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Abstract

Inexact optimisation techniques such as heuristics and metaheuristics that quickly find near-
optimal solutions are widely used to solve hard problems. While metaheuristics are well stud-
ied on specific problem domains such as travelling salesman, timetabling, vehicle routing etc.,
their extension to engineering domains is largely unexplored due to the requirement of do-
main expertise. In this thesis, we address a specific engineering domain, namely, the design
of sound-absorbing porous materials. Porous materials are foams, fibrous materials, woven
and non-woven textiles, etc., that are widely used in automotive, aerospace and household ap-
plications to isolate and absorb noise to prevent equipment damage, protect hearing or ensure
comfort. These materials constitute a significant amount of dead weight in aircraft and space
applications, and choosing sub-optimal designs would lead to inefficiency and increased costs.
By carefully choosing the material properties and shapes of these materials, favourable reso-
nances can be created making it possible to improve absorption while also reducing weight.
The optimisation problem structure is yet to be well-explored and not many comparison studies
are available in this domain. This thesis aims to address the knowledge gap by analysing the
performance of existing and novel heuristic and metaheuristic methods. Initially, the problem
structure is explored by considering a one-dimensional layered sound package problem. Then,
the challenging two-dimensional foam shape and topology optimisation is addressed. Topology
optimisation involves optimally distributing a given volume of material in a design region such
that a performance measure is maximised. Although extensive studies exist for the compliance
minimisation problem domain, studies and comparisons on porous material problems are rela-
tively rare. Firstly, a single objective absorption maximisation problem with a constraint on the
weight is considered. Then a multi-objective problem of simultaneously maximising absorp-
tion and minimising weight is considered. The unique nature of topology optimisation problem
allows it to be solved using combinatorial or continuous, gradient or non-gradient methods.
In this work, several optimisation methods are studied including solid isotropic material with
penalisation (SIMP), hill climbing, constructive heuristics, genetic algorithms, tabu search, co-
variance matrix adaptation evolution strategy (CMA-ES), differential evolution, non-dominated
sorting genetic algorithm (NSGA-II) and hybrid strategies. These approaches are tested on a
benchmark of seven acoustics problem instances. The results are used to extract domain-specific
insights. The findings highlight that the problem domain is rich with unique varieties of solu-
tions, and by using domain-specific insights, one can design hybrid gradient and non-gradient
methods that consistently outperform the state-of-the-art ones.
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Chapter 1

Introduction

1.1 Introduction

Noise control is an essential aspect of engineering, which arguably plays as important a role as
efficiency in the success of a technology. It is one of the reasons why supersonic air travel was
abandoned, and passenger drones are not commonplace yet. Noise control can be achieved ei-
ther through active or passive means. In active control, opposing sounds are produced to cause
destructive interference to reduce sound levels. Noise-cancelling headphones are an example.
In passive control, porous materials such as foams and fibrous materials are typically used to
absorb and limit sound levels within an environment. Common materials such as those used
in carpets, vehicle upholstery and car headliners are examples. In some cases, sound isolation
and scattering strategies are used in passive noise treatment to reflect or deflect sounds from
reaching a region of interest. Examples include double-glazed windows and architectural walls
in theatres and halls. Of interest in this study is the porous sound treatment.

Porous materials constitute a significant amount of dead weight in several passive noise control
applications. In aircraft, porous insulating materials are placed throughout the outer walls to
prevent the extreme noise from the engine and wind sheer from entering the passenger cabin.
The payload compartment of space shuttles needs to be isolated to prevent the equipment from
being damaged by extreme noise and vibration levels during launch.

Typically, placing more sound absorbing materials reduces noise levels, however, this is not
always the case. While it may seem counter-intuitive, in some cases, removing acoustic mate-
rial can result in improved absorption. By carefully introducing pockets of air within porous
materials, favourable resonances can be created that concentrate the acoustic pressure fields in
some regions, effectively improving sound absorption at specific frequencies. However, finding
the best acoustic material shapes that maximise absorption is a challenging optimisation prob-
lem. With expensive fitness evaluations, large search spaces and multi-modal landscapes, exact
methods that guarantee to find the best solutions are impractical, and heuristics are the only
viable alternatives. This thesis deals with understanding the problem structure and identifying
more effective heuristic and metaheuristic strategies that find near-optimal acoustic shapes in a
reasonable time.

1
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1.2 Motivation
The urgent need to tackle the aforementioned problem is fuelled by climate change, which is
one of the serious concerns of the current time. The aviation and transport industries are taking
rapid initiatives to curb CO2 emissions, and one of the focuses is on light-weighting technolo-
gies. Government research grants in recent years have also prioritised technologies that address
this problem. The European Strategic Research and Innovation Agenda (SRIA) predicts that
the available technologies and procedures will allow a 75% reduction in CO2 emission per
passenger kilometre, 90% reduction in NOx emissions, and 65% reduction in perceived noise
emissions by the year 2050. One such technology is composite materials.

In recent years, composite structures have been widely used in aerospace, automotive and con-
struction applications due to their higher strength-to-weight ratio than their metallic counter-
parts. The recent builds of two international airline manufacturing giants, Boeing 787 and
Airbus 350, significantly replaced metals with fibre-reinforced composites. Massive fuel sav-
ings, reduction in emissions and travel costs are foreseen in the coming decades, out of which
a significant fraction is expected to be due to the use of composite materials [242]. However,
composite materials have poor noise isolation capacity compared to conventional metals partly
due to their lightweight. To keep the noise at the same level, additional sound packages are
typically used along with composites to absorb and dissipate sound energy. However, if not
sufficiently sound treated, such composite structures could lead to significantly higher noise
and discomfort in the passenger and the payload compartments. Thus, this is a classic trade-off
problem. Choosing sub-optimal designs could result in additional weight negating a significant
amount of light-weighting benefits. Over many flight hours, these inefficiencies add up, and the
costs are eventually transferred to the public. Hence, it is worth investigating the optimisation
problems that arise in porous material design.

The optimisation of acoustic porous materials involves domain-specific challenges, and the op-
timisation theory related to this field is yet to be well developed. The computation of sound
absorption coefficient requires physics knowledge, unlike in problems such as boolean satisfi-
ability or travelling salesman problem, which do not require any expert knowledge. This work
is a step towards better understanding the interdisciplinary challenges so that better heuristics
and metaheuristics may be developed. This work is carried out under the framework of the
No2Noise (no2noise.eu) project, an Innovative Training Network under the European Union’s
Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant
agreement number 765472.

1.3 State of the art
This thesis is an investigation at the intersection of three well-established fields (see Figure 1.1):

1. Acoustic porous material modelling
2. Topology optimisation
3. Metaheuristics

According to web of science, tens of thousands of publications exist that deal with metaheuris-
tics and their application to other fields, thousands exist that deal with topology optimisation
techniques, and hundreds of publications exist that deal with acoustic porous material mod-
elling. At the intersection of metaheuristics and topology optimisation about a hundred pub-
lications exist and a majority of others deal with conventional gradient-based search methods.

https://www.acare4europe.org/sria/flightpath-2050-goals/protecting-environment-and-energy-supply-0
https://no2noise.eu
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Figure 1.1: Context of the work presented in this thesis.

About fifty publications exist that deal with applying topology optimisation in the design of
acoustic porous materials and metamaterials. A few tens of publications deal with applying
metaheuristics in acoustic material modelling. At the intersection of these three fields, no pre-
vious publications exist that analyse and compare the performance of several metaheuristics
including against conventional methods on acoustic material topology optimisation. This will
be further discussed in the chapters under part I, which will review the existing work. A brief
overview of the current state-of-the-art of these topics is introduced to the reader in what fol-
lows.

Metaheuristics: While many optimisation problems can be solved using exact approaches
that guarantee to find the best possible solution, for many others, such exact methods are too
expensive to be practical. Examples includes problems in NP-complete and NP-hard classes.
For such problems, inexact methods or heuristics are the only viable option. Metaheuristics are
problem-independent guidelines for designing heuristic algorithms [226]. Metaheuristic strate-
gies have been the go-to approaches for combinatorial optimisation, and in some cases, for
global optimisation of continuous variable problems. Examples include genetic algorithms, tabu
search, simulated annealing, covariance matrix adaptation evolution strategy etc. Metaheuris-
tics research forms a constituent part of developments in artificial intelligence as they provide
automated problem-solving tools. The recent research focus is on fully automated algorithm
design using hyper heuristics that operate across the search space of heuristics [181, 39, 192].

Acoustic porous materials: In order to optimise the design of porous sound-absorbing ma-
terials, it is first necessary to accurately model the propagation of sound waves in them. For
elastic solids and non-Newtonian fluids, which do not dissipate the wave energy in any form, it
is relatively easy to describe the motion of the wave. The propagation of sound waves in such
media can be mathematically described by solving the wave equation, often referred to as the
Helmholtz equation.
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For porous materials, which dissipate sound energy, the governing laws were developed in the
latter half of the 20th century. Some of the notable works include the Biot theories, which intro-
duced the first formulations to model poroelastic materials that encompass an elastic solid part
in a saturated fluid medium [26, 27, 25]. Delany, Bazley, and Miki introduced the first set of em-
pirical models to estimate the complex dynamic bulk modulus and density for fibrous materials
[70, 164, 163] which can be used to describe wave propagation with dissipation. Incrementally
improving the model with help from theoretical modelling, Johnson, Champoux, Allard, Pride,
Lafarge, and their co-authors derived what are now known as semi-phenomenological models
[111, 43, 8, 196, 134]. Allard and Atalla published one of the first books on the propagation of
sound in porous materials [7], which is considered a standard textbook for students and practi-
tioners.

Multilayered sound packages: Typically acoustic porous materials are used in the form of
multilayered packages, with each layer possessing different material properties. Layered sound-
absorbing panels are easier to describe using acoustic wave equations. The transfer matrix
method is a powerful analytical tool to model wave propagation in such materials. Typically,
each layer will be represented by a transfer matrix which governs the variation of acoustic
pressure or velocity across the layer. The material properties of the porous materials can be
tuned during manufacturing. Choosing the best material properties for a given application for
each layer is of interest to acoustic engineers. The thickness and the set of material properties for
each layer are typically the design variables to be optimised, and the fitness function is typically
the sound absorption or sound transmission loss. Once these properties are known, one can
compute the fitness function using engineering modelling methods which are well established
and validated with experiments. A quick yet comprehensive summary of the field may be
found in the https://apmr.matelys.com maintained by Matelys Research Lab [107]. Based on
the micro-structural complexity of the porous materials, there exist various material models to
describe the behaviour of the material in flat layered structures using the transfer matrix method.
These methods are explained in further detail in the literature review part under chapter 3.

Acoustic topology optimisation: Topology optimisation is a field which specialises in find-
ing the optimal shapes and topologies of mechanical structures by distributing a given amount
of material in a region in space. Topology optimisation is a challenging problem as the number
of design variables needed to describe a shape can be thousands to millions in industrial cases.
One of the unique attributes of this problem is the possibility to compute the gradient of the fit-
ness function with respect to the design variables in quick time. Often with conjugate gradient
[81] or adjoint [87] techniques, the gradients can be computed with the same time complexity
as the fitness functions. This enables applying quick gradient-based algorithms. One such gra-
dient method is the solid isotropic material with penalisation (SIMP), which is the most widely
used across many problem domains. In addition to SIMP, there also exist a wide variety of
other methods, such as the bi-directional evolutionary structural optimisation method (BESO)
method and the level set method. BESO is a constructive approach that fills material in regions
where stresses are high and removes material where stresses are low. In level set method, a
scalar field is associated with the design region and the presence or absence of material is deter-
mined by whether or not the scalar value crosses a threshold. The scalar field is then optimised
to optimise the shape and topology.

https://apmr.matelys.com
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Knowledge of the gradient does not make topology optimisation akin to conventional convex
optimisation, and there are some stark differences. The design variables are essentially a contin-
uous relaxation of the decision variables, which determine the presence or absence of materials
at each discretised element in the region. Rather than finding an interior optimum, a boundary
optimum that has the highest fitness is of interest. The optimality criteria method, which is used
along with SIMP, is similar to conventional constraint-included convex optimisation, which in-
volves computing gradients and meeting the Karush Kuhn Tucker (KKT) necessary conditions
for optimality. Such procedures would guarantee finding the true optimal solution in the contin-
uous space if and only if the fitness function is convex over the design variables. However, the
convexity of the fitness landscape is not guaranteed in most of the practical problem domains
for which topology optimisation is used. Hence in almost all cases, SIMP is only a heuristic
approach.

Once a shape is determined, an engineering modelling procedure is used to find its fitness. The
physical laws governing wave propagation are represented in the form of partial differential
equations (PDEs). Based on the geometry of the acoustic system, these PDEs are typically
solved using the transfer matrix method (TMM) or the finite element method (FEM). TMM
is an analytical method applicable to flat layered structures, where each layer is modelled as
a transfer matrix that relates the wave amplitudes at one face to the other. The elements of
this matrix incorporate closed-form solutions to the PDE derived in terms of the material’s
characteristic properties which are described using an acoustic material model. FEM is a nu-
merical method that can solve PDEs in intricate geometries, where the structure is discretised
into smaller pieces (called finite elements) of regular geometries (such as triangles, quadrilat-
erals, tetrahedrons etc.) and the governing partial differential equations applied on these pieces
are converted to matrix equations using weak formulations. The matrix dimensions are linked
to the number of vertices (nodes) in the discretised structure. Using the finite element method,
the physics of many real-world systems can be accurately captured as long as certain numerical
guidelines are followed. This has made FEM a workhorse for engineering analysis in the mod-
ern world. Since the 1960s when FEM was introduced, computers have become faster, allowing
FEM and its extensions to be used widely in industrial applications. One of the quirks of FEM
is that solving the system of matrix equations becomes expensive as the the matrix size (dis-
cretisation) increases, and the optimisation becomes time consuming. There exists a trade-off
between accuracy and time when using FEM.

1.4 Gaps in knowledge
The existing work in optimisation with regard to multilayered porous package optimisation
focuses mainly on the physics modelling or extending the methodology to more applications.
Only a small number of works focus on optimisation aspects specific to porous materials, and
the choice of optimisation algorithms relies on studies using mathematical benchmark prob-
lems. Understanding the fitness landscapes would help design more effective algorithms for
problems involving a large number of layers. There have been very few studies [240, 148] ded-
icated to understanding the fitness landscapes of sound absorption or other acoustic indicators
in multilayered porous structures. This is discussed further in chapter 3. However, the fitness
evaluation is relatively less expensive in the multilayered optimisation problem as compared to
that in topology optimisation. In some cases, the multilayered problem can be solved using
simple heuristics or by brute-force. Hence, in this thesis, the multilayered optimisation problem
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is addressed only as a formative study.

On the other hand, topology optimisation is challenging firstly because of the large number of
decision variables in the original combinatorial form of the problem, and secondly, the expen-
sive nature of fitness evaluation. Acoustic topology optimisation has been an emerging field
since the early 2000s. An extensive literature survey covered in chapter 4 indicates that the
number of publications in acoustic topology optimisation has seen tremendous growth in the
last few years. Many publications focus on implementing topology optimisation using SIMP
for specific problem cases. Specifically, these works include deriving the finite element for-
mulations, computing the sensitivities, extending finite element-based to isogeometric analysis-
based meshes etc. In other publications the focus has mainly been on gaining insights from the
optimised shapes for specific use cases which are useful to the acoustic community. However,
the question as to which optimisation strategies are more effective in obtaining better quality
solutions in less time in porous material topology optimisation remains unanswered. Compar-
isons of different heuristics and metaheuristics have been previously made by other researchers
in the compliance minimisation problem domain [205]. However, there is little effort towards
comparison studies on problems in the acoustic domain. Chapter 4 provides a detailed account
of the available studies to emphasise this gap in knowledge.

In addition, to design efficient algorithms, it is essential to have an understanding of the fitness
function landscapes across the design/decision variables. The existing literature does not seem
to have investigated this research area. In this thesis, an initial analysis of the nature of the
fitness landscapes is performed. This knowledge is expected to greatly help in improving the
convergence rate and solution quality by modifying available optimisation strategies.

The computational complexities of finding the absorption coefficient and that of its gradient
have not been assessed in previous work. The relative complexity of the fitness function to
its gradient will greatly affect the relative performance of gradient and non-gradient methods.
This thesis also aims to address this question by analysing the procedures involved in the fitness
computation.

1.5 Focus of the current thesis
The main aim of this work is to better understand the performance of existing and novel heuris-
tics and metaheuristics in the design of sound-absorbing structures. The objective to arrive at a
set of guidelines for novel, more efficient heuristics in this domain. As a formative study, the
one-dimensional multilayered sound package optimisation will be considered. Then, the two-
dimensional shape and topology optimisation of acoustic foams will be studied. Since there are
no practically viable exact optimisation methods in this domain, the work will focus on heuris-
tic and metaheuristic optimisation methods.

In multilayered sound absorption packages each layer of the sound package may be constituted
of poroelastic materials, perforated plates, solid elastic materials, plaster boards, and woven or
non-woven textiles. The choice of materials in each layer, their thickness and material proper-
ties govern the sound absorption properties of the multilayered system. Identifying the discrete
material choices and continuous thickness and material parameters makes this a mixed discrete-
continuous problem. As a first approach, an integer representation genetic algorithm is applied.
A discussion on the objective function landscape across different parameters of multilayered
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sound absorption problems is provided.

It is known that introducing air cavities in materials (often called Helmholtz resonators) may
enhance or suppress the absorption at different frequencies depending on the shape of the cavity.
Often, fully filling porous materials in the available space is not often the most absorbing solu-
tion. There exist potential weight savings while obtaining more noise attenuation. To explore
optimal shapes of air cavities in porous materials, various topology optimisation approaches
including several heuristic and metaheuristics are studied. The time complexities of the fitness
and gradient computation are compared and contrasted with those of compliance minimisation.
The absorption landscapes across the design variables are analysed to gain insights for algo-
rithm design. Then, a multi-objective optimisation problem of simultaneously maximising the
absorption properties while minimising weight is considered. The main focus will be on com-
paring gradient and non-gradient methods through empirical optimisation experiments. The
results will also be subject to statistical tests. Further, from the knowledge obtained from these
tests, hybrid algorithms will be designed and tested. The research outcome will be a set of initial
guidelines to design efficient heuristic algorithms tuned to the acoustics problem domain.

1.6 Contributions in this thesis
The specific contributions of this thesis in terms of addressing the knowledge gap are as follows:

1. In a novel effort, an extensive multilayered sound package optimisation using 29 exist-
ing porous materials with recent advanced material models is carried out for absorption
maximisation in a three-layered sound package using a genetic algorithm (Chapter 5).

2. The fitness landscape in multilayered optimisation problems is explored, and it is identi-
fied that the landscapes are smooth over the material property variables. Memetic algo-
rithms that perform local search over the material properties are then suggested for this
application (Chapter 5).

3. A comparison of several topology optimisation strategies is performed for the first time
for optimal two-dimensional distribution of poroelastic material and air for sound ab-
sorption maximisation. The study included state-of-the-art topology optimisation strate-
gies and popular metaheuristics. Some of the heuristics are novel, and some already-
existing metaheuristics which are applied have not been used on this specific problem
before (Chapter 6).

4. Notably, evidence shows that state-of-the-art algorithms are often outperformed by certain
newly tested methods. However, no algorithm clearly outperforms all others across all the
benchmark problem instances considered (Chapter 6).

5. Each algorithm finds a unique set of optimal solutions, exploring different regions of the
search space. One of the general lessons is to use multiple well-performing strategies
together and pick the best results for manufacturing (Chapter 6).

6. The problem structure of the above topology optimisation, including the fitness land-
scapes, is explored in detail for the first time, and new insights for designing better strate-
gies are identified (Chapter 6).

7. A comparison of multi-objective strategies is performed in a first-of-its-kind study in
acoustic topology optimisation. The objectives are to maximise absorption while min-
imising weight. The algorithm pool includes state-of-the-art and novel gradient-based,
gradient-free and hybrid strategies, including SIMP and NSGA-II (Chapter 7).

8. It is observed that while gradient methods are quick to obtain near-optimal solutions,
non-gradient methods outperform them given sufficient time (Chapter 7).
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9. Two hybrid strategies are proposed that consistently outperform all other methods, in-
cluding the state-of-the-art, over all the problem instances. These hybrid strategies use
gradient methods as initialisers and non-gradient methods as improvers (Chapter 7).

10. A simple new Pareto-slope-based scalarisation technique is proposed and applied for the
first time and seems to perform well as an improver (Chapter 7).

1.7 Thesis structure
In this thesis, there are mainly three literature review chapters and three contribution chapters.
Due to the multidisciplinary nature of the work, an individual chapter is dedicated to overview
relevant literature in the three fields—metaheuristics, acoustic porous materials and topology
optimisation.
• Chapter 1: Introduction

PART I: LITERATURE REVIEW CHAPTERS

• Chapter 2: Metaheuristics literature
This chapter introduces a brief account of the state-of-the-art of metaheuristics, with de-
scriptions of popular strategies.

• Chapter 3: Acoustic porous-material literature
This chapter will describe the available tools to compute the objective function, i.e. sound
absorption or transmission loss. In addition, brief accounts of the various properties of
porous materials, how they are measured in practice, and how they affect their behaviour
are provided in this section.

• Chapter 4: Topology optimisation literature
This chapter introduces topology optimisation and provides a brief account of the cur-
rent state of the art, including available techniques, the wide variety of applications it has
found, and the potential benefits it offers. In this chapter, an extensive account of existing
acoustic applications of topology optimisation research is also provided.

PART II: CONTRIBUTION CHAPTERS

• Chapter 5: Multilayered sound package optimisation
This chapter will cover the one-dimensional acoustic material design optimisation meth-
ods in multilayered packages seeking the best sequencing of given materials and synthesis
of material properties for new materials. This work is done as a formative study to gain
insights for topology optimisation.

• Chapter 6: Single-objective topology optimisation for absorption maximisation
Heuristic and metaheuristic approaches, which do not exploit any information but the
fitness (and its derivatives) of the problems, will be compared on benchmark problem
instances. State-of-the-art heuristics and some well-known metaheuristics will be com-
pared with originally proposed heuristics.

• Chapter 7: Multi-objective topology optimisation for absorption maximisation and
weight minimisation
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In this chapter, the use of multiple objectives (noise and weight reduction) in acous-
tic porous material topology optimisation and how different approaches compare against
each other will be discussed. There are many applications where the weight minimisation
is indirectly set as an inequality constraint, and the noise is optimised. Although there are
many works on multi-objective structural topology optimisation, there are no works in
the porous materials domain dealing with these objectives simultaneously, which makes
this venture novel.

• Chapter 8: Conclusions and future work
This chapter summarises the current work, highlights the novel contributions of the work
carried out and discusses possible future work prospects.

1.8 Publications from this research

Journal articles:
1. Vivek T. Ramamoorthy, Ender Özcan, Andrew J. Parkes, Abhilash Sreekumar, Luc

Jaouen and François-Xavier Bécot, Comparison of heuristics and metaheuristics for topol-
ogy optimisation in acoustic porous materials, The Journal of Acoustical Society of
America, Vol. 150, Issue 4, pp. 3164-3176, (October 2021).
(DOI: https://doi.org/10.1121/10.0006784)

2. Vivek T. Ramamoorthy, Ender Özcan, Andrew J. Parkes, Luc Jaouen and François-
Xavier Bécot, Multi-objective topology optimisation of acoustic porous materials for min-
imum weight and maximum absorption (submitted to The Journal of Acoustical Society
of America).

Conferences:
1. Vivek T. Ramamoorthy, Ender Özcan, Andrew J. Parkes, Luc Jaouen and François-

Xavier Bécot, Metaheuristic Optimisation of multilayered porous materials, International
Congress on Acoustics, Aachen, Germany (September 2019).

2. Vivek T. Ramamoorthy, Ender Özcan, Andrew J. Parkes, Abhilash Sreekumar, Luc
Jaouen and François-Xavier Bécot, Acoustic topology optimisation using CMA-ES, pro-
ceedings of ISMA2020 International Conference on Noise and Vibration Engineering and
and USD2020 International Conference on Uncertainty in Structural Dynamics (Septem-
ber 2020).

3. Vivek T. Ramamoorthy, Ender Özcan, Andrew J. Parkes, Abhilash Sreekumar, Luc
Jaouen, François-Xavier Bécot, On the topology optimisation of acoustic porous materi-
als, e-Forum Acusticum, (December 2020).

4. Vivek T. Ramamoorthy, Ender Özcan, Andrew J. Parkes, Luc Jaouen, François-Xavier
Bécot, Metaheuristics in topology optimisation of sound absorbing materials, The OR
society conference-OR63, (September 2021).
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Chapter 2

Metaheuristics literature

Optimisation techniques can be broadly classified into exact methods and heuristics. Exact
methods guarantee that the found solution is indeed the optimal solution. Examples of ex-
act algorithms are enumerative search (searching through all possible solutions), branch and
bound, and dynamic programming. However, for some problems with large search spaces and
expensive objective functions, such exact methods are often too time-consuming and they are
practically unusable. The most notable is the NP-complete class of problems which do not yet
have a polynomial time algorithm in the problem size. Heuristic methods are quick alternatives
that can find near-optimal solutions in reasonable time. Metaheuristics are certain high-level
problem independent guidelines used to design heuristics, such as genetic algorithms. In this
chapter, an overview of the field of metaheuristics is provided.

2.1 Introduction
Heuristics are practical approaches, shortcuts or rules of thumb that one can follow to make
calculated guesses for solutions to different problems. They are computationally less expensive
alternatives to exact methods that provide quick and good solutions to optimisation problems.
However, they do not guarantee finding the optimal solutions. Although heuristic problem solv-
ing has been used by us humans from time immemorial, in recent decades, they have been
formalised under different frameworks as metaheuristics. A heuristic algorithm is an unam-
biguous set of instructions to solve a specific problem, whereas a metaheuristic is the high-level
idea used in the heuristic.

Sörensen [226] defines metaheuristics as problem-independent sets of guidelines for develop-
ing heuristic optimisation algorithms that can be thought of as heuristics to design heuristics
and hence the name. The term metaheuristic was first coined by Glover in 1986 [88] which is
derived from the Greek prefix meta, which means high level, and heuristics, which means to
search. An example of a metaheuristic is genetic algorithms wherein the guideline is to pick
a population of individuals from feasible solutions, apply selection pressure, crossover the se-
lected good quality solutions, mutate and replace them into the population, repeatedly until a
desired outcome is reached. While the guideline is referred to as the metaheuristic in some us-
ages, an implementation of a heuristic based on the guideline is also called a metaheuristic. For
instance, an implementation of genetic algorithm following the guideline for a specific problem
is also a metaheuristic.

Metaheuristics have been used in many applications to find solutions that are good enough,

12
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quickly enough. Notable metaheuristics include genetic algorithms [102], simulated annealing
[125], tabu search [88], etc. The optimisation theories pertaining to popular metaheuristics are
so well-studied that several books have been published based on each metaheuristic. Sörensen
et al. in [227] provided an account of the history of metaheuristics. They describe the evolution
of the field from the early period, when problem-solving frameworks were being realised (anal-
ogy, greedy search, construction etc.), through the method-centric period, when these general
ideas were still considered to be different algorithms, to the current framework-centric period,
where the focus is given to the high-level frameworks on which different algorithms are based.

Since porous material layering and topology optimisation involves a large number of design
variables, expensive objective functions, and large search spaces, exact algorithms are too time-
consuming to be practical. In fact, efforts towards domain-specific extensions of exact methods
such as dynamic programming, branch and bound, etc., to porous material design is hard to
find in existing literature. Much of the optimisation studies deal with metaheuristic techniques
such as genetic algorithms [240], and domain-specific heuristics. Hence, justifiably, this thesis
focuses primarily on heuristic and metaheuristic techniques.

The performance of a metaheuristic on a specific problem domain depends on the algorithmic
components used, such as move operators (specific procedures involved in finding neighbour-
ing solutions), acceptance criteria (when a solution is accepted), and others. Without empirical
testing, it is difficult to ascertain effective outcomes. Techniques such as parameter tuning [114]
allow a given metaheuristic to be used in more effective way. Such tuning requires expertise in
the field of metaheuristics and algorithm design. While this is not ideal, research into automated
selection of algorithms has resulted in the so called hyperheuristics which operate in the search
space of heuristics.

In choosing metaheuristic algorithms and operators for a problem domain, analysing the fitness
landscapes may provide a better understanding of an algorithm’s performance [193]. For real-
valued problems, fitness landscapes correspond to the scalar field of fitnesses assigned to the
design variable space.This notion has been extended to combinatorial problems, where fitness
landscapes correspond to the set of fitness values mapped to each solution in the search space
connected virtually to other solutions through metrics such as the hamming distance. Perform-
ing such an analysis leads to the knowledge of modality (presence of local optimal solutions),
presence of basins of attraction (regions that directly lead to the optima), barriers (poor fitness
regions which need to be crossed to get to the optimum), ruggedness (a measure of occurrence
of local optimal solutions) etc. The presence of a unimodal landscape indicates that the prob-
lem could be solved to optimality using most metaheuristics. On the other hand, multi-modal
landscapes mean that the problem is difficult to tackle. A popular metric in combinatorial op-
timisation is the fitness distance correlation which corresponds to the distribution of fitnesses
with respect to the distances from the global optimum. This metric has been used successfully
in many applications to determine the search difficulty and is noted as a reliable but not an
infallible indicator by Jones et al. [113].

In the current times, metaheuristics play an integral part of advancements in artificial intelli-
gence in addition to other tools such as machine learning. On the other hand, researchers have
also used machine learning techniques at the service of metaheuristics in solving combinatorial
optimisation problems [118].
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As new methods and extensions to existing methods are being published regularly, it is not
practical to provide an account of all the main metaheuristics in detail. For brevity, only some
of the well-known methods will be discussed in the subsequent sections. Towards the end, a
note on the use of metaheuristics in topology optimisation is provided. Finally, a summary
listing the important takeaways is provided.

2.2 Local search

Local search is a simple yet powerful heuristic which starts from an arbitrary initial solution,
generates a neighbouring solution and accepts it if it is improving [2]. For example, 2-Opt
search [62] is a local search heuristic for the travelling salesman problem. The neighbourhood
operator chosen will play a vital part in the local search.

2.2.1 Hill Climbing

Algorithm 1: Pseudocode for a local search algorithm
1 Generate initial solution s;
2 Evaluate objective function f(s);
3 while Termination criteria is not met do
4 s′ ← GenerateNeighbour(s);
5 Evaluate objective function f(s′);
6 if f(s′) < f(s) then
7 Set s← s′;
8 end
9 end

10 Return s

Hill climbing techniques such as steepest descent, random mutation and Davis’ bit climbing
[64] are some examples of local search. Consider the application of hill climbing to a boolean
satisfiability problem. In steepest descent hill climbing, the solution with the highest improve-
ment from all possible neighbours is chosen in each iteration. In random mutation hill climbing,
in each move, a bit at random is chosen to be flipped as the neighbourhood operator. Whereas
in Davis’ bit hill climbing, a random permutation of numbers up to the length of the bit stream
is obtained, and in every move, bit flipping is done on the location given by the next number
in the permutation while accepting improving moves. A pseudocode for hill climbing or local
search is provided in Algorithm 1.

Due to the greedy acceptance of improving moves, local search heuristics have an increased
likelihood of getting stuck at a local optimum. A random-restart hill climbing will counter this
by restarting the hill climbing from a new solution. A balance between efficiently exploring the
search space and exploiting the neighbourhood of good solutions are desirable characteristics
of an effective search algorithm.
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2.2.2 Iterated local search
A general local search algorithm can be thought of as a function that takes a solution (s) as input
and uses specific moves to obtain a local optimum (s∗) in the neighbourhood of s. A nested local
search scheme which applies a local search on carefully chosen neighbouring solutions to find
neighbouring local optima (s∗) is called an iterated local search metaheuristic (ILS) [156]. A
pseudocode for iterated local search algorithm is given in Algorithm 2.

Algorithm 2: Pseudocode for iterated local search
1 Pick an initial solution;
2 Hill climb;
3 while Termination criteria is not met do
4 Pick a neighbouring solution;
5 Hill climb;
6 end
7 Return s

2.3 Simulated annealing

Algorithm 3: Pseudocode for a simulated annealing
1 Pick a solution s randomly from feasible solutions;
2 Set k ← 0;
3 Select an annealing schedule tk : tk > 0 ∀ k and limk→∞ tk = 0;
4 Set M , the number of iterations under each cooling schedule;
5 while Termination criteria is not met do
6 m← 0;
7 while m < M do
8 Pick a new solution s′ in the neighbourhood of s;
9 Calculate ∆ = f(s′)− f(s);

10 if ∆ < 0 then
11 s← s′;
12 else
13 s← s′ with a probability exp(−tk∆);
14 end
15 m← m+ 1;
16 end
17 k ← k + 1;
18 end
19 Return s;

Simulated annealing was introduced by Kirkpatrick in 1983 [125]. It is one of the old meta-
heuristics which was formalised before the term metaheuristics was coined. It is based on the
analogy of the process of slow cooling of metals from a high temperature in order to let the
atoms settle in a low energy state (minimising energy). The algorithms start with a single so-
lution and iterate on it, making it a memory-less method. In this, the high-level guideline is to
accept worsening moves with a certain probability that slowly reduces. The probability with
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which worsening moves are accepted is varied during the algorithm depending on a param-
eter called the temperature and the difference between the previous and the current solution.
Typically the temperature is set to approach zero as the iterations progress. A pseudocode for
simulated annealing is given in Algorithm 3.

Simulated annealing can be considered a breakthrough for its time, and its use was widespread
in many problem domains [236, 9]. The main research focus around simulated annealing in-
cludes optimising the annealing schedule and effective hybridisation with other approaches.

2.4 Tabu search
Tabu search was first proposed by Glover in the same article in which the term metaheuristics
was coined [88]. In tabu search, a forbidden list (tabu list) of moves is maintained to avoid get-
ting stuck at local optima and cycling through the same set of solutions. Glover considered tabu
search not as a heuristic that operates on solutions but rather as a meta-heuristic which operates
on a local search. A tabu move is liberated from the tabu list after a set number of moves. A
pseudocode for tabu search is given in Algorithm 4.

Algorithm 4: Pseudocode for a tabu search algorithm
1 Generate initial solution s;
2 Evaluate objective function f(s);
3 UpdateBest: s∗ ← s, f ∗ ← f(s);
4 while Termination criteria is not met do
5 s′ ← GenerateNonTabuNeighbour(s);
6 if f(s′) < f(s∗) then
7 Set s∗ ← s′; Set f ∗ ← f(s′)
8 end
9 Update Tabulist;

10 end
11 Return s∗

The advancements of research in tabu search are towards improving the search with better ini-
tialisation, parallel search and hybridisation [61, 60, 82], as is stated in the survey article by
Gendreau et al. [85]. A recent survey on tabu search implementations for the travelling sales-
man problem is given in [15].

2.5 Genetic algorithms
Genetic algorithms take inspiration from the process of natural evolution, which uses selection
pressure, crossover, and mutation to choose better individuals. To perform optimisation, one
can pick a set of individuals randomly from the feasible solution space, apply selection pressure
to filter good solutions for mating, combine the attributes of good solutions in a crossover oper-
ation, modify the solutions with some degree of mutation and find better solutions. This idea of
using the process of genetic evolution was first introduced by Holland [102] and, since then, has
been used successfully in many applications. Some applications and survey papers on genetic
algorithms are [229, 86, 188, 215, 241, 214, 117, 3]. Adaptive versions of genetic algorithms
are found to perform better for functions which are more multi-modal [228]. Other metaheuris-
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tics, such as hill climbing, can be considered special cases of genetic algorithms, i.e. if only
one individual is considered in the population with only the mutation operator. Pseudocode for
a sample genetic algorithm is given in Algorithm 5. A simple illustration of a genetic algorithm
can be found at VivekTRamamoorthy.github.io/GeneticAlgorithmTutorial that finds the optimal
solution of a MAXSUM problem.

Algorithm 5: Pseudocode for a genetic algorithm
1 Pick N members randomly from feasible solutions;
2 Evaluate their fitnesses;
3 while Termination criteria is not met do
4 Select members as parents with selection pressure;
5 Apply crossover on parents to get the offspring;
6 Apply mutation with probability MutationRate to the offspring;
7 Evaluate the fitnesses of the offspring;
8 Replace the offspring in the population;
9 Update the best solution;

10 end
11 Return the best solution;

2.6 Memetic algorithms

Memetic algorithms are extensions to genetic algorithms where local search is performed near
the solutions obtained from genetic algorithms. The effectiveness of hill climbing in genetic al-
gorithms is emphasised in several papers [166, 200]. The local search in a memetic algorithm is
typically done after the mutation operation of the genetic algorithm. Due to their effectiveness
in exploiting locally in conjunction with exploration, memetic algorithms have been success-
fully used in many applications [40, 126, 179, 275, 151, 180]. An important consideration in
memetic algorithms is the interplay between the level of local search and other operators, an ex-
ample of which is brought out by Freisleben and Merz [83] for the travelling salesman problem.
The local search can sometimes be expensive based on the number of iterations needed to reach
the local optimum, which is indicated by some theoretical studies [132, 235]. Pseudocode for a
memetic algorithm is given in Algorithm 6.

Algorithm 6: Pseudocode for a memetic algorithm
1 pop←GenerateInitialPopulation();
2 Evaluate their fitnesses;
3 while Termination criteria is not met do
4 Select parents ⊆ pop;
5 CrossOver(parents);
6 offspring←Mutation(parents,MutationRate);
7 offspring← LocalSearch(offspring);
8 Evaluate fitnesses of the offspring;
9 pop← Replace(pop,offspring);

10 Update(best);
11 end
12 Return best;

https://VivekTRamamoorthy.github.io/GeneticAlgorithmTutorial
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Some continuous optimisation techniques
In porous packaging problems, the parameters for optimisation can be either discrete or con-
tinuous. In some cases, considering the continuous variables as discrete is more practical and
would reduce the search space. For example, physical variables such as thicknesses or porosi-
ties are precise only up to a few significant places: a thickness of 5.477 mm is equivalent to 5.5
mm. Although the above-discussed metaheuristics are applicable to both discrete and continu-
ous optimisation, techniques specific to continuous optimisation have been successfully applied
to hundreds of problem cases and are well documented. Differential evolution, and surrogate
modelling methods such as covariance matrix adaptation-evolution strategy [100] and method
of moving asymptotes [238] are some examples.

2.7 Differential evolution
Differential evolution (DE) is a population-based metaheuristic popular for continuous optimi-
sation proposed by Price and Storn [232, 233]. It is a simple and powerful metaheuristic for
real-valued optimisation. A basic example of the method is as follows. Consider the objective
function f(x) ∈ R where x ∈ Rn. In differential evolution, for every member of the population
x three other unique members a,b, c apart from x are chosen randomly from the population. A
new member y is obtained by a simple formula such as y = a + F × (b− c) where F ∈ [0, 2]
is the differential weight. For all i ∈ {1, 2, ...N} , with a cross over probability CR ∈ [0, 1],
yi = xi is set. The objective function is evaluated at the new location, and if it is an improving
move, then x is replaced with the crossover product y. This is repeated until termination criteria
are met. Pseudocode for a sample DE is given in Algorithm 7.

Algorithm 7: Pseudocode for differential evolution
1 pop xj ←GenerateInitialPopulation();
2 Evaluate their fitnesses fj ← f(xj);
3 while Termination criteria is not met do
4 for j = 0, j < length[pop], j + + do
5 Randomly select a,b, c from pop;
6 y← a + F × (b− c);
7 for i = 0, i < length[x], i+ + do
8 if rand < CR then
9 yi ← xji ;

10 end
11 end
12 Evaluate f(y) if f(y < f(x) then
13 Replace xj ← y
14 end
15 Update(best);
16 end
17 end
18 Return best;

The key idea in this method is that, as the algorithm picks solutions from a region in the search
space and as better solutions are accepted, the span of solutions is widened in the direction of
improvement in the population due to step 13 in the pseudocode. Consequently, the differential
move operation in step 6 leads to an enhanced search in this direction. Subsequent selection of
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Figure 2.1: Method of moving asymptotes: surrogate function on one of the parameters xi with lower
bound xi and upper bound x̄i.

improved solutions leads to a movement of the population towards higher fitness regions in the
search space. This metaheuristic has been successfully applied in many applications [171, 63],
and many books have been published on its theory and practise [195, 79, 42]. In acoustic
topology optimisation, Khajah et al. [121] have applied differential evolution for acoustic horn
shapes. Rostami et al. [205] in their study of various metaheuristic methods also included
differential evolution in their algorithm pool.

2.8 Surrogate modelling methods
In these techniques, a surrogate function is constructed from the available information, such
as function values or their derivatives and the surrogate model is optimised to get predictions
for the optima. The function values at the predicted solutions are evaluated and checked for
improvements. This process is repeated to look for the global optimum. Examples include co-
variance matrix adaptation-evolution strategy (CMA-ES) [100], method of moving asymptotes
(MMA) [238], response surface methods [112] etc. Both CMA-ES and MMA optimise a multi-
parameter function f(x) ∈ R where x ∈ Rn. While CMA-ES uses a multi-variate Gaussian as
the surrogate function, MMA uses a simple asymptotic function based on the constraint to look
for the next guess. Figure 2.1 depicts the scheme used in MMA for a minimisation problem on
f for a single parameter xi, where xi is the lower bound and x̄i is the upper bound.

2.9 Metaphor controversy
While many effective algorithmic frameworks have been inspired by metaphors (simulated an-
nealing, genetic algorithms, particle swarm optimisation), a large number of metaphor-inspired
metaheuristics have been published in recent years. Some of these methods have come under
criticism for being essentially similar in concept to other existing methods differing only in
the metaphor [225]. A list of such metaphor-based methods and their high-level frameworks
is available on the Wikipedia page Metaphor-based metaheuristics. An example is harmony
search which can be proven to be a special case of (µ + 1) evolution strategy [253]. Also, as
Sörensen points out, a different spectrum of researchers are working along the lines of apply-
ing aspects of exact methods to problems and sub-problems, which decompose the methods to

https://en.wikipedia.org/wiki/List_of_metaphor-based_metaheuristics
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reveal the components actually contributing to their performance.

2.10 Hyper heuristics
In the last two decades, a new field focused on automating the selection of heuristics using
higher-level heuristics, called hyper heuristics [58], has emerged. While metaheuristics are
higher-level guidelines for designing heuristics, hyper heuristics search across the space of
heuristics to automate the algorithm design. They are designed to tackle more general classes
of problems making no prior assumptions. Özcan et al. [181] presented an analysis of several
hill climbers, genetic algorithms and memetic algorithms in the hyper heuristics context. Burke
et al. [39] presented an overview, including the roots, recent trends and future prospects of the
field. Pillay and Qu published the first book on hyper heuristics [192] presenting a summary of
the work on hyper heuristics, applications and future work directions. Hyper heuristics can be
considered state of the art in automated algorithm design [199, 265].

