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A B S T R A C T

Brain interictal epileptiform discharges (IEDs), as the fundamental indicators of seizure,

are transient events occurring between two or before seizure onsets, captured using elec-

troencephalogram (EEG). For epilepsy diagnosis and localization of seizure sources,

both interictal and ictal recordings are extremely informative. Accurate detection of

IEDs from over the scalp helps faster diagnosis of epilepsy. The scalp EEG (sEEG) suf-

fers from a low signal-to-noise ratio and high attenuation of IEDs due to the high skull

electrical impedance. On the other hand, the intracranial EEG (iEEG) recorded using

implanted electrodes enjoys high temporal-spatial resolution and enables capturing

most IEDs. Therefore, in this thesis, the focus is on the identification of IEDs from the

concurrent scalp and intracranial EEGs.

Multi-way analysis provides an opportunity to jointly analyse the data in different

domains. IEDs may share some features within and between the segments. We have

developed methods based on multi-way analysis and tensor factorization to detect the

IEDs from the concurrent sEEG in both segmented and real-time approaches.

The diversities in IED morphology, strength, and source location within the brain

cause a great deal of uncertainty in their labeling by clinicians. We have exploited and

incorporated this uncertainty (the probability of the waveform being an IED) in an

IED detection system. Furthermore, IEDs are naturally sparse. We have benefited from

the sparsity of IED waveforms in developing an algorithm to exploit sparse common

features among the IED segments, referred to as sparse common feature analysis.

By mapping sEEG to iEEG, the sEEG quality is improved. In this thesis, the pro-

posed tensor factorization maps the time-frequency features of sEEG to those of iEEG

to detect the IEDs from over the scalp with high sensitivity. We have concatenated time,

frequency, and channel modes of iEEG recordings into a tensor. After decomposing the

tensor into temporal, spectral, and spatial components, the EEG time-frequency fea-

tures have been extracted and projected onto the temporal components. Furthermore,

we have developed two novel algorithms based on generative adversarial networks to

map the raw sEEG to iEEG.

As a result of this work, the visibility of IEDs from sEEG has over 4-fold improvement.

Additionally, the outcome paves the path for future research in epilepsy prediction,

seizure source localisation, and modeling the brain seizure pathways.
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1
I N T R O D U C T I O N

The human brain is a complex network of neurons that controls the information flow

and human interactions with the environment. The study of how neurons activate is

being investigated in order to diagnose and treat many neurological diseases, such

as epilepsy, Parkinson’s, dementia, and Alzheimer’s. The neural activity of the human

brain is measured using different methods. Electroencephalogram (EEG) and functional

magnetic resonance imaging are the most popular techniques. EEG is a brain recording

modality that captures the electric activity of the brain. It can be recorded either from

the scalp (here called scalp EEG (sEEG)) or from the cerebral cortex or deeper brain

(called intracranial EEG (iEEG)) [2]. The sEEG is recorded in a non-invasive manner

and has no side effects for individuals. However, it suffers from low resolution, signal-

to-noise ratio, and the crucial internal brain sources being mixed and blurred at each

electrode. On the other hand, the iEEG recorded in an invasive approach enjoys high

resolution of the neuron activities as the background cortical activities and attenuation

are less prominent. Here, we aim to analyse the sEEG and iEEG recorded simultane-

ously from patients suffering from mesial-temporal lope epilepsy.

According to the World Health Organization [3], epilepsy is the most common neu-

rological disease affecting 50 million people worldwide. It is estimated that up to 70%

of people with epilepsy could live seizure-free if properly diagnosed and treated [3].

Therefore, the study of epilepsy and the effort at early diagnosis have always been of

paramount importance in the biomedical field of research.

Epilepsy is a chronic brain disease characterised by epileptic seizures occurring due

to excessive discharges of a group (or groups) of neurons in the cerebral cortex or

hippocampus. The mainstay of diagnosis remains the detection of interictal (or pre-

ictal) epileptiform discharges (IEDs) which occur between two seizure onsets.

IED identification can establish a guideline for pre-ictal state monitoring, seizure pre-

diction, treatment, and surgical planning. Seizure prediction mitigates taking regular

anticonvulsants, preliminary surgical interventions for the identification of ED gener-

ators, and the hazards of fall injury. In the traditional seizure prediction methods, the

increase in synchrony and decrease in the chaotic behavior of cortical activities have

been the main quantification parameters, regrettably, with low accuracy and insuffi-

cient consistency in terms of seizure types and across the subjects. Identifying the IEDs

from sEEG up to sufficient accuracy has raised hopes for developing a new direction

for more concise seizure prediction.

1
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In terms of their morphology, IEDs can fall into five groups: (1) spike, lasting for

20-70 ms and detectable from the background activity; (2) sharp wave, the same as

spikes but lasting for 70-200 ms; (3) sharp-and-slow-wave complex, comprised of a

sharp wave followed by a slow wave; (4) spike-and-slow-wave complex, consisting of

a spike followed by a slow wave; and (5) multiple spike-and-slow-wave complexes, the

same as spike-and-slow-wave complex but with two or more spikes associated with

one or more slow waves [4]. In addition, depending on the location of seizure sources,

the spatial distribution of IEDs varies.

sEEG suffers from low resolution and consequently fails in capturing all IEDs. As

a result, around 30% to 40% of patients considered for epilepsy surgery require iEEG

recording [5]. However, the iEEG is recorded using invasive techniques with many side

effects. Therefore, improving the sensitivity of sEEG in detecting IEDs is crucial in

clinical practice.

1.1 CHALLENGES IN IED DETECTION

There are several challenges in using scalp-recorded data to detect IEDs automatically.

The first challenge is that studies conducted on concurrent sEEG and iEEG record-

ings have revealed that standard electrodes record only a relatively small proportion of

spikes detectable from over the scalp or at the cortical surface. Nayak et al. recorded

simultaneously sEEG (using 20 standard scalp electrodes) and iEEG (using 12 FO elec-

trodes) from patients suffering from temporal lobe epilepsy from 1990 to 1998 [6]. Their

study has shown that only 9% of IEDs are observable over the scalp without averag-

ing across IED segments or concurrent iEEG recordings. Less than thirteen percent

(12.8%) of IEDs were detectable over the scalp as a small transient by referring to the

concurrent iEEG as ground truth, and 59.7% of IEDs were identified over the scalp by

referring to the simultaneous iEEG and averaging across IED segments. Finally, 18.7%

of IEDs showed no signal or signature on the scalp. Later, Yamazaki el al. compared

dense EEG and iEEG for interictal spike detection [7]. The dense EEG was recorded us-

ing 256 standard electrodes and, for recording the iEEG, from 48 to 102 subdural strip

and grid electrodes were implanted over the mesial and lateral temporal lobes. They

showed that 45% of spikes can be detected over the dense EEG. However, by reducing

the number of channels to 19 according to 10-20 system, they detected only 22% of the

spikes over the scalp. Nayak et al. [6] and Yamazaki et al. [7] obtained different results

in terms of the percentage of visible IEDs from over the scalp. This can be due to using

old recording systems [6] compared to [7]. However, this challenge has been addressed

in very few studies [8, 9]. One way to solve this problem is to record the sEEG and

iEEG signals simultaneously, then use the iEEG as ground truth for the IED annotation
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and detect the IEDs from sEEG recordings [8]. Another way is to derive the iEEG from

sEEG signals through applying signal processing and machine learning methods [9].

The second challenge in automatically detecting IEDs is that they are similar to many

normal brain activities and artefacts, such as extracerebral potentials from muscles,

eyes, heart, and electrodes. Eyeblink and heartbeat artefacts also resemble spike waves.

However, they differ from IEDs in terms of source location and frequency range. There-

fore, analysing EEG signals in the frequency domain and involving space diversity

can suppress such artefacts. Through multi-way analysis, spatial and frequency com-

ponents were analyzed to detect epileptic spikes [10].

The final challenge in IED detection is uncertainty in annotating a waveform as IED.

There is a huge disagreement among expert epileptologists as to whether a wave is

an IED or not. Webber et al. conducted research to find out how electroencephalogra-

phers (EEGers) interpret EEG signals [11]. Eight EEGers scored IEDs in twelve short

EEG records. Only 18% were marked as IEDs by all the EEGers and 38% by only one

EEGer. Quite recently, Halford et al. performed research to evaluate the neurologist

performances in IED detection [12]. Thirty-five EEGers participated in the research and

were supposed to annotate the IEDs in 200 EEG segments, each with a length of 300

seconds. The number of events marked as IEDs was different among EEGers from 6 to

212 (with a mean of 67.7).

It is also worth mentioning that the IEDs referred to in this thesis are the most com-

mon types. There are rare IED types, such as strong spike trains resulting from idio-

pathic generalized epilepsy, which can be observed over the scalp and easily detected.

1.2 AIMS AND OBJECTIVES

Human knowledge about the brain function is still insufficient to understand the prop-

erties of an epileptic brain. Automatically detecting IEDs from over the scalp is indeed

a big challenge. Models provided for the detection of IEDs scored by sEEG are inad-

equate since they are unable to detect the scalp-invisible IEDs, thereby being biased

to detect only a subset of IEDs that are visible over the scalp. Only very few studies

have been carried out to investigate scalp IEDs from simultaneous sEEG and iEEG

recordings [8, 9].

The techniques used in IED detection involve many advanced signal processing and

machine learning techniques as well as their associated mathematics. The aim of this

project is therefore to design and develop algorithms to gain new insights into trends

and patterns of the EEG signals of epileptics. In summary, the objectives of this thesis

are as follows:

1. Review state-of-the-art research in IED detection.
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2. Develop and apply algorithms to the concurrent sEEG and iEEG to detect both

scalp-visible and scalp-invisible IEDs.

3. Improve the sensitivity of sEEG in IED detection by extracting and analysing

common components.

4. Analyse the ongoing (online) sEEG and iEEG in multi-dimensions using tensor

factorisation.

5. Incorporate the morphology of IEDs into a tensor structure to boost the perfor-

mance of an IED detection system.

6. Incorporate the level of uncertainty in labeling the IEDs given by the clinicians

into the IED detection system.

7. Map time-frequency (TF) features of the sEEG into that of the iEEG.

8. Develop a data-driven approach and estimate the iEEG from the given sEEG

using a generative adversarial network (GAN).

1.3 ORGANIZATION OF THE THESIS

In the first chapter, we have explained why detecting the IEDs with high accuracy

is crucial. Afterward, the challenges of IED detection systems have been addressed.

Finally, we have described our aims and objectives.

Chapter 2 is devoted to reviewing the publications in the IED detection area. The

research that developed or employed machine learning techniques to detect or analyse

the IEDs are reviewed.

In Chapter 3, the concept of tensor factorisation is first described. Then, the devel-

oped tensor-based technique proposed for detecting IEDs from the ongoing sEEG and

iEEG is described. This chapter introduces two new methods, namely temporal compo-

nents analysis and spatial component analysis, for IED identification.

Chapter 4 introduces a novel method namely spatial and morphological component

analysis for IED detection. This method exploits the morphology of IEDs in the tensor

structure. Here, a 4-way tensor with time, channel, segment, and morphology dimen-

sions is constructed. After decomposing the tensor, the IED and non-IED data segments

are projected onto the spatial and morphological factors.

The diversity in IED morphologies, strengths, and source locations within the brain

cause a great deal of uncertainty in their labeling by clinicians. Chapter 5 proposes a

method to exploit and incorporate this uncertainty (the probability of the waveform

being an IED) in the IED detection system, which combines spatial component analysis

with the IED probabilities.
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In Chapter 6, we first present a novel method, called common feature analysis, for

IED detection. In the second approach, we benefit from the sparsity of IED waveforms

in developing another new algorithm for IED detection, namely sparse common feature

analysis.

Chapter 7 is devoted to introducing a model based on tensor factorisation to map the

TF features of sEEG to that of iEEG. Continuous wavelet transform (CWT) is employed

to extract the TF features. Time, frequency, and channel modes of IED segments from

intracranial recordings are concatenated into a four-way tensor. After decomposing

the tensor into temporal, spectral, spatial, and segmental factors, the TF features of

both IED and non-IED segments from scalp recordings are projected onto the temporal

components for classification.

We propose a couple of EEG-to-EEG translation models based on the GAN structure

in Chapter 8. In the first one, a GAN based on a U-net network is employed to map the

sEEG to iEEG. In the second one, a conditional GAN is combined with a variational

autoencoder to estimate the iEEG from the given sEEG.

Finally, in Chapter 9, the presented work in the thesis is summarised and concluded,

and some future works are suggested.



2
L I T E R AT U R E R E V I E W

In the diagnosis of epilepsy and localization of seizure sources, both interictal and ic-

tal recordings are extremely informative. For this purpose, computerized intelligent

spike and seizure detection techniques have been researched and are constantly im-

proving. This is to detect more IEDs from over the scalp and classify epileptic and

non-epileptic discharges. Here, the EEG recording techniques in IED detection studies

are explained first. Then, we introduce the most used private and publicly available

IED datasets. Afterward, the methods used for IED detection are reviewed, which is

the main contribution of this chapter. These techniques have opened a new window to

the epilepsy diagnosis and management spheres. Finally, the evaluation criteria used

as performance metrics are presented.

2.1 EEG RECORDING TECHNIQUES IN IED DETECTION STUDIES

For capturing IEDs, the EEG has been recorded from both scalp (sEEG) and sub-cortex,

and hippocampus (iEEG) capturing brain mesial-temporal activities. Here, we explain

the most used techniques for recording the EEG from epileptics suffering from tempo-

ral lobe epilepsy.

For recording the sEEG, standard scalp electrodes are usually placed on the scalp

according to the 10-20 system [13, 14] or Maudsley electrode placement system [8,

15]. Maudsley electrode placement system is essentially similar to 10–20 system, but

mid-temporal, posterior-temporal, and occipital electrodes in the Maudsley system are

approximately 20 mm lower than those in the 10–20 system. Therefore, it provides

more extensive coverage of the lower part of the cerebral convexity and adapts itself to

cranial asymmetries [16], improving the recordings from temporal lobes [6].

For recording the iEEG, different types of electrodes, from subdural electrodes [1]

to Stereo-EEG electrodes [17] and Foramen ovale (FO) electrodes, have been employed.

Among them, FO electrodes [18] have been extensively used in recording iEEG from

epileptic patients suffering from temporal lobe epilepsy [19, 20]. This technique counts

as a semi-invasive method. The FO electrodes are inserted through FO holes in the skull

and directly placed on the exposed mesial temporal structures. Therefore, it provides

an opportunity to simultaneously record the sEEG and iEEG without disrupting brain

coverings [21, 22].

6
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2.2 IED DATASETS

Most studies used their private datasets, meaning they recorded EEGs from epileptic

patients, annotated the IEDs, and finally classified the IEDs and non-IEDs. However,

there are also public datasets for sEEG [23] and iEEG [1].

2.2.1 Public Scalp IED Dataset

There is only a public scalp IED dataset [23]. TUH-EEG Corpus is the most extensive

publicly available corpus of clinical EEG recordings worldwide, available to download

(www.nedcdata.org). The data was recorded at the Department of Neurology at Tem-

ple University Hospital at various sampling frequencies from 250 to 1024 with different

electrode configurations. In addition, a team of neurologists and undergraduate annota-

tors annotated a subset of TUH-EEG in which EEGs were recorded using the averaged

reference electrode configuration, called TUH EEG Events Corpus and freely available

(https://isip.piconepress.com/projects/tuh_eeg/html/downloads.shtml).

The annotations fell into six groups:

• spike and/or sharp waves: patterns of EEGs observed during epileptic seizures,

• periodic lateralized epileptiform discharges: a pattern of repetitive periodic, focal,

or hemispheric epileptiform discharges like sharp waves or spikes,

• generalized periodic epileptiform discharges: a pattern of periodic short-interval

diffuse discharges, periodic long-interval diffuse discharges, and suppression-

burst patterns,

• eye movement: slow and occasionally sharp signals that occur during eye move-

ment,

• artifacts: a recorded electrical activity that is not of cerebral origin, including

physiologic artifacts,

• background: all other data that do not fall in the five classes above.

Overall, 518 sessions were annotated. No more than one session was included from a

subject. 113453 segments were extracted. However, around 65% of the segments were

annotated as background activities.

2.2.2 Public Intracranial IED Dataset

The public intracranial IED dataset (https://isarg.fel.cvut.cz/downloads/spike-detector/)

consists of recordings from seven patients with refractory epilepsy who underwent in-

vasive exploration as part of presurgical examination [1]. The number of electrodes is

https://isip.piconepress.com/projects/tuh_eeg/html/downloads.shtml
https://isarg.fel.cvut.cz/downloads/spike-detector/
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different among subjects (the median number of electrodes is 65). However, to avoid

human labelling bias, only 15 electrodes with the highest spike rate were selected from

each dataset. Five-minute iEEG recordings of each subject were analysed and made

publicly available. Three neurophysiologists with at least 10-year experience reviewed

the data and labelled the spikes. Each spike is labeled as either obvious or ambiguous.

Waveforms associated with hesitation and/or doubts are classified as ambiguous. Ob-

vious and ambiguous spikes on which two or more readers agreed are selected as gold

standard spikes (GS). Table 2.1 presents the patient characteristics (sex, age, number of

GS, epilepsy location, seizure duration, and pathology) for each of the seven patients.

Table 2.1: Summary of patients’ information used in the public IED dataset, adopted from [1].

Patient Age (sex) Num. of GS Epilepsy location Seizure dura-
tion (years)

Pathology

1 24 (Female) 613 Right frontal 6 No abnormality

2 37 (Female) 453 Left frontal 28 No abnormality

3 17 (Female) 21 Left temporal 2 FCD Ib

4 8 (Female) 3 Right frontal 3 FCD IIb

5 14 (Female) 319 Right multilobar 8 HS, FCD Ia

6 31 (Male) 335 Right frontal 27 FCD IIb

7 10 (Male) 212 Left multilobar 3 FCD IIa

***GS:Gold Standard Spike; FCD: Focal Cortical Dysplasia; HS: Hippocampal Sclerosis.

2.2.3 Private IED Dataset

Table 2.2 summarizes the private datasets used in some previous studies. A research

group led by Professor Saeid Sanei has been working on the concurrent scalp and

intracranial recordings [8, 9, 15, 20, 24, 25]. We use the same dataset in our research.

The dataset is described in Section 3.1.

Another most widely used IED dataset was recorded from over the scalp from 554

subjects (84 epileptic patients with annotated IEDs and 461 non-epileptic EEGs) at the

Massachusetts General Hospital (MGH), Boston, USA [26, 27]. Nineteen (19) channels,

according to the 10-20 international electrode system, were employed for recording.

In [13, 28], the researchers used an sEEG dataset recorded from 50 patients (24 males

and 26 females) with childhood epilepsy with centro-temporal spikes at the Depart-

ment of Pediatrics, Juntendo University Nerima Hospital. For recording the sEEG, 16

electrodes were used in accordance with the 10–20 international system.
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Table 2.2: Some Datasets Used in IED Detection Studies.

Study source Recording
modality

Num. of channels Num. of
subjects

Num. of IEDs

[29] sEEG 18 22 684

[30] sEEG 32 19 1491

[31, 32] sEEG - 23 723

[33] sEEG 21 7 4850

[10] sEEG 19 7 1442

[34] sEEG 19 5 7500

[26, 27, 35] sEEG 19 50/545 8929/14170

[13, 28] sEEG - 50 15899/16008

[19] iEEG 4 46 13959

[8, 9, 15, 20, 24, 25] Concurrent
sEEG and iEEG

20 scalp and 12 FO
electrodes

25/24/18 7831/6609/2776

***sEEG: Scalp EEG; iEEG: Intracranial EEG; FO: Foramen Ovale.

2.3 IED DETECTION METHODS

Different types of IED detection techniques have been introduced in the literature. They

generally fall into six groups: (1) template matching, (2) feature representation (mimetic,

TF, and nonlinear features), (3) matrix decomposition, (4) tensor factorisation, (5) neural

networks, and (6) mapping sEEG to iEEG.

2.3.1 Template Matching

In the template matching method, a single or a number of templates is manually ex-

tracted from the training dataset. Then, the waveforms whose similarity to the template

database exceeds the pre-defined threshold value are detected as the IED segments.

Template matching was first used for seizure detection in 1972 [36]. Afterward, this

method has been broadly employed for IED detection [31, 32, 35, 37]. To measure the

similarity between the waveform and the template, correlation [31, 32, 37, 38] and Eu-

clidean distance [35, 39, 40] were measured in most studies. However, other similarity

measures such as mean square error [41] can be used.

2.3.2 Feature Representation

Feature representation has been used for IED detection for the past three decades. In

this approach, different types of features are extracted from the IED segments and

fed into a classifier or ensembled classifiers to classify the IEDs and non-IEDs. We
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divide this group into three sub-groups: mimetic features, frequency or TF features,

and nonlinear features.

2.3.2.1 Mimetic features

As it is evident from its name, in this feature representation method, the aim is to

mimic the visual analysis process. A number of features based on some characteris-

tics used by expert neurologists to distinguish IEDs from non-IEDs are extracted and

used for automatic IED detection. These features can be based on morphological char-

acteristics and/or context information. This technique first divides the waveforms into

two half-waves using peak detection algorithms. Then, parameters, such as amplitude,

sharpness, slope, and duration, of the wave and its constituent half-waves are calcu-

lated and used for IED detection [11, 42–46]. For distinguishing an IED segment from

background activity, the calculated parameters are compared against a threshold in the

same way as those measured from the background activity. The threshold is selected

based on the visual analysis and needs to be acceptable physiologically.

In the past decade, the mimetic technique has been used in multi-stages approaches

[47, 48]. In this manner, all possible IED candidates are first detected. Then, the mimetic

features are extracted from the detected candidates and fed into a classifier to be classi-

fied as the IED or non-IED segments. In [47], the k-point nonlinear energy operator was

employed to detect all possible spike candidates. In [48], the authors applied template

matching as the candidate spike detection algorithm. In both studies, morphological

characteristics such as amplitude, duration, and slop of half-waves of spikes were ex-

tracted and classified.

