
WIJEKOON, A. and WIRATUNGA, N. 2023. A user-centred evaluation of DisCERN: discovering counterfactuals for
code vulnerability detection and correction. Knowledge-based systems [online], In Press, article 110830. Available

from: https://doi.org/10.1016/j.knosys.2023.110830

This document was downloaded from
https://openair.rgu.ac.uk

A user-centred evaluation of DisCERN:
discovering counterfactuals for code vulnerability

detection and correction.

WIJEKOON, A. and WIRATUNGA, N.

2023

https://doi.org/10.1016/j.knosys.2023.110830

Journal Pre-proof

A user-centred evaluation of DisCERN: Discovering counterfactuals for
code vulnerability detection and correction

Anjana Wijekoon, Nirmalie Wiratunga

PII: S0950-7051(23)00580-4
DOI: https://doi.org/10.1016/j.knosys.2023.110830
Reference: KNOSYS 110830

To appear in: Knowledge-Based Systems

Received date : 3 April 2023
Revised date : 13 June 2023
Accepted date : 20 July 2023

Please cite this article as: A. Wijekoon and N. Wiratunga, A user-centred evaluation of DisCERN:
Discovering counterfactuals for code vulnerability detection and correction, Knowledge-Based
Systems (2023), doi: https://doi.org/10.1016/j.knosys.2023.110830.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2023 Published by Elsevier B.V.

https://doi.org/10.1016/j.knosys.2023.110830
https://doi.org/10.1016/j.knosys.2023.110830

Journal Pre-proof

An

Fo

Wr

Ni

Or

ad

Credit Author Statement
Jo
ur

na
l P

re
-p

ro
of

jana Wijekoon: Conceptualization, Methodology, Software, Validation,

rmal analysis, Investigation, Data Curation, Writing - Original Draft,

iting - Review & Editing, Visualization

rmalie Wiratunga: Conceptualization, Methodology, Resources, Writing -

iginal Draft, Writing - Review & Editing, Supervision, Project

ministration, Funding acquisition

Journal Pre-proof
Revised Manuscript (Clean Version) Click here to view linked References
Jo
ur

na
l P

re
-p

ro
ofA User-centred Evaluation of DisCERN: Discovering

Counterfactuals for Code Vulnerability Detection and

Correction

Anjana Wijekoon, Nirmalie Wiratungaa

aSchool of Computing, Robert Gordon University, Aberdeen, UK

Abstract

Counterfactual explanations highlight actionable knowledge which helps
to understand how a machine learning model outcome could be altered to
a more favourable outcome. Understanding actionable corrections in source
code analysis can be critical to proactively mitigate security attacks that
are caused by known vulnerabilities. In this paper, we present the Dis-
CERN explainer for discovering counterfactuals for code vulnerability correc-
tion. Given a vulnerable code segment, DisCERN finds counterfactual (i.e.
non-vulnerable) code segments and recommends actionable corrections. Dis-
CERN uses feature attribution knowledge to identify potentially vulnerable
code statements. Subsequently, it applies a substitution-focused correction,
suggesting suitable fixes by analysing the nearest-unlike neighbour. Overall,
DisCERN aims to identify vulnerabilities and correct them while preserving
both the code syntax and the original functionality of the code. A user study
evaluated the utility of counterfactuals for vulnerability detection and correc-
tion compared to more commonly used feature attribution explainers. The
study revealed that counterfactuals foster positive shifts in mental models,
effectively guiding users toward making vulnerability corrections. Further-
more, counterfactuals significantly reduced the cognitive load when detecting
and correcting vulnerabilities in complex code segments. Despite these bene-
fits, the user study showed that feature attribution explanations are still more
widely accepted than counterfactuals, possibly due to the greater familiar-
ity with the former and the novelty of the latter. These findings encourage
further research and development into counterfactual explanations, as they
demonstrate the potential for acceptability over time among developers as a
reliable resource for both coding and training.

Preprint submitted to Knowledge-Based Systems June 13, 2023

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofKeywords: Counterfactual Explanations, Vulnerability Detection,

Explainable AI

1. Introduction1

Security attacks that exploit hidden software code flaws pose serious risks2

that compromise system performance and services. Therefore the ability to3

detect these vulnerabilities in a timely manner as well as being able to de-4

tect potential flaws is a desirable feature that can help to avoid financial5

and societal consequences. Application of AI for data-driven vulnerability6

detection has increased significantly in recent years [1, 2]. This is mainly7

due to the availability of large amounts of open-source code needed for train-8

ing vulnerability detection models. Traditional classifiers such as SVM and9

Naive Bayes [3], as well as neural architectures for sequence modelling (e.g.10

LSTMs), have been successfully used for code vulnerability classification [4].11

Given the structured textual nature of the data; these classifiers make use12

of text representation methods from information retrieval [3] as well as deep13

embedding techniques to represent software code [5].14

Once vulnerabilities are detected or classified into flaw categories, the15

software needs to be fixed. Feature attribution methods enhance the trans-16

parency of AI model decisions by revealing the underlying reasoning for clas-17

sifying a code segment as vulnerable. It assigns a weight to each token of18

the code which indicates how much it contributed to the AI model predic-19

tion (See examples in Figure 5). For example, authors of [1] used the feature20

activation map of their convolutional neural model to highlight parts of the21

code that contributed most to the AI model decision. Similarly authors of [6]22

used LIME to highlight the contribution of code tokens towards vulnerabil-23

ity. The methods introduced in this paper address a gap in the current24

approaches by focusing not only on identifying vulnerabilities but also on25

providing corrections as a solution. Here we demonstrate how research in26

counterfactual explanations can be conveniently adapted to generate code27

correction operators to guide the fixing of vulnerable code segments that are28

detected by a classification model.29

Counterfactual Explanations for AI have accrued benefits from counter-30

factual thinking research from Psychology and GDPR guidelines for AI [7].31

Counterfactuals reason with the inputs, the outputs, and the relationships32

between these to formulate a locally relevant explanation to convey how a33

2

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofbetter or more desirable output (AI model decision) could have been achieved34

by minimally changing the inputs. Questions concerning which part of the35

input to modify and the appropriate methods for implementing such changes36

to rectify code vulnerabilities are addressed in this paper. Here the input37

is code segments and the proposed change relates to the code correction38

operation. We present the DisCERN [8] algorithm, to locate the specific39

area of vulnerability in a code segment, and to generate statement-level cor-40

rections using substitution operations. In contrast to previous work where41

DisCERN was employed for identifying substitutions using similarity calcu-42

lations on tabular data, in this paper, substitutions are derived from code43

snippets deemed similar but non-vulnerable. This is achieved by exploiting44

similarity-driven pattern matching of pairs of code segments.45

The utility of explanations in code vulnerability detection and correction46

is best evaluated by the target users (i.e. developers). Accordingly, a user47

study is performed to compare the effectiveness of counterfactuals from Dis-48

CERN in comparison to feature attribution explanations from LIME. The49

goal is to understand how counterfactuals and feature attributions differ in50

the application of code vulnerability detection and correction in terms of51

shaping mental models, affecting cognitive load and explanation goodness52

and acceptability.53

This paper makes the following contributions:54

• introduces the DisCERN Counterfactual Explainer as a tool for code55

vulnerability correction leveraging knowledge from feature attribution56

explainers and pattern matching to make correction recommendations57

(Section4);58

• demonstrates the generalisability of DisCERN across multiple program-59

ming languages in terms of validity and sparsity metrics (Section 5);60

and61

• establishes the effectiveness of counterfactuals compared to feature at-62

tribution explanations for vulnerability detection and correction in a63

user study (Section 6).64

The rest of the paper is organised as follows. Section 2 discusses the re-65

lated work on vulnerability detection as a Machine Learning (ML) task and66

correction from the view of XAI. The introduction of the NIST Datasets and67

detection of code vulnerabilities using ML methods is presented in Section 3.68

3

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofSection 4 presents the DisCERN algorithm which discovers counterfactuals69

