
Context-Aware Intelligent Decisions:
Online Assessment of Heavy Goods

Vehicle Driving Risk

Jimiama Mosima Mafeni Mase

Thesis submitted to The University of Nottingham
for the Degree of Doctor of Philosophy

in Computer Science

May 16, 2023



Publications

This section presents a list of publications formed as part of the research work for
this thesis.

1. Jimiama M. Mase, Peter Chapman, Christian Wagner, and Grazziela P. Figueredo,
“Driving Risk Assessment Using Intervals and Weighted Fuzzy Rules”. To be
submitted.

2. Jimiama M. Mase, Peter Chapman, and Grazziela P. Figueredo, “A Review
of Intelligent Systems for Driving Risk Assessment”. Submitted.

3. Kumar Aayush, Jimiama M. Mase, Divish Rengasamy, Benjamin Rothwell,
Mercedes T. Torres, David A. Winkler, and Grazziela P. Figueredo, “EFI: A
Toolbox for Feature Importance Fusion and Interpretation in Python”. Pub-
lished.

4. Jimiama M. Mase, Natalie Leesakul, Grazziela P. Figueredo, and Mercedes
T. Torres, “Facial identity protection using deep learning technologies: an
application in affective computing”. Published.

5. Divish Rengasamy, Jimiama M. Mase, Aayush Kumar, Benjamin Rothwell,
Mercedes T. Torres, Morgan R. Alexander, David A. Winkler, and Grazz-
iela P. Figueredo, “Feature importance in machine learning models: A fuzzy
information fusion approach”. Published.

6. Jimiama M. Mase, Peter Chapman, Grazziela P. Figueredo, and Mercedes T.
Torres, “Benchmarking deep learning models for driver distraction detection”.
Published.

7. Jimiama M. Mase, U. Agrawal, D. Pekaslan, M. Mesgarpour, P. Chapman, M.
T. Torres, and Grazziela P. Figueredo, “Capturing uncertainty in heavy goods
vehicle driving behaviour”. Published.

8. Jimiama M. Mase, Shazmin Majid, Mohammad Mesgarpour, Mercedes T.
Torres, Grazziela P. Figueredo, and Peter Chapman, “Evaluating the impact of
heavy goods vehicle driver monitoring and coaching to reduce risky behaviour”.
Published.

9. Jimiama M. Mase, Peter Chapman, Grazziela P. Figueredo, and Mercedes T.
Torres, “A hybrid deep learning approach for driver distraction detection”.
Published.

i



10. Utkarsh Agrawal, Jimiama M. Mase, Grazziela P. Figueredo, Christian Wag-
ner, Mohammad Mesgarpour, and Robert I. John, “Towards real-time heavy
goods vehicle driving behaviour classification in the united kingdom”. Pub-
lished.

ii



Abstract

There is a growing interest in assessing the impact of drivers’ actions and behaviours
on road safety due to the numerous road fatalities and costs attributed to them.
For Heavy Goods Vehicle (HGV) drivers, assessing the road safety risks of their
behaviours is a subject of interest for researchers, governments and transport com-
panies, as nations rely on HGVs for the delivery of goods and services. However,
HGV driving is a complex, dynamic, uncertain and multifaceted task, mostly influ-
enced by individual traits and external contextual factors. Advanced computational
and artificial intelligence (AI) methods have provided promising solutions to au-
tomatically characterise the manner by which drivers operate vehicle controls and
assess their impact on road safety. However, several challenges and limitations are
faced by the current intelligence-supported driving risk assessment approaches pro-
posed by researchers, such as: (1) the lack of comprehensive driving risk datasets;
(2) information about the impact of inevitable contextual factors on HGV drivers’
responses is not considered, such as drivers’ physical and mental states, weather
conditions, traffic conditions, road geometry, road types, and work schedules; (3)
ambiguity in the definition of driving behaviours is not considered; and (4) impre-
cision of AI models, and variability in experts’ subjective views are not considered.

To overcome the aforementioned challenges and limitations, this multidisciplinary
research aims at exploring multiple sources of data including information about the
impact of contextual factors captured from crucial stakeholders in the HGV sector
to develop a reliable context-aware driving risk assessment framework. To achieve
this aim, AI methods are explored to accurately detect drivers’ driving styles, af-
fective states and driving postures using telematics data, facial images, and driver
posture images respectively. Subsequently, due to the lack of comprehensive driving
risk datasets, fuzzy expert systems (FESs) are explored to fuse detected driving
behaviours and perceived external factors using knowledge from domain experts.

The key findings of this research are: (1) recurrent neural networks are effective
in capturing the temporal dynamics and differences between the different types
of driver distraction postures and affective states; (2) there is a trade-off between
efficiency and privacy in processing facial images using AI approaches; (3) the fusion
of driver behaviours and external factors using FESs produces realistic, reliable and
fair driving risk assessments; and (4) a hierarchical representation of a decision-
making process simplifies reasoning compared to flat representations.
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Chapter 1

Introduction

1.1 Motivation

Globally, Heavy Goods Vehicles (HGVs) are at the forefront of trade and commerce,
as both private and public sectors rely on them for the delivery of goods and services.
Within the United Kingdom (UK), billions of tonnes of freight are being transported
by HGVs annually [4]. As a result of the importance of HGVs to a nation’s econ-
omy, there are great efforts by researchers, governments and transport companies
to reduce the injuries, fatalities and costs associated to HGV driving incidents. The
main causes of HGV driving incidents are attributed to risky driving behaviours,
such as fatigue, road rage (i.e., angry behaviour), distracted driving, recklessness
and aggressive driving [5, 6, 7], as well as environmental conditions, such as harsh
weather, high traffic congestion and road quality [8, 9, 10, 11, 12].

With the abundance of sensors installed in HGVs e.g., GPS, driver-facing video
cameras, road-facing video cameras, steering sensors, braking sensors etc, computa-
tional intelligence approaches are being explored to automatically process data from
the sensors, and provide accurate and timely support to drivers about their driv-
ing behaviours, environment and risks; or/and provide reliable information to key
stakeholders for the effective management of the transport network. The current lit-
erature on intelligence-supported driving risk assessment are limited to the manner
by which drivers operate vehicle controls [13, 14, 15, 16, 17], and do not consider
the impact of contextual factors on driving performance and risks, such as drivers’
physical and mental states, weather conditions, traffic conditions, road geometry,
road types, and work schedules. Therefore, current approaches could potentially
produce incomplete, unrealistic and unfair assessments. For example, consider two
HGV drivers (e.g. Bob and Alice) having exactly the same number of driving in-
cidents. Bob was driving in favourable conditions e.g., good weather and no time
pressure for delivery, while Alice was driving under poor weather conditions with
pressure to deliver on time. This thesis argues that the driving performance and
risks in both cases are not the same and that context should be taken into account.

Major challenges also exist in the analysis of driving risk, such as: (1) lack of
comprehensive driving datasets; (2) difficulty to detect the different facets of driver
behaviour from single sources of data; (3) imprecision of AI techniques; (4) ambiguity
in the definition of driving behaviours; (5) variability in stakeholders’ views about
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the influence of external conditions; and (6) lack of data about the synergy between
driver traits and external conditions. This multidisciplinary research explores state-
of-the-art AI methods to accurately detect the different facets of driver behaviour
from multiple data sources i.e., telematics incident data, driver posture images and
facial images. Subsequently, it examines Fuzzy Logic Systems (FLSs) [18] to handle
the uncertainties and ambiguity in information, and fuse heterogeneous information
using knowledge from domain experts.

1.2 Aims, Research Questions and Objectives

The initial aim of this research was to develop and evaluate an end-to-end context-
aware intelligent driving assessment system that provides real-time assessments of
HGV driving risk by processing multi-modal data streams describing driving be-
haviours and external factors (i.e., online HGV driving risk assessment). However,
due to data privacy constraints, multi-modal data streams capturing the different
facets of driver behaviour and external conditions could not be obtained. As re-
sult, the aim of this research was adapted to develop AI models that can accurately
detect HGV driving behaviours, and develop an intelligent system that can auto-
matically assess the impact of detected driving behaviours on road safety taking into
consideration their synergy with external conditions.

Figure 1.1 illustrates the aims of this research. First, state-of-the-art AI models
are explored to improve the detection of drivers’ driving styles, distraction postures
and affective states using telematic driving incident data, driving posture images and
facial images respectively. Secondly, a heterogeneous information fusion approach
is developed to assess the impact of HGV driving on road safety by fusing detected
driving behaviours and perceived external factors.

Figure 1.1: A diagram showing the aim of this research.

This thesis plans to answer the following research questions:
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• How can the accuracy and reliability of detecting HGV driver behaviour be
improved taking into consideration its multifaceted nature? Proper analysis of
HGV driving risk cannot be achieved without accurate and reliable information
about drivers’ actions and behaviours obtained from AI models.

• How can the privacy of drivers be protected when processing data that can
easily expose their identities, such as, driver footage data?

• How can a reliable driving risk assessment system that considers the real-
world characteristics of the driving environment be developed, taking into
consideration the lack of comprehensive driving risk datasets?

• How can the reliability and effectiveness of the driving risk assessment system
be evaluated taking into consideration the lack of multi-modal data?

In order to achieve the aims of this research and answer the research questions,
the following objectives are developed:

1. Identify the driving behaviours that could potentially affect HGV driving risk
by reviewing the main literature on driver behaviour analysis. Subsequently,
available data sources are explored using computational and artificial intelli-
gence techniques to develop an intelligent multifaceted driver characterisation
framework that can accurately detect the different driving behaviours. The
framework should be able to safeguard the identity and privacy of drivers.
Achieving this objective will ensure that the information about the detected
driving behaviours, fed into the intelligent driving risk assessment system, are
accurate and reliable.

2. Identify the most relevant HGV external factors and capture their impact on
road safety. As earlier mentioned, the HGV driving environment consist of ex-
ternal factors that influence drivers’ responses, but are mostly not captured in
available driver data. In this objective, stakeholders in the HGV community
(i.e., HGV drivers, HGV transport managers, road safety officers and road
safety researchers); who possess a deep understanding of the highly complex
and dynamic driving environment; are approached to identify, capture and
understand the impact of external contextual factors on HGV driving perfor-
mance and risk.

3. Capture the synergy between the driving risk factors identified in Objective
2 for the development of a reliable intelligent information fusion system. In
this objective, fuzzy logic systems (FLSs) are explored due to their effective-
ness to model and embed knowledge from experts using IF/THEN rules [19].
FLSs have shown remarkable performance in several domains, such as, climate
classification [20], education [21], healthcare [22, 23], manufacturing [24], and
agriculture [25].

4. Evaluate the reliability and effectiveness of the resulting intelligent driving risk
assessment system developed in Objective 3. A reliable and effective approach
of assessing HGV driving performance and risk will enable trust, acceptance
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and adoption. Due to the lack of multi-modal driving risk data, user stories
representing realistic HGV driving scenarios are developed with the help of
HGV drivers. The assessments of the driving scenarios produced by the system
developed in Objective 3 is compared with the assessments produced by HGV
drivers and current intelligent driving assessment approaches.

1.3 Thesis Contributions

The thesis proposes three main contributions, as follows:

1. Novel AI techniques to improve the accuracy of detecting driving behaviours
and to protect the identity of drivers when processing facial images. A more
detailed description of the AI techniques and their components are presented
and discussed in Chapter 3.

2. A new framework called stakeholder-supported intelligent driving assessment
(SIA) that provides a systematic and collaborative approach to capture and
embed contextual information into data-driven decisions. Knowledge from
domain experts about the impact of contextual factors are captured, aggre-
gated, visualised and fused to produce fairer and more realistic decisions. The
framework is described in Chapter 4.

3. An extension of SIA called stakeholder-supported intelligent fuzzy driving as-
sessment (SIFA) that considers the real-world interactions and uncertainties
of risk factors. SIFA enables the capture of the combined effects and synergy
between risk factors using fuzzy IF/THEN rules and develops a stakeholder-
supported hierarchical rule-based fuzzy inference system. The resulting stakeholder-
supported hierarchical fuzzy system improves the interpretability and relia-
bility of assessments compared to SIA and current data-driven driving risk
assessment approaches. SIFA is described and evaluated in Chapter 5.

1.4 Thesis Structure

The thesis structure is designed according to the different objectives presented in
Section 1.2.

• Chapter 2 presents relevant background information about driving behaviours
and reviews AI techniques employed to characterise driving behaviours and as-
sess their impact on driving risk. The chapter begins by reviewing the main
psychological theories on driver behaviour to aid in the understanding and
definition of the dynamic and complex HGV driving environment. Subse-
quently, it reviews the literature on data-driven driver characterisation using
AI methods as the reliability of an online HGV driving assessment depends
on the accuracy of detected driving behaviours. Most importantly, it reviews
the literature on driving risk assessment, which consist of post-hoc analysis of
driving risk and AI detection of driving risk. Publication 2 is related to this
chapter.
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• Chapter 3 explores state-of-the-art AI techniques for detecting driving be-
haviours. The chapter introduces and evaluates new AI methods that improve
the detection and privacy of driving behaviour using the available datasets.
Publications 4, 6, 7, 9 and 10 are related to this chapter.

• Chapter 4 introduces a systematic and stakeholder-supported framework to
identify, capture and embed the impact of contextual factors into the assess-
ment of HGV driving performance and risk. First, the framework engages
with a wide variety of stakeholders in the HGV community to capture the
impact of contextual factors on road safety. The information obtained from
the stakeholders is modelled and aggregated to provide a clear and collabora-
tive representation of the impact of factors. The last stage of the framework
proposes an integration solution to embed the contextual information into the
assessment of HGV driving. The framework is evaluated using user stories
due to the absence of contextual driving risk data. Publications 3, 5 and 8 are
related to this chapter.

• Chapter 5 extends the framework introduced in Chapter 4 to consider the
synergistic effects and interactions between contextual factors. The new frame-
work engages with stakeholders in the HGV sector to capture the interactions
of contextual factors and utilise stakeholder inputs in the development of a hi-
erarchical rule-based fuzzy inference system. The fuzzy inference system fuses
heterogeneous information about driving behaviours and external conditions
to produce the likelihood of driving scenarios belonging to specific driving risk
categories. The chapter concludes by evaluating the reliability and effective-
ness of the framework using user stories of HGV driving scenarios. Publication
1 is related to this chapter.

• Chapter 6 concludes this thesis by reflecting on the objectives, contribu-
tions and findings of this research. It also presents the limitations and future
directions of the research.
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Chapter 2

Literature Review

2.1 Introduction

This thesis focuses on the development of an online, intelligent and context-aware
driving risk assessment framework. First, it investigates artificial intelligence (AI)
methods to increase the accuracy and reliability of characterising the main driv-
ing behaviours that impact road safety. The research is conducted with particular
attention to commercial Heavy Goods Vehicles (HGVs) due to the high costs, fa-
talities and injuries associated with them. Subsequently, it explores systematic and
computational approaches to engage with crucial stakeholders in the HGV sector;
capture and embed their expert knowledge about the impact of perceived driver
traits and external factors on road safety into the data-driven assessment of HGV
driving performance and risk.

This chapter starts by introducing the literature concerning the main psycho-
logical theories of driver behaviour in Section 2.2.1. The objective is to aid in the
understanding and definition of the dynamic and complex real-world commercial
driving environment. The outcome of this section is a list of requirements obtained
from the theories for modelling a real-world commercial driving environment, which
will be the basis of our investigations and research in this thesis. Later, Section 2.2.2
reviews the literature on driver behaviour analysis based on data to identify and
define the main types of behavioural traits that interact to impact road safety.
Section 2.2.2 concludes by reviewing data captured by in-vehicle technologies and
sensors to provide a list of possible data sources for detecting driver traits in an
online driving risk assessment system.

Subsequently, Section 2.3 reviews intelligent methods explored in the literature
to automatically characterise driving behaviours. This is important in identifying
opportunities to improve HGV driver characterisation as the reliability of the driv-
ing risk assessment system depends on the accuracy and reliability of the driving
behaviours detected. Strategies explored in the literature to assess driving risk are
reviewed in Section 2.4. Finally, Section 2.5 provides a summary of the chapter.

6



2.2 The Real-World Driving Environment

In this section, the main theories of driver behaviour from a psychological point
of view are reviewed. This is to assist in understanding and identifying the main
features and characteristics of a real-world driving environment. Subsequently, the
literature on driver behaviour analysis based on data is reviewed to identify and
explain the main types of driver traits that interact to impact driving risk.

2.2.1 Theories of driver behaviour

In order to model driver behaviour in a real-world driving environment and iden-
tify the factors that affect driving risk, three main psychological theories on driver
behaviour are reviewed i.e. Theory of Planned Behaviour (TPB) [1, 26, 27], Risk
Homeostasis Theory (RHT) [28, 29, 30] and Multiple Resource Theory (MRT) [31,
32, 33, 34]. These theories have been widely and successfully used to understand
driving behaviours and environments in traffic safety research.

(a) Theory of planned behaviour

According to the TPB (Figure 2.1), people’s attitude towards their behaviour, their
subjective norm, and their perceived behavioural control influence their intentions
to perform a particular behaviour [1].

Figure 2.1: The theory of planned behaviour adapted from Ajzan [1]

The attitude towards a behaviour is determined by individual beliefs about the
likely consequences of the behaviour; subjective norm is determined by their beliefs
about the normative expectations of others; and perceived behavioural control is
determined by their beliefs about factors that may facilitate or obstruct the be-
haviour. Their intentions are defined as “their willingness to try to perform the

7



behaviour” and the behaviour refers to a defined action. For behaviours over which
people have incomplete voluntary control, such as control due to external factors,
as with commercial vehicles, it is also useful to consider perceived behavioural con-
trol in addition to intention. An example of work done using TPB to understand
driving behaviours is introduced by Warner and Åberg [35] who investigated driver
behaviour before and after the activation of an Intelligent Speed Adaptation (ISA)
warning system. Their study demonstrates that TPB can be used as a frame of ref-
erence to predict drivers’ self-reported speeding behaviour. They claim that drivers
decide on a target behaviour (e.g. aggressive or calm driving) and in living up to
this decision they continuously monitor their target behaviour.

To summarise, the TPB suggests that the real-world driving environment is a
complex and challenging environment, in which drivers’ intentions and behaviours
are constantly affected by external factors, such as weather, traffic etc. These factors
may facilitate or obstruct drivers’ intentions and may even change their behaviours.
This summary provides the first two characteristics of a real-world driving environ-
ment i.e. (1) drivers develop preconceived risk-taking behaviour, which are deter-
mined by their objectives and responsibilities; and (2) external factors constantly
interact with drivers’ behaviours.

(b) Risk homeostasis theory

RHT is a risk compensation model, which states that in any activity, a person accepts
a certain level of risk to their safety or safety of other things they value, in exchange
for the rewards they hope to get from the activity [36]. In commercial driving,
drivers continuously compare and balance the amount of risk they are exposed to,
with the amount of risk they are willing to accept [37]. For example, increasing
driving speed leads to a higher chance of an incident happening, but also reduces
travel time and increases profit. Therefore, there is a trade-off between safety or cost
and rewards. If the level of risk they experience is lower than their acceptable risk
level, they engage in actions that increase the experienced risk. However, if the level
of experienced risk is higher, they exercise greater caution to reduce exposure to risk.
The experienced and acceptable risk levels are subjective, as some drivers are prone
to take more risks than others (e.g. drivers with aggressive driving styles) based
on their attitudes, subjective norms and perceived behavioural control [14, 38]. For
example, a driver might set a higher level of risk to deliver their goods on time if
their company rewards them for high number of deliveries.

To summarise, RHT describes the constant conflict between driving risk and
reward; drivers always accept a certain level of risk depending on the reward. This
theory introduces the third characteristic of a real-world driving environment, i.e.,
there is always some level of risk, which varies with drivers and scenarios depending
on the perceived level of reward during the journey. Hence, a driver’s level of
risk is not constant. This is another reason why it is important to develop online,
continuously updated, risk assessments rather than post hoc assessments, to capture
changes in drivers’ levels of risk.

8



(c) Multiple resource theory

MRT [39] is a theory of multiple task performance, that tries to answer the research
question: ‘how is the primary task affected by multiple secondary tasks?’. In driving,
MRT describes how secondary tasks e.g. operating a device, looking at road signs
interfere with the primary task (driving). MRT was developed to improve human
operators’ performance in high workload multi-task environments and to account
for variability in task interference. It ascertains that secondary tasks requiring the
same resources as the driving task produce mutual interference and have greater im-
pact on driving compared to secondary tasks that require different resources as the
driving task [40]. For example, an in-vehicle interactive device with touch-control
functionalities, requires similar resources (visual and manual) from the driver com-
pared to those required during driving. Wickens [39] introduces four dimensions for
describing the resources required by secondary tasks: stages, perception modalities,
processing codes, and responses.

• Stages — The resources used for perception, cognition and responding to stim-
uli. This dimension summarises the entire process of completing a task.

• Perception modalities — This classifies the perception stage into the auditory
and visual channels. In this dimension, more complex perception modalities
can be included, such as olfactory channels.

• Processing codes — This dimension classifies cognition resources into spatial
and verbal processes.

• Responses - The output of the processing dimension leads to the response
dimension, which can either be manual or vocal. Manual responses are usually
spatial in nature (e.g. steering, joystick or pedals) and the vocal responses are
verbal in nature (e.g. speaking).

MRT suggests that the performance of the primary task of driving is determined
by the interaction among multiple secondary tasks i.e. driving behaviours. The
effect of the co-occurrence and interaction of the behaviours on driving risk depends
on their perception modalities and responses. Driving behaviours that require the
same resources as the driving task have greater impact on driving risk. This theory
introduces another characteristic of driver behaviour i.e. the primary task of driving
is influenced by multiple secondary driving behaviours, such as listening to a radio,
looking at road signs, and emotions etc.

The characteristics obtained from the psychological theories of driver behaviour
are combined to provide a theoretical framework of driver behaviour in the real-world
driving environment, presented in Figure 2.2. Using the theories, driver behaviour
can be defined as “a set of driver actions and states that interact concurrently with
external and environmental factors during driving to produce some level of driving
risk”. It is important to mention that this framework simplifies the complex and
dynamic driving environment into more manageable characteristics, in order to cre-
ate a feasible scope for the thesis. The driver module is constantly being affected by
external factors in the driving environment as described by TPB, such as weather

9



conditions, road types and traffic conditions, and by driving rewards, such as com-
pensation to deliver on time and compensation to complete multiple jobs. The
driver module consist of a set of driver actions and states that constantly interact
with each other and concurrently with the external factors to determine the level of
driving risk as described by RHT. Examples of driver actions or responses are accel-
erating, braking, speeding, and steering, while driver states are the mental, affective
and physical states of the driver when driving. The driver states represent the sec-
ondary tasks described in MRT. The mental states of drivers are related to their
mental workload, decision making, situation awareness and memory e.g., driving
confidence, error and lapses [41]. The affective states represent the mood or feelings
of the driver such as happy, frustrated, sad and angry. The physical states include
behaviours relating to the driver’s body e.g., driving postures, eye movements, head
movements and physiological states.

Figure 2.2: The characteristics of the real-world commercial driving environment
conceived from the theory of planned behaviour, risk homeostasis theory and mul-
tiple resource theory.

2.2.2 Main types of driving behaviours

In this section, the literature on driver behaviour analysis is reviewed to identify
the main types of driver behavioural traits that impact driving performance and
road safety. Subsequently, the section reviews possible data sources explored by
researchers for analysing the different driving behaviours.

After reviewing the main literature on driver behaviour analysis, three main
types of driving behaviours are identified: (1) driving postures [42, 43, 44, 45, 46],
(2) responses to affective states, e.g., fatigue [47, 48, 49, 49, 50, 51, 52, 53] and
emotion [54, 55, 56], and (3) driving styles [57, 58, 59, 60, 61]. These behaviours are
described as follows:

• Driving postures — Distracted driving postures occur when a driver fails to
attend to the primary task of driving or performs activities while driving that
could impact safe driving [62, 63] e.g. phone usage, operating in-vehicle tech-
nologies, and drinking. These activities potentially lead to a reduction in
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attention, awareness, decision making and performance. The diversion of at-
tention from driving could also be influenced by in-vehicle technologies and
external factors, such as external events and other road users [64].

• Affective states — represent the underlying experience of feeling, emotion or
mood. These states could affect the response of a driver. The main types of
affective states identified in the literature that could impact drivers’ responses
are: fatigue and emotional valence.

– Driver fatigue — driver fatigue is defined as “the subjective feelings of
tiredness and drowsiness” [48, 49]. Fatigued driving results in physical
or mental disorders, which leads to a decline in attention, reaction time,
recall, and vigilance [65]. In addition, fatigue driving increases the like-
lihood of driving errors, violations, inattention to road signs and users,
and retarded decision making. Major causes of driver fatigue are long
periods of driving, work pressure, sleep deprivation, weather conditions
and time of the day [66, 67, 68].

– Driver emotional valence — represents the extent to which an emotion is
positive or negative e.g., happy, neutral, sad, angry, disgusted, frustrated,
and stressed [69]. The driver emotion is influenced by external factors,
such as activities in their personal lives, time pressure in commercial
driving, traffic conditions and behaviours of other road users [70].

• Driving styles — are defined in terms of the manner by which the driver op-
erates vehicle controls [71], such as how the driver accelerates, brakes, steers,
changes gear etc. They are commonly categorised into two main classes: ‘calm’
driving style and ‘aggressive’ driving style. Unlike drivers’ personality traits
e.g. impatient and competitive, which are less likely to change over time,
driving styles are dynamic depending on the driving environment and con-
text [72, 73].

Several technologies have been adopted to capture data regarding driving behaviours,
such as telematics, smartphones, video cameras, microphones, Electroencephalog-
raphy (EEG), Functional Near-Infrared Spectroscopy (fNIRS), ElectroOculoGram
(EOG), Sphygmomanometer (Sphygs), Electrocardiogram (ECG), Electromyogra-
phy (EMG) and Galvanometer (GALV). The data produced by these technologies
or sensors are analysed by researchers to help understand and characterise driving
behaviours. Table 2.1 categorises the sensors identified in the literature to capture
driver data according to the different types of driving behaviours. It can be observed
that multiple physiological sensors i.e. i.e. EEG, fNIRS, EOG, Sphygs, ECG, EMG
and GALV have been utilised to understand the relationship between physiological
states and driving behaviours in controlled experimental settings. Incorporating
these technologies in real-world driving environments is still impractical as it will
require the adoption of related wearable sensors, which could be intrusive in terms
of ethics and data privacy. As this research aims at developing an online driving
risk assessment system, it focuses on analysing data generated by currently adopted
in-vehicle technologies, such as telematics and cameras. In addition, due to the lack

11



of data that captures the interaction and impact of driving behaviours and external
factors on road safety, expert inputs are also considered.

Table 2.1: A review of the technologies and sensors that capture driver data for
understanding and characterising driving behaviours

Driving behaviours Technologies/Sensors
EEG [74]

Driving styles Telematics [14, 75, 76, 77, 78, 79]
Smartphones [80, 81, 82, 83, 84]

ECG [85, 86]
EEG [87]

GALV [88, 89, 90, 91]
Driver Emotion Sphygs [92]

EMG [88, 89, 90]
Cameras [93, 94, 95, 96, 97]

Microphone [98, 99]
EEG [100, 101, 102, 103]

Microphone [104]
Driver fatigue fNIRS [105]

Cameras [106, 107, 108, 109, 110, 111]
ECG [101, 102]
Telematics [112]

EEG [87, 100, 113]
Smartphone [114]

Driver distraction fNIRS [7, 105, 113, 115]
ElectroOculoGram (EOG) [116]

Cameras [42, 43, 44, 45, 46, 117, 118]

2.3 Driver Characterisation

Automatic detection of driving behaviours from driver data plays a key role in the
online assessment of driving risk because proper analysis of driving risk cannot be
achieved without accurate and reliable information about the detected behaviours
that impact road safety.

This section reviews data-centric AI methods employed in the literature to au-
tomatically detect driving behaviours from driver data. The purpose of this re-
view is to present the opportunities and gaps in existing AI methods for driving
behaviour characterisation. Due to the large number of data-centric AI methods
employed for driver characterisation, the section is structured according to the fol-
lowing categories: 1) unsupervised learning methods; 2) conventional supervised
learning methods; 3) deep learning methods; and 4) fuzzy systems.

2.3.1 Unsupervised learning

Unsupervised learning uncovers patterns or data representations from unlabelled
data [119]. This is particularly applied to clustering and auto-encoders.

Clustering is an unsupervised learning technique in which objects are assigned
to labels (clusters) based on their similarity or distance from other objects i.e., sim-
ilar or nearby objects are found in the same cluster and dissimilar objects found
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in different clusters [120]. The clustering process minimises the distance between
objects in a cluster and maximises the distance between different clusters. It is
often used to identify patterns in unlabelled data. The main challenges in cluster-
ing are determining the right number of clusters and selecting the best clustering
technique for the dataset, as there are numerous clustering techniques with dif-
ferent criteria for grouping data points (i.e., similarity measures). Several cluster
number validity methods (cluster validity indices) have been proposed to obtain
ideal number of clusters, such as Calinski and Harabasz [121], Hartigan [122], Sil-
houette [123], Davies-Bouldin [123], the Elbow method [124], partition coefficient
and entropy [125]. These indices either try to maximise the separation between
clusters or minimise the distance between points within clusters thereby making
clusters more compact. In addition, ensembles of diverse clustering techniques are
employed to overcome the challenge of ‘selecting a particular clustering technique’
and elucidate more robust clusters [126, 127].

In driving behaviour analysis, clustering techniques have been explored to recog-
nise different driving styles based on the manner by which drivers operate vehicle
controls. For example, k-means [128, 129, 130, 131], hierarchical clustering [57, 128],
self-organised maps [132], and consensus of clustering methods [14] have all been
employed to identify driving patterns based on driving data collected by sensors
connected to the vehicle’s controller area network (i.e. telematics) or smartphone
sensors. The techniques aim at identifying groups of drivers with similar driving
patterns emerging from the data collected. Subsequently, the driving features of the
different groups of drivers (i.e., clusters) are analysed based on their distributions to
identify the driving styles: ‘calm’, ‘cautious’, ‘slow’, ‘normal’, ‘moderate’, ‘neutral’,
‘reckless’, ‘fast’, and ‘aggressive’.

Another recently explored unsupervised learning technique for driving style char-
acterisation are auto-encoders. In auto-encoders, low-dimensional data (also known
as latent features) are extracted from high-dimensional or unstructured data in
an unsupervised manner, making it easier to discover underlying patterns within
the data [133]. The main challenges in auto-encoders are deciding on the optimal
number of features that produce reliable patterns and interpreting the non-linear
extracted features. Auto encoders have been employed for driving style character-
isation [132, 133, 134, 135]. For example, Siami et al. [135] employed deep auto-
encoders to extract latent features from large smartphone trajectory data collected
from 2500 drivers over 500,000 journeys. The data consisted of location, velocity,
acceleration and change of direction information. The extracted features were fed to
clustering techniques to identify six driving styles, namely warm stopping, cornering
with medium speed, driving at normal speed, swerving at medium speed, weaving
at high speed and cornering at high speed. Recently, Bandyopadhyay et al. [133]
also employed a sequence-to-sequence auto-encoder on time series driver data made
up of long-short term memory networks (LSTMs). The data was obtained from six
drivers using smartphone sensor and consisted of inertial measurements and GPS.
The extracted features were fed to a hierarchical clustering approach to identify
three driving styles: normal, aggressive and drowsy.

The main remark after reviewing unsupervised learning approaches for driver
characterisation is that the main source of data to recognise driving styles is vehicle
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control data, which can be obtained from telematics or smartphone sensors. How-
ever, the data is usually unlabelled due to its large volumes, which makes manual
labelling very expensive and time consuming. Another finding from the review is
that an ensemble of clustering techniques increases the degree of confidence and
stability in the driving styles formed by merging the results of multiple clustering
algorithms [14]. However, matching driving styles between clustering algorithms is
not straightforward as different algorithms may generate different numbers of driv-
ing styles and moreover the optimal number of driving styles may be unknown. If
the number of clusters specified is too small, the driving styles obtained may not
effectively capture the different driving patterns in the data, while if the number of
clusters is too large, the driving styles obtained may not represent any meaningful
driving patterns. Therefore, obtaining the optimal number of driving styles using
clustering techniques is important. Also, this approach may result in a number of
drivers or driving patterns remaining unclustered. Furthermore, large longitudinal
driving data have shown to reveal more underlying driving styles [135]. The afore-
mentioned studies that explored unsupervised approaches however have limitations:
1) they do not consider environmental and external factors in their analysis, such as
weather conditions, traffic conditions, time of the day, which have been illustrated
by the TPB (reviewd in Section 2.2.1) to influence driving behaviours; 2) they do
not consider the impact of other driving behaviours, such as driver emotions and
distractions, which can be captured using images of drivers; 3) difficulty to provide
meaning to the clusters identified; and 4) they do not provide relationships between
driving styles and driving features, which is important for drivers to understand how
to improve their driving styles, and decision makers to make informed decisions.

In this thesis, we explore intelligent methods to propose a multifaceted frame-
work to driver characterisation using telematics and camera footage data. The
methods developed in the framework tackle most of the aforementioned limitations
and provide a holistic view of driver behaviour.

2.3.2 Supervised learning

Traditional supervised learning techniques, such as Logistic Regression (LR), De-
cision Trees (DTs), and Support Vector Machines (SVMs), have shown promising
results in driver behaviour characterisation [45, 118, 136, 137, 138, 139, 140]. The
techniques aim at detecting underlying patterns and relationships between the input
data and the output labels. In driving behaviour analysis, the input data consist of
driving features that represent the manner by which the driver operates the vehicle
e.g. number of driving incidents, acceleration, speed etc, unstructured driver data
e.g. images, audio, signals etc, or features extracted from unstructured driver data
e.g. handcrafted features. While the output labels could be different categories
of driving behaviours e.g. ‘tired’, ‘calm’, ‘rested’, ‘reckless’, ‘distracted’, ‘sad’ etc.
The output labels can also be continuous values describing the extent of particular
behaviours e.g., imagine driver distraction represented on a continuous scale from 0
to 100, where 0 represents ‘very attentive’ and 100 represents ‘very distracted’.

A review of some of the frequently employed supervised learning methods in
driver behaviour characterisation is presented below:
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1. Logistic Regression: LR uses a sigmoid function to find the linear dependence
between the inputs and outputs [141]. The input features are combined lin-
early using weights to predict the outputs. The sign and size of these weights
represent the direction and magnitude of the relationship between the features
and the outputs. LR can be summarised using the following equation:

P (x) =
1

1 + e−(b0+b1X1+b2X2+...+bnXn)
(2.1)

Where P(x) is the expected probability of the output, n is the number of input
features in the data, and bn is the coefficient for the input feature Xn, which
is learned from the data.

LR in driver behaviour characterisation has been largely applied to vehicle
control data to understand the relationship between the frequency of driving
features or incidents and driving styles [142, 143]. It has also been applied to
handcrafted or geometric features extracted from driver facial images and body
posture images to recognise drowsy driving [142] and distracted driving [136,
137], respectively. The main advantage of using this technique is that it is
easy to implement and interpret as the magnitudes of model coefficients are
indicators of feature importance and their signs are indicators of direction of
association. However, it is difficult to detect complex, non-linear relationships
as it constructs linear boundaries.

2. Support Vector Machines: SVMs use hyperplanes to find the optimal decision
boundaries that separate classes in a higher dimensional space [144]. The
equation below shows a hyperplane (Equation 2.2) that classifies data objects
as +1 when the objects lie above or on a hyperplane, and as -1 when they are
below a hyperplane:

w.x + b = 0 (2.2)

f(x) =

{
+1, if w.x + b ≥ 0

−1, otherwise
(2.3)

where w is the set of feature coefficients, x is a feature set and b is the bias
or intercept. Principally, SVMs try to find the optimal hyperplane that can
separate data objects with minimum error.

Similar to LRs, studies demonstrated SVMs outperform several conventional
supervision learning methods in driver behaviour characterisation problems
[118, 140, 145, 146, 147]. For instance, Chen et al. [147] reported better perfor-
mance of SVMs in detecting normal and reckless driving behaviours compared
to näıve bayesian classifier, k-nearest neighbor, and DTs using telematics data.
Liang et al. [145] reported better performance of SVMs in recognising driver
distraction state compared to LR using eye movement and telematics data.
However, SVMs are difficult to interpret compared to LR and DTs.
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3. Decision Trees: Another commonly applied supervised learning approach in
driver behaviour characterisation is DTs, mainly due to their capability in
capturing non-linear relationships, and the ease in understanding and inter-
preting their results. They are also easy to implement as the require little data
preparation and can easily handle numerical and categorical data. They are
hierarchical models that contain decision nodes and edges [148]. The nodes
represent the conditions for splitting the data or the final outcomes, while the
edges represent the decisions. The algorithm to define the structure of DTs is
as follows:

(a) The algorithm begins with the entire feature set, S.

(b) On each iteration, it goes through all the features in S and calculates the
information gain of the features.

(c) The feature with the largest information gain is selected as the root node
and removed from S.

(d) The tree is then split by the selected feature according to the values that
produced the largest information gain.

(e) The algorithm goes back to step (b) to determine the next node, until S
is empty.

The visual representation of DTs makes them useful decision making and
reasoning tools for driver behaviour analysis [45, 138, 139]. Ensembles of DTs
have been also employed in driving behaviour, such as Gradient Boosting [149],
Adaptive Booster [150], Bagging [151] and Random Forests (RFs) [152].

4. Bayesian learning: Bayesian networks (BNs) also known as ‘belief networks’
provide a simple way of applying Bayes Theorem to complex problems. BNs
are probabilistic graphical models for representing conditional dependencies
between a set of variables using some conditional independence assumptions [153].
They aim at updating the probability for a hypothesis as more evidence or in-
formation becomes available. The graphical representation of the models as
nodes and edges makes them interpretable and easy to understand. The nodes
represent the variables, such as driving features, while the edges that connect
the nodes indicate the relationships between the variables. A variable can be
indirectly influenced by another variable via edges through other variables,
and there should be no graph paths starting and ending at the same node (no
directed cycles). The network captures the joint probabilities of the variables
represented by the design of the graph.

