometimes also helpful to provide later layers access to information from

earlier layers – for example when considering outputs which rely on fine-grained
8Other popular choices include ELU [43] and LeakyReLU [44] which modify ReLU such that

non-zero gradients are defined for a < 0.
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spatial features in the input. This is achieved using skip connections [48, 49] where

feature maps at earlier layers are concatenated with feature maps at later layers

and combined using convolutions.9 Similar to residual connections, skip connections

have the added benefit of allowing gradient signals from earlier layers to easily

pass through the network. Networks employing an encoder-decoder architecture

with skip connections are commonly referred to as Unets [48]. Unet architectures

are widely exploited in chapters 3 to 6.

CNNs For The Radar Datatype

Convolutional neural networks are particularly suited to inputs and outputs that

can be represented as tensors x ∈ RH×W . The first and simplest approach to

representing radar measurements as a tensor is to concatenate sensor measurements

over multiple azimuths considering x ∈ RR×Θ. As a second approach, it is possible

to convert the radar measurement from polar to Cartesian co-ordinates (using

bi-linear interpolation for example) generating an input x ∈ RH×W . Whilst many

of radars noise artifacts are relatively simple functions in polar co-ordinates – such

as saturation and halo artifacts which appear as bright streaks at a particular

azimuth or range – the appearance of objects will change drastically with range

in this case (and vice-versa for a Cartesian input). Both polar and Cartesian

inputs are considered in later chapters.

Just as it is possible to convert between polar and Cartesian representations at

the input level, it is also possible to perform this conversion at the feature level.

Using differentiable interpolation methods this approach is exploited in chapter 3 to

learn a mapping from a polar input to a Cartesian output. In this case, features in the

encoder are passed to the decoder using polar to Cartesian Transformer Units [50].

Optimisation

When considering deep models, the parameter space is of a high dimensionality and

in general – as they are non-linear in the parameters ϕ – the training objective L(ϕ)
9In the simple case this is achieved by only concatenating feature maps at the same spatial

resolutions
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is typically non-convex. Second-order non-linear optimisation methods that rely on

calculating the Hessian of the loss function with respect to the network parameters

are infeasible due to the high dimensionality of ϕ. Instead, first-order methods are

used, using the derivative of the loss with respect to the parameters ϕ to update the

parameter values at each iteration, as discussed in more detail in Sec. 8.3. In chapters

chapters 3 to 6 the Adam optimiser will be the optimisation method of choice [51].
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2.3 Conclusion

Several deep approaches applied to radar across a range of tasks in robotics, are now

proposed. In chapter 3 a deep and probabilistic approach to radar sensor modelling

is developed. Next, in chapter 4 a deep approach is proposed for replicating radars

sensing process in simulation, with the ultimate goal of training of new-models for

downstream tasks, using simulated radar measurements. Finally, in chapter 5 and

chapter 6 deep models are explored for the radar odometry task.

In each case, chapters 3 to 6 are presented in their original manuscript format

corresponding to the publications listed in Sec. 1.3. Alongside, this in chapter 5

an alternative probabilistic derivation for the proposed approach is presented

which provides further technical insights, and elaborates on several of the methods

proposed in the original publication.
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Probably Unknown: Deep Inverse Sensor Modelling In Radar

Rob Weston, Sarah Cen, Paul Newman and Ingmar Posner

Abstract— Radar presents a promising alternative to lidar
and vision in autonomous vehicle applications, able to detect
objects at long range under a variety of weather conditions.
However, distinguishing between occupied and free space from
raw radar power returns is challenging due to complex inter-
actions between sensor noise and occlusion.

To counter this we propose to learn an Inverse Sensor Model
(ISM) converting a raw radar scan to a grid map of occupancy
probabilities using a deep neural network. Our network is self-
supervised using partial occupancy labels generated by lidar,
allowing a robot to learn about world occupancy from past ex-
perience without human supervision. We evaluate our approach
on five hours of data recorded in a dynamic urban environment.
By accounting for the scene context of each grid cell our model
is able to successfully segment the world into occupied and
free space, outperforming standard CFAR filtering approaches.
Additionally by incorporating heteroscedastic uncertainty into
our model formulation, we are able to quantify the variance
in the uncertainty throughout the sensor observation. Through
this mechanism we are able to successfully identify regions of
space that are likely to be occluded.

I. INTRODUCTION

Occupancy grid mapping has been extensively studied [1],
[2] and successfully utilised for a range of tasks including
localisation [3], [4] and path-planning [5]. One common
approach to occupancy grid mapping uses an inverse sensor
model (ISM) to predict the probability that each grid cell in
the map is either occupied or free from sensor observations.
Whilst lidar systems provide precise, fine-grained measure-
ments, making them an obvious choice for grid mapping,
they fail if the environment contains fog, rain, or dust [6].
Under these and other challenging conditions, FMCW radar
is a promising alternative that is robust to changes in lighting
and weather and detects long-range objects, making it well
suited for use in autonomous transport applications.

However, two major challenges must be overcome in
order to utilise radar to this end. Firstly, radar scans are
notoriously difficult to interpret due to the presence of
several pertinent noise artefacts. Secondly, by compressing
information over a range of heights onto a dense 2D grid of
power returns identifying occlusion becomes difficult. The
complex interaction between occlusion and noise artefacts
introduces uncertainty in the state of occupancy of each
grid cell which is heteroscedastic, varying from one world
location to another based on scene context, and aleatoric [7],
inherent in radar data by way of the scan formation process.

In order to successfully reason about world occupancy,
we posit that a model that is able to reason about scene
context is essential. To this end, we formulate the problem
of determining an ISM as a segmentation task, leveraging a
deep network to learn the probability distribution of occu-
pancy from raw data alone. This allows us to successfully
determine regions of space that are likely to be occupied and

Authors are from the Oxford Robotics Institute (ORI)
{robw,sarah,pnewman,ingmar}@robots.ox.ac.uk
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Fig. 1. Our network learns the distribution of occupancy from experience
alone. By reasoning about scene context it is able to successfully identify
regions of space that are likely to be occupied and free. The uncertainty
associated with each grid cell is allowed to vary throughout the scene
by predicting the noise standard deviation alongside the predicted logit of
each grid cell. These are combined to generate a grid map of occupancy
probabilities. The uncertainty predicted by our network can be used to
successfully identify regions of space that are likely to be occluded.

free in light of challenging noise artefacts. Simultaneously,
by explicitly modelling heteroscedastic uncertainty, we are
able to quantify the latent uncertainty associated with each
world cell arising through occlusion. Utilising approximate
variational inference we are able to train our network us-
ing self-supervision relying on partial labels automatically
generated from occupancy observations in lidar.

We train our model on real-world data generated from five
hours of urban driving and successfully distinguish between
occupied and free space, outperforming constant false-alarm
rate (CFAR) filtering in average intersection over union
performance. Additionally we show that by modelling het-
eroscedastic uncertainty we are able to successfully quantify
the uncertainty arising through the occlusion of each grid
cell.

II. RELATED WORK

Inverse sensor models (ISMs) [1] are used to convert noisy
sensor observation to a grid map of occupancy probabilities.
For moving platforms, a world occupancy map can then be
sequentially generated from an ISM, multiple observations,
and known robot poses using a binary Bayes filter [8]. Using
lidar data, ISMs are typically constructed using a combi-
nation of sensor-specific characteristics, experimental data,
and empirically-determined parameters [9], [10], [11]. These
human-constructed ISMs struggle to model challenging radar
defects and often utilise limited local information to predict
each cell’s occupancy without accounting for scene context.

Instead, raw radar scans are often naively converted to
binary occupancy grids using classical filtering techniques
that distinguish between objects (or targets) and free space
(or background). Common methods include CFAR [12] and
static thresholding. However, both return binary labels rather
than probabilities, and neither is capable of addressing all
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types of radar defects or capturing occlusion. Additionally,
the most popular approach, CFAR, imposes strict assump-
tions on the noise distribution and requires manual parameter
tuning. In contrast, using deep learning methods, as first pro-
posed by [13], allows the distribution of world occupancy to
be learned from raw data alone, accounting for the complex
interaction between sensor noise and occlusion through the
higher level spatial context of each grid cell.

In order to capture uncertainty that varies from one grid
cell to the next we incorporate heteroscedastic uncertainty
into our formulation inspired by [7]. Our variational re-
formulation of [7] is closely related to the seminal works
on variational inference in deep latent variable models [14],
[15] and their extension to conditional distributions [16].

Drawing on the successes of deep segmentation in biomed-
ical applications, [17] and vision [18] we reformulate the
problem of learning an inverse sensor model as neural
network segmentation. Specifically, we utilise a U-net ar-
chitecture with skip connections [19]. In order to map from
an inherently polar sensor observation to a Cartesian map we
utilise Polar Transformer Units (PTUs) [20].

III. DEEP INVERSE SENSOR MODELLING IN
RADAR

A. Setting

Let x ∈ RΘ×R denote a full radar scan containing Θ
azimuths of power returns at R different ranges for each
full rotation of the sensor. Partitioning the world into a
H ×W grid, y ∈ {0, 1}H×W gives the occupancy state of
each grid cell, where yu,v = 1 if cell (u, v) is occupied
and yu,v = 0 if (u, v) is free. Partial measurements of
occupancy ŷ are determined by combining the output of
multiple 3D lidars and projecting the returns over a range
of heights onto a 2D grid. In order to separate the region of
space where no labels exist most likely as a consequence of
full occlusion, from space that is likely to only be partially
occluded or for which no labels exist due to a limited field of
view of the lidar sensors, the observability state of each cell
ou,v is recorded as 0, 1 or 2 corresponding to unobserved,
observed and partially observed space respectively. The full
labelling procedure is described in Figure 2. This process
is repeated for N radar-laser pairs to generate a data set
D = {xn, (ŷ,o)n}Nn=1 of training examples from which we
aim to learn an inverse sensor model py|x ∈ [0, 1]H×W such
that pu,vy|x = p(yu,v = 1|x) gives the probability that cell
(u, v) is occupied dependent on the full radar scan x

B. Heteroscedastic Aleatoric Uncertainty and FMCW Radar

FMCW Radar is an inherently noisy modality suffer-
ing from speckle noise, phase noise, amplifier saturation
and ghost objects. These conspire to make the distinction
between occupied and free space notoriously difficult. A
radar’s long range as well as its ability to penetrate past first
returns make it attractive but also challenging. In particular, a
radar’s capacity for multiple returns along an azimuth implies
varying degrees of uncertainty depending on scene context:
the distinction between occupied and free space becomes

Fig. 2. Generated training labels from lidar. The image on the left shows
the lidar points (red) projected into a radar scan x converted to Cartesain
co-ordinates for visualisation. The right image shows the generated training
labels. Any grid cell (u, v) with a lidar return is labelled as occupied ŷu,v =
1 (white). Ray tracing along each azimuth, the space immediately in front
of the first return is labelled as ŷu,v = 0 (black), the space between the
first and last return or along azimuths in which there is no return is labelled
as partially observed, ou,v = 2, (dark grey) and the space behind the last
return is labelled as unobserved, ou,v = 0, (light grey). Any space that is
labelled as occupied or free is labelled as observed, ou,v = 1

increasingly uncertain as regions of space become partially
occluded by objects. Examples of each of these problems are
further explained in Figure 3. As such, high power returns do
not always denote occupied and likewise, low power returns
do not always denote free.

Uncertainties in our problem formulation depend on the
world scene through a complex interaction between scene
context and sensor noise, and are inherent in our data as
a consequence of the image formation process. As such
they are, heteroscedastic as they depend on scene context
and aleatoric as they are ever present in our data [7].
In order to successfully determine world occupancy from
an inherently uncertain radar scan we seek a model that
explicitly captures heteroscedastic aleatoric uncertainty. By
framing this problem as a deep segmentation task we lever-
age the power of neural networks to learn an ISM which
accounts for scene context in order to determine – from raw
data alone – occupied from free space in the presence of
challenging noise artefacts. Simultaneously, as a result of our
heteroscedastic uncertainty formulation we are also able to
learn which regions of space are inherently uncertain because
of occlusion.

C. Modelling Heteroscedastic Aleatoric Uncertainty

Instead of assuming that the uncertainty associated with
each grid cell is fixed, as is typically assumed in standard
deep segmentation approaches, by using a heteroscedastic
model the uncertainty in each grid cell γφ(x) is allowed to
vary. This is achieved by introducing a normally distributed
latent variable zu,v associated with each grid cell [7] and
predicting the noise standard deviation γφ(x) alongside the
predicted logit µφ(x) of each each zu,v with a neural
network fφ :

pφ(z|x) = N (z|µφ(x),γφ(x)I) (1)
[µφ(x),γφ(x)] := fφ(x) (2)

Assuming a likelihood p(yu,v = 1|zu,v) = Sigmoid(z),
the probability that cell yu,v is occupied is then given by



Fig. 3. Raw radar and the lidar ground truth. An ISM must be able to pick out faint objects, such as cars (pink diamonds), from the background speckle
noise, in light of challenging noise artefacts such as saturation (yellow lines). In addition, an ISM must be able to determine which regions of space are
likely to be occluded such as the space behind buses (highlighted blue) in light of almost identical local appearances (blue cyan boxes). Finally an ISM
should be able to distinguish ghost objects (dotted orange) from true second returns (green lines).

marginalising out the uncertainty associated with z:

p(yu,v|x) =

∫
p(yu,v|zu,v)pφ(zu,v|x)dzu,v (3)

Unfortunately the integral in (3) is intractable and is
typically approximated using Monte-Carlo sampling and
the reparameterization trick [7]. Instead, by introducing an
analytic approximation in Section III-E we show that we can
accurately and efficiently approximate (3) without resorting
to sampling.

One final problem remains. We expect our model to be
inherently uncertain in occluded space for which no lidar
training labels are available. How do we train fφ whilst
explicitly encoding an assumption that in the absence of
training labels we expect our model to be uncertain? In Sec-
tion III-D we propose to solve this problem by introducing
a normally distributed prior p(z) on the region of space
for which no training labels exist utilising the variational
inference framework.

D. Training with Partial Observations

In order to encode an assumption that in the absence of
training data we expect our model to be explicitly uncertain
we introduce a prior p(z) = N (z|µ,γI) on the uncertainty
associated with the occluded scene which our network reverts
back to in the absence of a supervised training signal. To do
this, we begin by treating pφ(z|x) as an approximate pos-
terior to p(z|y) induced by the joint p(z,y) = p(y|z)p(z)
where,

p(y|z) :=
∏

u,v

Bern(yu,v|pu,vy|z) (4)

pu,vy|z = p(yu,v = 1) = Sigmoid(zu,v) (5)

p(z) := N (z|0, γI) (6)
Sigmoid and Bern(y|p) = py(1− p)1−y denote the element-
wise sigmoid function and Bernoulli distribution.

Next given a set of observations D, we consider determin-
ing our parameters φ by maximising the variational lower
bound,

L(φ;D) =
∑

n

Ln(φ) (7)

Ln(φ) = Epφ(z|xn)[log p(yn|z)]− dkl[pφ(z|xn)||p(z)]
(8)

where dkl denotes KL divergence. The first term in Ln(φ) is
the expected log-likelihood under the approximate posterior
pφ(z|x) which, when optimised, forces the network to
maximise the probability of each occupancy label y. The
second term forces pφ(z|x) towards the prior p(z).

Crucially, by only evaluating the log-likelihood term in
the labelled region of space and only evaluating the KL
divergence term in occluded space, we are able to train our
network to maximise the probability of our labels whilst
explicitly encoding an assumption that in the absence of
training labels we expect our network to be inherently
uncertain. The latter is achieved by setting the prior to
p(z) = N (z|0, γI) corresponding to an assumption that
occluded space is equally likely to be free or occupied with
a fixed uncertainty γ. We tested multiple values of γ and
found that setting γ = 1 gave good results.

For a Gaussian prior and approximate posterior the
KL divergence term can be determined analytically, whilst
the expected log-likelihood is estimated using the repa-
rameterization trick [15] by sampling zl = µφ(x) +
γφ(x) ◦ εl where εl ∼ N (0, I). The expected log-
likelihood is then approximated as Epφ(z|x)[log p(y|z)] ≈
− 1
L

∑
l

(∑
u,v H[yu,v,pl,u,vy|z ]

)
where H denotes binary

cross entropy.
Finally our loss function becomes

L̂n(φ) =
ω̄

L

∑

l,u,v

I(ou,v = 1)Hα[ŷn,u,v,pn,l,u,vy|z ]

+
∑

u,v

I(ou,v = 0)dkl[pφ(zu,v|xn)||p(zu,v)] (9)

L̂(φ;D) =
1

N

∑

n

L̂n(φ) (10)

where I denotes the indicator function which is equal to 1 if
its condition is met and 0 otherwise.

In order to ensure that labelled and unlabelled data con-
tribute equally to our loss we re-weight the likelihood term
with ω̄ = ωHW/(

∑
uv I(ou,v = 1)). The hyper-parameter

ω is used to weight the relative importance between our
prior and approximate evidence. As there is also a significant
class imbalance between occupied and free space we use
weighted binary cross entropy Hα where the contribution
from the occupied class is artificially inflated by weighting



each occupied example by a hyper-parameter α. Note that in
the partially observed region ou,v = 2 there is no loss.

E. Inference

Given a trained model pφ∗(z|x) = N (z|µφ∗(x),γφ∗(x))
we now wish to determine the probability that each cell is
occupied given input x by marginalising out the uncertainty
associated with the latent variable z:

p(yu,v|x) :=

∫
p(yu,v|zu,v)pφ∗(zu,v|x)dzu,v (11)

However, for likelihood p(yu,v|zu,v) = Sigmoid(zu,v) no
exact closed form solution exists to this integral. Instead
of resorting to Monte Carlo sampling we approximate the
sigmoid function with a probit function and use the result
that a Gaussian distribution convolved with a probit function
is another probit function [21]. Following this analysis, it can
be shown that,

p(yu,v = 1|x) ≈ Sigmoid

(
µu,vφ∗

su,vφ∗

)
(12)

where su,vφ∗
= (1 + (γu,vφ∗

√
π/8)2)1/2, µu,vφ∗

= µu,vφ∗
(x) and

γu,vφ∗
= γu,vφ∗

(x∗). This allows us to efficiently calculate py|x
as,

[µφ∗ ,γφ∗ ] = fφ∗(x) (13)

sφ∗ = (1 + (γφ∗

√
π/8)2)1/2 (14)

py|x := Sigmoid

(
µφ∗

sφ∗

)
(15)

Figure 4 shows py|x approximated using (15) and Monte
Carlo sampling for varying µφ∗ and γφ∗ . The Monte Carlo
estimate takes of the order 104 samples to converge, whilst
the analytic approximation provides a close approximation
to the converged Monte Carlo estimate.

In equation (15) the predicted logit µφ∗ can be thought
of as giving the score associated with labelling an example
as occupied; intuitively the higher the score the higher
the probability that each cell is occupied. In contrast, the
predicted deviation γφ∗ increases the entropy in the predicted
occupancy distribution independent of the cells predicted
score and captures uncertainties that cannot be easily ex-
plained by the predicted score alone.

IV. RESULTS

In this Section we show that our model, despite chal-
lenging noise artefacts, is able to successfully segment the
world into occupied and free space achieving higher mean
Intersection over Union (IoU) scores than cell averaging
CFAR filtering approaches. In addition to this we are also
able to explicitly identify regions of space that are likely
to be occluded through the uncertainties predicted by our
network. We provide several qualitative examples of our
model operating in challenging real world environments and
study the effects of our prior on our network output through
an ablation study.

A. Experimental Set-Up

A Navtech CTS350x FMCW radar (without Doppler) and
two Velodyne HDL32 lidars were mounted to a survey

Fig. 4. Predicted occupancy probabilities py|x as a function of predicted
standard deviation γφ∗ using the analytic approximation given by (15)
(black) vs Monte Carlo approximation with L = 102 (left), L = 104

(middle) and L = 106 (right) samples. Each colour corresponds to a
different mean µφ∗ with [yellow, grey, purple, blue, red] corresponding
to means [−1,−0.3, 0.01, 0.3, 1] respectively. It is seen that the MC
estimate has high variance taking of the order 106 samples to converge to
the analytic approximation. On the other hand the analytic approximation
closely resembles the converged Monte Carlo estimate.
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Fig. 5. Our network architecture takes in a polar radar scan x ∈ RΘ×R
and maps it to Cartesian grids of mean utility µφ and aleatoric noise scale
sφ = (1+(γφ

√
π/8)2)1/2. Our network is composed of a polar (yellow)

encoder and a Cartesian (blue) decoder. At each polar to Cartesian interface
there is a polar transformer unit (red circle). Each blue rectangle corresponds
to 2 convolutions followed by a max pool.

vehicle and used to generate over 78000 (90%) training
examples and 8000 (10%) test examples from urban scenes.
The output from the two lidars was combined from 0.7m
below the roof of the vehicle to 1m above and projected
onto a 600 × 600 grid, with a spatial resolution of 0.3m,
generating a 180m×180m world occupancy map, following
the procedure described in Section III-A. To account for
differences in the frequency of our radar (4Hz) and lidar
(10Hz) the occupancy map was ego-motion compensated
such that the Cartesian map corresponds to the time stamps
of each radar azimuth.