for vulnerable code segments and thereby guides the user to correct these vul-70

nerabilities. The empirical evaluation and performance metrics with quanti-71

tative and qualitative results are presented in Section 5. Section 6 presents72

the user study that compares the utility of counterfactual vs feature attribu-73

tion explanations. Finally, we draw conclusions in Section 7.74

2. Related Work75

2.1. Code Vulnerability Detection76

The conventional approach to Code Vulnerability Detection (CVD) in-77

volved software and security experts auditing a software system for potential78

security defects, bugs and weaknesses all of which are referred to as vul-79

nerabilities [9]. Automation of vulnerability detection of code is an active80

applied research area where ML techniques are used for CVD [10, 11]. Early81

ML methods for CVD focused on optimising feature extraction techniques82

while neural network-based methods were used to learn semantic knowledge83

from unstructured code to detect vulnerabilities [11]. Most recently, recur-84

rent networks [12], graph neural networks [13] and transformer-based lan-85

guage models [14, 15, 16] have been used for learning feature embeddings86

from code for CVD. Many reviews in this research area provide comprehen-87

sive overviews of ML techniques for CVD while emphasising the scarcity of88

explainability approaches [10, 17]. XAI can be harnessed to support CVD in89

multiple ways. For instance, it can help explain how the model works, iden-90

tify the key features or variables that contribute to the detection process,91

and provide insights into how to improve code and reduce vulnerabilities by92

engaging humans in the loop. In this paper, we propose using the DisCERN93

algorithm as a credible approach to address these issues.94

2.2. Code Vulnerability Correction95

The conventional approaches to providing users with corrective feedback96

include rule-based [18, 19] and template-based approaches [20, 21]. Authors97

of [18] proposed to pre-configure corrections for specific vulnerabilities and98

reuse them as vulnerabilities are detected by their ensemble model in PHP99

code. Similarly, authors of [19] use pre-configured vulnerability matching100

rules and correction patterns for Java cryptography API code. Alternatively,101

sequence-to-sequence models have been trained to generate corrections [22].102

4

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofHowever, they are limited to a single programming language (C/C++) and103

a vulnerability group (Buffer-overflow).104

Our method is more closely related to work in [20] and [21] where the105

methodology makes use of vulnerable and non-vulnerable code pairs to find106

exemplar corrections. For each vulnerability in the code pair, they calcu-107

late edit operations and cluster them to find correction patterns. Discovered108

patterns are saved as templates to reuse on new vulnerable code segments.109

Their method captures a wider variety of corrections by identifying multiple110

correction patterns per vulnerability group. These methods share the same111

challenge as DisCERN which is once a correction example (in DisCERN)112

or a template(others) is found, how to adapt it to match the target code.113

DisCERN addresses this by selecting the corrections from the nearest unlike114

neighbour, which does not always guarantee perfect adaptation. Template-115

based methods apply knowledge-intensive post-processing steps (such as cor-116

recting variable names to match target code) that are not generalisable to117

different languages and vulnerabilities.118

The main difference between existing work and ours is that DisCERN is119

generating the corrections to explain the prediction of an AI model (ex-120

plaining the decision). Conversely, previous methods consider correction121

generation to be an independent task and require a detection model that122

classifies the exact vulnerability group. The difference is that DisCERN cor-123

rections are guided by the knowledge encapsulated in the AI model such as124

what features/tokens contributed to the decision. DisCERN is also not re-125

liant on expert knowledge and heavily data-driven making it agnostic to the126

detection-model and the programming-language. It also simplifies the task of127

the detection AI model from a multi-class classification (up to 100+ classes)128

problem to a binary-classification problem as the explainer does not require129

the exact vulnerability group.130

2.3. Explainable AI in Vulnerability Detection131

Research literature and regulatory guidelines emphasise the necessity for132

explanations of ML model decisions, as ML methods have increasingly be-133

come more opaque and difficult to interpret [23, 24]. This applies to code134

vulnerability detection and specifically towards prevention and or mitigation.135

Feature attribution explainers have been explored as a way to pinpoint code136

lines or segments that may have contributed to a vulnerable prediction by an137

ML algorithm. Authors of [25] describe the design of a human-in-the-loop138

5

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofXAI system for vulnerability mitigation, whereby model predictions are ex-139

plained to forensic experts by way of feature attributions to enable them to140

make necessary corrections. Authors of [26] explore the explanation needs141

of target user groups of a code analyser to recognise two: a global expla-142

nation where the common behaviours of the tool are explained; and a local143

explanation where feature attribution explains why a specific code snippet is144

predicted to be vulnerable. Both explanations are targeted towards a knowl-145

edgeable audience of ML engineers. There are other works in similar areas146

such as malware labelling in Android applications [27] and predicting phish-147

ing URLs [28] that also make use of feature attribution explanations. Authors148

of [6] used LIME to explain vulnerability detection in C/C++ code when us-149

ing the Bidirectional LSTM model named VulDeePecker [12]. This paper150

addresses a key gap in the literature by proposing the use of counterfactuals151

not only for explaining detection but also for correcting vulnerabilities. Ac-152

cordingly, [6] is the most directly linked previous work we compared against153

DisCERN in our user study.154

2.4. Explainable AI Techniques155

Although there exists a broad range of explanation techniques and types [29]156

our main emphasis is on factual and counterfactual explanations. The fac-157

tual explanation often answers the “what” or “why” questions by providing158

empirical evidence to support a particular AI model outcome based on the159

input provided [30]. This evidence can take the form of feature attribution160

where each input feature is assigned an attribution towards the outcome or161

example-based explanations where nearest neighbours are used to support162

the outcome. In contrast, counterfactuals answer “Why-not” or “How-to”163

questions by formulating a hypothetical scenario that has a more desirable164

outcome [30]. In code vulnerability detection and correction, a factual expla-165

nation would highlight where the vulnerabilities exist within the code, while166

a counterfactual explanation would help to demonstrate how to correct said167

vulnerabilities. In this study, we investigate the use of the DisCERN algo-168

rithm for discovering counterfactual explanations and evaluate its effective-169

ness through a user study. The user study involves participants with varying170

levels of expertise in code vulnerability detection and correction, allowing us171

to assess the utility of the algorithm in a range of contexts.172

6

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

(a) Label: Vulnerable (b) Label: Non-vulnerable

Figure 1: Pre-processed code segments from the Java dataset

3. Vulnerability Detection with NIST SAR Datasets173

NIST Software Assurance Reference Dataset (SARD) Project promotes174

the detection and correction of known security flaws in programming code.175

The project maintains a publicly available repository of datasets from dif-176

ferent programming languages that are labelled for flaws and possible cor-177

rections. The flaws are standardised by the Common Weakness Enumera-178

tion (CWE) list which consists of software and hardware weaknesses. In this179

work, we consider three datasets in Java, C and C# programming languages180

from the NIST test suite 1.181

3.1. Preprocessing and Dataset Creation182

In each dataset, code files are grouped under their CWE code and each file183

contains one or more functions (or methods in Java and C#). One function184

is vulnerable and often the remaining function is a proposed correction (i.e.185

non-vulnerable). We apply the following pre-processing steps to prepare each186

dataset for a binary-classification task:187

1. Split functions in a file that are vulnerable and those non-vulnerable188

into individual data instances. An instance (i.e. function) was labelled189

1https://samate.nist.gov/SARD/testsuite.php

7

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

(a) Class distribution (b) Class distribution by CWE code

Figure 2: Java dataset statistics

vulnerable if it contains one or more comments that start with either190

FLAW or POTENTIAL FLAW and labelled as non-vulnerable if only191

contains comments that start with FIX.192

2. Apply the following entity obfuscation steps to each function with the193

aim to prevent target leakage:194

(a) replace all comments with /*comment*/; and195

(b) change all function signatures to public void method() (or lan-196

guage appropriate alternative).197

Figure 1 presents two code segments from the Java dataset that were similar,198

one labelled as vulnerable and the other as non-vulnerable.199

We present a detailed analysis of the class distribution of each dataset in200

Figures 2, 3 and 4. The left figure (Figure a) of each dataset shows that there201

are more non-vulnerable instances compared to vulnerable instances. Figure202

b on the right provides further analysis, examining the most frequent CWE203

codes (top 15) and the proportion of vulnerable and non-vulnerable instances204

for each code. Notably, there are no non-vulnerable examples for some CWE205

codes (example C# codes CWE313 and CWE94).206

3.2. Vulnerability Classification207

Code data can be seen as a text that follows grammar rules defined by the208

respective Compiler. The most common Machine Learning (ML) pipeline for209

classification with text data is to use a Tokenizer (t) to transform the text210

data into a vector representation and then apply a classification algorithm (f)211

to learn from labelled data. In this work, we consider several standard vec-212

tor representations and classifier combinations to compare the performance213

8

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

(a) Class distribution (b) Class distribution by CWE code

Figure 3: C dataset statistics

(a) Class distribution (b) Class distribution by CWE code

Figure 4: C# dataset statistics

of commonly used black box models that detect vulnerabilities in code seg-214

ments. We use 75/25 class stratified split to create 4 folds. For each fold,215

we train the model with 75% of the data and test with the remaining 25%.216

Table 1 presents the mean F1-score averaged across the four folds.217

Overall we observe that BoW + Random Forest achieves the best perfor-218

mance for Java and C# datasets while CodeBERT classifier performs best219

for the C dataset. It is noteworthy that the contributions of this paper are220

model-agnostic, meaning that any combination of t and f should work with221

DisCERN, including the most recent encoders such as CodeBERT [31]. Ac-222

cordingly, the focus of the paper is not on identifying the best classification223

model, but rather to identify a model that performs well for experimental224

purposes. Accordingly, XAI evaluations in Section 5 used the BoW + Ran-225

dom Forest as the detection pipeline for all three datasets. This allowed for226

fairness and consistency across experiments and helped to observe the impact227

9

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofTable 1: Classification Algorithms and Performance