This method has some limitations. The first limitation of this method is that it is not

able to distinguish IEDs from transients or artefacts with similar morphology, such as

extracerebral potentials from muscles, eyes, heart, and electrodes. The second limitation

is that it ignores the IED spike shape variations across subjects, ages, and even trials.

The morphological characteristics of IEDs change with age [49]. IEDs have higher am-

plitudes, sharper peaks, larger slopes, shorter durations, larger slow-wave areas, and

wider distributions in children. On the other hand, these morphological characteristics

dwindle, and the IEDs become more lateralized with increasing age.

2.3.2.2 TF features

TF representation separates the main components of IEDs from the background activ-

ity. TF features have been extensively used in EEG signal processing and IED detection.

Wavelet transform [50–54] is the most popular technique for TF feature extraction. How-

ever, other techniques such as Walsh transform [55], fast Fourier transform [56], spec-

trogram [8], and Hilbert transforms [57] have been employed. Spectrogram is a way of

representing the signal strength over time at various frequencies. It can be generated
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by Fourier transform or wavelet transform. Spyrou et al. applied short-term Fourier

transform (STFT) and obtained its magnitude squared as the spectrogram features [8].

2.3.2.3 Nonlinear features

A few studies have extracted nonlinear features for detecting IEDs/spikes. Among

nonlinear features, the nonlinear energy operator is the most popular technique for

identifying IEDs/spikes [54, 58]. In [59], the authors proposed a method based on the

scale-dependent Lyapunov exponent for IED detection. In [54], apart from applying a

nonlinear energy operator, the authors extracted waveform morphological features, TF

features obtained using wavelet, and spectrogram features.

2.3.3 Matrix Decomposition

Matrix decomposition is referred to any method that decomposes the main signal

matrix into sub-matrices. Among matrix decomposition techniques, singular value de-

composition (SVD), sparse representation, independent component analysis (ICA), and

principal component analysis (PCA) have been used in IED detection studies. In [60],

the authors proposed a two-step method based on SVD and dipole source analysis. In

the first step, SVD was employed to decompose the signals into uncorrelated sources.

Then, a single dipole model was applied for dipole source analysis.

In sparse representation, the signal is considered to be sparse. The aim is to de-

compose a signal into a dictionary matrix and a sparse vector with a few non-zero

components. The train of spikes emitted from individual neurons in the brain can be

considered sparse in some domains, such as time and space. One of the interesting

characteristics of IEDs is their sparsity in the time domain. Quite recently, Jiang et al.

proposed a multi-component dictionary-based sparse representation for detecting EEG

epileptic spikes [61].

ICA and PCA are generally performed for blind signal separation. Blind source sep-

aration aims to separate source signals from their mixtures. PCA, exploiting the lack

of correlation between the components, was employed to detect epileptiform activities

[62]. After applying PCA for dimensionality reduction and the decorrelation of com-

ponents, wavelet transform was combined with approximate entropy to distinguish

epileptic EEG from the normal one. As a powerful signal processing tool, ICA has

been employed for IED detection [63–66]. In [65], the authors proposed an ICA-based

method for tracking and detecting epileptiform activities. In [66], a model based on

ICA was proposed to discriminate the epileptiform activities from eye blink artefacts.
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2.3.4 Tensor Decomposition

In contrast to a matrix that has two dimensions, a tensor can have many dimensions.

This provides an opportunity to analyse different domains of data such as time, fre-

quency, channel, and trial together. Different methods have been provided for decom-

posing a tensor. More details about tensor decomposition methods are given in Chap-

ter 3. However, among tensor decomposition methods, CANDECOMP/PARAFAC de-

composition (CPD), Tucker decomposition (TD), and their nonnegative versions have

been employed for IED detection.

For the first time, tensor decomposition was employed for IED detection from iEEG

in 2015 [24]. They used the spectrogram method to obtain TF features. Then, they

constructed a four-way tensor with channel, time, frequency, and segment dimensions

and applied TD to decompose the tensor into spatial, temporal, and spectral factors.

Finally, spatial factors were used as features for IED detection. Later, the same authors

employed TD to detect IEDs from sEEG [15]. Quite recently, nonnegative TD (NTD) and

nonnegative CPD (NCPD) with a novel tensor formulation were introduced to detect

epileptic spikes [10]. At first, the authors decomposed the EEG channels using CWT.

Then, they concatenated the channel, time, frequency, and segment of only epileptic

spikes to construct a four-way tensor. The tensor was decomposed using NTD and

NCPD to obtain the factor matrices and the core tensor. Finally, both epileptic and

non-epileptic spikes from the training and test datasets were projected onto the factor

matrices to extract the features for classification. The main differences between [15,

24] and [10] are: (1) NTD and NCPD were used in [10] while TD in [15, 24] and (2)

only epileptic spikes were concatenated into the forth order of a tensor in [10] while

all IED and non-IED segments in [15, 24]. Since different datasets were used in the

mentioned papers, comparing them is difficult. In [10], only the sEEG was recorded

and analysed, meaning that only scalp-visible spikes were detected. Meanwhile, sEEG

and iEEG were simultaneously recorded in [15], and all scalp-visible and scalp-invisible

IEDs were detected from the concurrent sEEG.

2.3.5 Neural Networks

Neural networks can be shallow or deep. Here, shallow neural networks (SNNs) refer

to networks with a few dense layers. On the other hand, deep neural networks(DNNs)

consist of numerous layers with complex structures and architectures for various func-

tionality.

SNNs were used for IED detention for the first time in 1989 [67]. In most studies,

SNN has been used as a classifier. This means some features are extracted from the EEG

trials and applied to an SNN for classification. In [68–70], wavelet transform was em-
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ployed for feature extraction and then an SNN for classification. Mimetic features were

extracted and applied to an SNN for epileptiform spike detection as well [44, 71, 72].

After feature extraction from IEDs/spikes and classifying them using an SNN, some

studies [70, 73–75] utilised a knowledge-based system using the expert’s knowledge

and context information to determine which of the detected candidates are epilepti-

form spikes and which ones not.

In a few studies, SNNs were applied to the raw EEG (without applying any feature

extraction method) to detect epileptiform spikes [44, 70, 76, 77]. Feature-based SNNs

outperform the raw EEG-based SNNs [44, 70]. Because of this limitation of SNNs, nu-

merous studies have a feature extraction step before feeding the trials to an SNN.

SNNs are inefficient when the data are noisy and their size is large, whereas the

DNNs come forward as a state-of-the-art method in artificial intelligence. DNNs are

more complex than SNNs, and numerous (millions of) trainable parameters exist in a

DNN. They are usually employed in an end-to-end approach. This means that the raw

EEG signals are given to a DNN. The DNN learns its feature space representation and

classifies the data samples. DNNs, as a popular approach in EEG signal processing,

have been extensively used for IED detection.

DNNs were introduced to detect the IEDs from the sEEG [25] and iEEG [34] in 2016.

The convolutional neural network (CNN) is the most popular DNN technique used for

IED detection. The CNN enables capturing both temporal and spatial information. As

a result, it is a powerful tool for processing two-dimensional datasets. Antoniades et

al. developed a multiclass IED detection model [20]. They divided IEDs into different

groups (classes) based on their morphology and spatial information captured through

multichannel recording. Then, a multi-class CNN was employed to detect the IEDs

from non-IEDs. They compared their proposed approach with the case of having all the

IEDs as a single group of IEDs (binary CNN). They showed that the CNN distinguishes

the IEDs from non-IEDs with higher accuracy even when there are IEDs with different

morphology.

Abou Jaoude et al. developed a CNN-based method to detect the IEDs from the iEEG

recorded using a single bipolar channel [19]. The authors averaged the CNN outputs of

multiple bipolar channels to determine whether the test segment was related to an IED

event or not. Thomas et al. employed one-dimensional (1D) CNN to detect IEDs from

single-channel sEEG [26]. The IEDs were labeled separately for each channel, and the

1D CNN was trained to detect IEDs from a single channel. Finally, the channel outputs

were combined to produce a single value used as an index to identify an IED segment.

To detect epileptic spikes, Fukumori et al. developed a CNN model based on a bank of

linear-phase finite impulse response filters, performing as bandpass filters that extract

the biomarkers of IEDs without destroying the waveforms as the result of linear-phase

condition [78].
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The EEG may be presented as or converted to an image [17, 79]. Quon et al. employed

STFT to obtain the spectrogram of IED and non-IED segments recorded using iEEG [17].

The spectrogram was considered as an image and applied to an image augmentation

method. Then, the augmented data are fed to a CNN designed based on a residual

neural network for IED detection.

Recurrent neural networks (RNNs) rank second among the most popular DNN tech-

niques employed for IED detection. They are suitable for the analysis of time series

and are able to capture only temporal information. Long short-term memory (LSTM)

and gated recurrent units (GRU), the modified models of RNNs, have been used for

IED detection. In [80], the authors employed LSTM to detect epileptiform spikes and

high-frequency oscillations from the iEEG [80]. Their model was not an end-to-end

framework, and they applied the power spectrogram of different frequency bands as

features to the network. Quite recently, an LSTM-based model with a self-attention

mechanism was proposed to detect epileptic spikes that were not temporally aligned

[13].

In a study, researchers compared a discrete wavelet transform-based feature extrac-

tion approach with an end-to-end framework approach (fully data-driven approach)

[81]. In the first approach, the extracted features are given to both traditional classifiers

and DNNs for IED detection. On the other hand, in the second approach, a convolu-

tional layer is employed as a bandpass filter to estimate the frequency bands of interest.

Then, the feature space of the convolutional layer is passed through DNNs (LSTM,

GRU, and CNN) for IED detection. The obtained results using both approaches are

comparable.

CNN and RNN-based networks have been combined for IED detection [14, 82]. In

[82], five different architectures, namely 1D CNN, 2D CNN, LSTM, combined 1D CNN

and LSTM, and combined 2D CNN and LSTM, were implemented. In 1D CNN, the

filters were defined for each channel separately involving temporal information only,

while, in 2D CNN, the filters had two dimensions involving temporal and spatial infor-

mation. 2D CNN outperforms 1D ones. As a result, considering both temporal and spa-

tial information in the convolutional layers boosts the model’s performance. However,

the model did not achieve high sensitivity, although the authors trained 346 different

DNNs with various architectures to achieve the best result. The length of segments

given to DNNs was 2 seconds which is unnecessarily long. The length of IED segments

in most IED detection studies [8, 10, 83] is less than or around 500 ms since the length

of an IED waveform is not longer than 200 ms [84]. Therefore, using too long IED

segments leads the model to fit over non-ED segments.

Apart from standard CNNs, GRU, LSTM, other DNN techniques such as deep belief

network [30], region-CNN [85], and generative adversarial network (GAN) [86] have

also been proposed for IED detection. The developed deep belief network [30] was

compared with a deep autoencoder and traditional classifiers, which significantly out-
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performed them. The developed GAN-based technique [86] was compared with only

traditional classifiers and outperformed them. This comparison in [86] is unfair since

DNN-based techniques are powerful and complex, while traditional classifiers are not.

2.3.6 Mapping sEEG to iEEG

sEEG channels are far away from IED sources and hence fail in capturing a large pro-

portion of IEDs [6, 7]. To improve the performance of sEEG in IED detection, some

studies mapped sEEG to iEEG [9, 83, 87].

Spyrou and Sanei proposed a method based on a learning coupled dictionary be-

tween multimodal datasets [83]. The algorithm generally aims to reconstruct the data

of one mode by using the data of another mode. They employed their method to recon-

struct iEEG from the concurrent sEEG.

In an effective approach, Antoniades et al. analysed the concurrent sEEG and iEEG

recordings and estimated the intracranial samples using scalp recordings via DNNs

[9]. The authors developed an autoencoder (AE) to map the sEEG to iEEG. Then, a

CNN was applied to the estimated iEEG to detect the IEDs. They compared the per-

formance of their proposed method with those using sEEG only. Their mapping model

significantly outperformed other popular methods.

Recently, Took et al. proposed a method based on transfer learning [87]. In transfer

learning, the first layers of a trained DNN are frozen (not trained), and its last layers

are adapted to the problem at hand. In [87], the authors used the same mapping model

proposed in [9] for estimating the iEEG. Then, transfer learning was applied. The es-

timated iEEG passed through the frozen convolutional layers trained using the actual

iEEG in [20]. Finally, an LSTM layer was employed to exploit inter-trial correlations.

2.4 PERFORMANCE METRICS

Different metrics have been utilised to evaluate the performance of an IED detection

system. These are accuracy (ACC), sensitivity (SEN), specificity (SPC), F1-score (F1-

S), false positive per minute (FP/min), and area under the receiver operating charac-

teristic curve (AUC). Accuracy presents how accurately the IEDs and non-IEDs are

detected. SEN shows the ability of a system to detect IEDs correctly. SPC shows the

ability of a system to detect non-IEDs correctly. FP/min illustrates the number of non-

IED segments recognized as IED segments in a minute. AUC measures the entire two-

dimensional area underneath the entire receiver operating characteristic (ROC) curve,

which is a probability curve showing the performance of a classifier for different thresh-
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olds. The ROC curve is a plot of SEN versus 1-SPC. ACC, SEN, and SPC are defined as

follows:

ACC =
TP + TN

TP + FP + TN + FN
× 100%,

SEN =
TP

TP + FN
× 100%,

SPC =
TN

TN + FP
× 100%,

F1-S =
2TP

2TP + FP + FN
,

(2.1)

where TP is the number of IED samples classified correctly as IED, TN represents the

number of non-IED samples recognized accurately as non-IED samples, FP indicates

the number of non-IED samples detected incorrectly as IED samples, and FN indicates

the number of IED samples categorized wrongly in the non-IED class.

However, various authors have applied their proposed methods to their own datasets.

No public IED dataset can be used as a benchmark. Therefore, here we do not intend

to compare the performance of those methods.

2.5 CONCLUSION

Detection of IEDs is of great importance in managing and monitoring epilepsy. There-

fore, automatic detection of IEDs is clinically and scientifically important. First, this

chapter describes public and private iEEG and sEEG datasets. Then, a review of the

literature describing IED analysis and detection is provided. Different methods have

been developed for IED detection. The proposed methods are grouped into six groups:

(1) template matching, (2) feature representation (mimetic, TF, and nonlinear features),

(3) matrix decomposition, (4) tensor factorisation, (5) neural networks, and (6) estimat-

ing the iEEG from the sEEG. Finally, the performance metrics used in IED detection

studies are explained.
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R E A L - T I M E D E T E C T I O N O F S C A L P - I N V I S I B L E
I E D S F R O M E E G

Multiway analysis (e.g., tensor decomposition) provides an opportunity to simultane-

ously analyze multi-aspect data (e.g., time, space, frequency, segment, subject, and mor-

phology). Tensor factorisation and multiview classification have recently attracted the

attention of researchers in biomedical signal processing [88, 89] and IED detection [10,

15]. Several electrodes may capture the IED signatures, meaning the EEG signals are

spatially and temporally correlated. Therefore, multi-channel and multi-trial (multi-

segment) EEG processing using tensor decomposition methods is expected to be effec-

tive in IED detection.

Most of the previous studies are based on aligning and averaging IEDs. The main

drawback of these methods is that the IED positions are aligned in all segments. How-

ever, in the real world, the aim is to detect the IEDs from ongoing EEG recordings in

which there is no alignment among the IED segments. In addition, in places where only

the scalp-EEG is recorded and analyzed [53, 54], the scalp-invisible IEDs are not con-

sidered. Models provided for the detection of IEDs scored by scalp-EEG are inadequate

since they are unable to detect the scalp-invisible IEDs, thereby being biased to detect

only a subset of IEDs that are visible over the scalp. Therefore, exploiting simultane-

ous iEEG and sEEG recordings in designing an algorithm to detect the scalp-invisible

IEDs from sEEG is of great interest. Only very few studies have been carried out to

investigate scalp IEDs from simultaneous sEEG and iEEG recordings [8, 9, 15].

This chapter aims to detect the IEDs from ongoing concurrent sEEG and iEEG signals.

It should be noted that here both scalp-visible and scalp-invisible IEDs are included.

Here, we develop two tensor-based methods: temporal component analysis (TCA) and

spatial component analysis (SCA). The proposed methods are employed to detect the

IEDs from the ongoing EEG data. Furthermore, both SCA and TCA are combined,

referred to as TCA-SCA, to improve performance.

First, this chapter describes the dataset used in this thesis. Then, popular tensor de-

composition methods are explained. Afterward, the proposed methods, TCA, SCA, and

TCA-SCA, are presented. Next, the results of applying the proposed methods to both

sEEG and iEEG recordings are shown. Finally, the last section concludes the chapter.

17
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3.1 DATASET

The details about patient population, electrode placement, recording session, and IED

scoring are given below.

3.1.1 Patient Population

The sEEG and iEEG signals of 18 epileptic subjects (11 males, seven females, average

age 25.2 years, and age range 13–37 years) were simultaneously recorded at King’s Col-

lege Hospital London. This retrospective study is based on standard medical recordings

from patients at King’s College Hospital by following routine clinical ethical proce-

dures. It did not need approval by the ethics committee.

Patients suffering from seizures arising from mesial temporal structures were submit-

ted for telemetry recording with FO when history, interictal scalp EEG, neuroimaging,

and neuropsychological studies could not confidently determine the side of seizure on-

set or there were doubts about a lateral temporal or extra-temporal seizure onset. In 10

patients, the seizure onset was identified within mesial temporal structures preceding

in at least 2 ms the scalp changes, while in eight patients, it was located outside the

mesial temporal region (lateral temporal).

3.1.2 Electrode Placement and Recording Session

Twenty (20) standard silver chloride electrodes were used for recording sEEG, placed

on the scalp according to the “Maudsley” electrode placement system. The iEEG was

recorded using 12 intracranial multi-contact FO electrodes consisting of a couple of

6-electrode bundles. The FO electrodes were inserted through the patients’ FOs under

general anaesthesia and fluoroscopic control. Each individual electrode was made up

of a 0.1 mm fully insulated stainless steel wire. The recording contacts of the three deep-

est electrodes were 3 mm long, and those of the most superficial electrodes were 5 mm

long. The distance between contiguous electrodes was 10 mm except for the two most

superficial electrodes, whose interelectrode distance was 15 mm. For each electrode

bundle, the two deepest electrodes were placed next to medial temporal structures and

are generically called ‘deep FO electrodes’. The two most superficial electrodes were

laid at or close to the FO of the sphenoid bone and are generically called ‘superficial’

FO electrodes. The position of the FO bundles was confirmed with post-insertion radio-

graphy, shown in Figure 3.1.

The data were recorded at the sampling rate of 200 Hz and filtered by a bandpass

filter with cutoff frequencies of 0.3 and 70 Hz. The system input range was 2 mV,

and the data were digitised with a 12-bit analog-to-digital converter (an amplitude
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Figure 3.1: Lateral and basal X-rays showing scalp and intracranial FO electrodes. T, scalp
anterior temporal electrodes; F, intracranial FO bundles.

resolution of 0.488 mV). Both sEEG and iEEG were recorded with respect to Pz as a

common reference. A period of 20 min of simultaneous sEEG and iEEG was transcribed

onto a digital file. Such interictal recordings showed interictal discharges and no signs

of post-ictal slowing or flattening.

3.1.3 IED Scoring

An expert epileptologist scored the IEDs from the iEEG based on the morphology and

spatial distribution of the observed waveforms. Interictal events location and morphol-

ogy were evaluated in the background context. The IEDs were evaluated in terms of

morphology and distribution, following the standard definitions for epileptiform pat-

tern, spike and sharp wave of the International Federation of Clinical Neurophysiology

(A glossary of terms most commonly used by clinical EEGers and proposal for the

report form for the EEG findings) [4]. In addition, each IED was given a certainty

score (1–9). Briefly, each IED is classified into one of the following groups: (I) scalp-

invisible IED, (II) scalp-visible IED by considering the concurrent iEEG, and (III) scalp-

visible IED without considering the concurrent iEEG. Examples of IED and non-IED

segments are shown in Figure 3.2. In the scalp-invisible IED segment, there is no sign

of epileptiform discharges in the scalp channels, while the FO channels capture the IED

waveforms. In the “scalp-visible IED by considering the concurrent iEEG,” a weak IED

waveform can be detected in the scalp channels by referencing to the concurrent iEEG.

In the “scalp-visible IED without considering the concurrent iEEG,” the epileptiform

discharges are individually observable from the scalp channels.

However, in essence, the IEDs were scored by considering the followings:

1. Nonphysiological artefact: instrumental, electrode, environmental, and quantiza-

tion artefacts,

2. Physiological artefact: eye movement, electrocardiogram, muscle (lateral rectus,

frontalis, temporalis, occipital), and blink artefacts,
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Figure 3.2: Samples of non-IED and IED segments; (a) non-IED, (b) scalp-invisible IED, (c) scalp-
visible IED by referencing to the concurrent iEEG, and (d) scalp-visible IED without considering
the concurrent iEEG. The interest areas are pointed by red rectangles. The IEDs start at 160 ms.
Channels R1 to R6 and L1 to L6 correspond respectively to the FO channels of right and left
hemispheres.

3. Low amplitude irregularity/physiologic “sharpened/spiky” activities (vertex waves,

K-complexes),

4. Irregularity: IEDs barely distinguishable from the background activity and re-

stricted to 1–2 channels,

5. Sharp wave (restricted to at least three channels),

6. Broad distribution sharp wave (> three channels),

7. Spike (restricted to at least three channels),

8. Broad distribution spike (> three channels),

9. Spike or sharp wave.

3.2 MULTI-WAY ANALYSIS

Tensor decomposition was introduced by Hitchcock in 1927 [90, 91] and the multi-way

model by Cattell in 1944 [92, 93]. These concepts did not receive much attention until

the work of Tucker in the 1960s [94–96] and Harshman [97] and Carroll and Chang [98]

in 1970. All of these were introduced in psychometrics literature. However, now, it has

found applications in different spheres, from chemometrics [99–101] to computational

biology [102, 103], from image analysis [104, 105] to signal processing [106, 107].
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A tensor is a multidimensional or multi-way array. The order of a tensor is equivalent

to the number of its dimensions, also known as ways or modes. For instance, a tensor

with only one way is a first-order tensor (vector), and with two dimensions is a two-

way tensor (matrix). Tensors of order three or higher are called higher-order tensors.