2.11 Use in topology optimisation
Topology optimisation is a unique problem with a large number of decision/design variables
which can be represented in both combinatorial and continuous forms. There exist a plethora
of articles applying metaheuristic to topology optimisation.

Guirguis et al. [94] recently presented a comprehensive review of blackbox approaches, includ-
ing metaheuristics, in various topology optimisation applications. Some of the metaheuristics
used in these applications are genetic algorithms, covariance matrix adaptation-evolution strat-
egy, differential evolution, particle swarm optimisation, and simulated annealing, to name a few.
The variety of applications included structural stiffness, eigenfrequency, micro-mechanical res-
onators, heat transfer, magnetics, composite structures and photovoltaic panels.

Of the available metaheuristics, the most popular ones are genetic algorithms, CMA-ES and
differential evolution. One of the noteworthy comparison studies is the work by Rostami et
al. [205] which features the application of several metaheuristics using the moving morphable
components representation for compliance minimisation topology optimisation.

Metaheuristics being used in compliance minimisation problems came under criticism for be-
ing too slow by Sigmund [219] since they require too many function evaluations. Existing
state-of-the-art methods use gradient algorithms, and on some occasions, they are an order of
magnitude faster than their non-gradient counterparts. Engineering problems have expensive
fitness evaluations that are prohibitive for the use of slow-converging approaches in practical
scenarios, unlike the benchmark problems used in optimisation literature. However, there are
reasons that make a case for using non-gradient metaheuristic strategies: unlike in compliance
minimisation, in other problem domains, gradients may not be fast to compute, or the fitness
landscapes may be more rugged that the gradients can be misleading. In those cases, meta-
heuristics may be more viable alternatives than the popular gradient methods. Whether this is
the case for acoustic absorption problems is unknown and will be ventured in this thesis. It is
also worth noting that deriving these gradients in new problem domains requires expertise in
the problem domain and can be quite challenging. If the solutions offered by gradient methods
are inadequate, researchers look for other alternatives for global topology optimisation, such as
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stochastic gradient-descent [66]. However, there is a lack of benchmark studies on gradient-
embedded metaheuristics. For instance, a genetic algorithm can incorporate a gradient-based
move operator in crossover or mutation. Such studies will be directly useful for topology op-
timisation. In this thesis, research into the usefulness of metaheuristics in acoustic topology
optimisation will be explored for the first time.

2.12 Conclusions
The points to take away are as follows:

1. Heuristic optimisation techniques are quick alternatives to finding near-optimal solutions
for hard optimisation problems.

2. Metaheuristics are a set of problem-independent guidelines to design heuristic approaches
that can be thought of as heuristics to design heuristics—hence the name.

3. Metaheuristics are currently the only practical approach to tackling difficult problems,
such as those in the NP-hard class, which do not yet have exact approaches that solve in
any meaningful amount of time.

4. Metaheuristics are state-of-the-art techniques to solve combinatorial optimisation prob-
lems involving design variables that can take discrete values.

5. Popular examples of metaheuristics for combinatorial problems include genetic algo-
rithms and tabu search.

6. There are many hundreds of metaheuristics available, however, some can be thought of
as variants of others.

7. Metaheuristics are also available for continuous optimisation. Examples include parti-
cle swarm optimisation, covariance matrix adaptation-evolution strategy and differential
evolution.

8. Metaheuristics have been used in topology optimisation, although they are not the most
popular methods. Often they have come under criticism for being too slow.

9. One reason is that metaheuristics do not use the gradient information available in specific
topology optimisation cases.

10. In some topology optimisation problem domains, it has been shown that gradients can be
computed quickly using equations obtained from a sensitivity analysis.
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Acoustic porous material literature

This chapter introduces the engineering modelling techniques used to describe the sound ab-
sorption behaviour of acoustic porous materials. A complete understanding of these aspects
is not essential for understanding the optimisation results. These models will be used in com-
puting the fitness function, and computer scientists can consider them as blackbox functions.
This chapter provides an overview of the literature on various levels of abstractions involved in
modelling porous materials to lay the foundation for understanding the problem structure. This
chapter will serve as a useful reference to readers who do not have a background in poroelastic
modelling.

3.1 Introduction
Porous materials are those which have multiple interconnected pores or voids filled with air
or other fluids. Porosity is the ratio of the volume of voids to the total volume in these ma-
terials. Even though all real materials have some degree of porosity due to the presence of
micro-voids, many solids with low porosity could be treated well using continuum approaches.
Porous materials commonly refer to those in which the porosities are high enough that the con-
tinuum treatments become inapplicable. These materials are found in common use as acoustic
and thermal insulation, rubbers, leathers, textiles, filters and home furnishing, to name a few.
In this thesis, the focus will be on acoustic porous materials, including fibrous materials (such
as glasswool, rockwool) and polymeric or other foams which are specifically used for noise
reduction.

For the purpose of this thesis, an overview of the nature of calculations involved in computing
the objective function for optimisation is of interest. To help readers from disciplines other
than engineering, a brief account of engineering modelling is provided through various levels
of abstraction. The important aspects to takeaway are later highlighted in the summary of this
chapter. A complete understanding of engineering modelling is not a prerequisite for the read-
ers, although an abstraction would help appreciate the challenges involved in the current work.
This chapter will also highlight the aspects that differentiate the problem from other bench-
marks commonly dealt with in metaheuristics [16, 203, 74, 175].

Introduced in the 1970s, the finite element method revolutionised the way engineers designed
structures [277]. While the field has now diverged into many branches for dealing with specific
issues, the core concept remains the same. Many commercial software are available to model
and analyse intricate geometries, including modules that provide specific functionalities includ-
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ing more physics, ways to deal with boundaries, contact phenomena, and phase interactions, to
name a few.

This chapter is organised as follows. In section 3.2, an introduction is given to the field of
acoustics leading up to the Helmholtz differential equation used to solve for pressures in a clas-
sical fluid medium. In section 3.3, a discussion is provided on how the Helmholtz equation
can be modified to model dissipative materials. An overview of such motionless skeleton mod-
els published in literature is also provided in this section. In section 3.5, geometric modelling
techniques are described, including the transfer matrix method for one-dimensional modelling
of layered materials and the finite element method for two- or three-dimensional modelling of
intricate porous material structures.

3.2 Basics of acoustics
Physically, sound is the time-varying disturbances in pressure in addition to the atmospheric
pressure. The atmospheric pressure at sea level is around 100,000 Pascal (Pa), which converts
to 1 kilogram-force acting on every square centimetre of every open surface. A disturbance of
1 Pa over and above this pressure amounts to 93 decibel (dB), which is as loud as a typical lawn
mower within a few feet. These variations from the mean atmospheric pressure are referred to
as the acoustic pressure.

P = Patm + p (3.1)

Here, P is the total physical pressure, Patm is the mean atmospheric pressure, and p is the
acoustic time-varying pressure, all in Pascals. The human ear can sense disturbances as low
as pref = 20 µPa, which is the threshold for human hearing. Human ears are logarithmically
sensitive to these pressure variations, and hence a decibel scale is used. The threshold pressure
for human hearing is agreed to be the reference pressure for the decibel scale used in practice
which relates the sound pressure level to acoustic pressure.

Lp(in dB) = 20 log10

p

pref
(3.2)

A calm library is typically between 30 and 40 dB. A conversation between people in a restaurant
is around 60 dB. The cabin of an aircraft at cruise altitude without turbulence is between 60 dB
and 80 dB. This is one of the reasons why having conversations on a flight is more difficult than
at home or a library. The pavement of a busy street has noise levels between 60 and 80 dB. The
audience at a rock concert may be subject to as high as 100 dB. A lawn mower at arm’s length
is around 90 dB. The sound during rocket launch can be high as 220 dB.

The frequency of sound is the number of pressure oscillations in one second measured in Hertz
(Hz). Sounds we hear in normal life are composed of several frequencies, and the human audi-
ble frequency range is from 20 Hz to 20,000 Hz. Any pressure disturbance beyond this range
is not sensed by our ear. As we age, our capacity to hear high frequencies tend to deteriorate.
Factory workers exposed to louder than 80 dB for long periods of time develop premature hear-
ing loss. One-time exposures of 85 dB for more than 8 hours can cause permanent damage to
the ear. Thus, it is easy to get exposed to excessive levels of noise in day-to-day life.

Sound waves propagate in different media at different speeds. In air, at standard temperature
and pressure at sea level, the speed of sound waves is around 340 m·s−1. The propagation of
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sound in an infinite block of a medium is governed by the wave equation, which is often referred
to as the Helmholtz equation. In cartesian coordinates, the Helmholtz equation may be written
as: (

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
p =

1

c2
m

∂2p

∂t2
(3.3)

where x, y, and z refer to the spatial coordinates, t refers to time, and cm is the speed of sound
in the medium. In a one-dimensional duct, the equation reduces to:

∂2p

∂x2
=

1

c2
m

∂2p

∂t2
(3.4)

A known solution for pressure p that satisfies the above condition is the following:

p(x, t) = Au(x− cmt) +Bv(x+ cmt) (3.5)

Here u(x − cmt) and v(x + cmt) are forward and backward propagating waves of any wave
form, and A and B are arbitrary constants.
If we consider sound at a specific angular frequency ω = 2πf , where f is the frequency in Hz,
then using p = p̃(ω) exp(−iωt), the expression 3.3 can be rewritten in the frequency domain as
follows:

∂2p̃

∂x2
+
ω2

c2
m

p̃ = 0 (3.6)

For non-dissipative fluid media, the above equation can be solved for a given geometry using the
corresponding values of cm for different materials to find the acoustic propagation. Considering
the relation between the speed of sound, bulk modulus and density of the medium given by
c2 = K/ρ, materials which have a higher density to bulk modulus ratio tend to have higher
sound speeds and vice versa. Propagation in elastic solids can also be reduced to the above form
using constitutive relations. In the following sections, we will consider dissipative materials.
For consistency of notations with existing literature, henceforth, we will replace the frequency
domain notation of p̃ with p.

3.3 Material models for dissipative media
In this section, the modelling approaches for porous materials are discussed. Porous materi-
als have networks of interconnected pores filled with a fluid (typically air), often in intricate
geometries. This makes modelling their physics more challenging compared to homogeneous
materials such as metals and ceramics. When an acoustic loading is given to a porous medium,
both the solid and fluid phases allow for the propagation of waves. Coupled interactions could
take place between the solid and the fluid phase in frequency regimes where the bulk stiffness
and mass density of the solid phase and fluid phase are comparable. The viscous interaction
between the solid phase and fluid phase occurs when there is relative motion between these
two. This effect dissipates part of the acoustic energy into heat. Such dissipation is commonly
referred to as the viscous effect. When waves propagate in porous media, the pressure, density
and, therefore, the temperature of the fluid phase vary temporally and spatially. Such fluctu-
ations in temperature in the fluid part cause heat transfer between the two phases and this is
termed as the thermal interaction. Both these effects lead to the dissipation of the wave energy
as it propagates, giving rise to the common application of porous materials in acoustic treat-
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ments. Many researchers have proposed models to approximate the physics in porous materials
in the last 70 years to predict their acoustic response. These models can be classified into ana-
lytical models, empirical models and semi-phenomenological models.

While analytical models are only available for regular pore geometries, such as cylindrical fluid
cavities in a solid matrix, empirical models are developed through measurements of existing
porous materials. Semi-phenomenological models are those that break down complex porous
structures using theoretical models to relate the equivalent characteristic properties that may not
be measured directly to other measurable properties. A brief account of such models is given
in this chapter. A more detailed account of these models may be found at apmr.matelys.com
created by Luc Jaouen from Matelys research lab [107].

If the stiffness of the solid phase is orders of magnitude higher than the fluid phase, then the
energy of wave propagating in the solid phase is insignificant compared to that in the fluid
phase. In such materials, the porous media can be considered to be an equivalent fluid, and
those models are often referred to as motionless skeleton models. Those models which treat
wave propagation in both solid and fluid phases are referred to as bi-phasic models, and an
example is the Biot theory [27].

3.3.1 Motionless skeleton models
Zwikker and Kosten model

An approximation of some types of porous media would be to consider them as an array of
tubes of fluid phase in a solid matrix. In 1868, Kirchhoff [124] presented the general theory of
propagation of sound in circular tubes accounting for viscous and thermal conductivity effects.
In the late 1940s, Zwikker and Kosten [280] showed that for tube radii rw > 10−3 cm and
frequencies such that rwf 3/2 < 106 cm · s−3/2, the exact theory given by Kirchhoff takes a
considerably simpler form. They showed that the viscous and thermal effects could be separated
by introducing the complex density (ρ̃) and the complex compressibility or bulk modulus (K̃).
The resulting wave equation is given in equation 3.7, which is analogous to the Helmholtz
equation. (

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
p+ ω2 ρ̃

K̃
p = 0 (3.7)

Stinson [230] derived the Zwikker and Kosten approximation for intermediate frequencies start-
ing from Kirchoff theory. Stinson also presented a general approach to describe sound propaga-
tion in a uniform tube cross-section. From this theory, one could analytically derive the complex
compressibility, complex density, characteristic impedance and propagation constants for tubes
with arbitrary cross-sections. Certain models [26, 13] account for variations from pore shape by
using shape factors, which can be calculated. The approaches to calculating such shape factors
were also given by Stinson.

Delany Bazley model

Delany and Bazley performed experiments on a series of fibrous materials with low mass density
[70]. They observed that the acoustical properties normalise as a function of f/σ, the ratio of
frequency (f ) and the flow resistance (σ) . The variation of characteristic impedance (Z), and
the wavenumber (k) with (f/σ), closely resembled a straight line in a log-log plot against the
real and imaginary parts of acoustic impedance and wavenumber. This indicated that there

https://apmr.matelys.com/PropagationModels/MotionlessSkeleton/index.html
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exists a power-law relation between them. The study also verified the contemporary theories,
which also predicted such normalisation on (f/σ) but cautioned against extrapolation. Due
to the empirical relations, the acoustic properties of such fibrous absorbent materials can be
determined only with the knowledge of static airflow resistivity (or flow resistance, denoted by
σ). The resulting relations for characteristic impedance and wavenumber for fibrous materials
are expressed in equations 3.8 and 3.9.

Zc = ρ0c0

[
1 + 9.08

(
103f

σ

)−0.75

− j11.9

(
103f

σ

)−0.73
]

(3.8)

k =
ω

c0

[
1 + 10.8

(
103f

σ

)−0.70

− j10.3

(
103f

σ

)−0.59
]

(3.9)

Delany-Bazley-Miki model (DBM)

About 20 years after Delany and Bazley presented their model for fibrous materials, Yasushi
Miki [164] modified them in order to meet the positive condition for the real part of the impedance.
Miki took the analogy of a one-port electric circuit and used mathematical conditions to make
the characteristic impedance positive real. Using these properties, Miki made an adjustment
which ensures the positive real part of the impedance. The proposed empirical relations for
(+jωt) sign convention are given in equations 3.10 and 3.11.

Zc = ρ0c0

[
1 + 5.50

(
103f

σ

)−0.632

− j8.43

(
103f

σ

)−0.632
]

(3.10)

k =
ω

c0

[
1 + 7.81

(
103f

σ

)−0.618

− j11.41

(
103f

σ

)−0.618
]

(3.11)

The boundaries of validity for the DBM model is 0.01 < (f/σ) < 1.

Miki model

Miki generalised the Delany Bazley formulations, including porosity, tortuosity, and the pore
shape factor ratio [163]. In comparison to the DBM model, the generalised Miki model can
be applied to a wider range of materials and not only fibrous ones. The propagation constant
obtained from the Miki model showed agreement with that obtained from Attenborough’s model
[13] using the same parameters. This showed that the Miki model could be used to describe the
acoustical properties of a wide variety of ground surfaces.

Johnson-Champoux-Allard model (JCA)

The Johnson-Champoux-Allard (JCA) model is based on the work by Johnson, Koplik and
Dashen (JKD) [111] to describe visco-inertial dissipative effects inside the porous media and
the work by Champoux and Allard [43] to describe the thermal dissipative effects. JKD used a
semi-phenomenological model to describe the complex density of an acoustical porous material
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with a motionless skeleton having arbitrary pore shapes, as given in equation 3.12.

ρ̃(ω) =
α∞ρ0

φ

[
1 +

σφ

jωρ0α∞

√
1 + j

4α2
∞ηρ0ω

σ2Λ2φ2

]
(3.12)

The four parameters involved in the calculation of this dynamic density are the open porosity
φ, the static airflow resistivity σ, the high-frequency limit of the tortuosity α∞ and the viscous
characteristic length Λ. Here η is the dynamic viscosity of air, ρ0 is the mass density of air at
rest, and ω is the angular frequency. One of the limitations of this description worth noting is
that the low-frequency limit of the real part of the dynamic mass density is not exact.

Champoux and Allard [43] introduced an expression as given in equation 3.13 for the dynamic
bulk modulus for the same kind of porous material based on the previous work by Johnson et
al. to describe the thermal effects.

K̃(ω) =
γP0/φ

γ − (γ − 1)

[
1− j 8κ

Λ′2Cpρ0ω

√
1 + j

Λ′2Cpρ0ω

16κ

]−1 (3.13)

In this description, two parameters are needed to calculate the dynamic bulk modulus, namely,
the open porosity φ and the thermal characteristic length Λ′. Here, Cp is the ratio of specific,
and κ is the thermal conductivity of air.

Johnson-Champoux-Allard Lafarge model (JCAL)

In this model, the expression for the mass density ρ̃ is the same as in the JCA model given in
equation 3.12. The description of viscous effects is adopted from JKD [111]. The expression
for dynamic bulk modulus K̃ given by Champoux and Allard was modified by Lafarge et al.
[134], where the limitations in the low frequencies for thermal effects were highlighted. The
modified expression for K̃ is given in equation 3.14.

K̃(ω) =
γP0/φ

γ − (γ − 1)

1− j φκ

k′0Cpρ0ω

√
1 + j

4k′20Cpρ0ω

κΛ′2φ2

−1 (3.14)

It is noted that an additional parameter, the static thermal permeability k′0 is introduced in this
model.

Johnson-Champoux-Allard-Pride-Lafarge model (JCAPL)

Based on the JKD description of the viscous effects, the expression for the mass density was
modified by Pride et al. [196], accounting for pores with possible constrictions in between. In
JCAPL, the expression for calculating ρ̃ is as given in the following equations.
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ρ̃ =
ρ0α̃ (ω)

φ
(3.15)

α̃ (ω) = α∞

[
1 +

1

jω̄
F̃ (ω)

]
(3.16)

F̃ (ω) = 1− P + P

√
1 +

M

2P 2 jω̄ (3.17)

ω̄ =
ωρ0k0α∞

ηφ
(3.18)

M =
8k0α∞
φΛ2

(3.19)

P =
M

4

(
α0

α∞
− 1

) (3.20)

Pride et al. [196] modified the expressions describing thermal effects given by Champoux
and Allard [43]. Then the modifications of Lafarge et al. [134] to include the static thermal
permeability (k′0) parameter results in the combined expressions for calculating the dynamic
bulk modulus K̃ are as follows.

K̃ =
γP0

φ

1

β̃ (ω)
(3.21)

β̃ (ω) = γ − (γ − 1)

[
1 +

1

jω̄′
F̃ ′ (ω)

]−1

(3.22)

F̃ ′ (ω) = 1− P ′ + P ′
√

1 +
M ′

2P ′2
jω̄′ (3.23)

ω̄′ =
ωρ0CPk

′
0

κφ
(3.24)

M ′ =
8k′0
φΛ′2

(3.25)

P ′ =
M ′

4 (α′0 − 1)
(3.26)

This combined model is called the Johnson-Champoux-Allard-Pride-Lafarge (JCAPL) model.

Wilson model

In 1993, Wilson developed a propagation model on the basis that the viscous and thermal dissi-
pation of an acoustic wave propagating through a porous medium can be described as a relax-
ation process. Wilson’s model [254] uses four parameters. It is developed to match the middle
frequency behaviour where the viscous and thermal boundary layers are of the order of the pore
size. Whereas the models by Johnson, Koplik and Dashen for visco-inertial effects and models
by Champoux-Allard or Champoux-Allard-Lafarge for thermal effects are developed to match
the low and high-frequency behaviours of materials. The expression for complex mass density
and bulk modulus in Wilson’s model are given in equations 3.27 and 3.28.
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ρ̃(ω) = ρ∞
(1 + jωτvor)

1/2

(1 + jωτvor)1/2 − 1
(3.27)

K̃(ω) = K∞
(1 + jωτent)

1/2

(1 + jωτent)1/2 + γ − 1
(3.28)

where ρ∞, τvor, K∞ and τent are the four parameters of Wilson’s model and γ is the ratio of
specific heats.

3.3.2 Poroelastic materials

In the previous section, we have seen models which treat porous materials as equivalent fluids
that have dissipative behaviours. However, there exist several materials wherein, at specific
frequencies, such assumptions are no longer sufficient. Porous materials have a solid matrix
with interconnected pores filled with a fluid medium. Although other works which describe the
porous material acoustics taking into account the elasticity of the solid part exist, Biot theory
has been the most popular. Many useful developments on the method have been made and
validated with experiments [29, 11, 17]. Biot theory, in conjunction with other acoustic models,
improves the accuracy of predictions of the acoustic behaviour of a class of materials commonly
known as poroelastics or poroelastic materials.

Biot theory

The Biot theory considers that the solid part can deform elastically under the influence of forces.
Biot published two articles in 1956 [26, 27] on wave propagation in fluid-saturated porous
media. The theory was based on an elegant Lagrangian model where the stress-strain relations
are derived from the potential energy of deformation. Biot theory predicted the existence of a
slow compression wave (P2) in addition to the fast compression wave (P1) and the shear wave
(S). This prediction was later experimentally verified by Plona [194] in ultrasonic frequencies.
A reformulated version of the Biot expressions by Bolton et al. [29] is given in equation 3.29
and equation 3.30.

divσs + ω2(ρ11u+ ρ12U)− jωb(u−U) = 0 (3.29)

divσf + ω2(ρ12u+ ρ22U) + jωb(u−U) = 0 (3.30)

Here σs represents the partial stress tensor of the solid phase, σf represents the partial stress
tensor of the fluid phase, u is the vector field of solid displacement, U is the vector field of
fluid displacement, the parameter b denotes the effect of viscous coupling, and ρ11, ρ12 and ρ22

denote mass coefficients that account for the effects of nonuniform relative fluid flow through
pores between the solid and fluid phases.

3.4 Properties of porous media

At this point, it is worth providing an account of various properties used to characterise porous
materials in the models discussed in the previous section.
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3.4.1 Open porosity
Open porosity (φ), commonly called porosity, is the ratio of the volume of the fluid part to the
total volume of porous material as given in equation 3.31. It is a scalar quantity that has no
units. Open pores are those pores that are connected to the fluid outside the porous material
through the network of interconnected pores. The pores which are closed and have no fluid
transfer from outside are called closed pores and are considered part of the skeleton. The closed
pores do not allow fluid motion and do not play any significant role in an acoustic fluid motion.

φ =
Volume of fluid part

Total volume of porous sample
(3.31)

There are direct ways to measure open porosity. The simplest method involves saturating the
pores with water or other liquid and measuring the volume of the liquid required to saturate
the medium. For the measurement, the material is placed inside a container, and the liquid is
poured to fill the pores in the material. Open porosity may then be computed using equation
3.32.

φ =
Volume of porous sample - (Volume of container - Volume of liquid)

Volume of porous sample
(3.32)

The value of porosity for most fibrous materials and plastic foams is close to 1 (around 0.90–0.99)
[7].

3.4.2 Static airflow resistivity
Static airflow resistivity (σ) is the amount of pressure gradient required to create unit porous
volume velocity in the porous material, expressed by Darcy’s flow as given in equation 3.33.

σφ~v = −~∇p (3.33)

Here, φ is the open porosity, ~v is the acoustic particle velocity, and ~∇p is the pressure is the
gradient of pressure. The S.I. unit of σ is N·s·m−4.

3.4.3 High-frequency limit of the tortuosity
The high-frequency limit of tortuosity (α∞) is a measure of disorderliness in the path of the
fluid flow. It is the ratio of the mean square value of the velocity to the average velocity vector
of the fluid. For a straight inviscid flow through a duct, this value will be 1. The expression for
tortuosity in a volume V of a given porous material is given by equation 3.34. Here, V is the
total volume of the porous material system, v is the local velocity.

α∞ =

1

V

∫
V

v2dV(
1

V

∫
V

~vdV

)2 (3.34)

3.4.4 Viscous characteristic length
Viscous characteristic length is a scalar quantity denoted by Λ. As defined by Champoux and
Allard [43], it is numerically equal to twice the weighted average of squares of the velocities
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v(r) over the volume of the pore to the weighted average of squares of the velocities v(rw)
over the walls as described in equation 3.35.

Λ =

2

∫
V

|v(r)|2dV∫
A

|v(rw)|2dA
(3.35)

The velocities in the numerator and denominator v(r) and v(rw) are those of an inviscid (ideal)
fluid and thus do not depend on the characteristics of the fluid. The viscous characteristic length
can be estimated from the measurements of the dynamic density ρ(ω) of a porous medium with
prior knowledge of the static air flow resistivity and the open porosity. The method, introduced
by Olny, Panneton and Tran-van [177] and further described by Panneton and Only [184], allows
estimations of the high-frequency limit of the dynamic tortuosity and the viscous characteristic
length from the measurement of the dynamic mass density.

3.4.5 Thermal characteristic length

Thermal characteristic length is a scalar quantity denoted by Λ′. As defined by Champoux and
Allard [43], it is numerically equal to twice the ratio of volume to the average surface area of
the pores as given in equation 3.36. Here, V is the volume inside the pore and A is its surface
area.

Λ′ =

2

∫
V

dV∫
A

dA

(3.36)

This property is useful in describing the excess temperature in the pore and hence associated
with the thermal effects analogous to the viscous characteristic length. If the pores are spherical,
Λ′ is close to the value of the radius of the pore. The thermal characteristic length may be
obtained by 2D or 3D microstructure images.

3.4.6 Static thermal permeability

The static thermal permeability (commonly denoted as k′0) is a parameter that is used to describe
the thermal exchanges between the skeleton and saturating fluid of the porous material at low
frequencies, when the pore size is in the same order as the thermal boundary layer. As described
by Lafarge et al. [134], it is the lower asymptotic value of the dynamic thermal permeability
and is expressed as below.

k′0 = lim
ω→0

k′(ω) = lim
ω→0

φκτ

∂p/∂t
(3.37)

where, κ and τ are the thermal conductivity of air and excess temperature in the porous mate-
rial, respectively. Static thermal permeability (k′0) can be estimated using impedance tube or
ultrasonic measurements from dynamic bulk modulus K̃(ω) if the open porosity of the medium
(φ) is known, using the works of Olny and Panneton [177, 184].
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3.4.7 Static viscous tortuosity
The static viscous tortuosity (introduced in [174] as an inertial factor and usually denoted by
α0) is a parameter used to describe the pore fluid-structure interaction at low frequencies and
expressed as follows:

α0 =
mφ

ρf
=

1

V

∫
V

v2
0dV(

1

V

∫
V

~v0dV

)2 (3.38)

where m is the effective density of the pore space, ρf is the density of the pore fluid, v0 is the
relaxed velocity in the pore space and V is the porous volume. The lower limit of static viscous
tortuosity is 1. This parameter has been used in multi-periodic composites [137] to determine
the absorption coefficient, but experimental methods to find this parameter are not available in
the literature. Alternatively, Sadouki [210] proposed a least square fit technique to compute the
porosity and viscous tortuosity of a rigid porous material using reflected wave signals at low
frequencies (100–400 Hz).

3.4.8 Static thermal tortuosity
The thermal counterpart of the static viscous tortuosity is called static thermal tortuosity (com-
monly denoted by α′0), which is expressed as follows:

α′0 =

1

V

∫
V

τ 2
0 dV(

1

V

∫
V

τ0dV

)2 (3.39)

where τ0 is the relaxed excess temperature in the pore space and V is the porous volume. It
must be noted that α0 ≥ α′0 > 1 for any geometry of the pore. Further, α0 = α′0 in the case of
aligned cylindrical pores [196].

3.5 Geometric modelling methods
In the previous section, the available approaches to model acoustic materials were discussed.
Geometric modelling methods were briefly mentioned in the introduction section of this chapter.
In the following, a more detailed account is provided.

3.5.1 Transfer matrix method (TMM)
The general principle behind transfer matrix methods is to establish a relationship between an
input state of a system to its output state after being subject to a process by using a transfer
matrix. Each state can have a set of parameters which are usually represented in the form of a
vector s[0], and the transfer matrix is a square matrix of the same size. The series of processes
can be abstracted within the transfer matrices, and the state after a number of such processes
can be written as in equation 3.40. Given one of the states, it is then possible to retrieve all
other states if the transfer matrices are known. If two states are known, then the transfer matrix
corresponding to the states can be constructed by solving the inverse problem. For this method
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Figure 3.1: A schematic of the transfer matrix method for a multilayered system composed of a series of
fluid layers.

to work, the assumption of linear relationship between the states must be valid. Once this is
ensured, TMM provides a high-level abstraction to an otherwise complex problem.

s[n] = [T](n) . . . [T](2)[T](1)s[0] (3.40)

Transfer matrix methods are widely used in many fields such as optics [31], wave propaga-
tion in homogeneous media [212], muffler acoustics [167] etc. For multilayered porous me-
dia, the transfer matrix method has been extended by a series of researchers since the 1990s
[8, 245], and since then, it has been successfully applied by researchers to many applications
[224, 136, 246, 186]. Chapter 11 in Allard and Atalla’s book [7] provides a compilation of
transfer matrices for fluid, solid and porous media. The state of plane waves in a classical fluid
medium can be represented by just two variables, say, acoustic pressure p and velocity u, since
fluids propagate only longitudinal waves. The transfer matrix for a fluid layer is hence a 2 × 2
matrix. For a series of fluid layers, the equations can then be represented using the transfer
matrix expression, as shown in Figure 3.1. Whereas, for solid and porous media, compressional
and shear waves need to be taken into account. Consequently, the matrix sizes are larger for
solid and poroelastic media. For interfaces between dissimilar layers, the state variables are not
readily compatible. To link the state variables among fluid, solid and porous layers, the transfer
matrices would need to be rectangular. To avoid this, constraints can be used on the interface
state variables, and a global transfer matrix can be assembled for the entire multilayer system.
This is discussed in detail in Allard & Atalla’s book and is not elaborated here. For the purposes
of this research, abstracting the computations involved helps in understanding the optimisation
problem structure. Mainly, it should be noted that the computation involves the assembly of the
global transfer matrix for the multilayered system and solving the system of linear equations.
The size of the global matrix is in the order of the number of layers. The book also outlines
the procedure to compute the specific impedances and the acoustic indicator for diffused field
acoustic sources. The method has been validated for several multilayered systems with experi-
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ments by many researchers. Due to the simplicity and the well-documented accuracy of transfer
matrix methods to model the impedance predictions, they are the most preferred methods used
by researchers working on acoustic porous media. These procedures for several acoustic ma-
terial models are also implemented by Matelys Research Lab in a commercial software named
AlphaCell.

3.5.2 Finite element method (FEM)

As briefly described before, the finite element method is an approach to find numerical solutions
to partial differential equations (PDE) in complex geometries. The main idea is to discretise the
real-world system with intricate shapes into a finite number of smaller elements of standard
shapes such as triangles, quadrilaterals, tetrahedrons etc. An interpolation function for the field
variable of the PDE is assumed across these finite geometries. The differential equation of the
problem is rewritten in a weak form for these known geometries in the form of element ma-
trix equations. In weak formulations, instead of setting the differential equation to zero at all
points within the element, the residual or the error of the differential equation is set to zero
and solved. This formulation essentially facilitates the conversion of the PDE into matrix equa-
tions, allowing the use of linear algebra to solve the problem. These element matrix equations
are then combined into large global matrix equations to satisfy the field value constraint at the
interface of the elements. By solving the linear algebra problem, a weak solution to the PDE
is obtained, which may be sufficient for engineering practice. The method can also be easily
extended to include a variety of complicated material behaviours such as non-linearities, plas-
ticity, and visco-elasticity in their finite elements. Although the method has its origins in the
1940s [105, 57], it was formalised after the 1960s by Zienkiewicz and colleagues [277]. With
the advent of powerful computers in the 1990s, the use of FEM surged, and previously unsolv-
able problems were being solved. The field of FEM has been extended to all possible domains,
including acoustics.

Biot laid the theoretical foundations for modelling wave propagation in porous materials [26,
27] in the 1960s. Up to the 1990s, many researchers focussed on deriving numerical for-
mulations to solve porous media problems. The initial models included equivalent fluid ap-
proaches models [59], and later sophisticated models using the Biot theory were developed
[116, 182, 183] involving the classical (u, U) formulation, which solves for both the displace-
ment of the porous skeleton(u) and the displacement of the fluid part (U). Göransson et al. [91]
proposed a simpler (u, p) formulation which solves for the pressure instead of displacements in
the fluid part, reducing the number of equations to be solved. Atalla et al. [11] included the
strain couplings between the solid and the fluid phases and reformulated them into the exact
(u, p) formulation. Bécot and Jaouen [17] have recently presented a way to account for the
elastic frame effects in porous materials modelled using the equivalent fluid model. These new
and improved finite element models have been rigorously validated over the years with experi-
mental results on multilayered systems.

Figure 3.2 shows a schematic of a car cavity and its discretisation into smaller triangular and
quadrilateral elements for illustration. While the system shown uses either air or poroelastic
foam, the existing finite element formulations can also model elastic materials. By solving
for the pressure fields of the fluid part and the displacements of the solid part using the (u, p)
formulations, one can estimate the amount of sound energy absorbed by the foam, the sound
pressure levels at various points within the car cavity, and further, optimise the placement of
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Figure 3.2: Finite element discretisation of a schematic car cabin.

additional sound-absorbing materials as per needs. Also, note that the engine noise in this ex-
ample is abstracted into the dashboard surface, wherein the acoustic loads are subjected, and
the other walls are assumed to be rigid. The abstraction may be done using measurements or
solving for another finite element model considering the engine cavity alone. FEM also allows
modelling the engine cavity in this example by including the elastic/poroelastic properties of the
dashboard. These procedures may be easily extended to three dimensions to model a real-world
car cavity or aircraft passenger cabin, wherein the properties of each surface and material can
be chosen. Thus, we illustrate the geometric modelling capabilities of finite element tools.

When using finite element methods, the accuracy of the solutions and whether the modelling
procedure followed sufficiently represents the real system is often a question. A general guide-
line is to use finer meshes with smaller element sizes and limit the aspect ratio of the smaller
finite elements to ensure accuracy. To model a real-world system, it is necessary to ensure that
loads, boundary conditions and material properties are included accurately.

Governing differential equations to numerical matrix equations: The physics of most en-
gineering problems can be represented in the form of governing differential equations with
boundary conditions. Since the geometries are complex, analytical solutions are not available
in most cases. The finite element method provides a way to convert these differential equations
into matrix equations that can be solved to find numerical solutions. The matrix sizes are typi-
cally very large and of the order of the number of nodes (vertices or corner points of an element)
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of the finite element model.

Smaller the elements –higher the accuracy: The accuracy of a finite element model is typ-
ically better if the discretisation is fine. However, finer mesh also means increased matrix sizes.
Hence, the choice of mesh size is a trade-off between accuracy and speed. There also exists a
minimum acceptable level of discretisation for each problem. Whereas when considering topol-
ogy optimisation, the finer the mesh, the higher are the number of design variables. The mesh
size also governs the possible shapes that can be explored by the optimisation algorithm. This
is called mesh dependence in topology optimisation [221].

Another commonly used geometrical modelling method is the boundary element method (BEM).
BEM has similarities to FEM, with the key difference being that instead of modelling the bulk
of the system, only the boundary is discretised and modelled. This can save a significant amount
of computational effort in modelling such systems, particularly those that involve Laplace-like
equations [52].

3.6 Conclusions
The points to takeaway are as follows:

1. Porous materials are those that contain fluid-filled pores in a solid matrix. Of these pores,
only the open pores contribute to sound absorption, and the interconnected fluid-filled
volume is called the fluid part, while the solid matrix along with closed pores is called the
solid part.

2. Researchers have identified various material properties such as open porosity, static air-
flow resistivity, tortuosity, etc., which affect the propagation of sound in porous media.

3. The behaviour of some porous materials can be approximated by considering the solid
part to be rigid by using motionless skeleton models such as DBM, JCA, JCAL etc.
These equivalent fluid models can be used with the transfer matrix method to find sound
absorption in layered sound absorbing systems.

4. Materials where the solid part is sufficiently elastic that the combined motion of solid and
fluid parts influences the absorption of sound are referred to as poroelastic materials. Biot
theories provide a framework to model the propagation of sound in poroelastic media.

5. Biot’s governing equations have been formulated in the context of finite element method
which allows modelling intricate geometries of poroelastic materials. Such models can
be used to compute sound absorption in a given poroelastic shape to be used in topology
optimisation.

6. The presence of macroscale air cavities or other elastic structures affects the sound prop-
agation behaviour in these materials, resulting in changes in absorption properties. These
are often called resonating structures.

7. Given the geometric shape and the material properties, the resulting sound absorption
of poroelastics with mesoscale air cavities can be computed by using a combined Biot-
Helmholtz approach.



Chapter 4

Topology optimisation literature

This chapter will introduce the concept of topology optimisation, discuss multiple ways to for-
mulate the problem and provide an overview of the various application domains it has been
extended to. Further, its use in acoustic porous material design is examined through a review
of the existing literature. The current state of the art and gaps in knowledge with regard to
optimisation aspects are discussed. It will be evident that only a few previous publications have
focussed on studying optimisation strategies in acoustic topology optimisation. Towards the
end, a list of the important points is provided to facilitate a quick recap.

4.1 Introduction
Historically, architects and engineers have determined the shapes of mechanical and civil en-
gineering structures through trial and error and incremental improvements to older designs.
Romans invented the arch bridge around 1300 BC by finding a way to assemble stones that
only resulted in compression. These arch designs have quite literally stood the test of time.
The industrial revolution allowed the production of large quantities of steel which crucially can
withstand tension, paving the way for steel-reinforced concrete structures that are common-
place in today’s infrastructure. The invention of faster computers paved the way for engineers
to develop tools such as finite element methods in the 1960s that allowed analysing engineering
structures and computing stress fields. New designs were obtained by manually redistributing
materials with the knowledge of stress fields. Currently, additive manufacturing technologies
such as 3D printing and automated robots allow any shape to be manufactured with fewer limi-
tations than before. Around the 1980s–1990s, early foundations of topology optimisation were
laid resulting in a remarkable innovation that can fully automate the structural design.

Topology optimisation is the concept of optimising the shapes and topologies of mechanical
structures to optimise a structural performance indicator. In this thesis, topology will be re-
ferred to in the context of mechanical structures, which, in essence, is the number of holes in a
structure and not the network topology more familiar in communication sciences. On the other
hand, shape optimisation is the process of optimising the boundary of the structure, keeping the
topology or the number of holes fixed. An illustration is provided in Figure 4.1. The concept
of optimising both shape and topology simultaneously was first introduced by Bendsøe and
Kikuchi [20, 19] in the 1990s. Topology optimisation has since then been recognised as a field
of vast potential, having been extended to a plethora of problem domains involving material and
resource distribution problems.

37
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(a) (b)

Figure 4.1: (a) Shapes with the same topology (b) Shapes with different topologies.

Figure 4.2: Optimal material distribution for constructing a bridge across a river. The triangles indicate
the location of the supports, the arrows indicate the location and direction of loads. The optimal shape
was generated using an app created by the Technical University of Denmark’s topology optimisation
group [1].

Topology optimisation can be thought of as a material distribution problem where a limited
amount of material is available, and the optimal shape of the material in a given region needs
to be found. This problem arises in many contexts and the most popular and well-studied prob-
lem is compliance minimisation. Compliance is the measure of flexibility of a structure, and
mathematically, it is the inverse of stiffness. Let’s consider that a certain amount of material is
provided to build a bridge across a river which needs to support the weight of the traffic and
other loads such as the wind. Topology optimisation aims to find the optimal shape for con-
structing the bridge with maximum stiffness.

Figure 4.2 shows the optimal shape and topology for given loads and supports distributed mim-
icking that of a bridge obtained using a mobile app created by the TU Denmark group [1]. Note
that this shape resembles a typical arch structure. Romans invented arch bridges around 1300
BC, and today, hand-held devices can reinvent this technology in a few seconds without any
prior knowledge. One can consider this achievement to be akin to the AlphaZero AI achieving
superhuman Chess skill level in under 24 hours of training with only the rules of the game and
self play [223]. Such material distribution problems arise in many engineering domains and they
are increasingly making use of topology optimisation. Topology optimisation has also found
quick adaptation by industries due to its immense potential benefit. Many commercial finite
element software have now implemented variants of the solid isotropic material with penalisa-
tion (SIMP) algorithm for rapid and automated generation of mechanical shapes. One study
estimates that Airbus’ use of topology optimisation for designing lightweight components has
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Table 4.1: Topology optimisation applications.

S.No Application Examples
1. Optimal distribution of materials for maximum structural stiffness

or minimum compliance.
[19, 256, 133]

2. Optimal distribution of heat sink materials (fins or radiators) to dis-
sipate heat in applications such as IC engines, computer processors,
heat exchangers etc.

[159, 98, 65]

3. Optimal distribution of front metallisation patterns in solar panels
to carry away electrons efficiently while not blocking the light.

[97]

4. Material distribution for automobile crashworthiness. [78]
5. Compliant mechanisms that need to allow flexible motion of struc-

tures, such as micromechanical switches and other mechanisms.
[216]

6. Vibration and eigenfrequency optimisation. [157, 270]
7. Optimal shapes of photonic crystal waveguides to significantly en-

hance the functionality.
[30, 109]

8. Optimal shapes of acoustic materials such as sound-absorbing ma-
terials, rigid scattering materials etc. to maximise the acoustic per-
formance in applications such as mufflers, sound barriers, car cav-
ities, room and auditoriums, etc.

[140, 76, 268]

lead to weight savings in the order of 1000 kg for each A380 aircraft [133]. This is a significant
achievement in terms of fuel cost saved, and reiterates the importance of studying this topic.
Moreover, topology optimisation can be extended to other domains where a shape or the distri-
bution of materials or resources needs to be optimised. A few example problem domains where
topology optimisation has been applied to is given in Table 4.1.