Tokenizer Classifier Dataset

(t) (f) Java C C#

Tf-idf

Naive Bayes 0.7206 0.7284 0.7783

kNN 0.9387 0.8457 0.9494

SVM 0.9574 0.8839 0.9723

Random Forest 0.9722 0.8734 0.9844

BoW Random Forest 0.9761 0.8790 0.9889

CodeBERT-base Tokerniser CodeBERT classifier 0.9469 0.9484 0.9880

of classification performance on the counterfactual generation.228

4. DisCERN Counterfactuals for Vulnerability Detection and Cor-229

rection230

Code vulnerability detection decisions can be explained using different231

types of explanations. As discussed in Section 2, it is commonly explained232

using a factual explanation that uses feature attributions to explain the de-233

cision and it is often targeted to knowledgeable users. Given a code segment234

that is labelled vulnerable, a factual explanation will point to the part of the235

code segment which led the AI model to label it as vulnerable. An exam-236

ple factual explanation is shown in Figure 5a where text highlights indicate237

vulnerable and non-vulnerable tokens in a Blue to Orange heat map scale.238

For an expert, this type of explanation should be sufficient as they have the239

knowledge to correct the vulnerability. In contrast, a counterfactual expla-240

nation in Figure 5b will compare the given code segment with a similar yet241

non-vulnerable code segment and make recommendations on how to correct242

the vulnerability. Accordingly we argue that counterfactual explanations are243

more informative for both expert and non-expert users, and in support of244

this claim, we present the DisCERN algorithm for generating counterfactual245

explanations specifically for code vulnerability correction.246

4.1. Problem Definition247

Consider a query code segment x, withm number of statements where the248

ith statement is denoted by si. If the vulnerability detection pipeline used to249

10

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

(a) Factual Explanation (b) Counterfactual Explanation

Figure 5: Examples of feature attribution and counterfactual explanations

predict the code vulnerability consists of a Tokeniser, t, and a classification250

model, f , the decision predicted for x is y.251

x = [s1, s2, ..., sm]

y = f(t(x))
(1)

For a given query x, having prediction, y =vulnerable, there are four steps252

to discovering non-vulnerable counterfactuals with DisCERN:253

1. find the Nearest Unlike Neighbour (NUN), x̂ from the train dataset X ;254

2. for each token z in x,find the attribution weights, using a feature attri-255

bution explainer (in this work we use LIME);256

3. given a vulnerable token, z, in x, find statements pairs for correction,257

i.e. a list of statements in x and a list of candidate statements in x̂ as258

a potential vulnerability correction;259

4. create an updated code segment, x′, by adapting the vulnerability cor-260

rection and check x′ for decision change using the vulnerability detec-261

tion pipeline; and262

5. repeat steps 3 and 4 until the detection pipeline predicts non-vulnerable.263

Once the adapted code segment achieves the desired decision (i.e. non-264

vulnerable), it is identified as the counterfactual of the query. Next, we will265

explore each of these steps in detail.266

11

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of4.2. Finding the Nearest Unlike Neighbour267

Given a query x, the NUN, x̂, is the nearest instance found in the train268

data with a different decision or label. In the context of counterfactual dis-269

covery, our query x is vulnerable. Selecting the NUN as the starting point, we270

expect 1) to minimise the actionable changes needed to flip the prediction i.e.271

with as few changes as possible; and 2) to preserve the original functionality272

of the code segment while correcting vulnerabilities. As in Equation 2, x̂ has273

n number of statements and the prediction is ŷ. Importantly, x̂ and x can274

have different number of statements (i.e. n ̸= m) and should have different275

decisions (i.e. ŷ ̸= y).276

x̂ = [ŝ1, ŝ2, ..., ŝn]

ŷ = f(t(x̂)) | ŷ ̸= y
(2)

To find the NUN by similarity, it is necessary to use an encoder (E) to277

transform code segments into a vector representation. This work used Code-278

BERT [31] to encode code segments. CodeBERT is based on the BERT [32]279

architecture and is state-of-the-art for natural language code search and code280

generation. It supports multiple programming languages making it most281

suited for this task. More specifically, we use the pre-trained weights from282

codebert-base shared in the Hugging Face repository 2 which is trained using283

bi-modal data (consisting of the code and its natural language description as284

two modalities) from CodeSearchNet.285

Given a code query, x, the encoder E generates a vector representation,286

v, where the standard codebert-base encoding length, l, is 768 (Equation 3).287

From the train data set X , we filter data instances for which yi ̸= y and288

create the subset X ′. X ′ represents all the non-vulnerable code segments289

that can be used to find a nearest-unlike-neighbour for x. Each data instance290

in X ′ is encoded using the encoder E to obtain the set of vectors V ′. We291

use cosine similarity to find the NUN due to its robustness in comparing292

high-dimensional data, and its output range of -1 to 1 allows for a clear293

interpretation of similarity scores. We compute the cosine similarity between294

the query x, and any other instance, xi as in Equation 3.295

2https://huggingface.co/microsoft/codebert-base

12

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofv = E(x) and v ∈ Rl

cosine(x, xi) =

∑l
j=1 vijvj√∑l

j=1 vij

√∑l
j=1 vj

(3)

Once the pair-wise similarity is computed (between x and each xi in X ′),296

we select the train instance xi from the pair with the highest similarity as297

the NUN of x. In the rest of this paper, this function is referred to as nn298

which given, query, x, train subset, X ′ and the similarity metric, returns the299

NUN, x̂.300

4.3. Finding Feature Attribution Weights301

Building upon counterfactual reasoning, DisCERN uses feature attribu-302

tion to reveal the most important code tokens or segments that contribute303

to an outcome of vulnerable. By selectively substituting only these segments,304

DisCERN can then identify the minimum changes needed to reverse that de-305

cision. The feature attribution explainers can provide the knowledge needed306

for identifying the code segments that need to be substituted. Accordingly,307

without loss of generalisability, this section describes the use of LIME ex-308

plainer to find feature attributions of the query to identify which parts of the309

code had contributed to it being labelled as vulnerable.310

LIME is a model-agnostic feature attribution explainer that creates an311

interpretable model around a data instance to estimate how each feature312

contributed to the black-box model outcome [33]. LIME creates a set of313

perturbations within the query neighbourhood and labels them using the314

black-box model. This newly labelled dataset is used to create a linear in-315

terpretable model (e.g. a linear regression model). The resulting surrogate316

model is interpretable and only locally faithful to the black-box model (i.e.317

correctly classifies the input instance, but not all data instances outside its318

immediate neighbourhood). The new interpretable model is used to explain319

the black-box model outcome of the query. The explanation is formed by320

obtaining the linear model coefficients that indicate how each feature con-321

tributed to the outcome.322

Our selection of LIME as the feature attribution explainer is motivated by323

the evidence from the literature. Authors of [6] proposed the use of LIME in324

the code vulnerability detection domain. Their evaluation demonstrated that325

the attributions correctly identify tokens that cause vulnerabilities. When326

13

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofapplying LIME in the context of code segment data, the features are the327

tokens identified by the Tokenizer, t, in the vulnerability detection pipeline.328

Accordingly, LIME can be used to understand the outcome of f(t(x)), by329

assigning an attribution, w, to each token which indicates how much the330

token contributes to the outcome.331

LIME(x, t, f)→ {w(z) | w(z) ∈ R, z ∈ Z} (4)

If the vocabulary of code segments is Z, LIME assigns a weight w for each332

token z ∈ Z (Equation 4). A positive weight (w ≥ 0) indicates that the333

corresponding token contributes positively and a negative weight (w < 0)334

contributes negatively towards the outcome. We sort the weights using the335

partial order condition, R, in Equation 5 to obtain the sorted list of tokens336

ordered from highest to lowest contribution towards the vulnerable outcome337

as Z ′.338

zi ⪯R zj ⇐⇒ R :: w(zi) ≥ w(zj) (5)