When a subset of indices in a tensor is fixed, sub-tensors or subarrays are formed. Like

matrices with rows and columns, tensors have fibres and slices. A fibre is defined by

fixing every index but one. Slices are two-dimensional sections of a tensor, defined by

fixing all but two indices.

3.2.1 Tensor Notation and Production

The notation used in this thesis has been adopted from Ref. [108]. Lowercase letters, e.g.,

a, denote scalars. Boldface lowercase letters, e.g., a, represent vectors. Boldface capital

letters, e.g., A, denote matrices. Boldface Euler script letters, e.g., X , denote higher-

order tensors. aj denote the j-th column of matrix A. The symbols ‘◦’ and ‘∗’ represent

respectively the vector outer product and the Hadamard product. ⊙ and ‘⊗’ denote

respectively the Khatri-Rao and Kronecker products. Here, important operations and

notations used in tensor factorisation are explained.

3.2.1.1 Matricization

Matricization, also known as unfolding or flattening, means transforming a tensor into

a matrix. It is the process of reordering the elements of a V-way array into a matrix. The

mode-v matricization of a tensor X ∈ RI1×I2×···×IV is shown by X(v). More information

about how to maricize a tensor is given in Ref. [109].

3.2.1.2 Matrix Hadamard product

The Hadamard product is an elementwise matrix product. The Hadamard product of

A and B of size I × J shown by A ∗ B is calculated as follows:

A ∗ B =


a11b11 a12b12 · · · a1Jb1J

a21b21 a22b22 · · · a2Jb2J
...

...
. . .

...

aI1bI1 aI2bI2 · · · aI JbI J

 (3.1)
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3.2.1.3 Matrix Kronecker product

The Kronecker product of matrices A ∈ RI×J and B ∈ RK×L shown by A⊗B is defined

as follows:

A⊗ B =


a11B a12B · · · a1JB

a21B a22B · · · a2JB
...

...
. . .

...

aI1B aI2B · · · aI JB

 (3.2)

3.2.1.4 Matrix Khatri-Rao product

The Khatri–Rao product [200] is the “matching columnwise” Kronecker product. The

Khatri–Rao product of matrices A ∈ RI×K and B ∈ RJ×K shown by A⊙B is defined as

follows:

A⊙ B =
[

a1 ⊗ b1 a2 ⊗ b2 · · · aK ⊗ bK

]
(3.3)

The dimension of resulted matrix is (I J)× K.

3.2.1.5 Rank-one tensors

A V-way tensor X ∈ RI1×I2×···×IV is rank one if it can be written as the outer product

of V vectors as follows:

X = a(1) ◦ a(2) ◦ · · · ◦ a(V). (3.4)

3.2.1.6 Tensor multiplication: The v-mode product

Tensors can be multiplied together. Here, only v-mode multiplication is explained. The

v-mode product means multiplying a tensor by a matrix (or a vector) in mode v.

The v-mode product of a tensor X ∈ RI1×I2×···×IV with a matrix U ∈ RJ×Iv is shown

by X ×v U. The size of multiplication result is I1× · · · × Iv−1× J× Iv+1× · · · × IV . Each

mode-v fiber is multiplied by the matrix U. Elementwise, we have

(X ×v U)i1···iv−1 jiv+1···iV =
Iv

∑
iv=1

xi1i2···iV ujiv . (3.5)

3.2.1.7 Tensor rank

The rank of a tensor X is defined as the smallest number of rank-one tensors generating

X as their sum [90]. However, the estimation of tensor rank is under question; in fact,

the problem is NP-hard [110]. Generally, the tensor rank is higher than the ranks of slab
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Figure 3.3: CANDECOMP/PARAFAC decomposition of a three-way array.

matrices. Therefore, tensors have found many applications in source decomposition,

especially where the corresponding systems are underdetermined, i.e., the number of

sources exceeds the number of sensors.

3.2.2 Common Tensor Decomposition Techniques

There are different methods for decomposing a tensor [108]. The most popular methods

which have been employed for IED detection are CPD and TD. Here, CPD and TD are

explained.

3.2.2.1 CANDECOMP/PARAFAC decomposition

CPD decomposes a tensor into the sum of rank-one components. Suppose we are given

a three-way tensor X ∈ RL×M×N . According to CPD problem, the tensor X can be

formulated as:

X ≈
R

∑
r=1

ar ◦ br ◦ cr, (3.6)

where the symbol ‘◦’ represents the vector outer product, R is a positive integer and

ar ∈ RL, br ∈ RM, and cr ∈ RN for r = 1, . . . , R. It is often useful to assume that the

components are normalized to length one with the weights put into the vector λ ∈ RR.

Therefore, (3.6) is reformulated to

X ≈
R

∑
r=1

λr ar ◦ br ◦ cr. (3.7)

The factor matrices are constructed from the combination of the rank-one tensors,

i.e., A = [a1 . . . aR]. Following the “Kruskal operator” [109], (3.7) can be modified to

X ≈ [[λ; A, B, C]] ≡
R

∑
r=1

λr ar ◦ br ◦ cr. (3.8)
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where A ∈ RL×R and B ∈ RM×R, and C ∈ RN×R are factor matrices. Figure 3.3 shows

a diagram of CPD of a three-way array.

To compute factor matrices with R components that best approximates X , (3.8) can

be formulated as an optimization problem:

X̂
min

∥∥X − X̂
∥∥ where X̂ =

R

∑
r=1

λr ar ◦ br ◦ cr = [[λ; A, B, C]]. (3.9)

There are different algorithms to compute CPD of a given tensor. Here, we will take

a brief look at the alternating least squares (ALS) algorithm, the most popular one.

ALS was proposed in the original papers by Harshman [97] and Carroll and Chang

[98]. This algorithm reduces the problem to a linear least-squares problem by fixing

all factor matrices but one. This procedure is applied for every matrix repeatedly until

some convergence criterion is satisfied.

The matricized form of (3.8) (one per mode) can be written as

X(1) ≈ A(C⊙ B)T,

X(2) ≈ B(C⊙A)T,

X(3) ≈ C(B⊙A)T.

(3.10)

From (3.10), the above minimization problem (3.9) can be rewritten as:

Â←arg
Â

min
∥∥∥X(1) − Â(C⊙ B)T

∥∥∥
F

B̂←arg
B̂

min
∥∥∥X(2) − B̂(C⊙A)T

∥∥∥
F

Ĉ←arg
Ĉ

min
∥∥∥X(3) − Ĉ(B⊙A)T

∥∥∥
F

,

(3.11)

where Â = A.diag(λ), B̂ = B.diag(λ), Ĉ = C.diag(λ), and ∥.∥ refers to Frobenius norm.

Finally, the optimal solution is obtained by

Â = X(1)[(C⊙ B)T]† = X(1)(C⊙ B)(CTC ∗ BTB)†,

B̂ = X(2)[(C⊙A)T]† = X(2)(C⊙A)(CTC ∗ATA)†,

Ĉ = X(3)[(B⊙A)T]† = X(3)(B⊙A)(BTB ∗ATA)†.

(3.12)

So far, we have focused on the three-way tensor. For a general V-way tensor X ∈
RI1×I2×···×IV , (3.8) is generalized to

X ≈ [[λ; A(1), A(2), . . . , A(V)]] ≡
R

∑
r=1

λr a(1)r ◦ a(2)r ◦ · · · ◦ a(V)
r . (3.13)
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Algorithm 3.1: ALS algorithm to compute a CPD with R components for a V-way tensor X of
size I1 × I2 × · · · × IV .

1 procedure CPD-ALS (X , R)
2 initialize A(v) ∈ RIv×R, v = 1, 2, . . . , V
3 repeat
4 for v = 1, 2, . . . , V do

5 Z← A(1)TA(1) ∗ · · · ∗A(v−1)TA(v−1) ∗A(v+1)TA(v+1) ∗ · · · ∗A(V)TA(V)

6 A(v) ← X(v)(A(V) ⊙ · · · ⊙A(v+1) ⊙A(v−1) ⊙ · · · ⊙A(1))Y†

7 normalize columns of A(v) (storing norms as λ)
8 end for
9 until the convergence criterion is satisfied or maximum iterations exhausted

10 return λ, A(1), A(2), . . . , A(V)

11 end procedure

where λ ∈ RR and A(v) ∈ RIv×R for v = 1, 2, . . . , V. In this case, the mode-v is matri-

cized by

X(v) ≈ A(v)Λ(A(V) ⊙ · · · ⊙A(v+1) ⊙A(v−1) ⊙ · · · ⊙A(1))T, (3.14)

where Λ = diag(λ).

The ALS algorithm for CPD of a V-way tensor is shown in Algorithm 3.1. It assumes

that the number of components, R, of the CPD is specified. The factor matrices can be

initialized in any way, such as randomly or by setting

A(v) = R leading left singular vectors of X(v) for n = 1, 2, . . . , V

The reader is referred to [111] to see more discussion about initialization methods. The

procedure repeats until convergence or reaching a maximum iteration number.
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Figure 3.4: Tucker Decomposition of a Three-way Array.
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3.2.2.2 Tucker decomposition

Tucker [94] introduced TD in 1963, then modified it in the next years [95, 96]. TD

decomposes a tensor into a core tensor multiplied by a matrix along each mode. In the

three-way case where X ∈ RL×M×N , the aim is to find a tensor X̂ ∈ RL×M×N , having

rank1(X̂ ) = P, rank2(X̂ ) = Q, and rank3(X̂ ) = R, that minimizes the least-squares

cost function

X̂
min

∥∥X − X̂
∥∥ with X̂ =

P

∑
p=1

Q

∑
q=1

R

∑
r=1

gpqr ap ◦ bq ◦ cr

= G ×1 A×2 B×3 C = [[G; A, B, C]].

(3.15)

where A ∈ RL×P, B ∈ RM×Q, and C ∈ RN×R, all with orthonormal columns, are factor

matrices. G ∈ RP×Q×R is the core tensor, and its entries present the level of interaction

between the factor matrices. Note that ×i shows the i-th mode product. The schematic

of TD is shown in Figure 3.4.

(3.15) is matricized as follows:

X̂(1) = AG(1)(C⊗ B)T

X̂(2) = BG(2)(C⊗A)T

X̂(3) = CG(3)(B⊗A)T.

(3.16)

We introduced the three-way tensor. However, TD can be generalized to a V-way

tensor as

X = G ×1 A(1) ×2 A(2) . . .×V A(V) = [[G; A(1), A(2), . . . , A(V)]], (3.17)

and it can be matricized as

X̂(v) = A(v)G(v)(A
(V) ⊗ · · · ⊗A(v+1) ⊗A(v−1) ⊗ · · · ⊗A(1))T (3.18)

There are different techniques to perform TD. The most simple and popular ones are

Higher Order Singular Value Decomposition (HOSVD) and Higher Order Orthogonal

Iteration (HOOI).

higher order singular value decomposition : HOSVD is a convincing gen-

eralization of the matrix singular value decomposition [112]. The key idea behind the

HOSVD is to find the components that best capture the variation in mode v while not

considering the other modes at each time instant [113]. The HOSVD algorithm is given

in Algorithm 3.2.
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Algorithm 3.2: HOSVD algorithm to compute a rank-(R1, R2, . . . , RV) TD for a V-way tensor X
of size I1 × I2 × · · · × IV .

1 procedure HOSVD (X , R1, R2, . . . , RV)
2 for v = 1, 2, . . . , V do

3 A(v) = Rv leading left singular vectors of X(v)
4 end for

5 G ← X ×1 A(1)T ×2 A(2)T . . .×V A(V)T

6 return G, A(1), A(2), . . . , A(V)

7 end procedure

Algorithm 3.3: ALS algorithm to compute a rank-(R1, R2, . . . , RV) TD for a V-way tensor X of
size I1 × I2 × · · · × IV , also known as the HOOI.

1 procedure HOOI (X , R1, R2, . . . , RV)

2 initialize A(v) ∈ RIv×R, v = 1, 2, . . . , V, using HOSVD
3 repeat
4 for v = 1, 2, . . . , V do

5 Z ← X ×1 A(1)T · · · ×v−1 A(v−1)T ×v+1 A(v+1)T · · · ×V A(V)T

6 A(v) = Rv leading left singular vectors of Z(v)
7 end for
8 until convergence criterion is satisfied or maximum iterations exhausted

9 G ← X ×1 A(1)T ×2 A(2)T . . .×V A(V)T

10 return G, A(1), A(2), . . . , A(V)

11 end procedure

higher order orthogonal iteration : HOOI proposed in [112] is more ef-

ficient than HOSVD for calculating the factor matrices. In fact, the HOOI is an ALS

algorithm that uses the outcome of performing HOSVD on a tensor as a starting point

for initializing the factor matrices. The HOOI algorithm is shown in Algorithm 3.3.

3.3 SPATIAL AND TEMPORAL COMPONENT ANALYSIS FOR IED DETEC-

TION

The IEDs recorded from a subject share in their morphology and locations within the

brain. Therefore, they may share some features. In contrast, normal brain activities or

artefacts are entirely independent of these discharges. As a result, in our methods, all

IEDs are concatenated into a three-way tensor with the dimension of time, channel, and

IED segment. It should be noted that the idea of concatenating only IEDs into a tensor

has been practiced already, resulting in appropriate results [10].

Suppose our training dataset consists of N IED segments with L time samples and

M channels. All IEDs are concatenated into a tensor X ∈ RL×M×N . Then, CPD is em-

ployed to decompose X to the factor matrices with R components as follows: temporal

factors A ∈ RL×R, spatial factors B ∈ RM×R, and segmental factors C ∈ RN×R. Finally,
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both IED and non-IED segments are projected onto the temporal factors in TCA and

onto the spatial factors in SCA. The details are given below (the overall schematic is

shown in Figure 3.5).

3.3.1 Temporal Component Analysis

Since the IEDs have very similar morphologies, projecting the IED and non-IED seg-

ments onto the temporal components can provide discriminative features. In TCA, the

Khatri-Rao product is employed for the projection as follows:

Yk = AT ⊙ XT
k , (3.19)

where the symbol ‘⊙’ denotes the Khatri-Rao product, Xk ∈ RL×M is an IED or non-

IED segment, and Yk ∈ R(MR)×L represents the same segment after projection onto the

temporal factors.

3.3.2 Spatial Component Analysis

It is clear that the IEDs originate from the same location. Thus, we can derive the

discriminative features by projecting the IED and non-IED segments onto the spatial

factors. The projection is performed as follows:

Ȳk = XkB (3.20)

where Ȳk ∈ RL×R is the projected IED or non-IED segment onto the spatial factors.

3.3.3 TCA-SCA

To improve the performance of the IED detection system, SCA and TCA are combined.

Each segment is given separately to SCA and TCA to be classified in TCA-SCA; then,

those segments classified in the IED class by both methods are recognized as IED.

3.4 EXPERIMENT

3.4.1 Training and Test Datasets

The scalp and intracranial EEGs (with a length of 20 minutes) of 7 epileptic subjects

were analysed. A bandpass filter of 4-70 Hz bandwidth and a notch filter with a notch

frequency of 50 Hz were applied to both sEEG and iEEG signals to increase the SNR
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Figure 3.5: The proposed IED detection models. X includes the IED segments only. CPD is
applied to X to decompose it to temporal, spatial, and segmental factors. Xk is an IED or non-
IED segment from the training or test data, which is projected onto the temporal factors A in
TCA and onto the spatial factors B in SCA.

and eliminate the power line interference. Details about the dataset are given in Sec-

tion 3.1.

The first 10-minute recordings are used as the training data. For training the models,

the IED segments were selected from the training signals with a length of 480 ms (96

samples). The peaks marked as IEDs were centered between 30
th to 34

th samples of IED

segments. That is, the maximum difference between the IED peaks was four samples

in the training dataset. Non-IED segments with 480 ms length were selected from the

time segments in which there were no scored IEDs. We chose the same number of IED

and non-IED segments for each subject to have a balanced classification problem.

The number of all IEDs and scalp-visible IEDs are shown in Table 3.1. The most scalp-

visible IEDs appear in subject 7 with 31.1%. The percentage of scalp-visible IEDs for

subjects 3-6 is less than 2. However, their average across subjects is 8.5% in the training

dataset.

The second 10-minute recordings were used as the test data. A window of 96-sample

length and 4-sample stride is slid along the test signals. Because of this 4-sample stride,

the IEDs were not centered at the same point in the training dataset. However, after

sliding over the entire test signals, we have 30000 segments (a few IED segments and

numerous non-IED segments) for each subject.

3.4.2 Training the Models and Real-Time IED Detection

The IED segments in the training dataset, shown by N, are concatenated into a three-

way tensor X ∈ R96×M×N , where 96 is time samples, and M is the number of recorded

channels (M = 18 for sEEG and M = 12 for iEEG). CPD is employed to decompose the
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Table 3.1: The number of all IEDs and scalp-visible IEDs for each subject in the training dataset.
The percentage of scalp-visible IEDs from all IEDs is illustrated in parentheses. The same num-
ber of non-IED segments were selected for each subject.

Subject No. of all IEDs No. of scalp-visible IEDs (their
percentage over all IEDs)

S1 182 36 (19.7%)

S2 270 16 (5.9%)

S3 179 3 (1.6%)

S4 482 6 (1.2%)

S5 420 3 (0.7%)

S6 303 0 (0.0%)

S7 135 42 (31.1%)

Mean — — (8.5%)

tensor into the temporal, A ∈ R96×R, spatial, B ∈ RM×R, and segmental, C ∈ RN×R,

factors.

In TCA, both IED and non-IED segments are projected onto the temporal factors

by (3.19). Then, the magnitudes of STFT are obtained from the projected segments

Yk ∈ R(MR)×96 using the spectrogram. In the spectrogram, a Hanning window with a

length of 80 ms (16 samples) and 50% overlap is applied. The number of discrete Fourier

transform points is set to 16, resulting in 9 frequency features. We obtain (MR)× 11× 9

features (M and R respectively correspond to the number of channels and factors, 11

and 9 are respectively the number of time and frequency features) for each IED or

non-IED segment.

In SCA, the segments are projected onto the spatial factors by (3.20). Then, TF fea-

tures, as described above, are obtained from the projected segments Ȳk ∈ R96×R. This

method extracts R× 11× 9 features.

The optimized number of components R is determined by the k-fold nested cross-

validation technique. The training dataset is divided into five folds. Four folds are

employed to train a classifier and the rest for validation. This procedure is repeated

for all folds. We found that CPD with three components (R = 3) provides the best

performance.

A decision tree classifier is employed for classification. The classifier is trained sep-

arately for each subject by all the training trials. A 96-sample window with 4-sample

stride slides along the signals to detect the IEDs from the ongoing signals. Each win-

dow is given to TCA and SCA to be classified as an IED or a non-IED segment. Recall

that TCA-SCA is the combined model of TCA and SCA. If both TCA and SCA detect

a segment as an IED, TCA-SCA categorizes it in the IED class. Otherwise, the segment

is categorized in the non-IED class.
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Table 3.2: The number of all IEDs and scalp-visible IEDs existed in the ongoing test data. The
percentage of scalp-visible IEDs from all IEDs is illustrated in parentheses.

Subject No. of all IEDs No. of scalp-visible IEDs (their
percentage from all IEDs)

S1 160 14 (8.7%)

S2 202 3 (1.4%)

S3 162 17 (10.4%)

S4 366 5 (1.3%)

S5 408 1 (0.2%)

S6 303 0 (0.0%)

S7 89 10 (11.2%)

Mean — — (4.7%)

Table 3.3: The performance of classifiers detecting IEDs from the iEEG. SEN is shown in percent
(%). The mean of FP/min is adjusted to be approximately 5 by choosing a high threshold for
the classifier.

Subject
TCA SCA TCA-SCA

SEN FP/min SEN FP/min SEN FP/min

S1 95.0 5.7 91.8 3.7 93.7 3.8
S2 54.4 6.5 54.4 5.9 59.4 7.1
S3 75.9 6.2 82.1 6.7 78.4 6.4
S4 94.0 4.5 94.5 3.5 94.5 3.2
S5 71.3 5.1 75.7 5.9 80.0 7.2
S6 74.2 4.7 74.2 4.9 75.6 4.9
S7 83.1 3.9 80.9 5.8 86.5 4.2

Mean 78.3 5.2 79.1 5.2 81.2 5.2

3.5 EXPERIMENTAL RESULTS AND DISCUSSION

For evaluation of the methods, SEN and FP/min are calculated. Recall that SEN shows

the percentage of IEDs detected correctly, and FP/min is the number of non-IED seg-

ments recognized as IEDs incorrectly per minute. In all methods, a high threshold value

is selected for the classifier to have an average of around 5 FP/min.

In the evaluation procedure, IEDs are not given as a segment to the models. A win-

dow slides across the ongoing signals. Therefore, there is no alignment among IED

segments, causing a decrease in sensitivity and an increase in the FP rate. However, a

segment classified as an IED segment counts as TP if an IED segment exists within 32

samples before or after the detected sample; otherwise, it counts as FP.

The number of IEDs and scalp-visible IEDs for the test signal is shown in Table

Table 3.2. The average of scalp-visible IEDs is 4.7%, which is extremely low. Approxi-
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Table 3.4: The performance of classifiers detecting IEDs from the sEEG. SEN is shown in percent
(%). The mean of FP/min is adjusted to be approximately 5 by choosing a high threshold for
the classifier.