In this chapter, the topology optimisation problem is introduced with a focus on the compliance
minimisation problem (Section 4.2). Some of the popular optimisation strategies in use are
discussed in 4.2.3. Extension to the acoustics domain is elaborated, and some gaps in knowledge
are identified in section 4.3. Then a summary of takeaways is provided in section 4.4.

4.2 The compliance minimisation problem
In this section, we will explore the compliance minimisation problem in more detail since the
pioneering and progressing works in topology optimisation literature deal mainly with this prob-
lem domain.

4.2.1 What is compliance?
Compliance of a structure is a quantitative measure of its flexibility. Low compliance is one
of the desirable qualities of robust mechanical structures. The compliance of a small bar of a
material fixed at one end is the amount of displacement produced by a unit force applied at its
other end. A piece of solid not connected to any support can undergo free-body motion and
thus has infinite compliance. A perfectly rigid material fixed to a support has zero compliance.
Although there are other parameters such as stresses, fatigue, endurance and crack propaga-



40 Chapter 4. Topology optimisation literature

tion, which are of practical relevance in engineering, compliance is the performance indicator
commonly used in topology optimisation, as it is one of the quantities whose gradients can be
computed relatively quickly using adjoint-like methods [34].

To compute compliance of a real structure, one can model the structure by discretising it into
finite elements (see 3.5.2), subjecting the model to loads and boundary conditions, and com-
puting the displacements at the nodes. By describing the material behaviour using constitutive
modelling, one can write the system matrix equations in the form of [K]{u} = {f}, where
[K] is the global structural stiffness matrix, {u} is the node displacement vector, and {f} is
the external force vector. The global stiffness matrix is assembled by merging element stiffness
matrices [Ke] which describe the material at each element. The size of [Ke] is given by the
product of number of nodes per element and the number of degrees of freedom per node. The
nodes per element depend on the element geometry i.e., 3 for triangular elements, 4 for quadri-
lateral elements etc. The number of degrees of freedom refers to the number of ways in which
the state of a node can be represented. In a two dimensional problem, a node can have two
degrees of freedom corresponding to the horizontal and vertical coordinate locations. Thus,
for a two-dimensional 4-noded quadrilateral element, the size of the element stiffness matrix
would be 8 × 8. After assembling the element matrices into the global matrix, the system of
linear equations can be solved to find {u}. With the nodal displacements, compliance can be
computed using the following equation given by Andreassen et al. [10].

c = {u}T [K]{u} (4.1)

The size of the matrices correspond to the number of nodes in the finite-element discretisation.
Thus, if the discretisation is fine, the matrix sizes will become large, requiring more computa-
tional time to solve the equations and vice versa.

4.2.2 Problem formulation
Consider a structure as shown in Figure 4.3 demarcated into a fixed domain (white and black)
and a design domain (grid area). The design domain (Ω) is the region where the shape and
topology have to be optimised while the fixed domain is kept unchanged. A generic topology
optimisation (TO) is to find the optimal assignment of material properties at every point in the
design domain such that a desired structural parameter is optimised [19]. When the structure
is discretised into finite elements, each element in the design domain is assigned materials.
Usually, the material choice is binary, but multi-material topology optimisation is also being
studied [279]. In the standard compliance minimisation problem, the two material choices
are solid (x = 1) and void (x = 0). The volume fraction of the solid in the design is typically
limited by an inequality constraint (Vf ). This problem is formulated mathematically in equation
4.2.

min
x

c(x) (4.2)

subject to:
1

N

N∑
i=1

xi ≤ Vf

x : xi ∈ {0, 1}

The optimisation problem is to find the assignments xi for each element in the design domain
such that the compliance of the structure c is minimised, while limiting the maximum solid
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Figure 4.3: Schematic of a generic compliance minimisation topology optimisation problem. Black
colours correspond to solid material and white corresponds to void (no material). Design domain
marked by the grid pattern is where one needs to optimally assign solid or void such that a structural
parameter is optimised.

volume fraction. Here N is the total number of finite elements in the design domain. It is worth
noting that enumerating all solutions is impractical, even for small problem instances in this
domain, as the search space size (2N ) grows immensely as N increases.

The presence or absence of material in a given finite element is a binary choice. The problem
posed in 4.2 is hence combinatorial and, in general, difficult to solve. More often than not, the
problem is relaxed to the continuous domain by allowing intermediate materials between solid
and void to be filled. Rewriting the problem with xi ∈ {0, 1} replaced by the continuous design
variable ρi ∈ [0, 1], we have:

min
ρ

c(ρ) : RN → R (4.3)

subject to:
1

N

N∑
i=1

xi ≤ Vf

ρ : ρi ∈ [0, 1]

The above continuous relaxation for two material compliance minimisation is commonly called
density-based topology optimisation since the design variables can be thought of as the density
of the fictitious intermediate material or as the thickness of a 2D plate. To model the system, the
material properties for intermediate materials can be given by a material interpolation scheme:

Ei = Evoid + ρpi (Esolid − Evoid)
where Evoid and Esolid are the elastic moduli of void and solid respectively, and Ei gives the
elastic modulus to be assigned to the ith element. If ρi is 0, then the element i would be assigned
an elastic modulus of 0, and if ρi is 1, the element i would be assigned the elastic modulus of
the solid material.

4.2.3 Topology optimisation methods
Solid isotropic method with penalisation (SIMP)

SIMP is the most popular topology optimisation method. In this method, the discrete material
distribution problem is converted to a continuous problem by using a power-law interpolation



42 Chapter 4. Topology optimisation literature

scheme. This is one of the pioneering approaches proposed by Bendsøe and Kikuchi [20, 19].

Sigmund popularised the strategy for compliance minimisation through his 99-line educational
Matlab code in 2001 [217]. Publishing such educational examples of topology optimisation
strategies and applications has been quite common in literature. This educational code had a
far-reaching impact in the research community, especially for beginners. Then, an update to
the code was published by Andreassen et al. [10]. More recently, Ferrari and Sigmund [80]
published an even more efficient version which also includes its extension to three-dimensional
problems. Recently Zhou et al. [274] published complementary lecture notes to elaborate on
some of the less well-known aspects of the optimality criteria method used in Andreassen et al.
[10] and others. Wang et al. [250] present a comprehensive review of such Matlab codes in
literature.

Instead of a linear relaxation, the intermediate material properties are arrived at using gener-
alised interpolation schemes like the SIMP scheme [22] (not to be confused with the SIMP
approach). In the SIMP scheme, interpolation is done using a penalty exponent Ei = Evoid +
ρpi (Esolid − Evoid) where p > 1 , usually p ≥ 3. The reasoning stated is that unless ρi is 1,
the benefit of the solid will be penalized (say ρi = 0.5, p = 2 then Ei = 0.25Esolid). This is
supposedly to penalise intermediate materials which have ρi ∈ (0, 1). A SIMP ‘approach’, on
the other hand, is to optimise a topology optimisation problem by starting from an initial guess,
using an interpolation scheme (with p ≥ 1) for intermediate materials, computing derivatives
of the objective function with respect to the design variables ( dc

dρi
) and making moves in the

gradient direction using an optimiser. The optimisers are gradient-based move operators, some
examples of which are the optimality criteria method [21] and the method of moving asymp-
totes [238].

Bidirectional evolutionary structural optimisation (BESO)

Not to be confused with evolutionary optimisation, evolutionary structural optimisation (ESO)
is a constructive heuristic for compliance minimisation topology optimisation. This method was
first introduced by Xie and Steven [256, 257]. It is one of the simplest and most intuitive strate-
gies for topology optimisation. The initially introduced version, ESO, uses a material removal
heuristic that starts from a fully-filled design domain and incrementally removes material from
locations where the stresses are low. This was later extended to include bi-directional moves
wherein materials can also be added. The bi-directional ESO, often abbreviated as BESO, is
the second most popular topology optimisation strategy. ESO and BESO require the use of
problem-specific information, namely the stress fields, to make move operations. For readers
new to engineering, stress can be contrived as a measure of force per unit area. Materials tend
to fail (break or deform permanently) when stress exceeds a certain limit. The general idea is
to remove materials where they are not needed (low-stress regions) and add materials where
they are needed (high-stress regions). BESO can be extended easily to other domains if a field
variable akin to stress can be established. In many cases, the sensitivities of the fitness function
to the design variables are computed by researchers for various problem domains, and these
gradients can be used to make the moves.
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Level set method

The level-set topology optimisation method uses a higher-dimensional scalar field described in
the design domain space and uses a threshold value of this scalar field to represent the presence
or absence of material at a given point. Some of the first publications of this work were by
Allaire et al. [5, 6, 4] and Wang et al. [251].

Blackbox metaheuristics

Many researchers have studied metaheuristics on the topology optimisation problems. An ex-
tensive review of such blackbox topology optimisation algorithms may be found in Guirguis et
al. [94]. Blackbox algorithms are those that do not use any problem information other than
fitness. Such blackbox algorithms include metaheuristics such as genetic algorithms, covari-
ance matrix-adaptation evolution strategy, simulated annealing etc. Metaheuristics are known
to have notably poor convergence rates for topology optimisation algorithms, often requiring
many function evaluations before a reasonably fit shape can be obtained. Research focus has
also been devoted to improving the performance of such metaheuristics. Some researchers also
have been critical of using non-gradient algorithms for compliance minimisation as gradients
are fast to compute. A full research article dedicated to this issue has been published by Sig-
mund [219] and is worth highlighting.

Moving morphable components-based topology optimisation

Moving morphable components (MMC) [96] is an alternative representation scheme for topol-
ogy optimisation, wherein the number of design variables can be substantially reduced. The
key idea is to assume that the topology and shape are given by a union of small components
of known shapes and optimising the size, shape and dimensions of these components. Such
methods are often used to speed up metaheuristic algorithms [205]. MMC is a topic of interest
to topology optimisation researchers, and a subfield has emerged around this technique with
numerous publications [123].

4.3 Extension to acoustic problem domains
It is common knowledge that the acoustics of a room can be improved by introducing intru-
sions/niches or projections on the reflecting walls. The acoustic performance of porous materi-
als also depends on their geometric shape. The shape of porous absorbers can be optimised to
obtain better performance without adding to the weight or material costs. Numerous previous
works have provided solutions to shape optimisation in porous materials. Acoustic testing is
commonly done in anechoic (meaning without echo) chambers which typically feature large
wedge-shaped foams that absorb and scatter almost all of the impinging sound waves. Be-
ranek et al. [24] in 1946 published a seminal work on the experimental assessment of different
acoustical foam shape designs to be used in anechoic chambers. They showed that a linear
wedge shape is the best among other contemporary designs [178, 162]. Through extensive ex-
periments, different dimensions of the wedge were tested, and a reference chart for the cut-off
frequencies for different geometrical parameters of the linear wedge shape was obtained. The
absorption curve of a linear wedge shape typically is low at low frequencies and increases after
a certain cut-off frequency and stays nearly flat at higher frequencies. The cut-off frequencies
define the frequencies above which more than 90% of the incident sound pressure of normal
incidence is absorbed. While the charts given in [24] are for glasswool, those of Koidan et al.
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[127] are generalised for more materials. These charts have mainly been obtained by extensive
experiments which need large impedance tubes for low frequencies.

Boutin and colleagues [33, 176, 213] have shown that porous materials with mesoscale pores
(shapes cut out from the materials) can be tuned to have improved acoustic performance at low
frequencies than uncut specimens. These materials are sometimes referred to as double poros-
ity materials due to the presence of networks of multiple interconnected pores with different
characteristic sizes. Bécot et al. [18] have successfully applied the double porosity theory to
non-planar shapes, including an anechoic wedge.

In Lee et al. [140], a shape optimisation for the foams used in anechoic chambers was per-
formed. The authors consider the Biot theory for the poroelastic foam and Helmholtz equation
for the air. An interpolation scheme is proposed, which uses an interpolation parameter χe in
a unified model. The technique involves setting χe = 0 for air and χe = 1 for the porous
medium. The unified model was validated for tested foam shapes, including and other than the
wedge shape. Then an optimisation scheme is used to find better foam shapes under certain
constraints. They consider two objectives and optimise the weighted sum. The first objective
is to minimize the absorption and the second is to minimise χe(1 − χe) from χe ∈ [0, 1]. The
second objective will require χe to be set to 0 or 1. However, this can be improved by choosing
discrete values for χe from either 0 or 1, and removing the second objective. For discrete op-
timisation, metaheuristic algorithms such as genetic algorithm [102] and simulated annealing
[125] could be used effectively.

Yoon [266] proposed a new acoustic topology optimisation (ATO) framework for fibrous ma-
terials using the Delany Bazely model [70]. With the use of a SIMP interpolation scheme, the
acoustic topology optimisation of both the fibrous material and the interior solid structure was
performed. A numerical example of a simple expansion muffler was considered, and the opti-
mal shape were found.

Wadbro et al. [249] performed shape optimisation of an acoustical horn for maximising sound
transmission using a gradient-based method of moving asymptotes [238]. Other relevant works,
for example, Duda [75] are also available for shape optimisation in acoustic foam applications.

Xu et al. [258] used Matlab evolutionary optimisation toolbox to optimise a flat three-layered
porous material that achieves close to the performance of linear wedge shape. In this case study,
some pursuits of acoustic researchers to find optimal shapes for maximal absorption coefficient
in wedges are provided. The motivation is to arrive at better foam shapes for different applica-
tions, taking the anechoic chamber wedge as a benchmark. This presents a venture for further
research in devising generalised algorithms for porous shape optimisation. The contributions
foreseen from No2Noise include testing different optimisation algorithms which are efficient in
finding the best foam shape in benchmark applications such as anechoic wedge shape optimisa-
tion. The better-performing algorithms could then be deployed for obtaining optimal shapes in
different applications.

Many researchers have published applications of topology optimisation on acoustic porous ma-
terial problems in the last two decades. This could be achieved due to the fact that both porous
media modelling and structural topology optimisation matured around the 2000s. A review
of the literature indicates that acoustic topology optimisation is only an emerging field: there
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have only been about 100 publications with acoustic topology optimisation in their title or ab-
stract in Web of science search. On the other hand, the total number of topology optimisation
publications vastly outnumbers this, with around 10,000 articles (Web of science search as of
May 2020). Out of acoustic topology optimisation articles, a brief account of about thirty more
relevant articles is listed in Table 4.2.

Table 4.2: A comprehensive list of relevant acoustic topology optimisation publications.

No. Publication Year Description Method
1. Wadbro and

Berggren [249]
2006 Acoustic horns: Optimising acoustic horns to

minimise the reflection coefficient
SIMP

2. Lee et al. [140] 2008 Anechoic chamber foam shape optimisation SIMP
3. Dühring et al. [76] 2008 Room ceiling foam shape optimisation SIMP
4. Lee et al. [142] 2009 Distribution of rigid material in mufflers SIMP
5. Yamamoto et al.

[261]
2009 Multimaterial topology optimisation of a

soundproof panel
SIMP

6. Kook et al. [130] 2013 Car cavity SIMP
7. Yoon [266] 2013 Mufflers with porous and rigid materials using

Delany-Bazley-Miki model
SIMP

8. Isakari et al. [106] 2014 Optimal placement of scatterers in a rectangular
cavity

Levelset

9. Lee et al. [138] 2015 Distribution of air, poroelastic and rigid mate-
rial in a muffler

SIMP

10. Yedeg et al. [263] 2016 Mufflers SIMP
11. Kook et al. [129] 2017 Periodic microstructure-enhanced loss factor

using acoustic-structure interaction
SIMP

12. Zhao et al. [271] 2017 Sound barriers using porous materials and
boundary element method

SIMP

13. Chen et al. [46] 2018 Porous material sound barriers using boundary
element method

SIMP

14. Azevedo et al.
[14]

2018 Porous material in an impedance tube BESO

15. Noguchi et al.
[173]

2018 Negative bulk modulus acoustic metamaterial Levelset

16. Dilgen et al. [71] 2019 Impedance tube Levelset
17. Yoon et al. [268] 2020 Impedance tube by distributing porous and rigid

materials
SIMP

18. Gonçalves et al.
[90]

2020 Identification problem: Synthesise input from
the output

SIMP

19. Wang et al. [252] 2020 Component mode synthesis (Craig-Bampton)
for vibroacoustic topology optimisation

BESO

20. Chen et al. [47] 2020 An approach for exterior acoustic distribution
of sound-absorbing materials using the bound-
ary element method with isogeometric analysis-
based basis functions

SIMP

21. Khajah et al. [121] 2021 Shape optimisation of horn using scaled bound-
ary finite element modelling

Differential
evolution
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22. Li, Tahar and Sui
[146]

2021 Sound transmission loss of open acoustic bar-
rier

Genetic
algorithm

23. Qin et al. [197] 2021 Robust topology optimisation considering
acoustic sources with stochastic frequencies

Levelset

24. Gao et al. [84] 2021 Acoustic phononic structures using level set
with boundary element method

Levelset

25. Gao et al. [104] 2021 Acoustic phononic structures using level set
with boundary element method

Levelset

26. Yu et al. [269] 2021 Optimal distribution of acoustic material SIMP
27. Chen et al. [49] 2022 Sound absorbing materials using isogeometric

BEM
SIMP

28. Qin et al. [198] 2022 Extension of the robust topology optimisation
method to viscoelastic structures

Levelset

29. Dilgen et al. [72] 2022 Three dimensional hearing aid vibroacoustic
topology optimisation

SIMP

30. Chen et al. [48] 2022 Bi-material topology optimisation coupled
structural acoustic system using FEM-BEM

SIMP

31. Pereira et al. [189] 2022 Multi-constrained BESO method for two acous-
tic systems respectively with rigid material and
poroelastic material

BESO

32. Kim and Yoon
[123]

2022 Moving morphable components in neural net-
work based design

SIMP,
MMC

33. Guo et al. [95] 2022 Acoustic metasurface for reflected wavefront
modulation

Levelset

Horns: In one of the earliest studies, Wadbro et al. [249] applied topology optimisation for
distributing sound-hard materials in front of a regular triangular horn to optimise the reflection
coefficient of acoustic horns. Acoustic horns are one-dimensional ducts with an increasing area
that can amplify sound energy radiated from vibrating surfaces placed in its throat. They are
typically used in old loudspeakers, air horns etc. The mechanism behind this device is to in-
crease the specific impedance at the vibrating surface such that a given vibrational velocity of
the sound-producing membrane transmits more acoustic energy. The gradually increasing area
of a horn provides impedance matching so that reflections caused by sudden area changes are
avoided. By optimising the shape of rigid scattering materials using topology optimisation, the
performance of the horn can be improved. The objective function is to minimise the reflection
coefficient at a specific frequency. The system was modelled using the finite element method
to compute the fitness. Khajah et al. [121] have used the differential evolution metaheuristic to
study the shape of acoustic horns.

Impedance tubes: Impedance tubes are often used to characterise and measure acoustic ma-
terials. They are also used to test poroelastic shapes experimentally to obtain their absorption
characteristics and as a representative canonical system that can be used for studying topology
optimisation. One can consider the impedance tube system as a template or a unit cell which is
a constituent part of an application. Several topology optimisation studies have been conducted
on impedance tubes. Notably, one of the first such studies for poroelastic materials is Lee et al.
[140], who presented an application of a SIMP algorithm to optimise the topology and shape
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of anechoic foam wedges. The material distributed was a poroelastic modelled using a unified
Biot-Helmholtz modelling approach. This unified approach considers air as a poroelastic ma-
terial with negligible solid part elastic modulus. This approach was further verified with the
conventional mixed model using Helmholtz equations for air and Biot equations for poroelastic
material with the necessary interface conditions. The goal of this study was to improve the low-
frequency performance of anechoic chamber wedges. Hence, sound absorption under a broad
frequency range from 100 to 1500 Hz was considered as the objective function. However, the
material optimised was a fictitious material with a high tortuosity of 7.8, which is uncommon in
real materials. Nevertheless, the study set forth a valuable precedent for a research of this kind.
This modelling approach has been widely adopted in the current work for computing sound
absorption and its gradients in chapters 6 and 7. Further, many of the applications listed in Ta-
ble 4.2 have been studied on impedance tube-like systems with topics including multi-material
topology optimisation [138] and total sound absorption at a single target frequency [268] using
porous and rigid materials.

Mufflers: Mufflers are sound attenuation devices that are typically fitted to automotive ex-
haust. The function of a muffler is to allow exhaust gases to flow out, while preventing the high
amplitude combustion noise from reaching the environment. A primitive muffler design is a
simple expansion chamber placed in the exhaust duct. When sound waves from the engine enter
the expansion chamber, depending on the frequency and the area change in the expansion cham-
ber, a part of the sound energy is reflected, and a part is transmitted. Transmission loss through
a muffler is a frequency-dependent quantity which refers to the ratio of the energy transmitted
to the total incident energy at that frequency. A high transmission loss across a wide range of
frequencies is indicative of good performance. Transmission loss depends on the area ratios,
the shape of the expansion chamber and the material inside it. Often, perforated plates, porous
materials or rigid scatterers are placed to alter and improve the transmission loss [167]. This
is achieved typically by an expansion chamber. Before 2009, optimising muffler designs did
not involve topology optimisation, with some of them using metaheuristic techniques such as
genetic algorithms [44, 45, 264]. In 2009, Lee and Kim [143] applied topology optimisation for
muffler design using the SIMP approach. In 2022, Qin et al. [198] extended their robust topol-
ogy optimisation method to design viscoelastic structures that involve acoustic-elastodynamic
coupling.

Sound barriers: Sound barriers are typically high-rise walls adjacent to highways that pre-
vent road noise from entering residential and other protected biodiversity areas. The cross-
sectional shape and material used for the construction of sound barriers along the long portions
of roadways can contribute to high economic costs to the public. Topology optimisation has
been extended to sound barrier design by several researchers. Zhao et al. [271] used topology
optimisation to distribute sound absorbing material within a sound barrier using a boundary el-
ement method to model the system. Chen et al. [46] used an isogeometric boundary element
method to optimise the topology of a sound barrier of a different shape. They extended the
isogeometric analysis method further for exterior acoustic distributions [47, 48, 49].

Car or room cavities A cavity in acoustics is a connected region of air in a structure. The
passenger cabin in a car or an aircraft or rooms in buildings must not exceed specific noise
levels to ensure comfort. Placing sound-absorbing foams in these cavities is a common way to
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reduce noise levels. However, finding the optimal locations to place these foams is a challenge.
Also, based on the shapes of these foams, the sound level distribution in the cavity will vary.
Topology optimisation is a naturally suited tool to simultaneously find the shape and placement
of foams in such cavities. One of the notable initial works is by Düring et al. [76], wherein a
cuboidal room ceiling was considered to be the design domain, and the optimal placement of a
foam material was studied. The optimal solution was found to fill foams along the corners of
the ceiling. Isakari et al. [106] studied the placement of rigid scattering materials on a three-
dimensional cavity using a level set method and a fast multipole boundary element method,
and derived the sensitivities for the problem. Car cavity foam shape optimisation is of interest
to automotive engineers. Kook et al. [130] presented an efficient approach to compute the
sensitivities using Padé approximants when using Zwikker’s loudness as an acoustic indicator.
They modelled a car cavity using their approach and optimised the distribution of acoustic
materials on the floor, ceiling and rear shelf.

4.3.1 Gaps in knowledge

From Table 4.2, one may observe that SIMP-based gradient methods are the most popular.
BESO and level set are also used often, and the use of metaheuristics is less common. One of
the reasons is thought to be the faster convergence rates offered by these methods from studies
on compliance minimisation problems. Also, note that in most of these applications, the fo-
cus is on extending topology optimisation strategies to new domains, and comparison studies
are lacking. While there of many problem domains for which topology optimisation formula-
tions do not yet exist and research in this direction is essential, comparison studies can only
reveal which algorithms perform better for a problem domain. Such comparison studies have
been performed extensively for the compliance minimisation domain [94, 37, 205]. However,
for acoustics problems, extensive comparison studies seem to be unavailable as per our knowl-
edge. The optimisation problem structure is yet to be explored thoroughly and remains a gap
in knowledge. Understanding the problem structure thoroughly is helpful in designing better
optimisation strategies in these problem domains. It is of interest to know how metaheuristics
compare against commonly used gradient-based strategies such as SIMP.

4.4 Conclusions
The highlights from the literature survey presented in this chapter are as follows.

1. Structural topology optimisation is finding the optimal distribution of a given amount
of material within a design region of a structure such that its performance is optimised,
thereby simultaneously optimising both the shape and the topology of the structure.

2. Optimising material distribution for minimising the compliance of a structure is the most
studied problem within topology optimisation research.

3. Solid isotropic material with penalisation method (SIMP) is the commonly adopted ap-
proach to perform topology optimisation for compliance minimised structures.

4. SIMP is a gradient-based method which requires computing the sensitivity of the objec-
tive function with respect to the design variables.

5. Other notable approaches include a constructive approach known as bi-directional evo-
lutionary structural optimisation (BESO), a level-set method that optimises a higher-
dimensional scalar field.

6. Metaheuristics for topology applications have been relatively rare.
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7. Several application domains of topology optimisation include heat transfer, solar panel
collectors, photonic and phononic crystals.

8. In acoustics, a few tens of applications of topology optimisation have been published so
far, and the number of publications each year is rising rapidly every year.

9. A review of the literature quickly indicates that the most commonly used approach for
acoustic topology optimisation has been SIMP, followed by BESO.

10. A variety of applications within the acoustic domain have found a use for topology op-
timisation, including acoustic horns, mufflers, impedance tube foams, scatterers, room
cavities, and car cavities, to name a few.
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Chapter 5

Multilayered sound package optimisation

The optimisation of multilayered sound packaging involves choosing the best/optimal material
properties and thicknesses for each layer. As the number of layers increase, the search space
size becomes too large to handle by brute force. In this study, the application of metaheuris-
tics to configure multilayered porous materials for maximising their overall sound absorption
coefficient is studied. A layer of the multilayered system may be composed of facing screens
(such as woven or non-woven textile or perforated plates) or thicker porous materials, chosen
from a database of common acoustic materials. Firstly, we consider a two-layered system with
a fibrous porous material layer modelled using the Delany-Bazley-Miki model and a facing
screen modelled by Johnson-Champoux-Allard model, and optimise different material proper-
ties for maximising the sound absorption. Secondly, for multilayered systems with more than
two layers, a genetic algorithm is presented to explore the thickness and acoustical properties
that maximise the sound absorption coefficients for a frequency range of interest. The problem
landscapes are explored revealing that the fitness functions are smooth across the acoustical
properties. Based on the insights obtained, guidelines for algorithm selection are obtained.

5.1 Introduction
In many industrial applications, sound-absorbing materials are used in the form of flat-layered
packages. In some instances, they are used for sound isolation, for example, behind the dash-
board of a car preventing engine noise from entering the cabin, or within the walls of an aircraft
behind the plastic lining and the fuselage. Such layered materials are also used to line the pay-
load compartment of space shuttles to prevent extreme launch noise and vibration from damag-
ing sensitive equipment. In other instances, they are used for reducing the noise levels within
an enclosure, usually placed in the form of lining materials which also serve aesthetic purposes.
Examples include the headliner(the fabric on the roof of a car), the panels placed in the side
walls of auditoriums and cinemas, carpets at homes and offices etc., that keep the reverberation
at minimal levels. A common aspect in these applications is that they are one-dimensional, i.e.,
thickness is the important dimension. In this chapter, we will consider the optimisation of such
layered sound packages.

The benefit of optimising such layered packages is motivated by the fact that such sound-
absorbing layers are often used in large quantities in many applications constituting a signif-
icant amount of dead weight. If these sound packages are not optimised, they can contribute
to economic losses, reduced range, increased fuel requirement, especially in aircraft and space
applications. Optimising sound packages are also of societal importance to the public: noise
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Figure 5.1: Schematic diagram of a multilayered panel depicting acoustic energy balance.

pollution in urban environments lead to increased occurrences of cardio-vascular diseases con-
tributing to reduced life expectancy and undue stresses [168, 169]. Hence, it is essential to have
effective strategies tuned to tackle optimisation problems that arise in this domain.

When sound waves are passed through these materials, the sound energy is partly reflected,
partly absorbed, and the remaining is transmitted, as depicted in Figure 5.1. The optimisation
objective typically falls within two categories based on the application: maximising absorption
in the material or minimising transmission through the material.

Absorption maximisation: Within an enclosed cavity such as the passenger compartment of
a car or an aircraft, if there is no acoustic dissipation mechanism, the noise generated from
a source within the cavity will reverberate and cause discomfort. In such cases, multilayered
absorbing panels need to be carefully placed within the cavity to reduce the noise levels. The
optimisation goal is to maximise absorption coefficient of the panels. The material should be
less reflective so as to allow the sound waves to pass through and get absorbed effectively. For
this, the surface impedance of the porous layer should be as close to that of air. Figure 5.2 shows
the locations where layered sound-absorbing materials are typically placed to reduce noise in
different applications.

Noise absorbing layered panels usually comprise of two to five layers. Two-layered systems are
the most common form of panels used in practise. The first layer is typically made of a foam
or fibrous material with a thickness of 20 mm or more, followed by a second screen layer of
thickness around 1 mm, the purpose of which is mainly to protect the first layer where most of
the dissipation takes place. In some cases, an additional screen on the other face of the foam
layer may be used forming a three-layered system.

Transmission minimisation: In some applications, noise from the source needs to be iso-
lated from reaching an observation point, for instance, isolating the passenger cabin of an air-
craft from engine and wind shear noise (see Figure 5.2c). In these cases, the objective is to
minimise the transmission and the materials need to be of high density with a large impedance
mismatch so as to cause high reflections or be highly absorbing. The optimisation goal here is
to minimise the transmission through the multilayered system. In an aircraft, the outer walls of
passenger cabin, called the fuselage, is a multilayered and multi-functional composite structure
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(c) Schematic of an aircraft and the placement of sound absorbing materials.

Figure 5.2: Application of sound-absorbing materials in a automotive and building applications. (a)
Car cavity (b) Room in a building (c) Aircraft passenger cabin.

with porous layers to provide acoustic and thermal insulation in addition to maintaining the
pressure barrier.

The fuselage, as depicted in Figure 5.2c, generally constitutes an outer structural shell made
of aluminium or fibre-reinforced composites. Within this shell is a single/multiple layers of
fibrous porous material. The fibrous layers may sometimes be enclosed within a thin covering
(usually made of plastic) to protect the fibres from diffusing. These thin coverings are acous-
tically transparent, i.e., they do not modify the external noise. The porous package with the
screen is covered by another layer of plastic or vinyl furnishing which will be the interior lining
of the passenger cabin. These porous packages are placed throughout the length of the aircraft
constituting significant weight. Although using thick and dense layers that are highly reflective
are desirable for minimising transmission, it is not practical in such weight-sensitive applica-
tions, and the focus is on improving the absorption in these layers. Thus absorption maximising
will be the focus in this study.

Quantification of absorption: Acoustic absorption performance of layered porous materials
are typically measured by placing them in impedance tubes with a rigid backing. When an
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acoustic source in the form of plane waves is passed on these materials, only absorption and
reflection are possible as the rigid backing does not allow any transmission. Hence, by mea-
suring the reflected sound waves, absorption can be estimated. The absorption coefficient α is
the ratio of absorbed sound energy to the total incident sound energy. If the absorbing layers
are impedance matched and sufficiently thick, there will be no reflected waves and the absorp-
tion would be 1. On the other hand, if there is no absorbing material, all the sound is reflected
and the absorption would be 0. In addition to modifying the thickness, one can also modify the
acoustic properties of the porous layer to improve absorption. Each layer can be modelled using
material properties such as porosity, static airflow resistivity, tortuosity etc. A detailed account
of porous-material properties and their measurement was provided in chapter 3. These prop-
erties can be controlled during manufacturing, for example, for chemically synthesized foams,
the reaction conditions can be carefully controlled to alter the acoustic properties. Hence, these
properties can be considered as the design variables for optimising the multilayered system in
addition to thickness.

Modelling techniques: Many techniques are available to model such multilayered systems
acoustically using material models. A review of these models is provided in chapter 3, but for
completeness, a short recap is provided as follows. These material models can be broadly cat-
egorised into two types: empirical models and phenomenological models. In a seminal work,
Delany and Bazley carried out experiments using a variety of fibrous materials with different
flow resistivities and observed its relationship with characteristic impedance and propagation
coefficient, which can be used to compute sound absorption. Miki [164, 163] extended and
generalised the empirical models to non-fibrous materials. While these empirical models relate
measurable properties of porous materials directly to their absorption behaviour with no physi-
cal links, phenomenological models on the other hand derive physical relations between the pore
structure and absorption behaviour. Examples of such models include Biot models [26, 27, 25],
Johnson-Champoux-Allard model [111, 43], Wilson model [254], Johnson-Champoux-Allard-
Lafarge model [134], to name a few. A compilation of theories including implementing them
using transfer matrix method is available in the book by Allard and Atalla [7]. Recent research
focus is on extending the modelling tools to unexplored materials and material behaviours. Ex-
isting models allow a variety of complex systems to be modelled and some examples are as
follows. Parra et al. [185] proposed a new method for modelling anisotropic poroelastic mate-
rials in multilayered systems. Rhazi and Atalla [204] extended the transfer matrix methodology
to model structure-borne mechanical excitations to complement the methodology validated for
airborne excitations. While the modelling techniques have been extended to complex acoustic
materials, research into optimisation aspects remains to be well-explored.

Previous optimisation studies: Existing optimisation studies in this area report some impor-
tant findings. Tanneau et al. [240] in 2006 demonstrated the use of a genetic algorithm for opti-
mising the transmission loss in aeronautical fuselage application. Their approach is to consider
a set of 12 available materials including solids, fluids and foam to optimise the combination of
the layers and their thicknesses. This will result is a readily manufacturable layer combination
suited to a desired application. Lee et al. [141, 139] present a one-dimensional topology op-
timisation strategy to automatically design a combination of air and a specific porous material
to maximise the acoustic performance. They used a method of moving asymptotes-based [238]
topology optimisation strategy. The result is a set of alternative layers of air and the specific
porous material with different thicknesses. Lind-Nordgren et al. [148] presented an optimi-
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Figure 5.3: Schematic of a multilayered sound absorbing package.

sation of the microstructure of an open foam material using Biot theory-based finite element
model with scaling laws to link micro and macro properties. They show that the cost func-
tion landscape had a few minima and also noted that the optimisation greatly depends on the
cost function. They use the method of moving asymptotes [238] to optimise specific problem
cases and have reported the optima. Pichon et al. [191] have provided trade-off charts for the
visualisation of different categories of acoustic materials to support the optimisation of mul-
tilayered acoustic packages. Chen et al. [50] presented a design method for computing and
optimising the absorption coefficient of multilayered systems involving metallic fibres using a
phenomenological model. Boulvert et al. [32] presented a procedure for finding the optimal
graded properties of porous layers to enhance sound absorption across a broad frequency range.
Their work includes manufacturing 3D printed porous solid matrix with varying geometries to
achieve the graded behaviour.

Contributions in this chapter: In this work, firstly, an example two-layered system of a fi-
brous layer with a screen is considered. An oblique incidence sound source is assumed to be
passed on the two-layered system, and its absorption over a wide frequency range is optimised.
The optimisation problem structure is explored by varying the airflow resistivity of the porous
layer and screen, and the porosity of the screen. Secondly, a database of 29 existing acoustic
materials is used to explore optimal three-layered configurations similar to Tanneau et al. 2006
[240] but for absorption maximisation with more recent and advanced material models. An
integer representation genetic algorithm is used to find optimal configurations and thicknesses.
A parameter tuning is performed on the genetic algorithm operators. The fitness landscapes of
the design variables are studied and it is observed that the landscapes are smooth across the ma-
terial properties with a finite number of modes that can be easily found by simple optimisation
strategies. The observations are used to arrive at guidelines for algorithm design.

Organisation of this chapter: In section 5.2, a general problem formulation is discussed. In
section 5.3, a two-layered system with a fibrous layer and a screen is considered, the modelling
methodology is described and the landscapes are assessed. In section 5.4, a three-layered system
is considered and a genetic algorithm is applied to optimise the layer thickness and material
choices. The results are discussed and some guidelines for algorithm selection are provided. In
section 5.5, a summary of the findings is reported.

5.2 Problem description
The schematic of a generic multilayered system with n-layers is shown in Figure 5.3. Each
layer i is composed of a material Mi described by a set of variables including its thickness ti
and material properties {λ(i)

1 , λ
(i)
2 , · · · , λ(i)

pi }, where pi is the number of properties required for
the material model. The optimisation problem can be formulated as follows.
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max
ti,λ
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1 ,λ

(i)
2 ,··· ,λ(i)pi

α(t1, λ
(1)
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(1)
2 , · · · , λ(1)

p1
, t2, λ

(2)
1 , λ

(2)
2 , · · · , λ(2)

p2
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(n)
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(5.1)

ti, λ
(i)
j ∈ R ∀ i ∈ {1, 2, ..., n} & j ∈ {1, ..., pi}

α ∈ [0, 1]

subject to:
∑
i

ti ≤ L

(5.2)

Here, α is the sound absorption coefficient to be maximised which depends on the target fre-
quency f . Each multilayered configuration has its own absorption vs. frequency behaviour
often referred to as the absorption curve. A constraint on the total length L is typically used to
restrict the thickness of the total package from exceeding the available space. For each layer,
the thicknesses and material properties are the design variables to be optimised.

To describe the behaviour of a given layer, a suitable acoustic material model needs to be
adopted. Depending on the material model used, a number of properties are required to de-
scribe the layer. For instance, using the DB or DBM models, only one parameter i.e., the static
airflow resistivity (σ), would be necessary to describe the layer. In other models such as JCA or
JCAPL more material properties need to be determined. The sets of properties that are required
for porous materials in various models are summarised in Table 5.1. Here, φ is the open poros-
ity, α∞ is the high frequency limit of tortuosity, b is the Attenborough’s slit thickness parameter,
Λ is the viscous characteristic length, Λ′ is the thermal characteristic length, k′0 is the static ther-
mal permeability, α0 is the static viscous tortuosity and α′0 is the static thermal tortuosity.

Table 5.1: Material parameters required by each acoustic model.

Acoustic model No. of properties List of parameters
Delany-Bazley (DB) [70] 1 σ
Delany-Bazley-Miki (DBM) [70, 164] 1 σ
Zwikker & Kosten (ZK) [280] 2 σ, φ
Miki model [163] 3 σ, φ, α∞
Attenborough [13] 4 σ, φ, α∞, b
Johnson-Champoux-Allard-Lafarge
(JCAL) model [134]

6 σ, φ, α∞,Λ,Λ
′, k′0

Johnson-Champoux-Allard-Pride-Lafarge
(JCAPL) model [134]

8 σ, φ, α∞,Λ,Λ
′, k′0, α0, α

′
0

Choosing the objective function: The optimisation objective needs to be determined based
on the practical considerations. The two main objectives are to reduce the weight and reduce
noise, and these are often conflicting. Lets consider the noise-reduction objective as F1 and the
weight/cost objective as F2. There are several ways to quantify the noise-reduction objective de-
pending on the case. The most common is to sum absorption over different frequencies

∑
f αf .

Another strategy is to consider the source frequencies q(fi) and target the sound package to be
more absorbing in those frequencies. The objective could then be the product of absorption and
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noise source level over the frequency range of interest as expressed in equation 5.3.

max F1 =
1

N

N∑
i=1

α(fi)q(fi) (5.3)

For an acoustic transmission problem, the noise objective would be as given in equation 5.4.

min F1 =
1

N

N∑
i=1

TL(fi)q(fi) (5.4)

Here TL is the transmission loss in dB. Another way to express the noise reduction objective
would be to take into consideration, the noise perceived by humans. Different frequencies cause
different levels of loudness to humans. For example, sound beyond 20,000 Hz (ultrasound)
cannot be heard by humans, but bats use ultrasound to echolocate obstacles. Elephants use a low
frequency of about 10 Hz to communicate over long distances. Humans perceive sounds around
1000 Hz better than other frequencies. Weighting factors such as the A-weighting defined in
the international standard IEC 61672:2003 may be used to adjust the raw sound pressure levels
as expressed in equation 5.5 . Other weighting factors include B, C, D and Zwikker’s loudness
(ISO 532B) may be used as the objective depending on the application.

min F1 = 10 log10

(
N∑
i=1

10[Lp(fi)+A(fi)]/10

)
(5.5)

Here Lp is the sound pressure level in dB, and A(fi) is the A-weighting factor at frequency fi.

In applications such as building acoustics where cost is more important than weight, one can
consider minimising the overall cost of the sound package as expressed in equation 5.6.

min F2 =
N∑
i=1

ρibhtiCi (5.6)

Here, ρi is the density of the material, ti is the thickness, Ci is the cost per unit weight, b is the
width and h is the height of the ith layer of the multilayered package.

In an aircraft fuselage, sound packages are installed in the form of rectangular blocks as illus-
trated in Figure 5.2c. It is not necessary that all panels be of the same multilayered configura-
tion. Based on the estimated noise field outside the aircraft, the noise intensity faced by each
multilayered panel may be calculated under various scenarios, and each multilayered panel can
be optimised for minimal weight, while also minimising the noise levels in the passenger cabin.
Thus, the optimisation objective can be formulated suited to specific use cases.

5.3 Two-layered porous and screen

As discussed in the introduction, the most common porous package is a two-layered system
consisting of a porous layer and screen. In this section, the fitness function landscapes of the
two-layered system is explored for various material properties.
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5.3.1 Problem description

Consider a two layered sound absorption system with a screen made of a woven or non-woven
textile or a perforated plate for the first layer, and a thick fibrous material or foam for the second
layer backed by a rigid impervious wall as shown in the Figure 5.4. This type of system is com-
monly used in noise absorption packages such as automotive headliners, room absorption pan-
els, upholstery etc., (see Figure 5.2). In order to efficiently optimize the acoustic performance
of this two-layered system, it is necessary to understand the objective function landscape before
a suitable heuristic can be chosen.

Porous
/Fibrous
layer

Screen
Acoustic
wave

Rigid
wall

𝑡!														𝑡"

Figure 5.4: Two-layered sound absorption system with a fibrous material and a facing screen.

5.3.2 Modelling the fibrous/foam layer

To model the fibrous layer, a DBM model [164] is considered. The model describes a given
porous material with the equations 5.7 and 5.8 for the characteristic impedance Zcf and wave
number kcf , respectively.

Zcf = ρ0c0

[
1 + 5.50

(
103 f

σf

)−0.632

− j8.43

(
103 f

σf

)−0.632
]

(5.7)

kcf =
2πf

c0

[
1 + 7.81

(
103 f

σf

)−0.618

− j11.41

(
103 f

σf

)−0.618
]

(5.8)

In the above equations, f is the frequency in Hz, σf is the static airflow resistivity of the fibrous
layer in N·s·m−4, ρ0 is the density of air in kg·m−3, c0 is the speed of sound in air in m·s−1 and
j =
√
−1. The properties of air at T = 20◦C are considered in all the following calculations.