4.4. Substitution Algorithm339

Given a token, z, in the query code segment, the goal of the substi-340

tution algorithm is to find a matching list of statements in the query and341

respective matches in the NUN to adapt the query such that it leads to a342

changed decision (i.e. vulnerable to non-vulnerable). To the best of our343

knowledge, existing feature attribution explainers identify the importance of344

tokens instead of code statements or segments. Instead of modifying the345

generic feature attribution explainers to operate at the statement level, we346

use a post-processing step to find the matching statements in the query that347

contains the token z, followed by a Pattern Matching (pm) algorithm to find348

matching lists of statements as presented in Algorithm 1. This allows for349

flexibility and compatibility of DisCERN with various existing attribution350

explainers.351

We use a simple lookup function to identify all code statements (S ′)352

in the (adapted) query x′, that contain the token z (Line 1). The next353

steps (Lines 2- 5) of finding the vulnerable statements and their replace-354

ments from NUN are based on the hypothesis that if a statement sj in S ′ is355

vulnerable, it must be corrected in the NUN. Accordingly, for a statement,356

sj, in S ′, first, we use a Pattern Matching algorithm to find a matching357

list of statements s′[i:j] from x′ and ŝ[v:w] from x̂. Here, the subscripts indi-358

cate the start and end indices of the list of statements and sj is found within359

14

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofAlgorithm 1 substitute

Require: x′ = [s′1, s
′
2, ..., s

′
m]: (adapted) query

Require: x̂ = [ŝ1, ŝ2, ..., ŝn]: NUN as a list of statements
Require: z: token in the query
1: S ′ ← [s ∈ x′ | z ∈ s] ▷ find the list of statements in x′ that include z
2: for sj ∈ S ′ do
3: s′[i:k], ŝ[v:w] ← pm(sj, [s

′
1, s

′
2, ..., s

′
m], [ŝ1, ŝ2, ..., ŝn])

4: cj = cosine(E(s′[i:k]), E(ŝ[v:w])) ▷ calculate similarity
5: end for
6: (s′, ŝ)← arg max

(s′
[i:k]

,ŝ[v:w])

cj ▷ select maximum similarity pair

7: x′ ← replace(x′, s′, ŝ) ▷ replace s′ in x′ with ŝ′

8: return x′ ▷ return the newly adapted query

s′[i:k] (Line 3). A pattern-matching algorithm like the Gestalt Pattern Match-360

ing or Levenshtein Edit Distance can find the changes required to transform361

one string to another where the types of edits are replace, delete and in-362

sert. This paper used the Gestalt Pattern Matching algorithm implemented363

by cdifflib Python package 3. We consider consecutive lists of statements364

rather than individual statements to preserve the grammatical structure of365

the programming language as closely as possible.366

Next, we calculate the similarity between the two lists of statements using367

Cosine similarity (Line 4). Similar to Section 4.2 we use the codebert-base368

encoder to transform the list of statements to a vector representation and369

calculate the cosine similarity. Once we have all the (s′[i:k], ŝ[v:w]) pairs, and370

their similarities, cj, we select the pair, (s′, ŝ), that has the maximum sim-371

ilarity (Line 6). We assume a vulnerable code segment and its corrected372

counterpart are different yet carry some similarities. Accordingly, by select-373

ing the pair with the highest similarity from the remaining, we expect to374

discard those suggested by pm that are not vulnerability corrections. Note375

that pm only returns edit operations, not exact matches, hence the similarity376

score between a pair is always < 1. Finally, in Line 7 we replace the list of377

statements s′ in x′ with the list of statement ŝ to return the new adapted378

query.379

3https://github.com/mduggan/cdifflib

15

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of4.5. DisCERN Algorithm380

Algorithm 2 DisCERN Algorithm

Require: x = [s1, s2, ..., sm]: query as a list of statements
Require: f(t(.)): vulnerability detection pipeline
Require: sim: similarity metric, default is cosine similarity
Require: X : train dataset
Require: y = f(t(x)): black-box prediction for the query
1: X ′ ← {xi ∈ X | yi ̸= y} ▷ filter the train dataset
2: x̂← nn(x, X ′, sim) ▷ find the NUN
3: {w(z)} ← LIME(x, t, f) ▷ feature attributions
4: Z ′ ← R({w(z)}) ▷ tokens sorted by R
5: Initialise x′ = x and y′ = y
6: for z ∈ Z ′ do ▷ for each token in the sorted list
7: x′ ← substitute(x′, x̂, z) ▷ Algorithm 1
8: y′ = f(t(x′)) ▷ predict decision for the adapted query x′

9: if y′ ̸= y then ▷ check if the decision is changed
10: Break ▷ stop substitutions if decision is changed
11: end if
12: end for
13: return x′ ▷ return the adapted query as the counterfactual

DisCERN (Algorithm 2) brings together Sections 4.2 to 4.4 to discover381

counterfactuals for vulnerable code. Given the query x, and the train dataset382

X , in Lines 1 and 2 we find the NUN as discussed in Section 4.2. Next,383

we find the LIME feature weights for the query and sort it to obtain the384

list of tokens that indicate which parts of the code contributed to the cur-385

rent decision (Line 3 and 4, Section 4.3). We iterate over the sorted list of386

tokens where for each token we find corresponding statements and substi-387

tutions (from Algorithm 1) until the prediction is changed (Line 8). Here388

the prediction for the adapted query x′ is obtained using the original clas-389

sification pipeline f(t(.)). The iteration is terminated when a prediction is390

changed and the algorithm returns the adapted query x′ as the counterfac-391

tual for the query x. Compared to DisCERN for tabular data [8] the key392

novelty is the substitution algorithm that aims to preserve programme lan-393

guage syntax and original functionality while correcting the vulnerabilities.394

However, the outcome of, the substitution algorithm is dependent on the395

16

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofNearest-Unlike-Neighbour and does not always guarantee to find a counter-396

factual from the NUN. Accordingly, in the worst-case scenario, DisCERN397

iterates through all tokens in Z ′ and may fail to lead to a desirable deci-398

sion change (of non-vulnerable) even after all corrections are actioned on the399

query.400

5. Evaluation401

This section presents the evaluation of the counterfactual DisCERN al-402

gorithm for vulnerable code correction. To the best of our knowledge, there403

are no existing algorithms in the literature for counterfactual discovery in404

the code vulnerability correction domain to compare performance with other405

methods.406

5.1. Performance Metrics407

DisCERN algorithm is evaluated using the three NIST datasets (Sec-408

tion 3); in each dataset, we only use vulnerable test data instances for the409

XAI evaluations. The following metrics are used to measure the performance.410

• Validity measures the percentage of data for which the algorithm suc-411

cessfully finds a counterfactual [34, 35, 8]. At this stage, the require-412

ment for a counterfactual discovered by an algorithm is to achieve a413

positive change of decision 4. Given the set of test instances that were414

predicted vulnerable are Xv, and the subset for which the algorithm415

found a counterfactual is Xc
v , the validity is calculated as in Equation 6.416

A higher percentage of validity is desirable.417

V alidity =
|Xc

v|
|Xv|

× 100 (6)

• Sparsitymeasures the mean number of statements that were changed (i.e.418

cost) for a change in decision [34, 35, 8]. Given the cost for each test in-419

stance in Xc
v is [r1, r2, ..., rN], where N = |Xc

v|, the sparsity is calculated420

as in Equation 7. In Algorithm 1, the number of statements changed for421

replace, delete and insert operations are calculated asmax(k−i, w−v),422

4A more stringent metric would be to evaluate if the change conforms to grammar rules
of the Language Compiler, which we will explore in future work.