Subject
TCA SCA TCA-SCA

SEN FP/min SEN FP/min SEN FP/min

S1 61.2 5.0 49.4 3.0 64.4 3.4
S2 27.2 5.6 35.6 6.6 25.2 7.1
S3 22.2 6.1 32.7 6.7 30.2 5.6
S4 27.3 6.4 25.7 7.0 20.0 6.7
S5 36.2 4.9 28.2 5.1 32.3 3.9
S6 40.9 7.6 40.9 5.8 44.9 7.2
S7 30.3 1.8 29.2 3.7 44.9 3.3

Mean 35.1 5.3 34.5 5.4 37.4 5.3

mately 10% of IEDs are visible over the scalp in subjects 1, 3, and 7, less than 1.5% in

subjects 2 and 4, and approximately 0% in subjects 5 and 6.

Table 3.3 illustrates the performance of methods in detecting the IEDs from ongoing

iEEG recordings. The methods provide different SEN and FP/min values for different

subjects. TCA detects IEDs with 78.3% SEN. SCA provides a higher performance of

79.1% SEN. However, TCA-SCA outperforms both TCA and SCA by achieving 81.2%

SEN. All three methods detect IEDs with 5.2 FP/min.

The performance of IED detection methods from sEEG signals is shown in Table 3.4.

TCA and SCA respectively detect IEDs with 35.1% and 34.5% SEN. However, the best

performance is obtained by TCA-SCA, providing 37.4% SEN. TCA-SCA detects IEDs

of subject 1 with 64.4 SEN. For subjects 6 and 7, it achieves the SEN of 44.9 %. However,

the SEN values are less than 33% for other subjects.

The IEDs are labeled based on the iEEG. In other words, the iEEG is used as a ground

truth for labeling the IEDs. Therefore, a large proportion of IEDs in our data is invisible

over the scalp. The percentages of scalp-visible and invisible IEDs in the data used in

this study were already investigated [6]. In their study, the IEDs of 20 patients were

used. They showed that only 9% of IEDs averaged across all 20 subjects are visible in

their sEEG. These scalp-visible IEDs were observed from 13 out of 20 subjects, meaning

that some patients may not have scalp-visible IEDs. In our dataset, seven patients are

examined. In the test data, only 4.7% of IEDs are observable in our sEEG. Subject 6 does

not even have any scalp-visible IED. However, the obtained results from the sEEG show

that the proposed method enables the detection of scalp-invisible IEDs from the sEEG

by fair sensitivity and low FP/min. The obtained SEN from the sEEG is significantly

higher than the percentage of scalp-visible IEDs for all subjects.
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3.6 CONCLUSION

In this chapter, we first show the importance of multi-way analysis in EEG signal pro-

cessing. Then, the common tensor factorisation techniques, namely CPD and TD, are

explained. Afterward, our developed methods based on tensor factorisation – namely

TCA and SCA – to detect the IEDs from ongoing concurrent sEEG and iEEG recordings

are presented. At the end, the results of TCA and SCA are combined to improve the

sensitivity. TCA-SCA outperforms others by providing 81.2% and 37.4% SEN when the

IEDs are detected respectively from the iEEG and sEEG signals. The obtained results

are promising since only 4.7% of IEDs are visible from our sEEG dataset. The find-

ings show that multi-way analysis can detect scalp-visible IEDs from ongoing sEEG

recordings.
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D E T E C T I O N O F I E D S F R O M I N T R A C R A N I A L
E E G B Y E X P L O I T I N G T H E I R M O R P H O L O G Y I N
T H E T E N S O R S T R U C T U R E

The tensor factorisation approach has successfully exploited the waveform structure in

various domains to decompose the data into its constituent components. It provides

an opportunity to consider the data diversity. This means that different aspects of data

(e.g., time, location, morphology, etc.) can be analyzed together by tensor factorisation.

On the other hand, incorporating both IED and non-IED segments that have shape

diversity into a slab of the tensor can deteriorate the factors obtained using tensor

decomposition. Due to this fact, Thanh et al. [10] put only epileptic spikes in the fourth

slab of the tensor. However, the epileptic spikes or IEDs have various morphologies

and strengths. To the best of our knowledge, no study considers the impact of IED

morphology in an automatic IED detection system. Therefore, we propose a model

based on tensor factorisation to take the effect of IED morphologies into account.

The remainder of the chapter is structured as follows. First, we propose an IED detec-

tion system based on tensor factorisation in which the IEDs with similar morphology

are concatenated into the same slice of a tensor to incorporate the IED morphology into

account. Then, some detail about the IED dataset is given. Next, the results of applying

our proposed method to the iEEG are presented. Finally, the last section concludes the

chapter.

4.1 EXPLOITING IED MORPHOLOGY IN THE TENSOR STRUCTURE

Here, a tensor-based IED detection model is proposed. The IEDs may share some spa-

tial and morphological information. Nonetheless, the non-IED segments can be non-

epileptic spikes or normal brain activities; hence, there is no common information

among them. Therefore, the feature space, including only the IED segments, can be

more reliable and discriminative. Furthermore, since the IED morphologies can be dif-

ferent, we are interested in separating the IEDs with different scores by exploiting their

morphological diversities as described in Chapter 1 of this thesis. In this study, the

IEDs are given a score based on their morphology and spatial information by an ex-

pert epileptologist. IEDs with similar scores are concatenated into a three-way tensor

with the dimensions of time samples, channels, and IED segments of the same scores.

Next, all three-way tensors are concatenated into a single four-way tensor with the di-

mensions of time, channel, IED segment, and morphology. The CPD algorithm is then

34
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Figure 4.1: The schematic of proposed SMCA model. X includes the IED segments which
are concatenated in four-way tensors according to their scores given by an expert based on
the IED morphologies. CPD is applied to X to decompose it to temporal, spatial, segmental,
and morphological factors. Xn(n = 1, . . . , N1 + N2) is an IED or non-IED segment from the
training or test data. Yn represents the same segment after projection onto the spatial B and
morphological D components.

employed to extract the factor matrices. It should be noted that other tensor factori-

sation methods, such as TD or block term decomposition, can also be used instead.

Finally, both IED and non-IED segments are projected onto the spatial and morpholog-

ical components to achieve the most discriminative features. This model is called IED

detection based on spatial and morphological component analysis (SMCA).

Suppose we are given N1 IED segments with different morphologies (scores) and N2

non-IED segments. We construct a four-way tensor X ∈ RL×M×Ñ×S, where L and M
denote respectively time samples and the number of channels, Ñ corresponds to the

number of IED segments in each group which needs to be equal, and S is the number

of morphological groups.

CPD is employed to decompose the tensor X into its factor matrices:

A,B,C,D
min f ≡ 1

2

∥∥∥X − [[A, B, C, D]]
∥∥∥2

, (4.1)

where A ∈ RL×R and B ∈ RM×R correspond respectively to the temporal and spatial

factors, and C ∈ RÑ×R and D ∈ RS×R are respectively the segmental and morphologi-

cal factors. Recall that R is the number of components.
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As IEDs originate from temporal lope regions and a large proportion of them are cap-

tured by the same electrode for the same subject, the spatial components can provide

the most discriminative features. Moreover, morphological components are informative

due to capturing the IED waveform information. Therefore, both IED and non-IED seg-

ments of the training and test datasets are projected onto the spatial and morphological

factors as follows:

Yn = XnBDT (4.2)

where Xn ∈ RL×M(n = 1, . . . , N1 + N2) is an IED or non-IED segment from the training

or test datasets and Yn ∈ RL×S(n = 1, . . . , N1 + N2) is the same segment after projection.

Now, features of Yn are extracted and used for classification. Here, we extract time-

frequency (TF) features using the spectrogram method. The schematic of the proposed

SMCA method is illustrated in Figure 4.1.

4.2 EXPERIMENTS

4.2.1 Dataset

The iEEG signals of 18 epileptic subjects are analysed. The dataset details are given in

Section 3.1. The iEEG recordings are filtered using a Butterworth filter of order six and

cut-off frequencies of 4 and 70 Hz. The highpass frequency of 4 Hz has been selected to

eliminate eye blink artefacts. In addition, a 50 Hz notch filter was employed to remove

the power line interference.

4.2.2 IEDs Morphology

An expert epileptologist identified the IEDs and gave a confidence score between 1

to 9 for each spike/sharp wave based on their morphology and spatial distribution

of the observed waveforms. This score represents his confidence in labeling the spike

as an IED. More details about how the IEDs were scored are given in Section 3.1.3.

The spikes/sharp waves scored between 1 and 4 are excluded from the analysis and

considered artefacts or undistinguishable IEDs. Therefore, we have five types of IED

morphology with a score of 5 to 9. The IEDs scored the same look approximately

similar in morphology.

The iEEG signals were segmented into IED and non-IED segments before classifica-

tion. The lengths of IEDs were selected to be 480 ms (96 time samples) – 160 ms before

and 320 ms after the positions of peaks manually marked as IED by an expert. Non-

IEDs with the same length as IEDs were selected from time segments where there was

no sign of IEDs. Note that non-IED segments included non-epileptic spikes and sharp
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Table 4.1: The total number of IED and non-IED segments for each subject. The same number
of IED and non-IED segments were chosen for each subject.

Subject No. of segments Subject No. of segments

S1 38 S10 622

S2 524 S11 692

S3 302 S12 344

S4 108 S13 26

S5 158 S14 20

S6 648 S15 692

S7 250 S16 22

S8 552 S17 178

S9 38 S18 338

waves, biological and non-biological artefacts, and normal brain activities. The same

number of IEDs and non-IEDs was used to have a balanced classification problem. The

number of segments is illustrated in Table 4.1.

4.2.3 IED Detection Based on SMCA

We construct a four-way tensor with the dimensions of time, channel, IED trial, and

morphology, X ∈ R96×12×Ñ×5, where 96 is time samples, 12 is the number of channels,

Ñ denotes the number of IED segments with the same score, and 5 corresponds to

the number which refers to a particular morphology. In other words, IEDs with the

same morphology are put in the third mode, and the morphology types are put in the

fourth mode. The number of IEDs for each type of morphology, Ñ, is set to the lowest

number of IEDs scored 1, 2, 3, 4, or 5. Then, CPD is employed to decompose the tensor

into temporal, spatial, segmental, and morphological factors. In CPD, the number of

components, R, has to be less than or equal to the lowest number of observations in

tensor modes. Thus, it cannot be bigger than 5 in our study. It is set to the maximum

value of 5. As a result, the factors are A ∈ R96×5, B ∈ R12×5, C ∈ RÑ×5, and D ∈ R5×5.

After decomposition, the IED and non-IED segments (Xn) are projected onto the spatial

and morphological components using (4.2). The projected IEDs and non-IEDs (Yn) have

the dimensions of 96× 5.

For classification, TF features are obtained. The TF features of the projected segments

are exploited using the spectrogram. A Hanning window of length 80 ms (16 samples)

and overlapping of 50% slid over each channel of the projected segments (five chan-

nels) to obtain time-frequency features (totally 11 windows). The squared magnitudes

of STFT are obtained using the spectrogram and utilized as classification features. The

number of discrete Fourier transform points has been set to 16 (the same as the number
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of time samples in a window), resulting in 9 frequency features. Finally, 11× 9× 5 fea-

tures (495) were obtained from each IED or non-IED segment, where 11 is the number

of time slabs, 9 is the number of frequency slabs, and 5 is the number of components

of the projected segments.

4.2.4 Compared Methods

To show the effect of incorporating IED morphologies into an IED detection system,

we compared our proposed SMCA method with spatial component analysis (SCA),

in which all IEDs are concatenated into a three-way tensor. The SCA is presented in

Chapter 3 for IED detection from sEEG. For comparison purposes, here, it is used for

IED detection from the iEEG. For a fair comparison, five components (R = 5) giving

the best performance are extracted like SMCA. Finally, both IEDs and non-IEDs are

projected onto the spatial components. After projection, the same feature extraction

and selection are applied to extract the significant features.

The proposed method is also compared with three state-of-the-art methods in which

the authors use the same dataset. [20, 24]. In [20], the authors proposed a binary con-

volutional neural network (CNN-Bin) and a multiclass CNN (CNN-Multi) to detect

IEDs using the same data. In CNN-Bin, the IEDs and non-IEDs are detected in a binary

classification approach. In CNN-Multi, the authors detected IEDs based on their scores.

Spyrou, Kouchaki, and Sanei [24] proposed a TD-based method. In the TD method, TF

features are extracted using the spectrogram method. Then, a three-way tensor with

the dimension of channel, time, and frequency is constructed and decomposed using

TD. Finally, IED and non-IED segments are projected onto the spatial components.

In addition, we have compared two traditional methods, namely wavelet features

(WFs) and TF features. In the TF approach, TF features are extracted from the raw

iEEG in the same manner extracted here.

4.2.5 Feature Selection

The Fisher score is employed to select the most significant features. This is defined as:

fi =
∑c=C

c=1 nc(µic − µi)
2

∑c=C
c=1 ncσ2

ic

, (4.3)

where µic and σic denote respectively the mean and standard deviation of the i-th fea-

ture in the c-th class, nc is the number of instances in the c-th class, and µi is the mean

of the i-th feature.
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Table 4.2: The performance of classifiers with results averaged over all subjects. The classifiers
were trained and tested using leave-one-subject-out cross validation. ACC, SEN, and SPC are
presented in percent %.

Classifiers Method ACC SEN SPC F1-S AUC

KNN(k=3)
SCA 84.8 77.4 92.2 0.81 0.91

SMCA 86.7 78 95.4 0.84 0.93

KNN(k=5)
SCA 85.4 77.8 93 0.82 0.93

SMCA 87 77.7 96.2 0.84 0.94

NB
SCA 84.4 71 97.8 0.79 0.88

SMCA 86.4 74.8 98 0.83 0.9

DTE
SCA 92.6 89.7 95.6 0.92 0.99

SMCA 92.9 89.7 96.1 0.92 0.99

4.2.6 Cross Validation and Classification

Leave-one-subject-out cross validation was employed to validate the models. The IEDs

and non-IEDs of a subject were used as the test data and others for training the clas-

sifiers. Decision tree ensembles (DTE) with the bagging technique, naïve Bayes (NB),

k-nearest neighbors (KNN) with k = 3 and k = 5 were employed as the classification

methods. For evaluation of the methods, ACC, SEN, SPC, F1-S, and AUC defined in

(2.1) were obtained.

4.3 EXPERIMENTAL RESULTS

First, we compare our proposed SMCA method with SCA, both of which are based on

spatial components, and CPD is employed as the decomposition method. The obtained

results are shown in Table 4.2. KNN models are based on the first 10 features, and NB

is based on the first 30 features obtained using the Fisher score. In DTE, the first 80

features were utilized in the SMCA method, and the first 100 features were employed

for the SCA method. These numbers of features gave the best performances for their

algorithms.

Using both KNNs, SMCA outperforms the compared methods. Using KNN with

k = 3, SMCA provides 86.7% accuracy, which is approximately 2% higher than the

SCA accuracy value. Using KNN with k = 5, SMCA presents the best accuracy of

87%, which is 1.6% higher than that of SCA. In terms of SEN and SPEC, SMCA also

outperforms SCA using both KNNs.

Using the NB classifier, the SMCA method detects the IEDs and non-IEDs with 86.4%

accuracy, while SCA presents 84.4% accuracy value. In terms of SEN, SMCA signif-
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Table 4.3: Comparing the proposed SMCA model with WF, TF, TD, CNN-Bin, and CNN-Multi
proposed in [24] and [20]. ACC, SEN, and SPC are presented in percent %.

Method ACC SEN SPC F1-S AUC

WF 72.3 70 72 0.73 0.73

TF 85.6 78 72 0.76 0.85

TD 86 - - - -
CNN-Bin 85.9 90 87 0.88 0.88

CNN-Multi 89 94 81 0.88 0.9
SMCA 92.9 89 96 0.92 0.99

icantly outperforms the compared methods, though all models present comparable

SPC values. SMCA provides the best F1-S and AUC as well.

Using DTE, SMCA provides the best ACC of 92.9% and SPC of 96.1%, followed

by SCA with a small difference. In terms of SEN and F1-S, SMCA and SCA achieve

comparable values, and both methods obtain 0.99 AUC.

Overall, both methods using all four types of classifiers result in higher SPC than

SEN. SPC values are higher than 90% in both models, while SEN values are less than

80% in both methods when KNNs and NB classifications are employed. In DTE, there

is an appropriate trade-off between SEN and SPC in both methods.

Furthermore, our proposed method is compared with TD developed in [24] and

with WF, TF, CNN-Bin, and CNN-Multi proposed in [20]. The results are illustrated in

Table 4.3. The performance of SMCA using the DTE classifier leads to the best perfor-

mance.

Our proposed SMCA model significantly outperforms the compared methods by

providing 92.9% accuracy. Among the compared methods, CNN-Multi presents the

highest accuracy of 89%, which is approximately 4% less than that of SMCA. Although

CNN-Multi detects IEDs with the highest SEN of 94%, SMCA leads to the best values

of SPC, 96%, F1-S, 0.92, and AUC, 0.99.

4.4 CONCLUSION

Here, we propose a new method for IED detection based on spatial and morphological

components. The proposed SMCA method has been compared with 1) SCA, 2) WF, 3)

TF, 4) TD, 5) CNN-Bin, and 6) CNN-Multi. SMCA outperforms all compared methods

and detects IEDs with 92.9% accuracy. In addition, the difference between SMCA and

SCA is that, in SCA, all IEDs are concatenated into a three-way tensor without consid-

ering their scores. The findings show that considering the IED morphologies in an IED

detection system can boost the model’s performance.
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I N C O R P O R AT I N G L A B E L I N G U N C E RTA I N T Y I N
A N I E D D E T E C T I O N S Y S T E M

The IEDs have a wide variety of morphologies. They may appear as sharp waves, spikes,

or poly-spikes, often followed by an inhibitory damped oscillation. Also, depending on

having unilateral or bilateral IED sources, the number of EEG channels with visible

IEDs can be different, meaning that the IEDs have various spatial distributions. Fur-

thermore, some IEDs are similar to artefacts (i.e., extracerebral potentials from muscle,

eyes, heart, electrodes, etc.) and waves which are part of the brain’s normal activity

[84]. These properties (having different morphologies and spatial distributions as well

as the IEDs’ similarity to some artefacts and normal waves) make a great deal of uncer-

tainty in labeling the IEDs and making IED detection difficult. This uncertainty can be

mathematically expressed by the probability of the waveform being an IED. To the best

of our knowledge, there have not been any studies that incorporate such uncertainty in

automatically detecting the IEDs. Therefore, we aim to involve the IED probabilities in

the design of a high-dimensional tensor decomposition system.

In this chapter, IEDs are detected in two approaches, within-subject and between-

subject classification, from sEEG. In the first approach, we train a classifier for each sub-

ject individually. Conversely, in the between-subject classification approach, we train a

classifier for all the subjects.

At first, a method based on SCA, which has been proposed in Chapter 3, is employed

with a bit change to detect IEDs. In SCA, we construct a three-way tensor of time, sEEG

channel, and IED segment in the within-subject classification approach and a four-way

tensor of time, sEEG channel, IED segment, and subject in the between-subject one.

Then, the tensor is decomposed into temporal, spatial, and segmental modes using the

CANDECOMP/PARAFAC optimization (CP-OPT) algorithm proposed by Acar et al.
[114]. Finally, both IED and non-IED segments are projected onto the spatial factors to

derive the discriminative features.

In the second model, apart from the data tensor, a probability tensor is defined ac-

cording to the probability of the waveform being an IED. Then, a weighted CP-OPT

(CP-WOPT) [115] is employed to obtain the factor matrices. Finally, we projected both

IED and non-IED segments onto the spatial factors to extract the most significant fea-

tures. This is called spatial component analysis by considering the IED probabilities

(SCA-IEDP)-based method for IED detection.

The chapter is organized as follows. First, a brief review of CP-OPT and CP-WOPT

algorithms, our proposed SCA and SCA-IEDP models for IED detection, feature extrac-

42
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tion and selection, and the compared methods are presented. The next section shows

the experimental results, followed by an in-depth discussion on the pros and cons of the

proposed models compared to competing methods. Finally, the last section concludes

the chapter.

5.1 SIMPLE AND WEIGHTED CANDECOMP/PARAFAC OPTIMIZATION

5.1.1 CP-OPT

Suppose we are given a V-way tensor X ∈ RI1×I2×···×IV . We aim to factorize the tensor

into the sum of rank-one tensors as follows:

X ≈
R

∑
r=1

a(1)r ◦ · · · ◦ a(V)
r , (5.1)

where a(v)r ∈ RIv for v = 1, . . . , V and r = 1, . . . , R (R is the number of components).

The factor matrices are constructed from the combination of vectors from the rank-one

components, i.e., A(v) =
[
a(v)1 · · · a

(v)
R

]
. Following the “Kruskal operator” [109], we can

rewrite (5.1) as

X ≈ [[A(1), . . . , A(V)]] ≡
R

∑
r=1

a(1)r ◦ · · · ◦ a(V)
r . (5.2)

The problem of computing CP (5.2) can be formulated as a least-square optimization

problem:

A(1) ,...,A(V)
min f ≡ 1

2

∥∥∥X − [[A(1), . . . , A(V)]]
∥∥∥2

. (5.3)

Unlike the alternating least-squares approach [97] solving the factor matrices one by

one, the CP-OPT algorithm developed by Acar et al. [114] solves all the factor matrices

simultaneously using a gradient-based optimization approach. It is straightforward to

derive the gradient of objective function f by calculating the partial derivatives with

respect to each A(v), i.e.,

∂ f
∂A(v)

= −X(v)A
(−v) + A(v)Γ(v), (5.4)

for v = 1, . . . , V, in which X(v) is the mode-v matricization of the tensor X and A(−v) is

defined as

A(−v) ≡ A(V) ⊙ · · ·A(v+1) ⊙A(v−1) ⊙ · · · ⊙A(1); (5.5)
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and Γ(v) is defined as

Γ(v) = Υ(1) ∗ · · · ∗ Υ(v−1) ∗ Υ(v+1) ∗ · · · ∗ Υ(V), (5.6)

where Υ(v) = A(v)TA(v).

To see the proof of (5.4) the reader is referred to [114]. Once the gradients are known,

any gradient-based method can be used to solve the optimization problem. In this

thesis, the nonlinear conjugate gradient method [116] is used.