The surface impedance (Zf ) at the leading face of the fibrous layer is then found for the oblique
incidence scenario using equation 5.9.

Zf =
−jZcfkcf
k3 tan(k3tf )

(5.9)

In the above equation, tf is the thickness of the fibrous layer and k3 is the oblique wave number

calculated from k3 =
√
k2
cf −

(2πf sin(θ)
c0

)2, where θ is the angle of oblique incidence.



5.3. Two-layered porous and screen 59

5.3.3 Modelling the screen

We consider the procedure for modelling facing screens from [12, 108] as briefed below. Trans-
fer matrix method with the JCA model [111, 43, 35] is used to describe the screen layer. In
this case, equation 5.10 is used to compute the dynamic mass density of the screen (ρ̃cs) and
equation 5.11 is used to compute its dynamic bulk modulus (K̃cs).

ρ̃cs(ω) =
α∞ρ0

φs

[
1− j σsφs

ωρ0α∞

√
1 + j

4α2
∞ηρ0ω

σ2
sΛ
′2
s φ

2

]
(5.10)

K̃cs(ω) =
γP0/φs

γ − (γ − 1)

1− j 8η

Λ′2s Cpρ0ω

√
1 + j

Λ′2s Cpρ0ω

16η

−1 (5.11)

Here, γ is the adiabatic index for air, P0 is the atmospheric pressure, η is the dynamic viscosity
of air, ω is the angular frequency equal to 2πf , Cp is the specific heat of air at constant pressure
and φs is the porosity of the screen. We compute α∞ from the equation 5.12.

α∞ = 1 + 2
ε

ts
(5.12)

where ε =
(

1− 1.13ξ − 0.09ξ2 + 0.27ξ3
) 8r

3π

ξ = 2

√
φs
π

ε is the corrected length accounting for flow distortions near the screen perforations and Λ′s = r.

The value of r is computed from the relation r =
√

8η
σsφs

. Here, σs is the static air flow resistivity
of the screen. Now, the equivalent characteristic impedance for the screen (Zcs) and equivalent

wave number (kcs) may be computed from the relations Zcs =

√
ρ̃csK̃cs and kcs = ω

√
ρ̃cs
K̃cs

.
For a combination of the two layers, the surface impedance Zs can be computed from equation
5.13.

Zs = Zcs
−jZf + Zcs tan(kcsts)

Zf tan(kcsts)− jZcs
(5.13)

Here, ts is the thickness of the screen. To find the absorption, we use the formula for oblique
incidence using the expression 5.14.

α(ω) = 1−
∣∣∣∣∣Zs(ω)− ρ0c0

sin(θ)

Zs(ω) + ρ0c0
sin(θ)

∣∣∣∣∣ (5.14)

For this optimisation, the parameters considered are the thicknesses of the two layers, their
static air flow resistivities, and their porosities. To assess the effect of the static air flow resistiv-
ities of the facing screen (σs) and the fibrous layer (σf ), we keep all the other parameters fixed
while tuning these two. The objective function to be maximized is the root mean square of the
absorption coefficients at linearly-spaced frequency intervals between 20 Hz and 5000 Hz. The
expression for αrms is given by the equation 5.15.



60 Chapter 5. Multilayered sound package optimisation

αrms =

√√√√ 1

N

N∑
i=1

[α(fi)]2 (5.15)

5.3.4 Results

Two parameter optimisation

A test study is considered where the objective function αrms is maximised for different values
of σs and σf while keeping the other parameters unchanged as stated in the equation 5.16.

max
σs,σf

αrms =

√√√√ 1

N

N∑
i=1

[α(fi)]2 (5.16)

For this, the thickness of the fibrous layer is arbitrarily set to 20 mm, the thickness of the facing
screen to 0.5 mm, and the porosity of the screen to 0.04 and 0.90 (in two separate cases). The
absorption coefficients are computed for an oblique incidence of angle 34◦ (chosen arbitrarily
for illustration purposes) and for frequencies from 20 Hz to 5000 Hz in linear steps of 20 Hz.
The landscape of the objective function is found to be uni-modal or plateau-like in these two
parameters as seen in the Figure 5.5. It is thus noted that a suitable local search heuristic [103]
may be used for optimisation. The local search heuristics can be used solely or in conjunc-
tion with other metaheuristic methods as they exploit the neighbourhood of good solutions to
improvements during optimisation.

Figure 5.5: Absorption landscape for two-layered system: porous material and screen, over resistivities
σs and σf for φs = 0.04 (left) and φs = 0.90 (right) for fixed parameters tf = 20 mm, ts = 0.5 mm, at
an oblique incidence angle of 34◦.

The best αrms obtained using hill climbing for fixed parameters, φs = 90%, tf = 20 mm,
ts = 0.5 mm, at an oblique incidence angle of 34◦ is 0.846 and it occurs at: σs = 19700 N·s·m−4

and σf = 49000 N·s·m−4.
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Three parameter optimisation

The optimisation is extended to include the porosity of the screen φs as given in equation 5.17.
The objective function (αrms) landscapes are plotted versus σf and σs similar to Figure 5.5 for
various values of φs in Figure 5.6. It may be observed that the landscapes grossly increase up
to a certain φs, and then decrease, indicating the presence of an optimum over this variable.
This means that as the screen becomes more porous, the absorption increases, likely due to a
better impedance match that fibrous layers provide. Another observation is that the smoothness
and the presence of finite modes or plateau-like nature of the landscape is retained when tuning
the parameter φs. For low resistivity values, a kink in the surface is seen which corresponds to
sensitivities in the broadband absorption with respect to resistivities.

max
σs,σf ,φs

αrms =

√
ΣN
i=1[α(fi)]2

N
(5.17)

For the three parameter problem, the optimum of αrms occurs at φs = 52%, σs = 1 N·s·m−4 and
σf = 71100 N·s·m−4 (rounded to the nearest 100). The objective function value is αrms = 0.862
at the optimum. It is noted that σs = 1 N·s·m−4 was the lower bound for that parameter in the
optimisation. This means that, for the studied configuration, not using a screen is better in terms
of absorption, an expected result, as the purpose of the screen is only to protect the porous layer.
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Figure 5.6: The evolution of absorption landscapes for two-layered system: porous material and screen
for various φs values.
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5.4 Three-layered porous absorption package

5.4.1 Problem description
In this section, optimising multilayered porous packages with three layers is considered as a
case study. Consider the simplified optimisation problem of choosing the optimal material
choices and thicknesses for a three-layered absorption package as shown in Figure 5.7. To en-
sure that non-physical material property combinations are avoided, we will choose the materials
from a database of 29 commonly used porous materials with their accurately describing mod-
els and properties provided in Appendix A. While the material choices are discrete, the layer
thicknesses are continuous values, making this a mixed problem.

𝑡! 𝑡" 𝑡#

𝐿
Acoustic
wave

𝑀! 𝑀" 𝑀#
Rigid
wall

Figure 5.7: Three-layered sound absorption system.

Optimisation formulation: Consider the material-choice decision variables to be Mi, thick-
ness design variables be ti for each layer, and that the root-mean-square sound absorption αrms
of the combined system is to be maximised. We will assume a total thickness constraint of 60
mm, which is typical in practical scenarios. The optimisation problem formulation is expressed
as follows:

max
M1,M2,M3,t1,t2,t3

αrms =

√
1

Nf

Σ
Nf

j=1[α(fj)]2 (5.18)

α(M1,M2,M3, t1, t2, t3, fj) (5.19)
Mi ∈ {1, · · · , 29}
ti ∈ {0, · · · , L}

subject to:
∑
i

ti = L

(5.20)

Here, L is the total thickness of the sound package, fj are the target frequencies at which ab-
sorption is to be maximised and Nf is the number of target frequencies. The porous package
is assumed to be placed in an impedance tube with a rigid backing and subject to diffuse field
acoustic input in the range between 20 Hz and 5600 Hz with 100 linearly-spaced target frequen-
cies.

Implementation: To compute the sound absorption, the AlphaCell software developed by
Matelys Research Lab is used. AlphaCell is an implementation of a transfer matrix method
(TMM) and finite-size transfer-matrix method (FTMM) solver for modelling multilayered sys-
tems that uses recent and advanced acoustic material models. The software has been validated
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by Matelys with measurements from a wide range of porous materials and their multilayer
combinations, and thus can be readily used for the optimisation studies. The optimisation algo-
rithms are implemented in Matlab with command-line calls to AlphaCell to evaluate the fitness
function.

5.4.2 Genetic algorithm
A steady-state genetic algorithm (GA) is applied on the above problem in an initial study. In a
steady-state GA, the number of individuals in the population is kept the same over generations.
The implementation of the genetic algorithm is detailed as follows.

Representation: For genetic algorithms, a representation scheme needs to be adopted that
uniquely encodes any feasible solution to be regarded as the genome of the individual. Material
choices for each layer are represented by an integer from 1 to 29 corresponding to the choice
from the database. Although thicknesses are real valued and continuous, sub-millimetre differ-
ences in thickness neither corresponds to a significant difference in acoustic properties nor is
it practical to ascertain in manufacturing the layer. Hence, thicknesses, like material choices,
could also be represented using integers. An example of a genome for an individual would be a
6-integer array such as [10 6 15 20 20 20], where the first three integers represent the material
choices M1, M2 and M3 respectively, and the last three integers represent thicknesses t1, t2 and
t3 respectively in millimetre. Each combination of these 6 integers will be a different multilay-
ered configuration. Note that since a total thickness constraint of 60 mm is considered, the last
three integers should add up to 60.

Initialization: Initial population (group of multilayered configurations) is generated randomly
using a pseudo random number generator. For each trial, a different random number seed is
used, which is saved for reproducibility. For the material choices, a random number from 1
to 29 is chosen. In order to pick the thicknesses from the same distribution for each layer that
add up to 60, first, two cutting point integers are randomly chosen from 0 to 60, and the three
cut pieces become the thicknesses. For example, if the two cutting points are 15 and 47, the
thicknesses are 15, 22 and 13 respectively. In this way, a number of individual solutions are
generated that form the initial population. The population size is a parameter that can be tuned.
After initiation, each individual corresponding to a multilayered configuration is evaluated to
compute its fitness.

Selection: Once the population is generated, in each generation, parents need to be picked
with a selection pressure. This step mimics survival of the fittest in Darwin’s theory of evo-
lution. To enforce a selection pressure for the evolution, two types of selection strategies are
implemented. In tournament selection, a subset of individuals are randomly picked and the
best individual of the subset is chosen as a parent individual. This mimics a typical knockout
tournament. Tour size is the size of the subset and in this case, a tour size of 2 is chosen arbitrar-
ily. In roulette-wheel selection, the individuals in the population are picked with a probability
proportional to their fitness. The name arises due to the fact that it resembles selecting from a
roulette wheel with each individual allocated a sector of size proportional to its fitness. In this
implementation, two parent individuals (P1 and P2) are picked for the cross over operation.

Crossover: This step mimics the crossover of genes during reproduction. The two parent
solutions are subject to gene mixing to produce two offspring solutions. A uniform crossover
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is applied to the two chosen parents from the selection operation. In this implementation, a
uniform crossover with a crossover rate of 0.5 is applied over the material choice parameters.
Crossover is not applied over the thicknesses so as to preserve the total thickness constraint. The
two new individuals so produced will be the offspring, which represent two new multilayered
configurations with characteristics from both the parents.

Mutation: Mutation is performed on the offspring of crossover and a mutation probability
of 1/(genome length) is used for each integer in the material choices. In order to maintain the
total thickness constraint, the standard perturbation strategy is not suitable. Hence, a thickness-
conserving mutation operator is implemented on the thickness part of the genome. This operator
perturbs one of the layer thicknesses one way and the other layers in the opposite way. For
example, to mutate the first element in the thickness part of a genome, say, [17 23 20], this
operator will add or subtract [2 -1 -1] resulting in the perturbed thicknesses being either [19
22 19] or [15 24 21]. The direction of move i.e. to add or subtract is chosen with equal
probabilities. Likewise, each thickness is mutated with the same mutation probability. If such
a mutation results in negative thicknesses or thicknesses more that the constraint, the mutation
operation is discarded. The mutated offspring (C1 and C2) will then be used to evaluate the
objective function αrms using the TMM solver.

Replacement and elitism: The two mutated offspring (C1 and C2) from a crossover operation
and the two parents (P1 and P2) which produced them are pooled, and the best two of in terms
of fitness (B1 and B2) are chosen to replace the members in the population. Two elitist schemes,
namely, strong elitism and weak elitism are implemented. In weak elitism, the parent and the
offspring solutions are pooled (P1, P2, C1, C2) and the best two of these will replace the two
parents (P1 and P2). In strong elitism, the two offspring solutions are pooled with the two worst
members of the population (P1, P2, W1 and W2), and the best two among these will replace
W1 andW2.

5.4.3 Results
In order to study the effect of various GA parameters, multiple optimisation trials are run by
varying one parameter at a time while keeping the others fixed. At first, a standard set of GA
parameters are used to run five trials. Then, various parameters are modified and the trials are
repeated. For the standard run, the parameters are as follows.

Table 5.2: Genetic algorithm standard parameters.

GA Parameter Value
Population size 4
Selection type Tournament
Crossover type uniform
Crossover rate 0.5
Mutation type randomize for material choices

perturb for thicknesses
Mutation rate 1/6
Replacement weak elitism

To study the effect of selection in GA, a tournament selection and a roulette-wheel selection are
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run for the same fitness evaluation budget, keeping all other GA parameters fixed. The average
fitness evolution across five trials is plotted in Figure 5.8. For the two selection operators, the
differences seem to be within 0.1, which is within the accuracy of the material models used.

Figure 5.8: Comparison of average fitness progress between tournament selection and roulette-wheel
selection.

For the population size, four different values are considered and five trials of GA are run at each
population size. The results did not show significant differences as shown in Figure 5.9.

Figure 5.9: Effect of population size on average fitness evolution.

Between the replacement strategies discussed, weak elitism and strong elitism, weak elitism
seems to be slightly better as can be observed from the trial-averaged fitness evolutions for five
trials shown in Figure 5.10. However, the differences in absorption values are in the order of
0.1 only, which is not significant in terms of practical applications.
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Figure 5.10: Comparison of average fitness progress between strong and weak elitism.

In conclusion, GA is able to quickly find sound packages with around 0.9 absorption within 50
generations. Any improvement after that seems to be less significant for this problem instance.
The GA parameters assessed seem to have little effect on the performance.

5.4.4 Fitness landscape analysis

From the GA trials, it is observed that many of the best performing solutions have similar
material picks. Figure 5.11 shows the frequency of occurrence of different materials in the
initial population vs. in the best solutions across 30 trials. For this comparison, the results
for the parameter tuning trials run from 6 sets of hyperparameters are used. The number of
occurrences of each material chosen in the initial population is highlighted in blue bars while
the number of occurrences in the final best solution are shown using red bars. For each set of
hyperparameters, the GA was run using a random number seed picked from a series for each
trial to ensure repeatability. Hence for the first trial in each of these hyperparameter sets, the
occurences in the initial population are in the multiples of 6. Comparing between the occurences
of different materials between the initial population and the final best solutions, it is observed
that some materials tend to occur more often than others in the best solutions. For example,
foamR1, glasswool8 and glasswool27. Notably, while foamR1 does not occur in any of the
initial populations, it seems to be the most preferred constituent material in the best three-
layered configurations. The reader is referred to Appendix A.11 for the material properties.

Brute force across all material combinations: Since, some materials occurred more fre-
quently than others in the best solutions from GA, in a separate study, all possible three-layered
configurations using 29 layers with each layer having a thickness of 20 mm was studied. The
resulting absorption values are plotted in Figure 5.12. The material configuration index in the
figure is assigned in the ascending order of permutations for choosing three layers from 29. It
may be observed that even from a random guess it is possible to find configurations with absorp-
tion above 0.85. This could explain the good performance of GA irrespective of the parameters
since it is easy to find a well performing material configuration. Out of all the three-layered
combinations, a system with Rockwool, Glasswool and FoamR1 in that order from the rigid
backing had the highest absorption.
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Figure 5.11: Frequency of occurences of materials in initial population and in best solutions across 30
trials. For the material properties, the reader is referred to Appendix A.

Figure 5.12: Fitness landscape over all possible material choice combinations of three-layered systems
from 29 materials with each layer having a thickness of 20mm.
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Thickness landscape of the best three-layered system: With the best three-layered material
configuration having 20 mm thickness for each layer identified, the landscape of absorption
over the thickness space of this three-layered system is computed and shown in Figure 5.13.
With a constraint on the total thickness, the first two thicknesses t1 and t2 are varied and the
other thickness is computed as t3 = 60− t1− t2. In this thickness space, the sound absorption is
observed to be smooth and unimodal. The smoothness of the fitness landscape for thicknesses is
expected, since the material models involve analytical expressions. Such fitness landscapes can
be effectively exploited by using suitable algorithms such as hill climbing, covariance matrix
adaptation evolution strategy or a stochastic local search heuristic.

Figure 5.13: Fitness landscape across layer thicknesses.

For a total thickness constraint of 60 mm, the best thickness combination is reported in Table
5.3. In the table, the layering order is from the material next to the rigid wall to the material
facing the acoustic wave. It may be noted that FoamR1 features as the first material facing the
acoustic wave. Also, notice that the static airflow resistivity of the layers facing the sound source
gradually increase from 7000 N·s·m−4 for FoamR1 to 20,000 N·s·m−4 for Glasswool to 120,000
N·s·m−4 for Rockwool, thus facilitating a gradual change in impedance. A gradual impedance
change produces less reflections, allowing more sound to pass through and get absorbed in the
subsequent layers.

Table 5.3: The best configuration found for a total thickness constraint of 60 mm, with αrms = 0.919.

Material Model t φ σ Λ Λ′ α∞ k′0 α0 α′0
(mm) (N·s·m−4) (µm) (µm) (10−10 m2)

Rockwool JCAL 19 0.95 120000 12 20 1.08 10 - -
Glasswool JCA 23 0.99 20000 26 135 1.11 - - -
FoamR1 JCAPL 18 0.9 7000 129 440 1.12 83 1.22 1.13
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5.4.5 Guidelines for algorithm selection

From the above results, it can be concluded that the multilayered sound package problem is easy
to tackle with numerous good quality solutions. Since the thickness and property landscapes
are known to be smooth with finite modes, a random search on the material choices followed by
a local search or pseudo-gradient algorithms across the material properties may be sufficient.
For problems with larger number of layers, memetic algorithms seems to be a natural choice
to explore further. Memetic algorithms are extensions to genetic algorithms which embed local
search. Due to their robustness, memetic algorithms have been successfully used in many appli-
cations [170] including university time tabling [40], nurse rostering [179], flow-shop scheduling
[151] etc. A memetic algorithm with GA for the material configuration will retain the combi-
nations that tend to have high absorption providing pathway to a near-optimal solution, and the
local search will quickly find the optimum in the thickness and material property space.

While the multilayered problem discussed in this chapter has numerous practical use cases, the
landscapes of the fitness function are smooth making it easy to optimise. The computation of
the fitness function is also not expensive and hence the problem is not very difficult to solve to
optimality. Only when the number of layers increase, the material choices being combinatorial
pose difficulties in finding the global optima. Since there is a practical limit on the number
of layers that can be physically bundled in a sound package, by limiting the number of layers,
finding the global optimum would not be very difficult. In practise, the material choices are also
limited, further simplifying the problem. Once the available material choices are established,
the material property design variables can be optimised using a suitable algorithm such as hill
climbing with restarts, CMA-ES, differential evolution, particle swarm etc., These algorithms
can operate as local exploiters in a memetic algorithm. The choice of materials is a discrete
variable and optimising across this choice is a bit challenging. Although, by sorting the material
database, based on key acoustic material properties such as porosity, static airflow resistivity or
tortuosity, one can create an artificial correlation between the material choice variable and the
nature of the material to be chosen. With such encoding schemes, applying algorithms such as
genetic algorithms on the material choices might prove to be an effective search strategy.

5.5 Conclusions
In this chapter, the optimisation of one-dimensional multilayered sound absorption packages
was studied. Multilayered sound packages containing several layers of acoustic porous materi-
als are the prevalent form of sound treatment in the industry. We noted that acoustic material
models such as DBM, JCA, used along with a geometric modelling method such as the trans-
fer matrix method allows a quick computation of sound absorption. A two-layered system
was considered to study the landscapes of acoustic design variables, static airflow resistivity
and porosity. Using a steady-state genetic algorithm (GA), a three-layered system with a total
thickness constraint was considered and the material choices from 29 available materials were
optimised for maximising sound absorption under diffused field excitation. Various parameters
of GA were explored. Then, a brute force search over all possible material configurations was
performed. From the best material configuration, the fitness landscape over the thickness vari-
ables were studied. From the insights obtained some guidelines for algorithm selection were
provided. The key findings are highlighted as follows.

1. Upon studying a simple two-layered system, the fitness function across the acoustic de-
sign variables—static airflow resistivity and porosity—seemed to be smooth, often form-
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ing unimodal or landscapes or few modes with plateaus and valleys indicating the relative
ease of optimising using a suitable continuous optimisation approach.

2. Genetic algorithms applied on a three-layered problem over material choices and thick-
nesses were able to quickly find close to 0.9 sound absorption in under 50 generations.
Any improvements beyond 0.9 seemed to be insignificant and hard to obtain.

3. It was observed that specific materials such as FoamR1 and Glasswool occurred more
frequently as constituent layers in the best three-layered solutions from GA.

4. The choice of GA parameters seemed to have little effect on the performance.
5. Brute force search over the available material choice configuration for equal thickness

layers seemed to suggest that numerous combinations exhibited absorption above 0.85,
indicating the ease of finding good quality solutions.

6. The best three-layered configuration consisted of FoamR1, Glasswool, and Rockwool in
that order facing the acoustic source with gradually increasing static airflow resistivities.
Such gradual change in resistivities is known to facilitate impedance matching that allows
more sound to pass through and get absorbed.

7. For the above material configuration, the fitness landscapes over the thickness was smooth
and unimodal indicating that a local search could be used for exploitation to quickly reach
an optimum.

8. From the insights obtained from the landscapes, it seems that a memetic algorithm, with
genetic algorithm over the material configuration and a local search across the acoustic
design variables, may be a natural choice to explore as the number of layers increase.



Chapter 6

Single-objective topology optimisation for
absorption maximisation

When designing sound packages in the form of composite walls with porous infill, often fully
filling the available space with acoustic materials is not the most absorbing solution. Better so-
lutions can be obtained by creating cavities of air pockets. Determining the most optimal shape
and topology that maximises sound absorption is a challenging task. This chapter deals with
the shape optimisation of acoustic porous materials focussing on maximising sound absorption
without considering the weight-reduction objective. As established in chapter 4, many recent
topology optimisation applications in acoustics use heuristic methods such as solid-isotropic-
material-with-penalisation (SIMP) to quickly find near-optimal solutions. In this chapter, the
application of seven heuristic and metaheuristic optimisation approaches including SIMP will
be studied. The approaches tested are hill climbing, constructive heuristics, SIMP, genetic algo-
rithm, tabu search, covariance-matrix-adaptation evolution strategy (CMA-ES), and differential
evolution. All the algorithms are tested on seven benchmark problems varying in material prop-
erties, target frequencies, and dimensions. The empirical results show that hill climbing, con-
structive heuristics, and a discrete variant of CMA-ES outperform the other algorithms in terms
of the average quality of solutions over the different problem instances. Though gradient-based
SIMP algorithms converge to local optima in some problem instances, they are computationally
more efficient. One of the general lessons is that different strategies explore different regions
of the search space producing unique sets of solutions. Parts of this work are published in the
Journal of Acoustical Society of America [202].

6.1 Introduction
Historically, shape designs in engineering have been arrived at via trial-and-error, intuition,
incremental improvements to old designs, human decision-making from numerical analyses,
and recently, solely by computer analyses. Superior-to-human engineering designs have been
achieved by computers using technologies such as structural topology optimisation. Topology
optimisation involves finding the optimal topology (number of holes) and shape (size, dimen-
sions) for a structure such that a given performance indicator is either maximised or minimised.
Bendsøe and Kikuchi [20] introduced the concept of simultaneously optimising both shape and
topology in the late 1980s. Since then, many theoretical developments have been made, and a
community of researchers have actively been working in this field. One of the ways to formulate
a topology optimisation problem is finding the optimal assignment of materials in each finite
element of a discretised structure. In principle, this formulation is discrete optimisation, and

72
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finding the exact global optimum is challenging. Exact optimisation techniques that guarantee
to find the global optimum remain prohibitively expensive. Evaluating all possible solutions
becomes impractical due to the large search space sizes and the expensive finite element eval-
uations. A noteworthy effort towards topology optimisation using an exact approach was by
Stolpe and Bendsøe [231] on the Zhou and Rozvany problem instance [273]. But justifiably,
the focus of previous work has mainly been on the inexact or heuristic optimisation approaches.

6.1.1 Heuristics

Heuristics are techniques that find solutions close-enough to the global optimum in reasonable
time. Though heuristics do not guarantee to find the optimal solution, they are well-established
and often the only viable option to address hard problems, such as those in NP-complete and
NP-hard classes. The three most popular heuristic approaches applied to topology optimisation
problems are SIMP [20, 19, 272, 217] (solid-isotropic-material-with-penalisation), BESO [256,
257, 262] (bi-directional evolutionary structural optimisation), and the level-set method [251,
6, 38]. These approaches have been described in more detail in chapter 4, and they are briefly
recalled here for completeness. Among these, SIMP is the most commonly used and well-
studied approach. In this approach, the discrete problem is relaxed to the continuous space by
allowing intermediate materials between solid and void. A penalty-based material interpolation
scheme is used to represent intermediate materials and gradient-based optimisation strategies
such as optimality criteria [21] or method of moving asymptotes [238] is used to move across the
design variable space to find a near-optimal design. As SIMP is a derivative-based technique, it
requires that a sensitivity analysis be carried out. BESO, not to be confused with evolutionary
algorithms despite its name, is a type of constructive approach which iteratively adds material
where stresses are high and removes material where stresses are low to arrive at a design. In the
level-set method, a scalar field is associated with the design domain region and the iso-surfaces
of this scalar field are made the boundaries of the topology. This scalar field is then optimised
to optimise the topology.

6.1.2 Metaheuristics

While heuristics are quick strategies to find near-optimal solutions, it was realised by Glover
[89] that many powerful heuristic approaches follow certain higher-level guidelines. These
guidelines can be considered heuristics to design heuristic algorithms, and hence are termed as
metaheuristics. A popular example of a metaheuristic is genetic algorithms, wherein the guide-
line is to initiate a population of solutions, apply selection pressure to pick good individuals,
recombine the selected individuals, mutate them and replace them into the population. Numer-
ous metaheuristic techniques, such as genetic algorithms and CMA-ES, have also been studied
on structural topology optimisation problems [94]. However, such blackbox metaheuristics are
not the most common in usage since gradient methods that make the search quick are avail-
able. Theoretical developments in structural topology optimisation have focused on the classi-
cal problem of compliance minimisation [23, 221]. Nevertheless, the application of topology
optimisation techniques to other problem domains is steadily on the rise [207, 23, 68]. These
techniques have already been extended to acoustics, giving rise to a sub-field called acoustic
topology optimisation.
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6.1.3 Acoustic topology optimisation
Previously, topology optimisation has been performed on a variety of acoustic applications,
including horns, mufflers, rooms and sound barriers [249, 76, 140, 143, 131, 266, 138, 122,
263, 46, 128, 268, 259, 47, 260]. A majority of these applications use the gradient-based SIMP
method or its variants, while a small fraction of them use BESO or level-set methods. These
applications can be categorised into acoustic fluid-structure interaction problems and porous
material problems. In acoustic fluid-structure interaction problems, the material choices are
non-porous solid and fluid phases, and the wave propagation is modelled using mixed for-
mulations [220, 267]. Within acoustic fluid-structure interaction, problems other than topology
optimisation such as material parameter estimation [92] have also found application of gradient-
based methods such as the method of moving asymptotes [239]. In porous material topology
optimisation problems, the material choices also include poroelastic materials, and specialised
Biot formulations [11, 17] are generally used. In some applications [46, 106], the boundary
element method is used to optimise the boundary topology instead of the bulk topology. In this
report, poroelastic material topology optimisation is in focus. Specifically, topology optimisa-
tion is referred to in the context of finding optimal mesoscale shapes and topologies, i.e., in the
order of magnitude of the material thickness, and not the optimisation of their microstructures,
which is a different research area.
Although metaheuristics have been previously tested on classical structural topology optimi-
sation problems [94, 205], their use has been limited in acoustic topology optimisation appli-
cations [201]. Only a few optimisation approaches have been tested, and optimisation theory
exclusive to this problem domain remains yet to be well explored. The present work is a step in
this direction.

6.1.4 Contributions in this chapter
The goal of the present chapter is to investigate the performance of alternative heuristic optimi-
sation approaches, including a few well-known metaheuristic approaches on a set of benchmark
problems. The purpose is to arrive at guidelines for designing better approaches for the absorp-
tion maximisation problem. The approaches compared are hill climbing, constructive heuristics,
SIMP, genetic algorithms, tabu search, CMA-ES and differential evolution. While SIMP and its
variants use gradients, none of the other approaches use any domain-specific information from
the problem other than the objective function. Optimisation tests show how different approaches
perform for various CPU time budgets. Notably, while SIMP algorithms produce good-quality
solutions at low CPU time budgets, certain other algorithms such as hill climbing, constructive
heuristics and CMA-ES outperform at higher computational budgets. The findings reported in
this chapter may serve as a useful prelude to develop better strategies for topology optimisation
in acoustic porous materials.

6.1.5 Organisation of this chapter
The chapter is organised as follows: An acoustic topology optimisation problem for maximis-
ing sound absorption is described in detail in section 6.2. This section also includes insights
about the problem structure, including the modelling methodology, fitness landscapes and com-
putational complexity. Concise descriptions and settings of the optimisation approaches are
given in section 6.3. In section 6.4, a set of five heuristic algorithms that include hill climbing,
two variants of constructive heuristic and two variants of SIMP are described. In section 6.5,
a set of six metaheuristic-based algorithms that include a genetic algorithm, a tabu search, two
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Figure 6.1: Optimisation problem formulation—the finite element model of a unit cell of a porous ab-
sorbing wall used to generate benchmark problems (see Section 6.2.7 in page 89).

variants of CMA-ES and two variants of differential evolution are described. The results from
the optimisation tests and comparisons are provided in section 6.6 that includes statistical tests
and landscape studies. A summary of the findings and some conclusive remarks are provided
in section 6.7.

6.2 Problem description

6.2.1 Optimisation formulation

The objective in a quintessential topology optimisation problem in porous-material acoustics is
the maximisation of the sound absorption coefficient. Given an acoustic system discretised into
finite elements such as an impedance tube system shown in Figure 6.1, consider the problem of
finding the best assignment of either air or a given porous material for each element in a design
domain to maximise the sound absorption in the material. The optimisation formulation for this
can be written as:
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max
χi

α(χ) =
1

n

fn∑
f=f1

α(χ, f) (6.1)

χ : χi ∈ {0, 1} ∀ i = 1, 2, . . . , N

α ∈ [0, 1]

Here, α(χ, f) is the sound absorption coefficient in normal incidence for a given shape χ for
frequency f , χi are the decision variables representing the choice between air and porous ma-
terial for the ith element, N is the number of elements in the design domain, and f1, f2, ..., fn
are the target frequencies for which the mean absorption is to be maximised (where n is the
number of frequencies considered). The symbol α is used to refer to the mean of sound absorp-
tion coefficient (α) across the target frequencies. In this report, α may be referred to as simply
absorption or fitness, which is to be maximised.
Note that in problem 6.1, a volume fraction constraint is not included, which is unlike in usual
topology optimisation problems. One reason is because in porous material topology optimi-
sation, often the optimal shapes need to be carved out from a large block of the base porous
material. The removed material may not often constitute material-saving, as the cost of recy-
cling the carved out material could negate the material-saving benefit. Another reason for not
including a volume fraction constraint is that more optimisation approaches can be tested as the
formulation would resemble a conventional discrete optimisation problem. Without the volume
constraint, the search space size becomes 2N since two choices are available (air or the base
porous material) for each of the N elements in the design domain. If a limit Vf is imposed on
the ratio of porous volume to the total volume in the design domain ( 1

N

∑N
i=1 χi = Vf ), the

search space size would become NC(VfN). In both these cases, the number of feasible solutions
grows quickly with increase in N . Since discrete optimisation problems are considered difficult
to solve, the problem is usually relaxed to a continuous problem allowing χi to take values be-
tween 0 and 1, in other words allowing intermediate materials between air and porous material
in the design domain. The problem is then solved using continuous optimisation approaches.
Intermediate materials given by χi ∈ (0, 1) are modelled using interpolation schemes. One such
interpolation scheme is the SIMP scheme (not to be confused with the SIMP approach). Using
this scheme, a material property, say, ψ for the intermediate material is given by equation 6.2.

ψi = ψair + χpi [ψpor − ψair] (6.2)

ψ ∈ {E, ν, ρ̃, γ̃s, ρ̃eq, K̃eq}

Here, ψ could be any property from Young’s modulus (E), Poisson’s ratio (ν), modified Biot
density (ρ̃), coupling factor (γ̃s), dynamic mass density (ρ̃eq), dynamic bulk modulus (K̃eq)
etc. The value ψair is the value of the material property for air, ψpor is the value for the porous
material considered, and ψi is the interpolated material property assigned to ith element through
the design variable χi. It satisfies that χi = 0⇒ ψ = ψair and χi = 1⇒ ψ = ψpor.
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Ei = Eair + χpi (Epor − EAir) (6.3)
νi = νair + χpi (νpor − νAir) (6.4)
ρ̃i = (ρ̃)por + χpi [(ρ̃)por − (ρ̃)air] (6.5)

γ̃(s)i = (γ̃s)air + χpi [(γ̃s)por − (γ̃s)air] (6.6)

K̃(eq)i = (K̃eq)air + χpi [(K̃eq)por − (K̃eq)air] (6.7)
ρ̃(eq)i = (ρ̃eq)air + χpi [(ρ̃eq)por − (ρ̃eq)air] (6.8)

Since filters in topology optimisation themselves play a role in the optimisation performance, no
filters or manufacturability restrictions are considered in this study with the view that these can
be done in post-processing. However, for a fair comparison between discrete and continuous
approaches, a simple round-off filter is applied to the solutions from continuous approaches.
This ensures that only solutions from the same search space, i.e. discrete, are compared.

6.2.2 Computing the fitness function: sound absorption

To compute sound absorption, the poroelastic system constituting the fixed and design domains
is modelled using the Biot assumptions of poroelastic material [27]. For modelling the two-
dimensional system, an alternative Biot finite element formulation described by Bécot and
Jaouen [17] is used. This formulation is based on the mixed {u, p̃} formulations by Göransson
[91] and Atalla et al. [11]. To naturally account for the interface between porous and air regions,
the unified analysis approach proposed and verified by Lee et al. [140] is adopted. For inter-
mediate material properties between air and porous material, the SIMP interpolation scheme
[22] is used. The poroelastic system governing equations can be expressed in matrix form as in
equation 6.9. [

K̃− ω2M̃ −C̃

−C̃T H̃/ω2 − Q̃

]
︸ ︷︷ ︸

S̃(ω)

{
{ũ}
{p̃}

}
︸ ︷︷ ︸

X̃(ω)

=

{
f̃u

f̃P/ω
2

}
︸ ︷︷ ︸

f̃

(6.9)

Here, (̃·) denotes the complex-valued nature of its argument. The expressions for the state
matrices K̃, M̃, H̃, Q̃ and C̃ are functions of the topological design/decision variables χ.
The construction of these matrices are followed from Atalla et al. [11]. The vectors {ũ} and
{p̃} denote the solid phase displacement and fluid phase pressure degrees of freedom in the
poroelastic system, respectively. The associated global stiffness matrix S̃(ω) and the acoustic
load vector f̃ are iteratively assembled over each angular frequency ω = 2πf to yield a system
of linear equations. These equations are solved as given in equation 6.10 to obtain the solution
vector X̃(χ, ω), which will contain the displacement and pressure fields of the solid and fluid
parts of the poroelastic material, respectively.

{X̃(χ, ω)} = [S̃(χ, ω)]−1{f̃} (6.10)

The system matrix is given by,

S̃ =

[
K̃− ω2M̃ −C̃

−C̃T H̃/ω2 − Q̃

]
(6.11)
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From Atalla et al. [11], the element stiffness matrix equations are given by:

K̃ei =

∫
[B]T [D]i[B]dV (6.12)

Here, [D]i depends on the Young’s modulus Ei and Poisson’s ratio νi of the material used in
the element i. Whereas, [B] is the solid part strain-displacement matrix that depends only on
the shape function and does not depend on χi. Likewise, the other element matrices can be
expressed from Biot equations using weak formulations as follows.

M̃ei = ρ̃i

∫
Ωe

[N ]T [N ]dV (6.13)

C̃ei = γ̃(s)i

∫
Ωe

NT∇NpdV (6.14)

H̃ei =
1

ρ̃(eq)i

∫
Ωe

∇[N ]Tp∇[N ]pdV (6.15)

Q̃ei =
1

K̃(eq)i

∫
Ωe

[N ]Tp [N ]pdV (6.16)

The properties of the material {Ei, νi, ρ̃i, γ̃(s)i, ρ̃(eq)i, K̃(eq)i} assigned to element i depend on
the design variable χi through equations 6.3 to 6.8. The corresponding properties of the porous
material may be obtained using a suitable acoustic model, for example, the Johnson-Champoux-
Allard-Lafarge or JCAL model [111, 43, 134]. These element matrices are then assembled into
the corresponding degrees of freedom in the global matrices K̃, M̃, C̃, H̃, and Q̃. Once these
global matrices are computed, the system matrix S̃ can be constructed and equation 6.10 can
be solved to obtain the pressures and displacements at all nodal points in the impedance tube
system.

Once the pressures and displacement fields are known, computing absorption may be done in
several ways. Two of the procedures that one can follow are provided below:

1. Two microphone method
2. Surface impedance method

Two-microphone method

Two-microphone method is a simple and commonly used procedure to compute absorption
which needs the pressure field values at only two points in the acoustic system [54]. It is widely
used in experimental measurements since only two devices are needed. The method assumes
plane waves in the air region in front of the design domain. Considering two closely spaced
points x1 and x2 in the air region (as shown in Figure 6.1 in page 75), the complex pressure
amplitudes in frequency domain P̃x1 and P̃x2 can be obtained from {p̃} in X̃. The plane wave
reflection coefficient R̃c can then be computed from these pressures as,

R̃c(χ, ω) =
P̃x1(χ, ω)e(−ikx2) − P̃x2(χ, ω)e(−ikx1)

−P̃x1(χ, ω)e(ikx2) + P̃x2(χ, ω)e(ikx1)
(6.17)
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Here, k is the wave number given by ω/cair with cair being the speed of sound in air. The sound
absorption coefficient α is then given by:

α(χ, ω) = 1− |R̃c(χ, ω)|2 (6.18)

Thus, the sound absorption can be computed for a given shape χ at a given frequency f .

Surface impedance method

Alternatively, one can use the surface impedance at a certain cross section in the air layer to
compute the average impedance at the source layer [7]. The surface impedance can computed
at an incident surface ΓI in the air layer away from the porous medium as:

Z̃sn(ω) = − P|ΓI

Vn|ΓI

, (6.19)

where P|Γi
and Vn|Γi

are the mean fluid pressures and normal velocities at the incident surface
ΓI , respectively. The mean normal fluid velocity is computed as:

Vn|ΓI
= jωUn|ΓI

, (6.20)

Here, Un|ΓI
the mean of normal fluid displacements at ΓI is evaluated as:

Un|ΓI
=

∑
Fg|ΓI

H|ΓI

(6.21)

Here, H is the chamber height and the intermediate quantity Fg is computed from the uncon-
strained system matrix using the following expression.

Fg = S̃(ω)︸︷︷︸
unconstrained

· X̃(ω)/ω2 (6.22)

Then, from Z̃sn(ω), the sound absorption coefficient α(ω) is computed as follows:

α(ω) = 1− |R̃c|2 = 1−
∣∣∣∣∣Z̃sn(ω)− Zair

Z̃sn(ω) + Zair

∣∣∣∣∣
2

(6.23)

Here, Zair represents the characteristic impedance of air. The surface impedance method is
considered to be more accurate, since it avoids the dependence on local pressure field variations
the two-microphone method is prone to. We have verified that these two methods produce close
results in most cases. Since two microphone method is cheaper for computing gradients, this
method is used in the optimisation trials.

6.2.3 Computing gradient of sound absorption
Gradient of absorption using the two microphone method

In this section, we will derive the equations to compute the gradient of sound absorption α with
respect to the design variables χi. We have seen that α can be computed from the complex
reflection coefficient R̃c as:

α = 1− |R̃c|2 (6.24)
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Using chain rule:
∂α

∂χi
= −2|R̃c|

∂|R̃c|
∂χi

(6.25)

To find the derivative of absolute value of ∂|R̃c|∂χi using commonly known rules, we can use
the formula:

∂|R̃c|
∂χi

=
<(R̃c × ∂R̃c

∂χi
)

|R̃c|
(6.26)

Here, <(·) is the real part, (·) is the complex conjugate operators. To compute the gradient of
the reflection coefficient, we can consider the equation 6.17, to be of the form

R̃c =
NR

DR

(6.27)

where
NR = (P̃x1e

(−ikx2) − P̃x2e(−ikx1)) (6.28)

DR = (−P̃x1e(ikx2) + P̃x2e
(ikx1)) (6.29)

Computing the derivative, we have,

∂R̃c

∂χi
=

(DR
∂NR

∂χi
−NR

∂DR

∂χi
)

D2
R

(6.30)

∂NR

∂χi
=

(
∂P̃x1
∂χi

e(−ikx2) − ∂P̃x2
∂χi

e(−ikx1)

)
(6.31)

∂DR

∂χi
=

(
− ∂P̃x1

∂χi
e(ikx2) +

∂P̃x2
∂χi

e(ikx1)

)
(6.32)

Note that NR, DR, ∂NR

∂χi
and ∂DR

∂χi
are intermediate variables and need to be recalculated for each

element i. The pressure field values P̃x1 and P̃x2 are elements of p̃ vector which is part of

X̃ =

{
ũ
p̃

}
. Hence, ∂P̃x1

∂χi
and ∂P̃x2

∂χi
can be obtained from ∂X̃

∂χi
as shown in equation 6.33.