Figure 2.3 illustrates a simple BN for predicting drivers’ fatigue. The net-
work has three nodes; ‘Driving in day or night’, ‘Number of hours rested’,
and ‘Fatigue’. ‘Driving in day or night’ and ‘Number of hours rested’ are the
independent variables, while ‘Fatigue’ is the dependent variable. Probabilities
of independent variables could be used to compute the probability of the de-
pendent variable. The probabilities and structure of BNs are obtained from
data or domain experts. For example, Yan et al. [154] utilised BNs to extract
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important features affecting driving using data from a driving simulator, while
Rashwan [155] used expert opinion to develop a conditional distribution table
for predicting driver fatigue. BNs have been employed in the prediction of ag-
gressive driving styles [156], fatigue [155, 157] and driver distraction [158, 159].
In Han et al. [156], the authors developed a system predict the probability of
a driver being normal or aggressive driving style using a BN. However, only
two driving features were analysed i.e., vehicle speed and throttle opening.
In addition, Al-Sultan et al. [157] demonstrates BN’s ability to incorporate
contextual information into the characterisation of driving behaviour. How-
ever, it is difficult to design BNs, estimate their conditional probabilities and
interpret their complex relationships for datasets with many features. Most
importantly, BNs do not handle imprecision and subjectivity in information,
which is inevitable in the description of driver behaviour [160].

Figure 2.3: A simple Bayesian network to predict drivers’ fatigue with conditional
probability tables for the different variables.

2.3.3 Deep learning

Deep learning approaches outperform traditional machine learning when processing
unstructured data for driver characterisation. DNNs consist of densely intercon-
nected processing elements (i.e. neurons), which capture non-linear relationships
between input features and outputs. In driver behaviour characterisation, such
relationships are found in unstructured, complex data e.g., images, sound, and
physiological signals. These unstructured data are mainly explored to recognise
observable driving behaviours. The main categories of DNNs to recognise driv-
ing behaviours are: Convolutional Neural Networks (CNNs), and Recurrent Neural
Networks (RNNs).

1. Convolutional Neural Networks: CNNs [161, 162, 163, 164] are neural networks
consisting of filtering (or convolution), pooling and activation layers. The in-
puts go through the convolution layer, where they are filtered to produce
stacked smaller dimensional features (i.e., feature maps), which capture vari-
ous spatial patterns in an image such as edges, shapes, and intensity in pixels.
The stacked feature maps go through a pooling layer, which summarises their
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representations using a sample-based discretisation process, such as max pool-
ing [165] that calculates the maximum value of different patches in the feature
maps. The pooling process helps in reducing the number of trainable param-
eters and model complexity. The activation layer later converts the stacked
downsampled data into more computationally efficient features depending on
the activation function used e.g. Rectified Linear Unit (ReLU) activation func-
tion [166] converts all negative values to zero and maintains all positive values,
thereby, speeding up computation of derivatives. These filtering, pooling and
activation layers allow CNNs to learn hierarchical discriminative features. Fig-
ure 2.4 presents an example of the convolution operation on a 2D image where
zeros are added to its boundaries (i.e., padded with zeros) to enable uniform
analysis of the image. The convolution operation uses a kernel of size 3*3, a
2*2 pooling patch and a ReLU activation function. The filters slide through
the images and perform mathematical computations on the pixels of the im-
ages. The sliding operation is controlled by the value of the stride e.g. a stride
of 2 means the kernel slides by 2 columns sideways and 2 rows downwards
indicated by the red arrows in the diagram.

Figure 2.4: An example of the convolution operation on 2D image using a kernel of
size 3*3

In driver behaviour characterisation, several studies have applied CNNs to un-
structured driver data, such as driver images [167], audio [168] and physiologi-
cal signals [169, 170] to detect driver distraction [170] and affective states [167,
168, 169]. Others perform transfer learning from the ImageNet dataset [171] to
take advantage of its large and diverse images in initialising model weights [172,
173, 174, 175]. Existing CNN architectures have demonstrated good perfor-
mance in automatically recognising driving behaviours, such as VGG [176],
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Inception [177], ResNet [178] and DenseNet [179]. These deep learning archi-
tectures differ in the number of convolution layers, connections between layers
and model features (e.g., activation functions), and they were introduced to
solve different issues in training and performance of CNNs. For example, In-
ception was introduced in 2014 to deal with the uncertainty in choosing the
kernel size of convolutional layers by using multiple kernel sizes in each con-
volutional layer, while ResNet was developed in 2015 to handle the vanishing
gradient problem by introducing skip connections between layers [180]. A lim-
itation of these architectures is that they fail to capture temporal dynamics
of behaviours. For example, if the temporal context is not considered when
detecting a driver’s distraction state, a single image frame selected from a se-
quence of frames representing the driver’s hand movement from the steering
wheel to the gearshift may be mistaken for reaching to the phone or radio.
Such temporal changes in driving behaviours have led to the application of
recurrent neural networks (RNNs), hybrids of CNNs and RNNs and stacked
RNNs in driver behaviour analysis.

2. Recurrent Neural Networks: RNNs are deep neural networks with feedback
loops connecting the output of the previous state to the current state [181] as
shown in Figure 2.5. This enables the network to remember what the model
learned from previous time steps. Unlike simple CNNs that map a single input
to an output, RNNs map a sequence of inputs to an output or a sequence of
outputs.

Figure 2.5: An illustration of feedback loops of a recurrent neural network, where
ht is the hidden state at time t, Xt is the input at time t, and yt is the output at
time t.

The following equations represent the memory cell of a RNN, which consists
of hidden states to store information from previous and current time steps:

ht = fh(WhXt + Uhht−1 + bh) (2.4)

yt = fo(Woht + bo) (2.5)

Where Xt is the current input data at time t, ht is the current hidden state
obtained from the current input data and the previous hidden state (ht−1)
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and yt represents the output. W , U , and b represent the weight matrices and
bias vectors which need to be learned during training, while fh and fo are the
non-linear activation functions.

Long Short Term Memories (LSTMs) [182] are an extension of RNNs capable
of remembering information in longer sequences i.e., learning longer depen-
dencies in the data. They consists of additional gates in the memory cell,
namely: forget, input, and output gate layers. The input gate controls which
state is updated. The forget gate controls how much information needs to be
retained or forgotten, and the output gate decides which part of the cell state
is outputted to the next LSTM unit. Figure 2.6 represents a simple LSTM
memory cell to demonstrate the flow of information between the gates. The
inputs to the LSTM cell are the current input data (Xt), the cell state of the
previous time step (Ct−1) and the hidden state of previous time step (ht−1).

Figure 2.6: An LSTM memory cell with forget (f), input (i) and output (o) gates
as illustrated in [2].

The interactions between the gates in the LSTM memory cell is given by the
following equations

ft = sigm(WfXt + Ufht−1 + bf ) (2.6)

it = sigm(WiXt + Uiht−1 + bi) (2.7)

ot = sigm(WoXt + Uoht−1 + bo) (2.8)

Ct = ft ⊙ Ct−1 + it ⊙ tanh(WcXt + Ucht−1 + bc) (2.9)

ht = ot ⊙ tanh(Ct) (2.10)

Where ft is the forget gate’s activation vector, it is the input or update gate’s
activation vector, and ot is the output gate’s activation vector. W , U , and b
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represent the weight matrices and bias vectors which need to be learned during
training.

Other variations of LSTMs have been introduced to improve sequence learning
tasks, such as stacked LSTMs [183], Gated Recurrent Units (GRUs) [184] and
bidirectional networks [185].

RNNs and their variations have been explored for recognising driver distraction
postures using telematics data [186, 187, 188]. However, for driver distraction recog-
nition, analysing driving posture images using CNNs has shown to produce better
results compared to using telematics data [42, 43, 170, 172, 186]. In addition, with
the availability of publicly available driving posture datasets, this thesis addresses
the limitations of CNNs in learning the temporal dynamics of driving postures to
improve the recognition of driver distraction by exploring the combined benefits of
CNNs and RNNs.

Furthermore, facial images have been the main data source for characterising
driver affective states i.e. driver emotion and fatigue as researchers have inves-
tigated different variations of CNNs and RNNs using facial images to distinguish
between different affective states [55, 109, 189, 190, 191, 192]. However, the re-
sults reported by these studies are still far from deployment in terms of perfor-
mance, especially for the purpose of road safety. For instance, the best perfor-
mance reported using the most comprehensive publicly available affect database is
0.620 [193, 194, 195, 196, 197], where 1.0 is perfect agreement between actual and
predicted values. Therefore, there is still much room for significant improvement
to attain remarkable performance. Furthermore, compared to other data sources
that can be easily anonymised to protect users’ privacy e.g. telematics, driving
posture images, facial images are at risk of data privacy as the identities of peo-
ple used to train affective models can be exposed in the process. Therefore, in
addition to exploring DNNs to improve driver affect recognition, this thesis ex-
amines effective techniques to preserve the privacy of data subjects, such as fa-
cial action units that anonymise facial data while maintaining the usability of the
dataset [196, 197, 198, 199], and federated learning that processes users’ facial im-
ages in their local machines and only send their locally trained models back to the
developer’s machine for augmenting the final model [200, 201].

To conclude, it is worth mentioning some challenges of DNNs: 1) model com-
plexity [202, 203]; and 2) model interpretability [204, 205]. Most DNNs consist
of millions of parameters which need to be optimised and several hyper-parameters
which need to be set to control the learning process e.g., number of neurons, number
of layers, learning rate, filter size, and batch size. Tuning these hyper-parameters
can be stochastic and time consuming. In addition, the model complexity of DNNs
makes their decisions and processing difficult to understand and explain to non-ML
experts.

2.3.4 Fuzzy systems

The identification and description of driving behaviours are uncertain, imprecise
and subjective. Trying to precisely characterise driving behaviours into specific
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categories, such as ‘calm’, ‘normal’, ‘aggressive’, ‘sad’, ‘happy’, ‘angry’, is difficult
due to different subjective interpretations of behaviours, context and imprecision
of intelligent driver characterisation systems. Even when introducing contextual
information as proposed by TPB and RHT in Section 2.2.1, the precise effect of
contextual factors is difficult to determine as the relationship between the factors
and driving behaviours is not clear-cut due to their interactive effects. Therefore, to
effectively characterise driver behaviour and incorporate contextual information in
the assessment of driving risk, there is need for a suitable computational approach
that can handle uncertainties and imprecision in the information about driving be-
haviours, contextual factors and their relationships.

Fuzzy Logic Systems (FLSs) have shown their effectiveness in handling those
uncertainties for a wide range of applications, such as, medicine [206, 207], insur-
ance [208], finance [209], environmental planning [210] engineering [211] and cyber
security [212, 213]. FLSs model and represent input and output uncertainties (e.g.,
uncertainty associated with subjectivity, uncertainty associated with words, vague-
ness in definition) using input and output fuzzy sets, respectively [18]. The systems
consist of three main stages: 1) Fuzzification , 2) Inference, and 3) Defuzzification.

Before the above stages of a FLS are described, we first define a fuzzy set (FS)
which is the fundamental element of a FLS. In a set theory, an object x either
belongs, or not, to a set A. Whereas in fuzzy set theory, an object x can belong to
many sets with different degrees of membership. That is, a fuzzy set A is a pair (U,
µ) where U is the set domain and µ is the membership function. For an element x
∈ U,

µA(x) = f(x) (2.11)

where f (x ) is a membership function that maps x to a membership degree in [0,
1].

In fuzzification, a crisp input (e.g. driving feature) is converted into member-
ship degrees using singleton and non-singleton FSs. Commonly used non-singleton
FSs in real world applications are triangular, Gaussian, trapezoidal, and sigmoidal
membership functions [214]. We describe some of these membership functions below:

• Triangular membership functions: A triangular membership function has
three key points (l, m and u): the lower limit (l), the expected value (m) and
the upper limit (u). A triangular membership function is represented by the
following equation:

µF (x; l,m, u) =


x−l
m−l

, l < x <= m
u−x
u−m

, m < x <= u

0, otherwise

(2.12)

• Trapezoidal membership functions: Trapezoidal membership function: A
trapezoidal membership function consists of four points (l, m, n and u): the
lower limit (l), the range for the expected value [m,n], and the upper limit (u).
A trapezoidal membership function is represented with the following equation:
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µF (x; l,m, n, u) =


x−l
m−l

, l < x < m

1, m <= x <= n
u−x
u−n

, n < x < u

0, otherwise

(2.13)

• Gaussian membership functions: The Gaussian membership function con-
sists of the mean and standard deviation of the data (m,σ). The ’bell’ shape
is defined as follows:

µF (x;m,σ) = e
−(x−m)2

2σ2 (2.14)

• Sigmoidal membership functions: This membership function is repre-
sented by the sigmoid function:

µF (x; a, b) =
1

1 + e−a(x−b)
(2.15)

Where a is the center value of the sigmoid and b is controls the ‘width’ of the
sigmoidal region.

Fuzzy inference maps crisp inputs to fuzzy sets. Subsequently, they process and
aggregate the input fuzzy sets using fuzzy rules and operators to produce output
fuzzy sets e.g., Mamdani rule-based inference method [215]. Below is an example of
a fuzzy rule represented using an IF/THEN statement:

IF driver’s speed is ‘high’ AND road is ‘clear’ THEN driving style is
‘normal’

The final stage in a FLS is defuzzification. Defuzzification is the process of
transforming the output fuzzy sets into a single real value or crisp output [216]. Even
though inference systems model uncertainties using fuzzy sets, the outputs of FLSs
are usually crisp values i.e., defuzzified output fuzzy sets. This is because FLSs are
most often used in control systems, which perform certain actions when the system
outputs a particular value. For instance, a driver-assistance system could provide
feedback to a driver to adjust their driving style or even automatically initiate vehicle
brakes when their driving style reaches a certain value. There are several methods of
defuzzification such as Center of Gravity (COG), Mean of Maxima (MOM), Center
of Mean (COM) and Midpoint of Area (MOA).

FLSs have been examined in driving behaviour characterisation to capture un-
certainties and imprecision in driver features [217, 218, 219, 220, 221]. For instance,
Aljaafreh et al. [217] employed FLS to model and capture uncertainties in two driv-
ing features i.e., acceleration and speed, for the prediction of four driving styles i.e.,
below normal, normal, aggressive and very aggressive driving. The authors did not
mention the size of the dataset nor how the data is collected. Their membership
functions were obtained from real data and domain experts. Similarly, Imkamon
et al. [218] used FLS to predict a driver’s aggressive level between 1 and 3 (where
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1 is a normal driver and 3 is an aggressive driver) by modelling uncertainties in
multimodal information from three sensors, an engine control unit (ECU) reader,
an accelerometer and a camera. The authors used data obtained from a single
driver during 50 minutes of driving and subjective evaluation from three passengers
to test their system. The results showed about 70% similarity with the opinions
of the passengers. In a different study that focused on driver fatigue, Bergasa et
al. [221] explored FLS to detect the level of driver fatigue by combining driver fa-
cial features extracted from images, such as percentage of eye closure, eye closure
duration, blink frequency, nodding frequency, face position, and fixed gaze. The
authors utilised data from 10 drivers using a driving simulator. The performance
of their system was measured by comparing the performance to results obtained
by manually analysing the data on a frame-by-frame basis. They found that their
system’s performance decreases during daytime and with drivers wearing glasses.
The main limitations of the above studies are the size, quality and diversity of their
data (less than 10 drivers). In addition, limited work has been done with respect to
HGV drivers.

Furthermore, fuzzy sets provide meaningful representations of inputs in terms
of linguistic terms, and fuzzy rules provide valuable insights about the mappings
between inputs and outputs. These characteristics make FLSs inherently under-
standable by humans, and an easy and effective method to fuse heterogeneous in-
formation [222, 223, 224].

2.3.5 Summary of driver characterisation

The review of intelligent methods employed for driver characterisation is summarised
in Table 2.2. As revealed by the psychological theories of driver behaviour in Sec-
tion 2.2, the real-world driving environment is at the confluence of the different
driving behaviours i.e., driving styles, driving postures and affective states. How-
ever, we observe in the literature a general lack of intelligent approaches to simulta-
neously characterise these traits for a holistic view of drivers’ actions, feelings and
behaviours during driving.

For stand-alone analysis of the different facets of driver behaviour, we found out
that unsupervised learning methods are generally explored for elucidating driving
styles using telematics and smartphone sensor data due to the difficulty in labelling
the data. However, the sensor readings have uncertainties, and the driving styles
are dependent on the data. Therefore, there is need to explore intelligent methods
that can handle data uncertainty and imprecision in interpretations. In addition,
more diverse and comprehensive data (i.e., data captured from a large cohort of
drivers completing several journeys throughout the year in multiple road types and
weather conditions) is needed to identify reliable and core driving styles. The review
also revealed that conventional supervised learning models are most efficient for
labelled structured data due to their low computational costs compared to deep
learning approaches and interpretable results. However, structured driver data,
such as vehicle operation data collected using telematics and smartphone sensors
are usually difficult and expensive to label due to their large data size. Therefore,
unsupervised and semi-supervised methods could be utilised to label large driving
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data (thousands of data instances) and supervised techniques employed to train
models for predicting the driving styles of new driving patterns.

For driving behaviours that can be best recognised using unstructured driver data
(e.g., images) i.e., driver distraction and affective states, DNNs are most suitable to
process the data. CNNs automatically extract static discriminative features from
large and diverse datasets of images, while RNNs capture temporal dynamics in
sequences of data or among image pixels. However, the main drawback of DNNs
is the difficulty to interpret their predictions. Furthermore, as earlier mentioned in
Section 2.3.3, anonymising facial images is more difficult compared to other driver
data sources as conventional data anonymisation techniques such as blurring and
pixelation could make the images no longer useful for the task. Therefore, processing
facial images requires privacy-preserving strategies to protect drivers’ identities and
sensitive information, while ensuring the usability of the data.

Lastly, the review suggests FLS as a possible solution to model and capture
uncertainties in driving data injected by sensor readings, human subjectivity, and
imprecision in the description of driving behaviours and external factors. In addi-
tion, it is an effective information fusion strategy for combining the heterogeneous
characterisations of driving behaviours and external contextual information. How-
ever, designing complex FLSs with several variables requires hierarchical fuzzy con-
trollers [225, 226] to preserve interpretability and prevent rule-explosion problem
(i.e., the number of rules in the system increases exponentially with the number of
variables involved).

2.4 Driving Risk Assessment

After proper and automatic characterisation of driving behaviours by intelligent
driver assessment systems, the decisions are sent as inputs to a driving risk as-
sessment system to assess their impact on road safety. This section reviews the
literature on driving risk assessment, which consist of post-hoc analysis of driving
risk and online data-driven driving risk assessment. Post-hoc analysis of driving risk
consists of statistical analysis of driving data captured from experiments, surveys or
real-world settings. It is used to draw insights, conclusions or determine the effects
of different factors on road safety. While online data-driven driving risk assessment
is the automatic processing of data streams about drivers’ actions and states, vehicle
characteristics and environmental conditions to produce decisions for the prevention
of road incidents or accidents.

First, this section reviews studies that employ post-hoc analysis on data from
questionnaires, driving simulators, physiological sensors, and real-world settings to
understand the impact of driving behaviours and external conditions on driving
risk. Popular statistical techniques employed are Path analysis [27], p-value of
means [227], Logistic regression [227, 228], Poisson regression [11], and Pearson
correlation analysis [7, 228]. Subsequently, the literature on data-driven intelligent
driving risk assessment is reviewed.
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2.4.1 Post-hoc analysis of driving risk

Historically, driving errors (e.g., harsh braking), violations (e.g., wrongful overtaking
and over speeding) and driver mental states (e.g., fatigue and emotions) have been
identified as the leading determinants of road safety [5, 71, 229]. As a result, exten-
sive work has been done to assess the impact of these risky driving behaviours on
road safety and the factors influencing the behaviours. The main post-hoc method
employed to assess driving risks is the analysis of data collected from questionnaires
and surveys [7, 12, 49]. These studies distribute questionnaires to drivers or man-
agers asking them to provide their opinions about the effects of different driving
behaviours, external factors and company policies on road safety, and how often
the drivers engage in risky behaviours. For instance, in an earlier research on how
drivers’ affective states affect driving risk [6], the authors found a strong associa-
tion between driving violations and occasions of anger a driver experiences while
driving. Their study recruited 104 non-commercial drivers in Britain, and provided
questionnaires to capture the intensity of drivers’ anger and violations. Correlation
analysis was used to identify the relationship between anger and driving violations.
In a different study engaging with bus managers in Taiwan [11], the authors utilised
survey data about the effects of environmental (e.g., urban and intercity roads) and
organisational factors (e.g., ratio of driver to non-driver staff and company capital)
that affect road safety. The authors used Poisson regression to uncover the relation-
ship between accidents and the factors investigated. Their results revealed higher
risk of accidents in urban roads compared to rural and freeway, and lower risk of
accidents for larger bus companies. Forty two companies were considered. Tseng et
al. [12] analysed questionnaire data from HGV drivers in Taiwan about the leading
factors that affect road safety. The authors collected data for 2,101 HGV drivers
from a national survey in 2012. Their results reveal night driving and sleep quality
as the main factors affecting road safety of HGV drivers. More recently, Hammad et
al. [230] analysed questionnaire data from 50 drivers in Pakistan about the environ-
mental factors leading to road traffic accidents. Their results showed that rainfall,
severe coldness, fog, and heat conditions were directly related with the occurrence of
road traffic accidents. In addition, Salmon et al. [231] analysed questionnaire data
collected from 316 non-commercial drivers in Australia to understand the factors
influencing drink and drug driving, distraction and inattention, speeding, fatigue,
and failure to wear a seat belt. Their results identified the following system factors:
road safety policy, transport system design, road rules and regulations, and societal
issues.

Even though drivers have been the main participants of these studies because of
their hands-on information about the contextual factors, other crucial stakeholders
in the driving community also possess valuable and supplementary insights about
the factors, such as road safety officers, transport managers, and traffic safety re-
searchers. These stakeholders interact closely with drivers, policy makers and other
road users to improve safety in road networks. Therefore, there is need to engage
with these stakeholders to obtain more comprehensive and reliable insights about
the influence of driving factors on road safety. In spite of the advantages of en-
gaging with stakeholders, a major challenge is the processing of diverse information
obtained from the stakeholders as insights obtained from humans may differ [232],
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and the information from the stakeholders need to be effectively aggregated. Fuzzy
Expert Systems (FESs) [19] show great potential to tackle those challenges from
a computational perspective as they can effectively capture and aggregate insights
from humans using linguistic fuzzy IF-THEN rules, while addressing ambiguity in
information using fuzzy sets.

Apart from surveys, data from driving simulators are also examined to obtain
insights. Driving simulators are controlled experiments that closely simulate real-
world driving conditions, including external influencers. They consist of sensors
to capture vehicle control data, driver physiological signals, driver eye movements,
facial images, and images of driver posture. Data collected from these controlled en-
vironments have been explored to assess the effects of contextual factors on drivers’
performance [233, 234, 235, 236]. For example, Du et al. [237] investigated the effects
of fatigue on drivers’ performance (steering wheel movements, lane position and lon-
gitudinal speed) using driving simulation data from 24 participants. Using paired
sample t-test, they found a significant difference in performance between fatigued
and alert driving. While Hamdar et al. [235] examined the effects of weather condi-
tions (i.e. foggy, icy and wet weather conditions) on drivers’ performance (speed and
deceleration). The authors used multivariate analysis of variance to analyse driving
simulation data, and found that drivers’ performance are affected by adverse weather
conditions. Later, Li et al. [236] investigated the influence of traffic congestion on
driver behaviour using driving performance measures, eye movement measures, and
electroencephalogram (EEG) measures captured from a driving simulator. Their
results showed more aggressive driving behaviour while driving in post-congestion
situations.

Post-hoc analysis has also been employed on naturalistic data captured in real-
world driving settings. For instance, Zou et al. [238] investigated the impact of
climate and non-climate factors on fatal traffic accidents using a dataset of fatal
traffic accident frequency in California and Arizona. Their results suggest that
temperature and precipitation can significantly affect the frequency of fatal traffic
accidents. Also, non-climate factors, such as rural roads and vehicle performance
can significantly influence fatal traffic accidents.

2.4.2 Online driving risk assessment

This section reviews literature on driving risk assessment that use computational
and artificial intelligence methods to process data and predict the driving risk level
of driving scenarios. Such intelligent systems are important for providing proac-
tive traffic intervention strategies, real-time optimisation and safety management of
driver journeys, and timely and reliable support to drivers.

Due to the lack of ground-truth or labelled driving risk datasets, hybrid unsu-
pervised learning methods and expert systems have been mostly employed to label
driving patterns and classify them according to their level of risk. Such as, cluster-
ing [239, 240, 241], rule-based method [15], clustering + XGBoost [239, 240, 242],
clustering + SVMs [239], clustering + Nearest Neighbors [243], FLS [244] and
BNs [154]. The hybrid clustering methods group drivers with similar driving pat-
terns using an unsupervised learning method, assign a risk level to each group
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according to the intensity of features in the groups using cluster labelling strate-
gies [14, 245] and subsequently, employ a supervised learning method to learn the
relationship between the features and the categories of driving risk. For example,
Fernandez and Ito [244] presented a fuzzy rule-based system to assess the risk of
driving styles (i.e., ‘passive’, ‘normal’, ‘aggressive’ and ‘dangerous’) using driver’s
age, percentage of times the driver uses the accelerator and brake pedals along the
route, the percentage of times under the low speed limits, the percentage of times
over the high speed limits, and the percentage of times driving within the right
speed limits. Their results showed two rules that lead to ‘passive’ and ‘aggressive’
driving. In a different study that used driving simulation data [154], the authors
employed Bayesian networks and logistic regression to establish a driving risk predic-
tion model. Their results on a dataset from non-commercial drivers revealed driver
experience as the most important driver feature in predicting driving risk.

More recently, Shi et al. [240] used Fuzzy C-means to uncover and label driv-
ing patterns according to their level of risk. Subsequently they employed extreme
gradient boost (XGBoost) to learn the linkages between driving features and cor-
responding risk level, and automatically predict the risk of driving patterns. The
authors explored driving features of non-commercial drivers from Next Generation
Simulation vehicle trajectory database [246], and uncovered four driving risk cat-
egories: ‘safe’, ‘low risk’, ‘medium risk’ and ‘high risk’. Shangguan et al. [239]
explored fuzzy c-means and XGBoost to develop an online driving risk assessment
system. The authors employed a rolling time window approach to model their data
for real-time driving risk prediction. Their results on car-following events from
Shanghai Naturalistic Driving Study show an optimal time window length of 0.5
seconds with a frequency of 0.1 seconds, and vehicle speed as the most risky driving
feature. Mehdizadeh et al. [15] trained machine learning models to predict the like-
lihood of observing at least one safety critical event (close following, harsh braking,
activation of rolling stability system, and activation of collision mitigation system)
over a 30-minutes driving window. They utilised trajectory (e.g., time, GPS and
speed) and safety critical events collected by a large U.S.-based trucking company
from April 1, 2015 to March 31, 2016 for 496 truck drivers. The authors supple-
mented the data with weather information (e.g., precipitation and wind speed) and
traffic flow information. Multiple supervised learning methods (e.g., nearest neigh-
bours, ensemble of trees, SVMs) were employed to learn the relationship linking
drivers’ vehicle control, past occurrence of events, weather conditions, and traffic
flow to the frequency of safety critical events over a 30-minutes driving window.
Their results showed ‘vehicle speed’ and ‘hour of the day’ as the main predictors of
driving incidents.

Deep neural networks have also been employed on big structured datasets to
predict the risk of driving patterns [16, 247]. For instance, Bian et al. [247] pro-
posed a driving risk assessment system based on deep neural networks. The system
was applied to telematics data i.e., mileage, speed, engine load, engine temperature
and fuel consumption, collected from 1347 non-commercial drivers in China within
three months (August 2016 and November 2016). Their system classified driving
styles into five risk levels where level 5 is the most risky. Their experimental results
showed better performance compared to conventional supervised learning methods
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i.e., SVMs and RFs. Subsequently, Hu et al. [16] employed a semi-supervised deep
learning method to assess driving risk. Their method consisted of LSTM encoder-
decoder networks and CNNs to classify driving risk using telematics data from 21,124
vehicles in Germany. The vehicles consisted of cars and trucks. The authors manu-
ally annotated a small subset of the data (data from 1250 vehicles) with the following
risk labels: ‘low’, ‘normal’, ‘high’, and ‘extremely high’. The remaining unlabelled
dataset was trained in an unsupervised approach using the LSTM encoder-decoder
networks coupled with CNNs, and the small labelled dataset is used to fine-tune the
performance of model using a supervised learning approach. Their results showed
an accuracy of 95.82% when only 2.5% of the total data was labelled and used to
fine tune the model.

2.4.3 Opportunities to improve driving risk assessment

This section presents gaps and opportunities identified in the literature of driving
risk assessment that are addressed in this thesis. As mentioned in Chapter 1, the
aims of this thesis are to develop an intelligent system that can automatically assess
the impact of HGV driving in accordance with the characteristics of a real-world
driving environment presented in Figure 2.2.

(a) Heavy goods vehicle driving

The majority of the studies in the literature that explore intelligent approaches to
assess and predict driving risk focus on non-professional drivers i.e., people whose
jobs are not driving. The driving behaviours of non-professional drivers have been
shown to be different from those of professional drivers due to factors, such as
driver training [248, 249], objectives [250], feedback systems [251], working con-
ditions [252], duration of job shifts [229, 253, 254]. For example, Oz et al. [229]
investigated the proneness to fatigue in professional and non-professional drivers.
The authors recruited 234 male professional and non-professional drivers from four
different driver groups (taxi drivers = 69; minibus drivers= 63; HGV drivers = 64;
and non-professional drivers = 38) to report on the proneness to fatigue caused by
the duration of their journeys. Their results show that HGV drivers are more prone
to fatigue compared to non-professional drivers due to long and lonely journeys.
Therefore, there is need for more work to be done in driving risk assessment with
regards to professional and commercial drivers e.g., HGV driving.

(b) Imprecision in the definition of driving Behaviours

The description of driving behaviours are imprecise due to imperfect driver charac-
terisation systems and data, as well as human subjectivity. That is, it is difficult
for an individual or AI system to precisely define or predict driving behaviours. For
example, it is difficult to provide a precise level of driver fatigue on a scale from
0 to 100 where 0 is ‘alert’ and 100 is ‘fatigued’ or driving style on a scale from 0
to 100 where 0 is ‘slow’ and 100 is ‘aggressive’. The current literature on online
driving risk assessment do not consider imprecision of driving behaviours, which
could lead unreliable and unfair driving assessments. Therefore, assessing driving
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behaviours requires computational techniques that can handle imprecision in driving
behaviours.

(c) Imprecision of AI models

The predictions produced by AI models are imprecise especially in the dynamic
and complex HGV driving environment, which consists of numerous contextual fac-
tors, evolving traffic laws, constantly changing consumer behaviours, new technolo-
gies and infrastructure. These factors constantly influence drivers’ actions and be-
haviours, making the decisions of the AI models (that have been trained on historical
data) uncertain. Furthermore, additional uncertainty is introduced by the proba-
bilistic outcomes of the AI models. For example, how do we differentiate between
60% and 65% probability outcomes of a driver’s behaviour when assessing its impact
on road safety? Once Again, FLSs are capable of modelling such uncertainties in
AI model decisions using suitable FSs.

(d) Context-aware driving risk assessment

Another opportunity for improvement is the incorporation of contextual informa-
tion into the assessment of driving. The few studies that explore intelligent ap-
proaches for online HGV driving risk assessment [15, 17, 241] do not consider the
real dynamics of HGV driving (as described in Section 2.2.1), which consist of the
occurrence and interaction of drivers’ personal traits and external contextual factors
e.g., driver’s affective states, driving styles, attentiveness, weather conditions, road
type and traffic conditions. This potentially produces incomplete assessments of the
driving environment. Therefore, there is the need for multi-modal data streams that
capture the interaction between the manner by which drivers operate their vehicles,
driving postures, mental states and environmental conditions. However, due the
lack of multi-modal data streams, this thesis (Chapters 4 and 5) engages with key
stakeholders in the HGV driving sector to capture information about those interac-
tions and embed the knowledge into the assessment of HGV driving. The hope is
to achieve more context-aware, comprehensive and reliable assessments.

(e) Expert knowledge

An effective and reliable assessment of HGV driving is based on a nuanced un-
derstanding of the highly complex and dynamic environment, which is not available
based on current data sources, but can at least be partially obtained from key stake-
holders of the HGV driving sector as shown in the literature (Section 2.4.1). How-
ever, several challenges arise when capturing and modelling knowledge from a wide
variety of stakeholders as responses obtained from humans may differ due to different
levels of imprecision in perception, experiences and expectations [232, 255]. Thus,
it is expected that different stakeholders —even though they have similar roles—
provide different answers to questions due to ambiguity in the characterisation of
driving behaviours, different levels of indecision and personal experiences [255]. For
example, the precise level of driving risk when a driver is ‘angry’ and the weather
is ‘rainy’ may be difficult to determine. In addition, stakeholders with different
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roles may have varying viewpoints due to their distinct responsibilities and expec-
tations [256]. For example a group of researchers may have different opinions com-
pared to a group of managers as managers may focus more on factors that optimise
the delivery of goods and services in their companies. The possible differences in
the responses provided by stakeholders must be effectively modelled to provide a
comprehensive, reliable and clear representation of knowledge to support decision-
making. In addition, there is the need to explore information fusion approaches
and algorithms to embed the knowledge from stakeholders into the assessment of
driving performance and risk. A modelling technique called the Interval Agreement
Approach (IAA) [257] was developed to tackle the variability and imprecision of
human insights by capturing agreement across sources of information provided by
participants via surveys. Chapter 4 provides the rational for using this approach
to model the variability and imprecision in the responses of stakeholders about the
interaction and impact of HGV driving risk factors. The chapter will also provide an
approach to embed the contextual information into the assessment of HGV driving
performance and risk.

(f) Interpretability of assessments

Interpretability of driving risk assessments are important for verification, diag-
nostics, usability, and improvement [258]. Interpretability facilitates the under-
standing of how and why given assessments were produced. This thesis explores
linguistic fuzzy sets and rule-based FLSs to provide understandable, transparent
and simulatable assessments of driving risk. In addition, we explore hierarchical
FLSs [225, 226, 259] to optimise the rules and ensure the system is decomposable
i.e., the ability to explain different components of a system [258]. Chapter 5 provides
the rational for using a hierarchical rule-based inference system for predicting and
understanding the level of driving risk.

(g) Evaluation of performance

The development of a reliable online driving risk system is crucial for ensuring
trust, acceptance, and successful adoption among stakeholders, end-users and deci-
sion makers [260, 261]. With the lack of labelled driving risk datasets, measuring the
reliability of the system is difficult. Therefore, there is the opportunity of investigat-
ing ways to measure the reliability and effectiveness of systems with the absence of
labelled data. For instance, this thesis (Chapter 5) proposes two novel metrics based
on user studies to measure reliability by comparing the decisions produced by the
AI system with assessments provided by domain experts, taking into consideration
imprecision of human perception and AI systems.

2.5 Summary

HGV driving is at the forefront of trade and commerce in every nation, as both
private and public sectors rely on it for the delivery of goods and services. Due to
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their importance, there is a growing interest by the transportation community to
identify risky driving behaviours and assess their impact on road safety.

This chapter reviewed psychological theories on driver behaviour i.e. Theory of
Planned Behaviour, Risk Homeostasis Theory and Multiple Resource, to understand
and identify characteristics of a real-world driving environment. The theories ex-
plain the following characteristics of the driving environment: (1) driver behaviour is
multifaceted consisting of the interaction of multiple secondary tasks or driving be-
haviours; (2) external factors constantly interact with driving behaviours to impact
driving risk; and (3) there is always some level of driving risk. The characteristics
are illustrated by the theoretical framework presented in Figure 2.2, and which forms
the basis for this thesis.

Furthermore, we identified four main types of risky driving behaviours, including
drivers’ physical distraction, aggressive driving styles, responses to emotion and fa-
tigue. The chapter later reviewed intelligent data-driven algorithms employed in the
literature to characterise and predict the driving behaviours. The algorithms were
grouped into four categories: (1) unsupervised learning methods; (2) conventional
supervised learning methods; (3) deep learning methods; and (4) fuzzy systems. The
review was summarised in Table 2.2. The main opportunities and gaps identified
in the literature for improving the characterisation of driving behaviours are: cap-
turing uncertainties in driving features; modelling imprecision in the interpretation
of driving behaviours; capturing temporal dynamics in behaviour; and developing
privacy-preserving strategies to protect drivers’ identities and sensitive information.
Most importantly, assessing the interaction of the different facets of driver behaviour
that occur simultaneously during driving.

Lastly, the chapter reviewed the literature on driving risk consisting of post-
hoc analysis and data-driven intelligent assessment of driving risk. We identified
several opportunities to improve the automatic assessment of driving risk, including
incorporating contextual information and modelling imprecision in information and
driver characterisation AI systems. In addition, little has been done in the literature
with regards to the online assessment of HGV driving risk.

This thesis proceeds to explore intelligent approaches to improve the charac-
terisation of the risky driving behaviours using three data sources i.e., unlabelled
telematics data, labelled driving posture footage and labelled facial footage. This
is the first aim of this thesis as its achievement will ensure that inputs into the
driving risk system are accurate and reliable. The next chapter presents novel AI
approaches for detecting the different driving behaviours.
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Chapter 3

Intelligent Driver Characterisation

3.1 Introduction

Chapter 2 reviewed three key psychological theories to understand the characteris-
tics of driver behaviour in a real-world driving environment (Section 2.2.1, page 7).
Those theories revealed that commercial driving consists of constant interactions be-
tween drivers’ multifaceted behaviours, feelings and actions, as well as the influence
of external factors. Therefore, to achieve a reliable and realistic online assessment
of heavy goods vehicle (HGV) driving risk, driving behaviours need to be accu-
rately classified from multi-modal driver data streams. After that, the impact of the
detected driving behaviours on road safety are assessed. An accurate and reliable
characterisation of driving behaviours can be achieved by exploring the artificial
intelligence (AI) approaches reviewed in Section 2.3 (page 12) for driver behaviour
analysis. However, due to the complex, dynamic and multifaceted nature of driver
behaviour, stand-alone data sources are insufficient for examining the different driv-
ing behaviours in accordance with the literature reviewed i.e., driving styles, affective
states, and driving postures. For example, telematics data alone could be analysed
to describe and predict driving styles as reviewed in Section 2.3.1, but the data
cannot tell us much about the driver’s affective or distracted states.