5.1.2 CP-WOPT

Let X be a V-way tensor with the dimension of I1 × I2 × · · · × IV . In CP-WOPT, we

define a weight tensor W of the same size as X such that {0 ≤ wi1i2···iV ≤ 1} for all

iv ∈ 1, . . . , Iv and v ∈ 1, · · · , V.

The optimization for the general V-way CP-OPT factorisation in (5.3) changes to

A(1) ,...,A(V)
min fw ≡

1
2

∥∥∥W ∗
(
X − [[A(1), . . . , A(V)]]

)∥∥∥2
. (5.7)

The above optimization problem may be reformulated to

A(1) ,...,A(V)
min fw ≡

1
2

∥∥∥Y −Z
∥∥∥2

, (5.8)

where Y = W ∗X and Z = W ∗ [[A(1), . . . , A(V)]]. We aim to find the factor matrices

A(v) ∈ RIv×R, for v = 1, . . . , V, which minimize the weighted objective function in (5.8).

We derive the gradient in (5.8) by calculating the partial derivatives of fw with respect

to each factor matrix A(v) as follows:

∂ fw

∂A(v)
=

(
Z(v) − Y(v)

)
A(−v), (5.9)

for n = 1, . . . , V, where A(−v) is defined in (5.5).

The detailed proof of (5.9) is expressed in Ref. [115]. After calculating the partial

derivatives using (5.9), any gradient-based optimization method can be utilized to solve

the optimization problem.

5.2 SCA (CP-OPT) AND SCA-IEDP (CP-WOPT) FOR IED DETECTION

The IEDs are detected in two within- and between-subject classification approaches

using the proposed SCA and SCA-IEDP methods.
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Figure 5.1: The four-way tensor constructed by concatenating the IEDs of S subjects.

5.2.1 SCA for Detecting IEDs in the Within-Subject Approach

In the within-subject classification approach, a classifier is trained and validated using

the data from the same subject. This method is explained in Section 3.3. The only

difference is that here the tensor is decomposed by employing CP-OPT [114].

We construct a three-way tensor, X ∈ RL×M×N (whose dimensions L, M, and N
correspond respectively to time, channel, and IED segment of sEEG) for each subject by

concatenating their IEDs. Then, the tensor is decomposed into the temporal A ∈ RL×R,

spatial B ∈ RM×R, and segmental factors C ∈ RN×R using CP-OPT. Then, both the IED

and non-IED segments are projected onto the spatial factor B as follows:

Pk = XkB (5.10)

where Xk ∈ RL×M(k = 1, . . . , K) is an IED or non-IED segment from the training or test

data and Pk ∈ RL×R(k = 1, . . . , K) is the projected IED or non-IED segment.

5.2.2 SCA for Detecting IEDs in the Between-Subject Approach

In the between-subject classification approach, a number of subjects are used for train-

ing a classifier. Then, the classifier is validated using new subjects. The IEDs of subjects

are concatenated into a four-way tensor X ∈ RL×M×N̄×S, where N̄ denotes the number

of IED segments of sEEG supposed to be selected equally for all the training subjects,

and S is the number of subjects in the training dataset. Figure 5.1 shows the schematic

of the four-way tensor.
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CP-OPT is employed to decompose tensor X to its factor matrices:

A,B,C,D
min f ≡ 1

2

∥∥∥X − [[A, B, C, D]]
∥∥∥2

, (5.11)

where A ∈ RL×R and B ∈ RM×R represent respectively the temporal and spatial factors,

and C ∈ RN̄×R and D ∈ RS×R correspond respectively to the segmental and individual

(subject) factors.

Finally, both IED and non-IED segments of the training and test subjects’ sEEG are

projected onto the spatial factor as follows:

Pk̄ = Xk̄B (5.12)

where Xk̄ ∈ RL×M(k̄ = 1, . . . , K̄) is an IED or non-IED segment from the training or test

subjects and Pk̄ ∈ RL×R(k̄ = 1, . . . , K̄) is the projected IED or non-IED segment.

5.2.3 SCA-IEDP for Detecting IEDs in the Within-Subject Approach

IEDs of each subject are concatenated into a three-way tensor X ∈ RL×M×N . Apart

from the data tensor, in SCA-IEDP, we define a probability tensor W of the same size

as X based on the IED probabilities as follows:

W::n = c1 for case 1

W::n = c2 for case 2
...

W::n = cJ−1 for case J−1

W::n = cJ for case J,

(5.13)

for all n = 1, . . . , N, where {0 ≤ cj ≤ 1} for j ∈ {1, . . . , J} and W::n are the frontal

slices of W . The cases are defined based on spatial distribution and the scores given by

expert epileptologists. The scores refer to the closeness of a spike to an expected IED

morphology.

The CP-WOPT algorithm is applied to the data tensor X and probability tensor W ,

as:

A,B,C
min fw ≡

1
2

∥∥∥W ∗ (X − [[A, B, C]])
∥∥∥2

, (5.14)

to obtain the factor matrices, where A, B and C correspond respectively to the temporal,

spatial, and segmental factors. Then, both the IED and non-IED segments are projected

onto the spatial factor B using (5.10). Finally, the projected IEDs and non-IEDs, Pk, are



5.2 SCA (CP-OPT) AND SCA-IEDP (CP-WOPT) FOR IED DETECTION 47

 

𝐁 = [b1 … b𝑅] 

 

Channel (M) 

T
im

e 
(L

) 

𝒳∈ ℝ𝐿×𝑀×𝑁 

Decomposing 𝒳 using 
CP-WOPT (or CP-OPT) 

𝐗𝑘 ∈ ℝ𝐿×𝑀  

Channel (M) 

T
im

e 
(L

) 

+ ⋯ + 

a1 a𝑅 

b𝑅 b1 

c1 c𝑅  

𝐏𝑘 ∈ ℝ𝐿×𝑅  

𝐏𝑘 = 𝐗𝑘𝐁 

Projection to B 

Figure 5.2: The IED detection system proposed for the within-subject classification approach.
X includes the IED segments only, N. CP-OPT (or CP-WOPT) is applied to X to decompose
it to temporal, spatial, and segmental factors. Xk(k = 1, . . . , K) is an IED or non-IED segment
from the training or test data, which is projected onto the spatial components B. Pk represents
the same segment after projection.

used for classification. The flow diagram of the proposed models in the within-subject

approach is illustrated in Figure 5.2.

5.2.4 SCA-IEDP for Detecting IEDs in the Between-Subject Approach

Apart from the four-way data tensor X described in Section 5.2.2, a four-way probabil-

ity tensor W is also defined. The three-way probability tensors of the training subjects

described in (5.13) are concatenated into a single four-way tensor, called four-way prob-

ability tensor W .

The CP-WOPT algorithm is employed to decompose the data tensor X and probabil-

ity tensor W , as illustrated below, into the factor matrices:

A,B,C,D
min fw ≡

1
2

∥∥∥W ∗ (X − [[A, B, C, D]])
∥∥∥2

. (5.15)

Finally, both the IED and non-IED segments are projected onto the spatial factor B

using (5.12), and the projected IEDs and non-IEDs, Pk̄, are used for classification.

In the classification stage, all IEDs with different scores fall within the same IED

class. However, we define a probability tensor W based on these scores, which gives

an opportunity to incorporate the probability of a waveform being an IED in our IED

detection system.
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5.3 EXPERIMENTS

5.3.1 Dataset

The sEEG signals of 18 epileptic subjects are analysed. The dataset details are given

in Section 3.1. A 4-48 Hz bandpass filter was applied to the sEEG signals to increase

the signal-to-noise ratio. We selected the highpass frequency to be 4 Hz to alleviate the

baseline and eye movement artefacts and the lowpass frequency to be 48 Hz to preserve

the IEDs’ morphology as IEDs are likely to have high-frequency components.

For analysis and classification, the EEG signals were sliced. The length of IED seg-

ments was selected to be 480 ms (96 time sample) – 160 ms before and 320 ms after

the positions of peaks in the concurrent iEEG marked as IED. Non-IED segments with

480 ms length were selected from time segments where there were no scored IEDs. We

chose the same number of IED and non-IED segments for each subject. Both IED and

non-IED segments were linearly detrended to remove the undesired drifts. The total

number of IED and non-IED segments for different subjects are illustrated in Table 4.1.

Subjects 13, 14, and 16 were excluded from the analysis because of having less number

of segments.

5.3.2 IED Uncertainty

The iEEG was used as the ground truth for scoring the IEDs by an expert epileptologist

who gave a score between 1 to 9 for each spike/sharp wave based on their morphology

and spatial distribution. More details about how the IEDs were scored are given in

Section 3.1.3. The spikes/sharp waves scored between 1 and 4 are excluded from the

analysis since they cannot be differentiated from artifacts. Therefore, IEDs from score 5

(the lowest certainty) to 9 (the highest certainty) are analysed here. Score 5 refers to the

lowest probability of the waveform being an IED, meaning that the epileptologist is not

certain whether the activity is an IED or not. Score 9 denotes the highest probability of

being an IED, meaning that they are definitely IED activities. Figure 5.3 shows samples

of non-IED and IED waveforms with scores 5 to 9. No spike or sharp wave can be seen

in the non-IED segment. In the IED segment scored 5, there is a sharp wave in the FO

channel. A couple of FO channels contain sharp waves in the IED segment scored 6.

However, no spike or sharp wave is observable over the scalp for IEDs scored 5 or 6.

There are spikes in a couple of FO channels in the IED segment scored 7, and some

broad waves can be seen on a few scalp channels by referencing to FO channels. These

segments (with IEDs scored 5, 6, or 7) have been marked as scalp-invisible IEDs. On

the other hand, in the IEDs scored 8 or 9, there are spike waves in many FO and scalp

channels with higher amplitudes. These have been marked as scalp-visible IEDs.
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Figure 5.3: Samples of non-IED and IED waveforms with scores 5 to 9. (a) The non-IED segment,
and (b)-(f) respectively the IED with score 5 to 9 (score 9 refers to an IED with the highest
probability (or the lowest uncertainty)). An expert epileptologist used the iEEG as ground truth
in scoring IEDs. The IEDs, pointed by red rectangles, start at 160ms.

5.3.3 Feature Extraction

5.3.3.1 Feature extraction in the within-subject approach

Here, a three-way tensor X ∈ R96×18×N is constructed, where 96 and 18 are respectively

the number of time samples and recorded channels, and N denotes the number of IED
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segments in the training fold. Apart from the IED tensor, we build a tensor W with the

same dimension as tensor X in the SCA-IEDP model to which different certainty levels

are allocated as follows:

W::n = 0.2 If the IED is given score 5

W::n = 0.6 If the IED is given score 6

W::n = 0.8 If the IED is given score 7

W::n = 0.9 If the IED is given score 9

W::n = 1 If the IED is given score 9,

for n = 1, . . . , N. W::n = 0.2 means that the waveform is related to an IED activity with

20% possibility and to a non-IED activity with 80% possibility. W::n = 0.6 means that

the waveform is an IED activity with 60% possibility and it is a non-IED activity with

40% possibility and so on.

The tensor is decomposed separately using CP-OPT and CP-WOPT to extract the

factor matrices:

X ≈
R

∑
r=1

ar ◦ br ◦ cr ≡ [[A, B, C]],

where A ∈ R96×R and B ∈ R18×R denote respectively the temporal and spatial factors,

and C ∈ RN×R is the segmental factor. Then, both the IED and non-IED segments are

projected onto the spatial factor B using (5.10), where Xk ∈ R96×18 is an IED or non-IED

segment from the training or test data and Pk ∈ R96×R is the projected IED or non-IED

segment.

Time-frequency representations have been broadly and successfully used in IED de-

tection [8] and epilepsy diagnosis [117, 118]. The spectrogram method is applied to

the projected IEDs and non-IEDs, Pk, to extract the time-frequency features. The mag-

nitudes of STFT obtained using the spectrogram are measured and used as features.

For the spectrogram, we define a Hanning window size of 80 ms (16 samples) and an

overlap of 50% (8 samples). Overall, 11 time slabs are captured by sliding the window

over each segment. The number of discrete Fourier transform points has been set to

16 (the same as the number of time samples in a window), resulting in 9 frequency

features. Totally, we obtained R × 11 × 9 features, where R is the number of spatial

components extracted using the tensor, 11 is the number of time slabs, and 9 is the

number of frequency slabs for each IED or non-IED segment.
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5.3.3.2 Feature extraction in the between-subject approach

After constructing the four-way tensor X ∈ R96×18×30×S and defining W for CP-WOPT,

we decompose X using CP-OPT and CP-WOPT separately into temporal A ∈ R96×R,

spatial B ∈ R18×R, segmental C ∈ R30×R , and individual (subject) D ∈ RS×R factors.

We randomly select 30 IED segments from each training subject. (Therefore, subjects

with at least 30 IED segments and reasonable performance in the within-subject ap-

proach are chosen as the training subjects). Then, both the IED and non-IED segments

of the training and test subjects are projected onto the spatial factor using (5.12). Finally,

the time-frequency features of the projected IEDs and non-IEDs are calculated using

the spectrogram.

5.3.4 Number of Components

Identification of the number of components plays an important role in tensor decom-

position, and it is also an NP-hard problem. However, we apply nested cross validation

to determine the number of suitable components R. The training data are split into

5-fold. Each time four folds are used for training the model and the fifth fold for val-

idation. The nested cross validation is performed for R = {1, 2, 3, 4}. The accuracy is

averaged across five folds in each case R = {1, 2, 3, 4}. Finally, the number of compo-

nents is determined based on the highest accuracy. In our work, the minimum number

of components is one (R = 1), and the maximum number is four (R = 4), depending on

how many components lead to the best performance. It is worth noting that the nested

cross validation is performed over the training dataset only. The test dataset does not

contribute to estimating the number of components.

5.3.5 Compared Methods

We compare the performance of our proposed approaches with two other state-of-the-

art methods in IED detection, namely TF features [8] and simultaneous multilinear

low-rank approximation of tensors (SMLRAT) [10].

5.3.5.1 Time-frequency features model

We already discovered that the TF features show an improvement over CWT and

chirplet transform for this particular dataset [8]. Therefore, we compare our proposed

models with a model based on TF features, which is obtained by employing the spec-

trogram method – calculated following Section 5.3.3. Each IED or non-IED segment is

made of 1782 features (18 scalp channels ×11 temporal ×9 frequency).
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5.3.5.2 Simultaneous multilinear low-rank approximation of tensors

We compare our proposed approaches with SMLRAT proposed recently for EEG epilep-

tic spike detection [10]. The model is based on NTD. Having a positive-valued spectro-

gram allows us to fully benefit from NTD.

In the SMLRAT, the authors apply CWT to the epileptic and non-epileptic spikes

and construct a three-way tensor for each segment, Xi ∈ RW×L×M, where W, L, and M
denote wavelet-scale, time, and channel respectively. They concatenate only three-way

tensors, {X ep
i }N

i=1, where N represents the number of epileptic spike segments, in a

single four-way tensor X̃ ep ∈ RW×L×M×N . Then, NTD is employed to decompose the

tensor X̃ ep and obtain the factor matrices:

X̃ ep = X̃ ep
1 ⊞ X̃ ep

2 · · ·⊞ X̃ ep
N = G ×1 U×2 A×3 B×4 C, (5.16)

where ⊞ denotes concatenation operation, G ∈ Rr1×r2×r3×N is the core tensor, and

U ∈ RW×r1 , A ∈ RL×r2 , B ∈ RM×r3 , and C ∈ RN×N denote respectively the wavelet-

scale, time, channel, and epileptic spikes. Finally, in order to obtain the feature space

of each segment, the spikes (no matter epileptic and non-epileptic) are projected onto

the factor matrices as follows:

Fi = Xi ×1 U† ×2 A† ×3 B†, (5.17)

where (.)† represents matrix Moore-Penrose pseudo-inverse.

Here, we transform the IED and non-IED segments through CWT and construct a

three-way tensor for each segment – Xi ∈ R38×96×18. We concatenate three-way IED

tensors into a single four-way tensor, then perform NTD to obtain the factor matrices;

U ∈ R38×10, A ∈ R96×15, and B ∈ R18×18; and consequently the features Fi ∈ R10×15×18.

5.3.6 Evaluation and Cross Validation

We employ a k-fold (k=5) cross validation to validate the methods in the within-subject

classification approach. Four folds are used for training the models and the fifth fold

as the test data. Increasing the number of folds did not change the outcome. It is worth

emphasizing that the classifiers are trained and tested using only the sEEG. In the

between-subject approach, the leave-subject-out cross validation is employed. The data

of a subject are used as the test data; other subjects’ data are used for training the

classifiers.

For evaluation of the methods, ACC, SEN, SPC, and F1-S are obtained.
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5.3.7 Feature Selection and Classification

We employ the Fisher score as the feature selection technique to select the most signifi-

cant features. This method is explained in Section 4.2.5.

In order to classify the IED and non-IED segments, we employ four different classi-

fiers, namely diagonal linear discriminant analysis (DLDA), support vector machines

(SVM), NB, and DTE. DLDA is superior to LDA in high-dimensional problems. The

covariance matrix needs to be computed in LDA. Calculating all the covariance matrix

terms in a high-dimensional case may fail due to the small data size. A strong inde-

pendence assumption may be applied to the features resulting in a diagonal covariance

matrix in LDA. This modification of LDA is called DLDA. We have feature indepen-

dence assumption in NB as well. SVM is a popular classifier often used for seizure EEG

classification [119, 120]. In these cases, linear SVM is more applicable than nonlinear

(kernel-based) SVM due to the separability of the data and to avoid overfitting. The

DTE classifier has been the last one that we utilized. We have used the bagging tech-

nique to perform ensemble decision trees [121]. In the bagging method, the idea is to

create several subsets of data from the training samples, which are randomly selected

with replacement. Then, each subset is employed to train its decision tree. Hence, we

end up with an ensemble of different models, where the average of all the predictions

from different trees is used. Therefore, the bagging method is more robust than any

single decision tree.

5.4 EXPERIMENTAL RESULTS

Here, we first analyze the temporal and spatial components of CP-OPT and CP-WOPT

decomposition. We employ four types of classifiers to detect IEDs. Next, we present

the obtained results of our proposed SCA and SCA-IEDP models and of the compared

methods in the within-subject classification approach. Finally, we report the obtained

results of SCA, SCA-IEDP, and SMLRAT in the between-subject classification approach.

5.4.1 Analysis of Temporal and Spatial Factors

The first temporal vector of CP-OPT and CP-WOPT is illustrated in Figure 5.4(a). The

temporal factor of CP-WOPT has a higher amplitude than that of CP-OPT and is

sharper and more similar to the source IED. It is because, in CP-WOPT, those IEDs

with spike or spike-and-slow-wave complex morphology are given greater weight than

those with sharp wave morphology. Whereas in CP-OPT, all IEDs with different mor-

phologies are given the same weight.
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Figure 5.4: The first temporal components and spatial distributions obtained using CP-OPT
and CP-WOPT: (a) The temporal components, (b) and (c) the spatial distributions obtained
respectively by CP-OPT and CP-WOPT.

In addition, the spatial distributions of the first vector of CP-OPT and CP-WOPT

are computed and respectively shown in Figure 5.4(b) and Figure 5.4(c). The spatial

distribution of CPWOPT is more focal and right laterally distributed than that of CP-

OPT as expected.

5.4.2 IED Detection in the Within-Subject Classification Approach

Table 5.1 illustrates the classification results for the within-subject approach. We com-

pare our proposed SCA and SCA-IEDP models with TF and SMLRAT methods devel-

oped recently. It is worth noting that the first 200 significant features of the TF and the

first 100 ones of SMLRAT are classified, giving the highest accuracy in their methods.

Using the NB classifier, SCA-IEDP detects IEDs and non-IEDs with 79.2% accuracy,

which is approximately 1%, 8%, and 9% higher than SCA, SMLRAT, and TF accuracy

values, respectively. SCA-IEDP provides 73.1% SEN and 87% SPEC which is better

than SCA and the compared methods as well. In DLDA, SCA-IEDP provides the best

ACC of 76% and SEN of 63.1%. In contrast, its performance is comparable with SCA

performance in terms of SPEC criterion.

Using SVM, the best accuracy of 79.2% and sensitivity of 71.4% are obtained using

our proposed SCA-IEDP model. However, SCA and SCA-IEDP present the same values

of SPEC and F1-S. Except for SEN, where SMLRAT presents the poorest value, the TF

model provides the worst in this classifier across all criteria. In the DTE classifier, SCA-

IEDP presents the best accuracy of 79.9%, the sensitivity of 77.6%, and the F1-score of

0.79 though the best specificity of 82.8 is achieved using SCA.

Table 5.1 shows that the best accuracy is achieved by SCA-IEDP using the DTE classi-

fier. It provides 79.9% accuracy while the best accuracy values obtained by SCA, SML-

RAT, and TF are respectively 78.9%, 72.9%, and 73%. Overall, the SPEC values are

higher than SEN values in all detection methods and all classifiers, showing that the
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Table 5.1: The performance of classifiers in the within-subject classification approach with re-
sults averaged over all subjects and folds. ACC, SEN, and SPC are presented in percent %.

Classifiers Models ACC SEN SPC F1-S

NB

TF 70.5 68 73 0.68

SMLRAT 71.3 61.7 80.1 0.65

SCA 78.1 70.3 86 0.75

SCA-IEDP 79.2 71.3 87 0.76

DLDA

TF 70.7 61 80.3 0.66

SMLRAT 64.9 46.4 83.4 0.54

SCA 75.3 61.7 88.9 0.7
SCA-IEDP 76 63.1 88.8 0.71

SVM

TF 66.9 65.2 68.2 0.66

SMLRAT 72.9 63.8 82 0.69

SCA 78.9 70.8 87 0.76
SCA-IEDP 79.2 71.4 87 0.76

DTE

TF 73 66.2 79.8 0.69

SMLRAT 72.7 70.9 74.5 0.70

SCA 78.3 73.9 82.8 0.76

SCA-IEDP 79.9 77.6 82.1 0.79

non-IED segments can be detected easier than the IED segments. SMLRAT, SCA, and

SCA-IEDP provide their best SEN values using the DTE classifier, while TF obtains its

best SEN using the NB classifier. Generally, DTE results in the best trade-off between

SEN and SPEC in all methods.