Figure 5 shows our network architecture in which a polar
encoder takes the raw radar output and generates a polar
feature tensor through repeated applications of 4 × 4 con-
volutions and max pooling before a Cartesian decoder maps
this feature tensor to a grid of mean logits µφ(x) ∈ RH×W
and standard deviations γφ(x) ∈ (0,∞)H×W which are
converted to a grid of probabilities through (15). Information
is allowed to flow from the encoder to the decoder through
skip connections, where polar features u are converted to
Cartesian features v through bi-linear interpolation, with a
fixed polar to Cartesian grid [20]. In all experiments we
trained our model using the ADAM optimiser [22], with a
learning rate of 0.001, batch size 16 for 100 epochs and
randomly rotated each input output pair about the origin,
minimising the loss proposed in (9) with L = 25 samples.
Experimentally it was found that setting α = 0.5 gave



TABLE I
COMPARING OUR APPROACH TO CLASSICAL DETECTION METHODS

USING INTERSECTION OVER UNION

Intersection over Union

Method Occupied Free Mean

CFAR (1D polar) 0.24 0.92 0.5
CFAR (2D Cartesian) 0.20 0.90 0.55
Static thresholding 0.19 0.77 0.48
Deep ISM (our approach) 0.35 0.91 0.63

the best results in terms of IoU performance against the
lidar labels. Unless otherwise stated, the model evidence
importance was set to ω = 1.

B. Detection Performance of Deep ISM vs Classical Filter-
ing Methods

We compare the detection performance of our approach
against cell averaging CFAR [12] applied in 1D (along
range) for polar scans and in 2D for Cartesian scans by
determining the quantity of occupied and unoccupied space
successfully segmented in comparison to the ground truth
labels generated from lidar in observed space. Due to class
frequency imbalance, we use the mean Intersection Over
Union (IoU) metric [23]. The optimum number of guard
cells, grid cells and probability of false alarm, for each CFAR
method, was determined through a grid search maximising
the mean IoU of each approach on training data. For our
method, each cell was judged as occupied or free based on a
0.5 probability threshold on py|x. A 2m square in the centre
of the occupancy map, corresponding to the location of the
survey vehicle, was marked as unobserved.

The results form the test data set for each approach are
shown in table I and show that our approach outperforms
all the tested CFAR methods, increasing the performance in
occupied space by 0.11, whilst achieving almost the same
performance in free space leading to a mean IoU of 0.63.
Our model is successfully able to reason about occupied
space in light of challenging noise artefacts. In contrast,
the challenge in free space is not in identification, with free
space typically being characterised by low power returns, but
in distinguishing between observed and occluded regions, a
challenge which is missed entirely by the IoU metric. Figure
6a shows how our model is able to successfully determine
space that is likely to be unknown because of occlusion and
is able to clearly distinguish features, such as cars that are
largely missed in CFAR. An occupancy grid of size 600×600
can be generated at around 14Hz on a NVIDIA Titan Xp
GPU. Which is significantly faster than real time for radar
with a frequency of 4Hz.

C. Uncertainty Prediction

As described in Section III-E, by incorporating aleatoric
uncertainty into our formulation, the latent uncertainty asso-
ciated with each grid cell is allowed to vary by predicting the
standard deviation of each cell γφ(x) alongside the predicted
logit µφ(x). In this section we investigate the uncertainties
that are captured by this mechanism.

To do this we gradually increase a threshold on the
maximum allowable standard deviation of each cell γφ(x)

labelling any cell that falls below this threshold as either
occupied (white) or free (black), whilst every cell above the
threshold is labelled as unknown (grey). The result of this
process is illustrated in Figure 6d.

The standard deviation predicted by our network largely
captures uncertainty caused by occlusion, which, indepen-
dent of the true underlying state of occupancy, results in
space that is inherently unknown. From least likely to most
likely to be occluded, we move from high power returns
labelled as occupied, to a region nearby and up to the first
return, to space that lies in partial and full occlusion. This
ray tracing mechanism is largely captured by the standard
deviation γφ(x) predicted by our network.

D. Qualitative Results

Finally, we provide several qualitative examples of our
model operating in challenging real world environments and
investigate how the strength of our prior term in (9) effects
the occupancy distribution predicted by our model.

Figure 6c gives qualitative examples taken from the
test set. Our network is able to successfully reason about
the complex relationship between observed and unobserved
space in light of challenging noise artefacts. In Figure 6b
we vary the relative importance between the likelihood and
KL divergence term by varying the hyper-parameter ω in
(9). Increasing ω increases the relative importance of the
likelihood term and leads to an ISM which is able to more
freely reason about regions of space for which no labels exist
during training, using the labels available in the observed
scene. In the limit, of high ω the model is no longer able
to successfully identify regions of space that are likely to
be occluded, predicting all low power returns as free with a
high probability.

V. CONCLUSION

By using a deep network we are able to learn an inher-
ently probabilistic ISM from raw radar data that is able to
identify regions of space that are likely to be occupied in
light of complex interactions between noise artefacts and
occlusion. By accounting for scene context, our model is able
to outperform CFAR filtering approaches. Additionally, by
modelling heteroscedastic uncertainty we are able to capture
the variation of uncertainty throughout the scene, which can
be used to identify regions of space that are likely to be
occluded. Our network is self-supervised using only partial
labels generated from a lidar, allowing a robot to learn
about the occupancy of the world by simply traversing an
environment.

At present our approach operates under a static world
assumption. In future work we hope to incorporate scene
dynamics into our formulation allowing a robot to identify
cells that are likely to be dynamic in addition to occupied or
free.
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(b) The predicted probability of occupancy for different values of likelihood importance ω. As ω is increased our model becomes increasingly less conservative,
reasoning in the unobserved region of space based on labels in the observed region.

(c) Our model successfully identifies occupied free and occluded space in challenging real world environments.

(d) A scene segmented as predicted occupied (white), unoccupied (black) and unknown (grey) for decreasing confidence thresholds (left to right) on the
predicted standard deviation γφ. From most certain to most least certain, we move from high power returns labelled as occupied, to a region nearby and
up to the first return, to space that lies in partial and full occlusion.
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There and Back Again: Learning to Simulate Radar Data for
Real-World Applications

Rob Weston, Oiwi Parker Jones and Ingmar Posner∗

Abstract— Simulating realistic radar data has the poten-
tial to significantly accelerate the development of data-driven
approaches to radar processing. However, it is fraught with
difficulty due to the notoriously complex image formation
process. Here we propose to learn a radar sensor model
capable of synthesising faithful radar observations based on
simulated elevation maps. In particular, we adopt an adversarial
approach to learning a forward sensor model from unaligned
radar examples. In addition, modelling the backward model
encourages the output to remain aligned to the world state
through a cyclical consistency criterion. The backward model
is further constrained to predict elevation maps from real radar
data that are grounded by partial measurements obtained from
corresponding lidar scans. Both models are trained in a joint
optimisation. We demonstrate the efficacy of our approach by
evaluating a down-stream segmentation model trained purely
on simulated data in a real-world deployment. This achieves
performance within four percentage points of the same model
trained entirely on real data.

I. INTRODUCTION

The long sensing range of radar and its resilience to
adverse environmental conditions make it an attractive com-
plement to lidar and vision for robotics and autonomous driv-
ing applications. However, radar is notoriously challenging
to interpret; multi-path phenomena, limited resolution, and
pernicious noise artefacts arising throughout the complex and
imperfect measurement pipeline pose significant challenges
to radar-based perception systems. In recent years, data-
driven approaches have made significant strides to overcome
these challenges across a range of tasks in robotics [1], [2],
[3], [4]. Central to the continuing success of such approaches
is the quality, scale, and labelling of radar datasets, which in
contrast to vision and lidar remain limited.

Akin to progress in the use of other sensing modalities,
simulation has the potential to significantly accelerate the
development and deployment of radar-based methods by
reducing the need for human annotation and automating
the data-gathering process. The importance of learning from
simulated data can be seen across a wide range of tasks in
vision and lidar [5], [6], [7], [8], [9], [10]; and it is echoed
in the rapid development of multiple autonomous driving
simulators capable of simulating complex worlds, designed
to facilitate these approaches [11], [12], [13].

Inspired by the impact simulation has brought to the devel-
opment of sophisticated vision and lidar systems, the overar-
ching goal of our work is to enable the training of data-driven
models for radar interpretation in simulation. To successfully
train models in simulation, we therefore consider learning a
radar sensor model that is able to faithfully simulate radar
observations, such that the domain gap experienced by a
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Fig. 1: Given a simulated elevation map (a) we are able
to generate realistic radar in simulation (b) through a data
driven approach. We achieve this by learning from unaligned
real radar observations (c). Alongside the forward mapping
we also learn the backward mapping from real radar (c)
to predict the real world elevation (d). This allows us to
further constrain training through cyclical consistency and
by learning from partial lidar measurements collected in the
real world.

down-stream system when trained on either real or synthetic
data is minimal. In particular, we aim to interface with
existing simulators already capable of synthesising complex
scenes and adopted widely by the community. In meeting this
requirement, we consider simulating radar observations given
a layout of the world, supplied to our model in the form of an
elevation map. Noise processes arising throughout the radar
sensing pipeline give radar an inherently stochastic nature; to
accurately replicate this, we adopt a probabilistic approach,
using a deep implicit model [14] to capture a distribution
over possible radar sensor measurements.

Adopting an adversarial paradigm, we train our sensor
model to explicitly generate realistic radar observations from
simulated height maps using unaligned real-world radar data.
As shown in Figure 1, alongside the forward sensor model we
also learn the backward model to infer the elevation state of
the real world from radar. This allows us to further constrain
training by enforcing cyclical consistency [15] between the
forward and backward processes. Alongside this we ground
the predictions of our backward model in the real world
by enforcing alignment with partial height measurements
generated automatically from lidar.

Through our approach, we demonstrate the feasibility
of training radar models in simulation to the best of our
knowledge for the first time. In doing so, our approach
achieves performance within 4% compared to that of the
same model trained in the real world.

ar
X

iv
:2

01
1.

14
38

9v
1 

 [
cs

.R
O

] 
 2

9 
N

ov
 2

02
0



II. RELATED WORK

Whilst unexplored in radar, the benefits of training in sim-
ulation have been extensively studied in both vision [10], [9],
[8], [7], [6], [16] and lidar [5] across a range of perception
tasks including segmentation [10], [8], detection [5], tracking
[10], and optical flow [6]. In addition to training models,
simulation has an important role to play in the analysis
and interrogation of corner-cases, potentially too dangerous
to recreate in the real world. The need for simulation, in
combination with the development of powerful open source
games engines [17], [18], has led to a profusion of both open
source [12], [13], [11] and proprietary [17] autonomous driv-
ing simulators for vision and lidar but support for radar still
remains limited. Whilst [11] provides a simple simulation of
target lists as might be returned by a typical automotive radar,
in this work we are concerned with simulating significantly
richer—but more challenging to replicate—raw radar power
measurements.

To capitalise on the similar successes that training in
simulation has brought to vision and lidar, we aim to learn a
radar sensor model capable of faithfully simulating the radar
sensing process. But radar’s complex sensing pipeline makes
simulation challenging. The high frequency of radar renders
direct solution of Maxwell’s equations intractable. Instead,
asymptotic solutions have been widely adopted, in an attempt
to simulate radar, relying on a combination of geometric [19]
and physical optics [20], [21], [22]. Representing objects
as their characteristic scattering centers [23], [24], [25] can
further help reduce computation. Whilst several approaches
have demonstrated the feasibility of simulating simple driv-
ing scenes using these methods [26], [27], [28], [29], they
scale poorly, relying on a precise model of the world,
including material properties that are difficult to model in
practice. In contrast, our approach is capable of simulating
radar observations given only a simulated elevation map;
this allows us to interface with and scale to the complex
worlds provided in modern simulation environments, without
requiring us to build a radar-specific simulation world from
the ground up.

Several approaches also propose to account for noise
artefacts arising through the downstream measurement pro-
cess using hand-crafted phenomenological models [30], [31],
[32]. More recently, data-driven approaches [33] have been
proposed as a better alternative [34], learning to characterise
the entire radar process, from world state to sensor obser-
vation, from raw data. Whilst [33] shows the feasibility of
using a data-driven approach to replicate radar data in a
controlled airfield environment with only a handful of targets,
in our work we consider simulating radar in complex urban
environments, where labelling exact real-world layouts is
significantly more challenging. Instead of requiring exact real
world layouts to train our model, as in [33], we generate
radar observations from simulated height maps. As well as
side-stepping the need for precise layouts of the real world,
through this approach we are able to explicitly encourage our
model to generate feasible radar observations in simulation.

Similar in flavour, therefore, to recent approaches pro-
posed for unaligned domain transfer in vision [15], [16],
[35], [36], we too consider learning unaligned mappings
between simulated world layouts and real radar observations.

We model the forward and backward model side-by-side
using adversarial and cyclical consistency losses. Unlike in
[15], [16], [35], [36] which consider a deterministic one-
to-one mapping between domains, we adopt an inherently
probabilistic approach. We capture a distribution over pos-
sible power returns to account for the stochastic noise pro-
cesses arising throughout the radar sensing pipeline. We also
further encourage our backward model to predict elevation
states that are aligned to real-world measurements generated
automatically in lidar, where they are available.

III. DEEP RADAR SIMULATION

A. Problem Formulation

Let x∗ denote a real radar observation generated from real
world state w∗ ∼ p(w∗) as

x∗ ∼ p(x∗|w∗), w∗ ∼ p(w∗) (1)

where p(x∗|w∗) is the real radar sensor model. Specifically,
we consider radar observations of the form x∗ ∈ RΦ×R

where x∗ij gives the power returned from the world at polar-
coordinate (φi, rj) ∈ {φi}Φi=1 × {rj}Rj=1.

We aim to learn a radar sensor model x ∼ pθx(x|w)
capable of generating feasible radar observations x from
a simulated state w ∼ p(w). We model the world state
w ∈ RΦ×R, with the same dimensions as x, where wi,j

gives the elevation of the world location (φi, ri). In addition
to containing the necessary information to generate x (such
as the shape, size, and position of objects in the scene), this
representation allows us to easily interface with a preexisting
simulation environment, such as CARLA [11]. Whilst w is
easily simulated it is more challenging to measure in the real
world. We assume that we are able to obtain partial measure-
ments m∗ = m(w∗) using lidar, where due to the limited
range and number of beams of lidar many locations (φi, ri)
are without an elevation measurement. We therefore have at
our disposal real world observations R = {(x∗,m∗)n}Nn=1

and simulated observations S = {wl}Ll=1 with which to train
our approach.

B. Stochastic Simulation Using Deep Implicit Models

For the same world state w∗, aleatoric sensor noise
results in radar sensor measurements x∗t ∼ p(x∗|w∗) and
x∗t+1 ∼ p(x∗|w∗) that are inherently stochastic. To capture
the stochasticity in the mapping from w to x – mimicking
the true sensing process – we introduce a latent variable
ε ∼ N (0, I); using a neural network gθx(w, ε) with pa-
rameters θx, for a fixed w, we are able to sample multiple
possible x by sampling ε ∼ N (0, I). This allows us to
implicitly capture a distribution pθx(x|w) over possible radar
observations sampling x ∼ pθx(x|w) as

x = gθx(w, ε; θx) with ε ∼ pε(ε) . (2)

Through this approach we are able to leverage the repre-
sentational power of a deep neural network gθx to learn
the complex mapping from world state w to radar sensor
observation x, whilst simultaneously implicitly learning how
to characterise the uncertainty in the sensing process.



C. Learning only from Real Observations

If we could observe real-world observation-state pairs
R = {(x∗,w∗)n}Nn=1 we might train pθx(x|w) by minimis-
ing

Ax = Ep(x∗,w∗)[`(θx;x
∗,w∗)]≈ 1

N

∑
n `(θx;x

∗
n,w

∗
n) (3)

where `(θx;x
∗,w∗) is a regression loss (eg. MAE or

MSE) between the real x∗ and simulated observations
x ∼ pθx(x|w∗). However, only partial partial measurements
of the world state m∗ = m(w∗) are available. In addition,
by training our model in this way, pθx(x|w) is only trained
on real state observations w∗ ∈ R and a significant domain
gap between w ∈ S and w∗ ∈ R is still likely to persist. We
posit that models that explicitly incorporate simulated state
observations w ∈ S into the training loop are more likely to
generate feasible radar observations in simulation. We now
propose how this might be achieved.

D. Learning from Unaligned Real and Simulated Data

We assume that measurements of the world state m∗

are entirely unavailable. In this case, we have the datasets
R = {x∗n}Nn=1 and S = {wn}Nn=1 available to us. As
(x∗n,w

∗
n) ∈ R × S are no longer aligned, training pθx(x|w)

as in (3) is no longer feasible.
To train x ∼ pθx(x|w) to replicate x∗ ∼ p(x∗|w∗) using

only unaligned examples (x∗,w) we adopt an adversarial
approach [37]; introducing a discriminator network dβx(x)
with parameters βx, and training objectives,

Dx = Ep(x∗)

[(
dβx(x

∗)− 1
)2]

+ Epθx (x)

[
dβx(x)

2
]

(4)

Gx = Epθx (x)

[(
dβx

(x)− 1
)2]

(5)

minimising Dx(βx) with respect to βx and Gx(θx) with
respect to θx.1 Here we have adopted a least-squares loss
assuming a [x,x∗] = [0, 1] coding scheme: this avoids
discriminator saturation which can destabilise training [38].

In reality the expectations in (4) and (5) are estimated
using Ep(x)[f(x)] ≈ 1

K

∑
k f(xk) with xk ∼ p(x); crucially

this allows us to train pθx(x|w) using only unaligned samples
(x∗,w) ∈ R × S sampling from pθx(x) as xk ∼ pθx(x|wk)
using (2).

E. Constraining Training Using Cyclical Consistency

However, training pθx(x|w) by minimising just Gx(θx)
with unaligned examples is a highly unconstrained process
[15]. In the worst case, pθx(x|w) could choose to disre-
gard the state information w entirely, instead generating
x = gθx(w, ε) using only ε as in a standard GAN formula-
tion [37].

To counter this, in order to further constrain pθx(x|w),
we also model the backward mapping w∗ ∼ p(w∗|x∗) as
w = gθw(x,κ; θw) with κ ∼ N (0, I), where gθw is a neural
network with parameters θw and κ induces the uncertainty

1More generally the expectations in (4) and (5) could be written with
respect to the joint p(x,w) but as the terms inside the expectations are
only functions of f(x) we have Ep(x,w)[f(x)] = Ep(x)[f(x)] which we
adopt for simplicity. Here we consider generating samples x ∼ p(x) by
sampling from the joint distribution x,w ∼ p(x,w) and disregarding w

in p(w∗|x∗). Crucially, this allows us to impose additional
cyclical consistency constraints [15], [16], [35],

w′′ ≈ w w′′ ∼ pθw(w∗|x′) x′ ∼ pθx(x|w) (6)
x′′ ≈ x∗ x′′ ∼ pθx(x|w′) w′ ∼ pθw(w∗|x∗) (7)

into our training framework, explicitly encouraging pθx(x|w)
to use w by enforcing (6) and pθw(w|x) to use x by
enforcing (7) through cyclical consistency losses,

Cw(θx, θw) = Ep(w) [‖w −w′′‖1] (8)
Cx(θx, θw) = Ep(x∗) [‖x∗ − x′′‖1] . (9)

Alongside (8) and (9), we also train pθw(w
∗|x∗) using

an adversarial objective. Introducing another discriminator
network dβw

(w) with parameters βw, and training objectives,

Dw=Ep(w)

[(
dβw

(w)−1
)2]

+Epθw(w∗)

[
dβw

(w∗)2
]

(10)

Gw = Epθw (w∗)

[(
dβw

(w∗)− 1
)2]

(11)

we minimise Dw(βw) with respect to βw and Gw(θw)
with respect to θw, generating samples w∗k ∼ pθw(w

∗) as
w∗k ∼ pθw(w∗|x∗k) using (10) with x∗k ∈ R ∼ p(x∗).

We note that just as Gx(θx) could lead gθx(w, ε) to ignore
w (as discussed previously), in the worst case Cx(θx, θw)
encourages x = gθx(w, ε) to ignore ε enforcing a one-to-one
mapping between x and w [39]. Whilst several extensions
have been proposed to overcome this problem [40], [39], in
reality we find that this does not occur in our training setup;
we posit that the need to generate realistic radar observations
that are capable of tricking the discriminator Gx(θx) far
outweighs Cw(θx, θw), avoiding degeneracy.

F. Learning from Partial Lidar Measurements

Another benefit of learning the backward model
pθw(w

∗|x∗) is that it allows us to learn from partial measure-
ments w∗ ∼ p(w∗) when they are available. This is achieved
through an alignment consistency objective,

Aw(θw) = Ep(x∗,w∗)[`(θw;w
∗,x∗)] (12)

where `(θw;w
∗,x∗) = ‖(m∗ − gθw(w

∗,κ)) � I(m∗)‖1,
and p(x∗,w∗) = p(x∗|w∗)p(w∗) is the joint distribution
over real observation-state pairs with I(·) an element-wise
indicator function returning 1 if the measurement of m∗i,j
exists or 0 otherwise.