This chapter aims at achieving the above objective and answering the research
question: how can the intelligent characterisation of driving behaviours be improved
using AI methods? To answer this question, AI methods are investigated to improve
the detection of driving behaviours from multiple sources of data. Three data sources
are investigated in this chapter to achieve its objective i.e., telematics incident data,
driver posture images, and facial images as shown in Figure 3.1. Telematics data
that capture the manner by which drivers operate vehicle controls has shown to
be effective in characterising driving styles as revealed in Section 2.3.1. Driver-
facing cameras capture the physical and mental states of drivers. A well-positioned
camera can capture both drivers’ postures and their faces. However, due to the lack
of footage that captures both drivers’ postures and their faces, two additional data
sources are explored i.e., driving posture images captured by side-view driver-facing
cameras, and facial images captured by facial-view cameras. The telematics data
is gathered and provided by Microlise [262], our industrial partner. This dataset
captures driving incidents, such as, harsh braking and over speeding incidents. The
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data are explored to identify the core driving styles of HGV drivers and develop
an intelligent approach to classify the occurrence of driving incidents into one of
the driving styles. The driving posture image dataset (The American University
in Cairo Distracted Driver dataset [172, 263]) is available online and consist of
10 different driving postures. The dataset is utilised to develop a deep learning
approach to improve the prediction of driving postures. Lastly, the facial image
database (Remote Collaborative and Affective Interactions database [264]) is also
publicly available. The database consists of facial images and their respective affect
continuous labels. The Remote Collaborative and Affective Interactions (RECOLA)
data are also explored to introduce an intelligent approach of protecting drivers’
facial identities as facial images are difficult to anonymise.

Figure 3.1: The diagram illustrates the data sources explored in this thesis to accu-
rately detect the different facets of driver behaviour.

The chapter is organised as follows. Section 3.2 reviews the literature of charac-
terising the different driving behaviours using AI approaches. Section 3.3 introduces
our proposed methods for improving the characterisation of the different aspects of
driver behaviour i.e., methods 1, 2 and 3 in Figure 3.1. The datasets used to eval-
uate the methods are described in Section 3.4 as well as the experimental design
and evaluation protocols. Section 3.5 discusses the results of our experiments and
opportunities for further improvement of HGV driver characterisation. Lastly, the
chapter is summarised in Section 3.6.

3.2 Related Work

This section provides a review of the literature on the characterisation of driving
styles, driver distraction postures and affective states using intelligent data-driven
algorithms.
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3.2.1 Driving styles

As mentioned in Section 2.2.2, drivers’ aggressiveness is one of the main facets of
driver behaviour that impacts driving risk [57, 58, 59, 60, 61]. Advances in wireless
communication and sensors within vehicles have inspired the generation of data
that captures the manner by which drivers operate vehicle controls, such as speed,
acceleration, vehicle orientation and driving incidents. Researchers have explored
different intelligent data-driven approaches to automatically detect and distinguish
between driving styles, such as unsupervised learning [14, 57, 128, 129, 130, 131, 132],
semi-supervised [129, 265, 266, 267] and supervised learning methods [45, 138, 139,
142, 143, 145, 146].

Constantinescu et al. [77] used an unsupervised learning method (Hierarchical
Clustering Analysis) to identify six driving styles based on four telematics driving
features i.e. speed, acceleration, braking and kinetic energy. The telematics data
used in their study was collected from only 23 non-professional drivers. The authors
employed Principal Component Analysis to interpret and distinguish between the
driving styles using linguistic labels, such as ‘very low’, ‘neutral’, ‘sudden’ and ‘high’.
Even though their findings are important in understanding driving styles, their work
is limited to the type and number of drivers investigated. Similarly, Figueredo et
al. [241] employed an unsupervised learning method (ensemble of clustering tech-
niques [268]) to uncover eight HGV driving styles in the United Kingdom (UK). The
authors utilised a much larger and diverse dataset compared to Constantinescu et
al. [77] (i.e., 1 year driving incident data from 21,193 HGV drivers). The authors de-
veloped an algorithm to interpret the driving styles using linguistic categories, such
as ‘low’, ‘moderate’, ‘high’ and ‘very high’ number of incidents. The algorithm com-
pares the median values for each variable of each driving style with the range of the
entire data. However, similar to Constantinescu et al. [77] the driving styles identi-
fied are dependent on the data, which need to be large, diverse and comprehensive
for reliable results. In addition, the driving styles are dependent on environmental
conditions (contextual external information), which are not considered or included
in the analysis.

With the scarcity of real-word labelled driver operation data and the difficulty
to manually label large amounts of data, semi-supervised learning has been used
to address these problems for driving style classification [129, 265, 266, 267]. The
methods employ unsupervised approaches to group and label instances according to
similar driving patterns. Subsequently, they employ supervised learning methods
on the labelled data to predict the driving styles of unlabelled or new instances. For
example, Wang et al. [266] proposed a semi-supervised method based on k-means
clustering and support vector machines (SVMs) for driving style classification. Their
study used a driving simulator for collecting driving data from 20 non-professional
drivers driving on curvy roads i.e., speed, and throttle opening. The authors used
a rule-based approach to provide subjective interpretations of driving styles i.e.,
normal and aggressive driving styles. Subsequently, Liu et at. [267] explored the
opportunities of fuzzy sets in capturing data uncertainties injected by sensor read-
ings. The authors employed fuzzy c-means to identify different driving styles while
capturing uncertainties in driving data i.e., speed, acceleration. The data utilised
in the study were collected from 51 non-professional drivers. The authors used the
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box-plots of features similar to Figueredo et al. [241] to interpret the driving styles
as aggressive, general and conservative.

Recently, deep learning approaches have been applied on labelled driving data
obtained under controlled experiments to classify driving styles [267, 269, 270, 271].
Controlled experiments or driving simulators can assist in labelling driving data as
drivers are instructed to mimic different driving behaviours during operation. For
instance, Bejani and Ghatee [269] trained convolutional neural networks (CNNs)
using acceleration data collected from smartphones in controlled experiment to au-
tomatically recognise normal and aggressive driving styles. Similarly, Moukafih et
al. [271] explored a publicly available driving data collected using smartphones under
controlled experiments i.e., GPS, distance to following vehicle, speed and acceler-
ation. The data were collected from six non-professional drivers performing three
different driving behaviours (i.e., normal, drowsy and aggressive driving) on motor-
ways and secondary roads. The authors developed a deep learning method based
on long short term memory neural networks.

Furthermore, researchers have explored uncertainty models (e.g., fuzzy logic sys-
tems (FLSs) [217, 244, 272, 273, 274] and Bayesian networks (BNs) [156, 275]) to
capture and model uncertainties in data injected by sensor readings, imprecision
in the interpretations of driving styles and ambiguity in understanding the driving
styles due to human subjectivity. For instance, Aljaafreh et al. [217] developed fuzzy
sets to capture uncertainties in driving data i.e., acceleration and speed. The fuzzy
sets coupled with predefined rules were used to develop a FLS to classify drivers
into four driving styles i.e., below normal, normal, aggressive, and very aggressive
driving styles. Subsequently, Cordero et al. [274] developed fuzzy sets to represent
the manner of vehicle control (e.g., use of horn, control of steering wheel) and dis-
traction states (e.g., gazing). They developed fuzzy rules to map the co-occurrence
of the inputs to their respective driving styles i.e., ecological, normal and aggres-
sive. Similar to Aljaafreh et al. [217] the fuzzy sets, rules and driving styles are
fixed and pre-determined by the authors, and therefore, require further validation.
In a different study, Han et al. [156] used Bayesian probability with kernel density
estimation to extract discriminative driving features and estimate the probability
of being aggressive or normal. They collected data from eight participants using
a driving simulator. Features included speed, throttling, acceleration, position and
steering angle.

The majority of the studies reviewed above for driving style characterisation
utilise small telematics data with less than a hundred drivers. They employ single
clustering or supervised learning methods, which could lead to unstable and model-
specific driving styles. They also do not extract the relationships between the driving
styles and driving features, which are important for improving risky driving styles
and developing effective interventions. In addition, the reliability of assessing driving
styles can be improved if uncertainties produced by imprecision in the description
of driving features and driving styles are effectively represented and modelled.

To produce more reliable and interpretable HGV driving styles, this thesis in-
troduces a hybrid fuzzy logic framework. The framework consists of an ensemble of
clustering and supervised learning methods to uncover stable and reliable driving
styles. Subsequently, the framework employs a data-driven FLS to model uncer-
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tainties in the description of driving incidents and driving styles. The FLS also
extracts linguistic rules from the data, which represent the relationships between
the occurrence of driving incidents and driving styles. The framework is applied on
a large database of HGV telematics driving incidents to improve the characterisa-
tion of HGV driving styles. The database consists of four years of driving incidents
from more than 2,000 HGV drivers, who completed more than 40 journeys yearly on
different roads in the UK (a more detailed description of the database is provided
in Section 3.4).

3.2.2 Driving postures

Another facet of driver behaviour identified in Section 2.2.2 that impact road safety
is driving posture. Driving postures are categorised into ‘safe’ and ‘distracted’ pos-
tures [44]. Figure 3.2 shows images of ‘safe’ and ‘distracted’ postures extracted from
the American University in Cairo (AUC) Distracted Driver Dataset. ‘Safe’ postures
contain individuals in an alert driving position and looking ahead with hands on
the steering wheel, while ‘distracted’ driving occurs when a driver engages in other
activities that take their attention away from the road e.g., using the radio or in-
vehicle technologies, cell phone usage, and looking at something outside the vehicle.
These postures are difficult to detect using telematics data; however, they are easier
to identify in images that capture the driver. Intelligent approaches that can auto-
matically process images are therefore more suitable for detecting and distinguishing
between driving postures. Those include computer vision approaches. This section
reviews the literature on driving posture detection using driving footage to identify
opportunities to improve driving posture characterisation.

Figure 3.2: Images extracted from the American University in Cairo Distracted
Driver Dataset representing ‘safe’ and ‘distracted’ driving postures

Initial studies on driver distraction detection using intelligent methods and driv-
ing footage were based on handcrafted features and conventional supervised learning
methods, such as Support Vector Machine (SVM) classifiers and ensemble of decision
trees. For instance, Artan et al. [118] used a hand-crafted feature learning technique
(known as deformable part model) to extract geometric features from driving pos-
ture images and employed SVMs to detect cell phone usage. The authors used a
private database consisting of 1,500 images (378 drivers using cell phone and 1,122
drivers without using cell phone). Similarly, Berri et al. [46] explored SVMs for
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detecting cell phone usage in images of drivers. They used a hand-crafted feature
learning technique to extract Haar-like-features for the identification of cell phone
usage. Their method was evaluated on a database consisting of 100 images of drivers
using cell phones and 100 images with no phone. Craye and Karray [45] explored
hand-crafted features using AdaBoost and Hidden Markov models. Four feature
sets were extracted from images of eight drivers: 1) arm position; 2) face orienta-
tion; 3) facial landmarks; and 4) gaze estimation and eye closure. The extracted
features were concatenated into a seventeen-feature vector for each image frame.
Subsequently, five postures were analysed: making a phone call, drinking, sending
an SMS, looking at an object inside the vehicle and driving normally. The main
challenge of hand-crafted feature learning techniques is that they require developers
to be experts in image processing and the application domain.

With CNNs outperforming conventional supervised learning methods in image
classification [43, 276, 277, 278, 279, 280], CNNs are now employed for driver dis-
traction detection. For instance, Kim et al. [44] proposed a method of detecting
driving postures using RestNet and MobileNet CNN models. Their study utilised
a database of driver images consisting of 2,000 images in the training set and 2,000
images in the test set. The database includes two types of driving postures: looking
in-front and not looking in-front postures. Their results on training models from
scratch and using fine-tuned pre-trained models on distracted posture images of
two drivers show that fine-tuned models significantly outperformed training from
scratch for their database. Similarly, Yan et al. [43] examined CNNs to classify
driving postures using pre-trained CNNs using three datasets: the Southeast Uni-
versity Driving Posture dataset [281], and two datasets developed by the authors
called Driving-Posture-atNight and Driving-Posture-inReal datasets. Results show
high classification accuracy with the three driving posture datasets which outper-
formed methods using hand-crafted features. Majdi et al. [42] combined CNNs with
random forests (RFs) for the problem. Their model was trained on the AUC Dis-
tracted Driver dataset [172, 263], which consists of 30,000 images and 44 drivers.
Their results show better performance compared to Support Vector Classifiers and
CNNs without random forests. Eraqi et al. [172] proposed a weighted ensemble of
CNNs using four different CNN architectures (i.e AlexNet , InceptionV3, ResNet
and VGG-16 networks). They are trained on five different image sources of the
AUC distracted driver dataset i.e. raw images, skin-segmented images, face images,
hands images, and face and hands images. The results from the individual CNNs
show the best accuracy when trained on raw images. The weights of the different
CNNs are optimised using genetic algorithm and combined to improve performance.
Similarly, Aljasim and Kashef [282] proposed an ensemble of CNN architectures that
combined the outputs of two architectures to accurately distinguish between driving
postures. The authors evaluated all combinations of ResNet, VGG16, MobileNet
and Inception. Their results show that ResNet performed best for the individual
architectures and ResNet-VGG16 increased the accuracy by 4%.

The majority of the CNN architectures explored in the literature are designed
to capture spatial discriminative features. Therefore, driving postures with similar
spatial representations are difficult for the CNNs to distinguish. For example, the
driving postures in Figure 3.3 have similar spatial representations but represent
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different temporal dynamics. Intelligent approaches that capture differences between
the spatial features (pixels) as well as temporal features could be explored to improve
driving posture detection, such as recurrent neural networks (RNNs), attention-
based CNNs and vision transformers.

Figure 3.3: Sample images extracted from the American University in Cairo Dis-
tracted Driver Dataset with similar body movements but representing different driv-
ing postures

This chapter examines RNNs to model temporal dependencies between driving
posture images and improve the accuracy of detecting driving postures. In addi-
tion, the memory cell of Long Short Term Memory networks (LSTMs) enables the
networks to model long-term dependencies in sequential data as described in Fig-
ure 2.6 (page 20). LSTMs can also handle sequences of variable length by adjusting
the number of time steps used in the computation, which is common in real-world
driving as the duration of driving postures is not constant. As result of temporal
and dynamic characteristics of driving, a novel hybrid deep learning architecture
is introduced, which consists of CNNs to extract the spatial discriminative feature
maps from a sequence of images and stacked RNNs to process the feature maps in
a sequential manner and extract temporal discriminative features. Further details
are provided in Section 3.3.2. Due to data privacy challenges in obtaining driving
posture images of HGV drivers, this thesis utilises the large and diverse publicly
available AUC distracted driver database. This thesis also addresses the issue of
individual data protection in Section 3.3.3.

3.2.3 Driver affective states

In Section 2.2.2, driver emotion and fatigue were identified as major affective states
that impact driving performance. These states are more identifiable in facial im-
ages than in telematics data or driving posture images. Similar to driving posture
detection, the literature has shown that CNNs are most suitable to detect affect in
facial images due to their ability to extract spatial discriminative features that dis-
tinguish the states. However, as mentioned in Section 2.3.3, analysing facial images
result in several data privacy and driver protection concerns. This section reviews
the literature on affect recognition using facial images and deep learning to identify
opportunities to improve the detection of emotion and fatigue while safeguarding
driver’s privacy.
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Deep learning (e.g., CNNs and RNNs) has been widely explored to predict hu-
man affective states [193, 194, 195, 198]. For instance, Tzirakis et al. [193] trained
a convolutional recurrent neural network where the spatial features of a sequence
of images are extracted using CNNs with fully connected layers, subsequently pro-
cessed using LSTMs. The authors utilised a publicly available affective dataset
called Remote COLlaborative and Affective interactions (RECOLA) [264]. It con-
tains continuous response variables for valence and arousal affective states. Valence
represents the intensity of a human’s emotion between sad and happy, where -1
represents sad and +1 represents happy. Arousal is the intensity between calm and
excited, where -1 represents calm and +1 represents excited. Their results reported
lower performance in predicting arousal compared to valence using facial images.
Lee et al. [194] developed an ensemble deep learning architecture that combines fea-
tures extracted using 3D CNNs with the outputs of convolutional LSTMs to predict
valence. They also utilised RECOLA but reported lower prediction performance
of valence compared to Tzirakis et al. [193]. Subsequently, Lee at al. [283] com-
bined the raw facial images with depth and thermal representations of the images
to improve facial affect recognition using a deep learning architecture consisting of
CNNs and attention-based LSTMs. Their results on the RECOLA database showed
an improvement in performance with multi-modal data fusion compared to single
modalities. Akhand et al. [284] recently explored transfer learning to improve pre-
diction accuracy. They developed a deep CNN and replaced some layers of their
network with layers from a model trained on the ImageNet. They evaluated the
performance of their approach using different models trained on the ImageNet (e.g.,
VGG, ResNet, Inception and DenseNet). However, their approach was evaluated
on databases with discrete response variables and therefore, cannot be compared
to the other studies that used continuous response variables. This review of affect
recognition studies that utilise deep learning models reveals the best performance
(according to concordance correlation coefficient (CCC) metric) on the RECOLA
database (same database explored in this thesis) as 0.620 for valence and 0.464 for
arousal. These results show the need for more work to be done to improve pre-
diction accuracy to a performance close to 1.0, which represents perfect agreement
between actual and predicted values. In addition, the review showed that more
studies focused on valence prediction. However, arousal is as important as valence
for predicting fatigue as fatigue is highly correlated to arousal [285, 286].

To protect users’ facial identity and still predict affective states, researchers
have explored anonymised facial Action Units (AUs) extracted from facial expres-
sions in images [196, 197, 198, 199]. These anonymised facial features (AUs) repre-
sent human-observable facial muscle movements that estimate the intensity of facial
movements using facial landmarks. For example, AUs 12 (raising lip corners), 15
(lowering lip corners) and 20 (lip stretch) can be estimated using the facial land-
marks on the lips. Figure 3.4 shows 98 points or landmarks on the face developed
by Wu et al. [3] that represent important features of the human face and could be
utilised as anonymised facial features. Han et al. [199] proposed a ensemble ap-
proach that combines the outputs of support vector regressor (SVR) and LSTMs to
predict valence and arousal affective dimensions. The authors explored facial land-
marks extracted from the RECOLA image database to develop a privacy-preserving
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Figure 3.4: 98 facial landmarks aligned on the face of an avatar depicted from Wu
et al [3]

approach. Their experiments showed best CCC performance of 0.394 for valence
and 0.265 for arousal. Another example of a study that explored anonymised fa-
cial feature is Ortega et al. [196]. The authors developed a SVR to process facial
landmarks extracted from the RECOLA image database. Their experiments show
best CCC performance of 0.344 for valence and 0.337 for arousal. Similar to fa-
cial affect recognition, the performance of current approaches for processing facial
features require significant improvement. In addition, even though it is difficult to
reconstruct faces from the AUs or facial landmarks, auto-encoders and generative
adversarial networks that can reconstruct images from latent features could make
face reconstruction possible [287, 288, 289, 290]. As a result, there is still need to
explore intelligent approaches that prevent complete access to users’ identities and
sensitive information.

This chapter explores a federated learning (FL) implementation of the hybrid
deep learning architecture introduced for driving posture detection to detect valence
and arousal affective states while safeguarding the identity and privacy of users. In
FL, models are trained on users’ data within their local machines and transferred
to a central machine for aggregating [200]. Further information about our approach
is described in Section 3.3.3.

3.3 Frameworks for Driver Behaviour Detection

This section introduces our proposed methods for improving the characterisation of
driver traits i.e., driving styles, driving posture and affective states, as shown in Fig-
ure 3.1. First, a novel hybrid fuzzy framework is presented that consist of clustering
coupled with supervised learning and FLS. The framework captures uncertainties
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in telematics data, identifies robust and core HGV driving styles, and describes the
driving styles in terms of driving incidents using understandable linguistic terms
and fuzzy rules. Subsequently, a novel hybrid deep learning framework for distrac-
tion posture detection is introduced, which consist of CNNs coupled with LSTMs.
The CNN architecture extracts discriminative spatial feature maps from images,
which are later sent to the LSTM architecture. The LSTM architecture captures
the sequential dependencies among the spatial features. Lastly, a federated learning
implementation of the hybrid deep learning framework is proposed for predicting
valence and arousal affective states while protecting users’ privacy and identity.

3.3.1 A hybrid fuzzy framework for driving style character-
isation

The framework is shown in Figure 3.5 and each stage is described in detail below.

Figure 3.5: A hybrid fuzzy framework that consists of clustering coupled with su-
pervised learning and fuzzy logic inference for driving style characterisation.

Stage 1: Data Pre-processing

Data are preprocessed to manage missing values, outliers, irrelevant features, and
highly correlated features. Next, they are normalised to ensure unbiased results e.g.
the number of driving incidents are divided by the total driving time to capture the
effects of journey length as drivers who complete longer journeys are prone to more
incidents. Instance selection can also be performed for removing noisy instances
especially for obtaining reliable data patterns. For example, only drivers who are
present across all years could be considered for obtaining more reliable driving styles.

Stage 2: A 2-stage clustering framework

To uncover stable and reliable driving patterns, a 2-stage clustering framework in-
troduced by Agrawal et al. [268] is employed. The framework uses a consensus of
clustering methods and an ensemble of classification techniques to produce robust
and stable data labels. In the first stage, multiple clustering algorithms are run to
group the data. Using a consensus approach, most of the data are assigned to one of
the identified labels, while some of the data remain unclustered due to lack of con-
sensus among the clustering algorithms. In the second stage, multiple classification
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algorithms are trained on the clustered data from stage 1 of the clustering frame-
work. The trained models are applied on the unclustered data to assign them to
one of the labels using a ensemble approach. This framework provides an automatic
and systematic approach to assign robust labels to instances of datasets especially
in domains where data patterns change frequently e.g. in commercial driving where
driving styles are frequently affected by changes in external conditions and customer
demand. The framework showed state-of-the-art performance in numerous datasets
e.g. Iris, Wine, Ecoli, Wisconsin Breast Cancer, and Dermatology [268].

Stage 3: Profile labelling algorithm and core driving styles

In order to understand the driving patterns obtained by the 2-stage clustering frame-
work in accordance with driving features, a well-defined profile labelling algorithm
introduced by Figueredo et al. [241] is employed. The algorithm provides a system-
atic approach to describe data patterns or clusters. This is done by labelling each
feature in each cluster using three linguistic terms; ‘low’, ‘moderate’ and ‘high’, to
describe their occurrence. The algorithm calculates the median for each feature of
each cluster, and compares the calculated median with the five-number summary
values of the feature for the entire dataset as shown in Algorithm 1. The labels
assigned to the features in clusters are examined by domain experts to provide
human-understandable descriptions of the clusters. That is, instead of the incom-
prehensible cluster labels e.g., 1, 2, 3 etc, domain experts can use the feature labels
in the different clusters to provide meaningful and understandable labels e.g., calm,
reckless and aggressive driving styles.

Algorithm 1: Label Clusters

inputs : Box-plot of V ariablei in Clusterj, box-plot of V ariablei in entire
dataset.

output: labeli for V ariablei in Clusterj
foreach Cluster in Clusterj do

foreach Variable in V ariablei do
if Median(V ariableiinClusterj) ≤Median(V ariableiinAllData)
then

labeli ← “Low”;
else if Median(V ariableiinClusterj)
IsBetween(Median(V ariableiinAllData)
and ThirdQuartile((V ariableiinAllData))) then

labeli ← “Moderate”;
else if Median(V ariableiinClusterj) IsBetween
ThirdQuartile(V ariableiinAllData) and
Maximum(V ariableiinAllData) then

labeli ← “High”;

To produce core driving styles from the driving clusters, similar clusters are
merged. That is, clusters which differ by only one label (i.e. low, moderate or high)
in only one of the driving incidents are merged, while those that do not follow this
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rule form standalone driving styles. By defining core driving styles, a more general
and robust characterisation of driver behaviour can be achieved.

Stage 4: Generating fuzzy sets and rules

In this stage, feature (input) membership functions (MFs) consisting of the fuzzy
sets (FSs) ‘low’, ‘moderate’ or ‘high’ are generated from the labelled data obtained
from the previous stages using the five-number summary of the features similar
to the profile labelling algorithm. The five-number summary consists of minimum
(min), first quartile (Q1), median (Q2), third quartile (Q3) and maximum (max)
values. Z and S-MFs are utilised for ‘low’ and ‘high’ FSs as they are most suitable
for representing the extreme boundaries with maximum degrees or likelihood of
membership. The Z-MF is generated using the minimum and median values and the
S-MF employs the median and maximum values. For ‘moderate’ FS, Triangular MFs
are employed as they are efficient in representing intermediate FSs. First quartile,
median and third quartile values are utilised to construct triangular-MFs. Figure 3.6
shows an example of membership functions generated from the five-number summary
statistics of a feature i.e. min=0, Q1=25, Q2=50, Q3=75, and max=100.

FSs for the driving styles are also generated, such as ‘calm’, ‘moderate’ and
‘aggressive’ driving styles. The FSs are equally distributed between 0 and 100 to
ensure a smooth transition between driving styles, where 0 represents calm driving
and 100 represent aggressive driving.

Figure 3.6: A diagram to illustrate the generation of membership functions using
the five-number summary of a feature.

A rule generation method (e.g. Wang-Mendel rule generation method [291]) is
applied on the labelled data to automatically generate IF-THEN rules that map
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the driving patterns to the driving styles. This method generates rules for all pos-
sible combinations of input FSs and enables the system to adapt to changes in
data patterns, especially for dynamically changing environments e.g., HGV driving
environment.

In a labelled dataset, the inputs and output (profile) pairs are denoted as:
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(3.1)

where m is the number of input-output data pairs and n is the number of features.
Each input-output pair is assigned to the corresponding input and output MFs

to produce ‘IF-THEN’ rules and the number of occurrences of each rule (weight).
The rule weights are utilised to implement a rule reduction procedure for conflicting
rules. The rules could be further improved by domain experts due to their simple
linguistic representation.

The generation of input FSs and rules from data enables the system to be flexible
to changes in driving patterns. For example, if a new road is constructed that causes
all drivers to generate more incidents than usual, this will be captured by the data-
driven MFs as a general increase in incidents. Therefore, there will be no shift of FSs.
Whereas, if some drivers suddenly become more aggressive, the MFs will capture
this change in behaviour and the FSs will shift accordingly and the rules adapted to
capture the relationship between the new driving pattern and the aggressive driving
style.

Section 3.4.2 elucidates the different membership functions and rules generated
from the data using the proposed data-driven fuzzy approach.

Stage 5: Driving style prediction

Mamdani rule-based fuzzy inference method is used to predict the core driving
styles of input driving patterns i.e., driving incidents obtained from sensors. Mam-
dani inference converts crisp input values into FSs (fuzzification) using the input
MFs; computes rule strengths using ‘AND’ (minimum of membership degrees), ‘OR’
(maximum of membership degrees) and ‘NOT’ (1 minus membership degree) [292]
operators; and aggregates the rule strengths using aggregation operators. The ag-
gregated rule strengths represent the likelihood of driving styles and the resulting
IF-THEN rules represent meaningful mappings of driving patterns to driving styles.

3.3.2 A hybrid deep learning framework for driving posture
detection

The proposed hybrid deep learning framework for driving posture detection consists
of CNNs coupled with LSTMs. The CNN architecture consists of deep convolutional
layers to extract discriminative spatial feature maps from images, which are later
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sent to the LSTM architecture. The LSTM architecture consists of bi-directional
recurrent neural networks to capture the sequential dependencies among the spatial
features and fully connected neural networks to predict the driving posture. The
framework is shown in Figure 3.7 and each stage is described in detail below.

Figure 3.7: A hybrid deep learning framework to predict driving postures in images

Stage 1: Convolutional layers

This stage consists of convolutional layers to extract spatial features from a sequence
of images representing different driving postures. First, images are transformed
according to the requirements of the CNN architecture implemented and the pixel
values are normalised to speed up model optimisation. For large and diverse datasets
with several thousands of images for each driving posture, multiple convolutional
layers are stacked to extract feature maps from the normalised data. The different
components of a typical convolutional layer are described in Section 2.3.3 (page 17).
In the case where there are only few images with very similar driving postures,
existing deep CNN architectures that have been trained on image classification tasks
(i.e., pre-trained CNN architectures) are utilised to take advantage of their optimised
model weights. Some popular state-of-the-art CNN architectures are employed to
evaluate the framework as described in Section 3.4.

The feature maps produced by the last convolutional layer in the architectures
represent important spatial information for distinguishing between the driving pos-
tures e.g., head, body and hand positions. In order to capture the temporal differ-
ences between different driving postures, the feature maps are are stacked up and
flattened. The flattened feature maps for each image in a sequence are stacked up
(appended) to form a sequence of spatial features and fed to the LSTM architecture
in the next stage.

Stage 2: Long short-term memory networks

The LSTM architecture consists of stacked recurrent neural networks that process
the feature maps in a sequential manner to extract the sequential dependencies
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among the images that differentiates driving postures. This is done in both the
forward (i.e. first to last feature map in the sequence) and backward directions (i.e.
last to first feature map in the sequence) to increase the amount of information
captured about the sequence. The stacked recurrent networks send the learned
information from previous steps in the sequence to subsequent steps through multiple
hidden layers. The output (temporal features) from the last recurrent cell in the
forward direction is merged with that from the backward direction, and passed to
a fully connected layer to classify the images. The recurrent networks share spatial
information from previous feature maps using the cell (Ct) and hidden states (ht),
as follows:

Ct = ft ⊙ Ct−1 + it ⊙ tanh(WcXt + Ucht−1 + bc) (3.2)

ht = ot ⊙ tanh(Ct) (3.3)

Where Ct−1 is the spatial information of the previous flattened feature maps in
the sequence, ft is the forget gate’s activation function of the current feature map,
it is the input gate’s activation function of the current feature map, ot is the output
of the current feature map representing both spatial and temporal information from
previous feature maps, and tanh is an activation function. W , U , and b represent
the weight matrices and bias vectors which need to be learned during training.

3.3.3 A federated deep learning framework for affect recog-
nition

The hybrid deep learning framework introduced in Section 3.3.2 is implemented in
a federated learning fashion to predict human attributions of valence and arousal
using facial images. Facial images consist of facial expressions that could be used
to predict drivers’ emotions and level of fatigue. The federated learning approach
processes users’ facial images at their local machines and sends their trained models
to the central processing module for aggregation, as shown in Fig. 3.8. The local
and central processing machines have the same model implementation to enable
easy aggregation of the trained models. Different aggregation or information fusion
techniques [293] exist to combine the locally trained models, such as mean, weighted
average, minimum, maximum amongst others. The deep learning framework imple-
mented at the local and central processing machines consists of CNNs coupled with
recurrent networks to learn the spatio-temporal dynamics in sequences of images
and for combining the model weights, respectively.

The training process occurs across multiple local machines, each containing an
individual’s images. After each training iteration or pre-defined time step, the cen-
tral machine receives trained model weights from the different local machines. Users’
images do not leave their local machines, thereby, preventing any access to users’
data. In the central machine, the weights are aggregated and the aggregated weight
is sent back to the local machines to update their weights for the next training iter-
ation. The processes are repeated throughout the training stage i.e., local training,
central aggregation and local weight update.
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Figure 3.8: A diagram representing the different steps of our proposed federated
deep learning approach for affect recognition.

3.4 Experiments

This section first describes the three datasets (i.e., HGV telematics incident data,
AUC driving posture database, and RECOLA) acquired for evaluating the methods
presented in the previous section (Section 3.3). Subsequently, the experimental
configurations for the different methods and evaluation protocols are presented.

3.4.1 Datasets

The three datasets are described below:

Database 1: Telematics driving incident datasets

HGV telematics driving incident data is collected from Microlise [262], our industrial
partner. Microlise employs telematics solutions for driving and vehicle data collec-
tion; and they use this information to define strategies for incident prevention and
to promote better practices in the HGV industry. Information produced by their
telematics solutions are transmitted and collected from the HGVs using a Controller
Area Network (CAN) bus. The data consist of aggregated driving incidents for each
driver who completed a minimum of 10 journeys per quarter each year. The data was
collected between the first of January and the thirty first of December for the years
2014, 2015, 2016, and 2017. The data was split by clustering drivers’ average daily
mileage into three datasets i.e., short, medium and long mileage datasets. Short
mileage drivers completed journeys with a daily average mileage up to 136.70 miles,
medium mileage drivers had an average daily mileage between 136.70 and 217.48
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miles, and long mileage drivers covered an average daily mileage more than 217.48
miles. In total, 2,253 HGV drivers for short, 3,776 for medium and 3,616 for long
average daily mileage subgroups are considered across the four years. The datasets
consist of four driving incidents: frequency of Harsh Braking (HB) events, Over-
Speed (OS) duration in seconds, Excessive Throttle (ET) duration in seconds and
frequency of Over Revving (ORev) events of HGV journeys completed in the United
Kingdom. Those incidents were chosen because they are the most relevant driving
incidents present in all of the HGVs, which are related to road safety. It is important
to mention that these datasets are currently the largest telematics datasets (more
than 2000 drivers) reported in the HGV industry with driving incidents collected
for the longest period (4 years).

Database 2: The American university in Cairo distracted driver datasets

The AUC distracted driver database [172, 263] is the largest, most comprehensive
publicly available database for driving posture characterisation. The database cap-
tures most real-world driving postures (up to 10 postures): safe driving (c0), text
right (c1), right phone usage (c2), text left (c3), left phone usage (c4), adjusting
radio (c5), drinking (c6), reaching behind (c7), hair or makeup (c8), and talking to
passenger (c9). Figure 3.2 shows sample images of the different types of distracted
postures found in the database. The driving posture images in the database were
captured using an ASUS ZenPhone rear camera (Model Z00UD), with image sizes of
1080 * 1920 pixel. The images were captured from 44 participants in experimental
settings. The database was later split into training and test sets. The training set
consists of images from 38 participants and images of the remaining 6 participants
formed the test set. Table 3.1 shows the number of images in the training and test
sets for each driving posture. The database is not well balanced with ‘safe driving’
having the highest proportion of images.

Table 3.1: Number of images in each driving posture for training and test sets of
AUC distracted driver Database

Types of Number of images Number of images
driving postures in training set in test set

c0 2,440 266
c1 1,305 133
c2 862 114
c3 744 100
c4 950 90
c5 753 90
c6 733 63
c7 691 63
c8 698 66
c9 1,379 138
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Database 3: Remote collaborative and affective interactions datasets

The RECOLA database [264] is a popular and comprehensive affective database
with continuous response variables (i.e. valence and arousal). The database consists
of videos, AUs, audio, ECG and EDA datasets for 23 participants. The data was
collected during spontaneous and naturalistic interactions between the participants
when performing collaborative tasks. The database also contains the ground truth
continuous labels for valence and arousal that range from -1 to +1. The annota-
tions were carried out by six annotators. The annotators looked at each frame and
provided their subjective opinion (in the continuous scale from -1 to +1) about the
valence and arousal affective states of the facial expressions in the frames. They
were properly trained to understand the task and annotation tool. Figure 3.9 shows
the valence and arousal dimensions and some sample affective states that can be
extracted from the dimensions [276]. This thesis utilises the facial images extracted
from the RECOLA video dataset with a frame rate of 25fps and AUs extracted
from the facial images. A total of 7,500 images per participant was extracted, and
15 AUs extracted from each image. In addition, movements of the face in X-Y-Z
directions (i.e. pitch, roll and yaw respectively), the mean and standard-deviation of
the optical flow in the region of the face, and changes of the AUs, facial movements,
mean and standard deviation of the optical flow from the previous timestamp (delta
coefficients) were computed and added to the 15 AUs to produce a total of 40 fa-
cial features per image. Figure 3.3 shows sample images with different valence and
arousal labels extracted from the database.

Figure 3.9: Two-dimensional description of affect using continuous scales
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3.4.2 Experimental settings

This section presents the models implemented in the various stages of the frameworks
introduced in Section 3.3 and their configurations. The section also presents state-
of-the-art models explored for comparison with the frameworks.

Method 1: Hybrid fuzzy framework

The consensus clustering stage consist of K-Means (KM) [294] and Partitioning
Around Medoids (PAM) [295]. Calinski and Harabasz [121], and Hartigan [122]
cluster validity methods are applied over a range of number of clusters varying
from 2 to 20 to determine the ideal number of clusters in the data. For the second
stage of the 2-stage clustering framework, Support Vector Machine (SVM), Random
Forest (RF) and Multi Layer Perceptron (MLP) are employed as an ensemble on the
clustered data. Due to the large size of the telematics data and hyper-parameter set,
the models are fine-tuned using random search hyper-parameter optimisation [296].
The optimised hyper-parameters for the classifiers are shown in Table 3.4.

For the fuzzy logic stage of the framework, the five-number summary statistics
for each driving incident are used to construct their respective membership func-
tions (antecedents MFs). Figure 3.10 shows the membership functions for the four
driving features of short daily average mileage subgroup generated from their sum-
mary statistics as described in Section 3.3.1. The consequents of the FLS are the
core driving styles obtained from the 2-stage clustering framework. The consequent
membership functions are equally distributed between 0 and 100, which represents
the level of aggressive driving.