5.4.3 IED Detection in the Between-Subject Classification Approach

Apart from classifying IEDs and non-IEDs in the within-subject classification approach,

the proposed SCA and SCA-IEDP models and the SMLRAT are employed to detect

IEDs in the between-subject one. The obtained results are shown in Table 5.2. In SML-

RAT [10], epileptic and non-epileptic spikes are classified by concatenating all subjects’

three-way tensors (time, wavelet-scale, channel) into a single four-way tensor, and leave-

one-subject-out cross validation is used. The TF model proposed in Ref. [8] detects IEDs

in the between-subject classification approach by using the ensemble of individual clas-

sifiers, rather than by combining the subjects’ data. Therefore, the TF approach is not

reported here.

SCA-IEDP presents the best accuracy in all the classifiers. It obtains its best accuracy,

63.4%, using both SVM and DTE classifiers. SCA-IEDP and SCA provide significantly

better performance than SMLRAT. In all the classifiers, the accuracies of SCA-IEDP
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Table 5.2: The performance of SCA, SCA-IEDP and SMLRAT models obtained using the clas-
sifiers in the between-subject classification approach. The results have been averaged over 15

subjects. ACC, SEN, and SPC are presented in percent %.

Classifiers Models ACC SEN SPC F1-S

NB
SMLRAT 49.2 80 17.4 0.61
SCA 58.2 37.4 79.1 0.39

SCA-IEDP 62.4 56 68.7 0.52

DLDA
SMLRAT 50 98.5 1.6 0.66
SCA 60.1 48.5 71.7 0.47

SCA-IEDP 62.5 61.6 63.3 0.55

SVM
SMLRAT 50.9 47.7 54 0.36

SCA 62.1 43.5 80.7 0.47

SCA-IEDP 63.4 53.3 73.5 0.53

DTE
SMLRAT 49.9 51.9 48 0.50

SCA 60.4 63.2 57.6 0.58

SCA-IEDP 63.4 65.6 61.2 0.60

and SCA are approximately 9-13% higher than that of SMLRAT. In NB and DLDA,

SCA-IEDP provides respectively the best accuracy of 62.4% and 62.5%, while the best

SEN of 80% and 98.5% are obtained via the SMLRAT model. In these classifiers, most

segments are recognized as IEDs through the SMLRAT model, meaning that the model

is biased towards the IED class. On the other hand, SCA presents the best SPEC when

NB, DLDA, and SVM classifiers are employed, which means that the model is biased

towards the non-IED class. Generally, the best trade-off between SEN and SPEC is made

using the DTE classifier, in which SCA-IEDP outperformed SCA and SMLRAT in all

criteria. In addition, the performance of SMLRAT is around the chance level (which is

50% for binary classification).

5.5 DISCUSSION

SCA-IEDP, as the main contribution of this study, outperforms SCA and the compared

TF and SMLRAT methods. Meanwhile, in both SCA and SCA-IEDP, we apply CPD and

employ spectrogram to extract TF features except that in SCA-IEDP we allocate weight

to each IED according to the certainty in its labelling, SCA-IEDP performs significantly

better compared to SCA in both within- and between-subject classification approaches.

SCA-IEDP is far superior, in terms of sensitivity, to SCA in detecting IEDs in both

approaches. This shows that incorporating the IED probabilities in designing an IED

detection model can boost performance.

The IEDs with lower uncertainty have more impact on the learning process than those

with higher uncertainty. Some brain activities are similar in morphology to IEDs and
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sometimes are recognized as IED waveforms by epileptologists. In the proposed SCA-

IEDP, the IEDs with higher uncertainty are given lower weights. As a result, the impact

of these IEDs in the classification step decreases, leading to better model performance.

In contrast, the proposed SCA and the compared methods do not have this advantage.

Indeed, there has not been any method that incorporates the uncertainty in labelling

the IEDs in their detection, and as far as we know, the proposed SCA-IEDP is the first

approach.

The proposed models show superior performance when they are trained and tested

over the same subject data (within-subject classification approach) compared to a more

generic or between-subject classification approach. However, detecting IEDs in a between-

subject-based approach is of paramount importance. Developing a model to automat-

ically detect the IEDs of new subjects without training on them would be worthwhile

in clinical practice. Our proposed algorithms enable the detection of IEDs in a between-

subject-based approach, and their performances are sufficiently desirable.

Generally, none of the methods performs very well because we use low amplitude

(scalp-visible and scalp-invisible) IEDs. However, a small improvement can be signifi-

cant for many applications, such as seizure prediction or localization. Although some

studies have reported higher performance, they only consider scalp-visible IEDs [26,

74]. Here, iEEG has been used for scoring the IEDs. The large proportion of IEDs seen

in iEEG is invisible over the scalp. Our dataset includes all scalp-visible and scalp-

invisible IEDs thanks to using concurrent iEEG signals for the IED annotation, causing

the traditional automatic algorithms not to be effective.

In contrast to the TF model [8] in which the authors used only temporal and spectral

IED signatures, we consider spatial IED signatures apart from temporal and spectral

ones. The IEDs originate from specific brain regions. Our dataset is from patients with

mesial temporal lobe epilepsy whose IEDs originate from the temporal lobe regions.

Therefore, intracranial electrodes placed in the temporal lobes and, consequently, the

scalp electrodes over those regions can provide more significant features. As a result,

considering spatial components in designing an IED detection system can ameliorate

its performance. Muti-way analysis provides an opportunity to consider spatial compo-

nents and consequently boosts the performance of an IED detection system.

In the original TF study, IEDs are detected with 67% accuracy using the logistic re-

gression classifier in the within-subject classification approach using the same dataset.

Here, the TF method obtains 73% accuracy using the DTE classifier. In our TF im-

plementation, we use a different frequency band, different IED and non-IED segment

lengths, and different classifiers. These differences ameliorate the model performance.

In the referenced SMLRAT method, 95.8% accuracy is obtained using an NB classi-

fier. In our study, SMLRAT respectively provides the maximum accuracy of 72.9% and

50.9% in the within- and between-subject approaches, which are significantly less than

the accuracies obtained in the original paper. The main cause of this fall-off in accu-



5.6 conclusion 58

racy may be due to including scalp-invisible IEDs in the classification. Here, all the

scalp-visible and scalp-invisible IEDs are included in our dataset. On the other hand,

in the referenced SMLRAT, the authors annotated the spikes using only sEEG, and only

scalp-visible spikes were detected. Furthermore, they detected only spikes, while our

IED dataset also contains sharp waves – which are wider than spikes and sometimes

similar to other brain activities. For SMLRAT, there is a huge difference in the accuracy

of within- and between-subject approaches. In the between-subject approach, we do

not introduce any new mode to the tensor (motivated by the referenced SMLRAT). In

fact, the IED three-way tensors of all the subjects are concatenated into a single four-

way tensor (time, wavelet-scale, channel, and segment) in the between-subject approach.

Since the morphology and shape of IEDs can vary among subjects because of factors

such as age [49], including all IEDs along one tensor mode can deteriorate the decom-

position performance. Therefore, SMLART gave a poor performance for our dataset in

the between-subject approach. Hence, we added a new mode of subjects leading to a

four-way tensor (time, channel, IED segment, and subject) for the between-subject ap-

proach, whereas we have a three-way tensor (time, channel, and IED segment) for the

within-subject approach.

The most important advantage of the proposed SCA-IEDP method is to incorpo-

rate uncertainty levels in the IED scoring in the algorithm. This uncertainty can be

mathematically explained by assigning lower probability values to IEDs with higher

uncertainty and vice versa, making the impact of certain IEDs become more on the IED

detection system.

The limitation of the proposed models is that their performance in the between-

subject-based approach is not significantly high. In our dataset, the IEDs of different

subjects originate from the left or right temporal region. This means the IED sources’

locations are different among the subjects. Since our proposed models are based on

spatial components and the IED source locations are different, the performance of the

proposed models deteriorates when a between-subject-based approach is applied. An-

other cause of this fall-off in the performance of the between-subject-based approach

is that the consistency of discharges decreases when all patients are pooled together.

These limitations exist in the SMLRAT method as well.

5.6 conclusion

Improvements in the identification of deep epileptiform discharges from over the scalp

would significantly enhance the diagnosis and management of epilepsy. In this chapter,

CP-OPT and CP-WOPT techniques are first explained. Then, we propose two models,

namely SCA and SCA-IEDP, for IED detection. In SCA-IEDP, as the main contribution

of this work, the uncertainty in IED labeling (represented by IED probabilities) is in-
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corporated in the IED detection system. We compare our proposed models with two

state-of-the-art models, TF [8] and SMLRAT [10]. The IEDs are detected in two different

within- and between-subject classification approaches. In both approaches, SCA-IEDP

leads to the best performance. It obtains respectively the maximum accuracy of 79.9%

and 63.4% in the within- and between-subject classification approaches. Meanwhile,

SMLRAT achieves respectively 72.9% and 50.9% accuracy values in the mentioned ap-

proaches. In all classifiers, TF and SMLRAT perform worse than our proposed SCA

and SCA-IEDP. The results show that incorporating the IED probabilities into the algo-

rithm can improve performance. Here, we use concurrent sEEG and iEEG recordings.

The major advantage of our work in using this dataset is to detect the scalp-visible and

scalp-invisible IEDs from over the scalp. In a within-subject classification approach, it

may not be very useful to record sEEG and iEEG simultaneously and detect IEDs us-

ing sEEG, whereas, in a between-subject classification approach, it has a high impact

on the diagnosis of epilepsy. That is, a between-subject classifier can be trained using

concurrent scalp and intracranial recordings of several subjects (the use of iEEG for scor-

ing IEDs – including the scalp-visible and scalp-invisible IEDs – and the use of sEEG

for training the classifier). Afterward, using the trained classifier, the scalp-visible and

scalp-invisible IEDs of any new subject can be detected using only sEEG recordings.
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6
S PA R S E C O M M O N F E AT U R E A N A LY S I S F O R
D E T E C T I O N O F I E D S F R O M C O N C U R R E N T
S C A L P E E G

Common feature analysis (CFA), explained in Section 6.1, has the benefits of exploiting

and analyzing common features among different data dimensions. To the best of our

knowledge, there exists no IED detection method to extract the common components

across all IED segments in the most discriminatory time-space domain only. Therefore,

we aim to present two models based on CFA and sparse CFA to detect the IEDs from

sEEG using a unique limited set of concurrent sEEG and iEEG recordings.

In this study, we consider that the IED segments for each subject are naturally linked

and share spatially and temporally some common features. These common features,

which are latent in EEGs, may reflect more accurately the IEDs characteristics. Zhou et
al. [122] developed an algorithm, namely common orthogonal basis extraction (COBE),

for extracting common and individual features to boost image classification perfor-

mance. We adopt the COBE algorithm to exploit the latent common features among the

IED segments to enable the detection of a higher percentage of IEDs from over the scalp

using a unique set of simultaneously recorded sEEG and iEEG signals. This method is

referred to as the CFA-based method for IED detection. In the second approach, as

the main contribution of this chapter, we extend the COBE algorithm to exploit the

common features with a sparsity constraint, referred to as sparse common orthogonal

basis extraction (SCOBE). Using our developed SCOBE algorithm, we extract common

features among the IED segments with sparsity constraints (sparse common features).

This method is called the sparse CFA (SCFA)-based method for IED detection. It should

be noted that, in our dataset, the IEDs are scored from the iEEG by an expert clinician

while detected from the sEEG. This provides an opportunity to automatically detect

the scalp-invisible IEDs from sEEG, which is not feasible in the sEEG-based algorithms

for IED detection. For classification, three types of classifiers, namely SVM, DLDA, and

NB, are employed.

The rest of the chapter is structured as follows. First, CFA and SCFA models are

described. The results are then reported. Afterwards, the findings are discussed. Finally,

the last section concludes the chapter.

60
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Figure 6.1: The flowchart of the proposed methods representing the overall IED detection sys-
tem.

6.1 COMMON AND SPARSE COMMON FEATURE ANALYSIS

The IEDs are associated with abnormal patterns; thus, it can be assumed that they are

independent of other brain activities. Moreover, they have many similarities in shape

and morphology; therefore, some features are expected to be shared among them. In

contrast, the non-IEDs are random, with no shared feature between them. Therefore,

we are interested in a feature space that spans the IEDs only.

In the proposed CFA and SCFA methods, common features and sparse common

features among the IED segments are exploited respectively by COBE and SCOBE al-

gorithms. Then, both IED and non-IED segments are projected onto them using the

Khatri-Rao product. Finally, the features of projected segments are extracted for clas-

sification. Figure 6.1 shows the flowchart of the proposed methods representing the

overall IED detection system. The details of the methods are explained in the following

subsections.

6.1.1 Common Feature Analysis

In the proposed CFA model, the common features are exploited using the COBE algo-

rithm [122], explained below.

6.1.1.1 COBE

Suppose the training dataset consists of N IED segments, X = {Xn ∈ RL×M : n ∈
N}, N = {1, 2, ..., N}, where L and M are respectively the number of time samples

and channels. Our goal is to extract the common features among all IED segments.

According to matrix factorisation solution, for each matrix Xn, we attempt the following

minimization:

Sn ,Wn
min ∥Xn − SnWT

n∥2
F, n ∈ N , (6.1)
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where the columns of Sn ∈ RL×Pn denote the sources in Xn, Wn ∈ RM×Pn indicates the

corresponding mixing matrix, and ∥.∥F is the Frobenious norm operator. It is assumed

that Pn < min(L, M), implying that SnWT
n presents a low-rank representation of Xn.

The sources of the data ensemble Xn are correlated together, thereby sharing some

common features. Hence, we can define Sn as follows:

Sn = [S̄ S̆n], n ∈ N , (6.2)

where the sub-matrix S̄ ∈ RL×C consists of common features shared by all the matrices

in X , and the sub-matrix S̆n ∈ RL×(Pn−C), C ≤ min{Pn : n ∈ N}, presents the individ-

ual sources of each Xn. By doing so, we are able to re-factorize the data matrices Xn in

an augmented way as:

Xn = SnWT
n =

[
S̄ S̆n

]  W̄T
n

W̆T
n


= S̄W̄T

n + S̆nW̆T
n = X̄n + X̆n, n ∈ N ,

(6.3)

where W̄n and W̆n consist of the mixing matrices corresponding to S̄ and S̆n, respec-

tively.

There are numerous solutions to minimization of (6.1), which are not unique. To

reduce the solution space, the following three constraints are applied:

1. S̄TS̄ = IC

2. S̆T
n S̆n = IPn−C

3. There is no interaction (correlation) between the spaces of common and individ-

ual features, i.e., S̄TS̆n = 0

By substituting (6.3) in (6.1) and considering the above constraints, (6.1) can be refor-

mulated to:

S̄,W̄n ,S̆n ,W̆n
min ∑

n∈N
∥Xn − S̄W̄T

n − S̆nW̆T
n∥2

F,

s.t. S̄TS̄ = IC, S̆T
n S̆n = IPn−C, S̄TS̆n = 0, n ∈ N ,

(6.4)

where the notation 0 denotes a C× (Pn − C) zero matrix.

There is a close relationship between the factorisation problem (6.4) and PCA when

Pn = C, ∀n ∈ N . In this case, S̄ = S can be found from

S
min ∑n∈N ∥Xn − SWT

n∥2
F, s.t. STS = IC. (6.5)
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Problem (6.5) can be considered as a partitioned version of the global PCA of X̃ when

the data matrices Xn are stacked to construct a global matrix X̃ = [X1 X2 · · · XN ] and

similarly W̃ = [W1 W2 · · · WN ], that is

S
min∥X̃− SW̃T∥2

F, s.t. STS = IC. (6.6)

However, the factorisation problem (6.4) is not equivalent to PCA when C < Pn. The

main difference between problems (6.4) and (6.5) is owing to the individual components

S̆nW̆T
n , meaning that the common components found by (6.4) can be interpreted as the

principal components of the common subspace X̄n = Xn − S̆nW̆T
n . For more details, the

reader is referred to [122].

To solve (6.4), finding the common features S̄ plays a vital role. From (6.3), we have:

[S̄ S̆n] = XnWT†
n , ST

n Sn = IPn , n ∈ N , (6.7)

where (.)† denotes Moore-Penrose pseudo-inverse of a matrix. To estimate S̄, we can

employ QR decomposition to decompose Xn = QnRn, where Qn is an orthogonal and

Rn is an upper triangular matrix. By defining Zn = RnWT†
n , (6.7) can be reformulated

to:

[S̄ S̆n] = (QnRn)WT†
n = QnZn, n ∈ N . (6.8)

Therefore, for any given n1, n2 ∈ N , n1 ̸= n2, we have: Qn1zn1,k = Qn2zn2,k = s̄k, if k ≤ C;

Qn1zn1,k ̸= Qn2zn2,k if k > C,
(6.9)

where zn,k and s̄k are respectively the kth columns of Zn and S̄. It should be noted that

the condition (6.9) is valid when there is a similarity among all the Xn segments (and

consequently Qn). Due to this fact, our Xn consists of only IED segments, falling in the

same frequency range having similar morphologies (i.e. spkies and sharp waves). From

(6.9), we can compute the first column of S̄, signified by s̄1, by minimizing

s̄1,zn,1
min J1= ∑

n∈N
∥Qnzn,1 − s̄1∥2

2, s.t. s̄T
1 s̄1=1, (6.10)

where ∥.∥2 denotes l2-norm. Based on (6.8) and (6.9), the objective function J1 has to be

very small (very close to zero) to ensure that s̄1 is a common basis vector among the

trials.
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An alternating least-square (ALS) optimization algorithm can be utilized to minimize

(6.10). First, by fixing zn,1, the optimal s̄1 is obtained by

s̄1 = ∑
n

Qnzn,1, (6.11)

which is then normalized to have a unit norm. Repeating for a fixed s̄, we calculate zn,1

as

zn,1 = QT
n s̄1, n ∈ N , (6.12)

and repeat until convergence. For the proof of convergence of ALS algorithm see [123].

The vector s̄1 is considered to be a common basis vector as long as min J1 ≤ ϵ for a

very small threshold ϵ ≥ 0; otherwise, there is no common feature among the trials

and iterations (6.11) and (6.12) stop.

Given the estimated set of common basis vectors, [s̄1, s̄2, . . . , s̄k], it needs to be ensured

that the new sought vector s̄k+1 is not repeated. We can achieve this by considering the

following property of Zn. Suppose Zn,C = [zn,1 zn,2 · · · zn,C], then according to (6.8)

we have:

ZT
n,CZn,C = ZT

n,CQT
n QnZn,C = S̄TS̄ = IC. (6.13)

This means zT
n,k+1zn,k = 0 and zn,k+1 is the null space of zT

n,k, allowing us to update Qn

as

Q(k+1)
n = Q(k)

n (I− zn,kzT
n,k). (6.14)

Finally, this leads to finding s̄k+1 through minimizing the following objective function:

s̄(k+1) ,zn,k+1
min Jk+1 = ∑

n∈N
∥Q(k+1)

n zn,k+1 − s̄k+1∥2
2, s.t. s̄T

k+1s̄k+1 = 1. (6.15)

The ALS algorithm is repeated till Jk+1 is minimized.

6.1.1.2 IED detection based on CFA

In the proposed CFA-based method for IED detection, we employ the COBE algorithm

to extract the common basis vectors S̄ ∈ RL×C among the IEDs. Then, both IED and

non-IED segments Xk ∈ RL×M are projected onto the extracted vectors using Khatri-

Rao product as follows:

Pk = S̄T ⊙ XT
k , (6.16)
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for k = 1, . . . , K, where K is the total number of both IEDs and non-IEDs in the training

and test data, the symbol ‘⊙’ denotes Khatri-Rao product, Xk is an IED or non-IED

segment, and Pk ∈ R(MC)×L represents the same segment after projection. The epilepti-

form spikes (whether scalp-visible or scalp-invisible IEDs) have similar behavior. Most

channels have the same trends, including a sharp excitatory and a damped inhibitory

oscillation during the spike onsets. In addition, these trends are similar to the com-

mon basis vector trend. By Kharti-Rao product, the time samples of each channel are

separately elementwise multiplied by each of the common vectors [s̄1, s̄2, . . . , s̄C]. There-

fore, the epileptiform spikes (or the background activities of scalp-invisible IEDs) are

magnified by projection. On the other hand, since there is no common feature among

the non-IEDs, this projection has no significant impact on them. Furthermore, the kur-

toses of projected segments are extracted for being used as the classification features.

This strength in the amplitude leads to an increase in the IED kurtosis, while does not

significantly affect the non-IED kurtosis.

6.1.2 Sparse Common Feature Analysis

During the past decade, sparse representation has attracted much attention in various

signal processing areas, including epilepsy study [124, 125]. The train of spikes emitted

from individual neurons in the brain can be considered sparse in some domains, such

as time and space. One of the interesting characteristics of an IED is its sparsity in the

time domain. The original COBE algorithm does not exploit this property, making it

inefficient for spike detection. Therefore, we develop a new algorithm, namely SCOBE,

with a sparsity constraint to exploit the common features. Then, we propose a model

based on sparse common features called SCFA to detect the IEDs.

6.1.2.1 SCOBE

This approach extracts the common basis vectors with a sparsity constraint. In other

words, the number of non-zero elements of each basis vector is sparsified. To this end,

the sparsity condition is incorporated into (6.10) to change it into a constrained problem

as follows:

D,a1,zn,1
min J1 = ∑n∈N ∥Qnzn,1 −Da1∥2

2

s.t. ∥a1∥0 ≤ T0, (Da1)
T(Da1) = 1.