Considering a combined training objective,

L(θx, θw) = Gx + λgwGw + λcxCx + λcwCw + λawAw (13)

with hyper-parameters λ = [λgw, λcx, λcw, λaw] used to
trade off the relative importance of each term, we are able to
train both pθx(x|w) and pθw(w

∗|x∗) – explicitly encourag-
ing x ∼ pθx(x|w) to generate realistic radar observations
in simulation, training on w ∈ S, whilst also learning
from aligned pairs x,m∗ ∈ R when measurements m∗ are
available.



IV. EXPERIMENTAL SETUP

A. Self-Supervised Dataset Generation
In section III-A we assumed that we had aligned real-

world radar observations and partial state measurements
R = {(x∗,m∗)n}Nn=1 and unaligned but perfectly observed
state observations generated in simulation S = {wl}Ll=1 with
which to train our model. We now describe how to attain
(R, S) in practice.

1) Generating R: We generate R from the Oxford Radar
RobotCar Dataset [41], [42]. We partition the dataset into
train and test sets with the training set being composed of 29
10km loops (generating 222420 observations) with 3 loops
being reserved for testing (23460 observations), resulting
in an approximate 90 : 10 split. Each x∗ corresponds to
the output of a Navtech CTS350x FMCW radar rotating
about its vertical axis, down-sampled to a 0.35m resolution
and scaled to give x∗ ∈ [−1, 1]400×471. This corresponds
to a 360◦ field-of-view with maximum observable height
5.2m. We construct partial height map measurements m∗

by combining the output of two HDL32E Velodyne Lidars:
as a result of differing sensing frequencies (radar at 4Hz
and lidar at 20Hz) each x∗ is matched to multiple lidar
scans to maintain accurate labelling. The lidar pointclouds
are filtered to coincide with the radar’s horizontal field-of-
view (−40o, 1.8o), before being binned onto a polar grid
and labelling each grid cell with the maximum height of
any point falling within it. Each m∗ is then scaled from the
interval [−2.2m, 5.2m] to the interval [−1, 1] with any grid
cell without a label assigned the value −1. Due to the limited
number of lasers and range of each lidar, each m∗ is only a
partial measurement m∗ = m(w∗) of the true world state,
with many cells having no observation attached to them.

2) Generating S: We generate S = {wl}Ll=1 utilising the
CARLA simulator [11] by mounting a data collection vehicle
with four orthogonal depth cameras at the same height as the
radar used to generate w (1.97m above the ground plane),
each producing a R1024×1024 image. These are projected
into a dense 3D pointcloud which is then converted to
height labels w ∈ [−1, 1]400×471 in a similar approach
described in the previous section. In contrast to the the real-
world elevation maps generated by lidar we assume that
the simulated state observations w are dense with each cell
potentially observable in radar having a height measurement
attached to it. The simulation world was spawned with 200
vehicles of random types and size and 300 pedestrians, using
town layouts 1 and 2. Observations were collected by setting
the vehicle into auto-pilot mode and recorded only when
the vehicle was moving. The simulation was restarted after
60 seconds of no movement. Through this approach we
generated 105 observations for training. A further 68, 400
were held out for testing.

B. Network Architectures and Training
Our network architecture and training set-up largely follow

that proposed in [15]. Specifically, we use ResNet gener-
ators for gθx and gθw [43], with 2-strided convolution, 9
residual blocks, and 2 up-convolutions before a final tanh
activation. After each convolution, batch normalisation [44]
is applied before a ReLU activation. The variables ε and κ
are sampled from N (0, I) before concatenation with w and

x respectively, and passed to gθx and gθw as a 2-channel polar
tensor. We utilize patch discriminators for dβx

and dβw
[45],

sampling generated observations from a pool of 50 when
training as in [15]. All networks are implemented in PyTorch
[46] and trained for 5× 105 steps using the Adam optimizer
[47] with learning rate 2× 10−4, β = (0.5, 0.999), and a
batch size of 1. In all experiments we set λ = [1, 10, 10, 10]
as given in (13).

C. Evaluation

1) Radar Simulation: One of the central motivations for
our approach was to develop a radar sensor model pθx(x|w)
to train new models yα(x) in simulation that generalise to
the real world. With this in mind, to assess the realism
of radar observations x ∼ pθx(x|w), we train a model
yα(x) in simulation minimising Epθx (x,y)[`(y, yα(x))] with
respect to α where `(·, ·) is a loss between the actual and
predicted target. We then assess the realism of pθx(x|w)
as, Ep(x∗,y∗) [m(y∗, yα(x∗|θx))] evaluating the performance
of the trained model yα(x

∗|θx) in the real world with
metric m(·, ·). Specifically, we consider training a model to
segment the world into occupied, free, and unknown space.
To successfully train yα(x) this task requires x ∼ pθx(x|w)
to replicate realistic noise artefacts (which yα(x) must learn
to overcome) whilst ensuring the mapping from world state
w to radar observation x is as faithful as possible to the
real-world mapping w∗ to x∗.

We train and evaluate the segmentation model using
datasets S′ = {(x,y)}Nn=1 and R′ = {(x∗,y∗)}Nn=1, gen-
erated from the sets held out in sections IV-A.1 and IV-A.2.
In both cases labels are generated automatically from either
partial m∗ or full w measurements of the world state in a
similar approach to [1]: after extracting the ground plane, any
cell with a height measurement is labelled as occupied, all
cells before the first return are labelled as free, and anything
else is labelled unknown. For all segmentation networks yα,
a U-Net architecture [48] is used with 6 levels, doubling the
features and halving spatial resolution at each level, starting
with 8 features at the input and allowing information to
flow from encoder to decoder using skip connections. Each
model is trained with a batch size of 8 using the Adam [47]
optimizer (learning rate 1× 10−3) to minimise the cross-
entropy loss, with an additional weighting of 50 applied to
the occupied class to account for class imbalance. The model
attaining the highest IoU over 4 epochs of training (tested
on a 10% hold out dataset after each epoch) is used for
evaluation – usually the first or second.

In keeping with [49] and as proposed in the Pascal Voc
Challenge [50] each model is evaluated using the mean
Intersection over Union metric [51] (mIoU)

M(θx) =
1

2

∑

c

[
TP(c)

FP(c) + FN(c) + TP(c)

]
(14)

where the true positives TP, false positives FP and false
negatives FN are determined for each class (occupied and
free) comparing y∗i,j and yα(x)i,j at each index (i, j) across
the entire dataset R′ = {(x∗,y∗)}Nn=1. Any cell that is pre-
dicted unknown but labelled as free or occupied is counted
as a false negative.



training objective intersection over union
trained on Ax Aw Gx Gw Cx Cw free occ mean

benchmark
real world - - - - - - - - - 0.856 0.553 0.705

ours
(a) x∗ m∗ - X - - - - - 0.396 (0.00) 0.275 (0.00) 0.335 (0.00)
(b) x∗ m∗ - X - X - - - 0.558 (0.11) 0.221 (0.03) 0.389 (0.07)
(c) x∗ - w - - X - - - 0.385 (0.07) 0.148 (0.01) 0.266 (0.04)
(d) x∗ - w - - X X X X 0.845 (0.02) 0.262 (0.02) 0.553 (0.02)
(e) x∗ m∗ w - X X X X X 0.872 (0.01) 0.455 (0.01) 0.664 (0.01)

TABLE I: Radar simulation performance: real-world mIoU performance for segmentation models trained by different radar
sensor models in simulation as outlined in Section III and discussed in Section V-A (averaged over four random seeds
presented with standard deviations)

Real Radar x*
(c)(b)Simulated State w (e)

Simulated radar x

scenario  (b) scenario (c) scenario (d) scenario (e)scenario  (a)world state unaligned real radar

Fig. 2: Simulated radar for training scenarios given in Table I generated from elevation maps given in the first column.
Unaligned real radar observations x∗ are also shown for reference (last column). Simulators trained using only real data, as
in (a) and (b), fail to synthesise realistic radar in simulation. Whilst at first glance simulators trained using only an adversarial
criterion between simulated and real radar appear realistic, on closer inspection they are poorly aligned to the world state
as can be seen in (c). Enforcing cyclical consistency helps to remedy this as can be seen in (d). The most realistic radar
observations correspond to simulators trained with the full training objective, as in (e), and backed up by Table I.

2) Evaluating the Backward Model: The heights predicted
by our backward model w∗ ∼ pθw(w

∗|x∗) are evaluated
using absolute mean error between w∗ ∼ pθw(w

∗|x∗) and
partial state measurements m∗ over the test set R′ from
section IV-A.1, evaluated only where measurement m∗i,j
exist. As a result of the class imbalance between height
labels corresponding to the ground plane and targets in the
scene, we evaluate this metric over occupied and free space
independently, presenting both alongside their average. All
height evaluations were run for four models trained with
different random seeds, from which we computed averages
and error bounds presented as standard deviations.

V. RESULTS

A. Radar Simulation

To assess the realism of radar observations simulated
through our approach x ∼ pθx(x|w), we consider how
models trained using pθx(x|w) perform in the real world
using the evaluation method proposed in section IV-C.1.

The results for an ablation of possible training setups is
given in Table I with a qualitative comparison given in
Figure 2. In (a) and (b) we assess whether it is possible
to learn to simulate realistic radar observations given a
simulated elevation map w whilst only training on real-world
measurements (x∗,m∗) ∈ R as proposed in section III-C. In
(a) we train pθx(x|w) to regress to x∗ directly from partial
state measurements minimising (13) whilst in (b) we add
an additional adversarial loss Gx introducing a discriminator
dβx

(x) to distinguish between real and simulated radar obser-
vations (similar to [52]). Both (a) and (b) lead to models that
poorly generalise to the real world corresponding to a mIoU
of 0.335 and 0.389 respectively, and as seen qualitatively in
Figure 2.

In (c) and (d) we consider learning using only unaligned
observations (x∗,w) assuming that partial state measure-
ments m∗ are unavailable. Specifically, in (c) we train a
model trained using only an adversarial loss Gx between real
x∗ and simulated radar observations x ∼ w∗ as proposed in



section III-D whilst in (d) we add in cyclical consistency
constraints Cx and Cw, also learning the backward model
pθw(w

∗|x∗) as proposed in section III-E. We find that (c)
leads to models that perform poorly in the real world in this
instance achieving a mIoU of only 0.266; training only on
adversarial criteria leads to simulated radar observations that
are poorly aligned to the real-world state as can be seen
in Figure 2. Additionally modelling the backward model
and imposing cyclical consistency, as in (d), allows us to
encourage alignment between the world state and simulated
radar observation – boosting performance to 0.553 and
significantly outperforming (a) and (b).

However, our best performing model (e) is trained using
the full training objective given in (13) as proposed in section
III-F. In addition to producing the most realistic simulated
observations x in Figure 2, in this case we are able to train
a model in simulation achieving a mIoU of 0.664, only 4
percentage points off the same model trained directly on real
data in the same domain as the test set 0.705.

B. Height Inference
In addition to improving the realism of the radar sensor

model, as demonstrated in the last section, the backward
model pθw(w

∗|x∗) learnt as part of the same training setup
can be used to infer the underlying elevation state of the
world given a real world radar observation x∗.

We evaluate the quality of the heights predicted by
pθw(w

∗|x∗) using the evaluation procedure described in sec-
tion IV-C.2. We use the MAE error as compared to the partial
height measurements m∗ made in lidar evaluated separately
for both both free and occupied space. The results of this
process are presented in Table II for several different training
configurations. In (a) we consider just training pθw(w

∗|x∗)
by enforcing only cyclical consistency as proposed in section
III-E whilst in (b) we consider training pθw(w

∗|x∗) using
the full training criteria given in equation (13). By imposing
alignment in (b) the system is able to more accurately infer
the elevation map w∗ with MAE 23cm – compared to a 39cm
accuracy for (a). Whilst (b) performs slightly worse than our
benchmark of 13cm we find that as a result of the additional
adversarial constraint Gw, we are able to generalise to regions
outside of the range of lidar (unlike our benchmark) as can
be seen in Figure 3.

Mean Absolute Error (cm)
data Az Gw Cw free occ mean

Benchmark
direct regression R X - - 18.7 7.5 13.1
Ours
(a) R, S - X X 3.9 (0.4) 74.2 (1.8) 39.0 (0.9)
(b) R, S X X X 4.1 (0.6) 41.1 (5.7) 22.6 (2.6)

TABLE II: MAE for the heights predicted by the backward
model evaluated against partial height measurements gener-
ated in lidar as proposed in Section V-B. Our benchmark
corresponds to a model trained to regress directly to lidar
measurements. (Averaged over four random seeds and pre-
sented with standard deviations.)

VI. CONCLUSION

This work demonstrates that it is possible to develop a
data-driven approach to radar-simulation capable of training

Real Radar

Direct Regression

(a)

(b)

(d)

(i) (ii)

(iii) (iv)
(d) ours(c) direct regression

(a) real radar (b) partial lidar ground-truth

Fig. 3: Predicted elevation maps from real-world radar. As
can be seen in (c) models learnt by directly regressing to
partial height maps m∗ poorly generalise to regions without
labels. Adding in an additional adversarial loss forces the
predicted elevation to look more like simulated height maps
allowing the model in (d) to generalise to regions of space
for which labels do not exist.

downstream systems that are readily deployable in the real
world. By simulating radar sensor observations from eleva-
tion maps we are able to interface with existing simulators
already capable of synthesising complex real-world scenes.
We adopt an inherently stochastic and data-driven approach,
capturing a mapping from state to radar sensor model
(alongside sensor noise). We learn our approach from real
radar measurements, simulated elevation maps, and partial
elevation measurements generated in lidar. To encourage our
model to simulate realistic radar observations, we adopt an
adversarial approach model the backward mapping to further
constrain learning through cyclical consistency losses and
partial alignment to real-world elevation maps.

Using our approach to train a segmentation system in
simulation, we find that when deployed in the real world, the
system is able to operate with a mIoU of 0.664 performing
comparably to a model trained in the real world only. To the
best of our knowledge this is the first time that the feasibility
of training models in simulation has been demonstrated
in radar. The backward model learnt as part of the same
training setup can be used to infer the height state of the
world with an accuracy of 23cm, using only partial elevation
measurements, whilst generalising to regions of space for
which no labels exist.

Whilst our model is able to successfully train segmentation
models in simulation that partition the world into occupied,
free, and unknown space, early experiments (on a limited test
set) found that partitioning occupied space into finer grained
classes was significantly more challenging. This constitutes
an interesting area for future research.
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Architecture Diagram

a b

cd

Figure 4.1 : Network Training Setup The forward model x = gθx(w, ϵ) (light blue)
takes as input a simulated elevation map a and generates a simulated radar measurement
b . The backward model w∗ = gθw(x∗, κ) (light pink) maps a real radar measurement c

to an elevation map d . Here ϵ and κ are random base variables which when sampled
induce distributions over x and w∗ respectively (not shown in the diagram) and gθx and
gθw are neural networks. Both models are trained simultaneously through a combination of
adversarial criterion, Gx and Gw, as defined in Eq. 5 and Eq. 11, introducing discriminators
dβx and dβw . Cyclical consistency constraints, Cx and Cw, as defined in Eq 8. and Eq. 9,
are also introduced to ensure that the forward and backward processes are approximate
inverses of one another. A partial alignment loss Aw is introduced to further constrain
training (as defined in Eq. 12.)
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Masking by Moving: Learning Distraction-Free
Radar Odometry from Pose Information

Dan Barnes, Rob Weston, Ingmar Posner
Applied AI Lab, University of Oxford

{dbarnes, robw, ingmar}@robots.ox.ac.uk

Abstract: This paper presents an end-to-end radar odometry system which deliv-
ers robust, real-time pose estimates based on a learned embedding space free of
sensing artefacts and distractor objects. The system deploys a fully differentiable,
correlation-based radar matching approach. This provides the same level of in-
terpretability as established scan-matching methods and allows for a principled
derivation of uncertainty estimates. The system is trained in a (self-)supervised
way using only previously obtained pose information as a training signal. Using
280km of urban driving data, we demonstrate that our approach outperforms the
previous state-of-the-art in radar odometry by reducing errors by up 68% whilst
running an order of magnitude faster.

Keywords: Perception, Radar, Odometry, Localisation, Deep Learning,
Autonomous Driving

1 Introduction

Robust ego-motion estimation and localisation are established cornerstones of autonomy. Emerging
commercial needs as well as otherwise ambitious deployment scenarios require our robots to operate
in ever more complex, unstructured environments and in conditions distinctly unfavourable for typ-
ical go-to sensors such as vision and lidar. Our robots now need to see further, through fog, rain and
snow, despite lens flare or when directly facing the sun. Radar holds the promise of remedying many
of these shortcomings. However, it is also a notoriously challenging sensing modality: radar appli-
cations are typically blighted by heterogeneous noise artefacts such as ghost objects, phase noise,
speckle and saturation. In response, previous approaches to utilising radar for robot navigation have
often tried to manually extract features from noise corrupted radar scans, commonly relying on
simplifying assumptions on the distribution of power returns [1], manually designed heuristics [2],
or features designed for different modalities [3, 4]. Nevertheless, the recent seminal work by Cen
et al. [2] has firmly established radar as a feasible alternative to complement existing navigation
approaches when it comes to ego-motion estimation.

Beyond the basic methodology for pose estimation, the prevalence of vision- and lidar-based ap-
proaches in this space has given rise to a number of useful methods beyond those currently utilised
for radar. State-of-the-art visual odometry, for example, leverages learnt feature representations [5]
as well as attention masks filtering out potentially distracting objects [6]. Lidar-based methods using
correlative scan matching [7] typically achieve highly accurate and intuitively interpretable results.

Inspired by this prior art, the aim of our work is to provide a robust radar odometry system which is
largely unencumbered by either the typical radar artefacts or by the presence of potentially distract-
ing objects. Our system is explicitly designed to provide robust, efficient and interpretable motion
estimates. To achieve this we leverage a deep neural network to learn an essentially artefact and
distraction free embedding space which is used to perform efficient correlative matching between
consecutive radar scans. Our matching formulation is fully differentiable, allowing us to explicitly
learn a representation suitable for accurate pose prediction. The correlative scan matching approach
further allows our system to efficiently provide principled uncertainty estimates.

Training our network on over 186,000 examples generated from 216km’s of driving, we outper-
form the previous state of the art in challenging urban environments, reducing errors by over 68%
and running an order of magnitude faster. Furthermore, our pose ground truth is gathered in a
self-supervised manner, automatically optimising odometry, loop closure, and location constraints,
enabling us to adapt to new locations and sensor configurations with no manual labelling effort.

3rd Conference on Robot Learning (CoRL 2019), Osaka, Japan.
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Figure 1: Using masked correlative scan matching to find the optimum pose. Each radar scan is
passed to a CNN (pink) in order to generate a mask which is subsequently applied to the input radar
scan generating sensor artefact and distractor free representations S1 and S2. We then calculate
the 2D correlation between S2 and rotated copies of S1 using the fft2d in order to generate the
correlation volume C. Finally we perform a softargmax operation in order to retrieve the predicted
pose. Crucially this pipeline is fully differentiable allowing us to learn the filter masks end to end.
A video summary of our approach can be found at: https://youtu.be/eG4Q-j3_6dk

2 Related Work

Compared to other sensing modalities such as vision or lidar, radar has received relatively little
attention in the context of robot navigation. Prior art in this area largely deploys a more traditional
processing pipeline consisting of separate feature extraction, data association and loss minimisation
steps, for example using the Iterative Closest Point (ICP) algorithm [8, 9]. For feature extraction
some works deploy approaches developed in vision, such as SIFT and SURF [3, 4], others more
bespoke methods such as CFAR filtering [10, 1], temporal-space continuity modelling [11, 12], and
grid-map features such as Binary Annular Statistics Descriptor (BASD) [13]. Most recently the
authors of [2] find point correspondences between point features extracted from raw scans using a
shape similarity metric. The final pose is then found by minimising the mean squared error between
point correspondences in close to real time.

By making use the Fourier transform correlation-based approaches are in contrast able to perform
a dense search over possible point correspondences [14] yielding intuitively interpretable results.
Similar approaches have also been applied successfully to lidar scan matching utilising efficient GPU
implementations [15] [7]. In comparison to ICP, correlation-based methods have been shown to be
significantly more robust to noise in pose initialisation [15]. While robustness and interpretability
are desirable, correlation-based methods operate on the assumption that the power returns from
a particular location are stationary over time so that a correlation operation produces meaningful
results. In reality, this is often not the case – for example when dynamic objects are present in the
scene. This problem is particularly pronounced in radar data due to the prevalence of noise artefacts.