17

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofk − i and w − v respectively. As such, the cost of a test instance is423

determined by aggregating the number of statement changes that cor-424

respond to the applied operations. In other domains, lower sparsity425

is preferred, however, in this domain, we hypothesise sparsity is not426

directly correlated to the algorithm performance as a vulnerability cor-427

rection could require adding more statements. This will be discussed428

further with empirical results in Section 5.2.429

Sparsity =
1

N

N∑

j=1

rj (7)

There are other metrics used in counterfactual evaluations such as prox-430

imity (measures the difference between the original and the substitution code431

segments) [34, 35, 8] and diversity (measures the difference between multiple432

counterfactuals) [34] which we did not find to be transferable to the code433

vulnerability correction domain.434

5.2. Results435

Table 2 presents the performance evaluation results of DisCERN using the436

three NIST datasets. In addition to performance metrics, we also measure437

the mean number of statements in a query, nearest-unlike-neighbour and438

counterfactual which we found useful when discussing the performance of439

DisCERN.440

Table 2: Validity and Sparsity of DisCERN

Dataset Validity (%) Sparsity
Mean no of statements in the

Query NUN CF

Java 96.49 13.88 44.62 51.81 50.93

C 85.50 8.40 24.78 28.26 26.08

C# 97.55 13.16 27.67 33.96 33.44

We observe that the validity is consistently below 100% across all datasets.441

The validity for the C dataset is significantly lower which means the C dataset442

queries were not able to find counterfactuals using DisCERN. This can be443

linked to a high (∼ 21%) classification error seen in the vulnerability de-444

tection pipeline. For example, the query can be misclassified as vulnerable445

18

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofor the adapted query can be continuously misclassified as vulnerable. It is446

further validated by the Java and C# datasets showing validity consistent447

with their classification pipeline performance.448

Sparsity is measured as the number of changes that were required to449

get the decision changed from vulnerable to non-vulnerable. Considering the450

mean number of statements in the query (column 4), Java and C datasets451

make less number of changes compared to C#. It is noteworthy that these452

changes include deletion operations, thus it is not an indication of the length453

of the counterfactual. When generating counterfactuals for tabular data, a454

common goal is to minimise sparsity. However, when discovering counter-455

factuals for correcting code vulnerabilities we argue that lower sparsity is456

not always desirable. In general, correcting vulnerabilities can be costly; for457

example in Java, adding a try-catch-finally block surrounding a vulnerable458

statement can add up to 4-10 lines based on the formatting styles (Allman459

vs K&R).460

Further analysis of the number of statements between NUN and the coun-461

terfactual shows the effectiveness of the DisCERN algorithm. The mean462

number of statements in a CF is consistently lower than that in the NUN463

indicating that DisCERN is in fact finding meaningful corrections instead464

of completely converting the query into its NUN. The consistently higher465

number of statements in CF compared to the Query further indicates the466

increased cost of correcting code vulnerabilities.467

5.3. Qualitative Analysis468

While DisCERN aims to maintain syntactic integrity and preserve the469

originally intended code functionality, sparsity, and validity metrics do not470

specifically measure these aspects. As a result, we examined a selection of471

the generated counterfactuals to determine whether the proposed code adap-472

tations can effectively address code vulnerabilities and to what extent they473

implement reasonable modifications without compromising functionality.474

Consider the two illustrative Java code examples in Figures 6a and 6b475

which were counterfactuals discovered by the DisCERN algorithm. In each476

figure, the first two columns indicate the line numbers of the query and the477

counterfactual; the third column uses addition and subtraction signs to in-478

dicate adaptation operations. In example 1, a replacement is proposed (i.e.479

replace query lines 5-6 with NUN lines 5-12). With Example 2, the coun-480

terfactual proposes an insertion (i.e. insert new lines 4-6) and a replacement481

(i.e. replace query lines 6-7 with NUN lines 9-13). Both sets of adaptations482

19

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

(a) Example 1: Successful Adaptation (b) Example 2: Unsuccessful Adaptation

Figure 6: DisCERN Counterfactual Examples

have maintained the grammatical structure of the Java language, however,483

Example 1 is better at preserving functionality, because it ensures that the484

original functionality of writing an empty line (originally line 6) even after485

having introduced an if condition. In Example 2, DisCERN fails to preserve486

the intended functionality in the original query line 7 (by failing to treat data487

as an array).488

Both examples corroborate findings in Table 2 that code vulnerability489

correction can increase sparsity due to the insertion of additional statements.490

Overall, both evaluations indicate that DisCERN is a promising approach491

to discovering counterfactuals, however, to ensure comprehensive validity,492

further adaptation heuristics are needed to verify counterfactuals maintain493

the original functionality (e.g., apply unit testing if available).494

6. User Evaluation495

The primary objective of this user study is to assess the effectiveness496

of factual and counterfactual explainers in addressing code vulnerabilities,497

specifically examining their utility for both experienced and novice develop-498

ers. While existing literature [25, 26, 27] highlights a focus on factual ex-499

planations (such as feature attributions) for knowledgeable users in the XAI500

research, our hypothesis posits that counterfactual explanations may prove501

more informative for both skilled and trainee developers aiming to correct502

code vulnerabilities. Table 3 presents the user study protocol; enumeration503

20

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofindicates the order in which the questions were presented; Green colour indi-504

cates content presented to the participant (code segment or explanation) and505

the protocol is grouped by different intents (Blue). The questionnaire was506

prepared to capture users’ mental models before and after receiving explana-507

tions, as well as to evaluate the quality and acceptability of the explanations508

provided by the system for detecting and correcting code vulnerabilities.509

Table 3: User Study Protocol

Present code snippet

A priori mental model for detecting code vulnerabilities

Q1. Do you think the code snippet contains code vulnerabili-
ties?

Yes, No, Maybe

A priori mental model for correcting code vulnerabilities

Q2. If you answered yes, which lines would you change to
correct code vulnerabilities?

Free text

Q3. If you listed any lines, why do you think these lines contain
code vulnerabilities?

Free text

Present explanation (annotated or modified code snippet)

A posterior mental model for correcting code vulnerabilities

Q4. After seeing the explanation, which lines would you change
to correct code vulnerabilities?

Free text

Q5. If you changed your answer from before viewing the ex-
planation, please mention why?

Free text

Measure goodness of the explanation for detection and correction

Q6. Did the explanation help you detect vulnerabilities? Yes, No

Q7. Did the explanation help you to identify the lines you
would change to correct code vulnerabilities?

Yes, No

Measure acceptability of the explanation

Q8. Did the explainer correctly annotate the parts of the code
that contain vulnerabilities?

Yes, No, Partially

The questionnaire was repeated with three different code snippets of dif-510

ferent lengths (11, 33 and 21 lines of code) to minimise bias. Snippets were511

selected from the Java dataset over C and C# languages considering the512

wider usage and familiarity within the target user group. All snippets con-513

tained a variant of the CWE-191:Integer Underflow vulnerability. To priori-514

tise the evaluation of the explanation over participant proficiency in detecting515

various types of vulnerabilities, only one type of vulnerability was included516

in the user study.517

21

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofThe hypothesis was evaluated with independent groups of participants518

recruited through Amazon Mechanical Turk. One group received the ques-519

tionnaire together with DisCERN counterfactual explanations and the other520

with LIME feature attribution explanations. From here on we will refer to the521

two groups as DisCERN and LIME. The inclusion criteria for recruitment522

were set as Employment Industry is Software and/or IT Services and Job523

function is Information Technology to ensure the participants have a working524

knowledge of programming languages. In 40 days, 95 and 103 submissions525

were received for DisCERN and LIME groups respectively from which 78526

and 68 were accepted. These submissions met the minimum requirements527

where they attempted to answer at least one free-text question in addition528

to all multiple choice questions (There were only 9 and 12 submissions for529

DisCERN and LIME groups where participants answered all questions).530

6.1. A priori mental model - detecting code vulnerabilities531

Q1 measures the a priori mental model for understanding how to detect532

code vulnerabilities. There are 438 responses (78 + 68 participants responded533

to 3 code snippets each) considered in total. Figure 7a plots the percentage of534

Yes, No and Maybe responses from the two groups. The percentages between535

the groups are comparable which suggests that the a priori knowledge and536

understanding levels are similar. However, the LIME group demonstrates537

higher accuracy and more confidence in their decision choices evidenced by538

the lower percentage in Maybe responses.539

Figure 7b plots the percentage of responses received for each snippet.540

The DisCERN group identifies Snippet 2 as the most complex, as evidenced541

by their higher percentage of Maybe responses. Additionally, we observe542

that the high confidence of the LIME group stems from the least complex543

Snippet 1. Both observations imply that the responses are not arbitrary,544

lending credibility to the utilisation of Q1 responses as an indicator of the545

group’s a priori mental model.546

6.2. A priori mental model - correcting code vulnerabilities547

Q2 measures the a priori mental model for correcting code vulnerabili-548

ties. Participants answered Q2 with line numbers or code lines which they549

considered to be vulnerable. Few example responses were 3,4,5, int data =550

method(); and 3rd line. After pre-processing, Table 4 plots the number of551

responses for the three snippets across the two groups against corresponding552

code lines. Here the number of responses relates to the number of times553

22

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

(a) Overall response (b) Response by snippet

Figure 7: Q1 analysis on a priori mental model - detecting code vulnerabilities

a specific line was identified as vulnerable. We then analyse these against554

the actual vulnerable lines (the ground truths). The plots use a two-way555

colour coding to distinguish between lines that are correctly identified as556

vulnerable (in blue) and those that are incorrectly identified as vulnerable557

(in red). Although we wouldn’t anticipate participants who answered No (or558

to a lesser extent Maybe) in Q1 to respond to Q2, we have still included their559