Figure 3.10: Driving incidents membership functions for short mileage drivers
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Subsequently, the Wang-Mendel [291] is employed to generate the IF-THEN
fuzzy rules. After generating the MFs and consequents from the data, each input-
output pair in the data is fired on the MFs to produce IF-THEN rules consisting of
input and output FSs. The occurrence of each rule from the data corresponds to the
rule’s weight. The rule weights are utilised to implement rule-reduction procedure
on conflicting rules. Table 3.9 shows the rules generated from short mileage incident
dataset using the Wang-Mendel approach and the MFs presented in Figure 3.10.

Lastly, Mamdani rule-based inference method [215] is employed for predicting
the likelihood of driving styles by using the rules generated by the Wang-Mendel
approach and fuzzy MFs generated from the five-number summary statistics. The
inference process is described in Section 2.3.4 (page 21).

To compare the classification performance of our framework with other classi-
fiers, the Mean Of Maxima (MOM) defuzzification [297] is utilised to reduce the
output fuzzy sets to a single class. MOM is employed because it selects the class
corresponding to the maximum value of the membership function i.e., the class with
the most likelihood of occurring. The classification performance of our framework is
compared with the individual classifiers used in the ensemble (i.e., RF, SVM, MLP),
trained on the labelled datasets obtained after employing the profile labelling algo-
rithm described in Section 3.3.1.The labelled incident datasets (i.e., short, medium
and long mileage datasets) is split into training and test sets using a 70:30 ratio.

Table 3.4: Hyper-parameters of classifiers employed in stage 2 of the 2-stage clus-
tering framework on short, medium and long mileage telematics datasets.

ML Approaches Hyper-parameters Short Medium Long

Random Forest Classifier

Number of Trees 200 300 300
Max depth 20 40 40
minimum samples for node 1 2 2
Minimum samples to split 2 5 10

Support Vector Machine

Kernel Radial basis Radial basis Radial basis
Regularisation 10 1 1
Kernel coefficient 1 1 1

MultiLayer Perceptron

Hidden Layer Size 150 100 200
Activation function ReLU ReLU ReLU
Optimiser Adam Adam Adam
L2 Regulariser 0.001 0.001 0.01
Learning Rate 0.001 0.001 0.001

Method 2: Hybrid deep learning framework

Inception-V3 CNN model [177] is pretrained on the ImageNet database and applied
in the CNN stage of our framework due to its better performance (f1-score versus
training time) compared to other CNN models on the AUC database as shown in
Figure 3.11. Inception showed comparable performance with DenseNet with far
lower training time. For the LSTM stage, LSTMs [182], Gated Recurrent Units
(GRUs) [298], and bi-directional versions of the networks are implemented and eval-
uated.

To demonstrate the good performance of our framework in predicting driving
postures, the performance of our framework is compared with state-of-the-art CNN
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Figure 3.11: Average f1-score versus training time of popular pre-trained ImageNet
convolutional networks on the AUC distracted driving posture datasets

models (i.e., VGG [176], Inception [177], ResNet [178] and DenseNet [179]), and
past studies that explored deep learning methods on the AUC database. The CNN
models have the following features:

• VGG: VGG was introduced in 2014. The network is very deep with thirteen
convolutional layers and three fully connected layers.

• Inception: Inception was introduced in 2014 with its main motivation to deal
with the uncertainty in choosing the kernel size of convolutional layers. The
network uses multiple kernel sizes in each convolutional layer to complement
the advantages of different kernel sizes while avoiding deeper architectures
which can lead to overfitting.

• ResNet: ResNet was introduced in 2015 to handle the vanishing gradient
problem [180]. The network solves this problem by introducing skip connec-
tions between layers. This allows the gradients to flow properly through the
skip connections to any other earlier layer.

• DenseNet: DenseNet was introduced in 2017 as an upgrade of ResNet. In
DenseNet, each layer connects to every other layer i.e., the input of any layer
is the concatenated feature maps of all subsequent layers. This reduces the
number of parameters compared to ResNet, however, very deep DenseNet
variations have been recently developed that have very large number of pa-
rameters.

The AUC training set (data from 38 drivers) is split into a new training set
with 35 drivers’ data and a validation set with 3 drivers’ data. The validation set
is used to fine-tune the hyper-parameters of the models. The learning process is
stopped when the validation loss stops decreasing for 5 consecutive epochs. Simple
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networks are first implemented and their performance improved by evaluating more
complex configurations. The different hyper-parameter sets evaluated to improve
performance are described below.

The models are evaluated using popular learning rates between 0.01 and 0.0001.
Performance with ‘no’, 0.5 and 0.2 dropouts are compared as these dropout values
have proven to significantly improve performance [299]. Dropouts were not imple-
mented in the CNN models because already existing CNN networks were utilised.
By considering the number of images in the datasets (less than 15k images) and
the depth of the networks (very deep networks), small batch sizes of 8, 16, 32 and
64 were evaluated. To prevent overfitting in the recurrent networks, small number
of stacked recurrent layers between 1 and 4, and hidden units in the range 16 to
128 with increments of 16 were evaluated. The input features of the recurrent net-
works are chosen between 64 and 256 with increments of 64, due to the size of the
flattened output feature maps of the CNNs. The sequence length of the recurrent
networks varied according to the number of the images for each driving posture
sequence. Table 3.5 shows the best hyper-parameter values after evaluating the set
of hyper-parameter values.

Lastly, the AUC test set consisting of 6 drivers was used to evaluate the per-
formance of the optimised models. Each model is trained 5 times and the Average
Accuracy (AA), Average F1-score (AF) and the Average Inference Time (AIT) com-
puted on the test set. The experiments were executed on a graphics processing unit
(GPU) using 4 CPU cores and 6GB RAM. Our code was implemented in Pytorch
with an epoch size of 50 for each experiment.

Method 3: Federated deep learning framework

Similar to the hybrid deep learning framework employed for detecting driving pos-
tures, bi-directional GRUs and LSTMs are explored in the recurrent stage for detect-
ing affect. However, a shallow ResNet network (i.e. ResNet18) is employed in the
CNN stage of the framework as the best performance on the RECOLA was achieved
using ResNet network [193].The ResNet-BiLSTM/GRU model is implemented on
the local machines as well as the central processing machine. In a real-world driving
setting, the local machines are processors found in the vehicles where the images are
captured and locally stored, while the central processing machine is found on the
deployment environment e.g. on-premise, and cloud servers. Each local machine or
device trains a local version of the model on its own data and sends their trained
models (weights and biases) to a central server for aggregation. The central server
aggregates the models to update the global model and sends the updated global
model back to the local machines, which use it to update their own local models
and continue training. A federated deep learning approach is a method of training
machine learning models using data that is distributed across multiple devices or
locations, without the need to centralise the data in one location. This approach
is often used when data privacy or security concerns prevent centralised training or
when the data is too large to be centralised. The main advantage of the federated
deep learning framework is that the central processing machine trains a global model
without access to the data as data are stored and processed in the local devices. In
addition, it can enable the training of models on data that is distributed across
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multiple machines when data are too large to be centralised.
To validate the federated framework, its performance is compared with another

privacy-preserving strategy i.e., processing anonymised facial features (AUs), and
the conventional facial recognition strategy i.e., centralised processing of facial im-
ages. In addition, the performance of the framework is compared with other studies
that employed machine learning methods on the RECOLA image and AU datasets
for affect recognition.

The valence and arousal ratings provided by the six annotators are averaged to
produce the ground truth label for each image. When training the networks, the
Mean Squared Error (MSE) between the predicted affective states and annotated
affective states is minimised, and Adam Stochastic Gradient Descent is used to
optimise the loss function (MSE), which is a fast optimisation algorithm for deep
neural networks. Concordance Correlation Coefficient (CCC) [300] is employed to
evaluate the performance of the models. CCC measures the correlation and degree
of agreement between two variables. CCC has been widely used to evaluate models
that predict continuous response variables [193, 194, 196, 198]. CCC ranges from -1
to 1, with perfect concordance at 1 and perfect discordance at -1.

CCC is calculated as follows:

CCC = (2ρσxσy)/(σ2
x + σ2

y + (µx − µy)
2) (3.4)

where µx and µy are the means for the two variables and σ2
x and σ2

y are their
corresponding variances. ρ is the correlation coefficient between the two variables.

To train and evaluate the federated framework, data of 3 participants are ran-
domly selected for evaluating the global model and the remaining 20 participants’
data used for training 20 different models in a distributed manner. For the non-
federated approaches (i.e., centralised processing of AUs and facial images), 8-fold
cross validation is employed. During each training process, 7 folds are used for train-
ing and 1 fold kept aside for evaluation. The models are optimised by evaluating
a range of hyper-parameter values. For instance, learning rates of 0.01, 0.001 and
0.0001; hidden sizes of 8, 16, 64, 128, 256 and 512; AU sequence lengths of 50, 100,
200, 400, 600, 800, 1000 and 2000; image sequence lengths of 4, 8, 16 and 32; and
number of stacked recurrent layers of 1, 2, 4, 6 and 8. Table 3.6 presents the opti-
mal hyper-parameter configurations of the models. The experiments for federated
learning were split into 4 machines. One machine for aggregating the model weights
obtained from the remaining three i.e., the global model. All machines consisted
of a Graphics Processing Unit (GPU), 4 CPU cores and 6GB RAM. Our code is
implemented in Pytorch with an epoch size of 100 for each experiment.

3.5 Results and Discussion

This section discusses the results of our methods on the different datasets and dis-
cusses the comparisons of our methods with other popular AI methods employed in
the literature for predicting the driving behaviours.
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Table 3.6: Hyper-parameter configuration of recurrent networks obtained using the
RECOLA video and action unit datasets

Processing Method Networks Learning rate Sequence length Hidden size Number of layers
BiGRU 0.0001 16 8 1

Non-federated facial images BiLSTM 0.0001 16 8 1
BiGRU 0.0001 600 512 6

Non-federated action units BiLSTM 0.0001 600 128 6
BiGRU 0.0001 8 128 6

Federated facial images BiLSTM 0.0001 8 128 6

3.5.1 Results of predicting driving styles

(a) Driving incident patterns and driving styles

After applying the 2-stage clustering framework and profile labelling algorithm on
the unlabelled HGV telematics datasets, 11 HGV driving incident patterns (clusters)
are identified as shown in Table 3.7. The labels (‘low’, ‘moderate’ and ‘high’) rep-
resent the occurrence of driving incidents in the different driving patterns obtained
by the profile labelling algorithm.

Table 3.7: HGV driving clusters uncovered by the 2-stage clustering framework and
profile labelling algorithm applied on the three driving incident datasets provided
by Microlise: S for short, M for medium and L for long average mileage drivers.

Driving Harsh Over-Speed Excessive Number of Datasets
clusters Braking duration Throttle Over Revs

1 Low Low Low Moderate S,M,L
2 Low Low High Low M
3 Low Low High Moderate S
4 Moderate Moderate High Low L
5 Moderate Moderate High Moderate S,M,L
6 Moderate Moderate High High M
7 Moderate High Moderate Low S
8 Moderate High High Low L
9 High Moderate Moderate Low M
10 High High Moderate Low S,M,L
11 High High High Low M,L

Similar driving clusters are merged to produce the core HGV driving styles.
Clusters 2 and 3 are merged as they differ only in number of over revs, one being
low and the other being moderate. Similarly, clusters 4, 7 and 9 are combined with
clusters 5, 8 and 10, respectively. While clusters 1, 6 and 11 are standalone driving
styles as they do not follow the merging rule. Table 3.8 shows the seven core driving
styles deduced from the 11 clusters uncovered across the four years. The first driving
style represents a ‘very calm’ driving style with ‘low’ occurrence of driving incidents
except number of over revs with ‘moderate’ occurrence. The second driving style
is similar to the first except for a ‘high’ occurrence of excessive throttling, and it is
labelled as ‘calm’ driving style. Driving style 3 is considered ‘moderate’ with ‘mod-
erate’ harsh braking and over-speeding incidents. Driving style 4 is more aggressive
than 3 with ‘high’ over revving incidents. Driving style 5 is considered ‘speedy’
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with ‘high’ over-speeding and excessive throttling incidents. Driving clusters 9 and
10 produce an ‘aggressive’ driving style and cluster 11 produces a ‘very aggressive’
driving style with ‘high’ harsh braking, over-speeding and excess throttling incidents.

Table 3.8: Core Driving Profiles

Driving Cluster N. of Harsh Duration of Duration of N. of Over
Styles Numbers Braking Events Over-speeding Excessive Throttling Revs Events

Very Calm 1 Low Low Low Moderate
Calm 2,3 Low Low High Low-Moderate

Moderate 4,5 Moderate Moderate High Low-Moderate
Moderate-Aggressive 6 Moderate Moderate High High

Speedy 7,8 Moderate High Moderate-High Low
Aggressive 9,10 High Moderate-High Moderate Low

Very Aggressive 11 High High High Low

(b) Driving style interpretability

The fuzzy logic stage of our framework models uncertainty in sensor data and impre-
cision in driving style definitions by representing both driving incidents and driving
styles as FSs. In addition, the FLS produces interpretable driving styles by gener-
ating human-understandable mappings between the occurrence of driving incidents
and driving styles. For example, instead of using precise number of driving incidents
that is difficult to contextualise, the FLS transforms the number of driving incidents
into ‘low’, ‘moderate’ and ‘high’ occurrence of driving incidents, which is easier for
end-users and decision makers to understand.

The mapping of the occurrence of driving incidents to driving styles using IF-
THEN rules represents cause-and-effect relationships. For example, Table 3.9 shows
cause-and-effect relationships between the driving incidents and driving styles of
short mileage HGV drivers. These relationships are important for educating drivers
about the consequences of their driving and for road safety specialists and transport
managers to revise current traffic laws according to the rules on speedy, aggressive
and very aggressive driving styles. Subsequently, the output fuzzy sets and their
membership degrees represent the uncertainties in predicting the different driving
styles i.e., uncertainty in sensor readings, imprecision in human language, and vari-
ability in human interpretation.

(c) Comparison with conventional supervised learning approaches

The distribution of drivers in the different driving styles across the labelled datasets
produced by the 2-stage clustering framework and profile labelling algorithms for
the short, medium and long average mileage drivers is presented in Table 3.10. The
datasets are split into training and test sets with a ratio of 70:30, respectively. The
training training datasets are used to train RF, SVM, and MLP classifiers, as well
as develop the fuzzy sets and rules of our fuzzy inference system. The datasets are
imbalanced with majority of drivers having ‘Very Calm’ driving styles. As a result,
Synthetic Minority Oversampling Technique (SMOTE) [301] coupled with random
under-sampling of the majority class is employed to reduce class imbalance.
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Table 3.10: Distribution of drivers among the different driving styles in Microlise’s
short, medium and long mileage datasets

HGV Driving Short Average Medium Average Long Average
Styles Mileage Dataset Mileage Dataset Mileage Dataset

Very Calm 1,692 2,387 2,601
Calm 173 43 -

Moderate 50 167 287
Moderate-Aggressive - 459 -

Speedy 37 - 49
Aggressive 301 668 609

Very Aggressive - 52 70
Total 2,253 3,776 3,616

Table 3.11 presents the average classification accuracy and f1-score of the su-
pervised learning models on the test sets with comparison to our fuzzy inference
approach. It is important to note that f1-score is a better evaluation metric com-
pared to accuracy for evaluating the performance of the imbalanced datasets. The
hybrid fuzzy approach shows best performance in the Short mileage dataset for accu-
racy evaluation metric and best performance in Medium and Long mileage datasets
for f1-score. This means without defuzzifying the outputs of our fuzzy approach,
the accuracy and f1-score of the approach may outperform the classifiers for the
other datasets with lower performance. As defuzzification loses information about
the uncertainties in predicting the driving styles. Other benefits of our framework
compared to the classifiers are: (1) interpretation of HGV driving styles in terms of
user-friendly descriptions of the occurrence of driving incidents (i.e., ‘low’, ‘moder-
ate’ and ‘high’) and IF-THEN rules; and (2) representation of the uncertainties of
predicting driving styles in terms of output fuzzy sets i.e., the likelihood of driving
patterns belonging to driving styles.

In the future, class weight and focal loss functions could be explored to improve
performance by forcing the models to focus more on minority driving styles (e.g.,
speedy and very aggressive driving styles) and difficult to classify driving patterns.
In addition, telematics data with more valuable driving incidents could produce
more reliable road safety HGV driving styles, such as harsh cornering, harsh lane
changing and close following.

Table 3.11: HGV driving style classification results of popular conventional super-
vised learning methods and our fuzzy logic approach

Accuracy (%) f1-score (%)
Models Short Medium Long Short Medium Long

RF 81.63 57.54 78.19 77.69 52.02 72.62
SVM 75.73 70.24 78.10 68.06 52.56 68.56
MLP 81.19 65.99 85.48 75.00 51.91 74.22
FLS 84.44 61.71 78.55 73.33 60.00 76.00
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3.5.2 Results of predicting driving postures

To validate our hypothesis that recurrent neural networks can capture more discrimi-
native temporal information to improve the prediction of driving postures (especially
for postures with similar spatial representations), the results obtained from the pro-
posed hybrid framework is compared with four state-of-the-art CNN architectures
that only capture spatial discriminative information i.e. VGG-19, Densenet-201,
Resnet50, and InceptionV3. The results are also compared with studies in the liter-
ature that explored driving posture detection using deep learning architectures and
the AUC datasets.

(a) Comparison with state-of-the-art CNN models

Table 3.12 presents the average accuracy (AA), average f1-score (AF), average infer-
ence time (AIT) in seconds on 100 images, and the average accuracy of each posture
on the AUC ’split-by-driver’ distracted driver test dataset. First, it is observed
that models implemented using our proposed framework, i.e. CNNs coupled with
recurrent networks, outperformed the state-of-the-art CNN models in both AA and
AF. This is due to the additional discriminative information between the feature
maps captured by the recurrent networks. Amongst the models implemented us-
ing our proposed framework, InceptionV3-BiLSTM showed best performance with
an AA of 0.917 (standard deviation 0.003) and AF of 0.931 (standard deviation
0.004). While Densenet-201 showed best performance amongst the CNN models
with an AA of 0.890 (standard deviation 0.03) and AF of 0.895 (standard deviation
0.02). Statistically, the difference in accuracy between the InceptionV3-BiLSTM
and Densenet-201 models is not significant with a p-value of 0.0802 (significance
level is 0.05). However, the difference in f1-score (which is a more reliable evalua-
tion metric than accuracy due for the imbalanced AUC training dataset) between
the InceptionV3-BiLSTM and Densenet-201 models is statistically significant (p =
0.0043). In terms of model latency, ResNet50 outperforms the other models due
to its shallow structure (fewer number of layers and connections between layers)
compared to the other CNN models with a AIT of 11.6. The results show a trade-
off between accuracy and model latency as deeper networks turn to produce more
accurate results but take a longer time for inference e.g., DenseNet and the hybrid
networks produce better performance but higher inference time. DenseNet is a very
deep CNN model compared to the other CNN models with dense connections from
all previous layers to all subsequent layers i.e. each layer receives the feature maps
of all preceding layers. While the bi-directional hybrid networks are more complex
compared to the other models because of the forward and backward data processing
in addition to the convolution computation.

Furthermore, it is observed that “reaching behind” posture (c7) has the lowest
average accuracy for all the CNN models compared to the other postures. This may
be due to its spatial similarity with “talking to passenger” posture (c9) as shown in
Figure 3.3. The CNN models appear to mistake “reaching behind” for “talking to
passenger” postures. Our hybrid framework (i.e., InceptionV3-BiLSTM), however,
improves the detection accuracy of “reaching behind” posture from 62% to 73%.
Therefore, for the AUC database, extracting the spatial discriminative information
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from images and sequential discriminative information from the feature maps helps
to better identify driving postures compared to using only spatial discriminative
information obtained by CNN models.

Table 3.13: Driving posture classification results for studies that explore the AUC
distracted driver test dataset

Model Loss (NLL) Accuracy (%)

VGG-16 [172] 1.2466 76.13

Resnet50 [172] 0.6615 81.69

Ensemble of AlexNet 0.6400 90.06
InceptionV3, ResNet50 and VGG-16 [172]

Ensemble of ResNet50 0.3700 92.00*
and VGG16 [282]

InceptionV3-BiLSTM 0.2793 91.70**

* has f1-score of 92.0% and ** has f1-score of 93.1%. Our hybrid framework results
represented in bold.

(b) Comparison with other studies

To provide a comprehensive evaluation of performance, the framework is compared
with the best results of CNN models in the literature that used the AUC distracted
posture dataset [172, 282]. Table 3.13 presents the accuracy of the studies with
comparison to our best performing hybrid model i.e., InceptionV3 coupled with
BiLSTMs. Our model shows higher accuracy compared to individual CNN models
employed in the literature but comparable performance with ensemble strategies of
CNN models. This provides an opportunity for future work to take advantage of
the strengths of individual CNN and RNN models by adapting our framework to
consider an ensemble of CNN models and RNN models.

Furthermore, our proposed framework is limited to classification tasks only. That
is, it cannot identify new types of distraction postures that are not found in the
dataset it was trained on. For example, looking at outside objects or events has
shown to be a dangerous distraction posture [302] but it is not found in the AUC
dataset. Therefore, our framework will not be able to detect this new distraction
posture. The framework is also limited to visual and manual distractions. Cognitive
distractions where a driver is lost in thought e.g. daydreaming, hand-free calling
and listening to the radio, cannot be recognised using our framework. For future
work, to make our framework more robust to new distraction types and cognitive
distractions, more data that capture those distractions are needed. In addition, the
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comprehensive data can be explored using anomaly detection techniques to model
and distinguish between “safe driving” and “distracted driving”.

3.5.3 Results of predicting affective states

This section presents the results of our proposed federated deep learning frame-
work with comparison with non-federated deep learning strategies applied to the
RECOLA database.

(a) Federated vs non-federated strategies

The performance of federated facial affect recognition is compared with non-federated
strategies using CCC evaluation metric. Table 3.14 shows the CCC for predicting
valence and arousal affective states. The bold values represent the best model per-
formance. Overall, the non-federated processing of facial images shows best valence
and arousal predictions, followed by the federated processing of facial images. The
strategies that process the raw facial images outperform the processing of AUs due to
the loss of spatial information in the AUs. CNNs coupled with BiLSTMs show best
performance for non-federated processing of images. The processing of AUs shows
similar arousal prediction performance compared to the federated processing of im-
ages. In addition, It can be observed that LSTMs outperform GRUs when processing
the images similar to results obtained from driving posture detection (Section 3.5.2).
However, for AU processing, GRUs show better performance compared to LSTMs.
This is due to the efficiency of GRUs in processing smaller datasets or feature sets
compared to LSTMs as only 40 facial features are extracted by the facial landmark
extractor while 512 non-linear features are extracted by the convolutional networks.

Table 3.15 presents the efficiency results of the best performing models in terms
of data protection, training time and inference time. Processing AUs has the least
training and inference times due to a smaller feature set (which reduces the com-
plexity of the network) and lack of the convolutional feature extraction layer. This
makes the AU processing modules more suitable for real-time affect recognition sys-
tems such as, real-time monitoring of drivers’ affective states for early intervention
and assistance. However, the predictive accuracy of processing AUs is lower com-
pared to the other strategies. The non-federated processing of images shows better
accuracy in predicting valence and arousal compared to AUs and FL at the detri-
ment of the potential exposure of users’ facial identities. FL best preserves users’
identities and sensitive information compared to the other methods as data is main-
tained in users’ local machines, however, its training time is significantly higher,
which can further increase if the processing at the local machines is not done syn-
chronously. Lastly, FL’s CCC results are inferior to the non-federated processing of
images due to limited data at the local machines.

It is important to mention that the performance of the models are based on
the averaged valence and arousal ratings provided by the six annotators. In the
future, the ratings of the individual annotators or other aggregation methods (such
as majority voting for continuous values [293]) could be explored to improve the
reliability of the ground truth labels, as the reliability of model performance depends
highly on the reliability of the response surface.
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Table 3.14: Average CCC for predicting valence and arousal using variations of RNN
models on RECOLA datasets (best performance in bold).

Affect Deep Learning Valence Arousal
Recognition Method Architecture CCC CCC

Non-federated Processing CNN-BiGRU 0.415 0.504
of Facial Images CNN-BiLSTM 0.476 0.515

Non-federated Processing BiGRU 0.347 0.401
of Action Units BiLSTM 0.269 0.365

Federated Processing CNN-BiGRU 0.393 0.273
Facial Images CNN-BiLSTM 0.426 0.390

Table 3.15: Model performance, training time and inference time for the best per-
formance deep learning strategies explored for affect recognition (best performance
in bold).

Affect Level of Valence Arousal Training Inference Inference
recognition Protection CCC CCC time 100 images 500 images
methods (minutes) (seconds) (seconds)

Non-federated Exposed 0.476 0.516 315.4 17.509 22.921
facial images

Non-federated Partial 0.347 0.401 141.5 1.351 2.962
action units Protection
Federated Protected 0.426 0.390 599.2 19.720 26.860

facial images

Table 3.16: Comparison of valence and arousal predictions between our proposed
methods and other studies using RECOLA datasets (best performance in bold).

Affect Type of Machine
Recognition Method Learning Model Valence CCC Arousal CCC

CNN + LSTM [193] 0.620 0.435
DNN [196] 0.379 0.464

Non-federated Processing CNN + LSTM [198] 0.538 0.336
of Facial Images CNN + RNN [195] 0.474 -

2D/3D CNN + ConvLSTM [194] 0.546 -
Our CNN + BiLSTM 0.476 0.514

LSTM [198] 0.483 0.137
Non-federated Processing SVM [197] 0.507 0.272

of Action Units or Facial Landmarks BiLSTM + SVM [199] 0.394 0.265
Our BiGRU 0.347 0.401

Federated Processing Our CNN + BiLSTM 0.426 0.390
of Facial Images

Note: A dash is inserted if the results were not reported in the original papers.

(b) Comparison with other studies

Table 3.16 compares the performance of our models with other studies that employ
deep learning methods on the RECOLA image and AU datasets for affect recog-
nition. For the non-federated processing of facial images, it is observed that [193,
194, 196, 198] show better valence recognition results compared to our non-federated
deep learning model, with Tzirakis et al. [193] having the best CCC valence (0.620 ).
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However, our model shows best arousal accuracy with a CCC value of 0.514. Those
studies also explored different architectures of CNNs coupled with LSTMs, but feed
the outputs from fully connected layers in the CNN stage into the LSTMs. These
outputs from their fully connected CNN layers are complex non-linear representa-
tions of the relationships between the spatial features (pixels) of the images. In
addition, the studies adopt a train-test split evaluation approach, which does not
provide a comprehensive exploration and evaluation of the data.

Furthermore, the processing of AUs and facial landmarks by previous stud-
ies [197, 198, 199] show better CCC results in predicting the valence dimension.
However, our AU deep learning model outperforms the arousal accuracy of the
other studies (0.401 ). This is due to the remarkable performance of GRUs in pro-
cessing small feature sets. Storing and processing the anonymised facial features
(AUs) is more secured in terms of privacy compared to storing and processing the
raw facial images. In order to maintain and process a database of facial images,
appropriate security levels and systems to safeguard the data are required. In ad-
dition, our review of AUs for affect recognition in Section 3.2.3 revealed that AUs
are not completely secured as image reconstruction techniques (e.g., auto-encoders
and generative adversarial networks) could potentially reconstruct faces from facial
landmarks. Therefore, our proposed federated learning strategy protects users’ data
compared to the centralised processing of AUs. We could not find any study in the
literature that explores FL for facial affect recognition to compare with our federated
results of 0.426 for valence and 0.390 for arousal.

Furthermore, the results of federated vs non-federated strategies show a trade-
off between efficiency and privacy for facial affect recognition. Consequently, from a
privacy-compliant and data protection perspective, it could be argued that storing
facial images may not be necessary if other alternative methods that produce accept-
able performance are available. However, our best result for federated processing
of facial images(i.e., valence CCC equals 0.426 and arousal CCC equals 0.390 ) is
not sufficient for deployment as 0.426 is still far from perfect agreement i.e., CCC
of 1. Therefore, for driver affect recognition, highly secured non-federated facial
affect recognition models are still the most accurate to deploy in driving assessment
systems. In addition, more work needs to be done to improve the performance of
federated affect recognition, by analysing additional data sources (such as voice pat-
terns and eye movements), and by exploring attention mechanisms that focus more
on parts of the image relating to human emotions.

Lastly, in the future it will be important to also consider the following charac-
teristics of human emotions when improving the accuracy and reliability of driver
affect recognition systems: (1) differences between facial expressions and what peo-
ple actually feel; and (2) cultural differences in expressing and reading emotions.

3.5.4 Implications of the results to HGV driving assessment

The above sections have presented the results of our proposed methods in predicting
the different facets of driver behaviour that impact driving risk from driver data
i.e., drivers’ driving styles, driving postures and affective states. For an online data-
driven assessment of HGV driving risk, these methods would process HGV driver
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data streams to accurately characterise the driving behaviours, and forward the
information to an intelligent risk assessment component. The intelligent driving risk
assessment component analyses the information to compute the impact of the driving
behaviours on road safety. However, the AUC and RECOLA databases utilised
for evaluating the hybrid deep learning framework introduced in this chapter (for
detecting driving postures and affective states) were collected from non-HGV drivers
in controlled settings. This was due to the challenges of obtaining naturalistic HGV
driver footage, such as obtaining drivers’ consent to use their data, developing secure
storage systems to protect the data, and developing privacy compliant procedures
and technologies to process the data. Nevertheless, this does not undermine the
application of our methods to HGV road safety driving assessment. For a more
reliable identification of HGV driving postures and affective states in the future, our
methods should be retrained and evaluated on well labelled HGV driver footage as
HGV drivers may display different driving postures and affective states compared
to non-HGV drivers.

Another limitation of the data is that the different databases were not collected
together i.e., the footage data is not affiliated with the telematics data. As a result, it
is difficult to determine the relationships among drivers’ driving styles, postures and
affective states using those datasets. This also does not allow us to simultaneously
detect the different driving behaviours and provide more reliable results. However,
our methods have shown state-of-the-art performance in detecting driving styles,
postures and affective states, and therefore, can be easily deployed into systems
that capture HGV telematics data and driver footage for further improvement of
HGV driver behaviour characterisation. Chapter 5 captures the relationships among
driving styles, postures and affective states by engaging with key stakeholders in the
HGV sector, who possess qualitative insights about the driving behaviours.

As revealed by the psychological theories on driver behaviour in Chapter 2, the
different facets of driver behaviour are continuously influenced by external conditions
to impact driving risk, such as weather conditions, road types and traffic conditions.
Therefore, in order to reliably assess the risk of driving behaviours, it is important
to incorporate the impact of inevitable external conditions.

3.6 Summary

This chapter introduced a driver behaviour characterisation framework made up of
three intelligent methods to improve the prediction accuracy, interpretability and
data privacy of driving styles, driving postures and affective states. First, it pre-
sented a novel hybrid fuzzy logic framework to automatically identify and interpret
core driving styles from unlabelled telematics data. The framework was employed
on a large telematics driving incident data captured from more than 2,000 HGVs
in the UK from 2014 to 2017. The results demonstrate better performance than
conventional machine learning approaches in modelling data uncertainties, and pro-
ducing more robust and understandable descriptions of driving styles. Secondly, it
presented a novel hybrid deep learning framework for detecting driver distraction
postures in driver footage. The framework consists of stacked CNNs to extract fea-
ture maps from the images that represent the spatial discriminative features between
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the postures, and stacked recurrent networks to capture the sequential discrimina-
tive relationships among the spatial features. The framework is applied on the AUC
distracted driver dataset and compared to other popular CNN architectures such
as VGG, Inception, ResNet and DenseNet. The framework outperformed the CNN
models in both average accuracy (91.7%) and average f1-score (93.1%). Lastly, it
presented a federated implementation of deep learning methods for affect recogni-
tion using facial images while protecting users’ identities and privacy. The federated
approach is compared to non-federated strategies i.e., centralised storage and pro-
cessing of facial images, and anonymised facial features. The results of the strategies
when applied to the RECOLA image and action unit datasets show trade-offs be-
tween accuracy, efficiency and privacy. The centralised processing is less secured
compared to the federated framework, but more accurate in predicting valence and
arousal. However, the results show the potential of detecting valence and arousal in
an online system, where data streams are processed in local devices to protect the
identities of drivers.

In the next chapter, the contextual characteristics of real-world driving envi-
ronments are considered, such as weather conditions, traffic conditions, road types
and work schedules, in the assessment of HGV driving performance and risk. The
impact of these factors on drivers’ responses are commonly not captured in driver
data [9, 303], but at least can be partially obtained from stakeholders’ experiences
in the HGV sector. Therefore, simply assessing drivers’ behaviours and not the en-
vironment in which they operate is not sufficient to provide a realistic, reliable, fair
and holistic assessment of driving risk. The chapter introduces a novel systematic
stakeholder-supported approach to capture and embed the impact of external con-
ditions into the assessment of HGV driving behaviours when comprehensive driving
risk data are scarce or unavailable.
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Chapter 4

Modelling the Impact of
Contextual Factors

4.1 Introduction

The previous chapter introduced an intelligent multifaceted driver characterisation
framework to predict driving behaviours using three data sources obtained from
sensors. However, as revealed by the psychological theories on driver behaviour in
Chapter 2, the multifaceted HGV driving task is mostly influenced by external con-
textual factors, such as, weather, traffic, road conditions, time pressure for delivery
and work schedules. Therefore, in order to fully understand and assess the impact of
predicted HGV driving behaviours on road safety, the impact of external contextual
factors on drivers’ responses need to be considered.

This chapter answers the third research question of this thesis: “how can we
reliably capture, model and incorporate information about the impact of contextual
factors on drivers’ responses and road safety into the assessment of HGV driving
risk?”. It introduces a novel framework called stakeholder-supported intelligent driv-
ing assessment (SIA) that engages with key stakeholders in the HGV sector to cap-
ture the influence of driver traits and external factors on HGV driving performance.
Subsequently, the variability and imprecision in the opinions of the stakeholders
about the impact of the factors are modelled using Fuzzy Sets (FSs) based on the
Interval Agreement Approach (IAA) [213, 257, 304], fused and incorporated into the
assessment of driving performance and risk.

The chapter is organised as follows. Section 4.2 provides an overview of current
intelligent data-driven driving risk assessment (CIDA) approaches reviewed in Chap-
ter 2 (page 28). Subsequently, the rationale of using the IAA approach to capture
and model expert input is provided. Section 4.3 describes the different stages of SIA,
and Section 4.4 presents the experimental design for the application of SIA in HGV
driving risk assessment. The results of its application are discussed in Section 4.5,
and lastly, Section 4.6 summarises the chapter.
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4.2 Background

This section provides an overview of existing intelligent data-driven driving risk
assessment approaches and the motivation for engaging with stakeholders to capture
contextual information. It also describes the IAA approach, which is employed to
capture and model the modulation of stakeholders views of perceived risk factors.

4.2.1 Related work

According to our review of CIDA approaches presented in Section 2.4.2 (page 28), re-
searchers have mainly focused on behaviour-centric driving risk assessments. Those
studies explored different computational and artificial intelligence techniques on
driver data (e.g., driving incident data [14, 15] and GPS data [16, 17, 305]) that
represent the manner by which drivers operate vehicle controls (i.e., driving styles)
to determine the level of driving risk. Narrow subsets of external factors have also
been explored together with driving styles [16, 229, 252, 305]. Analysis and assessing
driving risk using solely drivers’ driving styles could potentially lead to incomplete
and unfair assessments as real-world HGV commercial driving is affected by in-
evitable contextual factors, such as individual drivers’ physical and mental states,
weather conditions, traffic conditions, road types, work schedules and time pressure
for delivery. On the other hand, information about the impact of these inevitable
contextual factors and driver behaviour on road safety is not available based on
current data sources, but at least can be partially obtained from stakeholders in
the industry who possess a deep understanding of the highly complex and dynamic
environment.

As revealed in Section 2.4.1 (page 27), researchers in social sciences have engaged
with stakeholders in the driving sector to understand the impact of external factors
on road safety, focusing primarily on drivers [7, 49, 50, 306, 307, 308]. However,
other crucial stakeholders exist in the sector who could potentially provide more
insights, such as managers, road safety officers and researchers. In addition, the
results from the studies are difficult to incorporate into online driving assessment
systems.

SIA is developed to address the above shortcomings by engaging with drivers,
managers, road safety officers and researchers to identify relevant contextual factors
that affect HGV driving performance and capture their impact on road safety. The
contextual information are later modelled using IAA FSs and fused to determine the
impact of detected driving behaviours and perceived factors on road safety driving
risk.

4.2.2 Insights from stakeholders

The literature shows that questionnaires have been the main tools to capture insights
from human participants [232, 257, 308, 309, 310, 311, 312, 313]. Typically, the
questionnaires are made up of discrete-valued response-format questions that only
allow one point on the response scale to be selected by participants [308, 311, 312,
313]. Commonly used discrete ordinal scale response formats are a five-point or
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a seven-point scale from ‘strongly disagree’ to ‘strongly agree’. Data from point-
based or discrete-valued response scales are relatively easy to analyse (e.g., by using
barplots, pie charts and statistical techniques); however, they are not suitable for
capturing uncertainty and imprecision in human perception and views [232].

As an alternative, interval-valued response-format questionnaires have been de-
veloped to capture and better quantify uncertainty in individual responses in several
domains e.g., education [314], hospitality [315, 316], service quality [317, 318, 319],
impact assessment [320] and customer preferences [321]. In HGV driving, this un-
certainty may reflect limitations of stakeholders’ knowledge about complex relation-
ships between contextual factors and driving risk. For example, the precise effect of
weather conditions on road safety is difficult to determine due to interactive effects
of other contextual factors, such as time pressure, road types and time of the day.

Furthermore, regardless of the response-format of questionnaires, the insights or
responses obtained from human participants are likely to differ due to differences
in precision, perception, experiences and expectations [232, 255, 322]. Thus, it is
expected that different stakeholders —even though they have similar roles — may
provide different answers to questions. In addition, stakeholders with different roles
may have varying viewpoints due to their distinct responsibilities and contrasting
interests [256]. Those input differences must be effectively captured and modelled to
provide a comprehensive, reliable and clear representation of knowledge to support
collaborative decision-making.