Visual odometry systems, in contrast to radar-based ones, have a significant track record of suc-
cessful application in robotics and beyond. While traditional processing pipelines similar to the one
outlined for radar above have been widely deployed in this context (e.g. [16]) there has recently been
significant interest in moving away from separate processing steps towards end-to-end approaches.
Typically, a neural network is used to regress to a predicted pose directly from consecutive camera
images, learning the relationship between features and point correspondences in an integrated man-
ner (e.g. [5, 17]). In [18] the authors extend this approach by learning to predict the optimum pose
from stereo images alone. As in many related fields, these end-to-end approaches demonstrate the
potential for learning representations generally useful for odometry prediction. However, this comes
at the expense of entangling feature representation and data association, which makes the resulting
system significantly less interpretable. In contrast, the authors of [19] propose to learn a feature
embedding for localising online lidar sweeps into a previously known map, whilst maintaining the
interpretability, of a conventional correlative scan matching approach.

Due to the ubiquitous nature of vision-based systems researchers have also addressed challenges be-
yond the basic pose estimation task such as suppressing noise sources inherent in individual scenes.
For example, both [20] and [6] try to mask areas of an image where non-stationary features might
be found, which could corrupt the odometry estimate. Of particular relevance is [6], where a deep

2



neural network is trained using data from other parts of the autonomous system in order to predict
human interpretable ephemerality masks indicating the presence of distractor objects in a scene.

Given the large body of evidence that end-to-end approaches tend to outperform more traditional,
hand-engineered processing pipelines it is tempting to conclude that our goal here is simply to de-
ploy a deep network to radar odometry. And we do indeed leverage deep learning in our system.
However, in doing so we are cognisant that we desire a system which ideally exploits the power of
representation learning offered by end-to-end approaches while at the same time leveraging the ef-
ficiency, robustness and interpretability offered by correlation-based methods. Thus, inspired by [6]
and similar to [19], we deploy a correlation-based matching method as part of an end-to-end system
which learns a radar embedding used to produce largely artefact and distraction-free representations
optimised for pose prediction. Both the masks obtained as well as the cost-volumes considered
remain as interpretable as more traditional approaches.

3 Deep Correlative Scan Matching with Learnt Feature Embeddings

Given two consecutive radar observations (Zt,Zt−1) we wish to determine the relative pose [R|t] ∈
SE(2) giving the transformation between the two co-ordinate systems at each time step. In achieving
this we aim to harness the efficiency, interpretability and robustness of correlative scan matching
assuming that the power returned from each world location is independent of the co-ordinate system
it was sensed in. In reality the power returns generated from real world scenes are far from stationary,
as dynamic objects move into and out of the field of view of the sensor and pertinent, random noise
artefacts obscure the true power returns, limiting the performance of an out-of-the-box correlative
scan matching system applied to radar data.

To address this, and inspired by the recent successes of learnt masking for pose prediction in vision
[6], we instead perform correlative scan matching over a learnt feature embedding, utilising a deep,
fully convolutional network to mask each radar scan as illustrated in Figure 1 (described in Sec-
tion 3.1). Through this approach we are able to harness the power of deep representation learning
whilst ensuring the feature representation remains interpretable through the geometrical constraints
imposed by the use of a correlative scan matching procedure. Crucially, we train our network by
supervising pose prediction directly. In doing so, our network naturally learns to attenuate distractor
objects such as moving vehicles and sensor noise as they degrade pose estimation accuracy, whilst
preserving features which are likely to be consistent between scans such as walls and buildings. This
leads to a 68% reduction in errors over the current state-of-the-art whilst, by making use of efficient
correlation computations using the Fast Fourier Transform (FFT), running an order of magnitude
faster.

Even in the limit of perfectly stationary power returns, uncertainty in our pose prediction still em-
anates from pathological solutions arising from the underlying scene topology. In Section 5.2 we
show how we are additionally able to quantify the uncertainty in our pose prediction, further aiding
the interpretability of our system.

3.1 Correlative Scan Matching with Learnt Feature Embeddings

Let (Zt−1,Zt) ∈ [0, 1]W×H denote consecutive observations made by single sweeps of the radar
sensor, converted to Cartesian co-ordinates such that Zu,vt gives the power return at Cartesian co-
ordinate (x, y) at time t. Let p = [∆x,∆y,∆θ]T denote the parameters of the relative pose
[R|t] ∈ SE(2) between the co-ordinate frames at t − 1 and t. We aim to predict the optimum
pose from consecutive radar observations harnessing the efficiency, interpretability and robustness
of correlative scan matching,

p̄ = arg max
p∈SE(2)

Zt ?Zt−1 (1)

where Zt ?Zt−1 is defined as the discrete cross correlation between Zt (after being warped by the
pose p) and Zt−1.

In order to solve for the predicted pose p̄ we consider a brute force approach: we discretise our
search search space, calculating the cross correlation score for each pose on a regular grid of pose
candidates before utilising a soft-argmax operation to solve for the optimum pose to sub-grid reso-
lution accuracy. This is achieved efficiently using Algorithms 2 and 3. By utilising bi-linear inter-
polation for all re-size and rotation operations, and computing the cross-correlation using the highly
efficient 2D Fast Fourier Transform, we are able to search for the optimum pose over a large search
area, efficiently solving (1) whilst still maintaining end-to-end differentiability.
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Central to this approach is an assumption that the power returned from each world location is in-
dependent of the co-ordinate system it was sensed in. This assumption rarely holds in practice.
Random noise artefacts, dynamic objects and changing scene occlusion cause fluctuations in the
power field, degrading the accuracy of conventional correlation-based approaches applied to radar.
To counter this, we propose to learn a feature representation S specifically optimised for correlative
scan matching by filtering each radar scan S = M � Z with a mask M = fα(Z) generated by
a neural neural network fα (where � denotes Hadamard product). By limiting each element of the
mask to [0, 1] (using an element wise sigmoid), the network is able to learn to filter out distractor
objects and noise in each sensor observation, before correlative scan matching is applied to find the
optimum pose. By leveraging the differentiability of our approach for predicting p̄, we are able to use
Algorithm 1, to learn a radar feature embedding specifically optimised for correlative scan matching
by minimising the Mean Squared Error (MSE) over the training set, D = {(Zt,Zt−1,p)n}Nn=1,

α∗ = arg min
α

Ep∼D
[
||p̄− p||2

]
(2)

to update our network parameters α using conventional stochastic gradient descent based optimisers.

3.2 Pose Uncertainty Estimation

Pathological solutions arising from the underlying scene topology increase the uncertainty in our
pose prediction even in the case of perfectly stationary power returns. In the real world identifying
such cases is important in order to ensure robust operation. To this end, our approach also affords us
a principled mechanism to estimate the uncertainty in each element of the predicted pose.

In performing the soft-argmax operation, we first apply a temperature controlled softmax over the
correlation scores for each candidate pose, to give weights ω = Softmax(βC), interpreted as the
probability that each pose candidate is optimum. Assuming that our predicted pose is Gaussian
distributed we can quantify the uncertainty in each pose prediction by using the weights ω to predict
both the mean pose p̄ and the predicted co-variance Σ̄,

p̄ =
∑

s

ωsps Σ̄ =
∑

s

ωspsp
T
s − p̄p̄T p(p|St) ≈ N (p|p̄, Σ̄) (3)

where we sum over all pose candidates. The softmax temperature parameter β plays an important
role here: for high β our system is biased to the pose candidate with highest correlation and a low
co-variance, whilst for low β to a weighted mean over a greater number of pose candidates and high
co-variance.

Algorithm 1: Training
Input:
D // Dataset
r // Search Region giving min and

max range in ∆x,∆y,∆θ
δ // Grid resolution in each

dimension δx, δy, δθ
β // Softmax Temperature Parameter
ε // Learning Rate
α // Initial Network Parameters

1 Gxyθ = MeshGrid(r, δ)

2 while not converged do
3 Z1,Z2,p← Sample(D)

4 M1,M2 ← fα(Z1), fα(Z2)
5 S1,S2 ←M1 �Z1,M2 �Z2

6 C ← GetCorrelation(Gxyθ, S1, S2)
7 p̄← SoftArgMax(Gxyθ,C, β)

8 α← α− ε∇αL(p̄;p)
9 end

Algorithm 2: Correlation
1 function GetCorrelation(Gxyθ,X1,X2) :
2 nx, ny, nθ ← Shape(Gxyθ)
3 C = Zeros([nx, ny, nθ])
4 Gxy,Gθ ← Gxyθ

5 X1,X2 ← Resize(X1,X2,Gxy)
6 par for i← 1 to nθ :
7 XR

1 ← Rotate(X1,Gθ[i])
8 C[:, :, i]←

fft2d−1
(
fft2d(XR

1 )� fft2d(XC
2 )
)

9 return C

Algorithm 3: Soft Arg Max
1 function SoftArgMax(Gxyθ, C, β) :
2 ω ← Softmax(βC)
3 Gx,Gy,Gθ ← Gxyθ

4 ∆x←∑
i,j,k

(
ω �Gx

)
[i, j, k]

5 ∆y ←∑
i,j,k

(
ω �Gy

)
[i, j, k]

6 ∆θ →∑
i,j,k

(
ω �Gθ

)
[i, j, k]

7 return[∆x,∆y,∆θ]
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4 Experimental Setup

4.1 Dataset

To evaluate our approach we use the recently released Oxford Radar RobotCar Dataset [21], a radar
extension to the Oxford RobotCar Datsset [22], which provides Navtech CTS350-X radar data as
well as ground truth poses. The Navtech CTS350-X is a Frequency Modulated Continuous Wave
(FMCW) scanning radar without doppler information, configured to return 3768 power readings at a
resolution of 4.32cm across 400 azimuths at a frequency of 4Hz (corresponding to a maximum range
of 163m). The beam spread is 2 degrees in azimuth and 25 degrees in elevation with a cosec squared
beam pattern. We randomly split the traversals into training (80%) and evaluation (20%) partitions.
We additionally run spatial cross validation experiments, where each split occupies a different real
world region of the dataset. Further information on these results and the dataset can be found in the
appendix B.2, C.1.

To validate the advantages of learning masks directly from pose supervision we compare against
supervising the learnt masks directly on the proxy task of predicting temporally static occupied cells.
Training data for this is generated using a similar approach to [6]. For each radar scan we warp the
nearest radar sensor observation from each training traversal into the current pose before applying
a static power threshold. We then form a 2D histogram counting the number of thresholded power
returns that fall in each Cartesian grid cell. Any grid cell with more than 9 consistent observations
is assumed to be temporally stable and is labelled with a 1, whilst every other cell is set to 0. This is
repeated for every pose in every dataset. Examples of the masks generated by this approach can be
found in the appendix B.1.

4.2 Network Architecture and Training

In all experiments we use a U-Net style architecture [23] in which we encode the input tensor through
the repeated application of two convolutional layers (filter size 3x3) with ReLU activations before
a max pooling operation. After each max pool the width and height of the tensor are reduced by
a factor of 2 whilst the number of features is doubled, starting from 8 at the input to 256 at the
bottleneck of the network (corresponding to 5 max pools). The feature tensor is then converted
back to the original shape by the decoder through the application of bilinear upsampling followed
by two convolutional layers increasing the width and height and decreasing the feature channels by
a factor of 2. Skip connections at each level are implemented allowing information to flow from
encoder to decoder by stacking each representation with the output from the bilinear upsampling
layer in each case. The final convolutional layer has a single output channel with a sigmoid activa-
tion to limit the range to [0, 1]. We experiment with learning to mask both Cartesian and Polar radar
representations, as well as both single and dual configurations. In the dual case radar observations
are concatenated and passed as a single input producing two masks (instead of one) at the output.
An architecture diagram can be found in the appendix A.1. In all cases we consider a search re-
gion of [−50m, 50m] in ∆x and ∆y and [−π/12, π/12] in ∆θ. We experiment with the three grid
resolutions [0.2m, 0.4m, 0.8m] for δx and δy whilst fixing δθ to π/360.

Our network is implemented in Tensorflow [24] and trained using the Adam Optimiser [25] (learning
rate 1e−5 and batch size 5) until the loss on a small validation set is a minimum. When training our
network with pose supervision we minimise the loss proposed in (2). We performed a grid search
over the optimum value of β and found setting it to 1 gave good performance.

4.3 Evaluation Metrics and Baselines

Our primary baseline is the current state of art for radar odometry [2] (implemented in C++) in which
the authors extract point features from consecutive radar scans before scan matching using a global
shape similarity score and refining by minimising mean squared error. Our radar was set to a range
resolution of 4.32cm, whilst the original algorithm was developed for a 17.28cm resolution. As such
we compare against [2] with full resolution radar scans and downsampled (with max pooling) to
17.28cm. For context we also provide visual odometry estimates (as in [2]). To assess the benefits
of learning feature masks specifically optimised for pose prediction, we benchmark against scan
matching on the raw radar scans without masking, as well as using the method proposed in [6] with
mask labels generated as described in Section 4.1. In this setup, we supervise (using a binary cross
entropy loss) the learnt masks directly (instead of supervising pose prediction). We also benchmark
against taking an off the shelf deep odometry model and training this for the task of radar pose
prediction. Specifically we use the UnDeepVO model proposed in [18].
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For all evaluations we follow the KITTI odometry benchmark [26]. For each 100m offset up to
800m, we calculate the average residual translational and angular error for every example in the
datastet normalising by the distance travelled. Finally, we average these values. Due to highly
skewed error distributions we report Inter Quartile Range (IQR) for each method instead of the
standard deviation. All timing statistics are calculated using a 2.7 GHz 12-Core Intel Xeon E5 CPU
and Nvidia Titan Xp GPU by averaging across 1000 predictions.

4.4 Uncertainty Evaluation

To assess the quality of the uncertainty predicted by our approach we observe that if our pose distri-
bution is Gaussian than the Mahalanobis error

d2 = (p− p̄)T Σ̄−1(p− p̄), d2 ∼ χ2(3) (4)

should be chi-squared distributed with degrees of freedom equal to the state dimensionality of p (in
this case three). As the mean of a chi-squared distribution is equal to the distributions degrees of
freedom, by averaging the mean Mahalanobis distance over the test dataset d̄2 = 1

N

∑
n d

2
n we can

assess to what degree the uncertainties predicted by our approach are calibrated to the test errors [7].
Specifically, if d̄2 � 3 then our model is overly conservative in its predictions whilst if d̄2 � 3 it is
overly confident. In Section 5.2 we use this result to tune the temperature parameter β to provide us
with realistic uncertainties, that are calibrated to the true errors in our system.

5 Results

In this section we evaluate the performance of our approach. We find by utilising correlative scan
matching in combination with a learnt radar feature embedding we are able to significantly outper-
form the previous state of art in both prediction performance and speed. Additionally, we show
how, by tuning the temperature parameter of the softargmax, we are able to predict realistic and cal-
ibrated uncertainties, further increasing the interpretability of our system and allowing us to identify
pathological cases, crucial for robust operation in the real world.

Radar Input Predicted Mask Masked Features Correlation Covariance

Figure 2: Qualitative examples generated from our best performing model. Our network learns
to mask out noise and distractor objects whilst preserving temporally consistent features such as
walls, well suited for pose prediction. Predicted co-variance is high for pathological solutions aris-
ing through a lack of constraints in the x-direction (top), whilst stationary well-constrained scenes
result in low co-variance (middle). Motion blur increases the uncertainty due to ambiguous point
correspondence (bottom). Further examples can be found in Figure 8 in the appendix.
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Resolution Translational error (%) Rotational error (deg/m) Runtime (s)
Benchmarks (m/pixel) Mean IQR Mean IQR Mean Std.

RO Cen Full Resolution [2] 0.0432 8.4730 5.7873 0.0236 0.0181 0.3059 0.0218
RO Cen Equiv. Resolution [2] 0.1752 3.7168 3.4190 0.0095 0.0095 2.9036 0.5263
Raw Scan 0.2 8.3778 7.9921 0.0271 0.0274 0.0886 0.0006
Supervised Masks Polar 0.2 5.9285 5.6822 0.0194 0.0197 0.0593 0.0014
Supervised Masks Cart 0.2 5.4827 5.2725 0.0180 0.0186 0.0485 0.0013
Adapted Deep VO Cart [18] 0.2 4.7683 3.9256 0.0141 0.0128 0.0060 0.0003
Adapted Deep VO Polar [18] - 9.3228 8.3112 0.0293 0.0277 0.0093 0.0002
Visual Odometry [16] - 3.9802 2.2324 0.0102 0.0065 0.0062 0.0003

Ours
Polar 0.8 2.4960 2.1108 0.0068 0.0052 0.0222 0.0013

0.4 1.6486 1.3546 0.0044 0.0033 0.0294 0.0012
0.2 1.3634 1.1434 0.0036 0.0027 0.0593 0.0014

Cartesian 0.8 2.4044 2.0872 0.0065 0.0047 0.0113 0.0012
0.4 1.5893 1.3059 0.0044 0.0035 0.0169 0.0012
0.2 1.1721 0.9420 0.0031 0.0022 0.0485 0.0013

Dual Polar 0.8 2.5762 2.0686 0.0072 0.0055 0.0121 0.0003
0.4 2.1604 1.9600 0.0067 0.0053 0.0253 0.0006
0.2 1.2621 1.1075 0.0036 0.0029 0.0785 0.0007

Dual Cart 0.8 2.7008 2.2430 0.0076 0.0054 0.0088 0.0007
0.4 1.7979 1.4921 0.0047 0.0036 0.0194 0.0010
0.2 1.1627 0.9693 0.0030 0.0030 0.0747 0.0005

Table 1: Odometry estimation and timing results. Here “RO Cen” [2] is our primary benchmark
reported for 0.04m (full resolution) and, by downsampling, 0.17m (equivalent resolution for which
the approach was originally developed). For comparison we also provide performance results for
correlative scan matching on the raw power returns, for mask supervision (instead of supervising
the predicted pose directly), and adapting the deep VO network proposed in [18], alongside visual
odometry [16] for context. All baselines performed best at 0.2 m/pixel resolution where applicable
and the rest are omitted for clarity. We experiment with both polar and Cartesian network inputs at
multiple resolutions. Our approach outperforms the current state of the art, “RO Cen” (italics), for
all configurations of Cartesian / polar inputs and independent / dual masking at all resolutions. Our
best performing models in terms of speed and odometry performance are marked in bold.

5.1 Odometry Performance

Table 1 gives our prediction and timing results. We experiment with both Cartesian and Polar in-
puts to the masking network (converting the latter to Cartesian co-ordinates before correlative scan
matching), as well as experimenting with single and dual configurations as detailed in Section 4.2.

At all resolutions and configurations we beat the current state of the art with our best model reduc-
ing errors by 68% in both translation and rotation, whilst running over 4 times faster. Our fastest
performing model runs at over 100Hz whilst still reducing errors on the state of the art by 28% in
translational and 20% in rotational error (further results exploring the accuracy-speed trade off can
be found in A.2). We find that Cartesian network inputs typically outperform Polar (presumably
because correlative scan matching is performed in Cartesian space). Dual input configurations also
typically outperform passing single sensor observations to the masking network.

Key to our approach is learning a radar feature embedding that is optimised for pose prediction:
compared to correlative scan matching on the raw radar power returns this allows us to reduce
errors by over 85%. As predicted, optimising masks directly for pose prediction results in a higher
prediction accuracy than mask supervision labelling the temporally stationary scene directly. We
also find that simply adapting a deep odometry approach to radar results in significantly worse
performance. Our approach in contrast makes use of the inherent top down representation of a
radar observation which lends itself to a correlative scan matching procedure, whilst learning to
mask out noise artefacts which make pose prediction in radar uniquely challenging. In addition,
by adopting a correlative scan matching approach, our results remain interpretable: Figure 2 shows
several qualitative examples in which the network learns to mask noise artefacts and dynamic objects
in the scene whilst preserving features which are likely to be temporally stationary such as walls.
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5.2 Uncertainty Prediction

In addition to the boosts in performance and speed afforded by our approach, we are also able to
estimate the uncertainty in each pose prediction: by interpreting the weights generated through the
temperature controlled softargmax operation as the probability that each pose candidate is optimum
we predict the co-variance Σ̄ in our prediction as detailed in Section 3.2.

We now use the methodology proposed in Section 4.4 to tune the temperature parameter β such
that the mean Mahalanobis distance d̄2 ≈ 3 producing uncertainties Σ̄ that are calibrated to the
errors in our system. Naively perturbing the temperature parameter away from its original value
β0 degrades pose prediction performance as the feature mask no longer corresponds to the β it was
optimised for. Instead, we calculate the predicted pose using β0, whilst varying β to tune the co-
variance matrix. The results of this process (for the 0.8m resolution single mode Cartesian model
from Table 1) are shown in Figure 5.2 alongside the marginal distributions for the uncertainty in
each pose component plotted with the true errors in our system ordered by predicted uncertainty.
For a temperature parameter β = 2.789 the mean Mahalanobis distance d̄2 is equal to 2.99 giving us
well calibrated uncertainty predictions, whilst temperature parameters above and below this value
are overly certain and conservative respectively. There is a clear correlation between error and
uncertainty with most errors falling within the predicted uncertainty bounds.