Q2 responses in the graphs if they chose to provide them.560

We calculate response accuracy as a percentage of correct responses com-561

pared to ground truth. DisCERN group demonstrated 37.8%, 18.9%, 53.1%562

response accuracy while LIME group achieves 35.0%, 16.7%, 38.3%. Overall563

accuracy for DisCERN and LIME groups were 36.6% and 30.0%. Snippet564

2 was the most challenging for both groups indicated by the lowest accu-565

racy, The wide variety of responses suggests that the increased complexity566

made participants uncertain and led to guessing. Overall, guessing or ran-567

dom responses are expected from those who did not detect vulnerability in568

Q1.569

We observe that the code segment length has some correlation to the570

number of errors. Accordingly, we further normalise the accuracy values by571

the “difficulty of predicting vulnerable code lines in a code segment” using572

inspirations from document length normalisation which alleviates the “term-573

frequency-bias”. Given the number of lines of code in the segment is α out574

of which β number of lines are vulnerable, the difficulty is calculated as575

1 − β/α. If all lines were vulnerable β = α then difficulty = 0 and vice576

versa. The weighted accuracy values are 20.4%, 17.8% and 45.6% for Dis-577

CERN group (mean is 27.93%) and 18.9%, 15.7% and 32.9% for the LIME578

23

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofTable 4: Q2 analysis on a priori mental model - correcting code vulnerabilities

Snippet DisCERN LIME

Snippet 1

Snippet 2

Snippet 3

group(mean is 22.5%). The difference between the two groups is influenced by579

two factors: the number of responses for Snippet 2 from the DisCERN group580

was significantly lower than LIME group (37 vs 54) which contributed to the581

2.1% difference, and for Snippet 3 DisCERN group responses were signifi-582

cantly more accurate (45.6% over 32.9%) although the number of responses583

was comparable (49 vs 47). This analysis aids in determining the groups’584

initial mental models, which is valuable for assessing the subsequent changes585

in their mental models a posteriori. We recognise the marginally higher (ap-586

proximately 5%) performance of the DisCERN cohort and will consider this587

24

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofin our subsequent analysis when we focus on a posteriori evaluations.588

6.3. A posteriori mental model for correcting code vulnerabilities589

Q4 measures the a posteriori mental model for addressing vulnerabilities590

after participants have been exposed to the explanation. This implies that591

participants have been informed about the snippet’s vulnerability and are592

presented with an explanation—either a counterfactual from DisCERN or593

feature attribution from LIME. The explanations were presented as code-diff594

for DisCERN and heat maps for LIME. To minimise the possibility of misin-595

terpretations, we have provided supporting text alongside both explanations,596

detailing how to interpret them effectively.597

Following pre-processing of the participants’ responses, we analysed any598

changes in knowledge among each user group after exposure to the explana-599

tion for the three code snippets, as shown in Table 5. Here, we anticipate600

that changes to their mental model will be evident in at least two ways: 1)601

withdrawing their belief for lines that were incorrectly identified as vulner-602

able in Q2, and 2) recognising new lines that are necessary to address the603

vulnerability having seen the explanation in Q4. For example, if the change604

in response for a code line is denoted by −3, it means that the number of605

responses for that line after participants saw the explanation (Q4) decreased606

by three compared to before (Q2), indicating a shift in their belief about607

the vulnerability of that line. Here, the reductions observed with the Orange608

lines represent a positive change that was achieved a posterori. Unlike LIME,609

DisCERN not only identifies vulnerabilities but also provides hints on how610

to correct them by displaying counterfactuals. As a result, participants can611

access additional lines from the counterfactual that were not available in Q2.612

This is seen in Table 5 for DisCERN, where a relatively larger number of613

blue lines can be observed on the x-axis, indicating a notable difference.614

Overall Table 5 observations strongly indicate that participants found615

counterfactuals more informative to correct vulnerabilities compared to fea-616

ture attributions. The DisCERN group exhibited some errors, as misiden-617

tified lines on either side of the vulnerability boundary were observed. For618

instance, in Snippet 2, lines 28 and 39 were considered worthy of change,619

despite not being vulnerable. Similarly, in Snippet 3, lines 18 and 19 were620

not recognised as vulnerable, representing another error. The boundary cases621

observed with DisCERN and the errors observed with the LIME group both622

suggest that some participants are likely to either misinterpret or disagree623

with the explanations.624

25

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofTable 5: Q4 analysis on a posterior mental model - correcting code vulnerabilities

Snippet DisCERN LIME

Snippet 1

Snippet 2

Snippet 3

6.4. Goodness of explanations for vulnerability detection and correction625

Q6 and Q7 aim to measure the overall goodness of the explanation to626

detect and correct vulnerabilities. Both questions are further analysed in627

relation to Q1 to examine the utility of the explanations to different cohorts:628

knowledgeable participants who responded Yes in Q1; and trainee partici-629

pants who responded No or Maybe in Q1.630

Q6 results across the two groups are plotted in Figure 8. The posi-631

tive response rate from DisCERN and LIME groups were 66.7% and 62.7%632

respectively when asked about the utility of explanations for vulnerability633

26

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofdetection. This indicates a slight preference towards counterfactual explana-634

tions. Furthermore, Figure 8b indicates that the counterfactual explanations635

were found to be useful for more complex snippets (2 and 3) and feature636

attributions useful for the smallest snippet (1). This suggests that using637

counterfactual explanations may result in a lower cognitive load for detect-638

ing errors when compared to feature attributions.639

(a) Overall response (b) Response by snippet

Figure 8: Q6 analysis on the goodness of explanations - detecting code vulnerabilities

Figures 9a and 9b present an in-depth analysis of the Q6 responses with640

respect to Q1. Figure 9a shows that participants with prior knowledge of641

vulnerability detection found both types of explanations useful. The im-642

proved positive response rates of 83.61% and 77.56% from their baselines643

for DisCERN and LIME indicate that knowledgeable users found both types644

of explanations helpful. However, counterfactuals have been significantly645

more helpful than feature attributions, especially for complex code snippets.646

Figure 9b shows that trainee cohorts struggle with types of explanations.647

It is indicated by the decreased positive response rate from their baselines648

to 53.7% and 50.2% for DisCERN and LIME groups. However, trainee co-649

horts found counterfactuals significantly helpful for the most complex snippet650

whereas feature attribution helped with the simplest snippet. These obser-651

vations further verify that counterfactuals reduced the cognitive burden of652

vulnerability detection in complex code snippets.653

Q7 measures the utility of the explanation to correct vulnerabilities and654

we plot similar graphs to Q6. Figure 10a shows that the overall positive655

response rates from DisCERN and LIME groups were 66.24% and 63.24%656

respectively. Similar to detection (Q6), the responses for Q7 indicate a pref-657

erence for the counterfactuals for more complex snippets. In contrast to658

27

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

(a) Responses from knowledgeable cohorts (b) Responses from trainee cohorts

Figure 9: Q6 analysis on the goodness of explanations - detecting code vulnerabilities by
knowledgeable and trainee cohorts

detection, counterfactuals are found to be comparably helpful for the correc-659

tion of vulnerabilities in simpler snippets which evidence an overall preference660

towards counterfactual explanations.661

(a) Overall response (b) Response by snippet

Figure 10: Q7 analysis on the goodness of Explanations - correcting code vulnerabilities

Figure 11 presents the analysis of the Q7 response with respect to cohorts662

identified in Q1. Similar to Q6, the positive response rate for both explana-663

tions have improved from the knowledgeable cohort and decreased from the664

trainee cohort. The preference for counterfactuals over feature attributions665

by both cohorts for complex snippets remains significant for vulnerability cor-666

rection. While trainee cohorts consistently find counterfactuals to be more667

helpful, knowledgeable cohorts find feature attributions are sufficient for cor-668

recting vulnerabilities in simple snippets.669

28

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

(a) Responses from knowledgeable cohorts (b) Responses from trainee cohorts

Figure 11: Q7 analysis on the goodness of explanations - correcting code vulnerabilities
by knowledgeable and trainee cohorts