4.2.3 Rationale for using the Interval agreement approach

A modelling technique called the interval agreement approach (IAA) [257] was de-
veloped to model, combine and provide a clear representation of imprecision and
uncertainties in human insights.

Compared to other approaches for capturing and modelling questionnaire data,
the IAA has several advantages. The IAA is a more flexible approach than tradi-
tional quantitative methods, such as discrete scales. Traditional quantitative meth-
ods require participants to select a single response from a set of options, which can
be limiting and may not accurately capture the uncertainties of their opinions.

The IAA is simpler to implement, understand and visualise compared to other
approaches that allow imprecise and uncertain information (such as Fuzzy Delphi
method [323] and Fuzzy Analytic Hierarchy Process [324]; as it does not require
any group facilitators and weighting strategies, and it follows a least commitment
principle [325].

4.2.4 Interval agreement approach

The IAA models agreement (or overlap) between the responses of participants cap-
tured using interval-valued surveys. For example, Figure 4.1 presents an IAA fuzzy
set constructed from the union of three interval responses, with higher agreement in
areas where the intervals overlap.

The IAA generates non-parametric Fuzzy Sets (FSs) capturing all different levels
of uncertainty in individual opinions and also between multiple individuals/groups’
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Figure 4.1: Illustrative example of how IAA captures the agreement between three
intervals.

opinions. During IAA FSs model creation, the collected intervals are first formed
in Type-1 FSs (T1 FSs), which minimises the loss of information in participants’
opinion. Secondly, these generated T1 FSs are aggregated to z-slice representations
of General Type-2 FSs (zGT2 FS) that allow to model different individual opinions
from different groups of professions all together.

For example, in Table 4.1, experts 1-3 -who are working in the same profession A-
are asked a question and they provide intervals which allow to capture uncertainty in
their opinions. In IAA, these collected intervals from each individual are aggregated
into a single T1 FS. Thus, the generated T1 FS is able to capture different opinions
from experts (Expert 1-3) and model them in a single representation that shows the
aggregated opinions of experts from the same profession A, as shown in Figure 4.2
(a). The y-axis (µ(x)) represents the level of agreement among the responses e.g.
the experts show greatest agreement in their responses at ‘2’.

Another group of experts (Expert 4-6) -who are working in profession B - are
asked the same questions and they provide different opinions with different levels
of uncertainty represented by intervals, as illustrated in Table 4.2. These intervals
can be aggregated into another single T1 FSs, which is shown in Figure 4.2 (b). As
can be seen in the comparison of Table 4.1 and 4.2, the experts 4-6 tend to be more
uncertain about their opinions which leads to a wider T1 FS in Figure 4.2 (b).

Table 4.1: A sample of collected intervals from three experts (1-3) with the profession
A

Expert 1 Expert 2 Expert 3
Profession A [1,2] [1,3] [2,4]
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Table 4.2: A sample of collected intervals from three experts (4-6) with the profession
B

Expert 4 Expert 5 Expert 6
Profession B [1,5] [1.5,4] [1,6]

Figure 4.2: T1 FSs for each profession using the IAA approach. (a) IAA-Profession
A, and (b) IAA-Profession B.

Subsequently, the T1 FSs are aggregated to generate zGT2 FSs where the agree-
ment/variation between multiple experts/groups of information is modelled through
the secondary memberships (z-slices), as demonstrated in Figure 4.3. The darker
area (a) in the plot represents the region with higher agreement between the two
IAA FSs i.e. both groups agree the most in their responses between 1 and 4.

T1 FSs are defined in Section 2.3.4 (equation 2.11). A GT2 FS [326] F is
characterised by a MF µF (x, u), where x ∈ X and u ∈ Jx ⊆ [0, 1], i.e

F = {((x, u), µF (x, u)) | ∀x ∈ X ∀u ∈ Jx ⊆ [0, 1]} (4.1)

in which µF (x, u) ∈ [0, 1]. F can also be expressed as follows:

A =

∫
x∈X

∫
u∈Jx

µF (x, u)/(x, u), Jx ⊆ [0, 1] (4.2)

where

∫ ∫
denotes the union over all admissible u and x.

A zGT2 FS is formed by slicing a GT2 FS in the third dimension (z) at level zi.
This slicing action will result in an interval set in the z-dimension with height zi.
Therefore, a zGT2 FS is a z-slice or interval representation of a GT2 FS, where the
z-dimension is not fixed to 1 but is equal to zi, where 0 ≤ zi ≤ 1.
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Figure 4.3: 2D view of the zGT2 FS produced with the IAA T1 FSs from Figure 4.2

4.3 Stakeholder-Supported Driving Assessment Frame-

work

This section introduces our stakeholder-supported context-aware framework, SIA.
SIA extends CIDA approaches by engaging with stakeholders to capture the impact
of contextual factors on driving risk. The perceived contextual information is mod-
elled using IAA FSs and integrated into the decision making process to ensure a
collaborative, comprehensive, realistic and fairer assessment of driving risk.

Figure 4.4 shows a diagram with SIA’s stages and the extension of CIDA meth-
ods.

4.3.1 Stage 1: Identification of contextual factors

This stage involves compiling a list of contextual factors that affect driving perfor-
mance based on the literature. Subsequently, consultative workshops are organised
with stakeholders in the industry who possess qualitative insights about the domain.
Those include drivers, transport managers, road safety professionals, traffic officers
and road safety researchers in the HGV sector. During the workshops, the factors
from the literature are presented to the stakeholders. Stakeholders are invited to
share their opinions on two questions:

1. “Are the contextual factors identified from the literature sensible and valid?”

2. “Are there any other contextual factors that should be considered?”

These workshops are conducted to validate and update the factors obtained
from the literature, as some of those factors may be outdated due to advances
in technologies and regulations. They also capture the factors that stakeholders
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Figure 4.4: A diagram showing an extension of CIDA approaches (red bounding
box) with a new stage (SIA) that captures and incorporates information about the
impact of contextual factors on road safety.

consider when assessing safe driving to incorporate expert judgement into the driving
risk system.

4.3.2 Stage 2: Design and distribution of questionnaires

After identifying and validating the factors in Stage 1, interval-valued response-
format questionnaires [232] are designed to capture stakeholder insights about the
impact of the factors as well as imprecision or indecision in their opinions. The
design and wordings of the questions are improved during the workshops with the
stakeholders recruited in Stage 1. The stakeholders are asked the following questions:

1. “Is the format and rating scale of the questionnaire easy to comprehend and
complete?”

2. “Are the wordings and questions understandable?”

3. “Is the length of the questionnaire adequate considering the busy schedules of
professionals?”

4. “Is there anything important missing in the questionnaire?”

The final questionnaire is distributed to a wide cohort of stakeholders to obtain
their views about the impact of the contextual factors on driving risk.
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4.3.3 Stage 3: Visualising and modelling the impact of con-
textual factors

In this stage, the responses from the questionnaires are gathered and transformed
into an appropriate format for visualisation and analysis e.g., using tuples to rep-
resent the interval of responses. A least commitment strategy (i.e. no outlier re-
moval) [325] is employed to analyse the data as outliers may contain rich information
and IAA FSs are able to effectively handle this.

The transformed data are visualised using line graphs and box-plots to under-
stand individual as well as group opinions, respectively. The data plots assist in
understanding: 1) the difference in opinions across the different professions, 2) the
level of certainty in the responses of stakeholders, and 3) the agreement amongst
stakeholders within each profession.

The set-based mechanism of IAA is adopted to model the data using IAA FSs.
The FSs account for any variability in the responses of stakeholders. Therefore, if
there exist n contextual factors and i professions, n× i IAA FSs are generated. To
understand and quantitatively express the level of agreement among the opinions
of different stakeholder professions, the similarities between their fuzzy sets are
measured. This is important for the development of a reliable and collaborative
system to ensure that the system is not biased towards particular stakeholders.

4.3.4 Stage 4: Fusion of contextual information

The IAA FSs are aggregated into zGT2 FSs [257] by employing the agreement
principle in Wagner et al. [327] and associating a higher secondary membership
(zLevel) to areas where the IAA FSs overlap. That is, if n×i IAA FSs are generated
for n contextual factors and i professions, each FS representing a specific factor is
aggregated with their corresponding FSs to produce n zGT2 FSs. The secondary
membership captures the agreement among the different professions and the zGT2
FSs provide the representation and separation of the individual types of uncertainty
present in the data. The resulting zGT2 FSs produced in this stage represent the
overall impact of the contextual factors with different levels of uncertainty.

To provide an easy integration solution for the contextual information (i.e., zGT2
FSs) into intelligent driving assessment systems, the zGT2 FSs are defuzzified and
fused.

Section 4.5 presents the results of the application of SIA in capturing, under-
standing and fusing information about the impact of contextual factors on HGV
driving risk in the UK, which will elucidate the above stages.

4.4 Experimental Design

HGV driving is mostly influenced by drivers’ personal traits and external contextual
factors. The influence of these factors are not captured in existing driver data and/or
artificial intelligence models; however, they can at least partially be obtained from
stakeholders expertise in the HGV sector. This section presents the experimental
design of applying SIA to capture information about the impact of contextual factors
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on HGV drivers’ responses from stakeholders in the HGV sector. The section also
presents the data modelling and processing techniques based on fuzzy sets adopted
in stages 3 and 4 of SIA to understand and incorporate the contextual information
into online data-driven decision-support systems.

4.4.1 Workshops with stakeholders

To identify and validate the contextual factors that affect HGV driving risk, stages
1 and 2 of the framework are applied. Five iterative workshops were organised
with nine stakeholders consisting of a university professor in Psychology specialised
in HGV driver behaviour analysis, three HGV transport managers who supervise
HGV drivers to optimise deliveries and ensure their companies comply with road
safety regulations, and five researchers specialised in driving behaviour analysis and
fuzzy logic. In each iteration, the stakeholders refined the factors, questionnaire de-
sign, format and instructions. The workshops were held virtually due to COVID-19
restrictions between September 2020 and November 2020. The collaboration be-
tween nine stakeholders were sufficient to identify, update and validate the factors
and questionnaire design because too many stakeholders would have been difficult to
manage. To complement the lack of HGV drivers who are the operators of the vehi-
cles and road safety officers who enforce road safety regulations on road users in the
workshops, the first two HGV drivers and road safety professionals who completed
the questionnaire were interviewed, asking them if there were any other important
factors missing from the questionnaire and whether the design of the questionnaire
was appropriate. Their responses were used to update the questionnaire as reported
in Section 4.5.1.

4.4.2 Questionnaire design

The final questionnaire consisted of nine-point scale questions that asked partici-
pants to provide their opinions or ratings about the impact of the factors on HGV
driving performance. The nine-point rating scale ranged from 1, meaning ‘strong
negative impact’, to 9, ‘strong positive impact’ and 5 representing ‘no impact’, as
shown in Figure 4.5. The number of points in the scale were decided in the workshops
as stakeholders found nine-point ratings more comprehensive to express their opin-
ions. Stakeholders were more familiar with discrete-valued response-format scales
compared to interval-valued scales. Therefore, in order to capture imprecision or
uncertainty in the opinions of stakeholders and still obtain a sufficient number of
responses, participants were instructed to select two discrete points representing the
range of certainty of their responses. This approach is not the same as continuous
interval responses, but it ensures easy design, administration and completion of the
questionnaire. The final questionnaires are found in Appendix A.1.

4.4.3 Participant recruitment

Professionals from the four stakeholder groups presented in Figure 4.6 were recruited
to complete the questionnaire. The figure provides summarised definitions of the
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Figure 4.5: Sample questions extracted from the questionnaire with nine-point rating
scales to capture expert opinions about the impact of contextual factors on HGV
driving performance.

Figure 4.6: Diagram showing the different types of stakeholders in the HGV industry
along with the definitions of their roles.

different stakeholder groups. Professionals were recruited by sending mass messages
to individuals on LinkedIn [328], University of Nottingham, and UK’s University
Transport Study Group whose job titles and expertise matched any of the four
stakeholder groups. No compensation was offered for participation. Table 4.3 pro-
vides a summary of the number of participants recruited and the average years of
experience. Ninety-three participants from the UK completed the questionnaire.
Among the participants were: 20 HGV drivers, 23 researchers, 24 HG managers,
and 26 road safety professionals. Years of experience ranged from 3 to 46 years
with average and standard deviations of (M=22.90, SD=12.79) for HGV drivers,
(M=17.33, SD=10.72) for researchers, (M=11.04, SD=8.22) for HGV managers,
and (M=20.81, SD=12.39) for road safety professionals.
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Table 4.3: Distributions of participants, average years of experience, and standard
deviations of experience among the groups of stakeholders

HGV drivers Researchers HGV managers Road Safety Professionals
No. of Participants 20 23 24 26
Avg. Experience (Yrs) 22.90 17.33 11.04 20.81
Std. Experience (Yrs) 12.79 10.72 8.22 12.39

4.4.4 Questionnaire data modelling techniques

The two-point discrete responses selected by participants are transformed to in-
tervals to effectively represent uncertainty using the interval agreement approach
described in Section 4.2.4. This captures set-valued information based on the 9-
point scale. IAA FSs are generated from the two-point discrete responses and later
aggregated into zGT2 FSs by weighting areas where the IAA FSs overlap. Jaccard
similarity measure [329] is employed to calculate the agreement in opinions amongst
the different groups of stakeholders. The Jaccard similarity measure is an efficient
and well-established method used to calculate similarity between fuzzy sets. It cal-
culates the cardinality of the intersection of two sets, divided by the cardinality of
the union of the two sets. The output value for the method lies between 0 and
1, where 1 indicates total agreement and 0 indicates total disagreement. For easy
integration of the contextual information (i.e., zGT2 FSs) into the assessment of
HGV driving risk, the FSs are reduced to crisp values using centroid type-reducer
(CTR) defuzzification [330] and employ product aggregation strategy to fuse infor-
mation about perceived contextual factors. The CTR method takes into account
the centroids of the primary, lower and upper membership functions, weighted by
their respective membership values, to obtain the defuzzified output.

4.5 Analysis, Results and Discussion

This section presents the analysis of the responses provided by the stakeholders. In
addition, it provides a solution to incorporate and fuse information about the impact
of perceived contextual factors into the assessment of HGV driving performance and
risk.

4.5.1 Contextual factors identified from the workshops

Figure 4.7 presents external factors and driver traits identified from the literature
that impact HGV driving performance [6, 7, 12, 49, 50, 233, 234, 235, 237, 306, 307,
331, 332, 333, 334]. The factors were presented to stakeholders in the workshops
and some were identified as irrelevant, such as vehicle characteristics. Others were
identified as outdated due to new road safety policies in the UK, such as rest breaks.
Time of the day and day of the week were revised to start, mid and end of shifts, as
HGV drivers start their jobs at different times of the day and different days of the
week. The stakeholders proposed additional factors, such as driver confidence, im-
pact of different temperatures and road types. The figure shows the updated list of
contextual factors identified by the stakeholders in the workshops and the additional
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four HGV drivers and road safety officers described in Section 4.4.1. The stakehold-
ers grouped the factors into four categories: (1) driver personal traits; (2) work
life and external pressures; (3) in-vehicle technologies; and (4) environmental con-
ditions. Those eliminated during the workshop are represented using strikethrough
texts; and additional factors arising from the workshops with stakeholders are in
bold text. It is important to note that the factors presented in Figure 4.7 are not
ultimate, as other stakeholders who did not take part in our workshops may have
different opinions. Therefore, the list could always be updated by interviewing more
stakeholders in the future.

Figure 4.7: Contextual factors that impact HGV driving risk extracted from the
literature and validated by stakeholders in the HGV industry. The strikethrough
factors were eliminated by stakeholders while those in bold fonts represent additional
factors identified by stakeholders.

4.5.2 Visualising stakeholder responses

Box-plots and line graphs are utilised to visualise the responses from stakehold-
ers. The box-plots show the group distributions of responses while the line graphs
show the individual responses. Each line or dot in the line graphs represents the
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(minimum, maximum) response of each stakeholder and the colours represent their
different professions. If a stakeholder’s response was very certain (i.e., they selected
a single value as their rating), a single point is plotted in the line graph. Each line
graph has 93 lines and points for all 93 stakeholders. The line graphs are found in
Appendix A.2.

The box-plots show the mode rather than the median because we are interested
in the rating provided by majority of the stakeholders in each profession. The fol-
lowing acronyms are used to represent the different professions on the box-plots:
HD=HGV drivers, FM=Managers, R=Researchers, and RS= Road safety special-
ists. The following subsections discuss the box-plots produced by the responses for
the different factors.

(a) Drivers’ personal traits

The box-plots in Figure 4.8 show the impact of drivers’ personal traits on HGV driv-
ing performance as suggested by the stakeholders. We observe a less negative effect
of feeling tired (Figure 4.8d) suggested by researchers compared to other stakehold-
ers. This may be due to new road safety regulations in the UK that require drivers
to take frequent rest breaks [335]. Next, we notice that the majority of researchers
suggest that being confident (Figure 4.8j) or insecure (Figure 4.8k) has no impact
on driving risk (i.e. mode = 5), which contradicts what the majority of stakeholders
from the other groups think. The other stakeholders suggest that being confident
has a positive impact, while being insecure has a negative impact on HGV driving.

In an online driving assessment system, the aforementioned driver traits could be
detected from driver data using machine learning approaches, as shown in Chapter 3.
The information about the detected driver traits are later sent to the risk assessment
module for analysis. However, more complex driver traits such as confidence and
insecurity are still difficult to detect using machine learning methods due to lack of
data about these traits.

(b) Work-life factors and external pressures

Figure 4.9 depicts the distributions of responses from stakeholders on the impact of
work-life factors and external pressures. We observe variation between the opinions
of drivers compared to managers and road safety professionals for start and end
of shift (Figure 4.9a,c) with the mode of drivers’ responses at 5. The majority
of managers and road safety professionals indicate that the start of a shift has a
positive influence on HGV driving and the end of a shift has a negative influence. To
better understand the cause of this variability, further investigation by interviewing
drivers and managers is required in the future, which is out of the scope of this
thesis. Furthermore, time pressure for delivery (Figure 4.9e) is considered to have
a strong negative impact (mode = 1) by the majority of managers, who sometimes
exert pressure on drivers to deliver on time [336]. This observation stresses the need
to consider such factors in the assessment of driving, as HGV drivers sometimes
face pressure from their companies to deliver goods on time; literature shows that
this could lead to road incidents or accidents [336, 337]. Therefore, for a fairer
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assessment of HGV drivers, pressure from their employers cannot be ignored when
assessing their driving performance.

Figure 4.9: Box-plots showing the distribution of responses from drivers, fleet man-
agers, researchers and road safety professionals about the impact of work related
factors and external pressures.

In an online driving assessment system, the time of shift (i.e. start, mid and end
of shift) can be determined using job dispatch and routing management systems,
while traffic state (i.e. high or low) can be automatically recognised from road-
facing camera images using computer vision techniques [338, 339] or obtained from
location based systems e.g., Google Maps. For time pressure, it is still very difficult
to automatically detect.
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Figure 4.10: Box-plots showing the distribution of responses from drivers, fleet
managers, researchers and road safety professionals about the impact of in-vehicle
technologies.

(c) In-vehicle technologies

Figure 4.10 depicts the distributions of responses from stakeholders about the impact
of in-vehicle technologies. Drivers and road safety professionals disagreed about the
impact of driver-facing cameras (Figure 4.10a) as majority of drivers suggest driver-
facing cameras have a negative impact on driving, while road safety professionals
believe driver-facing cameras have a positive impact. In addition, road safety pro-
fessionals suggest that the absence of cameras (Figure 4.10d) has a negative impact
on driving while majority of other stakeholders suggest no impact. The negative
impact of driver-facing cameras suggested by drivers may be a consequence of how
the videos or images are being used (e.g. used to penalise drivers) or due to privacy
concerns, as we observe positive ratings by drivers for road-facing cameras, which
are less intrusive and personal. A system developed with only the opinions of drivers
may be inaccurate with regards to the effects of driver-facing cameras. Such dis-
crepancies show the need for a collaborative system to resolve conflicts, where the
opinions of different stakeholders are considered.
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Figure 4.11: Box-plots showing the distribution of responses from drivers, fleet
managers, researchers and road safety professionals about the impact of weather
conditions.

(d) Environmental factors

Figure 4.11 presents the distributions of responses on the impact of environmental
conditions on HGV driving risk. The majority of drivers and fleet managers sug-
gest a sunny weather (Figure 4.11a) has a positive impact (mode = 7) as a sunny
weather provides good visibility of the road and other road users, while majority
of researchers and road safety professionals suggest it has no impact (mode = 5).
Similarly, the majority of drivers indicate a rainy weather (Figure 4.11b) has no
impact on driving, while the other stakeholders believe it has a negative impact as
visibility and tyre friction are reduced.

Furthermore, we observe negative impact of undivided highways, single-lane ur-
ban roads and rural roads suggested by majority of stakeholders (Figure 4.12c,e,g).
This is because the roads are single carriageways with no central reservations, mak-
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Figure 4.12: Box-plots showing the distribution of responses from drivers, fleet
managers, researchers and road safety professionals about the impact of road types.

ing them more susceptible to collisions compared to dual carriageways and motor-
ways [340].

In an online driving assessment system, information about environmental con-
ditions can be automatically obtained using deep learning methods on road-facing
images [341, 342, 343], or from online weather data sources such as the Metropolitan
Police UK1 or real-time weather forecast applications.

1https://www.met.police.uk/
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4.5.3 Agreement amongst stakeholders

Overall, the analysis of the questionnaire data show that stakeholders generally
agree on the direction of impact of contextual factors (whether positive or nega-
tive impact), but vary in their opinions about the extent of the impact of factors.
The variations in magnitude can be attributed to the uncertainties in human per-
ceptions and views as well as differences in roles and expectations, as described in
Section 4.2.2. Such variations need to be considered and resolved for the develop-
ment of a reliable, unbiased and collaborative system.

This section calculates the similarity measures between the responses provided
by the different groups of stakeholders regarding the impact of the factors. This is
important to show the degree of agreement in views between the different professions.
The results are presented in Figure 4.13 with similarity values between 0 and 1,
where 0 indicates total disagreement (red) and 1 indicates total agreement (green).
We observe from the figure that drivers, researchers and road safety professionals
have similarity values above 0.5 for several factors. This is promising as policy
enforcers and vehicle operators seem to agree about the effects of most critical
factors. However, there are few factors where drivers and researchers have low levels
of agreement (less than 40% agreement) i.e., ‘distraction’, ’driver-facing camera’,
‘absence of camera’ and ‘icy weather’. Drivers and road safety professionals have
low levels of agreement in ‘tired’, ‘end of shift’, ‘sunny’ and ‘sunrise’, but agree
(above 60% agreement) about ‘energetic’, ‘attentive’, ‘calm’, ‘snowy’, ‘icy’ and ‘time
pressure’ with time pressure having the highest agreement (0.833).

Managers show the highest degree of disagreement with other stakeholders, which
is precarious as they supervise the drivers and ensure they comply with safety regula-
tions. We observe very high levels of disagreements (below 20%) between managers
and drivers for ‘angry’, ‘energetic’, ‘attentive’, ‘high traffic’, ‘time pressure’, ‘telem-
atics’ and ‘rainy’. We observe high levels of disagreements between managers and
road safety officers (below 20%) for ‘attentive’, ’time pressure’, and ‘low traffic’.
While managers disagree the most with researchers i.e., ‘angry’, ‘tired’, ‘attentive’,
‘aggressive’, ‘time pressure’, ‘low traffic’, ‘absence of camera’, ‘telematics’, ‘absence
of telematics’, ‘rainy’, and ‘cloudy’. This may be due to researchers being mainly
exposed to qualitative insights from drivers, thereby, making their insights biased
towards drivers.

The disagreements show the need for dialogue across the different professions
to attain appropriate, precise and similar perceptions about the influence of the
factors. This is crucial to improve communication between the different professions
especially managers and drivers, improve company policies, road safety policies, and
facilitate the adoption of driver monitoring and feedback technologies.

4.5.4 Perceived impact of contextual factors

Stage 3 of SIA provides a computational approach to aggregate and model the re-
sponses from the different stakeholders using the IAA. The advantage of using the
IAA approach is : 1) its generalisability to any set-valued dataset, 2) it employs a
least commitment strategy; no information is added or removed, and assumptions
are kept to a minimum such as the type of fuzzy membership function used, and 3)
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it provides interpretable representations of human insights and uncertainty levels.
First, IAA FSs are developed from the set-valued discrete responses by convert-
ing the two discrete points into continuous interval-valued responses with discrete
endpoints as described in Section 4.3.3. The IAA FSs model and provide a clear
visualisation of the agreement among stakeholders within the same group. For ex-
ample, the plots on the left in Figure 4.14 (the red plots) show IAA FSs of ‘feeling
sad’ generated from the responses of drivers, managers, researchers and road safety
professionals. Examining the IAA FSs, we observe that opinions of stakeholders in
all four groups have some level of variability about the impact of feeling sad on HGV
driving risk, e.g. drivers’ IAA FS ranges from 1 to 5 with the highest agreement at
3 (i.e. µ(x ) = 1), while managers’ IAA FS ranges from 1 to 4 with an outlier at 7.
Also, the FS of managers is more skewed compared to the FS of drivers, meaning
managers are more certain that ‘feeling sad’ has a strong negative impact on HGV
driving performance compared to drivers.

The IAA FSs of the different groups are aggregated to obtain the final perceived
impact of the factors represented as General Type-2 (zGT2) FSs, as shown by the
plot on the right in Figure 4.14 (the green plot). The proposed approach assumes
equal weights for all stakeholders. The weights can be adapted in the future, how-
ever, providing weights is out of the scope of our research. The resulting zGT2
FSs for all the factors are presented in Appendix A.3. The zGT2 FSs represent the
agreement (the colour density of the FS) and variability (the width of the FS) of the
opinions of all stakeholders across all groups. The shaded green regions in the zGT2
FSs represent the areas where the IAA FSs overlap, effectively weighting areas with
high agreement among stakeholder groups. Darker areas represent higher agreement
among stakeholder groups. Thus, as shown in Figure 4.14, the outlier at ‘7’ is given
a low weight denoted by the bright shade. The zGT2 FSs can be defuzzified and
incorporated into online decision-support systems as shown in Section 4.5.5.

Furthermore, the perceived impact of the contextual factors will better inform
HGV drivers about the effects of their personal traits and external conditions on
road safety. It will also assist road safety professionals in developing adequate traffic
laws and road safety policies that take into consideration the impact of contextual
factors, and assist researchers to prioritise the development of intelligent approaches
for analysing and characterising negative impact factors. Lastly, HGV transport
managers will benefit from the collaborative insights by considering the influence
of inevitable external factors (e.g., weather and traffic conditions) and the negative
impact of time pressure in their management of drivers.

4.5.5 Fusion and integration of contextual information into
online driving assessment systems

This section presents SIA’s results of incorporating information about the impact of
contextual factors into the assessment of HGV driving performance and risk. The
results provided in this section do not demonstrate the accuracy of the framework
due to the lack of driving risk data. Rather it shows the importance, reliability and
fairness of considering context in the assessment of HGV driving performance and
risk. Therefore, the results are presented to motivate debate in the HGV and road
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Figure 4.14: The aggregation of IAA fuzzy sets for the impact of ‘feeling sad’ on
HGV driving risk generated from the responses of drivers, fleet managers, researchers
and road safety professionals.
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safety research communities as well as improve the proposed solution. Stage 4 of
the framework is applied to user stories about HGV driving scenarios; designed and
validated with help of the stakeholders recruited in Stage 1 of the framework.

(a) Assessing driving performance

Imagine two HGV drivers i.e. Bob and Alice, having exactly the same number
of driving incidents after completing journeys of similar duration. Their driving
incidents are assessed using CIDA approaches that do not consider context, such
as, [14, 305]. Let’s assume the approaches rate the drivers’ performance as 70%,
where 0% represents ‘very calm’ driving, 50% represents ‘moderate’ driving, and
100% represents ‘very aggressive or reckless’ driving. Bob and Alice’s manager is
not pleased with their assessments and decides to investigate further their driving
conditions/context. Bob was driving under little or no time pressure, while Alice was
under ‘high’ time pressure from their company. After incorporating the contextual
information, Alice’s driving performance was moderated to 48% as shown in Fig. 4.15
and the remaining 22% attributed to the pressure for delivery, while Bob’s driving
performance was considered riskier, as a better driving performance without the
influence of time pressure is expected.

The manager is still not pleased with Bob’s assessment and decides to consider
the weather conditions during their journeys. Alice was driving in a rainy weather,
while Bob was driving in a dry and sunny weather. After incorporating more con-
textual information into their assessments i.e., weather conditions, Alice driving was
further moderated to 40% and the remaining 8% attributed to the inevitable harsh
weather conditions, while Bob’s driving performance decreased further to 82% as
better performance in nice weather conditions is expected. The manager could not
think of any more conditions that could have affected their driving performance, and
is now able to understand the reasons for the assessments attributed to the drivers
in those circumstances. The manager recommends training to Bob and educates
them about the consequences of their driving performance to road safety and the
associated costs.
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Figure 4.15: A diagram illustrating two examples of incorporating context into
the assessment of HGV drivers. 0% represents ‘very calm’ driving, 50% represents
‘moderate’ driving, and 100% represents ‘very aggressive’ driving.

Fig. 4.15 shows the driving performance assessment of Bob and Alice with and
without contextual information i.e., influence of time pressure and weather condi-
tions. It can be clearly observe that including the impact of inevitable contextual
factors in the analysis of driving performance produces fairer and more useful as-
sessments, which can enable context-specific plans of action to improve safe driving.

Next, a step-by-step process is provided to demonstrate how the FSs generated
by SIA are fused and embedded into online driving assessment systems:

(i) Defuzzification of zGT2 FSs: The zGT2 FSs are defuzzified into crisp
values for easy fusion with the decisions from CIDA approaches. The defuzzified
values of the HGV contextual factors identified by SIA are found in Fig. 4.16. This
approach assumes the outputs from CIDA approaches for driver assessment are from
0 to 100, where 0 represents ‘very calm’ driving and 100 represents ‘very aggressive
or reckless’ driving. Defuzzification compresses the collaborative contextual infor-
mation into crisp values for fusion with the crisp outputs from the CIDA approaches
(Stage 4 of SIA).

CTR defuzzification [330] are employed to reduce the GT2 FSs to crisp informa-
tion: high time pressure=2.45, low time pressure=7.55, rainy=3.78, and sunny=5.76,
where 1 represents ‘strong negative impact’, 5 represents ‘no impact’ and 9 repre-
sents ‘strong positive impact’.

(ii) Fusion and incorporation of defuzzified contextual information:
For simplicity, the product aggregation strategy is employed to fuse the defuzzified
contextual information, as follows:
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CIDA driving assessment ∗
∏

norm(defuzzified(factors)) (4.3)

First, [0.5, 1.5] normalisation is applied to transform the defuzzified values, as
follows:

xn = (b− a)
x− xmin

xmax− xmin
+ a (4.4)

Where xn in [a,b] is the normalised value of x, xmin is the minimum possible value
of x (in our case xmin=1) and xmax is the maximum possible value of x (in our
case xmax=9).

[0.5, 1.5 ] is a sensible range for employing the product operator as driving risk
is increased or reduced by half for strong negative or positive impact, respectively.
The product operator is limited, as it could lead to values greater than 100. The
[0.5, 1.5 ] normalisation of the defuzzified values are as follows:

• norm(high pressure=2.45)[0.5,1.5] = 0.681

• norm(low pressure=5.55)[0.5,1.5] = 1.069

• norm(rainy=3.78)[0.5,1.5] = 0.847

• norm(sunny=5.76)[0.5,1.5] = 1.095

The resulting normalised values are fused with the outputs from the intelligent
system as follows:

• Bob’s driving performance = 70%*1.069*1.095=81.92%

• Alice’s driving performance = 70%*0.681*0.847=40.37%

The above examples demonstrate the application of SIA in moderating the de-
cisions of CIDA approaches to produce fairer and more meaningful driving perfor-
mance assessments.

(b) Driving risk assessments

Stage 4 of SIA can also be applied to provide online driving risk assessments that
consider the impact of detected driver traits and perceived external conditions on
road safety, which is the main aim of this research. For example, imagine five HGV
drivers driving with the following driving styles in different external conditions:

• Tom: aggressive; rainy; high traffic

• Jerry: calm; rainy; high traffic

• Alice: aggressive; rainy; low traffic

• Bob: calm; rainy; low traffic
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• Jim: calm; sunny; low traffic

The [0.5, 1.5 ] normalised defuzzified impact values for the factors are:

• norm(aggressive=2.27)[0.5,1.5] = 0.659

• norm(calm=7.52)[0.5,1.5] = 1.315

• norm(high traffic=3.11)[0.5,1.5] = 0.764

• norm(low traffic=6.38)[0.5,1.5] = 1.172

• norm(rainy=3.78)[0.5,1.5] = 0.847

• norm(sunny=5.76)[0.5,1.5] = 1.095

Journeys are assumed to start with a risk level of 50% (where 0% represents ‘very
low’ risk, 50% represents ‘moderate’ risk, and 100% represents ‘very high’ risk ) and
depending on the impact of perceived factors, the risk level can increase or reduce
during the journey. Using the normalised defuzzified values, the risk of the above
driving scenarios can be computed using the following equation:

Latest risk level ∗ 1∏
norm(defuzzified(factors))

(4.5)

CIDA approaches (e.g., [15]) that only consider drivers’ driving style in their assess-
ment of driving risk, produce the following assessments:

• Tom’s driving risk = 50% ∗ 1
0.659

= 75.9%

• Jerry’s driving risk = 50% ∗ 1
1.315

= 38.0%

• Alice’s driving risk = 50% ∗ 1
0.659

= 75.9%

• Bob’s driving risk = 50% ∗ 1
1.315

= 38.0%

• Jim’s driving risk = 50% ∗ 1
1.315

= 38.0%

By including information about the impact of external factors on road safety i.e.,
weather and traffic conditions, the following assessments are produced:

• Tom’s driving risk = 50% ∗ 1
0.659∗0.847∗0.764 > 100%

• Jerry’s driving risk = 50% ∗ 1
1.315∗0.847∗0.764 = 58.8%

• Alice’s driving risk = 50% ∗ 1
0.659∗0.847∗1.172 = 76.4%

• Bob’s driving risk = 50% ∗ 1
1.315∗0.847∗1.172 = 38.3%

• Jim’s driving risk = 50% ∗ 1
1.315∗1.095∗1.172 = 29.6%
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The results show that without considering the driving circumstances, drivers with
similar driving styles produce the same level of driving risk. For example, Bob, Jim
and Jerry produce the same driving risk even though it is certain that driving in
rainy weather or high traffic conditions is more risky than driving in sunny weather
or low traffic conditions. Obviously, it is appropriate that Bob and Jerry keep
a calm driving style in the negative external conditions, however, Bob and Jerry’s
driving circumstances are clearly different from Jim’s and should be considered when
assessing their driving risk. When the impact of external factors are considered in
the assessment of driving risk, we observe that Jerry’s driving scenario (calm; rainy;
high traffic) is considered more risky than Bob’s (calm; rainy; low traffic) and Bob’s
circumstance is more risky than Jim’s (calm; sunny; low traffic). Similarly, Tom’s
driving circumstance (aggressive; rainy; high traffic) is considered more risky than
Alice’s (aggressive; rainy; low traffic), as we will expect.

4.5.6 Limitations of SIA

This section provides some limitations and challenges of SIA that require improve-
ment and further analysis.

• The framework does not capture the synergy and interactions between drivers’
personal traits and external factors during driving, which could potentially lead
to highly correlated factors e.g., a driver’s driving style may be affected by their
affective state. As revealed by the psychological theories on driver behaviour
in Chapter 2, contextual factors do not occur independently during driving.
They occur simultaneously and interact with each other to impact driving
risk. Therefore, in order to produce more accurate and realistic assessments of
driving risk, these interactions or relationships need to be effectively captured
and modelled.

• Even though the framework captures uncertainties in stakeholders’ perception
about the impact of contextual factors, it fails to incorporate the uncertainties
into the assessment of driving risk. This is due to its defuzzification process
that reduces the variability in expert opinions (represented as zGT2 FSs) into
crisp values. To produce more robust and trustworthy driving risk assessments
that consider variability in human knowledge and opinions, the zGT2 FSs need
to be incorporated into driving risk assessments without loss of the uncertainty
information.

• The framework does not consider the uncertainties in the assessment of driving
risk, such as, imprecision in the definitions of driver traits, uncertainty in the
decisions of AI models, and variability in the subjective evaluation of driving
risk by multiple experts. Therefore, for a more trustworthy and interpretable
assessment of driving risk, the aforementioned uncertainties in information
need to be effectively captured, modelled and presented.

• Lastly, several assumptions are made by the framework that require further
analysis and validation, such as the [0.5, 1.5] normalisation domain and the
50% journey start risk level.
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4.6 Summary

This chapter introduced a new framework called SIA that engages with stakeholders
in the HGV sector to effectively capture and understand the impact of HGV con-
textual factors on road safety. This framework is introduced due to the absence of
contextual information in current driver data sources and CIDA approaches. The
framework, therefore, complements current empirical data by incorporating infor-
mation about the impact of contextual factors into the assessment of HGV driving
risk. The goal is to produce more reliable, fair, meaningful and comprehensive as-
sessments of HGV driving performance and risks based on the impact of drivers’
personal traits and external conditions. SIA consists of four main stages: 1) iden-
tification of relevant contextual factors that affect HGV driving by stakeholders; 2)
design and distribution of questionnaires to key stakeholders in the sector to cap-
ture insights about the influence of contextual factors; 3) analysis and modelling of
contextual information obtained from the stakeholders; and 4) fusion and incorpo-
ration of contextual information into the assessment of driving risk. Based on the
analysis of the responses captured from 93 HGV stakeholders (i.e. 20 HGV drivers,
23 researchers, 24 HG managers, and 26 road safety professionals), we noticed that
stakeholders agree on the direction of impact of factors (whether positive or negative
impact), but vary in their opinions about the extent of the impact. The differences
in opinions can be attributed to variability in human views due to different roles,
knowledge, experiences and goals. SIA effectively captures, models and represents
the variability among stakeholders’ views using FSs based on IAA.