Figure 2 shows Gaussian heat maps generated through our approach; the results are highly intu-
itive with feature embeddings well constrained in each dimension having smaller and symmetric
co-variance, whilst pathological solutions arising from a lack of scene constraints increase the un-
certainty in ∆x.

Temperature Parameter β 4.467 3.548 2.789 2.512 1.995 1.413 1.122
Mean Mahalanobis Distance d̄2 4268.471 57.099 2.992 1.244 0.283 0.065 0.030

Figure 3: The marginal distributions and errors (black) in each pose component for each example
in our test set ordered by predicted uncertainty. The colours correspond to 1.98 standard deviation
bounds plotted for each of the temperature parameters given in the table with dark to light moving
through the table left to right. The red line corresponds to the standard deviation bound plotted
for β = 2.789 corresponding to a mean Mahalanobis distance of d̄2 = 2.99. For this temperature
setting the majority of the errors fall within the 1.98 standard deviation bound. Note the y axis in
each case has a different scale.

6 Conclusions

By using a learnt radar feature embedding in combination with a correlative scan matching approach
we are able to improve over the previous state of the art, reducing errors in odometry prediction by
over 68% and running an order of magnitude faster, whilst remaining as interpretable as a conven-
tional scan matching approach. Additionally, our method affords us a principled mechanism by
which to estimate the uncertainty in the pose prediction, crucial for robust real world operation.

Our approach for attaining calibrated uncertainties currently relies on tuning a pre-trained model.
An interesting direction for future work would be to incorporate this tuning process into the training
pipeline, learning not only a radar feature embedding optimised for pose prediction but also for
uncertainty estimation. We leave this for future work.

8



Acknowledgments

This work was supported by the UK EPSRC Doctoral Training Partnership and EPSRC Programme
Grant (EP/M019918/1). The authors also would like to acknowledge the use of Hartree Centre
resources and the University of Oxford Advanced Research Computing (ARC) facility in carrying
out this work (http://dx.doi.org/10.5281/zenodo.22558).

References
[1] D. Vivet, P. Checchin, and R. Chapuis. Localization and mapping using only a rotating fmcw

radar sensor. Sensors, 13(4):4527–4552, 2013.

[2] S. H. Cen and P. Newman. Precise ego-motion estimation with millimeter-wave radar under
diverse and challenging conditions. In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 1–8. IEEE, 2018.

[3] J. Callmer, D. Törnqvist, F. Gustafsson, H. Svensson, and P. Carlbom. Radar slam using visual
features. EURASIP Journal on Advances in Signal Processing, 2011(1):71, 2011.

[4] F. Schuster, C. G. Keller, M. Rapp, M. Haueis, and C. Curio. Landmark based radar slam
using graph optimization. In Intelligent Transportation Systems (ITSC), 2016 IEEE 19th Inter-
national Conference on, pages 2559–2564. IEEE, 2016.

[5] S. Wang, R. Clark, H. Wen, and N. Trigoni. Deepvo: Towards end-to-end visual odometry
with deep recurrent convolutional neural networks. In Robotics and Automation (ICRA), 2017
IEEE International Conference on, pages 2043–2050. IEEE, 2017.

[6] D. Barnes, W. Maddern, G. Pascoe, and I. Posner. Driven to distraction: Self-supervised
distractor learning for robust monocular visual odometry in urban environments. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pages 1894–1900. IEEE, 2018.

[7] W. Maddern, G. Pascoe, and P. Newman. Leveraging experience for large-scale lidar localisa-
tion in changing cities. In Robotics and Automation (ICRA), 2015 IEEE International Confer-
ence on, pages 1684–1691. IEEE, 2015.

[8] P. J. Besl and N. D. McKay. Method for registration of 3-d shapes. In Sensor Fusion IV:
Control Paradigms and Data Structures, volume 1611, pages 586–607. International Society
for Optics and Photonics, 1992.

[9] E. Ward and J. Folkesson. Vehicle localization with low cost radar sensors. In Intelligent
Vehicles Symposium (IV), 2016 IEEE. Institute of Electrical and Electronics Engineers (IEEE),
2016.

[10] H. Rohling. Ordered statistic cfar technique-an overview. In Radar Symposium (IRS), 2011
Proceedings International, pages 631–638. IEEE, 2011.

[11] E. Jose and M. D. Adams. An augmented state slam formulation for multiple line-of-sight
features with millimetre wave radar. In Intelligent Robots and Systems, 2005.(IROS 2005).
2005 IEEE/RSJ International Conference on, pages 3087–3092. IEEE, 2005.

[12] E. Jose and M. D. Adams. Relative radar cross section based feature identification with mil-
limeter wave radar for outdoor slam. In Intelligent Robots and Systems, 2004.(IROS 2004).
Proceedings. 2004 IEEE/RSJ International Conference on, volume 1, pages 425–430. IEEE,
2004.

[13] M. Rapp, K. Dietmayer, M. Hahn, F. Schuster, J. Lombacher, and J. Dickmann. Fscd and basd:
Robust landmark detection and description on radar-based grids. In Microwaves for Intelligent
Mobility (ICMIM), 2016 IEEE MTT-S International Conference on, pages 1–4. IEEE, 2016.
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A Implementation

A.1 Masking Network Architecture
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Figure 4: Architecture diagram of the radar masking network. Layers are detailed by output chan-
nels, kernel sizes, repetitions and activations respectively. The final network layer has a single
output channel with a sigmoid activation to limit the masking range to [0, 1]. We experiment using
the masking network in both Cartesian and Polar radar representations. Additionally we investigate
the impact of modifying the single configuration shown to dual configuration, in which sequential
radar observations used for odometry prediction are concatenated and passed as a single input pro-
ducing two masks (instead of one) at the output. For more details please refer to the text in Section
4.2. The predictions shown are from a network directly supervised with baseline masks detailed in
Section B.1.

A.2 Speed vs Accuracy Trade Off

By reducing our Cartesian grid resolution before calculating the correlation volume, for the same
grid coverage we are able to predict the optimum pose in a shorter amount of time to the detriment of
pose prediction accuracy. Estimating this trade off for our trained models is challenging and requires
many training runs. Instead we investigate the speed-accuracy trade off by performing correlative
scan matching on the raw power returns at a variety of grid resolutions according to Algorithms
2 and 3. The results for this process are displayed in Figure 5 which we use to choose the grid
resolutions for the main results presented in Table 5.

Figure 5: Translational error (green), angular error (blue) and run time (red) as a function of Cost
volume resolution in degrees (left) and metres per pixel (right). In the case of limited computational
resources or required pose estimate accuracy it is possible to flexibly trade off performance and
computational speed.
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B Data

B.1 Baseline Masks

To validate the advantages of learning masks directly from pose supervision we compare against
supervising the learnt masks directly on the proxy task of predicting temporally static occupied
cells. To generate static mask labels we use a similar approach to [6] as detailed in Section 4.1,
whereby nearby radar scans from different traversals are warped into the current sensor frame to
assess temporal stability. Even with a large corpus of accurately labelled masks identifying static
structure suitable for estimating odometry, we observe increased performance by training directly
on the task of pose estimation.

Figure 6: Example generated baseline masks used to supervise the radar masking network directly.
For a given raw radar scan at time t (top) we can automatically generate high quality baseline masks
identifying structure useful for pose estimation (bottom).

B.2 Dataset Splits

Training Traversals Testing Traversals Spatial Cross Validation

Figure 7: Trajectories of the ground truth optimised pose chains used for the 25 training (left) and 7
evaluation (middle) traversals from the Oxford Radar RobotCar Dataset [21] covering a wide variety
of traffic and other challenging conditions in complex urban environments. In addition to splitting
the dataset temporally we provide spatial cross validation results (right), detailed in Section C.1.
Each traversal is incrementally offset with a unique colour for visualisation.
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C Results

C.1 Spatial Cross Validation

In Section 5.1 we achieve radar odometry performance far exceeding the state of the art. However
we train and evaluate on scenes from the same spatial locations. To assess how well our models
generalise to previously un-seen scenes, in this section we train and evaluate our models using spa-
tial cross validation: splitting our traversal loop into three, we train on two out of the three splits,
evaluate performance on the third and average results across hold-out splits. Due to the computa-
tional demands of training models from scratch on each split, we train our medium resolution model
(which is faster to train but has slightly worse performance than its higher resolution counterpart).

Our best model reduces average cross validation errors over the current state of the art by over
25% in translational and 11% in rotational error whilst running over 15x faster. Using this training
paradigm we reduce the effective training data diversity by a third. We attribute this to the slight
reduction in performance in comparison to the results presented in Section 5.1. We theorise we
could significantly boost performance by moving to our highest resolution model also.

Resolution Translational error (%) Rotational error (deg/m)
Benchmarks (m/pixel) Mean IQR Mean IQR

RO Cen Full Res [2] 0.0432 6.3813 4.6458 0.0189 0.0167
RO Cen Equiv.* [2] 0.1752 3.6349 3.3144 0.0096 0.0095
Raw Scan 0.4 8.4532 8.0548 0.0280 0.0282
Adapted Deep VO Cart [18] 0.4 11.531 9.6539 0.0336 0.0307
Adapted Deep VO Polar [18] 14.446 11.838 0.0452 0.0430
Visual Odometry [16] 3.7824 1.9884 0.0103 0.0072

Ours

Polar 0.4 2.8115 2.4189 0.0086 0.0084
Cart 0.4 3.2756 2.8213 0.0104 0.0100
Dual Polar 0.4 3.2359 2.5760 0.0098 0.0091
Dual Cart 0.4 2.7848 2.2526 0.0085 0.0080

Table 2: Spatial cross validation odometry estimation results. Our approach outperforms the bench-
mark (italics) in a large proportion of the experiments and we would expect a similar boost in perfor-
mance to Section 5.1 by moving from our medium to highest resolution model. Our best performing
model in terms odometry performance is marked in bold.
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C.2 Additional Evaluation Examples

Radar Input Predicted Mask Masked Features Correlation Covariance

Figure 8: Additional qualitative examples generated from our best performing model. The masks
generated from our network filter out noise and distractor objects in the scene whilst preserving
temporally consistent features such as walls, well suited for pose prediction. From left to right the
raw Cartesian radar scan, the predicted network mask, the masked radar scan, the correlation volume
and the fitted gaussian to the correlation volume after temperature weighted softmax.
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5.1 Probabilistic Correlative Scan

An alternative derivation for the pose estimation approach just developed is now

presented, considering the problem from a Bayesian perspective. Alongside providing

theoretical insights, through this consideration, a natural mechanism also emerges

for accounting for prior information about the relative pose between two radar

scans. Several of the results derived in this section rely on some understanding

of the mechanisms behind Bayesian inference, a short introduction to which is

provided in Sec. 8.2.2.

Bayesian Pose Estimation Let xt ∈ SE(2) denote a pose describing how a

robot moves from time t− 1 to t. The pose xt is assumed unknown and the aim

is to infer its value given a radar measurement Zt ∈ RH×W .1

Adopting a Bayesian approach, this is achieved by assuming a prior for the pose,

p(xt), which may be formed by taking account additional sensor information (e.g.

wheel odometry), or by encoding prior assumptions about the motion of the robot

(e.g. vehicle models and/or velocity information), for example. The prior is then

updated in light of an observation Zt ∼ p(Zt|xt) to form the posterior

p(xt|Zt) = p(Zt|xt)p(xt)
p(Zt)

= p(Zt|xt)p(xt)∫
p(Zt|xt)p(xt)dxt

(5.1)

where p(Zt) =
∫
p(Zt|xt)p(xt)dxt is the marginal evidence.

Correlative Likelihood Central to correlative scan matching approaches is

the assumption that high correlation between two consecutive sensor observations

corresponds to a likely pose xt. Converting this assumption to a likelihood, one

possible choice is to consider

p(Zt|xt) ≜ 1
C

exp{βc(Zt; xt)} (5.2)

where c(Zt; xt) ≜ Zt ⋆ Z̃t is the correlation between the current sensor observation

Zt and the sensor observation from the previous time step Yt−1 transformed into
1Note that the pose is now denoted x instead of p to avoid the pose being confused with

distributions p
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the current co-ordinate system at Z̃t ≜ w(Yt−1,xt) using pose xt.2 Here p(Zt|xt)

is defined as a Gibbs distribution with temperature parameter β > 0, potential

c(Zt; xt) and unknown normalisation constant C [52].

Approximating the Posterior As the normalisation constant is unknown,

determining the posterior distribution analytically as in Eq. (5.1) is no longer feasible.

However, it is still possible to approximate the posterior in this case using an impor-

tance sampling approach (as detailed in Sec. 8.2.2.2). Here, the posterior distribution

is approximated as a set of weighted particles p(xt|Zt) ≈ ∑S
s=1 ωs Dir(x|xs) with

xs ∼ q(xs) ω̃s = p̃(xs)
q̃(xs)

ωs = ω̃∑
s ω̃s

(5.3)

given a proposal distribution q(x) and defining the un-normalised posterior as

p̃(xt) ∝ p(xt|Zt) ≜ p(Zt|xt)p(xt).

Pose Estimation As Bayesian Risk Minimisation The optimum pose esti-

mate in the Bayesian case is found considering minimising the Bayesian Risk

x̂ = arg min
x′

Ep(x|Z){ℓ(x,x′)} (5.4)

where ℓ : R3 × R3 → R is a chosen risk function. Defining ℓ(x,x′) = ∥x − x′∥2
2 it

can be shown that the optimum estimate for the pose in this case is given as

x̄ = Ep(x|z){x} ≈
∑
s

ωsxs (5.5)

which in the last step is estimated in accordance with Eq. (8.37).

Equivalence To Masking By Moving Approach The analysis conducted so

far trivially extends to radar observation masked using a neural network by defining

Mt,Mt−1 ≜ fα(Yt,Yt−1) masks (5.6)

Zt,Zt−1 ≜ Zt ◦ Mt,Zt−1 ◦ Mt−1 masked observations (5.7)

Z̃t ≜ w(Zt−1,xt) warped observation (5.8)

cα(Zt; xt) ≜ Zt ⋆ Z̃t correlation (5.9)
2w denotes a warp function such as bi-linear interpolation for example
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where Yt,Yt−1 ∈ RH×W are now used to denote raw measurements and Zt,Zt−1 ∈

RH×W to denote radar measurements after the masking process. The likelihood

in this case is written as before pα(Zt|xt) ≜ 1
C

exp{βcα(Zt; xt)} where subscript α

is now introduced to indicate conditioning on the network parameters α.

Setting the proposal distribution to the prior q̃(xt) = p(xt) gives

ω̃s = p̃(xt)
q̃(xt)

= pα(Zt|xt)p(xt)
p(xt)

= exp{βcα(Zt; xs)} (5.10)

(considering p̃(xt) ≜ pα(Zt|xt)p(xt) as before) and the weights may be determined as

ωs = exp{βcα(Zt; xs)}∑
s exp{βcα(Zt; xs)}

= softmax(βc)s (5.11)

where c ∈ RS such that cs ≜ cα(Zt; xs). Finally, if the proposal is chosen to generate

a set of pose candidates over an evenly spaced grid then the using Eq. (5.10) and

Eq. (5.11) to generate {(xs, ωs)}Ss=1 and estimating the pose using Eq. (5.5) is exactly

equivalent to the pose estimation approach proposed earlier (see Algorithm 1).

Quantifying Pose Uncertainty Alongside the optimum pose, the approach

proposed earlier also estimates the pose uncertainty. Using the approach just

derived, this can be interpreted as approximating the posterior p(x|Z) with a

Gaussian distribution

pα(x|Z) ≈ Nor(x|x̄, Σ̄) x̄ =
∑
s

ωsxs Σ̄ =
∑
s

ωsxsxs⊤ − x̄x̄⊤ (5.12)

where the mean and co-variance are set to their maximum likelihood estimates

and estimated using importance sampling.

If the true posterior is a multi-variate Gaussian, the squared Mahalanobis dis-

tance

d2 = (x − x̄)⊤Σ̄−1(x − x̄) (5.13)

will be chi-squared distributed, d2 ∼ χ2(3), (where 3 is the dimensionality of the

pose x = [x, y, θ]⊤) and in this case E[d2] = 3. This result is used to evaluate the

quality of the uncertainty and to provide a mechanism for choosing the temperature

parameter β in the post-training tuning step used earlier in Section 4.4.
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Possible Extensions Whilst the approach developed earlier corresponds to

assuming the prior is uniform over a fixed grid, this consideration also extends

to other priors, formed through motion models or information from other sensing

modalities, for example. Considering a prior of the form p(xt|xt−1) the approach is

easily incorporated into the Bayes filtering paradigm, readily implemented using

a particle filter, for example.
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Abstract— Masking by Moving (MByM), provides robust and
accurate radar odometry measurements through an exhaustive
correlative search across discretised pose candidates. However,
this dense search creates a significant computational bottleneck
which hinders real-time performance when high-end GPUs
are not available. Utilising the translational invariance of the
Fourier Transform, in our approach, Fast Masking by Moving
(f-MByM), we decouple the search for angle and translation.
By maintaining end-to-end differentiability a neural network is
used to mask scans and trained by supervising pose prediction
directly. Training faster and with less memory, utilising a
decoupled search allows f-MbyM to achieve significant run-
time performance improvements on a CPU (168%) and to run
in real-time on embedded devices, in stark contrast to MbyM.
Throughout, our approach remains accurate and competitive
with the best radar odometry variants available in the literature
– achieving an end-point drift of 2.01% in translation and
6.3 deg /km on the Oxford Radar RobotCar Dataset.

I. INTRODUCTION

In recent years, Radar Odometry (RO) has emerged as
a valuable alternative to lidar and vision based approaches
due to radar’s robustness to adverse conditions and long
sensing horizon. However, noise artefacts inherent in the
sensor imaging process make this task challenging. The work
of Cen and Newman [1] first demonstrated the potential of
radar as an alternative to lidar and vision for this task and
since then has sparked significant interest in RO.

Whilst sparse point-based RO methods such as [1], [2], [3],
[4], [5], [6], [7] have shown significant promise, Barnes et
al. [8] recently established the benefits that a dense approach

brings to this problem setting. By masking radar observa-
tions using a DNN before adopting a traditional brute-force
scan matching procedure, mbym learns a feature embedding
explicitly optimised for RO. As robust and interpretable as
a traditional scan matching procedure, mbym was able to
significantly outperform the previous state of the art [1].

However, as our experiments demonstrate, mbym in its
original incarnation is unable to run in real-time on a laptop
at all but the smallest resolutions and not at all on an
embedded device. The requirement for a high-end GPU for
real-time performance represents a significant hindrance for
deployment scenarios where the cost or power requirements
of such hardware is prohibitive.

In this work we propose a number of modifications to
the original mbym approach which result in significantly
faster run-time performance, enabling real-time performance
at higher resolutions on both CPUs and embedded devices.
In particular, instead of performing a brute-force search
over all possible combinations of translation and angle, we
exploit properties of the Fourier Transform to search for the
angle between the two scans independent of translation. By
adopting this decoupled approach, we significantly reduce
computation. Our approach, f-mbym, retains end-to-end dif-
ferentiability and thus the use of a CNN to mask radar scans,
learning a radar scan representation explicitly optimised for
RO. f-mbym, is shown in Fig. 1. Like mbym our model
is trained end-to-end in a supervised fashion. However,
our modifications allow f-mbym to be trained much more
rapidly and with much less memory.

tx

ty

Stage 1: Mask Radar Scans Using Deep NN Stage 2: Estimate Rotation Stage 3: Estimate Translation
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Fig. 1: Given radar scans f and g our system outputs the relative pose [θ, tx, ty] between them in three phases: (1) each
radar scan is masked using a deep neural network; (2) the rotation θ is determined by maximising the correlation between
the magnitude of their fourier transforms in polar co-ordinates; (3) the translation [tx, ty] is determined by maximising the
correlation between f and g rotated by the now known angle θ. Using our approach we are able to determine θ independently
of [tx, ty] allowing us to achieve real-time performance on a CPU and embedded devices. Crucially, this entire procedure
is end-to-end differentiable allowing us to explicitly optimise our network for radar pose estimation.
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By providing a greater run-time efficiency at higher res-
olutions our best performing real-time model achieves an
end-point error of 2.01% in translation and 6.3 deg /km
in rotation on the Oxford Radar RobotCar Dataset [9],
outperforming the best real-time mbym model in accuracy
whilst running 168% faster on a CPU and in real-time (at
6Hz) on a Jetson GPU. Our approach remains competitive
with the current state-of the-art, point-based methods.

II. RELATED WORK

In recent years the work of Cen et al. [1], [2] has demon-
strated the potential of RO as an alternative to vision and
lidar, sparking a significant resurgence in interest in RO. Cen
and Newman [1] propose a global shape similarity metric
to match features between scans whilst in their subsequent
work [2] a gradient-based feature detector and a new graph
matching strategy are shown to improve performance.