(6.17)

for s̄1 = Da1, where D ∈ RL×F is the dictionary (whose columns are the atom signals),

a1 ∈ RF includes the first sparse representation vector of the signals, ∥.∥0 denotes l0-

norm which accounts for the number of non-zero entries, and T0 is a small threshold set

empirically, here it is selected to be 8. However, (6.17) is an NP-hard problem but can be
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Figure 6.2: The proposed SCFA-based (or CFA-based) model for IED detection. X includes the
IED segments (N) from the training set only. S̄ denotes the sparse common basis vectors (or
common basis vectors) extracted by applying the SCOBE (or COBE) algorithm to X . Xk can
be an IED or non-IED segment from the training and test datasets and Pk represents the same
segment after projection. The notation ‘⊙’ denotes Khatri-Rao product.

efficiently solved using several available approximation techniques such as orthogonal

matching pursuit (OMP) [126, 127] and basis pursuit [128, 129].

Apart from D and a1, we need to minimize zn,1, thereby employing ALS iteration.

Suppose Da1 is fixed, zn,1 is computed as:

zn,1 = QT
n Da1, n ∈ N . (6.18)

Then, by keeping zn,1, we have

D,a1
min J1=∥y−Da1∥2

2, s.t. ∥a1∥0 ≤ T0, (6.19)

where y=∑n∈N Qnzn,1. To optimize the objective function (6.19), the OMP technique

[127] is used to approximate the sparsity and the K-SVD algorithm [130] to train the

dictionary D. In terms of stability, it should be noted that in our proposed method

the objective (6.19) is a matrix-based problem optimized by the OMP technique. The

stability of OMP has been proven in [131].

The OMP algorithm is an iterative algorithm that finds the sparse vector a1 element-

by-element in a step-by-step iterative manner. In this algorithm, the atom d f – f th

column of D – with the highest correlation to the current residue, denoted by r, is

selected at each step; f̂ :=
f

argmax |dT
f r|. Once the atom is selected, the signal is
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Algorithm 6.1: The SCOBE pseudocode.

1 Input: Xn, n ∈ N , ϵ ≥ 0
2 Decompose Xn=QnRn s.t. QT

n Qn=IM, n ∈ N .
3 Train a dictionary D using the K-SVD algorithm.

4 S̄ = [ ], Q(1)
n = Qn and k = 1.

5 while Jk ≤ ϵ do
6 Initialize ak randomly and sparsely with a unit norm.
7 while not converged do

8 zn,k = [Q(k)
n ]TDak, n ∈ N ;

9 y=∑n∈N Qnzn,1
10 Use any pursuit algorithm to calculate ak, through approximating the

solution of
ak

min ∥y−Dak∥2
2, s.t. ∥ak∥0 ≤ T0;

11 s̄k = Dak/∥Dak∥2;
12 end while

13 Jk =
1
N ∑n ∥Q

(k)
n zn,k − s̄k∥2

2;
14 S̄ = [S̄ s̄k];
15 k = k + 1;
16 Q(k)

n = Q(k−1)
n (I− zn,k−1zT

n,k−1), n ∈ N ;

17 end while
18 return S̄ = [s̄1 s̄2 · · · s̄C], where C = k− 1.

orthogonally projected to the span of selected atoms I; a1I:=D†
I y. After recalculating

the residue, r = y−DIa1I , the procedure repeats until meeting a stopping condition.

For the implementation of the OPM algorithm, we utilize the Matlab toolbox provided

by Rubinstein et al. [127].

The K-SVD algorithm trains a dictionary for sparse approximation through SVD

[130]. The goal of the algorithm is to iteratively learn a dictionary to achieve the sparsest

representations of the signals in Ψ ∈ RL×T by optimizing the following constrained

objective function:

D,Γ
min ∥Ψ−DΓ∥2

F, s.t. ∀i∥γi∥0 ≤ K0, (6.20)

where Γ ∈ RF×T is the sparse representation matrix of the signals Ψ using the dic-

tionary D ∈ RL×F. K0 is selected to be 4 in our study. It is important to note that

T ≫ F ≫ L and that the columns of D need to be normalized. At first, D is selected

randomly from Ψ. Then, a sparse approximation algorithm, here OPM algorithm, is uti-

lized to compute the sparse representation vectors γi for each example ψi. For updating,

at first, the group of examples using this atom, ϕ f = {i|1 ≤ i ≤ F, γ
f
T ̸= 0}, where γ

f
T is

the f th row in Γ, is defined, and the overall error matrix, E f , is approximated by

E f = Ψ− ∑
b ̸= f

dbγb
T. (6.21)
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The error is then limited to only the columns corresponding to ϕ f as follows:

Elim
f = E f Φ f , (6.22)

where Φ f is a matrix of size T × |ϕ f |, with ones on the (ϕ f (i), i)th entries and zeros

elsewhere. Finally, the SVD decomposition is applied to Elim
f = UΛV, and the dictio-

nary column d f is updated using the first column of U as well as the coefficient vector

γ
f
lim using the first column of V multiplied by Λ(1, 1), the first singular value of the di-

agonal matrix. This procedure is repeated until convergence. The reader is referred to

[130] to see the proof of convergence. For implementation, we used the Matlab toolbox

described in [127].

However, after solving (6.19), from (6.17) the first sparse common basis vector is

obtained as:

s̄1 = Da1, (6.23)

and normalized to have a unit norm. s̄1 and zn,1 are iteratively and in an alternating

manner computed. It should be noted that the condition of min J1 ≤ ϵ needs to be met

for a very small threshold ϵ ≥ 0 for s̄1 to be a sparse common basis vector among the

trials.

In order to avoid repeating the sparse common basis vectors, we need to update Qn.

Here, the property of ZT
n,CZn,C = I is also verifiable like COBE, (6.13). Therefore, Qn is

updated through (6.14).

Finally, after computing Q(k+1)
n , the new sparse common basis vector is obtained by

solving the following objective function:

D,ak+1,zn,k+1
min Jk+1 = ∑n∈N ∥Qk+1

n zn,k+1 −Dak+1∥2
2

s.t. ∥ak+1∥0 ≤ T0, (Dak+1)
T(Dak+1) = 1,

(6.24)

which can be minimized by repeating the procedure in solving (6.17). New sparse

common basis vectors are considered the vectors which make Jk smaller than a very

small threshold ϵ (Jk < ϵ). In other words, the number of common or sparse common

components are determined by ϵ. Accordingly, ϵ should be small enough to avoid

extracting uncommon factors. The pseudo-code of SCOBE is illustrated in Algorithm

1.

To avoid confusion, it should be noted that the number of non-zero elements of each

basis vector – not the number of basis vectors – is sparsified. From (6.17) and (6.19),

it can be seen that the number of non-zero elements of vector ac, where s̄c = Dac, is

sparsified.
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6.1.2.2 IED detection based on SCFA

In the proposed SCFA-based method for IED detection, the sparse common basis vec-

tors among the IEDs from the training dataset are extracted using the developed SCOBE

algorithm. After obtaining the sparse common basis vectors, the IEDs and non-IEDs

from the training and test datasets are projected onto them using the Khatri-Rao prod-

uct according to the procedure given in (6.16). The schematic diagram of CFA- and

SCFA-based methods for IED detection is illustrated in Figure 6.2.

6.2 EXPERIMENTS

6.2.1 Data Description

We analyzed 20-minute EEG recordings from 18 subjects suffering from temporal lobe

epilepsy. The dataset details are given in Section 3.1. IEDs were scored by an expert

epileptologist based on the morphologies and spatial distributions of the observed

waveforms from the iEEG.

In order to increase the SNR and avoid the 50 Hz power line (or national grid),

a bandpass filter with cutoff frequencies of 4 Hz and 48 Hz is applied to the sEEG

signals. In addition, contra-lateral (CL) reference method is employed as re-referencing

method to the sEEG signals [132]. In CL, the right and left hemisphere electrodes are

re-referenced to the right and left earlobe electrodes, respectively. In our work, “Z”

electrodes are re-referenced to the average of the two earlobe electrodes.

For analysis and classification, the length of the segments with IED is selected to be

480 ms (96 samples) – 160 ms before and 320 ms after the peak positions marked as

IED. The non-IED segments with 480 ms length are extracted from the time segments

in which no scored IED exists, with no overlap with the IED segments. The number

of non-IED segments is the same as the number of IED segments for each subject—the

number of trials is summarized in Table 4.1. Then, both IED and non-IED segments are

linearly detrended to alleviate the undesired drifts.

6.2.2 Feature Extraction

We construct X ∈ R96×18×N (whose dimensions 96, 18, and N correspond respectively

to the time samples, scalp channels, and IED segments from the training dataset). Com-

mon (or sparse common) basis vectors S̄ ∈ R96×C, where C is the number of vectors,

are exploited by employing COBE (or SCOBE) to X . Then, both IED and non-IED seg-

ments from the training and test datasets Xk ∈ R18×96 are projected onto the extracted

vectors using the Khatri-Rao product (6.16), Pk = S̄T ⊙ XT
k . Finally, the kurtosis values
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of components of the projected IEDs and non-IEDs Pk ∈ R(18C)×96 are computed as the

classification features.

Kurtosis is a statistical measure of whether the data are heavy-tailed or light-tailed

and describes the shape of a distribution. For each component – here 18C components

– the kurtosis can be computed as:

Kurtosis =
∑96

l=1(µl − µ̄)4/96

σ4 , (6.25)

where µ̄ and σ are respectively the component mean and standard deviation. Each scalp

IED or non-IED segment consists of 18× C features.

6.2.3 Competing Models

We compare the performance of our proposed models with those claimed by very

recent publications in this area.

kurtosis features : We compare our proposed methods with a method in which

the kurtosis features (KFs) are extracted by (6.25) from the raw data after preprocessing.

The corresponding method is referred to as the KFs method. This method is selected for

comparison mainly because, in our algorithm, we extract the kurtosis features from the

projected segments. Therefore, it is helpful to see the effects of kurtosis on the feature

space and IED detection performance.

time-frequency features : TF features are selected as a compared method. More

information about how we obtain TF features is given in Section 5.3.5.1.

simultaneous multilinear low-rank approximation of tensors : The

proposed models are compared with SMLRAT [10]. The model is summarized in Sec-

tion 5.3.5.2.

6.2.4 Feature Selection and Classification

We utilize the Fisher score algorithm to find the significant features. Fisher score is

explained in Section 4.2.5.

Classification of the IED and non-IED segments is performed following two ap-

proaches, namely within- and between-subject classification approaches. In the within-

subject classification approach, an individual classifier is trained for each subject, and

a k-fold (k=5) cross-validation is employed to validate the models. Increasing the num-

ber of folds does not change the outcome. In this approach, subjects 13, 14, and 16 are
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Figure 6.3: The first common and sparse common basis vectors extracted respectively using
COBE and SCOBE from the IED segments of a subject. The IEDs start at 160ms.

excluded from classification because of having less number of trials; thus, the results

of 15 subjects are reported. In the between-subject classification approach, one-subject-

leave-out cross-validation is employed to validate the models. In other words, a subject

is used as the test data, and other subjects (17) are employed to train a classifier. This

is repeated for all the subjects.

In order to classify the IED and non-IED segments, we employed three different

classifiers, namely SVM, DLDA, and NB. ACC, SEN, SPEC, and F1-S are obtained as

the evaluation criteria.

6.3 EXPERIMENTAL RESULTS

The obtained results are presented in three sections. In Section 6.3.1, the extracted

common components and the impact of their projection onto the IED segments are

investigated. The within- and between-subject classification approaches results (perfor-

mance± standard error (SE)) are respectively reported in Section 6.3.2 and Section 6.3.3.

DLDA, SVM, and NB classifiers are employed for classification. We use the first 36 sig-

nificant features according to Fisher scores in CFA and SCFA, 18 significant features

in KFs, 100 significant features in SMLRAT, and 200 significant features in TF. Those

numbers of features give the highest accuracy in their models.

6.3.1 Components and Projection

The first common and sparse common basis vectors extracted respectively using COBE

and SCOBE are illustrated in Figure 6.3. The sparse common basis vector not only is

sharper but also has a higher amplitude than the common basis vector. Furthermore,

the sparse common basis vector does not fluctuate as much as the common basis vector

does.
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Figure 6.4: (a)-(c) show a non-IED segment before and after applying CFA and SCFA; (a) a non-
IED segment before applying the CFA or SCFA, (b) after applying CFA, and (c) after applying
SCFA. (d)-(f) present an IED segment before and after applying CFA and SCFA; (d) an IED
segment before applying CFA or SCFA, (e) after applying CFA, and (f) after applying SCFA.
The segments were projected onto the first common basis vector and sparse common basis
vector only. The IED start at 160 ms. The region of interest is shown by red rectangles.

Figure 6.4 shows a non-IED and an IED segment before and after projection onto

the common and sparse common basis vectors. Although slow waves appear over a

few scalp channels after projecting the non-IED segment onto the first common and

sparse common basis vectors (Figure 6.4 (b) and (c), respectively), strong spikes and

sharp waves appear over all scalp channels after projecting the IED segment onto the
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Table 6.1: The performances of classifiers and the performance SE are shown based on the
within-subject approach with results averaged over 15 subjects and 5 folds. ACC, SEN, and
SPEC are presented in percent (%).

Classifier Model ACC SEN SPEC F1-S

DLDA

TF 70.7±1.7 61.0±2.2 80.3±3.0 0.66±0.02
SMLRAT 64.9±2.0 46.4±3.7 83.4±2.9 0.54±0.04
KFs 70.7±2.6 57.0±2.3 84.3±3.2 0.65±0.02
CFA 73.2±2.3 64.1±2.6 82.3±3.1 0.70±0.02
SCFA 74.2±2.5 63.7±2.7 84.6±2.9 0.70±0.02

SVM

TF 66.9±2.3 65.2±2.2 68.2±2.6 0.66±0.02
SMLRAT 72.9±2.7 63.8±2.5 82.0±3.5 0.69±0.03
KFs 69.8±2.6 56.1±2.8 83.5±2.6 0.64±0.03
CFA 72.3±2.5 64.2±2.6 80.3±2.7 0.69±0.02
SCFA 74.3±2.4 68.0±2.8 80.5±2.5 0.72±0.02

NB

TF 70.5±1.9 68.0±3.5 73.0±3.9 0.68±0.02
SMLRAT 71.3±2.4 61.7±4.3 80.1±3.3 0.65±0.03
KFs 71.3±2.7 54.4±4.2 88.3±1.6 0.63±0.04
CFA 73.6±2.6 64.5±4.4 82.6±2.4 0.69±0.03
SCFA 75.1±2.6 65.5±4.0 84.7±2.2 0.71±0.03

first common and sparse common basis vectors (FIGURE 6.4 (e) and (f), respectively).

Before projecting the IED, Figure 6.4 (d), the IED waveforms are observable only over

channels P3 and P4. After projecting the IED segment onto the common basis vector

obtained using COBE, Figure 6.4 (e), IED waveforms as spikes and sharp waves are

observable over almost all the channels. After projecting the IED segment onto the

sparse common basis vector, Figure 6.4 (f), the IED waveforms become sharper.

6.3.2 IED Detection based on Within-Subject Classification Approach

Both scalp-visible and scalp-invisible IEDs scored by an expert clinician from the iEEG

recordings are detected from the sEEG recordings. The obtained IED detection results

based on the within-subject classification approach are illustrated in Table 6.1.

In DLDA, SCFA outperforms other methods, providing the best performance with

74.2% accuracy, 63.7% sensitivity, 84.6% specificity, and 0.70 F1-score values. CFA presents

the best sensitivity value of 64.1%, which is approximately 4%, 18%, and 7% more than

TF, SMLRAT, and KFs sensitivity values, respectively. In SMLRAT, the DLDA classifier

is biased to the non-IED class, meaning that most segments are recognized as non-IED

segments.
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Table 6.2: The performances of classifiers and the performance SE are shown based on the
between-subject approach with results averaged over all 18 subjects. ACC, SEN, and SPEC are
presented in percent (%).

Classifier Model ACC SEN SPEC F1-S

DLDA

SMLRAT 57.1±1.6 48.7±4.9 65.5±5.6 0.50±0.03
KFs 61.7±1.9 35.4±5.0 87.8±3.8 0.45±0.04
CFA 67.2±2.7 50.0±5.8 84.3±4.4 0.55±0.06
SCFA 67.6±2.6 54.5±4.7 80.7±4.7 0.58±0.05

SVM

SMLRAT 55.5±1.9 29.0±6.1 82.0±3.9 0.32±0.06
KFs 61.6±2.1 32.8±5.1 90.4±3.6 0.42±0.04
CFA 67.3±2.6 52.7±6.7 82.0±4.3 0.57±0.05
SCFA 67.1±2.7 52.0±6.9 82.3±4.3 0.56±0.06

NB

SMLRAT 51.2±1.0 17.5±7.0 84.8±6.0 0.17±0.06
KFs 64.8±3.0 35.1±6.6 94.5±3.2 0.43±0.07
CFA 66.3±2.7 40.5±6.4 92.1±3.4 0.49±0.06
SCFA 67.8±2.9 43.1±6.5 92.5±3.5 0.52±0.06

The best accuracy of SVM classifier is obtained using SCFA, which is 74.3%. Regard-

ing SEN and F1-S, the SCFA model outperforms other methods as well. In terms of

SPEC, KFs provide the best value. TF is the worst method versus all the criteria except

in terms of SEN.

SCFA achieves the best accuracy of 75.1%, specificity of 84.7%, and F1-score of 0.71%

using the NB classifier. TF obtains the best sensitivity of 68%. CFA classifies the IEDs

and non-IEDs with 73.6% accuracy, which is higher than those by TF, SMLRAT, and

KFs.

6.3.3 IED Detection based on Between-Subject Classification Approach

The obtained IED detection results based on the between-subject classification approach

are shown in Table 6.2. Here, the performance of SMLRAT, KFs, CFA, and SCFA are

reported. The TF method is not employed here in the between-subject classification

approach. The authors of [8] use the TF method to detect IEDs in the within- and

between-subject classification approach. However, in the between-subject classification

approach, the authors train a classifier for each subject using the data of the same

subject. Then, all the trained classifiers are combined to detect IEDs of a new subject.

Since the data of different subjects are not combined in the TF model, it is not employed

in this approach.
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Using DLDA, SCFA achieves the best accuracy of 67.6%, which is approximately 10%

and 6% more than the accuracy obtained respectively by SMLRAT and KFs. In addition,

it presents the best sensitivity and F1-score values. In terms of specificity, KFs achieve

the best value of 87.8%.

Using SVM, CFA provides the best accuracy of 67.3%, which is slightly more than

the accuracy of SCFA, 67.1%. In terms of specificity, KFs achieve significantly better

performance. However, KFs and SMLRAT are biased toward the non-IED class. While

they achieve respectively the specificity values of 90.4% and 82%, they detect IEDs

respectively with only 32.8% and 29% sensitivity values.

Using NB, SCFA outperforms CFA, KFs, and SMLRAT in all the criteria except speci-

ficity. It achieves the accuracy of 67.8%, which is respectively 1.5%, 3.0%, and 16.6%

more than those of CFA, KFs, and SMLRAT. The SMLRAT model provides the worst

performance with the sensitivity value of 17.5%. Generally, the NB classifier is biased

toward the non-IED class in all the methods.

6.4 DISCUSSION

In both IED classification approaches, SCFA, a new sparse common feature analysis

method, outperforms TF and SMLRAT (which is based on non-negative Tucker decom-

position). The major advantage of our proposed models is that they extract the com-

ponents in a trial-, subject-, and channel-independent-based approach, which enables

the algorithms to effectively capture the background EEG activities and the intracranial

biomarkers of epilepsy. Furthermore, SCFA outperforms CFA, while common compo-

nents are extracted and used for classification in both. The only difference between CFA

and SCFA is that SCFA exploits common components with sparsity constraints. This

shows that our proposed algorithm, SCOBE, is superior to the plain COBE algorithm.

SMLRAT [10] has been reported to have a high performance where scalp-visible

epileptic and non-epileptic spikes are detected with an accuracy as high as 95.8% from

scalp recordings. In contrast, here, both scalp-visible and scalp-invisible IEDs are de-

tected, causing a fall in the performance of all the methods. SMLRAT performs signifi-

cantly better in the within-subject approach compared to the between-subject approach.

The best accuracy obtained for the within-subject classification approach is 72.9%, while

it is 57.1% for the between-subject classification approach. SMLRAT is based on spec-

tral, temporal, and spatial components. In our dataset, the locations of IED sources are

different among subjects. For each subject, the IEDs may be originated from the right,

left, or both temporal lobes. That is, when the data of different subjects are combined,

spatial components not only become meaningless but also deteriorate the performance

of a classifier.
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In many studies, IEDs are detected with high accuracy [26, 74], while in our study,

the performances of both proposed and compared methods are not high. However,

only scalp IEDs are included in their dataset, while a large proportion of IEDs is not

observable from over the scalp. Therefore, they naturally ignore a large proportion of

IEDs by default. Our dataset consists of both scalp-visible and scalp-invisible IEDs.

The importance of this dataset is that we access concurrent iEEG and sEEG from the

training subjects. After training a model, it can be employed to detect scalp-visible and

scalp-invisible IEDs of a new subject from only the scalp recordings. The proposed

SCFA and CFA methods detect respectively IEDs of new subjects with the accuracy

values of 67.8% and 67.3%. This can bring a huge benefit to clinicians in monitoring

epilepsy.

The only limitation of our approach is that the IED morphologies are different and

also change with age [49]. Therefore, to generalize the application, we should have

access to the data from a wider age range. In our another approach, we include the IED

shape diversity into a higher dimensional tensor decomposition approach, presented

in Chapter 4.

6.5 CONCLUSION

Automated detection of as many as possible IEDs from over the scalp is of paramount

importance for epilepsy diagnosis and management. This is due to the fact that the

majority of IEDs are invisible on the scalp, and a large proportion of IEDs can be

missed out during the clinical examination. To overcome this deficiency, we effectively

use a limited set of concurrent iEEG-sEEG recordings to design an algorithm that can

be applied to the sEEGs only. In this work, we adopt the COBE algorithm proposed

in [122] to extract the common components among the IEDs and then extend it to

exploit the common features with sparsity constraints, called SCOBE. We propose two

models, namely CFA and SCFA, based on COBE and SCOBE algorithms, respectively.