Furthermore, the framework measured the similarity between the opinions of the
different professions and identified the highest degree of disagreement between man-
agers and other professions. The disagreements among professions show the need for
dialogue across the different professions to attain appropriate, precise and similar
perceptions of the influence of the factors. This is crucial to improve communication
between the different professions especially managers and drivers, improve company
policies, road safety policies, and facilitate the adoption of driver monitoring and
feedback technologies. The contextual information obtained from the 93 stakehold-
ers were modelled and aggregated using IAA and zGT2 FSs. The last stage of SIA
consists of an information fusion approach to fuse the contextual information and
moderate decisions from CIDA approaches. Application of the approach using user
stories about realistic HGV driving scenarios, designed with the help of stakehold-
ers, shows the ability of SIA to embed stakeholders’ inputs and provide a fairer
and more meaningful assessments of driving performance and risks that takes into
consideration external circumstances.

Although this framework has brought many benefits in understanding the impact
of contextual factors and incorporating context into driving risk assessment, it is
limited in the following aspects: (1) it does not capture the synergistic interaction
between drivers’ personal traits and external factors during driving; (2) it does not
consider variability of expert inputs in the assessment of driving risk; (3) it does not
consider imprecision in the definition of contextual factors; (4) it does not consider
uncertainty in decisions from AI models; and (5) it has multiple assumptions.

The next chapter addresses these limitations by extending SIA to capture, model
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and embed information about the synergy and interactions between drivers’ personal
traits and external conditions. The extended framework also models the uncertainty
and interpretation of driving risk assessment using a hierarchical rule-based fuzzy
inference system.
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Chapter 5

Online Context-Aware Driving
Risk Assessment

5.1 Introduction

Chapter 3 introduced an intelligent multi-modal driver characterisation framework
to predict the main facets of driver behaviour that impact road safety i.e., driv-
ing styles, driving postures and affective states. Chapter 4 introduced a frame-
work called Stakeholder-supported Intelligent driving Assessment (SIA) that en-
gages with stakeholders to capture and incorporate information about the impact of
detected driver traits and perceived external factors on road safety into the assess-
ment of heavy goods vehicle (HGV) driving performance and risk. Although SIA
has brought many benefits in understanding the impact of HGV contextual factors
and providing collaborative, comprehensive and fairer HGV driving assessments; it
is limited in the following aspects: (1) it does not capture the interactions and syn-
ergy between contextual factors, which could potentially lead to highly correlated
factors, unstable and overestimated assessments; (2) it does not consider ambiguity
in the definition of driving behaviours; (3) it does not consider uncertainty in the in-
formation about driver traits and external factors produced by artificial intelligence
(AI) models; (4) it does not consider variability in experts’ subjective views about
the interaction of factors and assessment of driving risks; and (5) it makes several
assumptions that require further analysis and validation.

This chapter tackles the above limitations and answers the research questions:
“how can a reliable driving risk assessment system that considers the real-world
characteristics of the driving environment be developed, taking into consideration
the lack of comprehensive driving risk datasets?” and “how can the reliability and
effectiveness of the driving risk assessment system be evaluated taking into consider-
ation the lack of multi-modal data?” The chapter proposes an extension of SIA called
Stakeholder-supported Intelligent Fuzzy driving Assessment (SIFA) that integrates
expert inputs about the interactions and causal relationships of contextual factors
using linguistic fuzzy IF-THEN rules, while addressing uncertainty or ambiguity in
the factors using fuzzy sets (FSs). To ensure that interactions between contextual
factors are easy to manage and understand, the framework employs a hierarchical
fuzzy approach [344]. The resulting hierarchical rule-based fuzzy inference system
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from SIFA receives as inputs; information about detected driver traits from driver
characterisation AI models (e.g., contribution of Chapter 3) and assesses their syner-
gistic effects together with perceived external conditions on road safety. Information
about external conditions (e.g., weather, road and traffic conditions) can be auto-
matically obtained using AI methods on road-facing camera images [341, 342, 343]
or from online data sources such as the Metropolitan Police UK1.

The remainder of the chapter is organised as follows. Section 5.2 provides an
overview of fuzzy expert systems and hierarchical fuzzy inference systems, which
are the fundamental elements of SIFA. Section 5.3 introduces the different stages
of SIFA. Section 5.4 presents the experimental design of the application of SIFA in
assessing HGV driving risk. Results and discussions of the framework’s application
are presented in Section 5.5 using realistic HGV driving scenarios. Section 5.6
summarises the chapter.

5.2 Background

5.2.1 Overview of fuzzy expert systems

Fuzzy expert systems (FESs) integrate human expert knowledge into intelligent sys-
tems while addressing imprecision and uncertainties in information, human language
and decisions [18]. FESs also provide a natural and easy way to fuse heterogeneous
information e.g., information about driver traits and external factors. The expert
knowledge is captured and modelled using IF-THEN rules [19]. The uncertainties
are captured and modelled using linguistic terms with soft boundaries (FSs). FESs
consist of three main stages: 1) fuzzification; 2) knowledge base acquisition; and 3)
inference engine.

Before describing the different stages of a FES, the definition of a FS is revisited
as described in Section 2.3.4 (page 21). That is, a fuzzy set is a function that assigns
inputs to membership degrees between 0 and 1.

In fuzzification, an input (e.g. a signal from a sensor or information from an
intelligent system) is converted into singleton or non-singleton FSs. A singleton FS
has only one element with a membership value of 1, while a non-singleton FS has a
set of elements with their degrees of membership between 0 and 1. Figure 5.1 shows
three non-singleton FSs represented as ‘low’, ‘moderate’ and ‘high’ (blue, orange and
green plots, respectively), and one singleton FS represented by the black vertical line
with its only member as ‘35’ having a degree of 1. In the case where non-singleton
FSs are defined to capture uncertainties, fuzzification is the intersection between
the singleton FS produced by an input value and the non-singleton fuzzy sets. For
example, using the non-singleton FSs defined in Figure 5.1, an input of ‘35’ generates
the singleton fuzzy set (represented by the black vertical line) and intersects with
the non-singleton fuzzy sets to produce its membership in the non-singleton fuzzy
sets i.e. 0 degree of membership in ‘low’, 0.8 in ‘moderate’ and 0.2 in ‘high’. In
a fuzzy logic system (FLS), the non-singleton FSs for the inputs and outputs are
defined by domain experts or from historical data.

1https://www.met.police.uk/
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In the rule knowledge base acquisition stage of FESs, domain experts define the
IF-THEN rules. When multiple experts are involved in developing the set of rules,
the variability in their views need to be effectively captured and aggregated [19].
More details on how the variability in expert inputs are captured and handled during
rule specification is provided in Section 5.3.4.

Figure 5.1: Illustration example of the intersection of singleton (black vertical line)
and non-singleton fuzzy sets (low, moderate and high plots).

The inference engine aggregates the fuzzified input FSs obtained from fuzzifi-
cation stage using fuzzy operators in the set of fuzzy rules obtained from the rule
knowledge base acquisition stage to produce some expert conclusion or decision. A
simple example is used to illustrate the inference process in fuzzy systems. Imagine
a driving risk assessment system with only two features: (1) number of harsh brak-
ing (HB) incidents; and (2) weather condition, and the following rules that capture
the interaction between the features and their impact on driving risk:

Rule 1: IF HB is “low” AND weather is “good” THEN Driving risk is “low”
Rule 2: IF HB is “low” AND weather is “poor” THEN Driving risk is “moder-
ate”
Rule 3: IF HB is “moderate” OR ‘high’ AND weather is “good” OR “poor”
THEN Driving risk is “high”

Using the FSs and membership function (MF) of HB in Figure 5.1, the above
rules generate rule strengths for the different FSs during inference. The rule strengths
and their respective output FSs capture the uncertainty and imprecision of the sys-
tem’s conclusion of driving risk. The rule strengths are computed using the fuzzy
operators found in the rules e.g., ‘AND’ (minimum of membership degrees) and ‘OR’
(maximum of membership degrees) found in Rules 1, 2 and 3 above.

Imagine the perceived number of HB equals ‘35’ and the weather is ‘poor’, how
can we fuse these heterogeneous information about HB incidents and weather to
produce an assessment of driving risk? Let’s assume singleton FSs for weather
with maximum membership for the different weather conditions, and assume the
non-singleton FSs in Figure 5.1 for low, moderate and high HB. That is;
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µlow(35) = 0.0

µmoderate(35) = 0.8

µhigh(35) = 0.2

(5.1)

The resulting rule strengths show that the driving risk of the occurrence of ‘35’ harsh
braking incidents in a ‘poor’ weather condition is definitely not ‘low’ nor ‘moderate’
but has an 80% likelihood of ‘high’ risk, as follows:

Rule1 : Strength = min(0.0, 0.0) = 0.0, Risk = “low”

Rule2 : Strength = min(0.0, 1.0) = 0.0, Risk = “moderate”

Rule3 : Strength = min(max(0.8, 0.2),max(0.0, 1.0)) = 0.8, Risk = “high”

(5.2)

5.2.2 Challenges in the development of fuzzy expert systems

There are two main challenges in the development of FESs that need to be considered
when designing a system with many contextual factors and multiple domain experts.

(a) Variability between expert views

As earlier mentioned, the causal relationships and interactions between inputs and
outputs are captured from domain experts using IF-THEN rules. The knowledge
from the domain experts are likely to differ due to differences in precision, percep-
tion, experiences and expectations. Thus, it is expected that different experts —
even though they have similar roles — may provide different viewpoints about the
relationships between variables. In addition, experts with different roles may have
varying viewpoints due to their distinct responsibilities and contrasting interests.
Therefore, varying rules are captured from experts, which require an effective ap-
proach to be modelled, aggregated and incorporated into the system. In Wagner
et al. [19], the authors proposed a novel survey-centric methodology which enables
the capture, aggregation and incorporation of subjective input from multiple domain
experts about the interaction between variables into a fuzzy system. Their approach
is adopted in SIFA to deal with variability between expert views.

(b) High number of fuzzy rules

In complex systems with many variables, the relationships between the variables
increase exponentially. This leads to a huge set of complex rules (i.e., increased
number of input conditions and heterogeneous information) that are difficult to
manage, understand, reason and fuse; particularly when we depend on experts to
define the relationships and when we depend on the outcomes to make informed
decisions. For example, imagine one rule with 8 variable conditions and another
with 3 variable conditions. The interactions in the second rule with 3 conditions
are easier to reason and combine compared to the first rule having 8 conditions at
the same time. Soua et al. [345] proposed a supervised learning method to reduce
the number of rules and antecedent conditions. However, their approach requires
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labelled data, which is not available in the driving assessment domain. Hierarchical
fuzzy approach [225, 346] is an alternative to resolve this challenge, which does not
require labelled data, but rather it formats the structure of the entire fuzzy system.
Section 5.2.3 provides an overview of hierarchical fuzzy systems and Section 5.4.1
illustrates our adoption of the approach in SIFA.

5.2.3 Overview of hierarchical fuzzy systems

Standard FLSs are made up of a single set of rules with all possible interactions
between the inputs. For example, Figure 5.2 shows a standard FLS with four in-
put variables where all the fuzzified inputs are combined into a single system to
produce an output. If the variables have three FSs each, there will be 81 possible
combinations of input FSs, i.e., number of rules, and each rule has four antecedent
conditions. Generally, the total number of rules of a FLS (RFLS) with n input
variables and m FSs for each variable is given by the following equation:

RFLS = mn (5.3)

Figure 5.2: A standard fuzzy logic system with four inputs and one output

Figure 5.3: A hierarchical fuzzy system made up of three intermediate fuzzy logic
subsystems.

Hierarchical Fuzzy Systems (HFSs) group input variables into subsystems rep-
resenting different facets of the system [225, 346]. The subsystems are lower-
dimensional FLSs, which are easier to manage and understand. Figure 5.3 shows
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a HFS with four input variables and one output. The input variables have been
grouped into two subsystems i.e. subsystems 1 and 2, whose outputs interact in
subsystem 3 to produce the final output. From a functional standpoint, the FLS
and HFS in Figures. 5.2 and 5.3, can be represented as follows:

yFLS = F (v1, v2, v3, v4) (5.4)

yHFS = F (F (v1, v2), F (v3, v4)) (5.5)

where vi is the ith input variable, and F is a standard FLS.
If we assume three FSs for each variable and three FSs for each intermediate

output (i.e. outputs from subsystems 1 and 2), the total number of rules in the
HFS is 27 (9 rules from subsystem 1 + 9 rules from subsystem 2 + 9 rules from
subsystem 3) and each rule having only two antecedent conditions. The number of
rules and antecedent conditions generated by HFSs are therefore significantly lower
than those generated by standard FLSs.

The reduction in rules and input conditions by HFSs enable the capture of more
reliable and transparent causal relationships as experts have to analyse fewer in-
formation and conditions in each subsystem. It also reduces the computational
complexity of the system. Furthermore, human knowledge is generally organised
hierarchically into levels of abstraction, especially when dealing with complex in-
formation [347] e.g., if a human is presented with information about dogs, forks,
goats,spoons, cows, and knifes; they will naturally categorise the information into
animals and cutlery at the first level of abstraction before further processing. There-
fore, when dealing with complex heterogeneous information that describe different
concepts of a system, grouping information of similar abstraction makes the system
easier for humans to understand, process, evaluate and improve. Section 5.4.1 de-
scribes how a hierarchical fuzzy approach is implemented in SIFA to reduce system
complexity and increase interpretability.

5.3 Stakeholder-Supported Fuzzy Driving Assess-

ment Framework

This section introduces our new stakeholder-supported driving assessment frame-
work called SIFA. It extends the SIA framework introduced in Chapter 4 by engag-
ing with stakeholders to capture information about the impact of the co-occurrence
and interaction of contextual factors on road safety, and employs a HFS to provide
decomposable and reliable assessments of HGV driving risk. In addition, SIFA pro-
duces a database of driving rules that show the level of road safety risk for driving
behaviours in different external conditions.

Figure 5.4 shows a diagram of the five stages of SIFA. The stages are described
below:
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Figure 5.4: A diagram showing the different stages of SIFA framework. Similar
stages between SIFA and SIA are indicated with red dashed bounding boxes.

5.3.1 Stage 1: Identification of contextual factors

The first stage of SIFA is similar to Stage 1 of SIA described in Section 4.3.1
(page 77). The stage involves compiling a list of contextual factors that affect
driving performance based on the literature. Subsequently, consultative workshops
are organised with stakeholders in the industry to validate, update and capture new
factors that affect safe driving.

5.3.2 Stage 2: Design hierarchical structure and fuzzy sets

Stage 2 defines the hierarchical structure of the system with the help of domain
experts (stakeholders). This is achieved by grouping the factors identified in Stage
1 into similar themes (subsystems) representing different facets of the system. For
example, in SIA, the stakeholders grouped HGV contextual factors into four themes
representing different aspects of HGV driving: (1) driver personal traits; (2) work
life and external pressures; (3) vehicle characteristics and technologies; and (4) en-
vironmental conditions. Subsequently, the experts determine how the different sub-
systems interact to produce the final assessment of driving risk. This defines the
thematic subsystems of the hierarchy.

After defining the hierarchical structure of the system, the fuzzy sets (FSs) for
the contextual factors and driving risk outputs are defined. The FSs are human-
understandable linguistic terms for the different categories or classes of the factors
and driving risk decisions. For example, drivers’ affective states can be classified into
three FSs: ’negative’, ’neutral’ and ’positive’, and driving risk can be classified into
‘low’, ‘moderate’ and ‘high’. The FSs and their respective membership functions
(MFs) model imprecision in the description of factors, smooth transitions between
categories of factors, and uncertainty in information produced by AI approaches as
shown in Section 5.4.2.

108



5.3.3 Stage 3: Design and distribute questionnaires

This stage designs questionnaires to capture stakeholders’ views about the impact
of the interactions between contextual factors on driving risk. These interactions
are represented as IF-THEN rules consisting of the linguistic terms (FSs) defined in
Stage 2 e.g., a sample interaction could be “IF driver’s affective state is ‘negative’
AND driving style is ‘aggressive’ THEN driving risk is ‘very high’ ”. The question-
naires are designed to capture imprecision or indecision in the opinions of stakehold-
ers using, for instance, interval-valued response-format questionnaires [232]. Similar
to Stage 2 of SIA (Section 4.3.2), the design and wordings of the questions are im-
proved with the help of the stakeholders recruited in Stage 1. The questionnaires
are distributed to a wide cohort of key stakeholders in the domain.

5.3.4 Stage 4: Model synergistic effects of contextual factors

This stage models the questionnaire responses about the causal relationships be-
tween contextual factors and driving risk. To model and aggregate the variability
in stakeholders’ views, Wagner et al. [19] process of generating weighted fuzzy logic
rules from uncertain responses is adopted. The width of a given interval response
represents the certainty of the response as described in Section 4.2.4. Each question
in the questionnaire produces N interval responses, where N represents the total
number of participants that completed the questionnaire. Wagner et al. [19] process
is described as follows:

1. First, responses of each question (i.e., rule) are aggregated into two summary
lists depending on their level of uncertainty i.e., MCert and MUncert. MCert

aggregates responses with no uncertainties i.e. stakeholders provided a pre-
cise rating for the interaction of contextual factors, while MUncert aggregates
uncertain responses represented as intervals. The sizes of MCert and MUncert

are equal to the number of options in the questionnaire’s rating scale, and
each value in the lists represents the occurrence of that particular rating in
the response. For example, Figure 5.5 shows summary lists produced from five
responses i.e. two certain responses(i.e. (3,3) and (4,4)) and three uncertain
responses (i.e. (3,4), (3,5) and (2,3)). The output (or rating scale) has five
labels i.e., 1 to 5.

Figure 5.5: An example illustrating how summary lists MCert and MUncert are gen-
erated from certain and uncertain responses. Certain responses are indicated in
bold.
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2. Subsequently, the summary lists are utilised to compute rule weights, as fol-
lows:

Wi,j =
MCert

i,j × wCert + MUncert
i,j × wUncert

wCert + wUncert
(5.6)

Where i is number of rules, j is the number of output FSs or labels, Wi,j

is the rule weight for rule i and label j, MCert
i,j is the value of label j in the

certain summary list produced by rule i, and MUncert
i,j is the value of label j

in the uncertain summary list produced by rule i. wCert ∈ [0,1] is the weight
for certain responses, and wUncert ∈ [0,1] is the weight for uncertain responses.
wCert and wUncert reflect how much emphasis is to be given to certain and
uncertain responses and is commonly determined by the decision makers.

To demonstrate the application of the rule weight equation (Equation 5.6),
the example in Figure 5.5 is utilised, and the following assumptions are made:
wCert = 1 and wUncert = 0.5. The resulting weights produced by the certain
and uncertain responses for the five output labels are 0, 0.33, 1.67, 1, and 0.33.

3. Lastly, the rule weights are normalised to (0,1) for integration into fuzzy logic
systems as degrees of membership lie between 0 and 1. Therefore, the weights
obtained in the previous stage (i.e., 0, 0.33, 1.67, 1, 0.33) are normalised to
0, 0.19, 1, 0.59, 0.19. The normalised weights are used to modify the rule
strengths during inference, as follows:

f
′

i,j = fi,j × Wi,j (5.7)

Where fi,j represents the standard rule strength for rule i and label j obtained
during inference. Wi,j represents the normalised weighted rules for rule i and
label j, and f

′
i,j represents the resulting weighted rule strengths for rule i and

label j obtained from the product between the standard rule strengths and
weighted rules.

5.3.5 Stage 5: Hierarchical fuzzy inference

The final stage is the development of Mamdani rule-based inference systems [215]
for the different thematic subsystems. The inference systems provide assessments
of driving risk using the fuzzy sets from stage 2 and the normalised weighted rules
from stage 4. In the Mamdani inference systems, the output of each rule is a fuzzy
set derived from the aggregation of fuzzified inputs using fuzzy operators and rule
strengths obtained from the normalised weighted rules as shown by Equation 5.7.
The output fuzzy sets produced by the entire set of rules are combined into a single
fuzzy set using the maximum aggregation method. The resulting fuzzy set represents
the likelihood of the interaction between the inputs belonging to a specific driving
risk category.
For example, imagine two rules with the following modified rule strengths:
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Rule1 : low risk = 0.1, moderate risk = 0.7, high risk = 0.3

Rule2 : low risk = 0.2, moderate risk = 0.2, high risk = 0.1

The final decision fusion about the driving risk is:

max(0.1, 0.2) = 20% likelihood of low risk

max(0.7, 0.2) = 70% likelihood of moderate risk

max(0.3, 0.1) = 30% likelihood of high risk

To compute the inference of the entire hierarchical fuzzy system, the output
FSs of preceding subsystems in the hierarchy are reduced to crisp values using a
defuzzification method (e.g., centroid defuzzification [348] and Mean Of Maxima
(MOM) defuzzification [297]) and fed into subsequent subsystems. This is because
fuzzy logic systems only accept non-fuzzy inputs, which are transformed to fuzzy
sets by the fuzzification stage.

Section 5.5 presents the results of the application of SIFA in assessing HGV
driving scenarios, which will elucidate the above stages.

5.4 Experimental Design

As mentioned in the motivation of this thesis (Section 1.1, page 1), HGV drivers’
responses are mostly influenced by drivers’ personal traits and external contextual
factors. The influence of these factors are not captured in existing driver data
and/or AI models; however, they can at least partially be obtained from stakeholders
expertise in the HGV sector. In addition, when the influence of the factors are
considered in a linear fashion as described by SIA in Section 4.5.5 (page 92), it fails
to capture the realistic interactions between the factors and HGV driving risk. This
section presents the experimental design of applying SIFA to capture information
about the impact of the interaction between contextual factors on HGV driving risk
from stakeholders in the HGV sector. The section also presents the modelling and
inference techniques based on fuzzy logic adopted by SIFA for embedding and fusing
contextual information in the assessment of HGV driving risk. Table 5.1 presents
the number of participants recruited in different stages of the application process of
SIFA. More details about the experimental design and recruitment of participants
is provided below.

5.4.1 Hierarchical Structure

Since this thesis focuses on the development of an online HGV driving risk assess-
ment framework, it only considers contextual factors that can be currently predicted
using AI approaches and/or data. Using the contextual factors identified by SIA in
the workshops (Section 4.5.1, page 82), the following factors are considered: driving
styles, driver affective states, driver distraction, weather conditions, road types and
traffic conditions.
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Table 5.1: Number of participants recruited during the application process of SIFA
in HGV driving risk assessment.

SIFA application process

Number of Participants

HGV drivers
HGV Transport Road safety

ResearchersManagers officers [b]
Questionnaire design - 3 - 6
Questionnaire completion 28 30 29 34
Design of user stories 10 - - -
Evaluation of user stories 38 - - -

The nine stakeholders recruited by SIA to validate and update the contextual fac-
tors (i.e., a university professor in Psychology specialised in HGV driver behaviour,
three HGV transport managers, and five researchers specialised in driver behaviour
analysis and fuzzy logic), assisted in designing the hierarchical fuzzy system, defin-
ing the fuzzy sets and designing the questionnaire. These stakeholders grouped the
factors into two themes: (1) driver-related factors, and (2) external factors, as shown
in Figure 5.6. The outputs of the subsystems are combined to determine the over-
all driving risk. This hierarchical structure makes the system easier for humans to
understand, process, evaluate and improve. Imagine a standard FLS with the six
input variables and their FSs. An example rule with all six variables is “A driver is
driving in an ‘undivided urban road’, driving style is ’normal’, driver is ‘distracted’
and ‘tired’, weather is ‘sunny’, and road is ‘busy’.” Reasoning and evaluating the in-
teraction and impact of all six variable conditions on road safety would potentially
be more difficult compared to splitting the interactions into smaller manageable
subsystems.
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Figure 5.6: A hierarchical structure of HGV driving risk assessment developed by
nine stakeholders in the HGV sector. The structure shows the grouping of HGV
contextual factors into driver-related factors and external factors to enhance inter-
pretability.

5.4.2 Fuzzy sets

The FSs defined for the different variables, intermediate features and driving risk
are described below.

Subsystem 1 - Driver-related risk

The inputs of subsystem 1 are drivers’ affective states, distraction and driving styles
detected by intelligent driver characterisation systems. Our proposed FSs and MFs
for the inputs are presented in Table 5.2. Positive affective state represents positive
feelings of emotion, such as happy and energetic, while negative affective state rep-
resents negative feelings, such as angry, sad and tired. Distraction is classified into
‘low’, ‘moderate’ and ‘high’, where ‘low’ represents attentive driving and ‘high’ rep-
resents distracted driving. The FSs for driving styles represent the manner by which
the driver operates the vehicle e.g., calm driving style means the driver is cautious
and produces small number of driving incidents, while aggressive is the production
of many driving incidents. Z and S-MFs are preferred for representing the extreme
FSs due to their smooth transition from maximum to minimum memberships and
triangular MFs are chosen for intermediate FSs to capture maximum membership
at the centre. The MFs are equally distributed between 0 and 100, as shown in
Figure 5.7(a).

The output of this subsystem is the driving risk associated to the co-occurrence
and interaction of the driver traits. Five FSs are defined for output as shown in
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Figure 5.8 i.e., ‘very low’, ‘low’, ‘moderate’, ‘high’ and ‘very high’. The FSs are
equally distributed between 0 and 100, where 0 is ‘very low’ driving risk and 100 is
‘very high’ driving risk.

Table 5.2: Fuzzy sets and membership functions to capture the characterisation of
driver affective states, distraction and driving styles.

Driver personal traits Linguistic terms (fuzzy sets) Membership functions
Affective state Negative; Neutral; Positive Z; Triangular; S

Distraction Low; Moderate; High Z; Triangular; S
Calm or Cautious;

Driving style Moderate or Normal; Z; Triangular; S
Aggressive or Reckless

Subsystem 2 - External disturbance

The second subsystem takes as inputs information about environmental factors i.e.,
weather conditions, road types and traffic conditions. The information can also
be obtained from intelligent systems or external sources, such as the Metropolitan
Police UK2. Table 5.3 shows our proposed FSs and their respective MFs for the
environmental factors. Triangular MFs are defined to model uncertainty in the pre-
diction of weather conditions and road types, where maximum membership occurs
at different class labels e.g., 1 = sunny, 2 = rainy, 3 = foggy etc. Traffic conges-
tion is represented using Z, S and triangular MFs to capture ‘low’, ‘moderate’ and
‘high’ traffic characterisations. The MFs for weather conditions and road types are
equally distributed between 0 and 5 for the five classes each, while the MF for traffic
congestion is distributed between 0 and 100, where 0% represents ‘low’ traffic, 50%
represents ‘moderate’ traffic and ‘100’ represents ‘high’ traffic. Figure 5.7(b) shows
the different FSs for the external factors.

The output of this system is the driving risk associated to the co-occurrence and
interaction of the external factors. Similar to subsystem 1, five FSs are defined to
effectively capture the uncertainty in assessing the risk, as presented in Figure 5.9,
i.e., ‘very low’, ‘low’, ‘moderate’, ‘high’ and ‘very high’.

Table 5.3: Fuzzy sets and membership functions to capture the characterisation of
weather conditions, road types and traffic congestion.

Environmental Linguistic terms Membership
factors (fuzzy sets) functions

Weather conditions Sunny; Rainy; Foggy; Snowy; Icy Triangular
Motorway; Undivided highway

Road Types Urban area; Intersection Triangular
Rural area

Traffic congestion Low; Moderate; High Z; Triangular; S

2https://www.met.police.uk/
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Figure 5.8: Membership function to capture ambiguity or uncertainty in the de-
scription of driving risk associated to the co-occurrence and interaction of driving
behaviours.

Figure 5.9: Membership functions to capture ambiguity or uncertainty in the assess-
ment of driving risk associated to co-occurrence and interaction of external factors.
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Subsystem 3 - Overall driving risk

The final subsystem combines the driving risk associated to driver traits and the
driving risk associated to external factors to produce a final assessment of HGV
driving risk. Three FSs are defined for the different driving risks as shown in Fig-
ure 5.10 i.e., ‘low’, ‘moderate’, and ‘high’. The number of FSs were reduced from
five (i.e. output MFs of subsystems 1 and 2) to three (input MFs of subsystem 3)
as the stakeholders found lack of context between the linguistic terms ‘very low’ and
‘low’ or ‘very high’ and ‘high’ when considered as inputs into the system. Five FSs
are defined for the final driving risk assessment as shown in Figure 5.11 i.e. ‘very
low’, ‘low’, ‘moderate’, ‘high’ and ‘very high’.

Figure 5.10: Input membership functions for determining the overall driving risk.
(a) Risk associated to driver traits, and (b) risk associated to external conditions.

Figure 5.11: Membership function for the overall driving risk from the co-occurrence
of driver traits and external factors.

The above FSs and MFs are defined by fuzzy experts based on insights from
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the stakeholders about the imprecision of describing and predicting risk factors. For
example, the weather and road type MFs are designed to consider the imprecision of
current classification machine learning models as shown in Figure 5.7. Nonetheless,
the FSs and MFs are not ultimate, as other fuzzy and domain experts may have
different opinions. Therefore, the FSs and MFs can be fine-tuned according to
expectations, system performance and the development of new intelligent systems
that characterise the risk factors.

5.4.3 Questionnaire design

To capture stakeholders’ views about the combined effects and interactions of HGV
contextual factors on road safety, we developed questions (found in Appendix B.1)
with the interactions represented as IF-THEN statements. The questions consisted
of five-point answer scales ranging from 1 meaning ‘very low’ risk to 5 meaning ‘very
high’ risk, similar to the driving risk FSs described in Section 5.4.2. Figure 5.12
shows sample questions extracted from the questionnaires, asking participants to
provide their opinions about the assessment of driving risk in different driving sce-
narios. In order to capture uncertainty in the opinions of stakeholders and ensure
sufficient responses are collected, participants are allowed to select two points on the
scale representing the range of certainty of their responses. The questionnaire to
capture the combined impact of driver traits consisted of 27 questions representing
the 27 possible combinations of the traits (subsystem 1). The questionnaire for ex-
ternal factors consisted of 65 questions (subsystem 2), and the questionnaire for the
interaction between the risk associated to driver traits and external factors consisted
of 9 questions (subsystem 3).

5.4.4 Questionnaire participant recruitment

Professionals from the four stakeholder groups were recruited to complete the ques-
tionnaires, i.e., HGV transport managers, road safety professionals, HGV drivers and
researchers. These groups were established in Section 4.4.3 (page 80). Professionals
were recruited by sending mass messages to individuals whose job titles and exper-
tise matched any of the four stakeholder groups. For a wider reach, LinkedIn [328]
platform, contacts in the University of Nottingham, and UK’s University Trans-
port Study Group were explored. No compensation was offered for participation.
121 participants from the UK completed the questionnaires; 28 HGV drivers, 34
researchers, 30 HGV transport managers, and 29 road safety professionals.

5.4.5 Data modelling and fuzzy system configuration

The questionnaire responses are transformed into two-element tuples consisting of
two discrete points selected in the five-point rating scale. This is to ensure easy
compatibility with Wagner et al. [19] uncertainty rule generation strategy, described
in Section 5.3.4 (page 109). For certain responses (where participants select a single
discrete point on the scale), the values for the elements in the tuple are same. E.g.,
if a participant selects only ‘3’ on the scale, their response is represented in the tuple
as (3,3).
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Figure 5.12: Sample questions to capture the synergy of contextual factors on driving
risk. (a) Driver traits; (b) external factors; and (c) interaction between the risk
associated to driver traits and external factors.

For the fuzzy inference systems within the three subsystems of the hierarchy,
Mamdani rule-based fuzzy inference [215] is employed as described in Section 5.3.5
(page 110). To process the outputs of subsystems 1 and 2, two popular defuzzifi-
cation methods were implemented i.e., centroid defuzzification [348] and Mean Of
Maxima (MOM) defuzzification [297]. Centroid defuzzification considers the centre
of the area under the output fuzzy sets to produce a crisp value. Conversely, MOM
computes the mean of the fuzzy set corresponding to the maximum value of the
membership function.

5.4.6 Evaluation protocol

To evaluate the reliability of SIFA taking into consideration the lack of labelled HGV
driving assessment data, user stories of driving scenarios were designed. The assess-
ments of the stories computed by SIFA are compared with the assessments suggested
by HGV drivers (human-in-the-loop evaluation). 10 HGV drivers were interviewed
to revise and validate the user stories encompassing realistic HGV driving scenar-
ios with different interactions between driver traits and external conditions. The
user stories consist of the contextual factors established in the first stage of SIFA
for online HGV driving assessment (Figure 5.6, page 113) i.e., weather, type of
road, traffic, driving style, driver attention/distraction, driver affective state (e.g.
emotion, fatigue). We developed the scenarios based on the following research ques-
tions: is driving risk affected by external disturbances, even if a driver’s actions and
behaviours are good? and to what extent do risky external conditions and driver
traits affect road safety? The initial stories were developed with the help of the

119



stakeholders recruited in stage 1 of SIA and they are found in Appendix B.2. A
sample initial user story is “ A HGV driver is travelling on a sunny motorway with
about 50 vehicles per lane of the road. The driver has a total of 10 seconds of driving
at the maximum speed limit. The driver is attentive and well rested.”

During the interviews with the drivers, the initial user stories are presented to
them and they are asked the following questions:

• On a scale from 1 to 5 (unrealistic to very possible), what will you consider
the above driving scenario?

• If the driving scenario is unrealistic (below 3), please how can we improve the
user story to make it more realistic?

• How will you improve the wordings of the user story to make it more under-
standable to drivers?

The drivers suggested that describing traffic congestion in terms of the pace of
vehicle movement is more understandable than in terms of the number of vehicles
travelling at a particular time. In addition, in their opinion it is easier to interpret
driving styles using the number of driving incidents produced per mile rather than
for an entire journey. Therefore, the driving scenarios were considered per mile of
the road. For instance, the sample user story presented above was revised to “A
HGV driver is travelling on a sunny motorway with traffic moving at a fast pace.
The driver has a total of 10 seconds of driving at the maximum speed limit within 1
mile of the road. The driver is attentive and well rested.”

The revised user stories (found in Table 5.4) were distributed to 38 HGV drivers
in the UK recruited via LinkedIn. The first user story was used as a baseline with safe
driving traits and favourable external conditions i.e., “A HGV driver is travelling on
a sunny motorway with traffic moving at a fast pace. The driver maintains a speed
below the maximum speed limit. The driver is attentive and well rested”. This
baseline story was presented to the drivers as an ideal driving scenario to facilitate
their understanding of the other stories. For each story, the drivers were asked the
following questions:

• What level of risk do you consider the above driving scenario?

• Which contextual factors in the driving scenario were influential in your as-
sessment?

The questionnaire presented to drivers can be found in Appendix B.3. The first
question had responses from ’very low’ to ‘very high’, similar to the output of our
system. The responses for the second question were the six inputs to the system
(driving styles, driver affective state, driver distraction, weather conditions, road
types and traffic conditions) and the different groups of inputs (driver-related factors
and external factors). The purpose of the first question was to compare drivers’
responses with the risk calculated by SIFA’s hierarchical fuzzy system. The purpose
of the second question was to compare the drivers’ reasoning about risky factors for
each scenario with the risks calculated by the different subsystems.
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In order to capture uncertainties in drivers’ perceptions, a multi-select response
format questionnaire was implemented i.e., they could select more than one answer
for the same question. It is important to note that the performance of our framework
is not presented to the drivers to avoid any bias. In addition, the drivers recruited
for evaluation are different from those recruited to help co-design the system.

To ensure that the fuzzy inference system developed at the last stage of SIFA can
effectively fuse information about the driving scenarios, the contextual information
(i.e., weather, road type, traffic, driving style, affective state and distraction) are
transformed into their respective FSs with a membership degree of 1. Table 5.5
shows the input FSs for the different user stories.

Table 5.5: Resulting linguistic terms describing the user stories in Table 5.4.

User story number

Inputs
Driving behaviours External disturbance

Driving style Affective state Distraction Weather Road Type Traffic Congestion
1 Cautious Positive Low Sunny Motorway Low
2 Cautious Positive Low Foggy Intersection High
3 Reckless Positive High Rainy Undivided highway Low
4 Reckless Negative Low Sunny Intersection Low
5 Aggressive Negative High Sunny Undivided highway Moderate
6 Normal Negative High Foggy Motorway High
7 Aggressive Negative Low Icy Rural road Moderate
8 Cautious Positive Low Snowy Urban road Moderate
9 Normal Positive High Sunny Rural road Low
10 Cautious Negative Low Snowy Urban road Low

The assessments of the driving scenarios provided by the 38 HGV drivers are
compared with the assessments produced by SIFA using the following proposed
evaluation metrics:

Reliabilitylevel−1 =
Total(maxoutput fuzzy set=maxprob category)

Total(user stories)
(5.8)

Reliabilitylevel−2 =
Total(maxprob category IN Top2output fuzzy set)

Total(user stories)
(5.9)

Equation 5.8 (known as ‘level-1’ reliability) measures the agreement between SIFA’s
output fuzzy set with maximum membership and the driving risk category with
highest probability obtained from the assessments provided by the 38 HGV drivers.
Equation 5.9 (known as ‘level-2’ reliability) captures uncertainty in the assessment
of driving risk by taking into consideration the uncertainty in output fuzzy sets
produced by SIFA. It calculates the agreement between the top 2 output fuzzy sets
produced by SIFA and the driving risk categories with highest probability in the
probability distribution plot of the assessments provided by the drivers.

Lastly, the driving risk assessments produced by SIFA are compared to the as-
sessments produced by SIA and current intelligent HGV driving assessment (CIDA)
approaches. The application of SIA and CIDA in assessing driving risk is described
in Section 4.5.5 (page 92).
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5.5 Results and Discussion

This section presents the analysis of the responses provided by the stakeholders
about the combined effects of contextual factors on HGV driving risk. Subsequently,
it discusses the evaluation of the driving risk assessments produced by SIFA for
the different driving scenarios presented in Table 5.4, taking into consideration the
lack of labelled HGV driving risk assessment data. Lastly, it concludes with the
limitations of SIFA.