X̃ =

{
ũ
p̃

}
=



ũ1
...
ũ2n

P̃1
...
P̃x1

...
P̃x2

...
P̃n



∂X̃

∂χi
=

∂

∂χi

{
ũ
p̃

}
=



∂
∂χi
u1

...
∂
∂χi
u2n

∂
∂χi
P1

...
∂
∂χi
P̃x1
...

∂
∂χi
P̃x2
...

∂
∂χi
Pn



(6.33)
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To find ∂X̃
∂χi

, equation 6.10 is differentiated to get the following expression.

∂

∂χi
X̃(χ, ω) = [S̃(χ, ω)]−1−∂[S̃(χ, ω)]

∂χi
X̃ (6.34)

The above equation is again a linear system (x = A−1b) which is expensive, and needs to be
computed at every element i in the design domain. However, there is an efficient way to compute
this using an adjoint-based approach similar to the one introduced by Lee, Göransson and Kim
[138] for multi-material topology optimisation. Since only two elements in ∂X̃

∂χi
i.e., ∂P̃x1

∂χi
and

∂P̃x2

∂χi
are required, one can premultiply equation 6.34 by the term ∂P̃x1

∂X
, which is a vector of 0s

except for one element with a value of 1 corresponding to the P̃x1 degree of freedom in equation
6.36.

∂P̃x1
∂χi

=
{
∂P̃x1

∂X

}T ∂X̃

∂χi
(6.35)

=
{
∂P̃x1

∂X

}T
[S̃]−1−∂[S̃]

∂χi
X̃ = λTx1

−∂[S̃]

∂χi
X̃{

∂P̃x1

∂X

}T
= [· · · · · · 1 · · · ] (6.36)

Then, one can find a fictitious response vector λx1 = [S̃]−1 ∂P̃x1

∂X
and compute ∂P̃x1

∂χi
for each i by

computing λTx1
(−∂[S̃]
∂χi

X̃
)

quickly. This avoids solving system of equations repeatedly for each
element or performing explicit matrix inversions. The above step is crucial for speeding up
gradient methods. Thus, in addition to solving [S̃(ω)]−1f̃ , two additional instances of solving
system of equations is involved in finding λx1 and λx2. Assuming all other steps are time in-
significant, function evaluation with gradients are approximately three times as expensive
as evaluating without gradient.
Note that this procedure has to be repeated at each frequency f and for fine frequency steps, the
calculation would become expensive. Although not implemented in this work, it is worth not-
ing that there exist various expansion methods [144, 209, 208] to speed up the computation by
interpolating values between frequencies. Further, the gradients −∂[S̃]

∂χi
are obtained by applying

chain rule all the way up to the material properties, which depend on the design variables χ.

In the remainder of this section, the full sensitivity computation is included even though these
computations do not take significant amount of computational time. The derivative of the global
assembled matrix −∂[S̃]

∂χi
is computed as follows:

∂S̃

∂χi
=

[
∂K̃
∂χi
− ω2 ∂M̃

∂χi
− ∂C̃
∂χi

−∂C̃T

∂χi

1
ω2

∂H̃
∂χi
− ∂Q̃

∂χi

]
(6.37)

For the sub matrices, the derivatives are propagated as follows. Calculating solid part element
stiffness matrix K̃ei derivative, from equation 6.12, we have:

∂K̃ei

∂χi
=

∫
Ωe

[B]T
∂[D]i
∂χi

[B]dV (6.38)

The above integration is done numerically using Gauss integration over the area of the element



82 Chapter 6. Single-objective topology optimisation

Ωe. Only [D]i is dependent on χi, hence:

[D]i =
Ei

(1 + νi)(1− 2νi)

1− νi νi 0
νi 1− νi 0
0 0 (1− 2νi)/2

 (6.39)

∂[D]i
∂χi

=
∂[D]i
∂Ei

∂Ei
∂χi

+
∂[D]i
∂νi

∂νi
∂χi

(6.40)

For the element mass matrix M̃ derivatives, only ρ̃ depends on χi. From equation 6.13,

∂M̃ei

∂χi
=
∂ρ̃i
∂χi

∫
Ωe

[N ]T [N ]dV (6.41)

From equation 6.14, we have,

∂C̃ei

∂χi
=
∂γ̃(s)i

∂χi

∫
Ωe

NT∇NpdV (6.42)

From equation 6.15

∂H̃ei

∂χi
=
−1

ρ̃2
(eq)i

∂ρ̃(eq)i

∂χi

∫
Ωe

∇[N ]Tp∇[N ]pdV =
−1

ρ̃(eq)i

ρ̃(eq)i

∂χi
H̃ei (6.43)

where ρ̃(eq)i is the equivalent density of the porous material. From equation 6.16,

dQ̃ei

dχi
=
−1

K̃2
(eq)i

∂K̃(eq)i

∂χi

∫
Ωe

NT∇NpdV =
−1

K̃(eq)i

∂K̃(eq)i

∂χi
Q̃ei (6.44)

where K̃(eq)i is the equivalent bulk modulus of the intermediate material assigned to element i.
Derivatives of Young’s modulus, Poisson’s ratio and other material properties can be calculated
from equation 6.3 to equation 6.8 as follows.

∂Ei
∂χi

= pχ
(p−1)
i (Epor − Eair) (6.45)

∂νi
∂χi

= pχ
(p−1)
i (νpor − νair) (6.46)

∂ρ̃i
∂χi

= pχ
(p−1)
i [(ρ̃)por − (ρ̃)air] (6.47)

∂γ̃(s)i

∂χi
= pχ

(p−1)
i [(γ̃s)por − (γ̃s)air] (6.48)

ρ̃(eq)i

∂χi
= pχ

(p−1)
i [(ρeq)por − (ρeq)air] (6.49)

∂K̃(eq)i

∂χi
= pχ

(p−1)
i [(K̃eq)por − (K̃eq)air] (6.50)

Thus, the gradient of absorption with respect to the design variables can be computed for use in
gradient algorithms.
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A Matlab implementation of the absorption and gradient computations are made available on
GitHub at https://github.com/VivekTRamamoorthy/Heuristics-and-metaheuristics-for-Acoustic-
Topology-Optimisation.

6.2.4 Verification of the modelling procedure
Absorption verification

In order to verify the accuracy of the engineering model discussed above to compute absorption,
let us consider the optimised shape produced by Lee, Kim, Kim and Kang (LKKK) [140] for
anechoic chamber wedges. The absorption curve for the optimised shape for a volume fraction
constraint of 50% was reproduced by digitally extracting the shape as shown in Figure 6.2(a)
left. The optimised porous shape was extracted from the pixel data, and the design variables
χ were determined as shown in Figure 6.2(a) right. The absorption curve extracted from [140]
and the one computed using our implementation match satisfactorily as shown in Figure 6.2(b),
thus verifying the implementation of absorption computation. The slight variations are thought
to be due to errors in digitisation.

Gradient verification

The gradient computation involves intensive calculations as shown in the previous section and
is prone to numerical errors. Hence, it is of great importance to ensure the accuracy limits of
the linear solver used and verify the gradients before using them in optimisation. One way
to verify the gradients is to compute them numerically by perturbing the values of the design
variables χi and ensuring that the slope of absorption matches the gradient calculated by the
analytical equations. For this, we can consider the LKKK shape shown in Figure 6.2(a), and
pick an arbitrary element and verify the following:

∂α

∂χi
≈ α(χi + δχi)− α(χi)

δχi
(6.51)

Here, δχi is a small perturbation in the design variable χi. Figure 6.3 shows the variation of α
with one of the design variables, say, χ457 with a blue solid line. For the shape considered, χ457

happens to be 1 indicating that the material in the element is porous. The gradient ∂α/∂χ457

computed using the procedure detailed in the previous section is used as the slope to draw a
dotted line from χ457 = 1. As we can see, the slopes of the lines match at the point indicating
that the gradient computed is reasonably accurate. This is generally the case for other elements
as well.

6.2.5 Fitness computation performance improvements
Symmetry assumption

Since fitness evaluation is expensive, it was important to ensure performant implementations.
Assuming that for sound sources under normal incidence, the shapes are expected to be sym-
metric about the horizontal centreline in the design domain. It is thus only necessary to model
one half of the design domain, reducing the matrix sizes and thereby the fitness evaluation
time. Symmetry is applied by imposing ux-free, uy = 0, P -free boundary conditions at the
centreline. It has been verified that modelling only one half of the symmetric design domain
gives the same absorptions as obtained when modelling the full unit cell with sliding supports

https://github.com/VivekTRamamoorthy/Heuristics-and-metaheuristics-for-Acoustic-Topology-Optimisation
https://github.com/VivekTRamamoorthy/Heuristics-and-metaheuristics-for-Acoustic-Topology-Optimisation
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(a) Extracting optimised shape from Lee, Kim, Kim and Kang [140].

(b) Absorption vs. frequency comparison.

Figure 6.2: Verification of absorption computation with existing literature. A comparison of absorption
coefficient between our implementation and that of the article published by Lee, Kim, Kim and Kang
[140].

in the top and bottom edges. Figure 6.4 shows a comparison of the absorption spectrum for a
given shape modelled in full and modelled in half. The difference is found to be negligible with
norm(|αfull − αsymmetric|) = 1.24 × 10−10 and hence, this symmetric model is used for the
optimisation trials to save computational time.

Effect of the air layer

Since the purpose of modelling the air layer in front of the design domain is solely to calculate
the absorption coefficient at different frequencies, consideration is given to using minimal num-
ber of elements along the length of the air layer. This is to keep the computational effort less
while reducing the error due to finite element discretisation. The general rule is to ensure that
the element lengths are much smaller than the acoustic wavelengths at the highest frequency. To
assess the effect of thickness of the air layer, the design domain is fully filled with porous ma-
terial, forming a single flat layer. Figure 6.5 shows the variation in absorption curves when the
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Figure 6.3: Verification of the analytical gradient with numerical gradient: The computed analytical
gradient matches the slope of the fitness function. Here, the dotted line is plotted using the analytical
gradient computed by our implementation. The blue line corresponds to absorption α recomputed at
different values for χi for i = 457.

Figure 6.4: Comparison of a full vs. half-symmetric model of the LKKK shape. The absorption differ-
ences are negligible.

length of this air layer is increased, while fixing the discretisation of air layer at 10 elements. A
comparison with the analytical solution from transfer matrix method calculations is also drawn.
As the thickness of the air layer is reduced from 500 mm to 10mm, the accuracy is improved
and the sound absorption vs. frequency curve matches with the TMM solution. The line corre-
sponding to an air layer thickness of 500 mm has inaccuracies in the higher frequencies because
of the element length being much larger relative to the wavelength and the finite element model
being unable to represent the physical wave propagating in the material. An element length of
100mm and lower seems to be able to match closely with the analytical solution from TMM.
The error between the finite element and TMM result for different discretisations along the
length of the air layer are shown in Figure 6.6. It is observed that the error reduces as the
thickness of the air layer reduces. However, it is noted that this is the case for flat layer porous
material. To ensure reasonable accuracy while also keeping the number of elements in the FE
problem low, the number of elements along the air layer is chosen according to the accuracy
desired.
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Figure 6.5: Effect of varying the thickness of the front air layer.
Effect of varying the thickness of the front air layer. As the element thickness is reduced from

500 mm to 10 mm, the absorption curve approaches the TMM solution.

Figure 6.6: Effect of number of elements along air layer in front of design domain. Plot lines show
the mean absolute error between finite element solution and transfer matrix method solution for the
absorption curve.

6.2.6 Computational complexity
Theoretical time complexity

We have seen how to compute absorption and its gradient, and the nature of computations
involved. At this point, it is worth highlighting the computational time complexity of these
computations and contrast them with the compliance minimisation problem. Although lots of
studies on compliance minimisation are available in the literature, in order for the results to be
applicable for absorption maximisation, one of the presumptions would be that the relative ex-
pensivenesses of fitness vs. gradient are similar. In this section, we will estimate the theoretical
and practical time complexities of fitness vs. gradient for the two problem domains.

(i) Computing the objective function The procedure to compute compliance and its gradient
will not be detailed here and can be followed from Andreassen et al. [10]. For evaluating the
compliance, the significantly expensive operation is solving for the displacements (ũ = K−1f ).
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Here, K is the global stiffness matrix in compliance minimisation (not to be confused with K̃
in absorption maximisation). K is a real, symmetric and positive definite matrix of dimensions
equal to the total degrees of freedom of the system. The precise matrix size depends on the
number of nodes Nnode rather than the number of elements N . Each node has two degrees
of freedom corresponding to horizontal and vertical displacements and hence K has a size of
2Nnode × 2Nnode. The number of nodes is of the same order as the number of elements making
the matrix sizeO(N)×O(N). Note that we use the same notation N to indicate the number of
elements in the design domain in both compliance minimisation and absorption maximisation.

For absorption maximisation, the most significant operation while computing fitness is solving
X̃ = S̃(χ, ω)−1f̃ . Here S̃ is a complex symmetric matrix with three degrees of freedom per
node corresponding to displacements in two dimensions and pressure field value making the
matrix size 3Nnode × 3Nnode. Complex numbers require 4 times the number of flops for multi-
plication and twice the number of flops for addition. Since these are constant factors, they don’t
play a part in the complexity and the dimensions will have the same complexityO(N)×O(N).
However, as S̃ is frequency dependent, the operations need to be repeated at each of the n target
frequencies considered.

Finding the vector solution to K−1f is equivalent to solving a system of linear equations given
by Ax = b. Solving such linear systems is an economically important computational task in
engineering. This computation can be performed more efficiently by using special procedures
instead of computing the inverse of the matrix explicitly (A−1) and then multiplying it with
the vector b. If A is a square matrix which is invertible with non-zero diagonal elements, the
classic Gauss-Jordan elimination can be used which has a complexity of O(N3). It is com-
monly implemented using LU decomposition and requires 2

3
N3 floating point operations [243],

where L and U are lower and upper triangular matrices. It has been shown that LU decompo-
sition can be performed with the same complexity as matrix multiplication [36]. Hence, the
matrix multiplication complexity of recursive algorithms such as Strassen [234] withO(N2.807)
and Coppersmith-Winograd [56] with O(N2.376) can be applied bringing down the theoretical
complexity exponent. However, further improvements have stagnated around the Coppersmith-
Winograd exponent [244]. Whereas if A is also symmetric and positive definite, Cholesky
decomposition can be used. A can then be decomposed into LL∗, where L is a lower triangular
matrix, and L∗ is its Hermitian. Cholesky decomposition is a quicker variant of Gauss elimina-
tion requiring 1

3
N3 flops [243], which makes it about twice as fast as LU decomposition. For

sparse symmetric or hermitian positive-definite A, Lipton et al. [150] have shown that for ma-
trices arising out of planar graphs such as those from finite element methods, x = A\b can be
computed with O(N1.5) time complexity. Since in compliance minimisation, it is well-known
that the stiffness matrices are symmetric and positive definite, the estimate for the theoretical
complexity is that of Lipton. Whereas for absorption maximisation, since the matrix is com-
plex symmetric but not Hermitian, this does not apply and the complexity remains at that of
Coppersmith-Winograd. A comparison of these complexities are provided in Table 6.1 for a
quick reference.

Although algorithms like Coppersmith-Winograd have smaller complexity exponents, the con-
stant terms are too large to be practical, making it a galactic algorithm [149] i.e., the problem
sizes where these algorithms tend to be useful are too large that they are rarely encountered in
practise. On the other hand, Strassen algorithm withO(N log2 7) is not a galactic algorithm since
it is implemented for large values of N . However, in most real life scenarios, non-recursive LU
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Table 6.1: Time complexity comparison. Here, N is the number of elements in the design domain and n-
number of target frequencies.

Time complexity Compliance
minimisation

Absorption
maximisation

Objective function O(N1.5) O(nN2.376)
Gradient O(N) O(nN2.376)
Objective + gradient O(N1.5) O(nN2.376)

and Cholesky are sufficiently fast and can be used in practise for sparse matrices. For example,
writing A\b using the backslash or mldivide operator in Matlab automatically selects from a se-
ries of algorithms based on the matrix type as shown in the mldivide documentation page [160].
For compliance minimisation, since the matrix K is symmetric and positive definite, Cholesky
decomposition [51] will be picked. However, since S̃ is not hermitian but complex symmetric,
Cholesky cannot be used and instead one has to resort to LU decomposition. This further makes
the practical computation of absorption maximisation require twice as many flops. Considering
all the differences between compliance minimisation and absorption maximisation, namely, the
degrees of freedom per node (2 vs. 3), element space (real vs. complex) and practical floating
point operations (1

3
N3 vs. 2

3
N3) required, for the same number of finite elements in the design

domain, it is roughly estimated that an absorption maximisation problem with a single target
frequency would be (3/2)3 × 4× 2 = 27 times as expensive.

(ii) Computing gradients In compliance minimisation, once the displacements ũ are com-
puted, the gradient of compliance can be found using the expression:

∂c

∂xe
= −pxp−1

e (Ee − E0)ũTe keũe (ref. [10]) (6.52)

Note that {ũe}8×1 and [ke]8×8 are element matrices with fixed matrix sizes. For two-dimensions,
a four-noded quadrilateral element would have two displacements per node and correspond-
ingly, the element matrix sizes would be 8. Hence, for computing the gradient at each element
in the design domain ∂c

∂xe
only a fixed number of arithmetic operations O(1) are required, and

computing for all the N elements makes the gradient time complexityO(N). This implies that,
once the objective function is evaluated to find ũ, the gradient in compliance minimisation can
be computed relatively quickly as N increases.

In absorption maximisation, this is not the case. Calculating the gradient ∂α
∂χi

requires two
instances of solving the system of linear equations. Hence, the gradient has the same time com-
plexity as that of the objective function unlike in compliance minimisation. Additionally, these
computations need to be repeated at each frequency, and the overall time complexity to com-
pute both absorption and its gradients is a factor of n higher, where n is the number of target
frequencies. Table 6.1 provides an overview of the comparison.

The fact that gradient computation has a higher time complexity in absorption maximisation as
opposed to compliance minimisation means that knowledge obtained from testing optimisation
algorithms on compliance minimisation may not be scalable to absorption maximisation.
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Table 6.2: Benchmark problem instances.

No. Problem instance name Mesh size Length Height fmin fstep fmax Material ID
nelx × nely D (m) d (m) Hz Hz Hz (see Table 6.3)

1 LKKK material broadband coarse-mesh 10× 10 0.135 0.054 100 100 1500 1
2 Melamine - building problem 15× 10 0.045 0.1 100 100 1500 2
3 High resistivity foam - low frequency 10× 10 0.1 0.1 50 50 500 3
4 Melamine - automotive problem 10× 10 0.02 0.1 100 100 1500 2
5 Melamine - high frequency problem 10× 10 0.02 0.1 2000 1000 5000 2
6 Melamine -broadband fine-mesh 50× 20 0.135 0.054 100 100 1500 2
7 Melamine -single target frequency 10× 5 0.135 0.054 500 500 500 2

Table 6.3: Acoustic and elastic properties of materials used in the benchmark problems in Table 6.2.

Material Material-1 Material-2 Material-3
parameters
Material: LKKK [140] Melamine High-resistivity

soft foam
Acoustic model: JCAL JCAL JCAL[111, 43, 134]
φ 0.9 0.99 0.8
Λ′ (µm) 449 196 100
Λ (µm) 225 98 10
σ (N·s·m−4) 25000 10000 300000
α∞ 7.8 1.01 3
k′0 4.75e-09 4.75e-09 4.75e-09
ρ (kg·m−3) 31.08 8 80
E (Pa) 800000 160000 30000
(ν) 0.4 0.44 0.44
(η) 0.265 0.1 0.01

6.2.7 Benchmark problem instances

For comparing the performance of various optimisation approaches, seven benchmark problem
instances with different characteristics as given in Table 6.2 are considered. In all of these
problem instances, the acoustic system is a simple two-dimensional rectangular unit cell of an
absorbing wall as shown in Figure 6.1 in page 75. The unit cell’s dimensions, its discretisation
into finite elements, the base porous material to fill the elements, and target frequencies to be
absorbed vary for each problem instance. For each problem instance, the rectangular unit cell
backed by a rigid wall on the right is assumed to be of different heights d. The region from the
rigid wall up to a length D is designated as the design domain. The design domain is followed
by a fixed domain, which is just an air layer with a length L so as to use the two microphone
method. The length L is chosen to be the same for each problem instance. The number of
finite elements in the design domain along the horizontal and vertical directions are denoted by
nelx and nely, respectively. A normal incidence sound source is modelled at the left end of
the system. Within the unit cell, symmetry is assumed about the central horizontal line, and
sliding boundaries (ux-free, uy = 0, P -free) are assumed at the top and bottom edges. In all
the problem instances, the mean sound absorption coefficient under normal incidence across the
target frequencies is to be maximised.

Although meant to be arbitrary, the problem instances chosen are picked from practical engi-
neering examples. The material used for optimisation for each problem instance is picked from
three choices in Table 6.3. In problem instance 1, a special material previously used by Lee,
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Kim, Kim, and Kang [140] (LKKK material) is used on a coarser 10 × 10 discretisation. Note
that the LKKK material may not representative of a physical material due to the high tortuosity
value of 7.8. Problem instance 2 features a 45 mm long design domain representative of a typi-
cal building application. Problem instance 3 uses an artificial material with a high static airflow
resistivity which is expected to have more intricate optimal shapes. In problem instance 4, a
thin design domain of 2 cm, representative of a foam layer in an automotive absorber, is con-
sidered. In problem instance 5, a thin layer is optimised for high-frequency absorption. Among
the problem instances, problem instance 6 has a relatively fine mesh size with 50× 20 elements
featuring a thicker design domain optimised on a broad frequency range. Other than 1 and 3,
all problem instances use Melamine foam for control. In problem instance 7, a single target
frequency is considered.

6.3 Experimental design for optimisation computer trials
Several gradient-free heuristic and metaheuristic approaches, including existing and novel meth-
ods, are evaluated in this study along with the state-of-the-art gradient-based approach SIMP.
Henceforth in this report, all the heuristic and metaheuristic approaches will be referred to as
algorithms, and they are not to be confused with exact algorithms as used by some authors. The
algorithms tested and their settings are summarised in Table 6.4.

Five heuristic algorithms namely HC, CH1, CH2, SIMPf0 and SIMPf2 are tested. HC is a first-
improvement hill climbing, where each element is flipped between air and porous material, and
the new solution is accepted if it is improving. Consecutive elements are flipped like in a raster
scan (row-by-row) until the function evaluation budget is used up. CH1 is a constructive heuris-
tic which starts from an air-filled solution and progressively adds porous material in elements
of best improvement in absorption. Similarly, CH2 starts from a porous material-filled solution
and progressively removes porous material from the elements where the decrease in absorption
is the least. SIMPf0 and SIMPf2 are solid-isotropic-material-with-penalisation approaches [10]
which use gradients of absorption to modify the solution at each step. While SIMPf2 uses den-
sity filtering, SIMPf0 uses no filtering techniques.

Four popular metaheuristic approaches are tested including genetic algorithm (GA), tabu search
(TABU), covariance-matrix-adaptation evolution strategy (CMA) and differential evolution (DE).
Additionally, discrete variants of CMA and DE, referred to as CMAd and DEd, where the con-
tinuous shapes are rounded to discrete before every absorption evaluation, are also tested. It is
noted that other variants of CMA were also studied but is not reported in this thesis.

Except for CH1 and CH2, all the other algorithms are non-deterministic as they embed a ran-
dom component, and each new trial of the non-deterministic algorithm could produce a different
near-optimal solution. For these algorithms, 31 trials were run on each problem instance in or-
der to assess their average performance and carry out statistical analysis.

All non-gradient algorithms are allowed 4096 function evaluations during the trials. Since eval-
uating absorption along with gradient takes approximately thrice the computational time (Equa-
tion. 6.35), SIMPf0 and SIMPf2 are allowed 1366 function evaluations.

For a fair comparison, all the algorithms are initialised from randomly generated solutions ex-
cept for CH1 and CH2 making no assumption about the problem. The discrete algorithms HC,
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Table 6.4: Optimisation approaches used in this study, with short pseudocode and some algorithmic and
experimental design attributes.

Abbr. Optimisation ap-
proach

Procedure and parameter settings Algorithm type:
Deterministic or
Non-deterministic

Trials Search
space

Gradient
usage

Fn.
eval.
budget

HEURISTICS
HC Hill climbing

(first improvement)
Start with a random binary array solution; Bit
flip the consecutive elements; Accept if improv-
ing and move to the next element; Repeat from
the start unless fn. eval. budget is used up. Ele-
ment ordering is like in a raster scan.

Non-deterministic
since starting solution
is random

31 Discrete No 4096

CH1 Constructive heuristic:
material addition

Start with air-filled design domain; Compute
absorption improvement at each element by fill-
ing porous material only in that element; Sort
elements; Add porous material at best ‘m’ im-
proving elements; Repeat until design domain
is fully porous; Track and return the best solu-
tion. m is chosen such that the budget is not
exceeded.

Deterministic 1 Discrete No 4096

CH2 Constructive heuristic:
material removal

Similar to CH1. Start from fully porous design
domain; Remove porous (replace with air) at
‘m’ least worsening elements; Repeat until all
porous is removed; Track and return the best
solution

Deterministic 1 Discrete No 4096

SIMPf0 SIMP with no filter [10] Start from a random continuous solution, fol-
low the SIMP procedure [10]; Omit the filtering
step. Use SIMP penalty p = 3; move update -
optimality criteria; move limit m = 0.2; Vol-
ume fraction limit Vf = 1.

Non-deterministic 31 Continuous Yes 1366

SIMPf2 SIMP with density filter
[10]

Start from a random continuous solution, fol-
low the SIMP procedure [10]; use density filter
ft=2. Use SIMP penalty p = 3; move update
- optimality criteria [101]; move limit m = 0.2;
Volume fraction limit Vf = 1; Filter radius rmin
=2.

Non-deterministic 31 Continuous Yes 1366

METAHEURISTICS
GA Genetic algorithm

[102]
Initialise population with 64 random binary so-
lutions; Selection: tournament–2; Crossover:
uniform; Mutation: bitflip; Mutation rate:
1/(N); Replacement: best of parents and off-
spring replace parents; Repeat from selection,
unless budget is used up.

Non-deterministic
(uses a random number
generator)

31 Discrete No 4096

TABU Tabu search [88] Initiate tabu list; Start with a random binary ar-
ray solution; Pick a random bit, not in tabu list;
Accept if improving and add the bit to tabu list;
tabu tenure: 20% ofN ; Pick another random bit
and repeat unless budget is used up.

Non-deterministic
(since starting solution
and moves are random)

31 Discrete No 4096

CMA Covariance-matrix-
adaptation evolution
strategy [100]

Relax problem to continuous using SIMP inter-
polation scheme with p = 3; Follow CMA pro-
cedure [100]; Terminate if budget is used up;
Discretise final continuous solution by round-
ing.

Non-deterministic
(uses a random num-
ber generator to sample
points from the distri-
bution)

31 Continuous No 4096

CMAd Discrete variant of
CMA

Follow CMA procedure in continuous space;
Before fitness evaluation, discretise the sampled
continuous solutions by rounding; Return the
rounded best solution. Interpolation scheme is
not necessary as continuous solutions are never
evaluated.

Non-deterministic 31 Discrete No 4096

DE Differential evolution
[232, 233]

Relax problem to continuous using SIMP inter-
polation scheme with p = 3; Follow differen-
tial evolution procedure [232, 233]; Stop if bud-
get is used up. Use population size=32; F=0.2;
CR=0.2;

Non-deterministic 31 Continuous No 4096

DEd Discrete variant of DE Follow the differential evolution procedure; Be-
fore fitness evaluation, discretise the sampled
continuous solutions by rounding; Return the
rounded best solution.

Non-deterministic 31 Discrete No 4096
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GA, TABU, CMAd and DEd are initiated from random discrete solutions with equal probability
of air and porous material for each element. Continuous algorithms are initiated from random
continuous solutions with each element assigned a random number uniformly distributed be-
tween 0 and 1.

Some of the approaches, namely, hill climbing, constructive heuristics, and the discrete variants
of CMA evolution strategy and differential evolution, in the specific way used, are proposed
and tested for the first time. The others are well-established algorithms, and resources includ-
ing surveys, tutorials and code implementations can be easily found in the literature.

It is noted that a thorough knowledge of all the algorithms is not essential to understand the
findings. Readers who are new to metaheuristics may consider these algorithms as black-boxes
which optimise the shape design by searching for the optimal assignment of the decision vari-
ables χ to maximise α(χ).

6.4 Heuristics

In this section, a concise description of the heuristic procedures used in the study is given. These
include hill climbing (HC), constructive heuristics (CH1 and CH2) and solid isotropic material
with penalisation (SIMPf0 and SIMPf2).

6.4.1 Hill climbing (HC)

Hill climbing refers to a greedy search procedure that makes a move and only accepts it if it
is improving. A move in optimisation is an operation that modifies a given solution. In this
implementation, initially a random discrete (binary) solution is generated (χ : χi ∈ {0, 1}).
The finite elements in the rectangular design domain are ordered row by row like in raster-
scanning (as also shown in Figure 6.1). A new solution is generated from the current solution
by a bit-flip move operation (air → porous, porous → air). If the new solution results in an
improvement, it is accepted as the current solution. If not, the current solution is unchanged.
Then the next bit is flipped. The process is repeated from the first element once all the elements
are flipped and checked. If no improvements are obtained in the last N (number of elements
in the design domain) steps or if the function evaluation budget is reached, the algorithm is
terminated. Note that this procedure does not impose any volume constraint. When used on
the MBB beam problem [217] in compliance minimisation, this procedure results in the trivial
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fully solid-filled design domain. Pseudocode for this procedure is provided in Algorithm 8.
Algorithm 8: Hill climbing (HC)
1 Initiate χ as a random binary vector of size N ;
2 Evaluate the objective function (α(χ)) ;
3 Set counter feval← 1 and budget ;
4 while feval < budget do
5 for j = 1, j ≤ N, j + + do
6 Set χnew ← χ ;
7 Bit flip χjnew ;
8 Evaluate α(χnew) ; Increment feval ;
9 Accept: χ← χnew if α(χnew) > α(χ);

10 end
11 end
12 Return χ as the best shape;

6.4.2 Constructive heuristics (CH1 & CH2)
Material addition (CH1)

In this procedure, a solution is constructed by incrementally adding porous materials, starting
from an air-filled design domain. At each step, all remaining air element in the design domain
are individually replaced with the porous material, and the corresponding change in absorption
is computed. At the end of a step, m best-improving air elements are filled with the base porous
material. This step is done repeatedly until all the elements are assigned to the porous material.
The best solution is tracked during the process and returned as the optimised shape. The move
size m is chosen such that the number of function evaluations necessary to fill the entire design
domain does not exceed the budget. A volume fraction constraint can be easily imposed in
this method by simply terminating the algorithm after the desired volume fraction is reached.
Thus, this method can be used on the classical topology optimisation problems with volume
constraint. Pseudocode for this procedure is provided in Algorithm 9.

Algorithm 9: Constructive heuristic: material addition (CH1)
1 Set the current solution to fully air filled design domain χ = {0} ;
2 Calculate the number of elements to add porous material in each step (m) so as not to

exceed budget;
3 repeat
4 for each remaining air element k : χk = 0 do
5 Convert the element to porous i.e. : χlocal ← χ, χlocal

k ← 1 ;
6 Evaluate absorption α(χlocal) ;
7 Save absorption increments ∆α(k) = α(χlocal)− α(χ) ;
8 end
9 Sort elements in descending order of absorption increments ks ← sort(∆α(k)) ;

10 Select the best m air elements to add porous material ks1,2,...,m ;
11 Add porous material to the elements χks1,2,...,m ← 1 ;
12 Evaluate α(χ) ;
13 Keep track of step solutions χ∗step ← χ

14 until the entire design domain is porous;
15 return the best step solution χ∗ ← best (χ∗step) ;
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Material removal (CH2)

In contrast to starting from a fully air-filled design domain and iteratively adding porous mate-
rial, one can start with a completely porous material-filled design domain and iteratively remove
porous material from the elements where the contribution to absorption is the least. The process
is repeated until all the porous elements are removed and the best solution found is tracked and
returned. At each step, m porous elements are removed, and m is determined such that the
budget is not exceeded. This approach would be the fastest for problem instances with porous
material-filled design domain as the best solution. The CH1 and CH2 procedures are similar to
evolutionary structural optimisation (ESO) [256]. While ESO for compliance minimisation uses
stress fields to make modifications to the solution in each step, in CH1 and CH2, the absorption
increments are used. Pseudocode for this procedure is provided in Algorithm 10.

Algorithm 10: Constructive heuristic:material removal (CH2)
1 Set the current solution to fully porous material in the design domain χ = {1} ;
2 Evaluate the objective function (α(χ)) ;
3 Calculate number of elements to remove porous material from in each step (m) from

budget;
4 repeat
5 for each remaining porous element k : χk = 1 do
6 Convert element to air i.e. : χlocal ← χ, χlocal

k ← 0 ;
7 Evaluate absorption α(χlocal) ;
8 Save absorption increments ∆α(k) = α(χlocal)− α(χ) ;
9 end

10 Sort elements in descending order of absorption increments ks ← sort(∆α(k)) ;
11 Select the best m elements to remove porous material ks1,2,...,m ;
12 Remove porous material from those elements and replace with air χks1,2,...,m ← 0 ;
13 Evaluate α(χ) ;
14 Keep track of step solutions χ∗step ← χ ; // Each step gives solution

with different volume fraction
15 until the entire design domain is air;
16 return the best step solution χ∗ ← best (χ∗step) ;

6.4.3 Solid isotropic material with penalisation (SIMP)
SIMP is a derivative-based continuous optimisation approach specially designed for topology
optimisation with a volume fraction constraint. The principle of this approach is to relax the dis-
crete topology optimisation problem to continuous space using the SIMP interpolation scheme,
and use the gradient of the objective function to make incremental moves using a move update
scheme. Some examples of move update schemes for SIMP are optimality criteria [101] and
method of moving asymptotes [238, 239]. In this implementation, a SIMP penalty of p = 3
is used and the procedure by Andreassen et al. [10] is followed. The volume fraction limit is
set to 1, and the move limit is set to 0.2. In SIMP, after each iteration, a filtering technique
is applied to ensure manufacturability, mesh-independence and prevent checkerboard-like so-
lutions [222]. Since manufacturability aspects are not considered for this study, the density
filtering step is omitted, and this procedure is called SIMPf0. However, SIMP with a density
filter referred to as SIMPf2 is also tested as a control. Although the usage of density filtering
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favours discrete solutions, it does not strictly impose discrete solutions. The final shapes from
SIMPf0 and SIMPf2 are subject to a simple round-off filter to ensure discrete (0 or 1) solutions.
Pseudocode for SIMPf0 and SIMPf2 are provided in Algorithms 11 and 12.

Algorithm 11: Solid isotropic material with penalisation [10] without filter (SIMPf0)
1 Initiate χinit ← Vf× ones(N,1);
2 Set χ← χinit;
3 while Termination criterion is NOT met do
4 Assemble the FE global matrices using χ and calculated material properties at each

frequency;
5 Evaluate absorption α(χ, f);
6 Evaluate derivatives at each frequency (dα/dχ)f ;
7 Set c = 1− 1/nf

∑
f α(χ, f); // c to be minimised

8 Set the sensitivities dc/dχ = −1/nf
∑

f (dα/dχ)f ;
/* Omit the filtering step */

9 Update design variables χ← OptimalityCriteria(χ, c, dc/dχ);
10 end
11 return Best χ∗ ← χ;

Algorithm 12: Solid isotropic material with penalisation [10] with density filter
(SIMPf2)
1 Initiate χinit ← Vf× ones(N,1);
2 Set χ← χinit;
3 while Termination criterion is NOT met do
4 Assemble the FE global matrices using χ and calculated material properties at each

frequency;
5 Evaluate absorption α(χ, f);
6 Evaluate derivatives at each frequency (dα/dχ)f ;
7 Set c = 1− 1/nf

∑
f α(χ, f); // c to be minimised

8 Set the sensitivities dc/dχ = −1/nf
∑

f (dα/dχ)f ;
9 Use density filter;

10 Update design variables χ← OptimalityCriteria(χ, c, dc/dχ);
11 end
12 return Best χ∗ ← χ;

6.5 Metaheuristic approaches
Metaheuristics are high-level problem-independent guidelines to design heuristic optimisation
approaches [89, 226]. Since topology optimisation can be represented as either discrete or con-
tinuous optimisation, two metaheuristics for discrete optimisation, namely, genetic algorithms
and tabu search, and two metaheuristics for continuous optimisation, namely, CMA evolution
strategy and differential evolution (DE) are studied, along with their discrete variants, CMAd
and DEd.
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6.5.1 Genetic algorithm (GA)
The notion of mimicking the process of natural evolution to optimise was first introduced by
Holland [102], and since then, genetic algorithms have been used successfully in many appli-
cations. In the procedure used here, the initial population is obtained by generating random
binary arrays. Parameter tuning revealed that for 4096 function evaluations, a population size
of 64 gives the best results. Tournament selection is applied with a tour size of 2 to choose
parent solutions for recombination. The selected solutions are subject to a uniform crossover to
generate the two offspring solutions. With a mutation probability of 1/array length (N ), each
bit in the offspring is mutated by bit flip operation to generate the two mutated children. The
best two out of the parents and mutated offspring are replaced into the population of the next
generation. The process is repeated until the function evaluation budget is used up. Pseudocode
for this procedure is provided in Algorithm 13.

Algorithm 13: Genetic algorithm (GA)
1 χj ←Generate initial population;
2 Evaluate their fitnesses α(χ);
3 repeat
4 Apply tournament selection with tour size 2 to pick parent solutions;
5 Crossover the selected solutions using uniform cross over;
6 Mutate the offspring with a rate of 1/chromosome length;
7 Evaluate the fitness of the offspring;
8 Replace the best of offspring and parent into the parents in the population;
9 Update the best solution;

10 until Termination criteria NOT met;
11 Return best;

Parameter tuning

In order to tune the parameters used in genetic algorithms, a few sample problem instances with
single target frequencies were considered. It was found that a mutation rate of 1/chromosome
length gave the best performance across several problem instances. The reason for 1/chromo-
some length performing the best may be explained as follows. When the genetic algorithm
reaches a near optimal solution, the true optimal solution may be a few hamming distances
away, with Hamming distance being the number of bits which are different between two solu-
tions. Considering a mutation rate of 1/chromosome length is expected to flip one bit, flipping
2 or more bits in a near optimal solution, is more likely to result in poorer solutions. This
is empirically confirmed by parameter tuning studies shown in Figure 6.7. In this figure, five
problem instances considered at various target frequencies ranging from 100 Hz to 2000 Hz are
optimised using genetic algorithms with different mutation rates keeping all other aspects fixed.
At each mutation rate, 31 trials of genetic algorithm were run. The distribution of the optimal
solution fitnesses from these trials are plotted in each figure. It may be observed that the fitness
values to be maximised are higher for a mutation rate around 1/chromosome length in all the
problem instances. Hence, this mutation rate was used in further genetic algorithm studies.

Similarly, parameter tuning is performed on the population size. To study this, the same problem
instances were optimised using a genetic algorithm with a fixed mutation rate of 1/chromosome
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(a) 100 Hz (b) 200 Hz

(c) 500 Hz (d) 1000 Hz

(e) 2000 Hz

Figure 6.7: Effect of different mutation rates for a set of problem instances using five different absorption
target frequencies, all 10× 10 grid size filled with low resistivity Melamine foam. At each mutation rate
31 trials were run and the distribution of the best fitnesses are shown. The boxes enclose first to third
quartiles, the whiskers denote the span and the crosses are the outliers.
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(a) 100 Hz (b) 200 Hz

(c) 500 Hz (d) 1000 Hz

Figure 6.8: Effect of initial population size in genetic algorithms for (a) 100 Hz, (b) 200 Hz, (c) 500
Hz and (d) 1000 Hz problem instances with the material filled being low resistivity Melamine. At each
population size, 31 trials were run and the distribution of the best fitnesses are shown. The maximum
function evaluation budget is 2048. The population size of 2048 corresponds to random search trials.
The boxes enclose first to third quartiles, the whiskers denote the span and the crosses are the outliers.
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length but with various population sizes. Considering population sizes {2, 4, 8, 16, 32, 64, 128,
256, 512, 1024, 2048}, the results with a total fitness evaluation budget of 2048 is studied. The
initial population fitness evaluation is included in this budget and until the budget is used up, the
genetic algorithms are continued. The distribution of best fitnesses from 31 trials of optimisation
at every population size is plotted for a few problem instances in Figure 6.8. The results indicate
that a population size of 32 or 64 gives better performance. Using an initial population size of
2048 with a fitness evaluation budget of 2048 is essentially random search as no more fitness
evaluations would be allowed after the initial population is evaluated. Comparing the results for
2048 population size with other population sizes, we observe that genetic algorithms perform
better than random search on this problem domain.

6.5.2 Tabu search (TABU)

Tabu search is a single point-based local search procedure, first proposed by Glover [88], which
uses a high-level procedure that forbids reversing moves for a certain number of subsequent
moves. That is, if a bit is flipped from 0 to 1, it will not be flipped back to 0 for a specified
number of next moves. Using a forbidden list (tabu list) helps avoid getting stuck at the local
optimum and cycling through the same set of solutions. The tabu moves are liberated from
the tabu list after a set number of moves called the tabu tenure (T ). Here, a random binary
initial solution χ is generated. A tabu length array (T) corresponding to the tabu period for
each bit is initiated with zeros. In each step, a randomly chosen element χk is picked from
those elements which are not tabu (i.e. Tk 6= 0). If bit flipping the chosen element improves
the solution, the move is accepted, and the chosen bit is made tabu for the next T iterations
(Tk ← T ). The tabu length of other bits with non-zero tabu lengths are decremented (i.e.
Tj ← Tj − 1 ∀ j : j 6= k & Tj 6= 0). A tabu tenure of 20% of the problem size (T = 20%N)
is chosen for this implementation after testing several values. Pseudocode for this procedure is
provided in Algorithm 14.