Since then several methods have been proposed [8], [6],
[5], [3], [10], outperforming [1], [2] with gains attained
through a combination of motion compensation [4], [5], [7],
fault diagnosis and filtering [10], as well as new learnt [6],
[5], [3] and rule-based [7] feature representations. In [3],
as an alternative to hand-crafted feature extraction proposed
in [1], Aldera et al. propose to extract temporally consistent
radar feature points using a DNN. In this approach labels for
stable points are generated by accumulating a histogram of
points across time and over wide baselines. Instead, Barnes
and Posner [6] extract and learn radar feature representations
by supervising pose prediction directly. This results in a
significant reduction in end-point error when compared to
[2]. In [4] Burnett et al. find that motion compensating scans
yields significant boosts in RO performance (when compared
to [1]). Combining this with an unsupervised adaptation of
[6], in [5], Burnett et al. are able to slightly outperform [6]
without requiring ground truth odometry measurements to
train their system. In an alternative and recently proposed
approach [7] a robust point-to-line metric is used, in com-
bination with motion compensation and estimation over a
sliding window of past observations.

In contrast to the sparse methods mentioned above, Mask-
ing by Moving [8] adopts a dense approach; using a correl-
ative scan matching procedure in combination with a learnt
feature space supervised for pose prediction, the optimal
pose is searched for across a dense grid of candidates.
Through this approach mbym is able to outperform sparse
variants [1], [2], [5], [4]. However, while a dense search
results in excellent performance it comes with a significant
computational cost. This cost may be offset when high-
end modern graphical processing hardware is available as
demonstrated by the timing results shown in [8], but means
that mbym struggles to run online when the cost or power
requirements of such hardware is prohibitive. The learnt
element of mbym can also lead to geographical overfitting,
where the model performs better in the areas it has been
trained. In this work our aim is to tackle the former of these
problems, noting that as larger scale and more varied radar
odometry datasets become available models should become
less prone to overfitting. Nonetheless, further investigation
into combating geographical overfitting in the low data
regime, remains an interesting area for future research.

Building upon [8] we also adopt a dense scan matching
procedure with a learnt feature representation supervised di-
rectly for pose estimation. However, we propose to overcome
the computational burden of the dense search by decoupling
the search for angle and translation between scans, exploiting
the translational invariance of the Fourier Transform [11].
This property alongside the scale invariance property of the
Mellin Transform (MT) are combined to form the Fourier-
Mellin Transform (FMT) [11]. The FMT has been widely
exploited for image registration [12], [13] as well as for
visual odometry [14], [15].

In the radar domain, Checchin and Gérossier [16] pro-
posed to use the FMT for RO over a decade ago. More
recently [17] proposes to use a similar approach in their RO
system. In contrast, as the scale between scans is known,
in our own work we rely on only the Fourier translation
property. In contrast to [16], [17] we propose to mask
radar observations using a CNN. Using a differentiable
implementation of the decoupled scan matching procedure
allows us to learn a radar feature representation supervised
for pose prediction without resorting to hand-crafted filtering
or feature extraction and results in superior performance.

III. APPROACH

We begin by formulating the problem (Sec. III-A) and
discuss the limitations of a naı̈ve correlative scan match-
ing procedure (Sec. III-B). Next we show how by using
properties of the Fourier Transform we are able to more
efficiently search for the optimum pose by decoupling the
search for rotation and translation (Sec. III-C). In Sec. III-
D we propose a discrete and differentiable implementation.
Finally, to improve performance the radar scans are filtered
using a Deep Neural Network (Sec. III-E) which is trained
explicitly for pose prediction (leveraging the differentiability
of our scan matching implementation).

A. Problem Formulation
Let the signals f(x) ∈ R and g(x′) ∈ R denote radar

power measurements in two coordinate systems x,x′ ∈ R2

related by a rigid-body transformation [R∗|t∗] ∈ SE(2)

x′ = R∗x+ t∗ (1)

where R∗ = R∗(θ∗) ∈ SO(2) is a 2D rotation matrix param-
eterised by yaw θ∗ ∈ [0, 2π] and t∗ = [tx

∗, ty∗]> ∈ R2 is
a translational offset. In this case the radar power measure-
ments f(x) and g(x′) are related as f(x) ≈ g(R∗x + t∗),
where this relationship is only approximate due to ap-
pearance change between the two frames. The aim of our
approach is to estimate the pose [R∗|t∗] ∈ SE(2) between
the two coordinate systems, given access to f(x) and g(x′).

B. Correlative Scan Matching
In a correlative scan matching approach (such as in

[8]) the optimum pose [R∗|t∗] is found by maximising the
correlation between the two scans

R∗, tx
∗, ty

∗ = argmaxR,tx,ty(f ? g)(R, tx, ty) (2)

where (f ? g)(R, tx, ty) is the cross-correlation operation:

(f ? g)(R, tx, ty) =

∫

R2

f(x)g(Rx+ [tx, ty]
>)dx . (3)



The optimum pose is found through a brute force
approach partitioning the space R, t ∈ SO(2) × R2

into discrete and evenly spaced pose candidates
R, tx, ty ∈ {Ri}nθi=1 × {xi}nxi=1 × {yi}

ny
i=1 and choosing

the pose that maximises correlation between f and g.
However, searching over every possible combination of
R∗, tx∗, ty∗ creates a significant computational bottleneck
hindering real-time performance when high-end compute is
not available.

C. Exploiting Translational Invariance of the Fourier Trans-
form for Efficient Pose Estimation

We therefore utilise properties of the Fourier Trans-
form to search for R ∈ {Ri}nθi=1 independently of
t ∈ {xi}nxi=1 × {yi}

ny
i=1. This is the key to the effi-

ciency of our approach. With the radar signals related as
f(x) = g(R∗x+ t∗) their Fourier Transforms are related as

f̂(u) := F [f(x)] := af (u)e
jφf (u) (4)

ĝ(u′) := F [g(x′)] := ag(u
′)ejφg(u

′) (5)

f̂(u) = ĝ(R∗u)e2πjt
∗>R∗u (6)

(see proof in Sec. VII) where F : R → C denotes the one-
sided 2D Fourier Transform and u = [u1, u2]

> ∈ R2 is the
spatial frequency. Here, their magnitudes af (u) := |f̂(u)|,
ag(u

′) := |ĝ(u′)| differ only by a rotation, af (u) = ag(R
∗u)

and are independent of t∗1. Exploiting this result, an efficient
algorithm for determining the optimum pose [R∗|t∗] emerges:

1) Determine R∗: Considering af (u) and ag(u
′)

in polar coordinates ãf (ω) and ãg(ω
′), where

ω(u1, u2) =
[
tan−1(u2

u1
),
√
u21 + u22

]
is the polar

representation of the 2D spatial frequency plane, the
rotation between u and u′ will manifest as a translation
between ω and ω′: the angle θ between the two signals can
therefore be recovered as,

θ∗ = argmaxθ(ãf ? ãg)(I, θ, 0) (7)

where I = diag([1, 1]) and argmaxθ(ãf ? ãg) is the correla-
tion as per Eq. (3) between the magnitudes of the two signals
after mapping to polar coordinates.

2) Determine t∗: Once R∗ = R∗(θ∗) is known we are
able to recover t∗ = [tx

∗, ty∗]> as,

tx
∗, ty

∗ = argmaxtx,ty(f ? g)(R
∗, tx, ty) (8)

where g is rotated by the rotation solved for in the previous
step. Compared to the naı̈ve approach, where this last step
must be performed for every yaw candidate R ∈ {Ri}nθi=1,
this reduces computation by a factor of nθ.

D. Implementation
Whilst the approach so far was developed for continuous

signals f(x) and g(x′) in reality we only have access to
discrete sets of power measurements f ∈ Rnx×ny and
g ∈ Rnx×ny measured at locations x,x′ ∈ {xi}nxi=1×{yi}

ny
i=1

(assumed to fall over an evenly spaced grid). Alg. 1 therefore
gives a discrete approximation to the approach developed up

1This can intuitively be understood by noting that translating the original
2D signal does not change the overall frequency content, merely shifts it to
a new location (resulting in a phase shift between the two signals)

Algorithm 1: Fourier Scan Matching Procedure
1 function ScanMatch(f , g, nθ = 733, δθ = π/733, Tθ = 2,

nxy = 255, δxy = 0.4, Txy = 1):
/* Determine the pose [R∗, t∗] between the

two scans f ,g ∈ Rnxy×nxy */
2 {θk} = Linspace(− 1

2
δθnθ,

1
2
δθnθ, nθ)

3 {xi} = Linspace(− 1
2
δxynxy ,

1
2
δxynxy , nxy)

4 {xj} = Linspace(− 1
2
δxynxy ,

1
2
δxynxy , nxy)

/* Stage 1: Determine θ∗ */
5 hHann = HanningF ilter(Shape(f))
6 f ,g = hHann ◦ f ,hHann ◦ g
7 f̂ , ĝ = FFT2d(f), FFT2d(g)
8 hBand = BandPassF ilter(Shape(f))

9 f̂ , ĝ = hBand ◦ f̂ ,hBand ◦ ĝ
10 af ,ag = Abs(f̂), Abs(ĝ)
11 ãf , ãg = Cart2Pol(af ), Cart2Pol(ag)
12 ãf , ãg =WrapPad(af ),WrapPad(ag)
13 cθr = iFFT2d(FFT2d(ãf ) ◦ FFT2d(ãg))
14 cθ =Mean(cθr, dim = ’r’)
15 θ = SoftArgMax(cθ, Tθ, {θk}})

/* Determine [tx∗, ty∗] */
16 g′ = Rotate(g, θ∗)
17 f ,g′ = ZeroPad(f), ZeroPad(g′)
18 cxy = iFFT2d(FFT2d(f) ◦ FFT2d(g′))
19 tx

′, ty′ = SoftArgMax(cxy , Txy , {xi} × {yj})
20 R′ = BuildSO2(−θ)
21 tx, ty =MatMul(R′, [tx′, ty′])
22 return θ, tx, ty

to this point. The function ScanMatch takes as input f and
g and returns the estimated pose [R, tx, ty]. A diagram of
our approach is found in Fig. 1.

The 2D correlation operator defined in Eq. (3) is ap-
proximated in Alg. 1 by its discrete counterpart and is
implemented as a multiplication in the Fourier domain using
the highly efficient FFT2d and inverse iFFT2d (lines 13
and 18). The argmax operation in Eqs. (7) and (8) is replaced
with a soft approximation SoftArgMax in lines 15 and 19
to ensure that the scan matching procedure maintains end-to-
end differentiability. Here, a temperature controlled softmax
is applied to the 2D correlation scores before a weighted
sum is performed over its coordinates. This property will be
exploited in Sec. III-E to learn a radar embedding optimised
for pose prediction. It was found that applying specific
filtering and padding strategies was important to ensure
correct operation. A Hanning filter [18] is applied before
performing the 2D FFT of f and g to reduce boundary
artefacts and a band-pass filter was applied thereafter to
reduce the impact of uninformative low and high frequencies.
As the angular dimension in polar-coordinates is periodic,
applying circular padding to the power spectra along the an-
gular dimension (WrapPad in Alg. 1) significantly reduces
boundary artefacts; on the translational directions, instead,
we padded the spectra with zeros (ZeroPad in Alg. 1). The
functions Rotate and Cart2Pol are implemented using bi-
linear interpolation in a similar approach to [19]. The number
of range readings is set to nxy .

E. Learnt Radar Embeddings For Improved Odometry
Central to the success of our approach was an assumption

that f(x) ≈ g(R∗x+t∗). Of course there are several reasons
why this condition might not hold in practice: dynamic
objects, motion blur, occlusion, and noise all result in a



power field that fluctuates from one time-step to the next.
To counteract this, in a similar approach to [8], we propose
to mask the radar power returns using a neural network hα
to filter the radar scans before scan matching:

[mf ,mg] = hα(f ,g) (9)

f̃ = f ◦mf and g̃ = g ◦mg (10)

[θ, tx, ty] = ScanMatch(f̃ , g̃) (11)

where ◦ denotes the Hadamard product and
ScanMatch is defined in Alg. 1. Given a dataset
D = {(f ,g, θ∗, tx∗, ty∗)n}Nn=1 the network parameters α
are found by minimising:

L(α) = ED
{
|θ∗ − θ|1 + |tx∗ − tx|1 + |ty∗ − ty|1

}
(12)

Note that instead of minimising the Mean Square Error
(MSE) as in [8] we consider minimising the Mean Absolute
Error (MAE) which is less sensitive to outliers. The network
architecture for hα is discussed further in Sec. IV-B.

IV. EXPERIMENTAL SETUP

A. Datasets

We evaluate our approach using the Oxford Radar Robot-
Car Dataset [9] featuring a CTS350-X Navtech FMCW radar
with 4Hz scan rate which defines our requirement for real-
time. In a similar approach to [8], [5], [6] we partition the
data in time rather than geography. Tab. I details the specific
train, validation and test sets used.

Split Pattern Examples Percentage

Train 2019-01-1[1-8]* 197900 85%
Validate 2019-01-10-12-32-52* 8617 4%
Test 2019-01-10-1[24]* 25707 11%

TABLE I: All Oxford Radar RobotCar Dataset loops which
match the split pattern are used for each split.

B. Network Architecture And Training

As our primary benchmark we compare against the
mbym model proposed in [8] which we train from scratch
using the splits from Sec. IV-A. To ensure a fair comparison,
the masking network architecture and masking strategy are
kept consistent for both mbym and f-mbym (see Tab. II).

In Skip Down Conv Norm Act Conv Norm Act Up Out
ci co ci co

Encoder
f , g − − 2 8 BN Relu 8 8 BN Relu - h1

h1 − MP 8 16 BN Relu 16 16 BN Relu - h2

h2 − MP 16 32 BN Relu 32 32 BN Relu - h3

h3 − MP 32 64 BN Relu 64 64 BN Relu - h4

h4 − MP 64 128 BN Relu 128 128 BN Relu - h5

h5 − MP 128 256 BN Relu 256 256 BN Relu BL h6

Decoder
h6 h5 − 384 128 BN Relu 128 128 BN Relu BL h7

h7 h4 − 192 64 BN Relu 64 64 BN Relu BL h8

h8 h3 − 96 32 BN Relu 32 32 BN Relu BL h9

h9 h2 − 48 16 BN Relu 16 16 BN Relu BL h10

h10 h1 − 24 8 BN Relu 8 8 BN Relu BL h11

h11 − − 8 2 Sigmoid − − − − − mfg

TABLE II: The network architecture hα used to generate
masks mf ,mg from radar scans f ,g in Sec. III-E. MP is max-
pool, BN is batch-norm and BL is for bi-linear upsampling.

The scans f and g are concatenated to form a two channel
tensor and passed to our network as a single input (adopt-
ing the best-performing dual method from [8]). A U-Net
architecture [20] is used to increase the feature dimension
and decrease the spatial dimension through the repeated
application of convolutions and max-pooling before this
process is reversed through bi-linear up-sampling (BL) and
convolutions [21]. Information is allowed to flow from the
encoder to the decoder using skip connections which are
concatenated with the input feature map at each decoder
level. Batch Norm (BN) and ReLu activation (Relu) are
applied after each convolution. The masks mf ,mg output
by our network are generated using a single convolution with
a sigmoid activation.

As there is an intrinsic balance between run-time per-
formance and input resolution with reference to Alg. 1
input parameters, we train both models at three resolu-
tions δxy ∈ {0.8, 0.4, 0.2} corresponding to input sizes
nxy ∈ {127, 255, 511}, similarly to [8], with a batch size of
128, 64 and 32 respectively. All networks are trained min-
imising the loss of Eq. (12) for 80 epochs on the training set
with no augmentation applied to the input data. Translational
drift (see Sec. IV-C) is calculated on the validation set at each
epoch and the model with the smallest drift over all epochs
is selected, before the accuracy is calculated over the test set.
We experimented with learning rates 1× 10−3 and 1× 10−4

using the Adam optimiser [22], finding that all models
perform best when training with a learning rate of 1× 10−4

with the exception of f-mbym@511 where 1× 10−3 was
slightly better. For completeness we also include results
which are available from the original implementation and
splits, quoting directly from [8]. We find that our implemen-
tation of mbym outperforms the original as presented in [8]
as shown in Tab. IIIb. We attribute this to our introduction
of batch-norms after every convolution, experimenting with
slightly different resolutions (127, 255, 511 vs 125, 251, 501)
as well as a different training objective (L1 as opposed L2).
These observations may be useful when re-implementing our
work and that of [8].

C. Metrics
To assess odometry accuracy we follow the KITTI odom-

etry benchmark [23]. For each 100m segment of up to
800m long trajectories, we calculate the average residual
translational and angular error for every test set sequence,
normalising by the distance travelled. The performance
across each segment and over all trajectories is then averaged
to give us our primary measure of success.

As a core objective of this work, we also provide timing
statistics using both a laptop without GPU as well as an
embedded device with limited graphics capability. These
test beds include a Lenovo ThinkPad with Intel Core i7
2.9GHz processor and 8GB RAM and a NVIDIA Jetson
Nano with a Quad-Core ARM Cortext-A57 1.42GHz pro-
cessor, 128 CUDA cores (472 GFLOPS), and 4GB RAM.
During ThinkPad and Jetson tests, timing is measured by
passing through the network tensors of batch size 1 which
are populated by noise. For Jetson, we use event profiling
provided by PyTorch/CUDA, while for ThinkPad, we use
the standard Python library. All timing statistics stated are



calculated by averaging between 2000 and 10 000 forward
passes. We discard results from an initial “burn-in” of 50 to
100 steps in order to let computation stabilise.

D. Baselines
As our primary benchmark we compare our approach,

f-mbym, against mbym, as per [8]. Both models share
the same masking network architecture and training setup
(Sec. IV-B) and differ in how they solve for the pose
(see Sec. III). We also include results for mbym and
f-mbym without masking, denoted as raw and f-raw re-
spectively. This allows us to further investigate the benefits
that adopting a decoupled search brings to run-time perfor-
mance. Comparing f-raw to f-mbym also allows us to
compare our approach to a conventional decoupled procedure
without a learnt radar feature space, similar to [17].

V. RESULTS

In Sec. V-A, Sec. V-B and Sec. V-C we respectively
investigate what impact a decoupled search has on run-time
efficiency, real-time performance, and training. In Sec. V-D
we compare our approach with and without a masking net-
work. Finally, in Sec. V-E we investigate how our approach
fairs in comparison to several sparse point-based baselines.

A. Run-Time Performance
Comparing the run time efficiency of f-mbym to mbym in

Tab. IIIa the benefits of adopting a decoupled approach
becomes clear; considering a like-for-like comparison at each
resolution we are able to achieve speedups of 372% to
800% on a CPU and 424% to 470% on the Jetson (it is
worth noting that the memory footprint of the 511 resolution
mbym means it is unable to run on the Jetson entirely).

Further insights into run-time efficiency are gained by con-
sidering the efficiency of the brute-force and decoupled scan
matching procedure in isolation from the time taken to mask
each radar scan. The former is determined by measuring the
run-time performance of mbym and f-mbym operating on
raw radar scan (without masking) and is given by raw and
f-raw in Tab. IIIa. The latter is provided by measuring
the time it takes for a forward pass through the masking
network and is given by mask. Considering raw it becomes
clear that the brute-force search for tx, ty, θ is a significant
computational bottleneck; even without masking only the
lowest resolution model is able to run in real-time (>4Hz,
the radar scan rate) on the ThinkPad and not at all on
the Jetson. In contrast the majority of f-mbym models are
currently throttled by the forward pass through the network,
as can be seen by comparing mask to f-raw (where in the
majority of cases the time taken for masking each radar scan
is greater than that spent on the scan matching procedure).

B. Real-Time Odometry Accuracy
As our approach runs faster we are able to use a model at a

higher resolution whilst still maintaining real-time operation.
Considering Tab. IIIb, we note that whilst increasing the
resolution from 127 to 255 results in a significant reduction
in end-point error we experience only a marginal reduction
in error when increasing from a resolution 255 to 511 (e.g.
2.01% to 2.00%). As f-mbym@255 runs significantly faster

Timing Results
Think Pad (Hz) Jetson (Hz)
127 255 511 127 255 511

Baseline
mask 96.2 33.4 7.6 24.7 8.7 2.4
raw 14.3 3.7 0.8 6.6 2.1 -1
f-raw 83.2 58.2 21.0 28.3 22.3 9.4
mbym 12.2 3.4 0.7 3.7 1.4 -1

Ours
f-mbym 45.4 20.6 5.6 15.7 6.6 1.9

(a)

Kitti Odometry Error
127 255 511

Tra Rot Tra Rot Tra Rot

Baseline
raw 9.55 30.93 6.39 20.87 5.13 17.39
f-raw 9.58 29.60 8.46 27.75 7.95 26.86
mbym [8] 2.70 7.6 1.80 4.7 1.16 3.0
mbym 2.15 6.46 1.36 3.98 -2 -2

Ours
f-mbym 2.77 8.74 2.01 6.3 2.00 6.3

(b)

TABLE III: Timing results (a) and Kitti Odometry Met-
rics (b). Timing results are in Hz while translational (Tra)
and rotational errors (Rot) are in % and deg /km re-
spectively. 1Failed to run entirely on the Jetson. 2Due to
training time constraints and resource limitations values for
mbym@511 are not reported for our own re-implementation
as the run-time performance of this model fell significantly
below real-time as shown in Tab. IIIa (see [8] for estimate).

than f-mbym@511 we therefore consider f-mbym@255 as
our best performing model.