5.5.1 Analysis of stakeholder responses

After collecting the responses of 121 stakeholders about the impact of the combined
effects and interaction of contextual factors on HGV driving risk, the rule weight
strategy proposed by Wagner et al. [19] is utilised to transform the responses into
weighted fuzzy rules, as discussed in Section 5.3.4. Figures 5.13, 5.14, 5.15 and 5.16
show the resulting weighted rules obtained from the stakeholders’ responses. For
each rule, weights are assigned to the driving risk labels: ’very low’, ‘low’, ‘mod-
erate’, ‘high’ and ‘very high’. These weights capture and represent the variance in
stakeholders’ views about the interaction of factors. For example, if we consider
Rule 1 in Figure 5.13 i.e., “IF Emotion is negative And Distraction is high And
Driving Style is aggressive”, it is observed that the following weights have been as-
signed to the risk levels: ‘very low’ equal 0.00, ‘low’ equals 0.00, ‘moderate’ equals
0.05, ‘high’ equals 0.44 and ‘very high’ equals 1.00. This implies that within the
uncertainty interval defined by each participant for Rule 1, the rule was considered
to be between ‘moderate’ to ‘very high’ risk with the highest likelihood of ‘very high’
risk. Shading has been applied in the figures to highlight driving risk labels with
higher weights for each rule.

Figure 5.13 represents the resulting rule weights for the interaction between
driver traits. It is observed that all the rules with distraction equals ‘high’ or driving
style equals ‘aggressive’ irrespective of the driver’s affective state have their resulting
driving risk being ‘high’ or ‘very high’ i.e., the driving risk labels with the highest
weights in the rules. Whereas, some rules with driver affect equals ‘negative’ (i.e.
rules 6, 11, 17 and 21) have their resulting driving risk as ‘moderate’. This implies
that high distraction and aggressive driving styles have a higher impact on driving
risk, when interacting with other driver traits compared to drivers’ negative affective
states. When we only consider their independent influence on driving risk as anal-
ysed in Chapter 4 (Figure 4.16,page 96), it can be observed that negative affective
states has a higher impact on drivers’ responses, which may be highly correlated
to drivers’ perceived distraction state and aggressive driving styles [6]. Therefore,
by considering the interactions between traits, such correlations are eliminated to
produce true causal relationships and more realistic effects of driver traits. Further-
more, it is observed that the assessment of driving behaviours is definitely uncertain
by nature, indicated by the different levels of uncertainty in the rules; even for rules
with all driver traits being good (Rule 2) or bad (Rule 3).

Examining the weighted rules for the interaction between external factors shown
in Figures 5.14 and 5.15, it is observed from participants’ responses that harsh
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weather and road conditions (i.e., snowy, icy and foggy weather) are the most risky
external factors with ‘high’ and ‘very high’ driving risk irrespective of other external
conditions. This is in conformity with results obtained from the literature of post-
hoc driving risk analysis [235, 349, 350]. Furthermore, we observe ‘low’ to ‘moderate’
driving risk during sunny weather conditions due to better visibility compared to
other weather conditions. For road types, it is noticed that driving risk is higher at
intersections compared to other road types, irrespective of other external factors.

Figure 5.16: Rules obtained from 121 HGV professionals regarding the impact of the
interaction between the risk associated to driving behaviours and external factors.

Figure 5.16 shows the weights for the rules that capture the interaction between
the risk associated to driver traits and the risk associated to environmental con-
ditions. Risky environmental conditions have a high impact on road safety even
when the risk associated to driving behaviours is ‘low’ i.e., rule 5. In addition,
the responses revealed that the risk associated to environmental conditions has a
greater impact on the overall driving risk compared to the risk associated to driving
behaviours. This is indicated by higher weights in ‘very high’ driving risk for ‘high’
risk associated to environmental conditions (rules 5 and 6) compared to ‘high’ risk
associated to driver traits (rules 2 and 9). These findings illustrate the importance
of incorporating the impact of external conditions into the assessment of driving
risk and answers the research questions:is driving risk affected by external distur-
bances, even if a driver’s actions and behaviours are good? and to what extent do
risky external conditions and driver traits affect road safety? It is important to note
that these findings are uncovered as a result of the hierarchical classification of the
driving environment into driver-related and environmental risks.

Lastly, it is observed that the driving risk associated to the safest driving rule
(rule 3) with ‘low’ driver-related and external risks is considered more of ‘low’ than
‘very low’. Whereas the driving risk associated to the most dangerous driving rule
(rule 4) is considered by majority of the stakeholders to be ‘very high’. This shows
that stakeholders support the risk homeostasis theory of driver behaviour presented
in Section 2.2.1 (page 8), which states that there is always some level of driving risk.

5.5.2 Performance evaluation of defuzzification methods

The last stage of SIFA is the development of a hierarchical Mamdani inference system
using the weighted rules discussed in the previous section and the FSs developed in
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Table 5.6: Defuzzified values of the assessments produced by the driver-related risk
and external disturbance subsystems for the user stories in Table 5.4 using centroid
and mean of maxima defuzzification methods.

User story
Centroid defuzzification Mean of Maxima defuzzification

Driver-related risk External disturbance Driver-related risk External disturbance
1 22.24 (low) 26.36 (low) 6.00 (very low) 30.80 (low)
2 22.24 (low) 76.59 (high) 6.00 (very low) 93.99 (very high)
3 71.91 (high) 50.23 (moderate) 69.99 (high) 50.00 (moderate)
4 67.11 (high) 41.74 (moderate) 69.99 (high) 30.80 (low)
5 79.67 (high) 45.97 (moderate) 93.99 (very high) 50.00 (moderate)
6 62.39 (high) 65.84 (high) 69.99 (high) 70.0 (high)
7 67.11 (high) 68.37 (high) 69.99 (high) 70.0 (high)
8 22.24 (low) 68.20 (high) 6.00 (very low) 70.0 (high)
9 60.37 (moderate) 33.73 (low) 69.99 (high) 30.80 (low)
10 41.77 (moderate) 62.64 (high) 50.00 (moderate) 70.0 (high)

Section 5.4.2. Before discussing the evaluation of the overall fuzzy inference system
is performed, the performance between the different defuzzification methods are
shown i.e., centroid and MOM defuzzification methods.

Table 5.6 represents the risks produced by driver-related factors and external
factors of SIFA’s hierarchical fuzzy Mamdani inference system for the user stories.
The results show defuzzified values computed using centroid and MOM defuzzifica-
tion methods. The results that differ in their driving risk category (i.e., the output
FSs with maximum membership) between the methods for the different user stories
are indicated in bold. For example, the driver-related risk produced by centroid
defuzzification is ‘low’ for user story 1, while that produced by MOM is ‘very low’;
therefore, indicated in bold. While the driver-related risk produced by centroid de-
fuzzification is ‘high’ for user story 3 and similar to the driver-related risk produced
by MOM, which is also ‘high’.

It can be observed that the methods produce different risk categories for driver-
related risk in five user stories (i.e., user stories 1, 2, 5, 8 and 9), and two user stories
for external disturbance (i.e., user stories 2 and 9). It can also be observed that MOM
defuzzification produces the same defuzzified values for the same categories as it
calculates the mean of the fuzzy set with maximum membership. This implies more
contextual information is lost with MOM, as it ignores the output uncertainties. For
example, MOM produces the same defuzzified driver-related risks for user stories 3
and 9, as shown in Figure 5.17(a). However, it is observed that user story 3 has
a higher likelihood (0.6 membership degree) of being classified as ‘very high’ risk
compared to user story 9 (0.2 membership degree). This information is totally
lost with MOM compared to centroid defuzzification, as shown by the defuzzified
driver-related risks produced by centroid defuzzification in Figure 5.17. Centroid
defuzzification loses less information compared to MOM, and therefore seems to be
a more sensible approach for transforming information from earlier subsystems in
the hierarchy.
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Figure 5.17: Output fuzzy sets and defuzzified values (black vertical lines) for: (a)
Mean of maxima defuzzification, and (b) centroid defuzzification.

5.5.3 Evaluation of SIFA

(a) Comparison with assessments from HGV drivers

The results of SIFA and the responses of the 38 HGV drivers are presented in
Figures 5.18 and 5.19. The first column represents user story numbers with their
descriptions in Table 5.4 (page 5.4). The second and third columns represent the
final output fuzzy sets from SIFA with centroid and MOM defuzzification methods,
respectively. The shaded areas in the MFs represent the likelihood of a user story
being classified as a particular driving risk category. For example, the centroid
result in row 1 of Figure 5.18 means user story 2 has a higher likelihood of being
classified as ‘high’ risk (with 0.5 membership degree), followed by ‘moderate’ risk
(with 0.4 membership degree), a similar likelihood of being classified ‘low’ or ‘very
high’ risk (with 0.1 membership degree), and a 0% likelihood of being classified as
‘very low’ risk. The last column represents the probability distribution of driving
risk categories generated from the responses of the drivers for each user story.

To evaluate the reliability of SIFA, Equations 5.8 and 5.9 are employed as de-
scribed in Section 5.4.6. Table 5.7 shows the results obtained using our proposed
evaluation metrics. It can be observed that centroid SIFA has a higher level-1 re-
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liability (66.7%) compared to MOM SIFA (33.3%) because centroid defuzzification
captures some uncertainty in intermediary subsystems, as discussed in Section 5.5.2.
The 66.7% reliability of the centroid SIFA corresponds to the agreement between the
maximum output FSs and the driving risk categories with highest probabilities i.e.,
user stories 3, 4, 5, 7, 9 and 10. While 33.3% reliability of MOM SIFA corresponds
to the agreement in user stories 3, 5 and 9. When we consider the uncertainties
in driving risk assessment as described in Section 5.1 (page 102), and compare the
top two output fuzzy sets with highest membership degrees with the driving risk
categories having the highest probabilities, centroid SIFA produces 100% level-2 re-
liability while MOM SIFA produces 88.9%. These results suggest that SIFA agrees
totally with the assessments provided by the HGV drivers when variability in ex-
perts’ subjective views and uncertainty in contextual information are considered.

Table 5.7: Agreement between the assessments produced by SIFA and the assess-
ments provided by 38 HGV drivers regarding nine realistic HGV driving scenarios.

SIFA
Reliability (%)
Level-1 Level-2

Centroid 66.7 100
MOM 33.3 88.9

Figure 5.20 shows the responses from the drivers about the most influential
factors in their assessments. We compare the frequency of factors selected as most
influential with the decisions produced by subsystems 1 and 2 found in Table 5.6
i.e., risks associated to driver traits and external factors, respectively. If the drivers’
responses are consistent with the assessments produced by SIFA, it implies a greater
chance of trust and acceptance in SIFA. Otherwise, more investigation is required
to identify the reason for the inconsistency and improve the framework or drivers’
perceptions accordingly. It can be observed that majority of the drivers considered
all the factors to be influential in the assessment of user story 2 and selected external
factors as most influential in the overall driving risk assessment. This conforms
with the decisions produced by SIFA, where the risk associated to external factors
is considered ‘high’. For user story 3, the drivers considered external factors to be
more influential than driving behaviours, which contradicts the decisions from SIFA
i.e., higher risk associated to driving behaviours than external factors. However,
when the independent effects of factors are examined, the drivers selected driver
distraction as the most influential factor in their assessment.

Drivers selected driver traits as the most influential in assessing user stories 4
and 5, which is in agreement with the decisions produced by SIFA i.e., higher risk
associated to driving behaviours than external factors. Subsequently, the drivers
consider both driving behaviours and external factors to be influential in assessing
user stories 6 and 7, which is similar to SIFA’s decisions. The framework produced
‘low’ driver-related risk for user story 8 due to the driver’s cautious driving style.
This is observed by majority of drivers selecting driving style as the most influential
factor in their assessment of user story 8. We also observe concordance between
the SIFA’s decisions and drivers’ assessments for user stories 9 and 10, with driver
traits being more influential in user story 9 and external factors in user story 10.
Regardless of the most influential factor selected, the drivers generally considered
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all contextual factors influential in their assessment of driving risk, which validates
the importance of the contextual factors identified by the stakeholders for assessing
driving risk.

(b) Comparison with SIA and CIDA approaches

This section compares the assessments produced by SIFA with those produced by
SIA and CIDA approaches. The application of SIA and CIDA in assessing driving
risk is described in Section 4.5.5 (page 92). As mentioned in Section 4.1 (page 72),
CIDA approaches (e.g., [15]) do not consider the influence of contextual factors
on drivers’ responses and only consider the manner by which drivers operate their
vehicles i.e., driving styles.

Table 5.8 shows the results of SIFA, SIA, CIDA and the assessments provided
by the 38 HGV drivers (DA) for the different user stories. SIFA’s results (columns
4 and 5) represent the top 2 output fuzzy sets after applying MOM and centroid
defuzzification methods to transform the output fuzzy sets of subsystems 1 and 2
in the hierarchical fuzzy inference system. DA’s results represent the top 2 driving
risk categories with highest probabilities in the probability distribution of drivers’
responses. The results that agree with the driving risk categories having highest
probability in DA are indicated in bold. To obtain the results for SIA and CIDA, the
normalised defuzzified contextual information obtained from stakeholders is utilised
as described in Section 4.5.5 (page 4.5.5). For example, if we consider user story 1,
“A HGV driver is travelling on a sunny motorway with traffic moving at a fast pace.
The driver maintains a speed below the maximum speed limit. The driver is attentive
and well rested”, the following normalised defuzzified contextual information are
used:

• norm(cautious driving=7.5)[0.5,1.5] = 1.315

• norm(positive affect=6.8)[0.5,1.5] = 1.225

• norm(attentive=7.8)[0.5,1.5] = 1.350

• norm(sunny=5.8)[0.5,1.5] = 1.095

• norm(motorway=6.2)[0.5,1.5] = 1.150

• norm(low traffic=6.4)[0.5,1.5] = 1.172

Journeys are assumed to start with a risk level of 50% (where 0% represents
‘very low’ risk, 50% represents ‘moderate’ risk, and 100% represents ‘very high’ risk
), and use Equation 4.5 (page 4.5) to compute the level of driving risk for CIDA and
SIA. For CIDA, the driving risk depends only on the driver’s driving style. While
SIA uses all the contextual information in a linear fashion. The resulting driving
risk assessments of CIDA and SIA for user story 1 are:

• CIDAuserstory1 = 50% ∗ 1
1.315

= 38.0%

• SIAuserstory1 = 50% ∗ 1
1.315∗1.225∗1.35∗1.095∗1.150∗1.172 = 15.6%
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The results of SIA and CIDA are classified into a driving risk category, as follows:
‘very low’ = 0 - 20, ‘low’ = 21 - 40, ‘moderate’ = 41 - 60, ‘high’ = 61 - 80, ‘very
high’ = 81 -100.

It can be observed that CIDA produces the same level of driving risk for user
stories with similar manner of driving (i.e., driving style), even though their external
conditions are different. For instance, in user stories 6 and 9, the drivers have the
same driving style (i.e., number of incidents within 1 mile); however, the foggy
weather and high traffic conditions of user story 6 should make the driving scenario
more risky than user story 9 with sunny weather and low traffic conditions. Similarly,
in user stories 1 and 2 with similar cautious driving styles (i.e., drivers maintain
speeds below the maximum speed limit) but different external conditions, CIDA
approaches produce the same driving risk level even though the foggy weather and
busy road conditions in user story 2 should be more risky.

When the combined effects of external factors are considered in SIA, we observe
fairer and more realistic driving risk levels for those scenarios. SIA’s assessments
show that user story 6 is more risky (100%) than user story 9 (56.6%) due to the
influence of foggy weather and high traffic conditions, and user story 2 is more
risky (48.5%) than user story 1 (15.6%) as a result of the foggy weather and busy
road conditions. However, SIA does not capture the interactions between factors and
fuses the contextual information in a linear fashion. This approach could potentially
lead to an exponential increase or decrease in the overall impact on driving risk;
thereby, producing severe assessments. For example, we observe such effects in the
severe assessments (above 90%) produced by SIA for user stories 3, 5, 6 and 7. SIFA
resolves SIA’s issues of highly correlated factors and exponential effects by capturing
the interactive effects of the factors as observed in SIFA’s more realistic assessments
of user stories 3, 5, 6 and 7.

Furthermore, SIA and CIDA fail to capture and represent the uncertainties and
imprecision in HGV driving assessment, as observed by their crisp results. HGV
driving assessment is uncertain by nature due to differences in the interpretations of
driver traits, imprecision in the definition of driving behaviours, uncertainties pro-
duced by sensor readings, and most importantly, differences in experts’ subjective
views and opinions. These uncertainties can be clearly observed in SIFA’s output
fuzzy sets with their degrees of membership between 0 and 1 and the driver’s re-
sponses (i.e., probability distribution plots) shown in Figures 5.18 and 5.19. It can
be observed that even when we consider the interval between highest probabilities
of drivers’ response, as shown in column ‘DA’ in Table 5.8, CIDA does not agree
that much with the drivers’ responses (about 55.5% agreement). The agreement
increases with SIA (about 88.8% agreement) due to the involvement of stakeholders
and contextual factors in the decision-making process. We observe highest agree-
ment between the outputs of SIFA (fuzzy sets or intervals) and drivers’ responses,
even when the highest probability of drivers’ responses are considered only. The
agreement between SIFA and DA is due to stakeholders’ support and synergy be-
tween factors. SIFA with centroid defuzzification shows greater agreement than
SIFA with MOM defuzzification due to the greater loss of information with MOM
as shown in Figure 5.17 (page 129).
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5.5.4 Limitations of SIFA

This section provides some limitations of SIFA that require improvement and further
analysis in the future.

• The hierarchical fuzzy Mamdani inference system can be further extended to
consider additional sub-themes within the subsystems to improve performance
and interpretability. For example, driver affective states and traffic congestion
could form a separate subsystem in the hierarchy as its been suggested by
some studies that driving in slow traffic elicits anger and stress [351, 352].

• SIFA assumes equal weights for all stakeholders and contextual factors. How-
ever, as the characteristic of HGV driving evolve e.g., introduction of new
technologies, laws, and infrastructure, we may have to revisit the weights and
prioritise factors with higher influence as well as stakeholders with greater
insights about the domain.

• SIFA is a stakeholder-supported framework. Its reliability and effectiveness
depends on the reliability of information captured from stakeholders. There-
fore, the recruitment of stakeholders and the design of questionnaires (i.e.,
stages 1, 2, and 3 of SIFA) are vital to the success of SIFA. In the future,
we plan to further improve these stages by developing a method of measuring
stakeholder reliability.

• SIFA loses contextual information during the defuzzification process. In the
future, we plan to reduce the loss of information by exploring or developing
new defuzzification methods that retain information captured by the output
fuzzy sets.

5.6 Summary

This chapter introduced a new framework called Stakeholder-supported Intelligent
Fuzzy driving Assessment (SIFA) that extends the framework introduced in Chap-
ter 4 (SIA) using a hierarchical fuzzy Mamdani inference system. SIFA complements
SIA by capturing the simultaneous interactions and uncertainties between contextual
factors and driving risk with the help of stakeholders and fuzzy experts. Informa-
tion about the synergistic and interactive effects of the factors on driving risk are
captured from key stakeholders in the HGV sector using questionnaires, aggregated
and utilised to develop a hierarchical fuzzy Mamdani inference system. SIFA also
models uncertainties in the driving system to produce more reliable, context-aware,
comprehensible and decomposable assessments of HGV driving risk.

We apply SIFA to assess the road safety risk of HGV driving scenarios. We
recruit 121 professionals in the HGV sector, i.e., 28 HGV drivers, 34 researchers, 30
HGV transport managers, and 29 road safety professionals, to capture the combined
effects, interactions and uncertainties of HGV contextual factors (described by stages
1, 2 and 3 of SIFA). The interactions and effects are aggregated and embedded into
the hierarchical fuzzy Mamdani inference system in stage 4 for fusing contextual
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information from intelligent systems. The output of the decision fusion process is
the likelihood of the interaction between the inputs belonging to a specific driving
risk category.

To evaluate the reliability of SIFA, 10 user stories representing realistic HGV
driving scenarios are developed with the help of HGV drivers. The decision fusion
results produced by SIFA for the different user stories are compared with the assess-
ments produced by SIA, CIDA approaches, and 38 HGV drives. The results show
that the decisions produced by SIFA agree with the decisions from drivers about the
driving risk of the user stories, especially when we consider uncertainty in assessing
driving risk and human perception. In comparison with SIA and CIDA approaches,
SIFA produces more realistic and trustworthy driving risk assessments. In addition,
the decomposable nature of SIFA makes its decisions easy to understand and makes
the framework easy to extend in the future.

The next chapter concludes this thesis by outlining the key findings of the re-
search and summarising the major contributions. In addition, it presents limitations
of the research and potential future directions of work.
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Chapter 6

Conclusion

The initial aim of this research was to develop and evaluate an end-to-end context-
aware intelligent system that provides online assessments of heavy goods vehicle
(HGV) driving risk using multi-modal data streams of driving behaviours and ex-
ternal factors. However, due to the absence of multi-modal data streams that si-
multaneously capture driving behaviours and external factors, this thesis focused on
a proof-of-concept implementation of the system using available data sources and
insights from domain experts. The thesis had the following aims: (1) develop and
evaluate new AI models that can accurately and privately detect HGV driving be-
haviours, and (2) develop and evaluate an intelligent system that can automatically
assess the impact of detected driving behaviours on road safety taking into consider-
ation their synergy with external conditions. The first aim has been realised by intro-
ducing novel AI techniques in Chapter 3 to improve the accuracy of detecting driving
behaviours and protecting the identities of drivers when processing facial images.
The second aim has been achieved by introducing a novel stakeholder-supported
intelligent fuzzy driving assessment (SIFA) framework in Chapter 5, which is an ex-
tension of the stakeholder-supported intelligent driving assessment (SIA) framework
introduced in Chapter 4.

The remainder of this chapter summarises the contributions of this thesis, and
links the contributions to the research questions established in the beginning of the
thesis (Section 1.2, page 1.2).

6.1 Contributions

The main contributions of this thesis are summarised in Figure 6.1. The figure rep-
resents our proposed end-to-end online context-aware driving assessment framework
that automatically analyses the road safety risk of a driver’s actions and behaviours
by taking into account their interactions with external conditions. The following
paragraphs describe the different contributions.

1. A novel intelligent multifaceted driver characterisation framework (Chapter 3).
The framework consists of novel artificial intelligence (AI) models that process
multi-modal data to produce more accurate, reliable and privacy-preserving
predictions of driving styles, distracted postures and affective states. The
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Figure 6.1: Our proposed intelligent context-aware HGV driving risk assessment
framework

development of this framework answers the first and second research questions
of this thesis i.e., “how can the accuracy and reliability of detecting HGV driver
behaviour be improved taking into consideration its multifaceted nature?”
and “how can the privacy of drivers be protected when processing data that
can easily expose their identities, such as, driver footage data?”. The novel
AI models/frameworks that make up the multifaceted driver characterisation
framework are:

(a) A hybrid clustering-fuzzy framework to produce stable, reliable and in-
terpretable driving styles (described in Section 3.3.1, page 3.3.1). The
framework consists of a clustering stage that employs an ensemble of
clustering and supervised learning methods on unlabelled telematics data
to identify core and stable driving styles. Subsequently, the framework
employs a data-driven fuzzy logic system (FLS) on the labelled data ob-
tained from the first stage to capture, model and represent imprecision
in the description of driving features and driving styles. It also extracts
human-understandable explanations of the relationships between driving
features and predicted driving styles. The outputs of the framework are
the likelihoods of driving patterns belonging to different driving styles,
such as ‘calm’, ‘normal’, ‘speedy’, and ‘aggressive’ driving styles.

(b) A hybrid deep learning framework to accurately predict driver distracted
postures and affective states, described in Section 3.3.2 (page 3.3.2). The
framework consists of Convolutional Neural Networks (CNNs) coupled
with stacked bi-directional Recurrent Neural Networks (RNNs) to cap-
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ture the spatio-temporal discriminative features of driver images. The
CNN feature maps extracted from a sequence of images are fed to the
RNN architecture to learn the temporal dependencies between the driv-
ing postures. The framework produces state-of-the-art classification ac-
curacy of driver distraction postures using the popular AUC Distracted
Driver Database, and state-of-the-art arousal accuracy using the popular
RECOLA affective datasets.

(c) A federated learning (FL) deep learning framework to address the chal-
lenges of data privacy, especially for driver footage data, described in
Section 3.3.3 (page 3.3.3). A FL approach is implemented for the hybrid
deep learning architecture described in the previous contribution. The
approach predicts driver traits by processing footage data in local de-
vices/machines and transferring the locally trained models to a central
server/machine for updating the inference model. As a result, drivers’
identity and privacy are safeguarded as the data remain locally. Results
of the approach on the popular RECOLA affective datasets show promis-
ing affect recognition performance.

2. A 4-stage stakeholder-supported intelligent driver assessment (SIA) framework
that captures and utilises information from stakeholders about the impact of
contextual factors on road safety in its assessment of HGV driving behaviour
(Chapter 4). The information is mostly not present in driver data or/and
current AI driving assessment approaches, but at least can be partially ob-
tained from stakeholders’ experiences in the HGV sector. The capture and
incorporation of the impact of contextual factors into the assessment of HGV
driving allows for fairer, transparent and explainable decisions. Stages 1 and
2 of the framework produce questionnaires that capture stakeholders’ views
about the impact of important, up-to-date contextual factors. Stage 3 aggre-
gates the responses from stakeholders using fuzzy sets based on the interval
agreement approach to model variability in stakeholders’ perception and views.
The last stage defuzzifies the aggregated information and incorporates them
into online driving assessments. This contribution partially answers the third
research question of this thesis i.e., “how can a reliable driving risk assessment
system that considers the real-world characteristics of the driving environment
be developed, taking into consideration the lack of comprehensive driving risk
datasets?”

3. SIA is limited to individual effects of contextual factors on road safety, which
could potentially lead to highly correlated factors and overestimated assess-
ments. In addition, it does not capture uncertainties in the characteristics
of HGV driving assessment, such as, imprecise information about driving
behaviours and external factors, and variability in experts’ subjective views
about the complex relationships between factors. To solve the aforementioned
limitations of SIA, SIA is extended using a hierarchical Mamdani fuzzy infer-
ence system (Chapter 5). The new extended framework is called stakeholder-
supported intelligent fuzzy driver assessment (SIFA). The framework captures
information about the synergistic effects and interactions between contextual
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factors from stakeholders using IF-THEN rules. Subsequently, it develops a
hierarchical Mamdani fuzzy inference system to produce more realistic, in-
terpretable and reliable decisions by fusing information about detected driver
traits and perceived external conditions. The framework is evaluated using
realistic HGV driving scenarios developed with the support of HGV drivers.
This contribution answers the last two research questions of this thesis i.e.,
“how can more realistic, interpretable, fair and reliable assessments be pro-
duced that consider the real-world characteristics of HGV driving environment
i.e., the synergy, interaction and uncertainties of contextual factors?” and “how
can the reliability and effectiveness of the driving risk assessment system be
evaluated taking into consideration the lack of multi-modal data? ”

Other secondary contributions relating to road safety and driver behaviour include:

1. An extended review of the literature on intelligence-supported characterisation
and assessment of HGV driving behaviours to inspire and guide future research
in the area (Chapter 2).

2. A novel database of rules representing the causal relationships between HGV
driving incident patterns and driving styles (Table 3.8, page 61). That is,
driving rules that map the interaction between driving incidents (i.e., harsh
braking, over-speeding, excessive throttling and over revving incidents) to the
type of driving style e.g., ‘calm’, ‘normal’, ‘speedy’, and ‘aggressive’ driving
styles.

3. A comprehensive and contemporary list of factors identified by stakeholders
in the HGV industry that could potentially affect driving performance and
risk (Figure 4.16, page 96). That is, factors relating to driving actions and
behaviours, work life and external pressures, in-vehicle technologies, and en-
vironmental conditions.

4. A novel database of rules representing the causal relationships between con-
textual factors and driving risk (Figures 5.13, 5.14, 5.15 and 5.16). That is,
rules that map the interaction between drivers’ actions, behaviours and exter-
nal conditions to the level of road safety risk e.g., ‘low’, ‘moderate’ and ‘high’
driving risks.

6.2 Research Findings

This section summarises the major findings of this research. The findings are
grouped into computer science and road safety findings.

First, bi-directional RNNs are effective in capturing the temporal dynamics and
differences between the different types of driver distraction postures and affective
states using footage data. Secondly, using a federated learning implementation
of machine learning models could address the issue of individual data protection,
and therefore, can be applied to protect drivers’ privacy and identity when pro-
cessing their data. However, there is a trade-off between efficiency and privacy as
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non-federated strategies are still more accurate than privacy-preserving strategies.
Lastly, in situations with lack of multi-modal data streams, modelling potential un-
certainties in information (e.g., imprecision of information about driving behaviours
and external factors, uncertainty in information produced by AI approaches, and
variability in experts’ subjective views about driving assessments), and the synergy
between risk factors using a stakeholder-supported hierarchical fuzzy expert system
produces more realistic, understandable and decomposable assessments compared
to current intelligent approaches.

With regards to road safety findings, first there is always some level of driving
risks regardless of the driving condition. Secondly, it was uncovered that stakehold-
ers in the HGV sector (i.e., HGV transport managers, HGV drivers, road safety
officers and researchers) generally agree on the direction of impact of contextual
factors on driving performance (whether positive or negative impact), but vary in
their opinions about the extent of the impact. The variations in their opinions can
be attributed to differences in their roles, experiences and goals. HGV transport
managers show the highest degree of disagreement with other stakeholders. The
following factors were identified as the top five HGV contextual factors that im-
pact HGV driving risk: feeling angry, aggressive driving styles, foggy weather, icy
roads, and feeling tired. While attentive driving, low time pressure for delivery, calm
driving, driver feeling happy and low traffic congestion are the top five factors that
positively impact driving performance. The views of stakeholders also reveal that
the risk associated to environmental conditions is greater than the risk associated to
driving behaviours. Lastly, incorporating information about external circumstances
and context (e.g., time pressure, weather conditions, road types and traffic condi-
tions etc) into the assessment of HGV driving risk produces fairer, explainable and
more realistic decisions.

6.3 Limitations and Future Work

Based on the contributions and findings of this research, we can conclude that the
research questions of this thesis have been answered and the aim of this thesis has
been achieved. Our resulting online driving assessment framework can automatically
and accurately detect driver traits from multi-modal driver data, and assess their
synergistic effects together with external circumstances on HGV driving performance
and risk. Our framework, however, presents a few limitations with regards to: (1)
data; and (2) methodology. This section discusses the limitations, and present
potential directions to tackle the limitations and improve our framework.

The multi-modal data used in this research to evaluate the multifaceted driver
behaviour characterisation framework are not entirely obtained from HGV drivers,
they are not simultaneously collected and they are not related. That is, the telem-
atics data are not affiliated to driver footage, and driver posture images are not
affiliated to the facial images. This limits the development and evaluation of the
framework using multi-modal data. As a result, multi-modal data that consist of
telematics data, driver posture images and facial images need to be concurrently
captured from drivers to provide a more realistic implementation and evaluation of
the framework. To develop and evaluate an end-to-end context-aware driving risk
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assessment system, multi-modal data that capture driving behaviours and external
conditions needs to be utilised.

With regards to the proposed intelligent context-aware HGV driving risk assess-
ment framework, the multifaceted driver characterisation framework is limited to the
classification of driver traits based on the training data. Therefore, it cannot detect
new driver traits that arise due to changes in behaviour over time and changes in
driving dynamics. For future work, intelligent methods that capture changes in data
distribution will be examined, such as, concept drift [353] and anomaly detection
techniques [354]. In addition, the state-of-the-art accuracy of federated learning to
address the issue of driver privacy still requires further improvement for a trust-
worthy privacy-preserving solution. Non-federated processing of the raw data shows
better accuracy compared to federated learning due to limited individual data at the
local machines. To improve performance in the future, synthetic data generation
strategies could be explored to generate more diverse data at the local machines
e.g., by using generative models [355]. In addition, multi-view data sources, such
as facial expressions, voice patterns, eye movements could be analysed in the local
machines to provide more information about driver traits. Lastly, the framework
could be integrated into real-world multi-view driver monitoring systems for further
evaluation and improvement.
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[229] Bahar Öz, Türker Özkan, and Timo Lajunen. Professional and non-
professional drivers’ stress reactions and risky driving. Transportation research
part F: traffic psychology and behaviour, 13(1):32–40, 2010.

[230] Hafiz Mohkum Hammad, Muhammad Ashraf, Farhat Abbas, Hafiz Faiq
Bakhat, Saeed A Qaisrani, Muhammad Mubeen, Shah Fahad, and Muham-
mad Awais. Environmental factors affecting the frequency of road traffic ac-
cidents: a case study of sub-urban area of pakistan. Environmental Science
and Pollution Research, 26:11674–11685, 2019.

[231] Paul M Salmon, Gemma JM Read, Vanessa Beanland, Jason Thompson, Ash-
leigh J Filtness, Adam Hulme, Rod McClure, and Ian Johnston. Bad behaviour
or societal failure? perceptions of the factors contributing to drivers’ engage-
ment in the fatal five driving behaviours. Applied ergonomics, 74:162–171,
2019.

[232] Zack Ellerby, Christian Wagner, and Stephen B Broomell. Capturing richer
information: On establishing the validity of an interval-valued survey response
mode. Behavior Research Methods, pages 1–23, 2021.

[233] Wei Yan, Wang Xiang, SC Wong, Xuedong Yan, YC Li, and Wei Hao. Effects
of hands-free cellular phone conversational cognitive tasks on driving stability
based on driving simulation experiment. Transportation research part F: traffic
psychology and behaviour, 58:264–281, 2018.

[234] Robert J Nowosielski, Lana M Trick, and Ryan Toxopeus. Good distrac-
tions: Testing the effects of listening to an audiobook on driving performance
in simple and complex road environments. Accident Analysis & Prevention,
111:202–209, 2018.

[235] Samer H Hamdar, Lingqiao Qin, and Alireza Talebpour. Weather and road
geometry impact on longitudinal driving behavior: Exploratory analysis using
an empirically supported acceleration modeling framework. Transportation
research part C: emerging technologies, 67:193–213, 2016.

[236] Guofa Li, Weijian Lai, Xiaoxuan Sui, Xiaohang Li, Xingda Qu, Tingru Zhang,
and Yuezhi Li. Influence of traffic congestion on driver behavior in post-
congestion driving. Accident Analysis & Prevention, 141:105508, 2020.

[237] Hongji Du, Xiaohua Zhao, Xingjian Zhang, Yunlong Zhang, and Jian Rong.
Effects of fatigue on driving performance under different roadway geometries:
a simulator study. Traffic injury prevention, 16(5):468–473, 2015.

[238] Yajie Zou, Yue Zhang, and Kai Cheng. Exploring the impact of climate and
extreme weather on fatal traffic accidents. Sustainability, 13(1):390, 2021.

164



[239] Qiangqiang Shangguan, Ting Fu, Junhua Wang, Tianyang Luo, et al. An
integrated methodology for real-time driving risk status prediction using nat-
uralistic driving data. Accident Analysis & Prevention, 156:106122, 2021.

[240] Xiupeng Shi, Yiik Diew Wong, Michael Zhi-Feng Li, Chandrasekar
Palanisamy, and Chen Chai. A feature learning approach based on xgboost
for driving assessment and risk prediction. Accident Analysis & Prevention,
129:170–179, 2019.

[241] G. P. Figueredo, U. Agrawal, J. M. Mase, M. Mesgarpour, C. Wagner, D. So-
ria, J. M. Garibaldi, P.O. Siebers, and R. I. John. Identifying heavy goods
vehicle driving styles in the united kingdom. IEEE Transactions on Intelligent
Transportation Systems (in press), tbc:tbc, 2018.

[242] Chen Wang, Lin Liu, Chengcheng Xu, and Weitao Lv. Predicting future
driving risk of crash-involved drivers based on a systematic machine learning
framework. International journal of environmental research and public health,
16(3):334, 2019.

[243] Muhammad Zahid, Yangzhou Chen, Arshad Jamal, Khalaf A Al-Ofi, and Has-
san M Al-Ahmadi. Adopting machine learning and spatial analysis techniques
for driver risk assessment: Insights from a case study. International journal
of environmental research and public health, 17(14):5193, 2020.

[244] Alberto Fernández, Rubén Usamentiaga, Juan Carús, and Rubén Casado.
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Puerto. Recognition of the driving style in vehicle drivers. Sensors, 20(9):2597,
2020.

[275] Wenshuo Wang, Junqiang Xi, and Ding Zhao. Driving style analysis using
primitive driving patterns with bayesian nonparametric approaches. IEEE
Transactions on Intelligent Transportation Systems, 20(8):2986–2998, 2018.

[276] Yi Sun, Xiaogang Wang, and Xiaoou Tang. Deep learning face representation
from predicting 10,000 classes. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1891–1898, 2014.

[277] Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang. Learning
from massive noisy labeled data for image classification. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 2691–2699,
2015.

[278] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436, 2015.

[279] Xueyun Chen, Shiming Xiang, Cheng-Lin Liu, and Chun-Hong Pan. Vehicle
detection in satellite images by hybrid deep convolutional neural networks.
IEEE Geoscience and remote sensing letters, 11(10):1797–1801, 2014.

[280] Wanli Ouyang, Xiaogang Wang, Xingyu Zeng, Shi Qiu, Ping Luo, Yonglong
Tian, Hongsheng Li, Shuo Yang, Zhe Wang, Chen-Change Loy, et al. Deepid-
net: Deformable deep convolutional neural networks for object detection. In
Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 2403–2412, 2015.

[281] CH Zhao, BL Zhang, Jie He, and Jie Lian. Recognition of driving postures by
contourlet transform and random forests. IET Intelligent Transport Systems,
6(2):161–168, 2012.

[282] Mustafa Aljasim and Rasha Kashef. E2dr: a deep learning ensemble-based
driver distraction detection with recommendations model. Sensors, 22(5):1858,
2022.