Algorithm 14: Tabu search for acoustic topology optimisation (TABU)
1 Generate initial solution χ ;
2 Initiate tabulist T = {0}N×1;
3 Set tabu tenure t ;
4 Evaluate objective function α(χ);
5 while Termination criteria is not met do
6 Generate non-tabu neighbour: χ′

7 χ′ ← χ ;
8 Pick k such that tabulist(k) = 0 ;
9 Bitflip χ′k ;

10 if χ′ better than χ then
11 Set χ← χ′; Set f ∗ ← f(χ′) ;
12 Update tabulist Tk ← Tk + t;
13 end
14 end
15 return χ∗ ← χ ;
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Algorithm 15: Covariance matrix adaptation-evolution strategy (CMA)
1 Get finite element mesh, frequencies, material properties and other common

parameters;
2 Initiate χmean ← rand(N,1) , σ ← 3 and B ← IN×N ;
3 Set population size, λ← 4 + b3 log(N)c ;
4 Set strategy parameters for selection;
5 Set strategy parameters for Adaptation;
6 Initialize dynamic strategy parameters and constants;
7 Set fevals← 0;
8 while fevals < budget do
9 for k = 1, k <= λ, i+ + do

10 χ(k) ← χmean + σ[B]D × randn(N, 1) ;
11 for i = 1, i <= N, i+ + do
12 if χ(k)

i < 0 then
13 χ

(k)
i = 0 ;

14 end
15 if χ(k)

i > 1 then
16 χ

(k)
i = 1 ;

17 end
18 end
19 Assemble FE system matrices;
20 Evaluate absorption α(χ(k)) ;
21 Set fevals← fevals+ 1;
22 Set f(χ(k)) = 1− α(χ(k)) ;
23 end
24 Sort and compute weighted mean into χmean;
25 Cumulation: Update evolution paths;
26 Adapt covariance matrix [C];
27 Adapt step size σ;
28 Decomposition of [C] into [B]diag([D]2)[B]′ ;
29 Update best shape χ∗← best(χ∗,χ(k))

30 end
31 return Best χ∗ ;
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Algorithm 16: Discrete variant of CMA-evolution strategy (CMAd)
1 Get finite element mesh, frequencies, material properties and other common

parameters;
2 Initiate χmean ← rand(N,1) , σ ← 3 and B ← IN×N ;
3 Set population size, λ← 4 + b3 log(N)c ;
4 Set strategy parameters for selection;
5 Set strategy parameters for Adaptation;
6 Initialize dynamic strategy parameters and constants;
7 Set fevals← 0;
8 while fevals < budget do
9 for k = 1, k <= λ, i+ + do

10 χ(k) ← χmean + σ[B]D × randn(N, 1) ;
11 for i = 1, i <= N, i+ + do
12 if χ(k)

i < 0 then
13 χ

(k)
i = 0 ;

14 if χ(k)
i > 1 then

15 χ
(k)
i = 1 ;

16 Assemble FE system matrices;
17 Evaluate absorption of rounded solution α(bχ(k)e) ;
18 Set fevals← fevals+ 1;
19 Set f(χ(k)) = 1− α(bχ(k)e) ;

20 Sort and compute weighted mean into χmean;
21 Cumulation: Update evolution paths;
22 Adapt covariance matrix [C];
23 Adapt step size σ;
24 Decomposition of [C] into [B]diag([D]2)[B]′ ;
25 Update best shape χ∗← best(χ∗,χ(k))

26 return Best χ∗ ;
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6.5.3 Covariance-matrix-adaptation evolution strategy (CMA)
Covariance matrix adaptation-evolution strategy is a state-of-the-art black-box optimisation al-
gorithm for continuous optimisation which has outperformed many other evolutionary algo-
rithms in hundreds of applications [99] (black-box means that it only uses the result of the fit-
ness evaluation, and does not use the internal structure of the fitness, in particular, does not use
derivatives). CMA-ES constructs a multivariate Gaussian response surface by iteratively sam-
pling points in the search space and adapting the covariance matrix of the multivariate Gaussian
to perform the search. The Matlab implementation for CMA-ES provided by Hansen [100]
is adapted for performing topology optimisation. The full algorithm and procedure are not
discussed in this thesis as it can be found in numerous others. The pseudocode for topology
optimisation using CMA-ES is provided in Algorithm 15.

In this application, the unconstrained CMA-ES was modified to include upper and lower limit
constraints on the design variables. To ensure χi is not below 0 or above 1, after the CMA-ES
samples points within the N dimensional hypercube (χi ∈ [0, 1] ∀ i ∈ 1...N), the values
below 0 are forced to be equal to 0 and the values above 1 are forced to be equal to 1.

In the implementation, the strategy parameters and constants are adopted from the Matlab code
by Hansen [100]. The lines 24-28 in the pseudocode 15 are elaborated in the paper by Hansen
[100]. In the pseudocode, IN×N is the identity matrix of size N × N and λ is the population
size. The expression randn(N, 1) generates a vector of random numbers of size N from the
standard normal distribution. The function diag() returns the elements in the leading diagonal
of a square matrix.

The CMA-ES solutions did not result in 0 or 1 shapes in most trials despite using the recom-
mended value for the material interpolation penalty (p = 3). Many elements had χi between 0
and 1 which correspond to intermediate materials between air and the porous material. Since in-
termediate materials are not physically realistic, a simple round-off filter was used χ∗ = bχ∗e.
The rounding filter is expressed in equation 6.53. An illustration of rounding the best shape
from one of the trials is provided in Figure 6.9. Rounding off optimised solutions after termina-
tion of the algorithm can result in a small reduction or increase in absorption values. To ensure
fairness, the comparison will be made only with rounded solutions from continuous algorithms.

χ∗ = round(χ∗) = bχ∗e = {bχ∗1e , bχ∗2e ..., bχ∗i e ..., bχ∗Ne}T (6.53)

bxe =

{
0 when 0 < x ≤ 0.5
1 when 0.5 < x ≤ 1

(6.54)

6.5.4 Discrete variant of CMA evolution strategy (CMAd)
In this variant of the CMA evolution strategy, the sampled continuous solutions are rounded to
discrete solutions before evaluating the fitness function. The procedure is the same as CMA
except that the fitness function is α(bχe) instead of α(χ), where b·e is the round operator. Even
though CMA searches in the continuous space, since the evaluated solutions are always dis-
crete, CMAd essentially searches in the discrete solution space. The best solution returned in
the end is the rounded continuous solution (bχ∗e). Pseudocode for this procedure is provided
in Algorithm 16
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Figure 6.9: An illustration of rounding best shape from trial 14 of CMA to get 0 or 1 shapes on prob-
lem instance 1. The values 0 and 1 correspond to air and porous material respectively, and the greys
correspond to intermediate materials.

6.5.5 Differential evolution (DE)

Algorithm 17: Differential evolution (DE) adapted to topology optimisation
1 χj ←Generate Initial Population;
2 Evaluate their Fitnesses αj ← α(χj);
3 while fevals < budget do
4 for j = 0, j = length[pop], j + + do
5 Randomly select a, b, c from pop;
6 y ← a+ F × (b− c);
7 for i = 0, i = length[χj], i+ + do
8 if rand <CrossoverRate then
9 yi ← χji ;

10 end
11 end
12 Evaluate α(y);
13 if α(y) is better than α(χ) then
14 Replace χj ← y
15 end
16 Keep track of the best solution χ∗;
17 end
18 end
19 return χ∗;

Differential evolution is a population-based metaheuristic for real-valued optimisation intro-
duced by Price and Storn [232, 233]. An introduction to DE is provided in chapter 2 and hence
not repeated here. Topology optimisation is a unique problem with very large number of de-
cision/design variables and the performance of DE on such problem is not fully explored. In
topology optimisation, variations within a design variable are not important and a real-valued
optimisation across one of the design variables is a futile exercise as this corresponds ultimately
to the binary decision. However, there is benefit to using DE such as the fact that the difference
vector is an efficient way to move multiple variables simultaneously, which could help in con-
vergence.
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To apply DE in topology optimisation, an initial population of random real-valued solutions
representing the design variables (χ) are generated. For every member of the population x,
three other unique members a,b, c apart from x are chosen randomly from the population. A
new member y is obtained by a simple formula such as y = a + F × (b− c) where F ∈ [0, 2]
is the differential weight. For all i ∈ {1, 2, ...N}, with a cross over probability CR ∈ [0, 1],
yi ← xi is set. The objective function is evaluated for y and if it is an improving move, then x
is replaced. This process is repeated until the function evaluation budget is reached. Algorithm
17 provides a pseudocode for the implementation in the context of topology optimisation.

Parameter tuning

To tune the parameters used in differential evolution, tests were performed on a sample problem
instance using various initial population sizes, CR and F values. For this, the problem instance
7 was considered, and several trials of DE are run. The results as shown in Figure 6.10 indicate
that a population size of 32 lead to better performance, and that CR and F values do not play a
significant effect.
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(a) Parameter tuning on population size npop

(b) Parameter tuning crossover rate CR

(c) Parameter tuning F

Figure 6.10: Differential evolution parameter tuning studies.

6.5.6 Discrete variant of differential evolution (DEd)

The discrete variant of differential evolution (DEd) is similar to DE except that a round-off filter
discretises all solutions before the objective function is evaluated. Even though the algorithm
searches in the continuous space (χ : χi ∈ [0, 1]), the objective function optimised for is
the rounded solution α(bχe). Thus, DEd is essentially finding solutions in the discrete search
space. The best solution returned is the rounded continuous solution (bχ∗e). Pseudocode for



106 Chapter 6. Single-objective topology optimisation

this implementation is provided in Algorithm 18.
Algorithm 18: Differential evolution-discrete variant (DEd)
1 χj ←Generate Initial Population;
2 Evaluate their Fitnesses αj ← α(bχje);
3 while fevals < budget do
4 for j = 0, j = length[pop], j + + do
5 Randomly select a, b, c from pop;
6 y ← a+ F × (b− c);
7 for i = 0, i = length[χj], i+ + do
8 if rand <CrossoverRate then
9 yi ← χji ;

10 end
11 end
12 Evaluate α(by)e;
13 if α(bye) is better than α(bχe) then
14 Replace χj ← y
15 end
16 Keep track of the best solution χ∗;
17 end
18 end
19 return χ∗;

6.6 Results and discussion

6.6.1 Run time performance comparison

One of the desired aspects of a good topology optimisation strategy is the ability to find better
quality solutions in a limited CPU time. Figure 6.11 compares the progress of the best-so-far
absorption values (α) obtained versus CPU time used by various algorithms on problem in-
stance 6. Multiple machines were used to run the optimisation tests, and in order to remove the
machine dependence on runtime in Figure 6.11, the best-so-far absorption values are tracked
against the number of function evaluations. The runtimes are then computed by using aver-
age time per function evaluation clocked on a reference machine. The reference machine used
features an Intel(R) Core(TM) i7-3820 CPU 3.6 GHz processor, 32 GB RAM and a 64-bit
Windows 10 operating system running Matlab2019b [161]. Scales indicating the number of
function evaluations are also provided for benchmarking purposes. For all non-deterministic
algorithms, as multiple trials are run, the absorption values are averaged across the 31 trials
after each generation of the algorithm as illustrated in Figure 6.12.

In Figure 6.11, firstly, note that initial absorption levels are different for the algorithms. While
the discrete algorithms HC, GA, TABU, CMAd and DEd are initiated from random discrete
solutions with α around 0.71, the continuous algorithms CMA, DE, SIMPf0 and SIMPf2 are
initiated from random continuous solutions with α around 0.65. CH2 starts from fully porous
design domain with α around 0.84 and CH1 starts from an empty (air-filled) design domain
with no absorption.

One of the first things to note is that the CH2 does not produce an improvement from the fully
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(a)

Figure 6.11: Run time progress of best absorption found (trial-averaged) for problem instance 6.

porous-filled solution and hence the best-so-far absorption value stays the same for this prob-
lem. For low CPU-time budgets (up to under half a minute), SIMPf0 and SIMPf2 produce
higher quality solutions than all the other algorithms except CH2. SIMPf0 and SIMPf2 con-
verge to a higher absorption than the porous-filled CH2 solution in under 5 minutes on this
problem instance highlighting that gradient-based methods can be time-efficient. After about
20 minutes of runtime, HC produces better solutions on average than SIMP, but the difference
is small.

After the designated budget (4096 gradient-free function evaluations or 1366 gradient-included
function evaluations), HC, SIMPf2, TABU, SIMPf0 and CH1 produce the top tier solutions.
CMAd follows closely by producing slightly better-quality solutions compared to fully filled
CH2 solution towards the end. Whereas for DEd and GA, the runtime performance was consid-
erably poor.

It is important to appreciate that the solutions from continuous algorithms (CMA, DE, SIMPf0
and SIMPf2) consider intermediate materials, whereas the discrete algorithms consider only
porous material or air solutions. Since the solutions are from different search spaces, the ab-
sorption levels may not be directly compared between the two. Although, the final shapes from
continuous algorithms are desired to be 0 or 1, they are often not. Hence, they are forced to be
discrete using a simple round-off filter, and the absorption values are recomputed. Such round-
ing leads to a drop or surge in the absorption values at the end of all continuous algorithms as
can be observed noticeably in CMA and DE plot lines in Figure 6.11. The rounded absorptions
indicated by the end markers are also trial-averaged. Rounding leads to no significant changes
in SIMPf0 and SIMPf2 solutions for this problem instance. For CMA and DE, the rounded-
solution absorption values were poorer to that of SIMP solutions.
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Figure 6.12: An illustration of trial averaging. The blue lines indicate the best-so-far absorption values
from CMA in each trial for problem instance 1. These values are averaged to obtain the orange line.
After the shapes are discretised, the absorption values are recomputed, and in this case they reduce
slightly. Only such trial-averaged plot lines are shown in Figure 6.11 and 6.13.

The above behaviour of continuous algorithms does not seem to be the general trend across all
problem instances. When considering the runtime performance of problem instance 1 shown in
Figure 6.13, SIMP algorithms produce final solutions with intermediate materials which when
rounded result in a significant reduction in absorption. This behaviour is also prominent in other
problem instances especially the one with the high resistivity material (problem instance 3).

Figure 6.13: Progress of best absorption found vs. runtime: problem instance 1.

6.6.2 Final solution quality comparison
After rounding the continuous algorithm solutions and re-evaluating absorption, the distribution
of final absorption values are shown in Figure 6.14. What is interesting to note is that for non-
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deterministic algorithms, the 31 trials do not necessarily result in the same optimised shapes
and the final absorption values are spread out. The boxes enclose first to third quartiles (i.e. 25
percentile to 75 percentile), the whiskers denote the span, and the crosses denote the outliers.

Figure 6.14: Distribution of best-solution absorption across trials for problem instance 6.

Often in practice, a particular topology optimisation strategy may be chosen, and one trial may
be run to determine a near-optimal shape. In such cases, it is desirable to pick an algorithm
that has the best median-performance across trials. Hence, using the median absorption across
trials, the algorithms are sorted best to worst from left to right in Figure 6.14 for problem in-
stance 6. HC and SIMPf2 turn out to be the top performing algorithms for this problem instance
followed by TABU, SIMPf0 and CH1 in the second tier. DE, CMA and CMAd follow with all
trials producing better solutions than the fully-filled CH2 solution. DEd and GA performed the
poorest with no trials producing better than the fully-filled solution. The best fitness distribution
for other problem instances are provided in the appendix B.2.

Figure 6.15: Impact of trials on the shapes produced from the top four algorithms for problem instance
6. A common attribute in these shapes is a thin air layer close to the rigid wall.
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The shapes produced from 10 of the 31 trials from the top four algorithms are displayed in
Figure 6.15. Most shapes seem to have a thin layer of air near the rigid backing as this allows
removing elastic resonance around 500 Hz as can be observed from the absorption curves in
Figure 6.16. Note that without filtering, SIMPf0 produces intricate designs near this thin air
strip compared to SIMPf2.

Figure 6.16: Sound absorption curves of optimal shapes from four selected algorithms for problem
instance 6.

6.6.3 Performance across problem instances

For an overall comparison, the ranking is extended to other problem instances in Table 6.5. Such
a comparison across many problem instances is essential as algorithms performing well on one
problem instance need not necessarily perform well on other problem instances. The ranking
scheme is such that if the median absorption values of two or more algorithms are the same
correct to two decimal places, they are assigned the same rank. This ranking is only provided
for a quick summary of the optimisation tests, and it is emphasised that the ranks may not be
the same for a different set of problem instances.
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Table 6.5: The algorithms are ranked based on median values of optimised shape absorption (α∗) across
trials. Lower the average rank, the better is the performance of the algorithm. Algorithms are sorted
based on the average of the ranks across problem instances. This ranking scheme is provided for a quick
look up only and not meant to be a precise indicator of the performance. The ranking could change if
more problem instances and algorithms are considered.

Ranks Problem instances→ Avg. rank
Algorithms ↓ 1 2 3 4 5 6 7
HC 1 1 3 1 1 1 1 1.29*
CMAd 1 3 1 1 4 8 1 2.71
CH1 7 1 8 1 1 3 1 3.14
TABU 1 5 4 8 7 3 1 4.14
CH2 5 6 4 1 4 9 1 4.29
SIMPf0 8 3 10 1 4 3 9 5.43
SIMPf2 10 6 11 1 1 1 11 5.86
DEd 1 9 2 10 9 10 1 6
CMA 6 6 4 8 9 7 8 6.86
DE 11 11 9 1 7 6 9 7.71
GA 9 10 4 11 11 11 1 8.14

From Table 6.5, one can observe that HC, CMAd and CH1 rank among the top three in terms
of the averaged rank. Although SIMPf0 and SIMPf2 performed well on problem instance 6
from Figure 6.11, they take respectively the 6th and 7th places overall. Surprisingly, the simple
first-improvement hill climbing (HC) ranks among the best in all problem instances except the
high-resistivity material instance (problem instance 3). This means that HC’s potential can
be exploited by using it in hybrid algorithms. CMAd and CH1 ranked first in four problem
instances. Although CMAd ranked 8th in problem instance 6, its overall performance across
the problem instances puts the algorithm in the second place. Notably, in problem instance
3, which considers a high static airflow resistivity material, CMAd performed the best. This
problem instance likely has many local optima and the performance of CMAd indicates its
global topology optimisation potential. The poor performance of the SIMP algorithms in this
problem instance is likely due to the multi-modality of the objective function and premature
convergence to local optima. Although the progress of absorption in the initial stages of CH1
is slow compared to the other algorithms, the final absorption value makes CH1 one of the best
algorithms. Notably, for many problem instances considered, the best absorption value from
CH1 is higher than the absorption of the discretised solutions from both SIMPf0 and SIMPf2.
CH1 seems to be better overall compared to CH2, indicating that constructing the solution
from scratch may be better than removing material from a fully-filled solution. Performance of
CMA and DE were relatively poor in this benchmark. One reason could be that the number of
design variables is large and these strategies do not exploit the correlation of the neighbouring-
element design variables, a special attribute in topology optimisation problems. Both CMAd
and DEd seem to perform better than CMA and DE in general, indicating that rounding during
the algorithm may be a better approach than rounding the solutions after the termination of
continuous algorithms. While CMAd ranked among the top, the performance of DEd was
similar to that of SIMP in terms of solutions quality. Among the algorithms considered, GA
performed the poorest. Though, scope for improvement exists in terms of using better mutation
and crossover operators adapted to topology optimisation [115, 135, 268], focus may be diverted
to other strategies which show better promise.
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Best shapes Problem instances →

Algorithms ↓ 1
α ( Vf )

2 3 4 5 6 7

HC

0.91 (0.75) 0.58 (0.93) 0.84 (0.62) 0.21 (1.00) 0.68 (0.94) 0.91 (0.91) 1.00 (0.62)

CMAd

0.91 (0.73) 0.57 (0.90) 0.86 (0.62) 0.21 (1.00) 0.68 (0.95) 0.86 (0.71) 1.00 (0.68)

CH1

0.88 (0.72) 0.58 (0.92) 0.77 (0.58) 0.21 (1.00) 0.68 (0.90) 0.89 (0.70) 1.00 (0.64)

TABU

0.91 (0.78) 0.56 (0.89) 0.83 (0.56) 0.21 (0.99) 0.68 (0.95) 0.90 (0.86) 1.00 (0.80)

CH2

0.90 (0.80) 0.54 (1.00) 0.79 (0.74) 0.21 (1.00) 0.67 (1.00) 0.84 (1.00) 1.00 (0.76)

SIMPf0

0.90 (0.81) 0.58 (0.93) 0.75 (0.46) 0.21 (1.00) 0.68 (0.94) 0.90 (0.96) 1.00 (0.98)

SIMPf2

0.89 (0.85) 0.56 (0.93) 0.75 (0.38) 0.21 (1.00) 0.68 (0.95) 0.90 (0.94) 0.93 (1.00)

DEd

0.91 (0.74) 0.52 (0.75) 0.84 (0.55) 0.20 (0.93) 0.65 (0.83) 0.81 (0.60) 1.00 (0.62)

CMA

0.91 (0.75) 0.56 (0.88) 0.82 (0.57) 0.21 (0.95) 0.65 (0.86) 0.87 (0.74) 0.99 (0.82)

DE

0.82 (0.65) 0.38 (0.60) 0.81 (0.57) 0.21 (1.00) 0.67 (0.82) 0.88 (0.77) 0.99 (0.76)

GA

0.89 (0.66) 0.43 (0.61) 0.81 (0.56) 0.15 (0.73) 0.55 (0.70) 0.78 (0.56) 1.00 (0.56)

Figure 6.17: Optimised shapes obtained from all algorithms for each problem instance. The shapes are
discretised by rounding for continuous algorithms. The values of mean absorption across frequencies
(α) are printed at the top of each shape in bold font along with porous material volume fraction (Vf ) in
parentheses. White and black represent air and the porous, respectively, with the acoustic input on the
left and rigid backing on the right.
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6.6.4 Best shapes obtained from algorithms

The best solutions from all the algorithms for all problem instances are plotted in Figure 6.17.
For non-deterministic algorithms, the solution with the highest absorption among the 31 trials
is shown. It is recalled that manufacturability restrictions and morphological filters are not im-
posed in this study except for SIMPf2. Results show both SIMPf0 and SIMPf2 produce similar
shapes for most problem instances.

For problem instance 1, all algorithms except SIMPf2 result in irregular shapes. The best qual-
ity shapes from most algorithms are flat layers of air and porous material towards the rigid wall
with a somewhat circular air cavity in the front. GA and DE produced checker-box-like shapes.
Moreover, shapes from GA for all problem instances are degenerate.

For problem instance 2, HC, CH1 and SIMPf0 produce the best shape with an almost porous
material-filled design domain except for a layer of air next to the rigid wall. CH1, SIMPf2,
CMA, CMAd, TABU produced similar shapes. CH2 resulted in a fully-filled shape with slightly
less absorption.

In problem instance 3 which fills a high static airflow resistivity material, the shapes from all
algorithms were seemingly random patterns but with sort of a cavity in the centre. SIMPf2
produces a result with a chunk of porous material suspended in air.

For problem instance 4, the optimal solution seems to be a fully-filled design domain and most
algorithms are able to find this except for GA. The reason could be that GA is initiated from
random bit arrays which would have volume fraction distributed near 50 percent (central limit
theorem). Thus, initialising GA with solutions with a range of volume fractions might be a
sounder approach.

For problem instance 5, many algorithms find a solution with a shape almost filled with the
porous material except for air pockets near the rigid wall. CMA, DE and DEd seem to be ap-
proaching this solution. CH2 completely fills the design domain with the porous material.

For problem instance 6, the fully-filled solution has an elastic resonance in the frequency range
considered, as may be seen from Figure 6.16. The elastic resonance forms a drop in the ab-
sorption near 500 Hz. The best solutions from different algorithms effectively remove this
resonance. To do this, the algorithms seem to introduce air layers at the front and near the rigid
backing. CMA, CMAd, DE and DEd give checker-board shapes which somewhat removes a
layer near the rigid backing. Notably, CH1 gives a smooth shape even though no manufactura-
bility restrictions were imposed. CH2 returns a filled design domain and is unable to get rid of
the resonance.

For problem instance 7, many solutions have close to complete sound absorption (α = 1). Al-
most all algorithms find solutions with total sound absorption at 500 Hz. Notably, SIMPf0 and
SIMPf2 seem to suggest a fully-filled solution.

In general, the algorithms which feature random move operations tend to produce degener-
ate shapes. Although hill climbing results in shapes with high sound absorption, the shapes
obtained are sometimes irregular and need additional filtering. On the other hand, construc-
tive heuristic with material addition (CH1) has both high performance and finds shapes with
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smoother boundaries.

Figure 6.18: Absorption vs. volume fraction of optimal shapes for problem instance 6. For other problem
instances refer Appendix B.

In summary, different algorithms seem to provide solutions from a unique pool. Figure 6.18
shows the distribution of final solutions in the absorption versus volume fraction plot. It may
be observed that the solutions from various algorithms form clusters in specific regions. Again,
this trend is not universal across problem instances. Plots for other problem instances are in-
cluded in the appendix B.3. The reason for this is that each of the approaches use unique
move operations during the optimisation. Thus it may be worth exploring various optimisation
strategies to find unique solutions which may be of interest to the acoustic engineer. In addi-
tion, there exists significant scope for improving many of these methods. As an example, the
performance of SIMP could be improved by using better strategies for avoiding local optima,
and an appropriate morphological filter may be used in CMAd to overcome the drawback of
producing unconnected shapes while speeding up the algorithm. The results outlined in this
chapter provide an initial understanding of how various heuristics and metaheuristics perform
on topology optimisation for absorption maximisation. Thus, guidelines for developing hybrid
algorithms and hyperheuristics may be arrived at for devising more time-efficient strategies that
also produce solutions closer to the true optima.

6.6.5 Statistical test: Wilcoxon signed-rank test
When sampling a set of values from the same distribution, we may obtain different results for
the mean and standard deviation for the sampled sets when the sampling is repeated. These dif-
ferences will tend to be higher for smaller sample sizes. When comparing two algorithms using
the absorption values from various trials, it is of interest to know that any differences observed
are significant or could happen due to random chance. In order to ensure that differences carry
statistical significance, a Wilcoxon signed-rank test can be used. A null hypothesis that the dis-
tributions of the optimised absorption values from a chosen pair of algorithms are from the same
distribution is assumed. Assuming that the optimised absorption values from each algorithm are
normally distributed, we can estimate the probability (p-value) that two samples are indeed from
the same distribution. A lower p-value suggests that there might be a significant difference in
the distributions from which the best absorption values have been sampled. The null hypothesis
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can be rejected if the p-value is low beyond a specific value. For a 95% confidence level, a
p-value below 0.05 would suggest statistical significance of pairwise differences.

Table 6.6: Wilcoxon signed-rank test: p-values for problem instance 6.

HC TABU GA CH1 CH2 CMA CMAd DE DEd SIMPf0 SIMPf2
HC -

TABU 1.174e-06 -
GA 1.174e-06 1.174e-06 -
CH1 2.112e-06 0.0548 1.174e-06 -
CH2 1.174e-06 1.174e-06 1.174e-06 1 -
CMA 1.174e-06 1.174e-06 1.174e-06 1.174e-06 1.174e-06 -

CMAd 1.174e-06 1.174e-06 1.174e-06 1.174e-06 1.174e-06 5.887e-05 -
DE 1.174e-06 1.296e-06 1.174e-06 1.174e-06 1.174e-06 0.001142 1.578e-06 -

DEd 1.174e-06 1.174e-06 1.174e-06 1.174e-06 1.174e-06 1.174e-06 1.174e-06 1.174e-06 -
SIMPf0 8.651e-06 0.4684 1.174e-06 0.0006049 1.174e-06 1.174e-06 1.174e-06 1.174e-06 1.174e-06 -
SIMPf2 2.114e-05 1.485e-05 1.174e-06 8.928e-07 8.928e-07 1.174e-06 1.174e-06 1.174e-06 1.174e-06 6.569e-06 -

Table 6.6 shows the p-values for paired comparison between the distributions of best absorption
values from trials of two algorithms. Note that the p-values are generally much lower than 0.05
except for TABU vs. CH1 and TABU vs. SIMPf0 as can be confirmed from the distribution of
absorption from these algorithms in Figure 6.18 and the boxplots in Figure 6.14. Although the
differences between CMA and DE solutions from the box plot do not seem to be very different,
the p-value of ≈0.001 indicates that the differences are indeed significant. The differences be-
tween other pairwise algorithms can thus be considered to be statistically significant. However,
a note of caution is advised as these trends vary from one problem instance to another, and
the performance of one algorithm over the other cannot be generalised from these p-values. In
practise, the acoustic models used to determine absorption do not guarantee accuracy beyond
two significant figures. Hence, the use of a rounding-based ranking scheme such as the one
used to generate Table 6.5 could be effective.

6.6.6 Landscape analysis

Figure 6.19: Landscapes for fully-filled shape problem instance 6

Objective function landscape for a problem is an important aspect to consider in choosing an
optimisation approach. In this section, we will look at how the landscapes are for the acoustic
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topology optimisation problem. We have observed that gradient algorithms have been outper-
formed by non-gradient methods such as hill climbing in terms of the best absorption found.
Hence, it is of interest to carry out a deeper analysis of the fitness landscapes and assess the
modality of the problem instances.

For this, we will consider a fully porous-filled solution and compute the variation of absorption
when each of the elements is gradually changed to air. Figure 6.19 shows the variation of ab-
sorption values when three of the elements is gradually changed from porous χi = 1 to air χi in
problem instance 6. We observe that gradually removing porous material and replacing with air
from various elements show a different absorption trend. The blue coloured element i = 463
which is closer to the acoustic source has a negative slope at χi = 1, meaning that including a
small fraction of air behaviour in the porous element would improve absorption. Indeed, this
trend is retained as the porous material in that element is replaced with air, i.e., an increase in
absorption α is achieved when χ463 is changed from 1 to 0. Likewise, in the yellow-coloured
element i = 488, the gradient is negative at χ488 = 1 and as χ488 tends to 0, the absorption
retains the decreasing trend. In these two elements, the gradients are considered to be helpful.

However, this is not the case for the element marked in red with i = 476. For this element,
even though the gradient is negative, there exists a prominent peak closer to χi = 0.9, and the
absorption decreases rapidly as the porous material is completely removed. This is an example
of an anomalous scenario where the gradients are misleading. Consider applying SIMP in this
scenario. The algorithm would move towards the peak following the gradient and get stuck at a
χi closer to one, which when rounded would make it 1. Even though, the gradient is deceiving,
SIMP would succeed in this scenario in finding the right choice for the element. Overall, we
observe that there is smoothness in the absorption landscape for this problem instance with less
modality.

Gradient anomaly example When analysing the landscapes, there are occasions when the
gradients are misleading and would lead to local optimal solutions. As an example, consider
the optimised shape from Lee et al. for volume fraction 0.5 as shown in Figure 6.20a. The
fitness landscape corresponding to the element marked by the arrow is shown in Figure 6.20b.
At this element, while the gradient is positive, the fitness landscape reveals that a better solution
could be obtained by removing the porous material. In these scenarios, a gradient method would
get stuck at the local optimum whereas hill climbing would result in an improvement. This may
explain the poor performance of gradient methods relative to non-gradient methods in certain
problem instances. Upon studying the landscapes for many shapes, it was found that such an
anomaly does not normally occur in most elements but do occur in a small fraction of elements
in many optimised shapes from the SIMP algorithm.

Convexity does not guarantee optimality Many researchers have dedicated efforts to tune
the fitness function to ensure the landscapes are convex with the consideration that convex
functions have utmost one optimum across one design variable. While SIMP is expected to
perform well for convex problems as opposed to problems with multiple modes and rugged
landscapes, even if the function is convex, a gradient method could only find the exact optimum
in the continuous space, but not necessarily in the discrete space. This is illustrated in Figure
6.21 using proof by contradiction. Consider a single variable topology optimisation where the
fitness function is convex (i.e. a line joining any two points in the curve does not intersect the
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(a) Location of the anomalous element. (b) Fitness landscape at an anomalous element.

Figure 6.20: An example of a case where gradient algorithms may get stuck at a local optimum. (a) The
optimised shape from Lee et al. [140] is considered as an example and one of the elements, marked by
the arrow, is assessed. (b) The landscape for this element shows that gradients are misleading in this
case.

curve). One can show that a gradient method can guarantee to reach the continuous optimum.
However, topology optimisation is a unique problem domain where one is interested in the
discrete optimum i.e. 0-1 solutions. Rounding the continuous solution to discrete using a
simple rounding filter would result in 1 being chosen by the gradient algorithm. Whereas, in this
example, the fitness value for 0 is better than that at 1 indicating that the discrete optimum is in
fact 0. Thus, even for a single variable problem with a convex landscape, a gradient algorithm
cannot guarantee optimality in the discrete space.
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Figure 6.21: Proof that SIMP is a heuristic (inexact) even when the fitness function is convex. Convexity
does not guarantee optimality when using gradient algorithms. For convex functions, gradient based
methods like SIMP may find the continuous optimum but not necessarily the exact discrete optimum – an
illustration using a one-design-variable system.

Does linearity guarantee optimality? The next natural question is, if the fitness function is
linear, does it guarantee optimality? The answer is no. Consider a linear fitness function in
topology optimisation expressed in equation 6.55.
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min
ρ

c =
∑
i

wiρi (6.55)

ρ ∈ {0, 1}

One may realise that the above problem is similar to the 0-1 Knapsack problem which is known
to be NP-complete [120]. The NP-completeness of topology optimisation problems is unknown
and is rarely discussed in topology optimisation literature.

6.7 Conclusions
In this chapter, results from topology optimisation experiments to maximise sound absorption
under normal incidence in an impedance tube with a rigid backing was presented. Optimisation
tests were conducted using 5 heuristic and 6 metaheuristic algorithms on 7 benchmark problem
instances. The approaches include hill climbing (HC), constructive heuristics (CH1 and CH2),
solid-isotropic-material-with-penalisation (SIMPf0 and SIMPf2), genetic algorithm (GA), tabu
search (TABU), covariance-matrix-adaptation evolution strategy (CMA and CMAd), and dif-
ferential evolution (DE and DEd). Unlike in usual structural topology optimisation problems,
volume fraction constraint and manufacturability filters were not imposed. The highlights of
the findings are as follows.
• Gradient algorithms (SIMPf0 and SIMPf2) are the most efficient in quickly converging

to good quality solutions, but in some problems they either prematurely converge to local
optima or produce shapes that have intermediate materials.
• No algorithm clearly outperformed all others on all of the problem instances. Ranking the

algorithms based on median solution quality revealed that hill climbing (HC) performed
the best, followed by the material-addition constructive heuristic (CH1), and the discrete
variant of covariance-matrix-adaptation evolution strategy (CMAd).
• The optimal shapes produced by algorithms that use stochastic components (GA, CMA,

CMAd, DE, DEd) tend to be irregular and unconnected, and hence they might need ad-
ditional filtering techniques. Although hill climbing produced higher sound absorption
solutions in general, the optimal shapes produced (particularly in problem instance 6 with
fine mesh) were not smooth and crisp, which might pose difficulties in manufacturing.
• On the other hand, constructive heuristic with material addition (CH1) produces high-

quality solutions that also have fewer irregularities than hill climbing. In addition to this,
the sound absorption values of shapes produced by CH1 were at least as good as or better
than those produced by SIMPf0. Moreover, the constructive heuristics proposed here
can be easily modified to include volume fraction constraint by simply terminating the
construction after the desired volume fraction is reached. The material removal heuristic
(CH2) often returns a fully-filled design domain as the solution.
• Between the continuous algorithms (CMA and DE) and their discrete variants (CMAd and

DEd), the discrete variants seem to perform better. This means using filtering techniques
before each objective function evaluation works better than filtering the solutions at the
end of the algorithm.

To conclude, the absorption maximisation topology optimisation problem seems to be rich with
many local optimal solutions, and different strategies explore different regions of the search
space producing unique set of solutions. Insights obtained may be valuable in designing hybrid
strategies and hyperheuristics for general-purpose optimisation of sound absorbing materials.



Chapter 7

Multi-objective topology optimisation for
absorption maximisation and weight
minimisation

In the previous chapter, the performance of topology optimisation algorithms were studied
only considering absorption maximisation objective. In this chapter, simultaneously maximis-
ing absorption and minimising material usage is considered. To identify efficient optimisation
strategies for this multi-objective problem, several gradient, non-gradient and hybrid strategies
are studied. For gradient approaches, the solid-isotropic-material-with-penalisation method
(SIMP) and a novel gradient-based constructive heuristic (CHg) are considered. For gradient-
free approaches, hill climbing with a weighted-sum scalarisation (HC) and a non-dominated
sorting genetic algorithm II (NSGA-II) are considered. Optimisation trials are conducted on
seven benchmark problems involving rectangular design domains in impedance tubes subject
to normal-incidence sound loads. The results indicate that while gradient methods can pro-
vide quick convergence with high-quality solutions, often, gradient-free strategies are able to
find improvements in specific regions of the Pareto front. Two novel hybrid approaches (HA1
and HA2) are proposed combining a gradient method (CHg) for initiation and a non-gradient
method (respectively HC and NSGA-II) for local improvements. A novel and effective Pareto-
slope-based weighted-sum hill climbing is introduced for local improvement. Results reveal that
for a given computational budget, the hybrid methods can consistently outperform the parent
gradient or non-gradient methods.

7.1 Introduction
In chapter 6, attributes of the single objective topology optimisation problem were discussed.
Although topology optimisation is inherently a multi-objective problem, i.e., simultaneously
maximising performance and minimising weight, it has been more common to treat topology
optimisation as a single-objective problem, i.e., maximising the structural performance while
using a constraint on the weight. Given that one of the main benefits of topology optimisation
is the potential weight savings, it is of interest to treat it as a multi-objective problem and obtain
multiple trade-off designs simultaneously. The acoustic designers can then decide from the set
of Pareto optimal or trade-off solutions for manufacturing.

Identifying the most effective optimisation strategies to find these trade-off solutions in a spe-
cific problem domain is a challenging task. Without any testing or knowledge of the problem
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domain, it is difficult to assure which algorithms would be more efficient in terms of finding
better quality solutions in less time. If the optimisation strategy is not effective, sub-optimal
designs may be chosen for manufacture.

Given that topology optimisation can be formulated using various search paradigms (discrete
vs. continuous representation, finite element raster vs. moving morphable components [96],
level set [5, 251], interpolation schemes etc.), it is helpful to study how various strategies com-
pare against each other. However, there is a lack of such comparison studies specifically for
multi-objective topology optimisation in the acoustics domain. Such studies would facilitate
engineers to choose effective strategies for their use cases.

In this chapter, a few hand-picked approaches likely to be used by other researchers are tested
and compared. The approaches include the following:

1. Solid-isotropic-material-with-penalisation (SIMP)
2. Constructive heuristic with gradient (CHg)
3. Hill climbing (HC) on scalarised objective
4. Non-dominated sorting genetic algorithm-II (NSGA-II)

As we have seen in chapters 4 and 6, SIMP is the state-of-the-art approach for structural topol-
ogy optimisation [77, 206, 152]. A vital attribute of this approach is the relaxation of the discrete
problem into a continuous problem by allowing intermediate materials and using a power-law
interpolation scheme. Using continuous relaxation allows the possibility of computing the gra-
dients quickly using adjoint-like methods, which can make the optimisation quite effective,
notwithstanding certain drawbacks such as getting stuck at local optima or the presence of in-
termediate materials in the final solution. Its effectiveness and ease of implementation [217],
have made it the most popular approach for topology optimisation.

At this point, some previous efforts toward extending SIMP for multi-objective topology opti-
misation are worth noting. Suresh [237] extended the 99-line Matlab code to a 199-line code
for Pareto-optimal compliance minimisation and also studied the effect of restarts vs. hot starts.
Mirzendehdel et al. [165] proposed a multi-objective algorithm for multi-material compliance
minimisation removing the mass constraint and treating it as an objective. While the multi-
objective consideration is prevalent, it constitutes a small fraction of the publications, and com-
parison studies are rare.

Constructive heuristics are a class of optimisation algorithms that start from empty solutions
and build step by step using problem-specific move operations to reach a complete solution.
An example is the nearest neighbour heuristic for the travelling salesman problem. For topol-
ogy optimisation, the evolutionary structural optimisation (ESO) method introduced by Xie and
Steven [256, 257] is a classic example of a constructive heuristic. ESO starts from a solid-filled
design domain and incrementally removes material from low-stress regions. This procedure
requires the knowledge of stress fields. For acoustic material topology optimisation, in chapter
6, we introduced two constructive heuristics: CH1, where the material is added incrementally
to an empty domain in places of highest absorption increase; and CH2, where the material is
incrementally removed from a filled domain from places where the decrease in absorption is
minimal. These heuristics performed among the top strategies in the study. One of the draw-
backs of CH1 and CH2 is that computing the numerical absorption increments is expensive.
Fortunately, this can be overcome by making use of the gradients. Adopting this, a simple
gradient-based constructive heuristic (CHg) is proposed in the current study.
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Hill climbing is a single objective optimisation technique that starts with an initial solution and
modifies it iteratively while accepting improving changes. A row-wise hill climbing approach
was found to perform among the best strategies for acoustic material absorption maximisation
in chapter 6. A common strategy to solve multi-objective problems using hill climbing is to
combine the objectives into a scalar value in a process known as scalarisation [119], and apply
the single-objective algorithm. A simple way to scalarise is to use the weighted sum of the
objectives. By varying the weights, the relative importance of each objective can be controlled.
In this study, hill climbing is used in conjunction with a weighted-sum scalarisation technique
(HC) as a candidate for multi-objective topology optimisation.

The non-dominated sorting genetic algorithm-II (NSGA-II) introduced by Deb et al. [69] is a
well-known multi-objective evolutionary algorithm. A notable attribute of NSGA-II is the use
of a fast non-dominated sorting procedure in combination with a crowding-distance operator
that allows finding multiple points in the Pareto front simultaneously, as opposed to having to
run multiple trials of a single objective algorithm in combination with a scalarisation technique.
The effectiveness of NSGA-II and its variants has made it the most popular multi-objective ap-
proach for solving combinatorial optimisation problems [247].

In addition to the above strategies, two hybrid approaches (HA1 and HA2) are proposed involv-
ing a gradient method for initialisation and a non-gradient method for local improvement. The
aim is to find whether hybrid approaches are beneficial. The results will provide perspectives
on each method and guide algorithm selection.

The remainder of the chapter is organised as follows. In section 7.2, the overall methodology,
including problem description, optimisation formulation, modelling method, and details of the
experimental design, is provided. In section 7.3, the overall experimental design is described.
In section 7.4, a comparison of SIMP algorithms—SIMPsweep and SIMPrestart is provided.
In section 7.5, a gradient-based constructive heuristic is detailed. In section 7.6, a comparison
study between the gradient methods SIMPrestart, SIMPsweep and CHg is provided. In section
7.7, a hill climbing approach with two scalarisation methods are discussed. In section 7.8, the
non-dominated sorting genetic algorithm is applied to the problem and results are discussed.
Along with gradient-free algorithms, a random search procedure is also compared. In section
7.11, a hybrid approach with CHg as an initialiser and a hill climbing approach with Pareto-
slope-based weighted sum scalarisation is introduced. In section 7.12, a hybrid approach with
CHg as an initialiser and NSGA-II as the exploiter is detailed. In section 7.13, an overall com-
parison of all the multi-objective approaches is provided. Finally, in section 7.14, a summary of
the findings and general guidelines for designing algorithms are provided.