On the ThinkPad, f-mbym@255 outperforms the best
performing (and only) real-time mbym model mbym@127 in
terms of end-point error (2.01%, 6.3 deg /km vs. 2.14%,
6.4 deg /km) whilst running 168% faster. For Jetson tests
f-mbym@255 is still able to run in real-time at 6.6Hz. This
is in stark contrast to mbym which is unable to achieve real-
time performance at any of the tested resolutions.

C. Training Comparisons
By adopting a decoupled search for angle and translation

we are able to train significantly faster and with much
less memory. We average the time for each training step
(excluding data loading) for mbym and f-mbym running
on 255 resolution inputs across an epoch. This process is
repeated, doubling the batch size each time, until a 12GB
Nvidia Titan X GPU runs out of memory. The results are
shown in Fig. 2. Whilst mbym is only able to fit a batch size
of 4 into memory, f-mbym manages 64. We also find that
a training step for f-mbym is ∼ 4− 7 times faster than for
mbym (a like-for-like comparison at each batch size).

D. Masking
We now compare the performance of our approach with

(f-mbym) and without (f-raw) the masking network. Com-
paring the odometry accuracy (Tab. IIIb) vs run-time perfor-
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Fig. 2: Training step time comparison. Note that batch size
is displayed using a log scale.

mance (Tab. IIIa) of each method it is clear that increasing
odometry accuracy is worth the added penalty to run-time
performance. In the majority of cases f-mbym is still able
to run in real-time whilst increasing odometry accuracy by
between 345% to 390% across each resolution. We posit
that conventional decoupled search approaches, as in [17]
could experience similar boosts in performance by adopting
a learnt feature representation as in our approach.

E. Comparison To Sparse Point Based Methods

Finally, we compare our approach to several existing
point-based RO systems on the Oxford Radar RobotCar
Dataset [9], including: Cen RO [1], MC-RANSAC [4],
HERO [5], Under The Radar [6], CFEAR [7]. For direct
comparison we re-train our method using the splits from
[6], [5]. As shown in Tab. IV we perform competitively with
other approaches. We outperform Cen RO and MC-RANSAC
by a significant margin. We also slightly outperform Under
the Radar and HERO in rotational error. Only, CFEAR
outperforms us in both translational and rotational error.

Kitti Odometry Error
Method Type Tra (%) Rot (deg /km)

Sparse Point-Based
Cen RO [1] classical 3.7168 9.50
MC-RANSAC [4] classical 3.3190 10.93
Under The Radar [6] supervised 2.0583 6.70
HERO [5] unsupervised 1.9879 6.52
CFEAR [7] classical 1.7600 5.00

Dense
mbym[8] supervised 1.1600 3.00
f-mbym (ours) supervised 2.0597 6.269

TABLE IV: Comparison to other recent RO methods.

VI. CONCLUSION

In contrast to the brute force search over all possible
combinations of translation and angle proposed in mbym [8],
we propose to decouple the search for angle and translation,
exploiting the Fourier Transform’s invariance to translation.
Doing so allows our approach to be trained faster and with
less memory as well as to run significantly faster at inference
time. By providing a greater run-time efficiency at higher
resolutions our best performing real-time model achieves an
end-point error of 2.01% in translation and 6.3 deg /km,
outperforming the best real-time Masking by Moving model
in accuracy whilst running 168% faster on a CPU and

in real-time (at 6Hz) on a Jetson GPU. Our approach is
competitive with the current state of the art achieved by
sparse, point-based methods, challenging the conventional
wisdom that a sparse point-based method is necessary for
real-time performance.

As per Sec. V-A the run-time performance of our approach
is currently limited by the time taken to mask each radar scan
using a neural network. We also note that whilst our model
achieves more accurate real-time performance in comparison
to [8] when considering a like-for-like comparison at each
resolution a significant gap exists in odometry accuracy.
Closing this gap further could allow a dense method to
surpass the performance of a sparse method whilst running
in real-time. Investigating whether this is achievable with the
modifications to the proposed formulation alongside faster
masking strategies constitute interesting areas for future
research. Finally, the decoupled search developed in our
approach, could also be used to efficiently search for larger
rotations, and so utilised for metric localisation where the
rotational offset can be arbitrary.

VII. APPENDIX

As the affine transformation property of the Fourier Trans-
form (FT) in Eq. (6) is crucial to this work and the original
description by Bracewell [24] is not readily available, we
derive it here again for completeness, starting with the
definition of the 2D FT

ĝ(u′) =
∫

R2

g(x′)e−2πju
′>x′dx′ (13)

=

∫

R2

g(R∗x+ t∗)e−2πju
′>(R∗x+t∗)dx (14)

= e−2πju
′>t∗

∫

R2

g(R∗x+ t∗)e−2πju
′>R∗xdx (15)

= e−2πj(R
∗u)>t∗

∫

R2

f(x)e−2πju
>xdx (16)

= e−2πjt
∗>R∗uf̂(u) (17)

Eq. (14) follows from a change of variables x′ = R∗x+ t∗

noting dx′ = |R∗|dx = dx and Eq. (15) by expanding the
exponent and from the linearity of the Fourier transform.
Eq. (16) follows by defining u′ = R∗u and substituting
f(x) = g(R∗x+t∗) as in Sec. III-A. Finally, Eq. (17) follows
from the definition of the 2D Fourier transform. Substituting
u′ = R∗u and rearranging terms finally gives Eq. (6):

f̂(u) = ĝ(R∗u)e2πjt
∗>R∗u (18)
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7
Discussion

7.1 Contributions

This thesis has explored the potential of deep data-driven approaches applied to

radar across a range of tasks in robotics. To counter the lack of high-quality and

large-scale datasets currently available, self-supervised approaches were presented as

a promising alternative. Probabilistic approaches were also identified as important,

for managing the natural uncertainty that arises when working with radar sensor

measurements as a result of radar’s complex image formation process. With these

motivations in mind, in chapters 3 to 6 specific solutions were developed for inverse

sensor modelling, simulation and odometry.

Inverse Sensor Modelling In chapter 3 a deep and data-driven approach for

inverse sensor modelling was developed, mapping raw radar measurements to an

occupancy grid-map. In contrast to classical approaches which typically rely on

filtering power measurements based on their local context, a deep model was used

to model this mapping in an end-to-end fashion accounting for a wider scene

context. This allowed the proposed approach to significantly outperform classical

methods in partitioning the world into occupied and free space. In addition,

adopting a probabilistic approach allowed uncertainty in the occupancy state to
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be successfully quantified, allowing regions of space occluded from the sensor view

to be identified. The approach was trained without requiring manual labelling,

using partial occupancy labels generated from lidar.

Simulation In chapter 4 a deep approach was developed which replicates radar’s

complex sensing process in simulation, without requiring expensive ray-tracing

methods or specialist simulation environments. Using a pre-existing simulation

world to generate world states in the form of elevation maps, a deep implicit model

was used to capture the inherent uncertainty arising in the radar sensing process,

allowing a stochastic simulation to be learnt from data. To train the model using

unaligned datasets of simulated elevation maps and real-world radar measurements,

the forward and backward processes were learnt side-by-side (such that the backward

model could be used to infer the elevation state from real radar measurements). Both

processes are trained in a joint optimisation using a combination of adversarial and

cyclical consistency constraints, alongside an alignment loss with partial elevation

labels generated in lidar. All training data can therefore be generated in simulation

or automatically through data-collection in the real world. To test the realism

of radar measurements generated in simulation, downstream models operating on

radar data were trained using simulated radar measurements. When deployed in the

real world we find that models trained in simulation are able to perform within 4

percentage points of a model trained purely in the real world. The backward model

learnt as part of the same optimisation process can also be used to recast radar

measurements back to a 2.5D representation of the world with reasonable accuracy.

Odometry Finally, in chapters 5 and 6 deep approaches were explored for the

radar odometry task. In chapter 5 the robustness and interpretability of a correlative

scan matching procedure was combined with a learnt radar feature representation,

using a neural network to mask out distractor objects and noise artifacts. The entire

approach remained differentiable, allowing the masking network to be explicitly

optimised for the odometry task, supervising pose prediction directly. Through this

approach the previous state-of-the-art was surpassed in accuracy by a significant
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margin. In addition, through a probabilistic consideration, the uncertainty in

the predicted pose was characterised and calibrated to real world errors (through

a post training tuning step).

Building upon this approach, in chapter 6 properties of the Fourier Transform

were used to decouple the search for translation and angle. Adopting a decoupled

search vastly reduced the computational requirements of the scan matching pro-

cedure, and allowed real-time performance to be achieved at higher resolutions

even when running on CPUs and limited embedded devices. This allowed the best

real-time decoupled approach to outperform the best real-time approach proposed

in chapter 5 in accuracy (on a CPU) whilst running significantly faster.
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7.2 Future Research

The approaches developed in chapters 3 to 6 raise several interesting areas for

future research.

Inverse Sensor Modelling In chapter 3 sparse training labels were generated

automatically using lidar. Developing denser labelling strategies covering a greater

range constitutes one potential avenue for future research. This could be achieved by

integrating lidar sensor measurements over a longer time horizon into the labelling

procedure, for example, whilst accounting for scene dynamics and changing occlusion.

Early experiments suggested some benefit to using Polar Transformer units to

convert polar features in the encoder into Cartesian features in the decoder. Further,

investigating network architectures specifically designed for the radar datatype,

remains an interesting area for future research, so far under-explored in the literature.

Finally, the probabilistic inverse sensor modelling approach developed in chap-

ter 3 could naturally be incorporated into a Bayesian filtering paradigm to allow

sensor measurements to be integrated over time. Incorporating the learnt sensor

model into a conventional mapping system for a larger scale mapping deployment

is another interesting avenue to be explored. Much work has also been devoted

to developing localisation and planning solutions based on occupancy grids which

may also offer promising solutions when applied to radar.

Simulation Generalising the simulation approach developed in chapter 4 to

facilitate the learning of down-stream models for more complex tasks remains an

interesting area for future work and a prerequisite for fully capitalising on the

full potential of TIS applied to radar. Whilst the simulator was able to train

segmentation models – successfully partitioning the model into free, occupied and

unknown space – early experiments on a limited number of hand-labelled examples,

found that partitioning the world into finer-grained classes was significantly more

challenging. Here, the development of larger scale radar datasets with a greater

degree of labelling would be useful in providing more sophisticated testing scenarios.



7. Discussion 97

Another limitation of the current approach is its generalisation to new sensor

configurations – the radar’s configuration is never explicitly passed to the model and

is instead accounted for implicitly. In the worst case this requires a new simulator

to be learnt for each configuration. Whilst new training data in this instance is

easily generated, developing an approach in which the radar configuration may be

used as a conditional input to the model may be a better solution.

Finally, the application of alternative GAN training objectives and network archi-

tectures may also bring additional benefits to this problem setting. Attention-based

discrimination models may help with learning finer-grained details, for example.

Odometry The approach in chapter 5 appears to have a propensity to overfit to

the geographical locations over which it was trained, as demonstrated by the drop

in accuracy for the spatial cross-validation results presented in Table 2 in chapter 5.

The release of larger scale radar odometry datasets with ground truth poses, offers a

potential solution, allowing the feature space to be optimised over a wider array of

environments and problem scenarios. Alternatively, developing specific schemes to

counter overfitting in the low-data regime is also an interesting avenue of exploration.

At higher resolutions, the accuracy of the decoupled approach developed in

chapter 6 appears to saturate. Whilst the approach remains competitive with

other sparse odometry systems recently proposed in the literature, overcoming

this limitation could result in additional gains in radar odometry accuracy, and

constitutes an interesting area for future research.
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7.3 Concluding Remarks

Moving beyond the classical rule-based approaches which have dominated to date,

this thesis set out to explore the potential of deep and data-driven methods applied

to radar across a range of tasks in robotics. As shown by the approaches developed

for inverse sensor modelling, simulation and odometry, deep models offer significant

advantages, allowing the performance of previous approaches to be surpassed, whilst

running in real-time, and opening up new avenues for exploration. Meanwhile,

through probabilistic approaches the natural uncertainty arising when working with

radar sensor measurements may be successfully identified.

With a sustained interest from the research community, deep models and

probabilistic approaches applied to radar may yet allow radar to reach its full

potential in robotics as a first class member of the sensing suite.



8
Appendix

8.1 Probability Theory

8.1.1 Random Variables

Let x ∈ X denote a random variable belonging to the sample space X and distributed

as x ∼ p(x) where p(x) is the marginal distribution. To be a valid distribution we

require that p(x) ≥ 0 for every x ∈ X and that the sum of p(x) across the entire

sample space is equal to 1. Three cases are of particular interest:

• Discrete Random Variables Considering x ∈ {x1 . . . xK} the normalisation

constraint is written as ∑x∈X p(x) = 1. In this case combining the normal-

isation constraint with the non-negativity constraint p(x) ≥ 0 implies that

p(x) must lie in the interval [0, 1] for all x ∈ {x1 . . . xK}. The distribution

p(x) gives the probability of a particular outcome and is referred to as the

probability mass function (p.m.f).

• Continuous Random Variables Considering x ∈ R the sum in the

normalisation constraint becomes an integral
∫
x∈X p(x)dx = 1 and p(x) is

now a probability density function (p.d.f). The probability of x taking one

outcome in R is now un-defined. Instead, the cumulative density function

(c.d.f) F (x) =
∫ x

∞ p(x′)dx′ is used to calculate the probability that x lies in

99
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the interval [−∞, a]. Given that p(x) satisfies the normalisation and non-

negativity constraints it can be shown that F (x) is a non-decreasing function in

x and is bounded above and below such that F (−∞) → 0 and F (+∞) → 1.1

• Multivariate Random Variables In the case of a multi-variate random

variable x ∈ Rn then the normalisation constraint becomes
∫
Rn p(x)dx = 1

and the non-negativity constraint is satisfied if p(x) ≥ 0 for all x ∈ Rn. The

distribution p(x) is now the joint probability density function and captures the

likelihood of each of the elements of x ≜ (x1, ..., xn) occurring simultaneously.

8.1.2 The Rules of Probability

Considering two interacting random variables x and y, the joint p(x, y) describes

the outcome of two events x and y occurring simultaneously, whilst the conditional

p(x|y) describes the outcome of x given that y is already known2. Ensuring that

the normalisation constraint and non-negativity constraint is satisfied for p(x|y),

p(x, y), p(x) and p(y) gives rise to the product and sum rules

p(x, y) = p(x|y)p(y) product rule (8.1)

p(y) =
∫

Y
p(x, y)dx sum rule (8.2)

which taken together form the foundational operations of probability. They provide

a consistent framework for reasoning about random variables x and y and can

be thought of as a natural extension of boolean logic extended to random events.

Combining the product and sum rule in combination with the symmetry property

of the joint p(x, y) = p(y, x) gives rise to Bayses rule

p(x|y) = p(y|x)p(x)
p(y) = p(y|x)p(x)∫

p(y|x)p(x)dx (8.3)

(Note, equivalent results for the discrete case are retrieved replacing the integral

in the sum rule with a summation.)
1Note, in some instances it is possible to define a c.d.f F (x) satisfying these constraints which

does not correspond to a valid p(x). As a result in an axiomatic defintion of continuous random
variables it is common to define the distribution of continous random variables using F (x) instead.
When F (x) is also differentiable then F (x) will correspond to a valid p.d.f p(x).

2Whilst, the joint is a distribution in both x and y (satisfying p(x, y) ≥ 0 for all x, y and∫
p(x, y)dxdy = 1), the conditional p(x|y) is only a distribution in x
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Independent Events In the limit when knowledge of y provides no information

about the event x then x and y are independent; p(x|y) = p(x) collapses to the

marginal for x and (from the product rule) the joint becomes p(x, y) = p(x)p(y).

Multiple Interacting Random Variables Generalisations of the sum and

product rule for the genral ND case are easily derived considering repeated

applications of the sum and product rule for the 2D case. In this case, the sum,

product and bayes rule all hold replacing x, y and dx with x, y and dx in ... .

8.1.3 Expectations

Expectations of a function f(x) with respect to some distribution p(x) are defined as:

Ep(x){f(x)} ≜
∫

X
f(x)p(x)dx . (8.4)

8.1.3.1 The Law Of Large Numbers

Whilst, in some case it may be possible to determine a closed form solution to

the expectation Ep(x)[f(x)] for general f(x) and p(x) this is not the case. The

law of large numbers states

Ep(x){f(x)} = lim
N→∞

1
N

N∑
n=1

f(xn) with xn ∼ p(x) (8.5)

and provides a powerful alternative allowing expectations to be estimated as the

empirical average Ep(x){f(x)} ≈ f̄ where f̄ ≜ 1
N

∑N
n=1 f(xn) is referred to as

the Monte-Carlo estimate of f .

8.1.3.2 The Reparameterisation Trick

In subsequent chapters the gradients ∇ψEpψ(z){f(z)} will also be required where

the distribution pψ(z) depends on the parameters ψ. The re-parmaterisation trick

offers a powerful solution in this case.

Provided it is possible to express the random variable z ∼ pψ(z) as a deter-

ministic variable z = gψ(ϵ) induced from an auxillary variable ϵ ∼ p(ϵ), the re-

parameterisation trick allows expectations in the parameter z to be re-written
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in the parameter ϵ

Epψ(z){f(z)} = Ep(ϵ) {f (gψ (ϵ))} (8.6)

where gψ is a function depending on the parameters ψ. Provided that gψ is also

differentiable low-variance gradients ∇ψEpψ(z){f(z)} can now be estimated as

∇ψEpψ(z){f(z)} = ∇ψEpψ(z){f(z)} (8.7)

= Ep(ϵ) {∇ψf (gψ(ϵ))} (8.8)

≈ 1
K

∑K
i=1∇ψf (gψ(ϵi)) (8.9)

with ϵi ∼ p(ϵi)

Many common distributions, can be re-parameterised in this way, including

location scale distibutions (Eg. Gaussian and Laplace) and any distribution with a

tractable inverse CDF (Eg. Cauchy, Logistic, Rayleigh, Gumbel, etc. ) [29].

8.1.4 The Kullback Leibler Divergence

The Kulback Leibler (KL) divergence

d[p, q] ≜ KL[p||q] = Ep {log p− log q} (8.10)

satisfies

KL[p||q] ≥ 0 non-negativity (8.11)

KL[p||q] = 0 ⇔ p = q identity of indiscernibles (8.12)

KL[p||q] ̸= KL[q||p] non-symmetric (8.13)

and provides a natural measure of the similarity between two discrete, continuous or

multivariate distributions p and q (using the respective definition of the expectation

operator in each case).3

From an information perspective the KL divergence is the expected number of

bits that need to be sent to a receiver in order to communicate the density p given
3As it is not symmetric KL[p||q] ̸= KL[q||p], it does not satisfy the triangle equality and so is

not a metric.
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that the receiver already knows the density q []. In general, however, the base of the

log is arbitrary and when working with probability distributions – typically defined

as functions involving the natural exponential – a base of e is often a more natural

choice. In this case KL[p||q] is said to be measured in nats rather than bits.

The KL divergence has a key role to play in what is to follow; maximum

likelihood – an approach adopted throughout machine learning – can be shown to

be the same as minimising the KL divergence between the model and the true data

generating process. This provides the guarantee that if the model has the capacity

to represent the true process then in the limit of expectation it will. It also has

a key role to play in variational Bayes for determining approximate but tractable

posteriors in Bayesian inference problems as described in Sec. 8.2.2.1.
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8.2 Inference

Up to this point, an axiomatic approach has been taken to how possibly multiple

interacting real and/or discrete random variables may be defined, characterised and

manipulated. Little attention has been given however to what probability represents

which is an interesting and controversial question. How one answers this question

has a profound impact on inference – the process of estimating an unknown θ given

observations D ∼ p⋆(D|θ) generated from the true process p⋆. In general opinion

may be broadly divided down the lines of frequentist and Bayesian viewpoints.

8.2.1 Frequentist Inference

Frequentists view probability as representing the frequency with which an event

occurs. This point of view is natural for repeatable events. For example in the

case of a coin toss the fraction of times the coin comes up heads h in the limit

of an infinite number of trials n is used to define the probability of a coin toss

p such that p ≜ limn→∞ h/n.

8.2.1.1 Maximum Likelihood

In a frequentist approach unknown θ is assumed fixed, and is inferred using the

principle of maximum likelihood estimation

θ̂ = arg max
θ

log p(D|θ) (8.14)

choosing θ which maximises the likelihood of the model p(D|θ) given observed

data D from the true process D ∼ p⋆(D|θ⋆).