[283] Jiyoung Lee, Sunok Kim, Seungryong Kim, and Kwanghoon Sohn. Multi-
modal recurrent attention networks for facial expression recognition. IEEE
Transactions on Image Processing, 29:6977–6991, 2020.

[284] MAH Akhand, Shuvendu Roy, Nazmul Siddique, Md Abdus Samad Kamal,
and Tetsuya Shimamura. Facial emotion recognition using transfer learning
in the deep cnn. Electronics, 10(9):1036, 2021.

168



[285] Rebecca L Campbell, Renee Cloutier, Teah Marie Bynion, Annamarie Nguyen,
Heidemarie Blumenthal, Matthew T Feldner, and Ellen W Leen-Feldner.
Greater adolescent tiredness is related to more emotional arousal during a
hyperventilation task: An area under the curve approach. Journal of Adoles-
cence, 90:45–52, 2021.

[286] Ulrich Schimmack and Reisenzein Rainer. Experiencing activation: energetic
arousal and tense arousal are not mixtures of valence and activation. Emotion,
2(4):412, 2002.

[287] Pu Sun, Yuezun Li, Honggang Qi, and Siwei Lyu. Landmarkgan: Synthesizing
faces from landmarks. arXiv preprint arXiv:2011.00269, 2020.

[288] Jongmoo Choi, Gerard Medioni, Yuping Lin, Luciano Silva, Olga Regina,
Mauricio Pamplona, and Timothy C Faltemier. 3d face reconstruction using
a single or multiple views. In 2010 20th International Conference on Pattern
Recognition, pages 3959–3962. IEEE, 2010.

[289] Yingruo Fan, Jacqueline CK Lam, and Victor OK Li. Demographic effects
on facial emotion expression: an interdisciplinary investigation of the facial
action units of happiness. Scientific reports, 11(1):1–11, 2021.

[290] Mimansa Jaiswal and Emily Mower Provost. Privacy enhanced multimodal
neural representations for emotion recognition. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages 7985–7993, 2020.

[291] L-X Wang and Jerry M Mendel. Generating fuzzy rules by learning from
examples. IEEE Trans. Syst., Man, Cybern., 22(6):1414–1427, 1992.

[292] Lotfi A Zadeh. Fuzzy logic and approximate reasoning. Synthese, 30(3):407–
428, 1975.

[293] Divish Rengasamy, Benjamin C Rothwell, and Grazziela P Figueredo. Towards
a more reliable interpretation of machine learning outputs for safety-critical
systems using feature importance fusion. Applied Sciences, 11(24):11854, 2021.

[294] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clus-
tering algorithm. Journal of the royal statistical society. series c (applied
statistics), 28(1):100–108, 1979.

[295] LKPJ Rdusseeun and P Kaufman. Clustering by means of medoids. In
Proceedings of the statistical data analysis based on the L1 norm conference,
neuchatel, switzerland, volume 31, 1987.

[296] James Bergstra and Yoshua Bengio. Random search for hyper-parameter op-
timization. Journal of Machine Learning Research, 13(Feb):281–305, 2012.

[297] Renhong Zhao and Rakesh Govind. Defuzzification of fuzzy intervals. Fuzzy
sets and systems, 43(1):45–55, 1991.

169



[298] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio.
Gated feedback recurrent neural networks. In International conference on
machine learning, pages 2067–2075, 2015.

[299] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and
Ruslan R Salakhutdinov. Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint arXiv:1207.0580, 2012.

[300] I Lawrence and Kuei Lin. A concordance correlation coefficient to evaluate
reproducibility. Biometrics, pages 255–268, 1989.

[301] Juanjuan Wang, Mantao Xu, Hui Wang, and Jiwu Zhang. Classification of
imbalanced data by using the smote algorithm and locally linear embedding.
In 2006 8th international Conference on Signal Processing, volume 3. IEEE,
2006.

[302] Ou Stella Liang and Christopher C Yang. Determining the risk of driver-
at-fault events associated with common distraction types using naturalistic
driving data. Journal of safety research, 79:45–50, 2021.

[303] Afonso Vilaca, Pedro Cunha, and André L Ferreira. Systematic literature
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Appendix A

Appendix

A.1 Questionnaire consisting of questions that ask

participants to provide their opinions or rat-

ings about the impact of HGV contextual

factors on HGV driving performance.
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Page	2:	Questionnaire

Your	experience

	 Fleet	manager

	 Driver

	 Road	safety	professional

	 Academics

	 Researcher

	 Other

2. 	What	is	your	occupation?	 	Required

2.a. 	If	you	selected	Other,	please	specify:

Please	enter	a	number.

0

3. 	How	many	years	of	experience	do	you	have	in	fleet	management,	road	safety,	transport	or
research?				 	Required

	 Yes

	 No

4. 	Do	you	currently	hold	a	HGV	license?		 	Required

	 Single	drops

	 Multi	drops

	 Urban	deliveries

	 Trucking

5. 	Which	of	the	sectors	below	best	describes	your	current	operation?	 	Required
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Response	Instructions:	How	to	complete	the	questionnaire

Questionnaire

	 N/A

	 Other

5.a. 	If	you	selected	Other,	please	specify:

Consider	the	following	question:	What	is	the	impact	of	a	driver	feeling	happy	on	their	driving	performance?	

If	you	are	very	certain	that	a	driver	feeling	happy	has	a	strong	positive	impact	on	their	performance,	then	select
'9'.

If	you	think	a	driver	feeling	happy	has	a	positive	impact	on	their	performance	but	you	a	little	uncertain	about	the
level	of	impact,	you	can	select	a	range	to	represent	your	uncertainty.	For	example,	min='7'	and	max='9'	to
represent	the	range	of	uncertainty	of	the	impact.

If	you	think	a	driver	feeling	happy	has	a	positive	impact	overall	but	also	think	that	it	may	have	no	impact	as	well
(more	uncertainty).	You	can	select	a	wider	range	min='5'	and	max='9'	to	represent	your	uncertainty.

	

Please	if	you	understood	the	above	instructions,	proceed	to	answer	the	following	questions.		
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Strong
Negative
Impact
(1)

2
Negative
Impact
(3)

4
No

Impact
(5)

6
Positive
Impact
(7)

8

Strong
Positive
Impact
(9)

Sad

Angry

Happy

Tired

Energetic

Distracted

Attentive

Calm

Aggressive

Confident

Insecure

6. 	Considering	the	following	moods	of	a	driver,	how	do	you	think	they	could	affect	their	driving
performance?	 	Required

Strong
Negative
Impact
(1)

2
Negative
Impact
(3)

4
No

Impact
(5)

6
Positive
Impact
(7)

8

Strong
Positive
Impact
(9)

Start	of	shift

Mid-shift

End	of	shift

7. 	Considering	the	following	periods	of	delivery,	how	do	you	think	they	could	affect	a	driver’s
performance? 	 	Required

Strong
Negative
Impact
(1)

2
Negative
Impact
(3)

4
No

Impact
(5)

6
Positive
Impact
(7)

8

Strong
Positive
Impact
(9)

High	traffic

8. 	Considering	the	following	external	pressures,	how	do	you	think	they	could	affect	a	driver’s
performance? 	 	Required
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Time
pressure	for
delivery

Low	traffic

Strong
Negative
Impact
(1)

2
Negative
impact
(3)

4
No

impact
(5)

6
Positive
Impact
(7)

8

Strong
Positive
Impact
(9)

Driver-facing
cameras

Road-facing
cameras

Multi-camera
systems

Absence	of
cameras

Telematics

Absence	of
telematics

9. 	Considering	the	following	technologies,	how	do	you	think	they	could	affect	a	driver’s	performance? 
	Required

Strong
Negative
Impact
(1)

2
Negative
impact
(3)

4
No

impact
(5)

6
Positive
Impact
(7)

8

Strong
Positive
Impact
(9)

Sunny

Rainy

Cloudy

Snowy

Icy

Windy

Sunrise

Sunset

10. 	Considering	the	following	weather	conditions,	how	do	you	think	they	could	affect	a	driver’s
performance? 	 	Required



A.2 Line graphs showing individual responses from

93 experts about the impact of HGV contex-

tual factors on HGV driving performance.
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A.3 General type-2 fuzzy sets generated from IAA

fuzzy sets of HGV contextual factors.
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Appendix B

Appendix

B.1 Questionnaire consisting of questions that ask

participants to provide their opinions or rat-

ings about the impact of the interaction be-

tween driver traits and external factors on

HGV driving risk.
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Questions

Participant	C	thinks	the	level	of	disturbance	on	HGV	driving	caused	by	the	conditions	ranges	from	'moderate'	to	'very	high'.	So,
selects	min='3'	and	max='5'		to	represent	the	range	of	the	level	of	external	disturbance.

	

Please	answer	the	following	questions	by	selecting	a	single	response	or	a	range	(min-max)	depending	on	how	certain	is	the
level	of	disturbance	of	different	external	conditions	occuring	at	the	same	time.	

Very	low	(1) Low	(2) Moderate	(3) High	(4) Very	high	(5)

Weather	is	sunny;	Traffic
Congestion	is	moderate;
Road	is	a	motorway

Road	is	icy;	Traffic	Congestion
is	moderate;	Road	in	a	rural
area

Weather	is	snowy;	Traffic
Congestion	is	moderate;
Road	in	an	urban	area

Weather	is	snowy;	Traffic
Congestion	is	low;	Road	is	an
intersection

Weather	is	sunny;	Traffic
Congestion	is	high;	Road	is	a
motorway

Weather	is	foggy;	Traffic
Congestion	is	low;	Road	in	an
urban	area

Weather	is	sunny;	Traffic
Congestion	is	moderate;
Road	is	an	undivided
highway

4. 	What	is	the	level	of	external	disturbance	on	HGV	driving	if	the	following	conditions	occur	at	the	same	time?		 	Required
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Road	is	icy;	Traffic	Congestion
is	low;	Road	in	a	rural	area

Weather	is	rainy;	Traffic
Congestion	is	low;	Road	is	an
intersection

Very	low	(1) Low	(2) Moderate	(3) High	(4) Very	high	(5)

Road	is	icy;	Traffic	Congestion
is	low;	Road	is	a	motorway

Road	is	icy;	Traffic	Congestion
is	high;	Road	is	an
intersection

Weather	is	rainy;	Traffic
Congestion	is	high;	Road	is
an	undivided	highway

Weather	is	sunny;	Traffic
Congestion	is	low;	Road	in	a
rural	area

Weather	is	snowy;	Traffic
Congestion	is	low;	Road	in	a
rural	area

Weather	is	snowy;	Traffic
Congestion	is	high;	Road	is
an	intersection

Weather	is	foggy;	Traffic
Congestion	is	high;	Road	is
an	intersection

Weather	is	snowy;	Traffic
Congestion	is	low;	Road	in	an
urban	area

5. 	What	is	the	level	of	external	disturbance	on	HGV	driving	if	the	following	conditions	occur	at	the	same	time?		 	Required

The	following	questions	require	you	to	provide	your	opinion	about	the	overall	level	of	risk	(impact	on	road	safety)	by
considering	risks	from	driving	behaviours	(driving	risk)	and	external	conditions	(external	disturbance).

We	categorise	driving	risk	into	'low',	'moderate'	and	'high'	,	and	the	level	of	external	disturbance	into	'low',	'moderate'	and
'high'.

Due	to	the	complexity	of	assessing	the	overall	risk,	we	have	provided	a	two-point	selection	scale	for	participants	to	either
select	a	single	response	or	a		a	range	(min-max)	depending	on	how	certain	is	the	overall	level	of	risk.

Very	low	(1) Low	(2) Moderate	(3) High	(4) Very	high	(5)

Driving	risk	is	moderate;
External	disturbance	is
moderate

6. 	What	is	the	overall	level	of	risk	considering	the	following	categories	of	driving	risk	and	external	disturbance?		 

Required



6	/	7

Driving	risk	is	high;	External
disturbance	is	moderate

Driving	risk	is	low;	External
disturbance	is	low

Driving	risk	is	high;	External
disturbance	is	high

Driving	risk	is	low;	External
disturbance	is	high

Driving	risk	is	moderate;
External	disturbance	is	high

Driving	risk	is	low;	External
disturbance	is	moderate

Driving	risk	is	moderate;
External	disturbance	is	low

Driving	risk	is	high;	External
disturbance	is	low
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Very	low
risk	(1)

2 Low	risk	(3) 4
Moderate
risk	(5)

6 High	risk	(7) 8
Very	high
risk	(9)

Emotion
negative;
Distraction
high;	Driving
aggressive

Emotion
positive;
Distraction
low;	Driving
calm

Emotion
positive;
Distraction
high;	Driving
aggressive

Emotion
negative;
Distraction
low;	Driving
aggressive

Emotion
positive;
Distraction
low;	Driving
aggressive

Emotion
negative;
Distraction
low;	Driving
normal

Emotion
negative;
Distraction
high;	Driving
calm

Emotion
positive;
Distraction
high;	Driving
normal

Emotion
positive;
Distraction
low;	Driving
normal

Very	low
risk	(1)

2 Low	risk	(3) 4
Moderate
risk	(5)

6 High	risk	(7) 8
Very	high
risk	(9)

Emotion
negative;
Distraction
high;	Driving
normal

8. 	What	is	the	impact	on	road	safety	(risk)	if	the	following	behaviours	occur	at	the	same	time?		 	Required
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Emotion
negative;
Distraction
low;	Driving
calm

Emotion
positive;
Distraction
high;	Driving
calm

Emotion
negative;
Distraction
moderate;
Driving
aggressive

Emotion
positive;
Distraction
moderate;
Driving	calm

Emotion
neutral;
Distraction
high;	Driving
aggressive

Emotion
neutral;
Distraction
low;	Driving
calm

Emotion
negative;
Distraction
moderate;
Driving	calm

Emotion
neutral;
Distraction
moderate;
Driving
normal

Very	low
risk	(1)

2 Low	risk	(3) 4
Moderate
risk	(5)

6 High	risk	(7) 8
Very	high
risk	(9)

Emotion
neutral;
Distraction
low;	Driving
normal

Emotion
positive;
Distraction
moderate;
Driving
normal

9. 	What	is	the	impact	on	road	safety	(risk)	if	the	following	behaviours	occur	at	the	same	time?		 	Required
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Emotion
negative;
Distraction
moderate;
Driving
normal

Emotion
neutral;
Distraction
high,;
Driving
normal

Emotion
neutral;
Distraction
low;	Driving
aggressive

Emotion
neutral;
Distraction
high;	Driving
calm

Emotion
neutral;
Distraction
moderate;
Driving	calm

Emotion
neutral;
Distraction
moderate;
Driving
aggressive

Emotion
positive;
Distraction
moderate;
Driving
aggressive
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Questions

Participant	C	thinks	the	level	of	disturbance	on	HGV	driving	caused	by	the	conditions	ranges	from	'moderate'	to	'very	high'.	So,
selects	min='3'	and	max='5'		to	represent	the	range	of	the	level	of	disturbance.

	

Please	answer	the	following	questions	by	selecting	a	single	response	or	a	range	(min-max)	depending	on	how	certain	is	the
level	of	disturbance	of	different	external	conditions	occuring	at	the	same	time.	

Very	low	(1) Low	(2) Moderate	(3) High	(4) Very	high	(5)

Weather	is	rainy;	Traffic
Congestion	is	low;	Road	is	an
undivided	highway

Road	is	icy;	Traffic	Congestion
is	moderate;	Road	is	an
undivided	highway

Weather	is	rainy;	Traffic
Congestion	is	high;	Road	is
an	intersection

Weather	is	foggy;	Traffic
Congestion	is	moderate;
Road	in	an	urban	area

Weather	is	snowy;	Traffic
Congestion	is	high;	Road	in
an	urban	area

Weather	is	sunny;	Traffic
Congestion	is	low;	Road	is	an
undivided	highway

Weather	is	snowy;	Traffic
Congestion	is	low;	Road	is	a
motorway

4. 	What	is	the	level	of	external	disturbance	on	HGV	driving	if	the	following	conditions	occur	at	the	same	time?		 	Required
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Weather	is	foggy;	Traffic
Congestion	is	high;	Road	is	a
motorway

Weather	is	foggy;	Traffic
Congestion	is	high;	Road	in	a
rural	area

Weather	is	sunny;	Traffic
Congestion	is	moderate;
Road	in	an	urban	area

Very	low	(1) Low	(2) Moderate	(3) High	(4) Very	high	(5)

Road	is	icy;	Traffic	Congestion
is	low;	Road	in	an	urban	area

Weather	is	rainy;	Traffic
Congestion	is	moderate;
Road	in	a	rural	area

Weather	is	rainy;	Traffic
Congestion	is	high;	Road	in	a
rural	area

Weather	is	sunny;	Traffic
Congestion	is	low;	Road	is	an
intersection

Weather	is	sunny;	Traffic
Congestion	is	high;	Road	is
an	undivided	highway

Weather	is	foggy;	Traffic
Congestion	is	low;	Road	is	an
undivided	highway

Road	is	icy;	Traffic	Congestion
is	high;	Road	is	an	undivided
highway

Weather	is	foggy;	Traffic
Congestion	is	moderate;
Road	is	a	motorway

Weather	is	snowy;	Traffic
Congestion	is	moderate;
Road	is	a	motorway

5. 	What	is	the	level	of	external	disturbance	on	HGV	driving	if	the	following	conditions	occur	at	the	same	time?		 	Required

Very	low	(1) Low	(2) Moderate	(3) High	(4) Very	high	(5)

Road	is	icy;	Traffic	Congestion
is	moderate;	Road	is	an
intersection

Road	is	icy;	Traffic	Congestion
is	high;	Road	in	a	rural	area

6. 	What	is	the	level	of	external	disturbance	on	HGV	driving	if	the	following	conditions	occur	at	the	same	time?		 	Required
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Weather	is	rainy;	Traffic
Congestion	is	low;	Road	in	a
rural	area

Weather	is	rainy;	Traffic
Congestion	is	moderate;
Road	is	an	undivided
highway

Weather	is	foggy;	Traffic
Congestion	is	low;	Road	in	a
rural	area

Weather	is	sunny;	Traffic
Congestion	is	moderate;
Road	is	an	intersection

Weather	is	snowy;	Traffic
Congestion	is	high;	Road	is	a
motorway

Weather	is	snowy;	Traffic
Congestion	is	moderate;
Road	in	a	rural	area

Weather	is	sunny;	Traffic
Congestion	is	high;	Road	in	a
rural	area

Weather	is	foggy;	Traffic
Congestion	is	moderate;
Road	in	a	rural	area
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Questions

Participant	C	thinks	the	level	of	disturbance	on	HGV	driving	caused	by	the	conditions	ranges	from	'moderate'	to	'very	high'.	So,
selects	min='3'	and	max='5'		to	represent	the	range	of	the	level	of	external	disturbance.

	

Please	answer	the	following	questions	by	selecting	a	single	response	or	a	range	(min-max)	depending	on	how	certain	is	the
level	of	disturbance	of	different	external	conditions	occuring	at	the	same	time.	

Very	low	(1) Low	(2) Moderate	(3) High	(4) Very	high	(5)

Road	is	icy;	Traffic	Congestion
is	low;	Road	is	an	undivided
highway

Weather	is	rainy;	Traffic
Congestion	is	low;	Road	is	a
motorway

Weather	is	rainy;	Traffic
Congestion	is	moderate;
Road	is	a	motorway

Weather	is	foggy;	Traffic
Congestion	is	low;	Road	is	a
motorway

Weather	is	rainy;	Traffic
Congestion	is	moderate;
Road	is	an	intersection

Road	is	icy;	Traffic	Congestion
is	high;	Road	is	a	motorway

Weather	is	foggy;	Traffic
Congestion	is	low;	Road	is	an
intersection

4. 	What	is	the	level	of	external	disturbance	on	HGV	driving	if	the	following	conditions	occur	at	the	same	time?		 	Required
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Weather	is	sunny;	Traffic
Congestion	is	high;	Road	is	in
urban	area

Very	low	(1) Low	(2) Moderate	(3) High	(4) Very	high	(5)

Weather	is	foggy;	Traffic
Congestion	is	moderate;
Road	is	an	intersection

Weather	is	sunny;	Traffic
Congestion	is	low;	Road	is	a
motorway

Weather	is	snowy;	Traffic
Congestion	is	low;	Road	is	an
undivided	highway

Weather	is	snowy;	Traffic
Congestion	is	moderate;
Road	is	an	intersection

Weather	is	sunny;	Traffic
Congestion	is	moderate;
Road	in	a	rural	area

Weather	is	rainy;	Traffic
Congestion	is	low;	Road	in	a
urban	area

Road	is	icy;	Traffic	Congestion
is	moderate;	Road	is	a
motorway

Road	is	icy;	Traffic	Congestion
is	moderate;	Road	in	an
urban	area

Weather	is	foggy;	Traffic
Congestion	is	high;	Road	in
an	urban	area

Weather	is	snowy;	Traffic
Congestion	is	high;	Road	in	a
rural	area

5. 	What	is	the	level	of	external	disturbance	on	HGV	driving	if	the	following	conditions	occur	at	the	same	time?		 	Required

Very	low	(1) Low	(2) Moderate	(3) High	(4) Very	high	(5)

Weather	is	rainy;	Traffic
Congestion	is	high;	Road	in
an	urban	area

Weather	is	foggy;	Traffic
Congestion	is	moderate;
Road	is	an	undivided
highway

6. 	What	is	the	level	of	external	disturbance	on	HGV	driving	if	the	following	conditions	occur	at	the	same	time?		 	Required
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Weather	is	snowy;	Traffic
Congestion	is	moderate;
Road	is	an	undivided
highway

Weather	is	snowy;	Traffic
Congestion	is	high;	Road	is
an	undivided	highway

Weather	is	sunny;	Traffic
Congestion	is	high;	Road	is
an	intersection

Weather	is	sunny;	Traffic
Congestion	is	low;	Road	in	an
urban	area

Road	is	icy;	Traffic	Congestion
is	high;	Road	in	an	urban
area

Weather	is	rainy;	Traffic
Congestion	is	moderate;
Road	in	an	urban	area

Weather	is	foggy;	Traffic
Congestion	is	high;	Road	is
an	undivided	highway



B.2 Questionnaire asking drivers to validate and

revise user stories representing real-world HGV

driving scenarios.

24/11/2022, 14:48 Evaluating Heavy Goods Vehicle Driving User Stories (2)

https://forms.office.com/Pages/DesignPageV2.aspx?origin=NeoPortalPage&subpage=design&id=7qe9Z4D970GskTWEGCkKHiOwhCKoJGlHs… 1/10

30 minutes

Evaluating Heavy Goods Vehicle 
Driving User Stories
The survey will take approximately 6 minutes to complete. Ethics Ref: CS-2020-R9 

We have developed a HGV driving risk-assessment system that automatically evaluates the 
risks associated with driving styles, drivers' moods, weather and road conditions.  We wish to 
evaluate the performance of our system using real-world driving scenarios. 

This short survey presents user stories of driving scenarios. Please can you determine if the 
user stories are typical real driving scenarios or are unrealistic (not possible), and can you 
classify the driving styles in the different user stories. If you believe the user story is 
unrealistic, please kindly provide suggestions on how to improve them.

A HGV driver is travelling on a sunny motorway with about 100 
vehicles per lane of the road. The driver has a total of 2 seconds of 
driving at the maximum speed limit.  The driver is attentive and well 
rested. 

On a scale of 1 to 5 (unrealistic to very possible), what will you 
consider the above driving scenario?

1.

1

Unrealistic

2 3 4 5

Very Possible

If you think the above driving scenario is unrealistic (below 3), please 
how can we improve the user story to make it more realistic?

2.

198



24/11/2022, 14:48 Evaluating Heavy Goods Vehicle Driving User Stories (2)

https://forms.office.com/Pages/DesignPageV2.aspx?origin=NeoPortalPage&subpage=design&id=7qe9Z4D970GskTWEGCkKHiOwhCKoJGlHs… 2/10

Cautious

Normal

Reckless

Other

How will you describe the driving style in the above user story?3.

A HGV driver is approaching a busy roundabout in a foggy weather. 
The driver reduces their speed well below the maximum speed limit of 
the road.  The driver is attentive and well rested.  

On a scale of 1 to 5 (unrealistic to very possible), what will you 
consider the above driving scenario?

4.

1

Unrealistic

2 3 4 5

Very Possible

If you think the above driving scenario is unrealistic (below 3), please 
how can we improve the user story to make it more realistic?

5.
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Cautious

Normal

Reckless

Other

How will you describe the driving style in the above user story?6.

A HGV driver is travelling in a rainy undivided highway with 50 
vehicles on the road. The driver has a total of 20 seconds of driving at 
the maximum speed limit. The driver is well rested but distracted. 

On a scale of 1 to 5 (unrealistic to very possible), what will you 
consider the above driving scenario?

7.

1

Unrealistic

2 3 4 5

Very Possible

If you think the above driving scenario is unrealistic (below 3), please 
how can we improve the user story to make it more realistic?

8.
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Cautious

Normal

Reckless

Other

How will you describe the driving style in the above user story?9.

A HGV driver is approaching a clear roundabout in a sunny weather. 
The driver maintains their speed. The driver is not well rested and in a 
negative mood.   

On a scale of 1 to 5 (unrealistic to very possible), what will you 
consider the above driving scenario?

10.

1

Unrealistic

2 3 4 5

Very Possible

If you think the above driving scenario is unrealistic (below 3), please 
how can we improve the user story to make it more realistic?

11.

Cautious

Normal

Reckless

Other

How will you describe the driving style in the above user story?12.
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A HGV driver is travelling on a sunny undivided highway with about 
100 vehicles per lane of the road. The driver has a total of 6 harsh 
braking incidents.  The driver is distracted and frustrated by their in-
vehicle delivery management system.  

On a scale of 1 to 5 (unrealistic to very possible), what will you 
consider the above driving scenario?

13.

1

Unrealistic

2 3 4 5

Very Possible

If you think the above driving scenario is unrealistic (below 3), please 
how can we improve the user story to make it more realistic?

14.

Calm

Normal

Aggressive

Other

How will you describe the driving style in the above user story?15.
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A HGV driver is travelling in a foggy motorway with about 30 
vehicles per lane of the road. The driver produces a total of 1 harsh 
braking incidents.  The driver is distracted and in a negative mood. 

On a scale of 1 to 5 (unrealistic to very possible), what will you 
consider the above driving scenario?

16.

1

Unrealistic

2 3 4 5

Very Possible

If you think the above driving scenario is unrealistic (below 3), please 
how can we improve the user story to make it more realistic?

17.

Calm

Normal

Aggressive

Other

How will you describe the driving style in the above user story?18.
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A HGV driver is travelling on a icy rural road with with about 20 
vehicles on the road.  The driver produces a total of 2 rash overtaking 
incidents.  The driver is attentive but angry due to pressure from their 
manager to complete a job. 

On a scale of 1 to 5 (unrealistic to very possible), what will you 
consider the above driving scenario?

19.

1

Unrealistic

2 3 4 5

Very Possible

If you think the above driving scenario is unrealistic (below 3), please 
how can we improve the user story to make it more realistic?

20.

Calm

Normal

Aggressive

Other

How will you describe the driving style in the above user story?21.
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A HGV driver is travelling in a snow urban road with with about 50 
vehicles on the road. The driver produces a total of 5 harsh 
acceleration incidents.  The driver is attentive and well rested. 

On a scale of 1 to 5 (unrealistic to very possible), what will you 
consider the above driving scenario?

22.

1

Unrealistic

2 3 4 5

Very Possible

If you think the above driving scenario is unrealistic (below 3), please 
how can we improve the user story to make it more realistic?

23.

Calm

Normal

Aggressive

Other

How will you describe the driving style in the above user story?24.
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A HGV driver is travelling on a sunny rural road with with about 5 
vehicles on the road. The driver produces a total of 1 harsh 
acceleration incidents.  The driver is in a positive mood but distracted. 

On a scale of 1 to 5 (unrealistic to very possible), what will you 
consider the above driving scenario?

25.

1

Unrealistic

2 3 4 5

Very Possible

If you think the above driving scenario is unrealistic (below 3), please 
how can we improve the user story to make it more realistic?

26.

Calm

Normal

Aggressive

Other

How will you describe the driving style in the above user story?27.
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Microsoft Forms

A HGV driver is travelling on a sunny urban road with about 10 
vehicles on the road. The driver produces a total of 1 harsh 
acceleration incidents.  The driver is attentive but frustrated by the 
amount of jobs assigned to them. 

On a scale of 1 to 5 (unrealistic to very possible), what will you 
consider the above driving scenario?

28.

1

Unrealistic

2 3 4 5

Very Possible

If you think the above driving scenario is unrealistic (below 3), please 
how can we improve the user story to make it more realistic?

29.

Calm

Normal

Aggressive

Other

How will you describe the driving style in the above user story?30.



B.3 Questionnaire consisting of questions that ask

drivers to provide their opinions or ratings

about the road safety impact of driver traits

and external factors in different realistic driv-

ing scenarios.

24/11/2022, 13:17 A survey about factors affecting HGV Driving
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Overview

In this study, we present user stories to participants that illustrate 
different driving scenarios. For each user story, we will ask participants 
to provide their opinions about the level of risk. The driving scenarios 
can be rated from 'very low' risk to 'very high' risk as shown in the 
�gures below.  
 
Please note that some user stories display aggressive or reckless 
driving styles. This does not imply in any way that HGV drivers are 
reckless. We simply wish to evaluate the effectiveness of our system 
in assessing extreme driving scenarios.

A survey about factors a�ecting HGV Driving
Information for Participants (Ethics Ref: CS-2020-R9) 

Purpose of this study: 
We have developed a risk assessment system for HGV driving that automatically 
evaluates the risk associated with driving behaviours and environmental conditions. The 
purpose of this study is to evaluate the outputs of our system using  stakeholders in the 
HGV industry i.e. drivers, transport managers, road safety specialists and researchers.  

Nature of participation: 
This study is open to any individual over the age of 18, who has experience in HGV driving 
and road safety. Participation is voluntary and relies on the participant completing a 5-10 
minutes questionnaire. No identi�able information is collected in the study. 

Bene�ts and risks of the research: 
Your participation will help us evaluate the effectiveness, fairness and usefulness of our 
system, and provide the necessary feedback to improve our system.  Our system aims to 
assist in developing effective real-time monitoring and feedback systems to assist 
drivers, providing important information about the impact of external  factors on road 
safety to improve tra�c laws,  and ultimately, reduce the number of road incidents. The 
study has minimal risk for participation and data analysis. 

Contact details of the ethics committee. If you wish to �le a complaint or exercise your 
rights you can contact the Ethics Committee at the following address: cs-
ethicsadmin@cs.nott.ac.uk 

By clicking 'Next', I con�rm that I have read and understood the study information, and I 
consent and wish to proceed.

* Required

208
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1.

Mark only one oval.

Other:

Transport Manager

Road Safety/Tra�c O�cer

HGV driver

Researcher/Academics

Baseline User Story: A HGV driver is trave�ing on a sunny motorway with tra�ic moving at a fast pace.
The driver maintains a speed below the maximum speed limit.  The driver is attentive and we� rested.        
                                                                                         

A� participants considered the baseline driving scenario as 'Very Low to Low' risk.

User Story 1: A HGV driver is approaching a busy roundabout in a foggy weather. The driver reduces their
speed we� below the maximum speed limit of the road.  The driver is attentive and we� rested.

What is your occupation? *
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2.

Check all that apply.

Very Low
Very Low to Low
Low
Low to Moderate
Moderate
Moderate to High
High
High to Very High
Very High

3.

Check all that apply.

Driving style
Affective state
Level of distraction
Driving style, Affective state and Level of distraction
Weather condition
Tra�c congestion
Road Type
Road type, Weather condition and Tra�c congestion
All of the above

User Story 2: A HGV driver is trave�ing in a rainy undivided highway with tra�ic moving at a fast pace. The
driver has a total of 20 seconds driving at the maximum speed limit within 1 mile of the road. The driver is
we� rested but distracted.

Q1.a. What level of risk wi� you consider the above driving scenario? *

Q1.b. Which factors were in�uential in your assessment? *
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4.

Check all that apply.

Very Low
Very Low to Low
Low
Low to Moderate
Moderate
Moderate to High
High
High to Very High
Very High

5.

Check all that apply.

Driving style
Affective state
Level of distraction
Driving style, Affective state and Level of distraction
Weather condition
Tra�c congestion
Road Type
Road type, Weather condition and Tra�c congestion
All of the above

User Story 3: A HGV driver is approaching a clear roundabout in a sunny weather. The driver maintains
their speed. The driver is attentive but has a negative mood.

Q2.a. What level of risk wi� you consider the above driving scenario? *

Q2.b. Which factors were in�uential in your assessment? *



24/11/2022, 13:17 A survey about factors affecting HGV Driving

https://docs.google.com/forms/d/1sR48ajQKCnnjhL-LPoIn-7ABT4AA-fdsgq3DTYyLcbk/edit 5/7

6.

Check all that apply.

Very Low
Very Low to Low
Low
Low to Moderate
Moderate
Moderate to High
High
High to Very High
Very High

7.

Check all that apply.

Driving style
Affective state
Level of distraction
Driving style, Affective state and Level of distraction
Weather condition
Tra�c congestion
Road Type
Road type, Weather condition and Tra�c congestion
All of the above

User Story 4: A HGV driver is trave�ing on a sunny undivided highway with tra�ic moving at a moderate
pace. The driver has a total of 6 harsh braking incidents within 1 mile of the road.  The driver is distracted
and frustrated by their in-vehicle delivery management system.

Q3.a. What level of risk wi� you consider the above driving scenario? *

Q3.b. Which factors were in�uential in your assessment? *
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8.

Check all that apply.

Very Low
Very Low to Low
Low
Low to Moderate
Moderate
Moderate to High
High
High to Very High
Very High

9.

Check all that apply.

Driving style
Affective state
Level of distraction
Driving style, Affective state and Level of distraction
Weather condition
Tra�c congestion
Road Type
Road type, Weather condition and Tra�c congestion
All of the above

User Story 5: A HGV driver is trave�ing in a foggy motorway with tra�ic moving at a slow pace. The driver
produces a total of 1 harsh braking incidents within 1 mile of the road.  The driver is distracted and in a
negative mood.

Q4.a. What level of risk wi� you consider the above driving scenario? *

Q4.b. Which factors were in�uential in your assessment? *
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10.

Check all that apply.

Very Low
Very Low to Low
Low
Low to Moderate
Moderate
Moderate to High
High
High to Very High
Very High

11.

Check all that apply.

Driving style
Affective state
Level of distraction
Driving style, Affective state and Level of distraction
Weather condition
Tra�c congestion
Road Type
Road type, Weather condition and Tra�c congestion
All of the above

This content is neither created nor endorsed by Google.

Q5.a. What level of risk wi� you consider the above driving scenario? *

Q5.b. Which factors were in�uential in your assessment? *

 Forms
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1.

Mark only one oval.

Other:

Transport Manager

Road Safety/Tra�c O�cer

HGV driver

Researcher/Academics

Baseline User Story: A HGV driver is trave�ing on a sunny motorway with tra�ic moving at a fast pace.
The driver maintains a speed below the maximum speed limit.  The driver is attentive and we� rested.        
                                                                                         

A� participants considered the baseline driving scenario as 'Very Low to Low' risk.

User Story 1: A HGV driver is trave�ing on a icy rural road with tra�ic moving at a moderate pace. The
driver produces a total of 2 rash overtaking incidents within 1 mile of the road. The driver is attentive but
angry due to pressure from their manager to complete a job.

What is your occupation? *
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2.

Check all that apply.

Very Low
Very Low to Low
Low
Low to Moderate
Moderate
Moderate to High
High
High to Very High
Very High

3.

Check all that apply.

Driving style
Affective state
Level of distraction
Driving style, Affective state and Level of distraction
Weather condition
Tra�c congestion
Road Type
Road type, Weather condition and Tra�c congestion
All of the above

User Story 2: A HGV driver is trave�ing in a snow urban road with tra�ic moving at a moderate pace. The
driver reduces their speed we� below the maximum speed limit and maintains an appropriate distance
from preceding vehicles.  The driver is attentive and we� rested.

Q1.a. What level of risk wi� you consider the above driving scenario? *

Q1.b. Which factors were in�uential in your assessment? *
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4.

Check all that apply.

Very Low
Very Low to Low
Low
Low to Moderate
Moderate
Moderate to High
High
High to Very High
Very High

5.

Check all that apply.

Driving style
Affective state
Level of distraction
Driving style, Affective state and Level of distraction
Weather condition
Tra�c congestion
Road Type
Road type, Weather condition and Tra�c congestion
All of the above

User Story 3: A HGV driver is trave�ing on a sunny rural road with tra�ic moving at a fast pace. The
driver produces a total of 1 harsh acceleration incidents within 1 mile of the road.  The driver is in a
positive mood but distracted.

Q2.a. What level of risk wi� you consider the above driving scenario? *

Q2.b. Which factors were in�uential in your assessment? *
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6.

Check all that apply.

Very Low
Very Low to Low
Low
Low to Moderate
Moderate
Moderate to High
High
High to Very High
Very High

7.

Check all that apply.

Driving style
Affective state
Level of distraction
Driving style, Affective state and Level of distraction
Weather condition
Tra�c congestion
Road Type
Road type, Weather condition and Tra�c congestion
All of the above

User Story 4: A HGV driver is trave�ing on a snowy urban road with tra�ic moving at a fast pace. The
driver produces no incidents within 1 mile of the road.  The driver is attentive but frustrated by the
amount of jobs assigned to them.

Q3.a. What level of risk wi� you consider the above driving scenario? *

Q3.b. Which factors were in�uential in your assessment? *
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8.

Check all that apply.

Very Low
Very Low to Low
Low
Low to Moderate
Moderate
Moderate to High
High
High to Very High
Very High

9.

Check all that apply.

Driving style
Affective state
Level of distraction
Driving style, Affective state and Level of distraction
Weather condition
Tra�c congestion
Road Type
Road type, Weather condition and Tra�c congestion
All of the above

This content is neither created nor endorsed by Google.

Q4.a. What level of risk wi� you consider the above driving scenario? *

Q4.b. Which factors were in�uential in your assessment? *

 Forms
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