7.2 Methodology

7.2.1 Problem formulation
Consider the problem of optimally filling a rectangular design domain with a given porous ma-
terial such that the sound absorption is maximised while using minimal material. The design
domain can be assumed to be backed by rigid walls with a normal-incidence acoustic source
placed as shown in Figure 7.1a. Typically as more porous material is filled in the design do-
main, the absorption would increase, but this is not always the case. There are instances when
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removing material would improve absorption [202]. Depending on the distribution of porous
material and air in the design domain, sound absorption will be determined at different fre-
quencies of the acoustic source. Thus, this is a classic bi-objective optimisation problem with
trade-off solutions.
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Figure 7.1: Schematic of the problem and its representation.

While there are many ways to formulate the topology optimisation problem, one of the classical
ways is to use a fixed discretisation of the system and optimise the material assigned to each
finite element. The shape and topology can be represented by a vector χ with zeros and ones
corresponding to the absence or presence of porous material in each element, respectively, as
shown in Figure 7.1b. This is sometimes referred to as a bit-matrix representation [154]. At this
point, it is also worth acknowledging other formulations such as moving morphable components
[96], level set method [5, 251] etc. In moving morphable components-based topology optimi-
sation, the structure is defined by a union of several components of the material with different
shapes and sizes, while the design variables are the position, orientation and dimensions of these
shapes. The design variables may then be converted to the presence or absence of material in
each element in a finite element model and then solved to find the performance indicator. This
representation reduces the number of design variables and simplifies the solution space. This
approach is quick and robust in many cases, although in some cases, the true optimal solutions
may be too intricate to be represented by this solution space. In the level set method, a scalar
field is assumed in the design domain, and the iso-surfaces of this scalar field will determine the
topology and shape, and the optimisation algorithm optimises this scalar field. While the above
methods are more realistic for industrial applications, for the purposes of this study, the classi-
cal raster finite element representation is considered, i.e., optimising the presence or absence of
material in each finite element.

In this study, the objective considered is to find the optimal discrete assignments of either air
or a given poroelastic material to each finite element that simultaneously maximises the normal
sound absorption and minimises the volume fraction of the porous material. Mathematically,
this formulation can be written as:
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Simultaneously,

max
χ

α(χ) =
1

nf

nf∑
i=1

α(χ, fi) (7.1)

min
χ

Vf (χ) =
1

ne

ne∑
i=1

χi

χ ∈ {0, 1}ne

α ∈ [0, 1]

Vf ∈ [0, 1]

where χ is the set of decision or design variables that determines whether the ith element in
the design domain is air or the given porous material, and thereby the shape of the acoustic
structure. If χi is 0, the element is assigned the properties of air, and if it is 1, the element
is assigned porous material. The first objective α ∈ [0, 1] is the sound absorption averaged
across the target frequencies (f1, f2, ...fnf

), and the second objective Vf is the volume fraction
of the porous material in the design domain. Absorption α is averaged over a number of target
frequencies nf , and porous material volume fraction Vf is averaged over the number of elements
ne in the design domain.

7.2.2 Computing the objective function

Computing the volume fraction Vf for a given shape χ is less time consuming since it is simply
the mean of an array, whereas computing absorption α is expensive which requires solving a
system of linear equations. The procedure followed in computing absorption is the same as
outlined in chapter 6, and is briefly recalled here for the sake of completeness.

The acoustic system is modelled using the unified Biot-Helmholtz model introduced by Lee et
al. [140], which considers air as a poroelastic material with negligible solid-part behaviour. In
the unified model, air is considered to have χair = 0.001 to avoid numerical issues when solv-
ing the system. Lee et al. also verified the validity of such modelling for poroelastic materials
with mixed formulations [11]. The most expensive part of computing α is finding the solution
{X} to a system of linear equations [S̃(χ, f)]{X} = {F̃}, where the system matrix [S̃(χ, f)]
is a square symmetric complex-valued matrix with dimensions of the order of the number of
finite elements in the design domain, and {F̃} is the dynamic forcing vector of the same di-
mension. The system matrix [S̃(χ, f)] is populated with material properties of air or porous
material at specific submatrices depending on the shape χ. When considering continuous re-
laxation, for the intermediate materials i.e. χi ∈ (0, 1], the material properties are interpolated
using a power-law i.e. any material property, say ψi is given by ψair + χpi (ψpor − ψair), where
ψpor and ψair are the properties of the porous material and air respectively.

Since evaluating absorption α is the computational bottleneck, and other algorithmic processes
take a relatively insignificant amount of time, this is an expensive optimisation problem, and
hence it is reasonable to use the number of absorption evaluations to benchmark the perfor-
mance of algorithms.
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Computing the gradient of sound absorption with respect to the design variables takes approxi-
mately two more instances of solving the system of linear equations, making it twice as expen-
sive as computing absorption (see equation 7.2), as explained in section 6.2.3.

Time to compute
(
∂α

∂χ

)
≈ 2× Time to compute(α) (7.2)

Such a quick computation of the gradient is achieved using a fictitious load vector pre-multiplication,
as explained in Lee et al. [138]. For more details, one may refer to section 6.2.3.

Gradient algorithm fitness evaluation ≈ 3× non-gradient fitness evaluation (7.3)

Thus, computing both absorption and the gradient is three times as expensive as computing just
absorption as given in equation 7.3. Therefore, the gradient methods will be given one-third of
the fitness evaluation budget.

7.2.3 Benchmark problem instances
To compare the optimisation approaches, seven benchmark problem instances introduced in
chapter 6 are adopted. A modification has been made to the mesh size in problem instance 3
from 10 × 10 to 50 × 20 elements. The details of the problem instances are provided in Table
6.2. All the problem instances have a rectangular design domain, but with different dimensions,
discretisation, porous material used and frequency range of interest. Table 6.3 provides the
poroelastic material properties for the materials used in the problem instances. While problem
instance 1 uses the same material as Lee et al. [140] with a high tortuosity, the third problem
instance uses a fictitious material with high airflow resistivity, and all other problem instances
use melamine.

7.2.4 Approaches for multi-objective topology optimisation
The multi-objective topology optimisation problem posed in equation 7.1 can be tackled in sev-
eral ways. Table 7.1 gives the formulations for these approaches.

Table 7.1: A classification of multi-objective approaches for topology optimisation.

Single objective
Restart/Adaptive

Scalarisation Direct multi-objective

Repeat/Adapt for vari-
ous V̄f :

max
χ

α(χ)

subject to: Vf (χ) ≤ V̄f

Repeat for various w1:

min
χ

C(χ) = −w1α(χ) + w2Vf (χ)

subject to: w1, w2 ∈ [0, 1]

w1 + w2 = 1

Simultaneously,
max
χ

α(χ)

min
χ

Vf (χ)

Examples: CHg, SIM-
Prestart, SIMPsweep

Example: HC Example: NSGA-II

The more common approach has been to keep a limit on the volume fraction and start the algo-
rithm with different values of volume fraction limit V̄f in each trial to obtain several trade-off
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designs. This approach can be called the restart approach. To speed the process, one can change
V̄f after an optimum is found and perturbatively explore various regions of the Pareto front, sim-
ilar to Suresh [237].

Another approach is to use a scalarisation technique to combine the two objectives into an over-
all objective C and solve using a single objective algorithm. There exists several approaches to
scalarise the objectives into a single value [119], whereas Table 7.1 only gives the formulation
for weighted-sum scalarisation, one of the simplest. w1 and w2 are the weights that determine
the importance of absorption and volume fraction, respectively. For example, the combination
of weights w1 = 1 and w2 = 0 refers to only maximising absorption ignoring volume frac-
tion. The overall cost function C is defined using a weight for each objective (α and Vf ). The
negative sign in front of α converts the maximisation goal into minimisation. Scalarisation ap-
proaches leave the designers to pick the weights w1 and w2 for which the relative importance
of the corresponding objectives need to be known a priori. Typically, several sets of weights
would be picked and multiple optimisation trials would be run, and the results can be combined
to obtain the Pareto set approximation.

Finally, one can also use direct multi-objective methods that simultaneously optimise both ob-
jectives by keeping a record of the best trade-off solutions and pushing toward the true Pareto
front (example: NSGA-II [69], SPEA-2 [278]). This is achieved using a crowding distance
operator and a Pareto rank-based non-dominated sorting.

7.3 Experimental design
In Table 7.2, a summary of the optimisation approaches used in this study is provided, along
with the attributes and hyper parameters of each approach. The reasoning behind the choice
of multi-objective optimisation approaches picked for this study was briefed in the introduc-
tion section and hence not repeated here. Each algorithm used here is subject to basic tuning
and used in the standard way unless otherwise stated. All the strategies are given the same
arbitrarily-chosen computational budget of 4096 equivalent gradient-free fitness evaluations.
Gradient algorithms are assigned 4096/3 ≈ 1365 fitness evaluations because each gradient-
included fitness evaluation is thrice as expensive (equation 7.3), and the non-gradient methods
are allowed 4096 fitness evaluations. For the hybrid algorithms, 25% of the computational ef-
fort was allotted for gradient-based search and 75% for non-gradient search i.e., 25%× 4096/3
gradient-included and 75% × 4096 gradient-free fitness evaluations. Each stochastic optimisa-
tion method is repeated 15 times by varying the random number seed. The number of trials 15
is chosen arbitrarily.

It should be noted that in some trials on some problem instances, the resulting SIMP solutions
had intermediate materials. In such scenarios, only the non-dominated solutions are discretised
by a round-off filter, and the fitnesses are recomputed. This is done so that all solutions com-
pared in this study are from the discrete space to facilitate a fair comparison.

The experimental design involves firstly comparing the two gradient-based methods, namely
SIMP and CHg in sections 7.4 and 7.5. The goal is to assess the quality of solutions produced
by the two gradient methods and if the kind of shapes produced is similar for each problem
instance. Then, the non-gradient methods HC, NSGA-II and random search (RAND) are com-
pared separately in sections 7.7 and 7.8.



126 Chapter 7. Multi-objective topology optimisation

Table 7.2: Multiobjective optimisation approaches and their settings.

Algorithm Description and pseudocode Deterministic
or stochastic

Trials Fitness
evaluation
budget per
trial

Gradient-based approaches
SIMPrestart Solid isotropic material with penalisation

(SIMP) restarted with different volume
fraction constraints fixed for a trial: A
gradient-based strategy with optimality cri-
teria move-update following [10]; initialised
with an empty design domain; Restarted
with a new V̄f until budget is used up.

Stochastic:
multiple
restarts
within trial

1 (mul-
tiple
restarts)

1365
(with gradi-
ent)

SIMPsweep SIMP with adaptive volume fraction con-
straint: Initialised with an empty design do-
main; volume fraction constraint V̄f updated
after each fitness evaluation reaching 1 as
budget approaches.

Deterministic 1 1365
(with gradi-
ent)

CHg Gradient-based constructive heuristic: Start
from an empty solution; add porous material
in steps of ‘m’ elements where the gradient
is highest, until all elements are porous.

Deterministic 1 min(N/m,1365)
(with gradi-
ent)

Non-gradient approaches
HC Hill climbing: Use a weighted-sum scalari-

sation technique to combine the two objec-
tives into a single fitness value; apply first
improvement hill climbing starting from a
random discrete solution. Move order is like
in a raster-scan.

Stochastic,
since initial
solution is
random

15 4096
(non-
gradient)

NSGA-II Non-dominated sorting genetic algorithm -
II [69]: Use a bit representation, tourna-
ment selection based on crowding distance
and rank, uniform crossover, bitwise muta-
tion probability of 1/N .

Stochastic 15 4096
(non-
gradient)

RAND Random search algorithm: Pick a desired
volume fraction uniformly ∈ [0, 1]; use this
as the probability of porous material at each
element and synthesise a solution; repeat
budget number of times.

Stochastic 15 4096
(non-
gradient)

Hybrid approaches
HA1 Hybrid approach 1: Run CHg using 25% of

the budget, and run hill climbing for 75% of
the budget starting from a selected solution
with scalarisation weight such that the com-
bined objective isoline at the solution point
in objective space is tangential to the Pareto
front.

Deterministic
but depends
on the point
picked for
hill climbing

15 4096
(equivalent
non-
gradient)

HA2 Hybrid approach 2: Run CHg using 25%
of the budget, and run NSGA-II for 75%
of the budget starting from an initial pop-
ulation from equispaced points in the CHg
Pareto front.

Stochastic 15 4096
(equivalent
non-
gradient)
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For comparing the performance of multi-objective algorithms, a hypervolume metric is adopted.
Hypervolume for a set of solutions can be defined as the union of volumes of the objective space
dominated by each solution in the set over and above the objective values of a reference solution.
The larger the hypervolume of the solution set produced by an algorithm, the better supposedly
is its performance according to this metric. For the problem in consideration, an illustration for
this metric is provided in Figure 7.2. For the bi-objective problem under study, the hypervolume
will be the area of the objective space dominated by the Pareto set from a chosen reference point
given by (α, Vf ) = (0, 1).

Figure 7.2: An illustration of the hypervolume metric: In this case it is the area of the objective function
space dominated by the solutions from an algorithm. Larger the hypervolume of the solution set from an
algorithm, better its performance can be considered to be.

Gradient algorithms

7.4 Solid-isotropic-material-with-penalisation
SIMP is a single-objective strategy for structural topology optimisation to maximise structural
performance while keeping a soft constraint on volume fraction. SIMP has been discussed in
detail in chapters 4 and 6. In this section, its extension to a multi-objective optimisation will be
discussed. The main idea of SIMP is to allow a continuous relaxation of the material choices
by using a power-law interpolation scheme. SIMP makes use of gradients to make incremental
changes to the shape, followed by the application of morphological filters [218]. SIMP takes
the desired volume fraction (V̄f ) as one of its algorithmic parameters. By adapting this pa-
rameter, two variants for multi-objective optimisation are proposed, namely, SIMPrestart and
SIMPsweep. For both these variants, the implementation is adapted from the efficient 88-line
code for compliance minimisation by Andreassen et al. [10], replacing compliance and its gra-
dients with absorption and its gradients.

7.4.1 SIMPrestart

In SIMPrestart, multiple trials of SIMP are run, with each trial using a different V̄f . For each
of these trials, SIMP is initialised from a random solution normalised to have an overall initial
volume fraction close to the chosen V̄f . Once convergence is achieved, SIMP is restarted with
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a new V̄f and a newly generated initial solution.

(a) Progress in objective space across trials. Each colour corresponds to a different trial.

(b) Best shapes from the first 4 trials with volume fraction limits 0.3, 0.4, 0.5 and 0.6 respectively.

Figure 7.3: SIMPrestart applied on problem instance 6.

The solution progress in the objective space from SIMPrestart for each trial is shown in a dif-
ferent colour for problem instance 6 in Figure 7.3a. As iterations progress, better absorbing
solutions with the same volume fraction are obtained as indicated by the vertical movement in
the objective space. To populate the Pareto front, equispaced values of V̄f are used in each trial.
For trials with lower V̄f , the solutions tend to converge to lower absorption and for those with
higher V̄f , higher absorptions are achieved. For higher volume fraction trials such as the ones
in yellow, the initial volume fractions are slightly off because of the nature of initialisation, but
as iterations progress, SIMP moves towards solutions with the prescribed V̄f .

Depending on the volume fraction limit, the algorithm converges to a variety of shapes for var-
ious volume fraction constraint values as can be seen in Figure 7.3b. For the first four trials,
the volume fraction limits (V̄f ) are set to be 0.3, 0.4, 0.5, and 0.6, respectively, and it can be
observed that the fraction of regions filled with porous material in the optimised solutions cor-
respond to this value. The shapes seem to largely depend on the initial random solution used,
as the final solutions closely resemble solutions in the initial iterations. The iteration number
in which the shape is obtained is provided on top of each shape. Note that in each trial, the
algorithm converges in about 100 iterations/fitness evaluations.



7.4. Solid-isotropic-material-with-penalisation 129

Figure 7.4: SIMPrestart trade-off solutions for all problem instances.

The Pareto optimal shapes produced by SIMPrestart for all problem instances are shown in
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Figure 7.4. These shape plots show that typically as more porous material is present in the
design domain, the absorption is high. For some problem instances, it seems to be better to
place porous materials toward the acoustic source, leaving an air gap next to the rigid wall.
For problem instance 1, the shapes seem to have porous-material walls in the middle of the
design domain at low volume fractions, and shapes with intricacies in the front of the design
domain for high volume fractions. For problem instances 2 and 7, SIMPrestart seems to find
solutions that fill porous material in the front. For problem instance 3, the optimal shapes seem
to have a large cavity in the centre. Interestingly, despite the morphological filters used as part
of SIMP, many small features, which are a few elements wide, could be seen in the solutions.
For problem instance 4, the shapes seem to indicate that a cavity of air enclosed by a perforated
porous material facing the source need to be placed for a volume fraction around 0.3 to 0.4.
Interestingly, around 0.7, the best shape seems to resemble porous material with macroscopic
cylindrical pores. Such structures exhibiting both micro- and macro-pores are referred to as
dual porosity materials [33]. For problem instance 6, intricate shapes with multiple circular
macro-pores emerged in the solutions.

7.4.2 SIMPsweep
SIMPsweep starts from an empty or air-filled solution with an initial volume fraction limit
V̄f = 0, and updates V̄f in every iteration reaching 1 as the fitness evaluation budget is reached.

The solutions produced for all problem instances are plotted in the objective space in Figure
7.5, along with some of the shapes. A general trend across all problem instances is that as the
volume fraction increases, absorption also increases. The Pareto solutions for problem instances
2, 4, 5 and 7 seem to be filling material away from the rigid backing with inverted wedge-like
shapes. Whereas for problem instances 1 and 6, initially, the material placed in the middle
of the domain seems to be favoured. Notably, for this melamine problem instance, some of the
optimal shapes closely resemble flat layers. However, this is not always the case across problem
instances. For example, in problem instance 3, which fills high airflow resistivity material, the
resulting shapes resemble scattered blobs of porous material with a cavity in the middle. This
pattern is somewhat similar to the optimal scatterer distribution found by Isakari et al. [106].

Discretisation issue: The raw solutions from SIMP algorithms did not always result in dis-
crete 0 or 1 shapes, and the shapes had to be rounded, i.e., values less than 0.5 are set to 0,
and more than 0.5 are set to 1, and the absorptions are recomputed. This involved additional
fitness evaluations beyond the budget. To save on computational time, only the non-dominated
solutions are discretised and recomputed. Nevertheless, the resulting changes in absorption due
to rounding were insignificant in most cases. This is the reason why the points on the Pareto
front do not seem to be subject to non-dominated sorting (especially for problem instance 3).

7.4.3 Comparison between SIMPsweep and SIMPrestart
The Pareto sets of SIMPsweep and SIMPrestart are compared in Figure 7.6. Overall, it may
be noted that Pareto fronts produced are generally very close between the two algorithms, such
as in problem instances 2, 4, and 5. Although in specific regions in some problem instances,
one algorithm found slightly better solutions than the other (such as 1 and 6 and 7). Notably,
in problem instance 3, the solutions from SIMPrestart significantly outperform SIMPsweep for
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Figure 7.5: SIMPsweep trade-off solutions for all problem instances.
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Figure 7.6: Comparison of Pareto fronts from SIMPrestart and SIMPsweep
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high volume fractions. Comparing the shapes for problem instance 3 between Figure 7.4 and
7.5, we observe that SIMPrestart shapes are more intricate, whereas those produced by SIMP-
sweep have less intricacies. Overall, SIMPsweep seems to find solutions that are topologically
simpler (with fewer holes) than SIMPrestart. Another observation to make in Figure 7.6 is that
SIMPsweep finds closely-spaced solutions in the objective space, whereas SIMPrestart tends to
leave larger gaps between solutions. While these results are true for the budget considered, for
lower fitness evaluation budgets, SIMPsweep would be a better strategy since, less time will be
spent on initially reaching good solutions, as also suggested by Suresh [237]. In other words,
SIMPsweep would be more scalable to computational budgets and therefore be suited for prob-
lem instances with larger N.

7.5 Constructive heuristic using gradient (CHg)
Constructive heuristics are methods which incrementally build solutions to optimisation prob-
lems from scratch. In chapter 6, we observed that a material addition constructive heuristic
(CH1) performed among the best approaches in topology optimisation for maximising sound
absorption. In CH1, the procedure is to incrementally add materials in the locations where the
increase in absorption is the highest. However, finding the change in absorption at every finite
element, when toggling between air and porous material, is computationally expensive as this
involves solving the finite element equations once for each element. In this approach (CHg),
the absorption increments are replaced by gradients ( ∂α

∂χi
) which can be computed for all ele-

ments in the time it takes to solve the finite element problem three times. We call this variant
gradient-based constructive heuristics (CHg). CHg starts from a fully-air design domain and
fills porous material incrementally in the finite elements where the gradient of sound absorption
∂α
∂χi

is maximum.

At each step, m number of elements are chosen to fill with porous material after each gradient
evaluation, and the total number of fitness evaluations necessary would be ne/m where ne is
the total number of elements. m is chosen such that ne/m does not exceed the budget. Note
that in the seven problem instances considered, the number of elements is respectively 100, 150,
1000, 100, 100,1000, and 50. Since the budget considered is 1365, all problem instances can
be completed in ne fitness evaluations with m = 1. Hence, CHg will effectively utilise fewer
fitness evaluations than the budget in the cases considered. Note that CHg always will search
for solutions in the discrete space since an element is either filled or not filled. In this way, it is
different from SIMPsweep.

The progress of solutions found by CHg applied in the objective space along with a few shapes
is shown in Figure 7.7 for all problem instances . One of the first things to note is that, in many
problem instances (2, 4 and 7), the best shapes tend to have porous materials away from the
rigid backing. Having an air gap next to the rigid backplane seems to be favourable. Placing
an air gap between the wall and porous package is an already known strategy to improve ab-
sorption. In many anechoic chambers, the foam wedges are placed a few centimetres in front
of the wall [24]. Moreover, in problem instances 2, 5 and 7, some of the shapes resemble an
inverted wedge similar to the ones found by SIMPsweep. Notably, the occurrence of such in-
verted wedges is less in CHg than in the SIMP algorithms, wherein such shapes occurred in
five out of seven problem instances. For problem instance 1, the shapes produced by CHg have
mainly flat surfaces as opposed to wedge like surfaces in SIMPsweep. For problem instance
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3, there are stark differences in the shapes between CHg and SIMPsweep: while the SIMP-
sweep optimal solutions have patches of porous materials in the design domain resembling
scattering structures, CHg solutions are more intricate and difficult to manufacture. For prob-
lem instance 6, the shapes from CHg seem to have two flat layers as opposed to one layer found
by SIMPsweep. Overall, one can consider that CHg and SIMPsweep algorithms performances
are similar. A unique attribute of CHg is that the algorithm traverses through good solutions
with various volume fractions, resulting in a quick approximation of the Pareto front.

Figure 7.7: Constructive heuristic using gradients (CHg): Solution progress for all problem instances.
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Table 7.3: Hypervolume comparison of gradient based approaches SIMPrestart, SIMPsweep and CHg.

Instance SIMPrestart SIMPsweep CHg
1 0.7065 0.6835 0.6724
2 0.4014 0.4047 0.4066
3 0.7317 0.6063 0.7412
4 0.1160 0.1188 0.1087
5 0.5208 0.5292 0.5323
6 0.7202 0.7607 0.7512
7 0.8727 0.8567 0.8733

7.6 Comparison of gradient-based algorithms
First, we will consider a comparison of the gradient algorithms —SIMPrestart, SIMPsweep and
CHg. Figure 7.8 shows the Pareto front approximations produced by these two algorithms for
all the problem instances. There are specific regions in each problem instance where one algo-
rithm performs better than the other. Only for a few problem instances, there were significant
differences in the Pareto fronts. In problem instance 1, at low volume fractions, CHg performed
better, whereas SIMP performed better at high volume fractions. For problem instance 3, a few
solutions from CHg near 0.1 volume fraction have very high absorption and dominate other
solutions. Overall, these three approaches may be considered to be similar in terms of the per-
formance with respect to covering the Pareto front.

The hypervolumes covered by solutions from the gradient approaches are shown in Table 7.3.
Among the three methods, SIMPrestart covered the most hypervolume in one problem instance,
SIMPsweep in two problem instances and CHg in the other four, as emphasised by the bold font.
However, the values are not significantly different among the three approaches.

Note that it is the possible to speed up SIMPsweep and CHg if required. As an example, if the
fitness evaluation budget is reduced by 10 times, in SIMPsweep, the volume fraction constraint
V̄f can be adapted 10 times quickly. Similarly, in CHg, the number of elements filled m can
be increased 10 times. Though this risks potentially missing several trade-off solutions, the
quality of the solutions would not be significantly affected. This is because, every next solution
found by SIMPsweep or CHg is an incremental perturbation from an already good solution.
Although, for SIMPrestart, speed-up can be achieved by tuning the move limit parameter m,
there are some caveats such as the occurrence of numerical oscillations.

Non-gradient algorithms

7.7 Hill climbing with scalarisation (HC)
Hill climbing with a raster-scan move ordering discussed in chapter 6 is extended for multi-
objective optimisation. In this implementation, a weighted-sum scalarisation is used to convert
the two objectives into one and hill climbing is applied. Here, a Davis-bit hill climbing [64]
is used wherein consecutive elements are toggled between air and porous, and the change is
accepted if it improves the scalarised objective. The initial solution is generated randomly
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Figure 7.8: Comparison of solutions from gradient algorithms in the objective space: Trade-off solutions
from SIMPrestart vs. all solutions from SIMPsweep and CHg.
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by first picking the desired volume fraction between 0 and 1, and filling each element with a
probability equal to the desired volume fraction value. This approach allows choosing initial
solutions spread out in volume fractions. From the initial solution, an element is bitflipped i.e.
air becomes porous and porous becomes air, and the change is accepted as the current solution
if the scalarised objective function decreases. Then, the next element is bitflipped. The order in
which the elements are flipped in this implementation, is like in a raster scan. This is similar to
HC in chapter 6 along with a weighted-sum scalarisation. The scalarisation function used is as
follows:

min
χ

C = −wα + (1− w)Vf (7.4)

The weight w corresponds to the importance of maximising absorption as opposed to minimis-
ing volume fraction and can take values between 0 and 1. A weight of 1 implies maximising
only absorption irrespective of volume fraction, and likewise, a weight of 0 corresponds to only
minimising volume fraction. An illustration of the effect of choosing w on the scalarised ob-
jective is shown in Figure 7.9. Note that w governs the slope of the isolines of the scalarised
objective. This will be relevant later.

Figure 7.9: Isolines of scalarised objective in weighted sum scalarisation. Depending on the weight
chosen, the slope of the combined objective C isoline will vary.

For each trial run of HC, a random starting solution is picked and a fixed weight is chosen. Then,
the elements are toggled between air and porous material consecutively and the new solution is
accepted if and only if there is an improvement in the combined objective. This hill climbing
process is continued until the fitness evaluation budget is used up. Fifteen such trials are run
with different weights, and Figure 7.10 shows all solutions from these trials of HC compared
with CHg solutions. The trails of points in the figure correspond to individual trials improving
solutions in a specific direction depending on the chosen weight. The combined results from
HC are better than those of CHg in some regions in both α and Vf , indicating that the gradient
methods do often converge to local-optimal solutions, and potential for improvements exist.
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Figure 7.10: Figures showing all solutions from 15 trials of HC for each problem instance benchmarked
with CHg solutions. HC finds solutions in specific regions better than CHg but the per-trial the amount
of hypervolume dominated by the solution set is not as good as that of CHg.
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Table 7.4: Hypervolumes covered by hill climbing when using weighted sum vs. Chebyshev scalarisation
methods.

Instance Weighted sum Chebyshev
1 0.6177 0.5098
2 0.3629 0.2574
3 0.7672 0.5528
4 0.0554 0.0793
5 0.4859 0.3202
6 0.6961 0.5325
7 0.8000 0.6594

An issue with HC is that only one specific region in the Pareto front will be explored. While
this results in solutions better than CHg in some regions, on a per-trial basis, the overall hy-
pervolume obtained turns out to be poor. This is because using a set scalarisation weight for
a trial will guide the search towards a specific region in the Pareto front. The trial-averaged
hypervolumes are significantly lower than the combined hypervolume over 15 trials as may be
observed by comparing the HC columns in Tables 7.5 in page 152 and 7.6 in page 153.

7.7.1 Weighted-sum vs. Chebyshev scalarisation
Many scalarisation techniques are available to combine the objectives in a multi-objective prob-
lem [119]. In this study, two scalarisation methods were tested, namely, weighted sum and
Chebyshev. While weighted sum is a simple and popular technique where a linear sum of
the objectives is used as the combined objective, Chebyshev scalarisation uses the following
expression to combine the objectives:

min
χ

Cch = maximum
(
− w1(α− αtarget), w2(Vf − Vf,target)

)
(7.5)

where Cch must be minimised. For Chebyshev scalarisation, a target value needs to be as-
signed for each objective, i.e., αtarget and Vf,target in the equation for sound absorption and
volume fraction, respectively. The combined objective to be minimised is then the maximum
of weighted deviations from the target. A utopian set of target values one could choose is
αtarget = 1 and Vf,target = 0. Even though targets are impossible to achieve simultaneously
since, mathematically it provides a way to assign a single performance scalar for a given shape
that can be optimised. The concept behind such a scalarisation technique is that a trade-off solu-
tion between two neighbouring solutions in the objective space may not have a better combined
scalarisation when weighted-sum scalarisation is used, whereas Chebyshev scalarisation would
give it a higher combined objective value. This essentially is an exploration of the neighbour-
hood of the Pareto front. The isolines of the scalarised objective using Chebyshev scalarisation
are plotted for various values of weights and targets in Figure 7.11.
During testing, we observed that weighted-sum scalarisation outperformed Chebyshev scalar-
isation consistently. Table 7.4 shows a comparison of the hypervolumes obtained by the two
techniques empirically on the problem instances. Hence, a decision is made to use the weighted-
sum scalarisation method. Although many other scalarisation methods exist, performing com-
parison studies using them may be considered in future works. Within this chapter, unless
otherwise stated, HC will refer to a multi-objective hill climbing with a weighted-sum scalari-
sation technique.
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Figure 7.11: Isolines of combined objective in Chebyshev scalarisation. In this example, when the
objective function targets are fixed and the weights are varied, the aspect ratios of the rectangular isolines
vary.

The reason for the poor performance of Chebyshev scalarisation is explored further. It is found
that for some solutions that hill climbing crosses through, none of the bitflips resulted in an
improvement in Chebyshev fitness. Referring to Figure 7.12, a bitflip operation on the current
solution (denoted by a red dot) may result in a new solution (yellow dot) that has a better fitness
according to weighted-sum scalarisation but not in Chebyshev due to the sharp rectangular
isoline (blue dashed line). When none of the bitflips produce solutions that cross the Chebyshev
isoline (towards top left of blue dashed lines), the algorithm gets stuck. However, this is not the
case for weighted-sum scalarisation which has a relatively liberal acceptance isoline (towards
the top left of the brown dotted line). In essence, such solutions are local optimal for Chebyshev
scalarisation, whereas in weighted-sum scalarisation, the new solution is accepted, allowing the
possibility to find better solutions as indicated by the green point in Figure 7.12.

7.8 Non-dominated sorting genetic algorithms (NSGA-II)
NSGA-II is a popular multi-objective optimisation strategy introduced by Deb et al. [69]. It has
been effectively used in solving multi-criteria decision-making problems across a plethora of
domains. In this implementation, a single-point cross over with an individual cross-over proba-
bility of 0.9 is applied with a bit-wise mutation rate of 1/ (chromosome length). The CPU time
for non-dominated sorting is insignificant compared to the objective function evaluation time,
and hence the function evaluation budget consideration remains valid for comparing NSGA-II
with other algorithms. Figure 7.13 shows the progress of solutions in the objective function
space for one trial of NSGA-II for all problem instances. In the figure, each point refers to a
particular shape, and the colour corresponds to the generation in which it is found. We can ob-
serve that as the generations progress (from blue to red), the solution set tends towards the top
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Figure 7.12: An illustration as to why weighted sum scalarisation performs better compared to Cheby-
shev scalarisation.

left corresponding to more sound absorption and less volume fraction. While the improvement
in the quality of solutions over the generations is more prominent in problem instances 1, 3, 5
and 7, it is not significant in others.

In Figure 7.14, the final Pareto front after applying non-dominated sorting across all solutions in
a given trial is shown. For problem instance 1, it seems that better quality solutions tend to have
porous materials at the back of the domain closer to the rigid wall. For problem instances 2, 5
and 7, at low volume fractions, the shapes seem to fill material closer to the acoustic source, and
for higher volume fractions, a cavity is formed closer to the rigid wall. For problem instance
3 and 6, the shapes found are too intricate that they did not have any overall feature. This is a
drawback for NSGA-II as the shapes are not manufacturable when no filtering techniques are
considered. For problem instance 4, the optimal shapes have an inverted-wedge-like shapes.

7.9 Random Search (RAND)

For establishing a baseline, a random search algorithm is also included in the pool of strategies
compared. In this implementation, the random solutions are obtained across various volume
fractions by choosing the desired volume fraction uniformly between 0 and 1, and using this
value as the probability to fill porous material at each element. The solutions are generated at
random until the budget is used up and the best results are returned.

The results from RAND for all problem instances are shown in Figure 7.15. On examining all
the solutions picked by RAND, we observe that at a particular volume fraction, the spread of
absorption values of the solutions is distinct for each problem instance. Two trials are shown
with different coloured dots to highlight that multiple trials do not significantly change the
distribution of solutions in the objective space. In problem instance 6, the spread of absorption
at any picked volume fraction is small, indicating that a random solution picked at that volume
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Figure 7.13: NSGA-II on problem instance 6: Pareto front with trade-off shapes.
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Figure 7.14: NSGA-II trade off shapes in the objective function space for all problem instances.
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Figure 7.15: Pareto solutions from RAND on all problem instances. Notice the unique spread of absorp-
tion values at a given volume fraction for each problem instance. For instances 2, 4 and 6, the spread is
less indicating either that there may be little benefit to optimising or that the best solutions are outliers
which may be hard to find using search methods.
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fraction may be expected to have similar quality. However, this is not the case in other problem
instances such as 1, 3 and 7, where solutions at a particular volume fraction seem to have a
reasonable spread in absorption. By studying the improvement obtained by an algorithm in
comparison to a random search, some aspects of the fitness landscape can be uncovered. For
instance, if RAND performs better than a gradient approach, it indicates that the landscape
might be highly rugged and multimodal. Problems identified to have rugged landscapes may
benefit from population-based strategies.

7.10 Comparison of non-gradient algorithms

7.10.1 Performance per trial

As we now understand, in a given HC trial, based on the choice of the scalarisation weight, only
a specific region of the Pareto front will be explored. Hence, if only one trial of the algorithm
is allowed, HC can cover the specific region of the Pareto front well but not cover much of the
other regions resulting in a Pareto set with a poor hypervolume. On the other hand, in one trial,
NSGA-II solutions can span the objective space effectively due to the crowding distance control
mechanism in the algorithm.

Comparing the median-trial hypervolumes from HC and NSGA-II in Table 7.5, it is clear that
NSGA-II is consistently better across all problem instances. This is because based on the choice
of scalarisation weight, in a given trial, HC only explores a specific region in the Pareto front.
Whereas, NSGA-II spans the objective space effectively due to the crowding distance-based
selection mechanism. NSGA-II also outperforms RAND in all problem instances, but inter-
estingly, HC, on a per-trial basis, does not outperform even RAND. Moreover, RAND outper-
forms HC across all problem instances. This is because HC in a single trial is essentially a
single-objective algorithm that does not incentivise spanning the hypervolume.

7.10.2 Performance across 15 trials

It is of interest to see which algorithms have achieved a better combined performance across
the 15 trials. If all regions of the objective space are explored by repeated trials of HC, different
regions of the Pareto front can be explored. Figure 7.16 shows the combined Pareto fronts from
15 trials of HC, NSGA-II and RAND, involving 15×4096 function evaluations. To arrive at
this plot, first, a non-dominated sorting is done for all the solutions searched in a trial. Then, the
Pareto solutions from each trial are combined, and a final non-dominated sorting is performed.
The results show that solutions from HC are often superior for a given volume fraction value
across problem instances.

Combining 15 trials of HC run with different weights results in a better hypervolume than the
combined results of 15 trials of NSGA-II consistently across all problem instances, as can be
observed in Table 7.6 (see columns HC vs. NSGA-II). While the performance of NSGA-II is
similar to HC in some problem instances, in others, NSGA-II performed relatively poorly.
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Figure 7.16: Combined Pareto fronts from 15 trials of HC, NSGA-II and RAND on all 7 problem in-
stances.
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Figure 7.17: Illustration of one trial of hybrid algorithm 1. Procedure: Apply CHg for 25% of the trials.
Pick a point on the CHg Pareto set. Find the slope of the Pareto front using central difference. Set
scalarisation weight such that the isolines of the combined objective are parallel to the tangent of the
Pareto front at the selected CHg point. Apply hill climbing for rest of the fitness evaluation budget. The
final Pareto set after 15 such trials each starting from equispaced points on the CHg Pareto set are shown
using red ‘x’ markers.

Hybrid algorithms
From the studies on the gradient and non-gradient algorithms, there are a few points to take
away. Gradient methods, while they are quick to approximate the Pareto front, they are often
outperformed by HC when interested in solutions with a specific volume fraction. However,
using non-gradient algorithms can be quite time-consuming to explore all regions in the Pareto
front. In order to obtain the benefits of both, two hybrid approaches combining a gradient-
based algorithm for the initiation and a non-gradient algorithm for improvement are presented
and compared. The first hybrid approach is a combination of CHg and HC, denoted as HA1, and
the second hybrid approach is a combination of CHg and NSGA-II, denoted as HA2. We picked
CHg as the initiator mainly because it guarantees discrete solutions and allows the possibility
to speed up (see section 7.6).

7.11 Hybrid algorithm 1: CHg+HC
In the first algorithm, we introduce a novel adaptive scalarisation technique that considers
the isolines of the scalarised objective function to be tangential to the Pareto front. Simi-
lar approaches that use adaptive weighted-sum scalarisation have been shown to perform well
[145, 255].

Hybrid approach 1 (HA1) combines the use of CHg for 25% of the budget and HC for the
remaining 75% of the budget. These numbers are arbitrarily chosen with some basis on experi-
ence. Since CHg is gradient-based, and gradient-included evaluations are thrice as expensive as
non-gradient fitness evaluations (equation 7.2), the rationing is such that CHg uses 25%×(4096

3
)
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fitness evaluations and HC uses 75%× (4096
1

).

Figure 7.17 illustrates the procedure involved in HA1. Firstly, CHg is run to obtain a trade-off
solution set. Then, 15 solutions are selected from the CHg trade-off set equispaced in volume
fraction to use as initial solutions for each of the 15 HC trials. For each HC trial, a different
scalarisation weight w is used such that the isolines of the combined objective C has a slope
tangential to CHg Pareto front at the initial solution. The slope of the Pareto front at the initial
solution is obtained using a simple central difference of adjacent points. This Pareto-slope-
based scalarisation effectively guides HC to find improvements to the Pareto front. Then, HC
is run until the remaining budget is used up. As seen in Figure 7.17, in each trial, only a spe-
cific region is explored. The hypervolumes covered after each trial and after combining all 15
trials are computed. The per-trial median hypervolumes and 15-trials-combined hypervolumes
obtained by HA1 are provided in Tables 7.5 and 7.6 for all problem instances.

In Figure 7.18, the final Pareto front across 15 trials of hybrid algorithm 1 is shown. For problem
instance 1, HA1 seems to include a middle porous layer and gradually grows into a wedge-like
shape, although with intricate holes which are difficult to manufacture. For problem instance
2, HA solutions are simplest to explain among the algorithms so far discussed. All the Pareto
shapes have a flat layer of porous material as far away from the rigid backing as possible. For
problem instance 3, however, the shapes exhibit checkerboard patterns with no clear shape.
Within the checkerboard pattern, there seems to emerge a gross pattern, which encloses three
air cavities along the vertical axis. This pattern does not resemble any of the solutions produced
by SIMPsweep or SIMPrestart, which in turn were able to find shapes with reasonable patterns.
For problem instance 4, the shapes seemed to resemble inverted wedges. But these shapes seem
to be slightly better than the shapes produced by CHg in terms of manufacturability. For prob-
lem instance 5, there were clear patterns of inverted wedges in optimal shapes. For problem
instance 6, the optimal shapes were predominantly two simple flat porous layered with air gaps.
The shapes for problem instance 7 suggest the addition of porous material away from the rigid
backing, similar to all other algorithms.

7.12 Hybrid algorithm 2: CHg+NSGA-II
Hybrid approach 2 (HA2) combines CHg and NSGA-II in a similar fashion, i.e., CHg uses 25%
of the budget, and NSGA-II uses the remaining 75%. The rationing of fitness evaluations is
similar to that in HA1.

Originally, the final solution set from CHg was meant to be used as the initial population for
NSGA-II in each trial. However, on some occasions, the CHg Pareto front contained more or
less solutions than the population size assigned for NSGA-II. Hence, when there were more
solutions in CHg Pareto set, only 32 solutions equispaced in volume fraction were considered
as the initial population for NSGA-II, and when there were fewer than 32 solutions, they were
duplicated using the selection process in the first generation. Then NSGA-II is run for the re-
mainder of the budget.

Figure 7.19 shows the solutions searched in an example trial out of the 15 trials that were run for
problem instance 1. The combined Pareto front from 15 trials is then plotted using red crosses.
It may be observed that in the low volume fraction regions, the solutions from NSGA-II never



7.12. Hybrid algorithm 2: CHg+NSGA-II 149

Figure 7.18: HA1 trade off shapes in the objective function space for all problem instances.
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Figure 7.19: Illustration of one trial of hybrid algorithm 2. Procedure: A combination of CHg run for
25% of computational budget, and then using the Pareto set as the initial population, NSGA-II is run for
15 trials and the resulting combined Pareto front is found.

seem to improve. This is because crossover and mutation operations always produce worse
solutions. The hypervolumes covered by the median trial and the overall hypervolume of the
combined non-dominated solutions across 15 trials of HA2 are provided in Tables 7.5 and 7.6.