Consistency of The Maximum Likelihood Estimator When the data

D ≜ {Dn}Nn=1 corresponds to a series of independent and identically distributed
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observations such that p⋆(D|θ⋆) = ∏N
n=1 p⋆(Dn|θ⋆) we have

θ̃ = arg max
θ

Ep⋆(D|θ⋆){log p(Dn|θ)} (8.15)

≈ arg max
θ

1
N

∑
n log p(Dn|θ) law of large numbers (8.16)

≈ arg max
θ

log p(D|θ) independence and log properties (8.17)

≈ θ̂ (8.18)

and so in the limit as N → ∞ we have θ̂ → θ̃. Provided that the model likelihood

subsumes the true likelihood such that p⋆(D|θ⋆) = p(D|θ⋆) this guarantees θ̃ = θ⋆

and so in the limit θ̂ → θ⋆.

In reality when N < ∞ sampling different datasets D ∼ p⋆(D|θ) will lead to

different estimates for θ̂. The uncertainty in θ̂ is quantified by using uncertainty

in the data as a proxy (such as p-values).

Maximum Likelihood and KL Divergence An alternative derivation for

maximum likelihood estimation can be derived by minimising the KL divergence

between the true process p⋆(D|θ⋆) and the model p(D|θ)

θ̂ = arg min
θ

KL[p⋆||p] substitution (8.19)

= arg min
θ

Ep⋆(D|θ⋆) {log p⋆(D|θ⋆) − log p(D|θ)} definition (8.20)

= arg max
θ

Ep⋆(D|θ⋆) {log p(D|θ)} keep terms in p (8.21)

≈ arg max
θ

1
N

∑
n log p(Dn|θ) law of large numbers (8.22)

≈ arg max
θ

log p(D|θ) i.i.d (8.23)

in which maximum likelihood estimation naturally emerges. Once again in the

limit N → ∞ this approximation becomes exact and the positive defiteness of

the KL divergence guarantees p(D|θ) → p⋆(D|θ⋆).

8.2.1.2 Empirical Risk

In the case of IID samples the maximum likelihood estimate can be re-written as

θ̂ = arg min
θ

1
N

∑
n

ℓ(θ; Dn) ≈ arg min
θ

Ep⋆(D|θ⋆){ℓ(θ; D)} (8.24)
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where ℓ(θ; D) ≜ − log(p(D|θ). Whilst the loss function ℓ(θ; Dn) was derived by

considering the log-likelihood log p(Dn|θ) other loss functions ℓ : Θ → R may be

defined. Considering Eq. (8.24) with other loss functions ℓ(θ; D) gives a general

approach to parameter estimation – of which maximum likelihood is a special case –

referred to as empirical risk minimisation. A loss function is consistent if in the

limit as N → ∞ solving Eq. (8.24) gives θ → θ⋆.

Improper Likelihoods Note that as ℓ : Θ → R, defining p̃(D|θ) ≜ exp −ℓ(θ)

we have p̃(D|θ) ≥ 0 for every θ. Whilst, the distribution p̃(D|θ) ≥ 0 satisfies the

non-negativity constraint, it is not necessarily normalised (doesn’t integrate to

1) and is referred to as an improper likelihood. Reversing this line of reasoning

any loss ℓ : Θ → R can be thought of as deriving from an improper likelihood

ℓ(θ; D) ≜ − log p̃(D|θ).

8.2.2 Bayesian Inference

In the Bayesian view probability quantifies belief and does not necessarily correspond

to the actual frequency with which an event occurs. When it comes to inference the

unknown θ is assumed random θ ∼ p(θ) with prior p(θ). In light of observations

D ∼ p(D|θ) the belief in θ is updated using Bayes rule

p(θ|D) = p(D|θ)p(θ)∫
p(D|θ)p(θ)dθ = p(D|θ)p(θ)

p(D) . (8.25)

to form the posterior θ ∼ p(θ|D). Uncertainty in θ is naturally captured by θ ∼

p(θ|D).

To estimate the posterior p(θ|D) the marginal evidence p(D) =
∫
p(D|θ)p(θ)dθ

must be determined. For suitable choices of likelihood p(D|θ) and prior p(θ) the

marginal evidence can be calculated in closed form; this is the case when p(D|θ) and

p(θ) are conjugate to one another (as is the case in Bayesian Linear Regression) where

the posterior distribution will have the same distributional form as the prior. For

other choices of prior – where inference is no longer tractable – approximate Bayesian

methods must be employed such as Variational Bayes or Sampling Approaches.
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8.2.2.1 Variational Bayes

Adopting a variational approach, an approximate posterior distribution q(θ) is

introduced and fitted to the true posterior p(θ|D). This is achieved by minimising

the KL divergence

qθ = arg min
qθ

KL[qθ∥pθ|D] . (8.26)

Re-writing the KL divergence gives

KL
[
qθ∥pθ|D

]
= Eqθ

{
log qθ − log pθ|D

}
definition (8.27)

= Eqθ {log qθ − log pθ,D + log pD} Bayses rule (8.28)

= Eqθ {log qθ − pθ,D} + log pD normalisation (8.29)

≜ −ELBO[log qθ∥pθ,D] + log pD definition (8.30)

and so the identity

ELBO[qθ∥pθ,D] = log pD − KL
[
qθ∥pθ|D

]
(8.31)

where ELBO[log qθ, pθ,D] is the evidence lower bound.

Variational Bayes The otpimisation problem in Eq. (8.26) can therefore be

equivalently re-written as

qθ = arg max
qθ

ELBO[qθ∥pθ,D] (8.32)

noting that the model evidence log pD does not depend on θ. Crucially, Eq. (8.32)

in contrast to Eq. (8.26) only requires evaluation of the joint distribution pθ,D.

Approximating the Model Evidence In addition to allowing an approximation

q(θ) to the true posterior p(θ|D) to be established, ELBO[qθ∥pθ,D] also provides

an estimate for the model evidence

ELBO[qθ∥pθ,D] ≈ − log pD (8.33)

considering Eq. (8.30) and letting q(θ) → p(θ|D) =⇒ KL
[
qθ∥pθ|D

]
→ 0.
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Re-interpreting the ELBO Further insight can also be gained into this approach

by re-writing the definition of ELBO[qθ∥pθ,D]

ELBO[log qθ∥pθ,D] = Eqθ {log qθ − log pθ,D} (8.34)

= Eqθ

{
log qθ

pθ|D
− log pθ|D

}
(8.35)

= KL [qθ∥pθ] − Eqθ
{
log pθ|D

}
(8.36)

and so minimising ELBO[log qθ∥pθ,D] is also seen to be equivalent to minimising the

KL divergence between qθ and the prior pθ whilst maximising the approximate

model evidence Eqθ
{
pθ|D

}
.

8.2.2.2 Sampling Approaches

Another approach is to approximate the posterior distribution as an empirical

distribution p(θ|D) ≈ ∑
s=1 ωsδθs(θ) such that

Ep(θ|D){f(θ)} ≈
∫ ∑

sωsδθs(θ)f(θ)dθ = ∑
sωsf(θs) (8.37)

where Θ = {θs}Ss=1 is a set of particles and {ωs}Ss=1 are particle weights such that∑
s ωs = 1. When sampling from the posterior θs ∼ p(θ|D) directly then ωs = 1/S.

Importance Sampling However, sampling from other distributions θs ∼ q(θ)

is also possible. Noting that Eq. (8.37) can be re-written

Ep(θ|D){f(θ)} =
∫
p(θ|D)f(θ)dθ (8.38)

=
∫
q(θ)p(θ|D)

q(θ) f(θ)dθ (8.39)

≈ 1
S

∑
s

p(θs|D)
q(θs)

f(θs) θs ∼ q(θ) (8.40)

≈ 1
L

∑
s

p̃(θs)
q̃(θs)

f(θs) p̃(θ) ∝ p(θ|D), q̃(θ) ∝ q(θ) (8.41)

≈ 1
K

∑
s

ω̃sf(θs) ω̃s ∝ p̃(θs)
q̃(θs)

(8.42)

and that Ep(θ|D){1} = 1 =⇒ K = ∑
s ω̃s this gives

Ep(θ|D){f(θ)} ≈
∑
s

ωsf(θs) ω̃s = p̃(θs)
q̃(θs)

ωs = ω̃s∑
s ω̃s

(8.43)
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where θs ∼ q(θ) are sampled from a proposal distribution q(θ). Note, that the

weights are calculated without evaluating p(θ|D), only requiring that it is possible

to evaluate an unormalised density p̃(θ) ∝ p(θ|D) which is readily provided by

the joint distribution p̃(θ) ≜ p(θ,D) = p(D|θ)p(θ). Methods exploiting Eq. (8.43)

are referred to as importance sampling.

Grid Sampling Setting the proposal distribution to a uniform density and

considering sampling θs over an evenly space grid

θs ∼ Uni(∥θ∥2 < d) ωs = p(D|θ)p(θ) (8.44)

Sampling From The Posterior Distribution Directly If samples are required

directly from the posterior distribution θs ∼ p(θ|D) then a resampling step can

be performed in which new particles are sampled from the empirical distribution

p(θ|D) ≈ ∑
s=1 ωsδθs(θ) using weights ωs as discrete probabilities.4

Sampling will be inefficient if the proposal distribution q(θ) is poorly aligned to

the posterior p(θ|D) with ωs ≈ 0. This problem is exacerbated as the dimensionality

of θ increases. Markov Chain Monte Carlo (MCMC) techniques such as Metropolis

Hastings approaches – of which Gibbs sampling is a famous example – have

been designed in response to this problem. Whilst, an interesting and powerful

approach to Bayesian inference MCMC approaches come with a significant increase

in complexity and remain outside the scope of this thesis.

4Another simple alternative to sampling particles directly from the posterior is rejection
sampling. In the case where θ ∈ R the un-normalised posterior is bounded by a proposal
distribution such that q̃(θ) = kq(θ) for some constant k such that q̃(θ) ≥ p̃(θ) for all possible θ.
A particle is then proposed θs ∼ q(θ) and rejected if s > p̃(θs) where s ∼ Uni (|s| < kq(θs)). All
particles which are not rejected can be shown to be distributed as θs ∼ p(θ|D) and are added to the
set Θ. This approach is easily generalised to θ ∈ Rd by sampling each element in θ = [θ1, ..., θd]⊤
independently. One significant challenge with rejection sampling however is determining the
constant k such that q̃(θ) ≥ p̃(θ). In contrast, k is implicitly estimated using importance sampling
by ensuring that all the weights sum to 1.



110 8.3. Optimisation

8.3 Optimisation

When considering deep models, the parameter space is of a high dimensionality

and in general – as they are non-linear in the parameters ϕ – the training objective

L(ϕ) is typically non-convex. Second-order non-linear optimisation methods that

rely on calculating the Hessian of the loss function with respect to the network

parameters are infeasible due to the high dimensionality of ϕ. Instead, first-

order methods are used where the estimate of the parameters ϕ is iteratively

refined using a linear update rule

ϕk = ϕk−1 − δϕk for k = 0...K (8.45)

exploiting local gradient information about the current estimate ϕk. Note, in

this case all the parameters from the network ϕ = {ϕ1, . . . , ϕL} are flattened and

concatenated to give ϕ ∈ Rd.

Gradient Descent For a smooth loss L(ϕ) the method of gradient descent

[53, 54] defines an update rule

δϕk ≜ ϵgk−1 with gk−1 ≜ ∇ϕL(ϕk−1) (8.46)

where ϵ ∈ [0,∞) is referred to as the step size or learning rate.

Considering the first-order Taylor expansion for L(ϕ) about the point ϕk−1

L(ϕk) ≈ L(ϕk−1) + (ϕk − ϕk−1)⊤gk−1 first-order taylor series (8.47)

= L(ϕk−1) − ϵg⊤
k−1gk−1 Eq. (8.45) & Eq. (8.46) (8.48)

= L(ϕk−1) − ϵ∥gk−1∥2
2 definition of ∥ · ∥2 (8.49)

it becomes clear that provided that ϵ is small enough so that the approximation in

Eq. (8.47) is valid, the loss will continue to decrease until the first-order condition

for optimality limk→∞ gk = 0 is met giving ϕ̂ = limk→∞ ϕk [27, 54].

When ϵ is small, an impractically large number of steps is needed for convergence.

On the other hand, when ϵ is large then the approximation in Eq. (8.47) is no longer
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valid – there is no guarantee that ϕ will even converge. In practice the step size

ϵ is typically found by performing a hyper-parameter sweep choosing the best ϵ

from amongst a set of possible candidates {ϵ1, ..., ϵk} ⊂ [a, b].

Stochastic Gradient Descent For large datasets D calculating the loss L(ϕk; D)

and its gradient gk−1 may require an intractable amount of time and/or memory.

Instead, a batch of the full dataset B ⊂ D is used to estimate L(ϕk; D) ≈ L(ϕk; B)

at each iteration. Using this approximation in conjunction with the iterative update

scheme defined through Eq. (8.46) and Eq. (8.45) is referred to as the method

of stochastic gradient descent (SGD) [55, 56].

This comes at the expense of a higher variance gradient and as a result a loss

which converges more slowly and may even fail to converge. On the other hand,

when the number of parameters d is relatively large compared to the number of

training examples N , the added stochasticity of SGD with B < N has been posited

to have a regularising effect [57, 58], leading to better generalisation.

Momentum As an attempt to reduce the variance in the gradient estimate SGD

with momentum [59] uses an update rule

µk = γ1µk−1 + (1 − γ2)gk−1 (8.50)

δϕk = ϵµk (8.51)

where µk provides a running average of the gradient. The exponetial decay factors

γ1, γ2 ∈ [0, 1] control how quickly µk−1 decays whilst ϵ is the gradient step size

or learning rate (as before). By setting γ1 = 1 and γ2 = 0 the SGD update

rule is recovered.

Adaptive Learning Rates One downside to stochastic gradient descent is that

a single learning rate is used to update all the parameters. Modern optimisers such

as RMSProp [60], AdaGrad [61] and Adam [51] consider adding in adaptive learning



112 8.3. Optimisation

rates for each parameter. For RMSProp the update rule is given as

νk = βνk−1 + (1 − β)g2
k−1 (8.52)

δϕk = ϵ
1

√
νk + 10−8 gk−1 (8.53)

where νk gives a moving average of the second moment of the gradient of each

parameter. The Adam update rule, on the other hand, combines the update rules

for RMSProp and Momentum to give

µk = γµk−1 + (1 − γ)gk−1 (8.54)

νk = βνk−1 + (1 − β)g2
k−1 (8.55)

δϕk = ϵ
ck√

νk + 10−8 µk (8.56)

where ck = (1 − γk)−1(1 − βk)−1/2 is a bias correction term (which will tend

to 1 as k → ∞).

In comparison to other optimisers Adam has been posited to have faster

convergence rates and is the default optimisation method used in this thesis.

Backpropagation

Central to the first order methods described so far is an assumption that it is possible

to calculate the gradient ∇ϕL(ϕ). Whilst, layers yi = yϕi(yi−1) are designed to

be differentiable in their parameters ϕi, care needs to be taken when calculating

gradients gi ≜ ∇ϕiL(ϕ). Central to the first order methods described so far is an

assumption that it is possible to calculate the gradient ∇ϕL(ϕ). Whilst, layers yi =

yϕi(yi−1) are designed to be differentiable in their parameters ϕi, care needs to be

taken when calculating gradients gi ≜ ∇ϕiL(ϕ). Naïve application of the chain rule

gi ≜ ∇ϕiL(ϕ) ≜ ∂L
∂ϕi

= ∂L
∂yL︸ ︷︷ ︸
1×nL

∂yL
∂yL−1︸ ︷︷ ︸
nL×nL−1

. . .
∂yi+1
∂yi︸ ︷︷ ︸

ni+1×ni

∂yi
∂ϕi︸ ︷︷ ︸
ni×di

(8.57)

involves the calculation and multiplication of matrix jacobians which for mod-

ern neural networks soon requires an intractable amount of time and memory

(particularly when considering networks typically composed of 100s of layers and



8. Appendix 113

mapping high-dimensional inputs – such as images – to high-dimensional outputs)

[62]. Instead, writing

gi ≜
∂L
∂ϕi

= ∂L
∂y

i︸︷︷︸
1×ni

∂yi
∂ϕi︸ ︷︷ ︸
ni×di

= ∂

∂ϕi

(
∂L
∂yi︸︷︷︸
1×ni

yi︸︷︷︸
ni

)
≜ ∇ϕi⟨δi,yi⟩ (8.58)

where δi ≜ ∇yiL(ϕ) allows the gradient gi ≜ ∇ϕiL(ϕ) to be calculated as the

derivative of the inner product gi = ∇ϕi⟨δi,yi⟩ side-stepping the calculation of

large matrix Jacobians entirely [62, 63].5

In a similar way

δi−1 ≜ ∂L
∂yi−1

= ∂L
∂yi︸︷︷︸
1×ni

∂yi
∂yi−1︸ ︷︷ ︸
ni×ni−1

= ∂

∂yi−1

(
∂L
∂yi︸︷︷︸
1×ni

yi︸︷︷︸
ni

)
≜ ∇yi−1⟨δi,yi⟩ (8.59)

which allows the gradient δi ≜ ∇yiL(ϕ) at each layer to be calculated using

the iterative scheme

δi−1 = ∇yi−1⟨δi,yi⟩ for i = L...1 (8.60)

where in this case the gradients are gradually update from layer i = L back

to the input i = 1.

Calculating gradients gi ≜ ∇ϕiL(ϕ) and δi−1 = ∇yi−1⟨δi,yi⟩ using Eq. (8.58)

and Eq. (8.60) is referred to as the backpropagation algorithm [63]. In reality

this procedure is easily automated by ensuring that each layer implements both a

forward mode yi = yϕi(yi−1) and a backward mode gi, δi−1 ≜ y′
ϕi

(δi,yi), calculating

the gradient of the loss with respect to both the layer parameters gi ≜ ∇ϕiL(ϕ) =

∇ϕi⟨δi,yi⟩ and the input to the layer δi−1 ≜ ∇yi−1L(ϕ) = ∇yi−1⟨δi,yi⟩.

Modern deep learning libraries [64, 65] provide both forward and backward

implementations for a wide range of functions and layers allowing for the automatic

differentiation of a plethora of loss functions and models, in many cases without

further thought. Alongside developments in parallel computing hardware and

technical breakthroughs, the availability of such libraries – readily implemented
5The final part of equation Eq. (8.58) follows from the product rule, noting that layers yk for

L ≤ k < i do not depend on ϕi either implicitly or explicitly such that ∇ϕi
{∇yi

L(ϕ)} = 0.
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as a result of the layer abstraction brought by the back-propagation algorithm –

can be at least partially accredited with the rise and success of deep learning

approaches in recent years.
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8.4 Derivations

8.4.1 Loss Functions For Assumed Density Models

As described in Sec. 2.2.1 many common loss functions used to train deep neural

networks can be derived as maximum likelihood objectives ℓ(ϕ) = − log pϕ(y|x)

corresponding to different choices of density pϕ(y|x). Proofs for the results stated

in Sec. 2.2.1 can be found below.

Gaussian Model For pϕ(y|x) ≜ Nor (y|yθ(x), σ2I) with yθ : X → Rnout :

ϕ̂ = arg min
θ

−
∑
n

log pθ(yn|xn) (8.61)

= arg min
θ

−
∑
n

log
{

|2πσ2I|−
1
2 exp − 1

2σ2 ∥yn − yθ(xn)∥2
2

}
(8.62)

= arg min
θ

1
2
∑
n

log |2πσ2I| + 1
σ2 ∥yn − yθ(xn)∥2

2 (8.63)

= arg min
θ

1
N

∑
n

∥yn − yθ(xn)∥2
2 (8.64)

= 1
N

arg min
ϕ

∑
n

ℓ2(θ; xn,yn) (8.65)

the Mean Squared Error (MSE) training objective is recovered similar.

Laplace Model When y ∈ Rnout and pθ(y|x) ≜ Lap (y|yθ(x), σ2), with yθ : X → Rnout :

ϕ̂ = arg min
θ

−
∑
n

log pθ(yn|xn) (8.66)

= arg min
θ

−
∑
n

log
{

|2σI|−1 exp 1
σ

∥yn − yθ(xn)∥1

}
(8.67)

= arg min
θ

∑
n

log |2σI| + 1
σ

∥yn − yθ(xn)∥1 (8.68)

= arg min
θ

1
N

∑
n

∥yn − yθ(xn)∥1 (8.69)

= arg min
ϕ

1
N

∑
n

ℓ1(θ; xn,yn) (8.70)

gives Mean Absolute Error (MSE) training objective.
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Bernoulli Model p(y|x) ≜ Ber(y|πϕ(x)) with πϕ : X → [0, 1]:

ϕ̂ = arg min
ϕ

∑
n

− log p(yn|xn) (8.71)

= arg min
ϕ

∑
n

− log (Ber(yn|πϕ(x))) (8.72)

= arg min
ϕ

∑
n

− log
(
πϕ(xn)yn(1 − πϕ(xn))1−yn

)
(8.73)

= 1
N

arg min
ϕ

∑
n

−yn log (πϕ(xn)) − (1 − yn) log (1 − πϕ(xn)) (8.74)

= arg min
ϕ

1
N

∑
n

ℓbce(θ; xn,yn) (8.75)

and the Binary Cross Entropy ℓbce(θ; xn,yn) naturally emerges.
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