We acknowledge that a significant number of trainee users did not find670

either type of explanation helpful for both detection and correction. This was671

clearly seen from responses to both Q6 and Q7 having less than 50% positive672

responses for Snippets 2,3 in the LIME group and Snippet 3 in DisCERN673

group. However, the overall preference was for DisCERN counterfactuals.674

This feedback is useful for future research to further improve counterfactual675

explanations to assist trainee developers to learn about vulnerability detec-676

tion and correction.677

6.5. Acceptability of the explanations678

Q8 is aimed to measure the acceptability of the explanations. Similar to679

Q6 and Q7 we plot overall responses and responses by snippets in Figure 12.680

In both groups, approximately 60% of the participants agreed with the ex-681

planations provided. However, the disagreement is significantly lower in the682

DisCERN group where 3% more partially accepted the counterfactual ex-683

planation. Figure 12b shows that the acceptability of LIME is significantly684

lower for Snippet 3 which has affected the overall acceptance. Otherwise,685

agreement with feature attributions is similar to or greater than that of coun-686

terfactuals which is inconsistent with the previous observations on change in687

mental model and goodness. LIME is a well-established explanation method688

in various domains for several years, which may have influenced the observed689

results, to further verify, we perform a more in-depth analysis.690

The first analysis of acceptability is with respect to the cohorts recognised691

in Q1. Figure 13 plots the acceptability by knowledgeable and trainee co-692

29

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

(a) Overall response (b) Response by snippet

Figure 12: Q8 analysis on the acceptability of explanations

horts. The knowledgeable cohorts found counterfactuals more agreeable than693

feature attributions, indicated by the accumulated positive response rates of694

81.47% and 75.60%. The most significant difference is that the counterfac-695

tual explanation for the most complex snippet is found to be more agreeable696

which aligns with previous observations. We failed to observe a majority of697

trainee cohorts agreeing with either explanation, however, we observe partial698

agreement rates of 63.70% and 62.20% respectively for DisCERN and LIME.699

These findings reinforce the overall utility of counterfactuals over feature at-700

tribution and also highlight the need to improve the counterfactuals to build701

trust among trainee developers as an effective learning tool.702

(a) Responses from knowledgeable cohorts (b) Responses from trainee cohorts

Figure 13: Q8 analysis on the acceptability of explanations by knowledgeable and trainee
cohorts

The second analysis of acceptability is with respect to the explanation703

goodness observed by Q6 and Q7. We recognise two cohorts from Q6 and704

30

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofQ7, the ones who found explanations helpful and others who did not for both705

vulnerability detection and correction. Figure 14a plots the Q8 responses for706

those who found explanations helpful. Results show that the participants707

who found feature attribution helpful overwhelmingly agreed with the expla-708

nation (0% no responses). However, not all who found counterfactuals use-709

ful agreed with it indicated by 2.11% disagreeing and 13.34% only partially710

agreeing. Figure 14b plots the Q8 responses for those who found explana-711

tions not helpful. Those who found feature attribution not helpful for small712

snippets completely disagreed with the explanation and those who found713

counterfactuals not helpful for complex snippets, also completely disagreed714

with the explanation. It is noteworthy that both of these cohorts are the715

minority when determining goodness. Overall, 31.63% and 24.89% at least716

partially agreed with counterfactuals and feature attributions respectively.717

These observations conclude that the higher overall agreement with fea-718

ture attributions seen in Figure 12b for Snippets 1 and 2 is influenced by719

the cohorts who found counterfactuals helpful (Q6 and Q7) but did not fully720

agree with them. What is unknown and needs to be established in the long721

term is if this acceptance of feature attribution is influenced by familiarity722

with LIME explanations. The need for this is supported by the results in723

Section 6.3 which clearly showed that counterfactuals influence a positive724

mental model change compared to feature attributions.725

(a) Responses from Q6, Q7 = yes cohorts (b) Responses from Q6, Q7 = no cohorts

Figure 14: Q8 analysis on the acceptability of explanations by goodness cohorts

6.6. Implications and Limitations of the User Study726

Overall, counterfactual explanations encourage positive mental model727

changes and were perceived as more helpful than feature attributions for728

31

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofdetecting and correcting code vulnerabilities. However, feature attributions729

exhibit comparable or higher acceptability, possibly due to their widespread730

use. These conclusions should be made with the limitations of the study in731

mind. The key limitations of the above user study are three-fold: 1) incom-732

pleteness of heuristics used to identify the knowledgeable and trainee cohorts;733

2) inclusion and exclusion criteria of participants; and 3) representations and734

interpretation of explanations.735

The a priori mental model for detecting vulnerabilities was based on Q1736

which recognised two cohorts as knowledgeable and trainee. However, we did737

not account for those who recognised the vulnerabilities incorrectly by col-738

lating them with answers to Q2. As seen in Section 6.2 only 36% and 30% of739

the two groups identified the lines correctly and it includes all participants.740

We found it challenging to filter participants by both Q1 and Q2 because741

many of those who answered Yes in Q1 were able to partially identify vul-742

nerable lines. A more strict filter would have resulted in no knowledgeable743

participants. Accordingly, we relied solely on Q1 to categorise participants744

into the two cohorts.745

The recruitment of participants for the user study was limited to Amazon746

Mechanical Turk (AMT), which placed constraints on the inclusion criteria.747

Accordingly, the inclusion criteria for selecting participants were constrained748

to those possible in the AMT platform. Ideally, a more comprehensive study749

would include participants in various career stages with Java software devel-750

opment skills.751

The explanations generated by LIME and DisCERN are significantly dif-752

ferent in their presentation. LIME highlights the original query using a753

heat-map scale and DisCERN presents counterfactual in a code-diff view.754

With LIME explanations where the individual tokens are highlighted, it may755

mislead the participants. An example scenario is if two tokens in a state-756

ment were highlighted as vulnerable and non-vulnerable, the participant can757

consider the statement as vulnerable, non-vulnerable or have no impact on758

the vulnerability detection. DisCERN code-diff view has two columns with759

query line numbers and counterfactual line numbers. A participant who is760

unfamiliar with code-diff may mistakenly use the line numbers from the in-761

appropriate column when responding to the questionnaire.762

All three limitations are well-founded, however, they do not invalidate763

the findings, rather, they provide enhancing user studies in this particular764

domain and in Explainable AI in general.765

The user study was conducted with three code segments, all of which be-766

32

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
oflonged to the same vulnerability code (CWE-191). Our main reasoning was767

to prioritise the evaluation of the utility of different types of explanation while768

keeping other variables constant. Additionally, it allowed the user study not769

to be biased by the proficiency of the participant in detecting various types of770

vulnerabilities. However, there can be implications for this approach if some771

vulnerabilities were better explained using feature attributions over counter-772

factuals. This can be linked to our observations in Section 6.4 where there773

was no significant preference between feature attribution and counterfactual774

explanations when the code segment was simple. The generalisability of Dis-775

CERN to different vulnerability classes and languages (as seen in Section 5)776

provides an opportunity to evaluate this in the future.777

7. Conclusion778

The DisCERN algorithm finds counterfactual explanations for correcting779

code vulnerabilities using pattern matching to find corrections to a code seg-780

ment from its nearest-unlike neighbour. DisCERN was evaluated using three781

NIST datasets in different programming languages and the results showed782

that it finds counterfactuals in 85% - 96% of the cases with 8 ∼ 14 statement783

corrections needed. A qualitative analysis revealed that some of the counter-784

factuals generated by DisCERN did not preserve the original functionality of785

the code. This highlights the need for comprehensive heuristics in the future786

to ensure plausible code corrections. We conducted a user study to assess the787

utility of counterfactual explanations compared to the more commonly used788

feature attribution explanations for correcting vulnerabilities. The user study789

showed that counterfactuals facilitated a positive mental model change to-790

wards correcting vulnerabilities. Counterfactuals were specifically preferred791

over feature attributions when dealing with complex code segments, indi-792

cating a reduction in cognitive burden. However, despite being less helpful793

for vulnerability correction, feature attribution explanations received higher794

acceptance than counterfactuals, possibly due to the trust built around their795

familiarity. These findings provide evidence for the utility of counterfactual796

explanations over feature attribution explanations. Nonetheless, they also797

emphasise the importance of conducting long-term evaluations to determine798

if counterfactuals can establish trust with developers as a reliable tool for799

vulnerability detection and correction.800

33

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofAcknowledgments801

This research is funded by the iSee project 5. iSee is an EU CHIST-ERA802

project 6 which received funding for the UK from EPSRC under the grant803

number EP/V061755/1.804

Appendix A. Code snippets from the user study805

Figure A.15: Snippet 1: LIME Explanation

Figure A.16: Snippet 1: DisCERN Explanation

5https://isee4xai.com/
6https://www.chistera.eu/projects/isee

34

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Figure A.17: Snippet 2: LIME Explanation

35

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Figure A.18: Snippet 2: DisCERN Explanation

36

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Figure A.19: Snippet 3: LIME Explanation