Figure 7.20 shows the final Pareto front across 15 trials of hybrid algorithm 2. For problem
instance 1, HA2 includes porous layers towards the rigid backing end with no apparent pattern
emerging in the front end facing the acoustic wave. These shapes are even more intricate than
HA1 and are worse in terms of manufacturability. For problem instance 2, it is interesting to
note that HA2 solutions exactly resemble those of HA1. Both HA1 and HA2 produce simple
flat layers away from the rigid wall for this problem instance. For problem instance 3, however,
unlike HA1, the shapes from HA2 seemed to fill material only close to the left edge of the de-
sign domain and exhibit checkerboard patterns with no precise shape. For problem instance 4,
the shapes seemed to resemble inverted wedges, like in many other algorithms. However, the
shapes have almost a clear cavity, which is easier to manufacture relative to those of CHg and
HA1. For problem instance 5, there were patterns of inverted wedges in optimal shapes similar
to HA1. For problem instance 6, the optimal shapes were predominantly two simple flat porous
layers with air gaps. The shapes for problem instance 7 suggest adding porous material away
from the rigid backing, but the shape pattern is a bit clearer than those from other algorithms,
especially HA1.
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Figure 7.20: HA2 trade off shapes in the objective function space for all problem instances.
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Table 7.5: Median hypervolumes obtained while running one trial with a budget equivalent to 4096
gradient-free fitness evaluations. HA2 seems to perform best when considering the trial-averaged per-
formance for 4096 fitness evaluations.

Gradient-based Gradient-free Hybrid
Fitness evalua-
tions

1365 1365 min(ne/m,1365) 4096 4096 4096 4096 4096

Instance/ Alg. SIMPrestart SIMPsweep CHg HC NSGA-II RAND HA1 HA2
1 0.7065 0.6835 0.6724 0.5622 0.6824 0.5915 0.7013 0.7170
2 0.4014 0.4047 0.4066 0.2684 0.3427 0.3212 0.4066 0.4068
3 0.7317 0.6063 0.7412 0.5908 0.6336 0.6061 0.7343 0.7184
4 0.1160 0.1188 0.1087 0.0893 0.1148 0.1085 0.1122 0.1174
5 0.5208 0.5292 0.5323 0.3798 0.4847 0.4561 0.5324 0.5327
6 0.7202 0.7607 0.7512 0.5430 0.6159 0.6211 0.7603 0.7601
7 0.8727 0.8567 0.8733 0.7133 0.8531 0.7677 0.8733 0.8758

7.13 Overall comparison

7.13.1 Trial-averaged performance for 4096 budget

For a computational budget of 4096 gradient-free fitness evaluations, Table 7.5 shows the result-
ing hypervolumes covered by all algorithms used in this study. It should be noted that CHg did
not need to use the entire budget. Since in each iteration, CHg has to fill at least one element,
the entire design domain can be filled with only {100, 150, 1000, 100, 100, 1000, 50} fitness
evaluations respectively for problem instances 1 through 7.

Keeping this in mind, the table shows that HA2, a combination of CHg and NSGA-II, covers
the most hypervolume in 4 out of 7 problem instances on average per trial. Note that HA2
also performs better than stand-alone NSGA-II for the same budget. While it is evident that
gradient-based initialisation boosts the performance of NSGA-II, it is interesting to note that
HA2 can perform better than SIMPrestart or SIMPsweep, which are normally used in practice.
Thus, if one has a fixed computational budget to cover the most hypervolume, a reliable strategy
is to use a combination of CHg followed by NSGA-II.

Also, it is worth noting that SIMPsweep performs the best in two problem instances, and CHg
performs best in one problem instance. Notably, SIMPsweep and CHg are also scalable for
lower budgets. These three algorithms may be recommended for applications such as soft-
ware implementations in the initial stages of design that need to quickly come up with trade-off
acoustic solutions within a set computational budget.
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7.13.2 Combined performance of 15 trials each with 4096 budget

Table 7.6: Combined 15-trial hypervolumes covered by all algorithms for all problem instances. Hybrid
algorithm 1 (CHg + HC) covers the most hypervolume across 6 out of 7 problem instances given the
same budget of 15*4096 equivalent gradient-free fitness evaluations.

Gradient-free Hybrid
Instance HC NSGA-II RAND HA1 HA2
Budget 15*4096 15*4096 15*4096 15*4096 15*4096
1 0.7436 0.7302 0.6221 0.7438 0.7307
2 0.4029 0.3613 0.3329 0.4081 0.4074
3 0.7772 0.6878 0.6219 0.8104 0.7295
4 0.1144 0.1169 0.1107 0.1195 0.1190
5 0.5212 0.5034 0.4708 0.5343 0.5337
6 0.7509 0.6310 0.6269 0.7646 0.7606
7 0.8407 0.8725 0.8021 0.8755 0.8759

It is also of interest to identify effective strategies that find solutions with the best attainable
quality with relaxed computational time budgets, such as for manufacturing the best acoustic
designs. Table 7.6 shows the resulting hypervolumes covered by a combination of 15 trials
which is equivalent to 15*4096 gradient-free function evaluations. For this comparison, we do
not include the gradient methods as they did not use the same budget.

In this study, HC shows a significant improvement as it is able to combine the good solutions
from various regions of the Pareto front. For the same reason, HA1 (CHg+HC) also performs
exceptionally well, producing the best hypervolumes in 6 out of 7 problem instances. This
shows that the proposed Pareto-slope-based weighted-sum scalarisation technique with a sim-
ple greedy hill climbing algorithm can be used as an effective local improvement strategy. A
takeaway is that before manufacturing an optimal shape using any multi-objective topology op-
timisation approach, it is worth ensuring that there exists no other dominating solution that HC
can find.

Between NSGA-II and its hybrid counterpart HA2, the latter seems to cover more hypervolumes
across all problem instances. This is again an example of a hybrid approach performing better
than its parent approach. HA2 also performed the best in one of the seven problem instances
and comes close to the performance of HA1. This show that there is a benefit to using hybrid
strategies involving gradient initialisers with non-gradient improvers.

7.13.3 Pareto front comparison for all algorithms combined across 15 tri-
als

The problem of topology optimisation has no exact algorithms that run in practical times to
confirm the true Pareto-optimal solutions. Nevertheless, it is of interest to see which algorithms
contribute to finding the best-known solutions in the Pareto diagram.



154 Chapter 7. Multi-objective topology optimisation

Figure 7.21: Comparison of all Pareto fronts in problem instance 1. The gradient algorithms are marked
in blue, non gradient algorithms in red, and hybrid algorithms in green.

Hence, we compare the Pareto fronts obtained from all algorithms in one place. As an example,
this is shown for problem instance 1 in Figure 7.21. The gradient algorithms are marked in blue,
non-gradient in red and hybrid in green. For other problem instances, the figures are included
in Appendix C.

It should be noted that the Pareto fronts for gradient algorithms are obtained from only one trial,
while results for other algorithms are from a combination of 15 trials. Hence, one cannot draw
a direct comparison between gradient strategies and others.

Among the three gradient algorithms, it may be observed that CHg finds better absorbing solu-
tions in lower volume fractions up to 0.3, and the SIMP algorithms found better solutions after
Vf = 0.3.

Among non-gradient algorithms, it is clear that all approaches perform better than random
search, but there is no single clear winner between HC and NSGA-II.

Hybrid algorithms work best to cover the most hypervolume, but interestingly, there are some
regions where HC produces better non-dominated solutions (see between Vf = 0.1 and 0.3).
This shows that one cannot ignore HC just because the hypervolume spanned is poor. The po-
tential of HC for local exploration needs to be recognised.

7.14 Conclusions

In this chapter, several multi-objective strategies were compared to identify effective approaches
for quickly obtaining lightweight and high-absorbing acoustic shape designs within a given
amount of computational effort. Three gradient strategies—SIMPrestart, SIMPsweep and CHg,
two gradient-free strategies—HC and NSGA-II, and two hybrid strategies—HA1 (CHg+HC)
and HA2 (CHg+NSGA-II), were studied. The findings are highlighted as follows.
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1. Gradient algorithms often get stuck at local-optimal shapes, indicated by the fact that non-
gradient approaches have been able to find better solutions in terms of both absorption and
volume fraction objectives.

2. Reusing solutions from SIMP with an adaptive volume fraction constraint (SIMPsweep)
is better at finding closely spaced points in the Pareto front than restarting SIMP at various
volume fraction constraints (SIMPrestart).

3. A simple new gradient-based constructive heuristic (CHg) is introduced that guarantees
discrete solutions while also being scalable and as performant as SIMP algorithms.

4. NSGA-II proves to be most effective in spanning the hypervolume on a per-trial basis for
a fixed computational budget, among gradient and non-gradient methods.

5. Hybrid approaches using gradient algorithms as initialisers and non-gradient algorithms
as exploiters seem to be more effective than any parent gradient or non-gradient algorithm
for the same computational budget.

6. Hill climbing with a Pareto-slope-based weighted-sum scalarisation proves to be an ef-
fective local search technique to improve solutions near the Pareto front.

Some guidelines for choosing an algorithm from the results are provided as follows: If the goal
is to quickly find a set of trade-off shapes, such as to use in software applications, then any
gradient approach or a hybrid approach with CHg and NSGA-II would be more suitable. If the
goal is to obtain the optimised shape designs of the best attainable quality for manufacture, then
a hybrid approach with CHg and hill climbing with a Pareto-slope-based scalarisation seems to
be more suitable. If the interest is to find the best attainable trade-off solutions to a problem,
then no algorithm is a clear winner. Algorithms such as HC occasionally find better solutions
in specific regions than their hybrid counterpart and cannot be ignored.



Chapter 8

Conclusions and perspectives

The work carried out as part of this thesis and the contributions to the field are highlighted in
this chapter. The chapter is organised as follows. Section 8.1 covers the work on multilayered
sound package optimisation, section 8.2 covers with single objective topology optimisation for
absorption maximisation, and section 8.3 covers the multi-objective topology optimisation work
is summarised. Section 8.4 discusses some perspectives and future work prospects, and a final
concluding remark is provided in section 8.5.

8.1 Multilayered sound package optimisation study

8.1.1 Summary
Flat multilayered acoustic material packages are more widely used in the industry as sound
panels for sound absorption and isolation. Studies on optimising multilayered sound packages,
especially for absorption maximisation, have last been reported in 2006 and since then many
recent materials and models have been introduced. The fitness landscapes have not been studied
previously in this problem domain. This thesis presented substantial progress in this regard as
reported in chapter 5. For multilayered sound package optimisation, the material choices for
each layer are the decision variables and the thicknesses and acoustic properties are the design
variables. Initially, the fitness landscapes over the acoustic properties in two-layered systems
were studied. Then, for a three-layered system, the exploration of optimal material choices from
29 available materials and the thicknesses for each layer was considered. A steady-state genetic
algorithm with integer representation was applied to find near-optimal solutions. The effects
of various parameters of GA were studied. To analyse the fitness landscape over the material
configurations and thicknesses, a brute-force search on all possible material configurations for a
fixed equal-thickness three-layered system was carried out. For the best material configuration,
all possible thickness configurations for a total thickness constraint were explored to study the
fitness landscape across thickness variables. The insights gained were used to arrive at some
guidelines for algorithm selection.

8.1.2 Contributions
The main contributions are highlighted as follows.

1. The fitness function landscapes across the acoustic design variables—static airflow re-
sistivity and porosity—were assessed for the first time in the absorption maximisation
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problem and were found to be smooth and uni-modal or with a few modes. The implica-
tion is that the optimising across those parameters can be performed quickly using simple
steepest-descent hill climbing or CMA-ES etc.

2. Genetic algorithms were able to quickly find good quality solutions when material choices
and thickness variables were optimised for a three-layered system. However, the improve-
ments after a specific absorption value were insignificant or hard to obtain.

3. The choice of GA parameters such as population size, selection strategy and replacement
seemed to have little effect on the performance.

4. Some materials (especially FoamR1) featured in the final best solutions more frequently
than others over 30 GA trials.

5. A brute-force search over the material configuration for the three-layered system revealed
that there exist many solutions which had a near-optimal absorption for the problem in-
stance. The best solution found by GA trials was one among the many near-optimal
solutions that were only insignificantly worse than the true optimum.

6. Across the thickness variables, the fitness landscape was observed to be smooth and uni-
modal.

7. From the insights obtained, as more layers are considered, a memetic algorithm with a
combination of GA over the material choices and a hill climbing or a fast continuous
approach such as hill climbing or CMA-ES seems to be a natural choice to explore.

8.2 Single objective topology optimisation study

8.2.1 Summary
A more challenging topology optimisation problem was tackled in chapter 6. This problem
is significantly more challenging as the number of design variables usually involved is much
larger, and the fitness evaluations are more expensive relative to multilayered optimisation.
While there exist a few publications on acoustic topology optimisation, which mainly deal with
implementation for various problem case studies, none exists that compares many different ap-
proaches. In this novel venture, fitness landscapes have been explored for the first time, and
many domain-specific insights have been obtained. A single-objective optimisation problem
involving maximising absorption was considered, without including any constraint on the vol-
ume fraction or manufacturability. The computations involved in fitness and gradient evaluation
were investigated to understand the problem structure. Based on this, techniques to improve fit-
ness evaluation speed without compromising on accuracy were implemented. A discussion on
the practical time complexity of the fitness and gradient computations was provided. Further,
empirical comparison studies were conducted using seven different optimisation approaches,
including state-of-the-art heuristics and popular metaheuristics. The approaches tested are hill
climbing, constructive heuristics, SIMP, GA, tabu search, CMA-ES and differential evolution.
In total, eleven algorithms were tested that included variants of some of the approaches listed
above. Firstly, the runtime performance of the algorithms was compared, which revealed that
gradient methods quickly find good quality solutions. Then, the best solution performance for
a given computational budget was compared over 31 trials. Some non-gradient algorithms such
as hill climbing, a material addition constructive heuristic and a discrete variant of CMA-ES
consistently outperformed SIMP variants across 7 problem instances. Different shapes pro-
duced by each algorithm and their frequency vs. absorption curves were discussed. Then, a
fitness landscape analysis was carried out to assess why gradient algorithms are outperformed
by non-gradient ones.
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8.2.2 Contributions
The main contributions are highlighted as follows.

1. A detailed exploration of the fitness evaluation computation was used to estimate the the-
oretical and practical time complexities of both absorption and its gradient. This revealed
that, in absorption maximisation, fitness and gradients have a similar time complexity,
whereas in compliance minimisation, the gradient evaluation has a smaller time com-
plexity than fitness.

2. The gradient-based SIMP algorithms were typically faster in reaching good quality solu-
tions for low computational budgets.

3. When comparing over longer fitness-evaluation budgets, non-gradient algorithms were
able to find better solutions than the optimised solutions produced by the state-of-the-art
SIMP algorithms, meaning that gradient methods do converge to local optima and that
the fitness landscapes might be rugged.

4. Hill climbing, a material addition constructive heuristic, and a discrete variant of CMA-
ES were the top three across the seven problem instances when comparing the median
value of best absorption obtained over several trials.

5. The convergence rate of a standard GA was found to be poor, and the final solution
qualities were outperformed by other algorithms.

6. Among CMA-ES and DE, CMA-ES seems to be more suitable in this problem domain.
Among continuous vs. discrete variants of CMA-ES and DE, discrete variants were found
to be better. Hence, discretising before fitness evaluation may be considered for continu-
ous algorithms.

7. When using CMA-ES, the shapes produced were not smooth, and using additional mor-
phological filters may be necessary. Although the solution qualities were high for CMA-
ES, the shapes produced were not smooth in this study which did not consider manufac-
turing. On the other hand, constructive heuristics, SIMP, hill climbing and tabu search
produced shapes with distinguishable features.

8. The distribution of the absorption vs. volume fraction plot revealed that different algo-
rithms tend to find solutions from different regions, indicating that the absorption max-
imisation problem is rich with unique varieties of solutions.

9. The general lesson is that no algorithm studied can be considered to be the best for all of
the problem instances. If the interest is to quickly find good quality solutions, gradient
methods are recommended. If the interest is to find the best quality shapes for manufac-
ture, then using multiple effective methods and choosing from the best solutions may be
a better overall strategy.

8.3 Multi-objective topology optimisation study

8.3.1 Summary
A multi-objective topology optimisation involving simultaneous maximisation of absorption
and minimisation of porous-material volume fraction was considered in chapter 7. Multi-
objective treatment has not been done previously in acoustic material shape design. In a first
of its kind study, several multi-objective approaches were compared, resulting in an under-
standing of the balance between gradient and non-gradient methods. Based on the results and
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insights obtained from chapter 6, only select algorithms were included in this study. The main
theme was comparing gradient and non-gradient methods, and their hybrids. In a comparison
among gradient methods, a new gradient-based constructive approach (CHg) was compared
with two variants of multi-objective SIMP. In a comparison among non-gradient methods, a
weighted-sum hill climbing and NSGA-II were studied. In empirical optimisation trials, it was
observed that gradient algorithms were fast to reach an approximation of the Pareto front in
less iterations. On the other hand, non-gradient approaches, for example, a hill climbing ap-
proach using a scalarisation technique, seemed to find better solutions in specific regions of
the Pareto front. On a per-trial basis, NSGA-II was found to have a better performance. For
hill climbing, two scalarisation techniques—weighted-sum and Chebyshev were compared, and
weighted-sum performed consistently better. Two hybrid algorithms were proposed combining
a gradient-based initialiser and a non-gradient improver. A simple yet effective Pareto-slope-
based weighted-sum scalarisation was used in one of the hybrid algorithms. This algorithm
consistently outperformed all other strategies for a given higher computational budget. The two
hybrid strategies were able to perform better than their parent algorithms for the same computa-
tional budget. These hybrid algorithms combined the benefits of both gradient and non-gradient
algorithms, resulting in a better overall performance in terms of a hypervolume metric.

8.3.2 Contributions

The main contributions are highlighted as follows.
1. Among the gradient methods, which included two variants of SIMP and a gradient-based

constructive heuristic (CHg), overall, the performance was similar in terms of the domi-
nated area in the objective space. Although in some problem instances, in some regions
of the Pareto front, one of these algorithms performed better than the others, indicating
that using only one of the algorithms leads to missing out on better solutions.

2. Between weighted-sum and Chebyshev scalarisation methods used with the hill climbing
approach, weighted sum consistently performed better, and the reason for this was iden-
tified to be the highly selective nature of the Chebyshev isoline that rejects solutions on
the path to better solutions.

3. Among non-gradient methods, hill climbing with weighted-sum scalarisation and NSGA-
II, while hill climbing required many trials to span the Pareto front, NSGA-II consistently
outperformed hill climbing on a per-trial basis. However, when combining more trials
(i.e. a longer computational budget), hill climbing performs consistently better.

4. Hybrid algorithm 1, which is a combination of CHg and hill climbing with a Pareto-
slope-based weighted-sum scalarisation outperformed all other algorithms consistently
for a combination of 15 trials with the same computational budget. This highlights the
effectiveness of such a simple yet novel adaptive scalarisation technique.

5. Hybrid algorithm 2, which is a combination of CHg and NSGA-II, was the winner on
a per-trial basis, including among gradient methods when considering the same compu-
tational budget. Again, this highlighted the effectiveness of hybrid methods over their
parent gradient or non-gradient strategies.

6. The general lesson is that hybrid methods with a gradient initialiser and a non-gradient ex-
ploiter is a better alternative for multi-objective topology optimisation in acoustic porous
materials.
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8.4 Reflections and future work prospects

Manufacturability-oriented topology optimisation: In the current work, one of the main
limitations is that manufacturability was not considered so as to allow more algorithms to be
tested. We have observed that filtering techniques play a significant role in the performance
of algorithms by significantly modifying the fitnesses of the optimal shapes. Even a simple
round-off filter is sufficient to change the evaluated fitness values significantly. Manufacturing-
oriented topology optimisation is a well-studied topic in structural compliance minimisation
[153] but has not been explored yet in the acoustics domain. Manufacturability is an objective
on its own, and hence in future work, a penalty term may be introduced in the fitness function,
and the performance of algorithms may be studied based on this new fitness function. Exploring
various filtering techniques is also a topic of interest in the future. Additionally, manufacturing
and testing such designs remain a challenge. While additive manufacturing has been used to
fabricate porous materials with specific properties [155, 110], the reproducibility of such man-
ufacturing techniques is also a challenge [276]. Only recently, researchers have manufactured
topology optimised shapes of rigid structures in melamine foam obtained using a genetic algo-
rithm [147]. The availability of such new and advanced fabrication techniques is also limited
and is an area for further investigation.

Incremental evaluation: Evaluation of sound absorption indicators is computationally ex-
pensive for certain problem instances, which involve diffused sound fields and intricate shapes,
which need finer discretisation. For purposes of optimisation, it is beneficial to have ways to
quickly evaluate the change in the performance indicator for a given perturbation in the input
variables. While there are efficient ways to find the sensitivities of fitness, such as conjugate
gradient [81] and adjoint methods [87], an unexplored area is to perform incremental evaluation
analogous to 2-opt for the travelling salesman problem [62]. In 2-opt, when crossing routes are
reordered, the change in tour distance can be computed quickly by only considering the incre-
mental change obtained when reordering the routes. Currently, when an element is bitflipped,
the full linear system is solved again to compute absorption. When an optimisation move such
as a bit flip is made, only a small submatrix (or a block) is modified in the system finite ele-
ment matrices. Incremental evaluation in topology optimisation may involve, for instance, using
block matrix operations [53] to compute fitness for perturbed solutions to make the computation
faster. There is an immense potential benefit to exploring existing mathematical methods such
as Cholesky decomposition to quickly estimate the new fitness by making use of data structures
from the previous computation.

Multi-material topology optimisation: Composites involving a porous material with embed-
ded solid scattering materials have been shown to have enhanced low-frequency sound absorp-
tion even with a layer of thickness much less than one-fourth wavelength required by theory
[41]. Researchers have recently studied to design such sound absorbing systems [268] using
topology optimisation. Topology optimisation in acoustic materials have already been extended
to multi-material topology optimisation [138], but only a SIMP variant has been tested. There
is potential for improving the quality of solutions using more effective strategies by combining
with non-gradient operators such as Pareto-slope-based scalarisation.
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Gradient-based metaheuristics and hybrid strategies: Developments in metaheuristics have
focussed mainly on blackbox optimisation methods that do not use any domain information
other than fitness. There exists a growing need for theoretical and empirical studies on meta-
heuristic strategies that use gradient information. An example of a gradient-based heuristic is
stochastic gradient descent which has found immense application in machine learning [172].
While stochastic gradient descent has been applied to other topology optimisation problems
[67, 73], they are yet to be tested on acoustics problems. Developing and testing metaheuristics
that embed gradient-based search operators on mathematical benchmarks is an area which has
received less attention. An example would be a memetic algorithm that embeds a gradient-based
local search or other gradient-based variants and hybrids of different metaheuristics. Such re-
search would have direct application in the field of topology optimisation and others alike.
Moreover, in the current work, while single point-based and population-based metaheuristics
were tested, other constructive metaheuristics such as ant colony [55], GRASP [158] or their
hybrids with gradient strategies are yet to be investigated.

Machine learning models as surrogates for fitness evaluation: Machine learning methods
such as convolutional neural networks have been successful in pattern recognition in images
[28]. From the current study, it is observed that good-quality acoustic shapes exhibit specific
patterns. A potential future work is to explore the use of machine learning-based regression
techniques as surrogate models to quickly predict the expensive fitness function. Such models
could be used to guide algorithms to identify porous material shape designs that tend to have
high absorption properties. Efforts towards using deep learning for approximating the fitness
are gaining interest in the compliance minimisation domain [211] but are yet to be applied to
porous material problems.

Informed heuristics: Another potential future work topic is to identify if any domain-specific
information other than fitness or gradients could be used to implement faster topology optimi-
sation methods. Incorporating domain-specific knowledge into metaheuristics has been shown
to be beneficial in other domains [187]. The BESO algorithm [257] uses stress information to
make moves, and whether there exists a parameter analogous to stress in acoustics is a ques-
tion of interest. In this regard, the acoustic pressure and velocity fields in the design domain
were explored during this thesis. These fields are computed during the fitness evaluation and
do not require any additional computational effort, unlike gradients. Even though correlations
between these fields and the sensitivity to absorption were observed at each element, there were
exceptions, especially near the elastic resonance frequency of the solid part. This line of re-
search needs to be further explored to lead to designing informed heuristics that make use of
the domain-specific structure.

Graded materials: Topology optimisation can be extended to optimise the material property
distribution in acoustic materials. A recent work by Boulvert et al. [32] presents a strategy for
optimising the graded properties and manufacturing 3D-printed graded acoustic materials. In
their work, a graded porosity acoustic structure is additively manufactured using ABS plastic
demonstrating the proof of concept. Currently, there is a lack of comparative studies on various
strategies for such graded materials, which makes this a potential topic for future research.
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8.5 Final remarks
To conclude, the purpose of this line of research is to have at our disposal efficient tools to
reduce excess sound-absorbing materials in weight-critical applications such as aircraft and
space launch vehicles and the cost of noise reduction solutions in urban environments. In the
short to medium term, efficient acoustic topology optimisation and the resulting weight savings
can reduce the operating costs of air travel and reduce costs of sound-proofing solutions, and in
the long term, expand the horizons of space transport, benefiting humanity at large.
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[17] BÉCOT, F.-X., AND JAOUEN, L. An alternative Biot’s formulation for dissipative porous
media with skeleton deformation. The Journal of the Acoustical Society of America 134,
6 (2013), 4801–4807.
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AND BÉCOT, F.-X. Comparison of gradient-based and gradient-free heuristics and meta-
heuristics for topology optimisation in acoustic porous materials. The Journal of the
Acoustical Society of America 150, 4 (2021), 3164–3176.

[203] REINELT, G. Tsplib—a traveling salesman problem library. ORSA journal on computing
3, 4 (1991), 376–384.

[204] RHAZI, D., AND ATALLA, N. Transfer matrix modeling of the vibroacoustic response of
multi-materials structures under mechanical excitation. Journal of Sound and Vibration
329, 13 (2010), 2532–2546.

[205] ROSTAMI, P., AND MARZBANRAD, J. Identification of optimal topologies for contin-
uum structures using metaheuristics: A comparative study. Archives of Computational
Methods in Engineering (2021), 1–28.
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International Journal for Numerical Methods in Engineering 100, 9 (2014), 689–710.

[210] SADOUKI, M. Experimental measurement of the porosity and the viscous tortuosity of
rigid porous material in low frequency. Journal of Low Frequency Noise, Vibration and
Active Control 37, 2 (2018), 385–393.

[211] SASAKI, H., AND IGARASHI, H. Topology optimization accelerated by deep learning.
IEEE Transactions on Magnetics 55, 6 (2019), 1–5.

[212] SCHOENBERG, M. Wave propagation in alternating solid and fluid layers. Wave Motion
6, 3 (1984), 303–320.

[213] SGARD, F. C., OLNY, X., ATALLA, N., AND CASTEL, F. On the use of perforations
to improve the sound absorption of porous materials. Applied Acoustics 66, 6 (2005),
625–651.

[214] SHARMA, C., SABHARWAL, S., AND SIBAL, R. A survey on software testing tech-
niques using genetic algorithm. International Journal of Computer Science Issues 10, 1
(2013), 381.

[215] SHEIKH, R. H., RAGHUWANSHI, M. M., AND JAISWAL, A. N. Genetic algorithm
based clustering: A survey. In 2008 First International Conference on Emerging Trends
in Engineering and Technology (2008), IEEE, pp. 314–319.



178 BIBLIOGRAPHY

[216] SIGMUND, O. On the design of compliant mechanisms using topology optimization.
Journal of Structural Mechanics 25, 4 (1997), 493–524.

[217] SIGMUND, O. A 99 line topology optimization code written in Matlab. Structural and
Multidisciplinary Optimization 21, 2 (2001), 120–127.

[218] SIGMUND, O. Morphology-based black and white filters for topology optimization.
Structural and Multidisciplinary Optimization 33, 4-5 (2007), 401–424.

[219] SIGMUND, O. On the usefulness of non-gradient approaches in topology optimization.
Structural and Multidisciplinary Optimization 43, 5 (2011), 589–596.

[220] SIGMUND, O., AND CLAUSEN, P. M. Topology optimization using a mixed formula-
tion: an alternative way to solve pressure load problems. Computer Methods in Applied
Mechanics and Engineering 196, 13-16 (2007), 1874–1889.

[221] SIGMUND, O., AND MAUTE, K. Topology optimization approaches. Structural and
Multidisciplinary Optimization 48, 6 (2013), 1031–1055.

[222] SIGMUND, O., AND PETERSSON, J. Numerical instabilities in topology optimization: A
survey on procedures dealing with checkerboards, mesh-dependencies and local minima.
Structural Optimization 16, 1 (1998), 68–75.

[223] SILVER, D., SCHRITTWIESER, J., SIMONYAN, K., ANTONOGLOU, I., HUANG, A.,
GUEZ, A., HUBERT, T., BAKER, L., LAI, M., BOLTON, A., CHEN, Y., LILLICRAP,
T., HUI, F., SIFRE, L., VAN DEN DRIESSCHE, G., GRAEPEL, T., AND HASSABIS,
D. Mastering the game of Go without human knowledge. Nature 550, 7676 (2017),
354–359.

[224] SONG, B. H., AND BOLTON, J. S. A transfer-matrix approach for estimating the char-
acteristic impedance and wave numbers of limp and rigid porous materials. The Journal
of the Acoustical Society of America 107, 3 (2000), 1131–1152.
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Appendix A

Database of porous materials

In this appendix, a database of material properties of existing porous materials used in the
optimisation studies in chapter 5 is provided. These material properties have been obtained
from Matelys research lab’s standard database for the Alphacell software.

Table A.1: Air

Property Value
Speed of sound (m/s) 340

Table A.2: Air dissipative

Property Value
Speed of sound (m/s) 340

Dissipation factor 0.05

Table A.3: Felt 62 kg·m−3

Property Value
Acoustic model JCAL
Open porosity φ 0.97

Static airflow resistivity σ (N· s · m−4) 38500
Viscous characteristic length Λ (m) 4.2e-5
Thermal characteristic length Λ′ (m) 8.6e-5

High frequency limit of tortuosity α∞ 1.02
Static thermal permeability k′o 6.4e-9

Elastic model Elastic (isotropic)
Density ρ (kg·m−3) 62

Young’s modulus E (N·m−2) 35000
Poisson’s ratio ν 0

Equivalent viscous damping coefficient η 0.12
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Table A.4: Felt 93 kg·m−3

Property Value
Acoustic model JCAL
Open porosity φ 0.94

Static airflow resistivity σ (N· s · m−4) 37800
Viscous characteristic length Λ (m) 2.8e-5
Thermal characteristic length Λ′ (m) 10.5e-5

High frequency limit of tortuosity α∞ 1.01
Static thermal permeability k′o 3.0e-9

Elastic model Elastic (isotropic)
Density ρ kg·m−3 62

Young’s modulus E (N·m−2) 35000
Poisson’s ratio ν 0

Equivalent viscous damping coefficient η 0.12

Table A.5: Foam 55 kg·m−3

Property Value
Acoustic model JCAL
Open porosity φ 0.97

Static airflow resistivity σ (N· s · m−4) 50000
Viscous characteristic length Λ (m) 3.9e-5
Thermal characteristic length Λ′ (m) 22.0e-5

High frequency limit of tortuosity α∞ 1.0
Static thermal permeability k′o 6.9e-9

Elastic model Elastic (isotropic)
Density ρ (kg·m−3) 55

Young’s modulus E (N·m−2) 43000
Poisson’s ratio ν 0.4

Equivalent viscous damping coefficient η 0.3

Table A.6: Foam Agglomerate, Gourdon and Seppi [93]

Property Value
Acoustic model JCAL
Open porosity φ 0.9

Static airflow resistivity σ (N· s · m−4) 47700
Viscous characteristic length Λ (m) 2.4e-5
Thermal characteristic length Λ′ (m) 20.0e-5

High frequency limit of tortuosity α∞ 1.29
Static thermal permeability k′o 2.9e-9

Elastic model Elastic (isotropic)
Density ρ (kg·m−3) 55

Young’s modulus E (N·m−2) 43000
Poisson’s ratio ν 0.4

Equivalent viscous damping coefficient η 0.3
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Table A.7: Foam Backrest

Property Value
Acoustic Model Miki
Open porosity φ 0.98

Static airflow resistivity σ (N· s · m−4) 12000
High frequency limit of tortuosity (α∞) 1.1

Table A.8: Foam Agglomerate, Gourdon and Seppi [93]

Property Value
Elastic model Elastic (isotropic)

Density ρ (kg·m−3) 60
Young’s modulus E (N·m−2) 80000

Poisson’s ratio ν 0.41
Equivalent viscous damping coefficient η 0.3

Table A.9: Foam cushion

Property Value
Acoustic model Miki
Open porosity φ 0.97

Static airflow resistivity σ (N· s · m−4) 50000
High frequency limit of tortuosity (α∞) 1.2

Table A.10: Foam Headliner

Property Value
Acoustic model Delany-Bazley-Miki

Static airflow resistivity σ (N· s · m−4) 46000

Table A.11: Foam R1 Perrot et al. 2012 [190]

Property Value
Acoustic model JCAPL
Open porosity φ 0.9

Static airflow resistivity σ (N· s · m−4) 700
Viscous characteristic length Λ (m) 12.9e-5
Thermal characteristic length Λ′ (m) 44.0e-5

High frequency limit of tortuosity α∞ 1.12
Static thermal permeability k′o 3e-9
Static viscous tortuosity (αo) 1.22

Static thermal permeability (α′o) 1.13
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Table A.12: Glasswool Thermal

Property Value
Acoustic model Miki
Open porosity φ 0.97

Static airflow resistivity σ (N· s · m−4) 5000
High frequency limit of tortuosity (α∞) 1.0

Density ρ (kg·m−3) 35

Table A.13: Glasswool 16 kg·m−3

Property Value
Acoustic model JCAL
Open porosity φ 0.99

Static airflow resistivity σ (N· s · m−4) 20000
Viscous characteristic length Λ (m) 2.6e-5
Thermal characteristic length Λ′ (m) 13.5e-5

High frequency limit of tortuosity α∞ 1.11
Static thermal permeability k′o 2.4e-9

Elastic model Limp
Density ρ (kg·m−3) 16

Table A.14: Glasswool 18 kg·m−3

Property Value
Acoustic model JCAL
Open porosity φ 0.96

Static airflow resistivity σ (N· s · m−4) 11500
Viscous characteristic length Λ (m) 10.8e-5
Thermal characteristic length Λ′ (m) 8e-5

High frequency limit of tortuosity α∞ 1.01
Static thermal permeability k′o 2.4e-9

Elastic model Elastic (isotropic)
Density ρ (kg·m−3) 18

Young’s modulus E (N·m−2) 3000
Poisson’s ratio ν 0.3

Equivalent viscous damping coefficient η 0.21
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Table A.15: Glasswool 18 kg·m−3 visco

Property Value
Acoustic model JCAL
Open porosity φ 0.96

Static airflow resistivity σ (N· s · m−4) 11500
Viscous characteristic length Λ (m) 10.8e-5
Thermal characteristic length Λ′ (m) 13.8e-5

High frequency limit of tortuosity α∞ 1.01
Static thermal permeability k′o 2.4e-9

Elastic model Visco (isotropic)
Density ρ (kg·m−3) 18

Young’s Modulus E (N·m−2) 3000
Poisson’s ratio ν 0.3
Frequency (Hz) Equivalent viscous damping coefficient (η)

10 0.3312
1000 .0463
5000 0.029

10000 0.025

Table A.16: Glasswool 27 kg·m−3

Property Value
Acoustic model JCAL
Open porosity φ 0.98

Static airflow resistivity σ (N· s · m−4) 17500
Viscous characteristic length Λ (m) 10.6e-5
Thermal characteristic length Λ′ (m) 15.1e-5

High frequency limit of tortuosity α∞ 1.0
Static thermal permeability k′o 5.6e-9

Table A.17: Glasswool 8 kg·m−3

Property Value
Acoustic model JCAL
Open porosity φ 0.99

Static airflow resistivity σ (N· s · m−4) 19300
Viscous characteristic length Λ (m) 8.5e-5
Thermal characteristic length Λ′ (m) 12.5e-5

High frequency limit of tortuosity α∞ 1.21
Static thermal permeability k′o 23e-9

Elastic model Limp
Density ρ (kg·m−3) 8
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Table A.18: Melamine foam

Property Value
Acoustic model JCA
Open porosity φ 0.99

Static airflow resistivity σ (N· s · m−4) 10000
Viscous characteristic length Λ (m) 9.8e-5
Thermal characteristic length Λ′ (m) 19.6e-5

High frequency limit of tortuosity α∞ 1.01
Elastic model Elastic (isotropic)

Density ρ (kg·m−3) 8
Young’s modulus E (N·m−2) 160000

Poisson’s ratio ν 0.44
Equivalent viscous damping coefficient η 0.1

Table A.19: Mineral wool Villot et al. 2001 [248]

Property Value
Acoustic model JCA
Open porosity φ 0.96

Static airflow resistivity σ (N· s · m−4) 34000
Viscous characteristic length Λ (m) 4e-5
Thermal characteristic length Λ′ (m) 8e-5

High frequency limit of tortuosity α∞ 1.0
Elastic model Elastic (isotropic)

Density ρ (kg·m−3) 90
Young’s modulus E (N·m−2) 400000

Poisson’s ratio ν 0.0
Equivalent viscous damping coefficient η 0.18

Table A.20: Perforated Plate circular

Property Value
Acoustic model Perf. Plate Circular
Open porosity φ 0.1

Radius (m) 1e-4
Correction dynamic
Inclination 0
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Table A.21: Polymer foam 27 kg·m−3

Property Value
Acoustic model JCAL
Open porosity φ 0.98

Static airflow resistivity σ (N· s · m−4) 43900
Viscous characteristic length Λ (m) 1.9e-5
Thermal characteristic length Λ′ (m) 26.7e-5

High frequency limit of tortuosity α∞ 2.81
Static thermal permeability k′o 25.5e-9

Elastic model Limp
Density ρ (kg·m−3) 27

Table A.22: PU foam Groby et al., JASA 2010

Property Value
Acoustic model JCA
Open porosity φ 0.98

Static airflow resistivity σ (N· s · m−4) 2830
Viscous characteristic length Λ (m) 31.9e-5
Thermal characteristic length Λ′ (m) 62.1e-5

High frequency limit of tortuosity α∞ 1.06

Table A.23: PU foam Groby et al., JASA 2010

Property Value
Acoustic model JCAL
Open porosity φ 0.95

Static airflow resistivity σ (N· s · m−4) 13500
Viscous characteristic length Λ (m) 3.9e-5
Thermal characteristic length Λ′ (m) 22e-5

High frequency limit of tortuosity α∞ 1.0
Static thermal permeability k′o 6.9e-9

Table A.24: Rock wool

Property Value
Acoustic model JCAL
Open porosity φ 0.95

Static airflow resistivity σ (N· s · m−4) 120000
Viscous characteristic length Λ (m) 1.2e-5
Thermal characteristic length Λ′ (m) 7.2e-5

High frequency limit of tortuosity α∞ 1.08
Static thermal permeability k′o 1.1e-9
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Table A.25: Screen 10

Property Value
Acoustic model Screen
Open porosity φ 0.1

Static airflow resistivity σ (N· s · m−4) 200000
Correction Dynamic

Table A.26: Screen with high porosity, Jaouen & Bécot 2011 [108]

Property Value
Acoustic model Screen
Open porosity φ 0.72

Static airflow resistivity σ (N· s · m−4) 87000
Correction Dynamic

Elastic model Rigid body
Density ρ (kg·m−3) 171

Table A.27: Screen with low porosity, Jaouen & Bécot 2011 [108]

Property Value
Acoustic model Screen
Open porosity φ 0.04

Static airflow resistivity σ (N· s · m−4) 720000
Correction Dynamic

Elastic model Rigid body
Density ρ (kg·m−3) 809

Table A.28: Scrim headliner

Property Value
Acoustic model Screen
Open porosity φ 0.2

Static airflow resistivity σ (N· s · m−4) 170000
Correction Dynamic

Elastic Model Limp
Density ρ (kg·m−3) 250

Table A.29: Wood fiber

Property Value
Acoustic model JCAL
Open porosity φ 0.97

Static airflow resistivity σ (N· s · m−4) 400000
Viscous characteristic length Λ (m) 1.5e-5
Thermal characteristic length Λ′ (m) 13.8e-5

High frequency limit of tortuosity α∞ 1.28
Static thermal permeability k′o 32.3e-9



Appendix B

Topology optimisation

B.1 Runtime progress: all problem instances

Figure B.1: Runtime progress of all algorithms on problem instance 1
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Figure B.2: Runtime progress of all algorithms on problem instance 2

Figure B.3: Runtime progress of all algorithms on problem instance 3
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Figure B.4: Runtime progress of all algorithms on problem instance 4

Figure B.5: Runtime progress of all algorithms on problem instance 5
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Figure B.6: Runtime progress of all algorithms on problem instance 6

Figure B.7: Runtime progress of all algorithms on problem instance 7
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B.2 Final solution absorption-distribution from trials

(a) Problem instance 1: N=100 (b) Problem instance 2: N =150

(c) Problem instance 3: N=100 (d) Problem instance 4: N=100

(e) Problem instance 5: N=100 (f) Problem instance 6: N=1000

(g) Problem instance 7: N=50

Figure B.8: Distribution of absorption of solutions from all trials of all algorithms for each problem
instance.
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B.3 Final solution absorption vs. volume fraction

(a) Problem instance 1: N=100 (b) Problem instance 2: N =150

(c) Problem instance 3: N=100 (d) Problem instance 4: N=100

(e) Problem instance 5: N=100
(f) Problem instance 6: N=1000

(g) Problem instance 7: N=50
Figure B.9: Absorption versus volume fraction of solutions from all trials of all algorithms for each
problem instance. Observe the solutions from each algorithm being clustered in this space.

B.4 Final solutions across trials
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Figure B.10: Final solutions for problem instance 1
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Figure B.11: Final solutions for problem instance 2
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Figure B.12: Final solutions for problem instance 3
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Figure B.13: Final solutions for problem instance 4
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Figure B.14: Final solutions for problem instance 5
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Figure B.15: Final solutions for problem instance 6
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Figure B.16: Final solutions for problem instance 7



Appendix C

Multi-objective optimisation

C.1 Pareto plots for 15-trial-combined results

Figure C.1: Comparison of all Pareto fronts in problem instance 2

Figure C.2: Comparison of all Pareto fronts in problem instance 3
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Figure C.3: Comparison of all Pareto fronts in problem instance 4

Figure C.4: Comparison of all Pareto fronts in problem instance 5

Figure C.5: Comparison of all Pareto fronts in problem instance 6
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Figure C.6: Comparison of all Pareto fronts in problem instance 7
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