Figure A.20: Snippet 3: DisCERN Explanation

37

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofReferences806

[1] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir,807

P. Ellingwood, M. McConley, Automated vulnerability detection in808

source code using deep representation learning, in: 2018 17th IEEE in-809

ternational conference on machine learning and applications (ICMLA),810

IEEE, 2018, pp. 757–762.811

[2] Z. Bilgin, M. A. Ersoy, E. U. Soykan, E. Tomur, P. Çomak, L. Karaçay,812

Vulnerability prediction from source code using machine learning, IEEE813

Access 8 (2020) 150672–150684.814

[3] B. Chernis, R. Verma, Machine learning methods for software vulnera-815

bility detection, in: Proceedings of the Fourth ACM International Work-816

shop on Security and Privacy Analytics, 2018, pp. 31–39.817

[4] H. K. Dam, T. Tran, T. Pham, S. W. Ng, J. Grundy, A. Ghose,818

Automatic feature learning for vulnerability prediction, arXiv preprint819

arXiv:1708.02368 (2017).820

[5] Z. Li, D. Zou, J. Tang, Z. Zhang, M. Sun, H. Jin, A comparative study821

of deep learning-based vulnerability detection system, IEEE Access 7822

(2019) 103184–103197.823

[6] G. Tang, L. Zhang, F. Yang, L. Meng, W. Cao, M. Qiu, S. Ren, L. Yang,824

H. Wang, Interpretation of learning-based automatic source code vulner-825

ability detection model using lime, in: Knowledge Science, Engineering826

and Management: 14th International Conference, KSEM 2021, Tokyo,827

Japan, August 14–16, 2021, Proceedings, Part III, Springer, 2021, pp.828

275–286.829

[7] S. Wachter, B. Mittelstadt, C. Russell, Counterfactual explanations830

without opening the black box: Automated decisions and the gdpr,831

Harv. JL & Tech. 31 (2017) 841.832

[8] A. Wijekoon, N. Wiratunga, I. Nkisi-Orji, C. Palihawadana, D. Corsar,833

K. Martin, How close is too close? the role of feature attributions in834

discovering counterfactual explanations, in: Case-Based Reasoning Re-835

search and Development: 30th International Conference, ICCBR 2022,836

Nancy, France, September 12–15, 2022, Proceedings, Springer, 2022, pp.837

33–47.838

38

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of[9] D. Votipka, R. Stevens, E. Redmiles, J. Hu, M. Mazurek, Hackers vs.839

testers: A comparison of software vulnerability discovery processes, in:840

2018 IEEE Symposium on Security and Privacy (SP), IEEE, 2018, pp.841

374–391.842

[10] A. C. Eberendu, V. I. Udegbe, E. O. Ezennorom, A. C. Ibegbulam, T. I.843

Chinebu, et al., A systematic literature review of software vulnerabil-844

ity detection, European Journal of Computer Science and Information845

Technology 10 (1) (2022) 23–37.846

[11] S. M. Ghaffarian, H. R. Shahriari, Software vulnerability analysis and847

discovery using machine-learning and data-mining techniques: A survey,848

ACM Computing Surveys (CSUR) 50 (4) (2017) 1–36.849

[12] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, Y. Zhong,850

Vuldeepecker: A deep learning-based system for vulnerability detection,851

arXiv preprint arXiv:1801.01681 (2018).852

[13] Y. Zhou, S. Liu, J. Siow, X. Du, Y. Liu, Devign: Effective vulnerability853

identification by learning comprehensive program semantics via graph854

neural networks, Advances in neural information processing systems 32855

(2019).856

[14] X. Yuan, G. Lin, Y. Tai, J. Zhang, Deep neural embedding for soft-857

ware vulnerability discovery: Comparison and optimization, Security858

and Communication Networks 2022 (2022) 1–12.859

[15] E. Mashhadi, H. Hemmati, Applying codebert for automated program860

repair of java simple bugs, in: 2021 IEEE/ACM 18th International Con-861

ference on Mining Software Repositories (MSR), IEEE, 2021, pp. 505–862

509.863

[16] N. Ziems, S. Wu, Security vulnerability detection using deep learning864

natural language processing, in: IEEE INFOCOM 2021-IEEE Confer-865

ence on Computer Communications Workshops (INFOCOMWKSHPS),866

IEEE, 2021, pp. 1–6.867

[17] J. Senanayake, H. Kalutarage, M. O. Al-Kadri, A. Petrovski, L. Piras,868

Android source code vulnerability detection: a systematic literature re-869

view, ACM Computing Surveys 55 (9) (2023) 1–37.870

39

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of[18] I. Medeiros, N. Neves, M. Correia, Detecting and removing web appli-871

cation vulnerabilities with static analysis and data mining, IEEE Trans-872

actions on Reliability 65 (1) (2015) 54–69.873

[19] D. K. P. Newar, R. Zhao, H. Siy, L.-K. Soh, M. Song, Ssdtutor: A874

feedback-driven intelligent tutoring system for secure software develop-875

ment, Science of Computer Programming 227 (2023) 102933.876

[20] S. Ma, F. Thung, D. Lo, C. Sun, R. H. Deng, Vurle: Automatic vulner-877

ability detection and repair by learning from examples, in: Computer878

Security–ESORICS 2017: 22nd European Symposium on Research in879

Computer Security, Oslo, Norway, September 11-15, 2017, Proceedings,880

Part II 22, Springer, 2017, pp. 229–246.881

[21] Y. Zhang, Y. Xiao, M. M. A. Kabir, D. Yao, N. Meng, Example-based882

vulnerability detection and repair in java code, in: Proceedings of the883

30th IEEE/ACM International Conference on Program Comprehension,884

2022, pp. 190–201.885

[22] A. Savchenko, O. Fokin, A. Chernousov, O. Sinelnikova, S. Osadchyi,886

Deedp: vulnerability detection and patching based on deep learning,887

Theoretical and Applied Cybersecurity 2 (1) (2020).888

[23] D. Gunning, D. Aha, Darpa’s explainable artificial intelligence (xai)889

program, AI magazine 40 (2) (2019) 44–58.890

[24] M. Ebers, Regulating explainable ai in the european union. an overview891

of the current legal framework (s), An Overview of the Current Le-892

gal Framework (s)(August 9, 2021). Liane Colonna/Stanley Greenstein893

(eds.), Nordic Yearbook of Law and Informatics (2020).894

[25] T. N. Nguyen, R. Choo, Human-in-the-loop xai-enabled vulnerability895

detection, investigation, and mitigation, in: 2021 36th IEEE/ACM896

International Conference on Automated Software Engineering (ASE),897

IEEE, 2021, pp. 1210–1212.898

[26] S. Höhn, N. Faradouris, What does it cost to deploy an xai system:899

A case study in legacy systems, in: Explainable and Transparent AI900

and Multi-Agent Systems: Third International Workshop, EXTRAA-901

MAS 2021, Virtual Event, May 3–7, 2021, Revised Selected Papers 3,902

Springer, 2021, pp. 173–186.903

40

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of[27] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck,904

C. Siemens, Drebin: Effective and explainable detection of android mal-905

ware in your pocket., in: Ndss, Vol. 14, 2014, pp. 23–26.906

[28] V. J. Sudhakar, S. Mahalingam, V. Venkatesh, V. Vetriselvi, Phishing907

url detection and vulnerability assessment of web applications using ivs908

attributes with xai, in: ICT Analysis and Applications, Springer, 2022,909

pp. 933–944.910

[29] G. Schwalbe, B. Finzel, A comprehensive taxonomy for explainable ar-911

tificial intelligence: a systematic survey of surveys on methods and con-912

cepts, Data Mining and Knowledge Discovery (2023) 1–59.913

[30] T. Miller, Explanation in artificial intelligence: Insights from the social914

sciences, Artificial intelligence 267 (2019) 1–38.915

[31] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,916

T. Liu, D. Jiang, et al., Codebert: A pre-trained model for program-917

ming and natural languages, in: Findings of the Association for Com-918

putational Linguistics: EMNLP 2020, 2020, pp. 1536–1547.919

[32] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training920

of deep bidirectional transformers for language understanding, arXiv921

preprint arXiv:1810.04805 (2018).922

[33] M. T. Ribeiro, S. Singh, C. Guestrin, “why should i trust you?” ex-923

plaining the predictions of any classifier, in: Proceedings of the 22nd924

ACM SIGKDD international conference on knowledge discovery and925

data mining, 2016, pp. 1135–1144.926

[34] R. K. Mothilal, A. Sharma, C. Tan, Explaining machine learning classi-927

fiers through diverse counterfactual explanations, in: Proceedings of the928

2020 conference on fairness, accountability, and transparency, 2020, pp.929

607–617.930

[35] D. Brughmans, P. Leyman, D. Martens, Nice: an algorithm for near-931

est instance counterfactual explanations, Data Mining and Knowledge932

Discovery (2023) 1–39.933

41

	coversheet_template
	1-s2.0-S0950705123005804-main.pdf