We show that by employing the proposed models for the scalp-invisible IEDs, they

become detectable from the sEEG signals. We have employed SVM, DLDA, and NB for

classification and compared our proposed methods with two benchmark models, i.e.,

TF [8] and SMLRAT [10]. IEDs are detected via two different classification approaches,

within- and between-subject classification approaches. The SCFA model outperforms

other methods in both approaches and achieves respectively the best accuracy values of

75.1% and 67.8% using the NB classifier. These findings show that common component

analysis can be very effective in capturing IED signatures, and exploiting the common

components among IED segments with sparsity constraints is superior to exploiting

the common components without any constraint.
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The iEEG recordings enjoy high temporal and spatial resolution and hence a high sensi-

tivity in detecting IEDs/spikes. Therefore, by mapping sEEG to iEEG through an effec-

tive projection model, the sensitivity of sEEG signals in the identification of IEDs can

significantly increase. In a brain-computer interface application, the sEEG was modeled

using a linear combination of iEEG via ordinary least-squares regression (LSR) [133].

Spyrou and Sanei [83] trained a dictionary and a mapping function to map the sEEG

to iEEG to increase the quality of data. Quite recently, Antoniades et al. [9] developed

a deep learning architecture using AE and CNNs to map the sEEG to iEEG to detect

IEDs from concurrent sEEG and iEEG recordings. These studies have motivated us to

develop a model to map the TF features of sEEG to the TF features of iEEG recordings

to detect IEDs from concurrent sEEG and iEEG recordings. Our proposed method is

based on tensor factorisation.

Tensor factorisation has been used in mapping models in image and video processing

domains [134–136]. Macêdo, Brazil, and Velho [134] mapped a photographed expres-

sion performed by a given subject onto the photograph of another person’s face by

employing TD. In [135], the authors mapped the video-recorded performance of one

person to the facial animation of another. Wang and Ahuja [136] used tensor decompo-

sition to model and synthesize the facial expressions of new persons. They extracted

facial features by employing principle component analysis and concatenated them onto

a three-way tensor with the dimension of subject, expression, and feature, X ∈ RI×J×K,

where I and J are respectively the number of subjects and facial expressions, and K
indicates the dimension of the facial features. TD is employed to decompose the tensor

into a core tensor and matrix factors: X = S ×1 Uperson ×2 Uexpression ×3 U f eature. Then,

two tensors are defined for the expression and person modes:

T expression = S ×2 Uexpression ×3 U f eature, (7.1)

T person = S ×1 Uperson ×3 U f eature. (7.2)

Now, by having an expression of a new person, his or her other expressions can be

synthesized by mapping the features of a given expression to the extracted expression
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tensor in (7.1). Similarly, if an unknown expression of a known person is given, it can

be mapped onto the extracted person tensor in (7.2) to synthesize the same expression

of other persons.

Here, we propose a model to map the TF features of sEEG to those of iEEG signals via

tensor factorisation techniques. The concurrent sEEG and iEEG recordings are utilized

in this study. At first, both sEEG and iEEG recordings are decomposed by CWT to ob-

tain the TF features. All IED segments of iEEG recordings from the training dataset are

concatenated into a four-way tensor of time, frequency, channel, and IED segment. The

tensor is then decomposed into temporal, spectral, spatial, and segmental factors using

TD and CPD. Finally, both IED and non-IED segments of sEEG from both training and

test datasets are projected onto the temporal components to extract the discriminative

features for IED detection. Two types of classifiers, namely DTE and KNN, are then

applied for classification.

The rest of this chapter is structured as follows. First, the mapping method is de-

scribed. Then, the experimental matters and results are presented. The last section

concludes the chapter.

7.1 SCALP-TO-INTRACRANIAL EEG PROJECTION

Here, we present a method based on tensor factorisation to map/project the TF features

of sEEG to those of iEEG. The proposed method has three stages: 1) concatenating

the TF features of iEEG into a tensor, 2) decomposing the constructed tensor, and 3)

mapping the TF features of sEEG to those of iEEG recordings.

7.1.1 Concatenating the TF Features of iEEG (Intracranial IEDs) into a Tensor

Suppose our training dataset consists of N IED segments from the concurrent iEEG

recordings, Xn ∈ RLt×Mfo , n = {1, · · · , N}, where Lt is the number of time samples

and Mfo corresponds to the number of FO channels. CWT is applied to Xn, and the

magnitude of wavelet coefficients is calculated as TF features. Then, the TF features of

IEDs are concatenated into a four-way tensor, X ∈ RL×F×Mfo×N , where L and F respec-

tively correspond to the number of temporal and spectral features. In CWT, a complex

Morlet wavelet is used as the mother wavelet. The wavelet toolbox from Matlab 2018b

is utilized to calculate CWT. In the Matlab wavelet toolbox, the minimum and maxi-

mum scales are determined automatically based on the energy spread of the wavelet

in frequency and time.
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Figure 7.1: The schematic of the proposed MStI-CPD and MStI-TD methods.

7.1.2 Decomposing the Constructed Tensor

In the second step, the constructed tensor is decomposed into temporal, spectral, spa-

tial, and segmental factors. TD and CPD, which are the most popular tensor decompo-

sition techniques, are employed in this study.

cpd-based tensor decomposition : The CPD algorithm is employed to de-

compose the tensor into the factor matrices as follows: temporal A ∈ RL×R, spectral

B ∈ RF×R, spatial C ∈ RMfo×R, and segmental D ∈ RN×R factors.

td-based tensor decomposition : TD enjoys more flexibility than CPD. Unlike

CPD, in which the core-tensor is diagonal, the core-tensor does not need to be diagonal

in TD, while the factors are orthogonal matrices. We employ the HOOI algorithm [112]

described in Section 3.2.2.2 to solve the TD problem. The tensor X is decomposed to

X = G ×1 Ā×2 B̄×3 C̄×4 D̄, (7.3)

where Ā ∈ RL×R1 , B̄ ∈ RF×R2 , C̄ ∈ RMfo×R3 , and D̄ ∈ RN×R4 , all with orthonormal

columns, are respectively temporal, spectral, spatial, and segmental factor matrices.

G ∈ RR1×R2×R3×R4 is the core tensor, and its entries illustrate the level of interaction

between the factor matrices. Recall that ×i indicates the i-th mode product.
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7.1.3 Mapping the TF Features of sEEG to those of iEEG Recordings

Suppose our training and test datasets consist of K IED and non-IED segments from

sEEG recordings, Yc ∈ RL×Msc , c = {1, · · · , C}, where Msc indicates the number of scalp

channels. CWT is employed to decompose the segments. The magnitude of wavelet co-

efficients is obtained as TF features. Then, the TF features of each segment are concate-

nated into a three-way tensor, Yc ∈ RL×F×Msc , c ∈ C. Finally, Yc are projected onto the

temporal factors obtained using CPD and TD, respectively referred to as mapping scalp

to intracranial recordings via CPD (MStI-CDP) and via TD (MStI-TD). Here, the tem-

poral components can provide the most discriminative features since intracranial and

scalp electrodes capture the IED signatures at the same time. Meanwhile, the spatial

distributions of intracranial and scalp signals are generally different. Thus, projecting

the segments onto the spatial components is meaningless.

7.1.3.1 MStI-CDP

The TF features of IED and non-IED segments extracted from sEEG recordings, Yc, are

projected onto the temporal factors achieved by CPD, A, as follows:

Zc = Yc ×1 A⊤, (7.4)

where Zc ∈ RR×F×Msc for c = {1, · · · , C} is the projected segment of {Yc, c ∈ C} and

(.)⊤ indicates transpose of a matrix. Now, the projected segments, Zc, are used for

classification. Figure 7.1 shows the schematic of the proposed MStI-CPD model.

7.1.3.2 MStI-TD

After obtaining the temporal factors using TD, Ā, the TF features of IED and non-IED

segments extracted from sEEG recordings, Yc, are projected onto them as follows:

Z̄c = Yc ×1 Ā⊤, (7.5)

where Z̄c ∈ RR1×F×Msc for c = {1, · · · , C} indicates the projected segment of {Yc, c ∈
C}. Finaly, the projected segments, Z̄c, are employed to classify IEDs and non-IEDs.

The schematic of the proposed MStI-TD model is presented in Figure 7.1.

7.2 EXPERIMENTS

7.2.1 Dataset

The sEEG signals of 18 epileptic subjects are analysed. The dataset details are given in

Section 3.1. Here, a Butterworth highpass filter with a cut frequency of 4 Hz and the
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order of 6 has been employed to remove the DC shift, baseline fluctuations, and eye

movement artefacts. In addition, a notch filter with a notch frequency of 50 Hz was

applied to eliminate the power line interference. The filters are applied to both sEEG

and iEEG recordings.

For removing artefacts, a spatial filter is applied to only sEEG recordings. The average

amplitude of sEEGs from four electrodes – namely F3, F4, F7, and F8 – is calculated

and subtracted from all the scalp signals. These electrodes are placed over the mesial

temporal lobes, where the IEDs originate. Empirically, we have found that these are the

most effective electrodes in this application for re-referencing.

Here, the signal segment within 160 ms before and 320 ms after the peaks marked

as the onset of IED waveforms are selected as IED segments. That is, the length of

each IED segment is 480 ms (96 samples). Non-IED segments with the same length of

480 ms are selected without overlap with IED segments. The number of IED and non-

IED segments is set to be the same for each subject. Both IED and non-IED segments

are linearly detrended to remove the undesired drifts. The total number of IED and

non-IED segments is shown in Table 4.1.

7.2.2 Applying the Proposed Tensor-based Methods to Map sEEG to iEEG

7.2.2.1 Constructing the training tensor

As described in Section 7.1.1, CWT is applied to the IED segments of training dataset

from iEEG recordings – Xn ∈ R96×12, n = {1, · · · , N}, where 96 and 12 are respectively

the number of time samples and FO channels, and N is the number of IED segments

in the training dataset – to obtain the TF features. Finally, the TF features of IEDs

are concatenated into a four-way tensor, X ∈ R96×37×12×N , where 37 is the number

of wavelet scales which is automatically determined by Matlab wavelet toolbox. Next,

either CPD or TD is employed to exploit the factor matrices.

7.2.2.2 Decomposing the tensor using CPD or TD

In decomposing a tensor, the number of components should be large enough to avoid

missing important information and small enough to avoid undesired information. In

CPD, the number of components is selected to be between 3 and 8. Then, the opti-

mized number of components is automatically obtained by a nested cross-validation

technique. The tensor X is decomposed into temporal A ∈ R96×R, spectral B ∈ R37×R,

spatial C ∈ R12×R, and segmental D ∈ RN×R factors.

In TD, the numbers of temporal, spectral, and spatial components are selected to be

between 3 and 8, and a nested cross-validation method is used to find the optimum

number of components. However, the number of segmental components is selected to

be the same as the number of segments R4 = N. The TD algorithm is employed to
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decompose the tensor X into the core tensor G ∈ RR1×R2×R3×N and the factor matrices,

i.e. temporal Ā ∈ R96×R1 , spectral B̄ ∈ R37×R2 , spatial C̄ ∈ R12×R3 , and segmental

D̄ ∈ RN×N factor matrices.

7.2.2.3 Mapping sEEG to iEEG through MStI-CPD and MStI-TD

For mapping the sEEG to iEEG, the TF features of all IED and non-IED segments from

both the training and test datasets of sEEG recordings – Yc ∈ R96×18, c = {1, · · · , C}
– are calculated. CWT with complex Morlet wavelet is applied for extracting the TF

features. Then, the TF features of each segment are concatenated into a three-way tensor,

Yc ∈ R96×37×18, c ∈ C.

applying msti-cpd : In MStI-CPD, Yc is projected onto the temporal factors ob-

tained using CPD, A, through equation (7.4), which gives Zc ∈ RR×37×18 for c =

{1, · · · , C}. Finally, Zc is vectorized and used for classification.

applying msti-td : In MStI-TD, Yc is projected onto the temporal factors obtained

using TD, Ā, via (7.5), resulting in Z̄c ∈ RR1×37×18 for c = {1, · · · , C}. Finally, we

vectorize Z̄c and use it for classification.

7.2.3 Feature Selection

The number of extracted features depends on the number of temporal factors, selected

to be between 3 and 8 by nested cross validation. Thus, the minimum number of fea-

tures is 3 × 37 × 18 = 1998, and their maximum 8 × 37 × 18 = 5328. However, the

number of features is relatively high for applying directly to a classifier. Therefore, we

employ a feature selection method to find the most discriminative features.

Minimum redundancy — maximum relevance (MRMR) approach is used as a feature

selection method [137]. In MRMR, the mutual information is calculated to measure the

level of similarity between features. Those features that are mutually maximally dissim-

ilar (their mutual Euclidean distances are maximized, or their pairwise correlations are

minimized) are selected as discriminative features.

7.2.4 Classification and Cross-validation

DTE (with bagging technique) and KNN are employed as classifiers. ACC, SEN, SPEC,

and F1-S are obtained as evaluation criteria. Two approaches of within- and between-

subject classifications are used for evaluation. In the within-subject approach, the IEDs

and non-IEDs of each subject are classified separately, meaning that the training and

test data come from the same subject. In this approach, k-fold (k = 5) cross-validation
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is employed for classification, that is, four folds are used for training and the rest for

testing. On the other hand, in the between-subject approach, IEDs and non-IEDs of

all the subjects are classified together. Leave-one-subject-out cross-validation is used

in this approach. That is, the IED and non-IED segments of a subject are used as the

test data, and the other subjects’ data are used for training the model. This process

is repeated for all subjects one-by-one. Note that the data of those subjects who pro-

vide high performance in the within-subject classification approach are included in the

training dataset. For finding the hyperparameters, including the optimized number of

neighbors in KNN and the number of components in tensor decomposition techniques,

nested cross-validation is used. In the nested cross-validation, a subset of training data

is employed for training the model, and the rest is used for validation to optimize the

hyperparameters.

7.2.5 Competing Approaches

Our proposed method is compared with the following four methods.

• SCA: SCA is proposed in Chapter 3. In SCA, all IEDs from sEEG are concatenated

into a three-way tensor. Temporal, spatial, and segmental factors are obtained by

employing CPD. Finally, all IEDs and non-IEDs are projected onto the spatial

components. In this method, only sEEG recordings are used in both training and

test datasets.

• TF: In the TF-based method [8], the TF features are extracted using the spectro-

gram method and used as the classification features for IED detection. In this

work, an individual classifier is trained for each training subject. All classifiers

of training subjects are ensemble to detect the IEDs of the test subject. Note that

only sEEG is used for training the classifiers. The logistic regression classifier is

employed as classification.

• LSR: In [133], an LSR model is employed to model the iEEG from sEEG record-

ings. A stepwise discriminant analysis classifier is employed for classification.

• AAE & ASAE: In [9], the authors map the sEEG to iEEG by developing an asym-

metric AE (AAE). They call it asymmetric since the number of inputs and outputs

of AE are not the same. The output of AAE is referred to as pseudo-iEEG. The

pseudo-iEEG is again mapped to the real iEEG by feeding it to a symmetric AE.

The overall method is called asymmetric-symmetric AE (ASAE). A CNN was em-

ployed for feature exploitation and classification. These methods are referred to

respectively as AAE and ASAE.
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Figure 7.2: The accuracy of between-subject IED and non-IED classification versus the number
of selected features based on MRMR feature selection method for combined scalp-visible and
scalp-invisible spikes. Scalp-invisible IEDs comprise more than 90% of the total spikes.

7.3 EXPERIMENTAL RESULTS

An effective subset of features is selected based on the MRMR feature selection method.

Figure 7.2 shows the performances of classifiers in the between-subject approach versus

the number of selected features. The DTE classifier has the best accuracy respectively

through the first 100 and 80 features using MStI-TD and MStI-CPD methods. On the

other hand, the KNN classifier achieves the best accuracy through the first 80 features

in both MStI-TD and MStI-CPD methods.

Table 7.1 shows the obtained results from MStI-TD and MStI-CPD using the DTE

classifier. The performance of each subject, the mean of performance across subjects,

and the standard error (SE) of the performance are illustrated. In the between-subject

classification approach, the obtained accuracy values vary among subjects from 47.3%

to 92.1% in both MStI-TD and MStI-CPD. However, the average accuracy values across

subjects achieved using MStI-TD and MStI-CPD are respectively 72.6% and 72.7% with
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the SE of approximately 2.7% and 3.1%. This is promising as the accuracy value in-

cludes those of scalp-invisible spikes – which include over 80% of the total spikes – too.

The obtained results from the within-subject classification approach are shown in Ta-

ble 7.1 in parentheses. MStI-TD provides accuracy values of higher than 80% for most

subjects. On average, it achieves 84.2% accuracy, 80.5% sensitivity, 87.9% specificity, and

0.82 F1-score. The performance of MStI-CPD is comparable with that of MStI-TD, and

it classifies IED and non-IEDs with 81.3% accuracy and 75.5% sensitivity.

Overall, the performance of the KNN classifier shown in Table 7.2 is relatively lower

than that of the DTE classifier. It provides an accuracy of around 70% in the between-

subject classification approach and around 80% in the within-subject classification ap-

proach (shown in parentheses) using both MStI-TD and MStI-CPD methods. However,

the KNN classifier detects the IEDs with 62.4% and 62.0% sensitivity values using re-

spectively MStI-TD and MStI-CPD in the between-subject approach. It also achieves

the sensitivity value of 73.1% using both MStI-TD and MStI-CPD in the within-subject

approach.

In subject 1, none of the IEDs (SEN) is detected, and both classifiers are biased to

the non-IED class in both mapping models. In other words, most EEG segments are

recognized as non-IED segments. In subjects 3, 4, and 6, the KNN classifier is also

biased toward the non-IED class. The sensitivity value is less than 20% for these sub-

jects, while specificity is 100%. The DTE classifier also does not achieve high sensitivity

values for these subjects. It can be concluded that these subjects may generate IEDs

with different morphologies compared to other subjects. In the projection procedure,

the segments are projected onto the temporal factors. When the IED morphologies of a

test subject are different from those of the training subjects, the projection cannot give

discriminative features, and thus the classifier fails to detect the IEDs and non-IEDs.

The number of segments does not affect the results. In the within-subject approach,

high performance has been achieved for subjects with less than 20 IED segments and

those with more than 200 IED segments. Conversely, the performance differs for dif-

ferent subjects in the between-subject approach, where the number of segments in the

training dataset is not significantly different due to using leave-one-subject-out cross-

validation. Therefore, it can be concluded that the number of segments does not affect

the model performance.

The proposed mapping models have been compared with SCA, TF, LSR, AAE, and

ASAE. The obtained results are illustrated in Table 7.3. The results of our proposed

methods are reported based on the DTE classifier. The results of AAE, ASAE, and LSR

are based on the results obtained in [9]. The performance of TF is based on [8]. The

results of SCA are based on our previous work reported in Chapter 5. TF, LSR, AAE,

and ASAE studies reported the sensitivity, specificity, and F1-S only in the between-

subject classification approach. All these studies [8, 9, 138] use the same dataset we

use to evaluate our methods. Our proposed mapping models outperform the others.
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Table 7.1: The performance of our proposed MStI-TD and MStI-CPD models obtained using the
DTE classifier. SE shows the standard error of the performance. The numbers in parentheses
are the within-subject classification performance. ACC, SEN, and SPC are presented in percent
(%).

Subject MStI-TD MStI-CPD
ACC SEN SPC F1-S ACC SEN SPC F1-S

1 47.3
(80.0)

0.0
(93.3)

94.7
(66.6)

0.0
(0.83)

47.3
(80.0)

0.0
(86.6)

94.7
(73.3)

0.0
(0.78)

2 65.6
(90.0)

97.7
(85.7)

33.6
(94.2)

0.74

(0.89)
60.9
(89.0)

98.4
(85.0)

23.2
(93.1)

0.71

(0.88)
3 63.9

(80.6)
34.4
(78.6)

93.4
(82.6)

0.48

(0.80)
61.6
(75.0)

27.1
(72.0)

96.0
(78.0)

0.41

(0.74)
4 64.8

(83.0)
29.6
(80.0)

100

(86.0)
0.45

(0.76)
59.2
(85.0)

20.3
(78.0)

98.1
(92.0)

0.33

(0.81)
5 90.5

(90.6)
86.1
(82.6)

94.9
(98.6)

0.90

(0.89)
90.5
(88.6)

82.3
(78.6)

98.7
(98.6)

0.89

(0.87)
6 73.0

(82.6)
48.7
(78.4)

97.2
(86.88)

0.64

(0.82)
71.4
(78.3)

45.3
(70.0)

97.5
(86.5)

0.61

(0.76)
7 62.8

(77.2)
31.2
(73.6)

94.4
(80.8)

0.45

(0.74)
64.8
(77.2)

32.8
(72.0)

96.8
(82.4)

0.48

(0.73)
8 59.9

(79.3)
95.3
(74.2)

23.9
(84.3)

0.70

(0.78)
59.4
(72.9)

94.5
(69.8)

24.3
(76.0)

0.70

(0.72)
9 92.1

(93.3)
89.5
(86.6)

94.7
(100)

0.91

(0.92)
92.1
(86.6)

89.4
(73.3)

94.7
(100)

0.92

(0.84)
10 59.3

(79.5)
36.6
(77.1)

82.0
(82.0)

0.47

(0.79)
59.3
(71.9)

34.1
(69.7)

84.7
(74.2)

0.45

(0.71)
11 76.4

(77.0)
77.4
(69.5)

75.4
(84.3)

0.76

(0.75)
74.7
(75.2)

80.0
(72.2)

69.3
(78.2)

0.76

(0.75)
12 75.8

(83.5)
86.1
(74.7)

65.7
(92.3)

0.78

(0.82)
75.8
(84.1)

86.0
(72.9)

65.7
(95.3)

0.78

(0.82)
13 80.7

(90.0)
61.5
(90.0)

100

(90.0)
0.76

(0.89)
80.7
(75.0)

61.5
(70.0)

100

(80.0)
0.76

(0.65)
14 85.0

(80.0)
90.0
(76.0)

80.0
(90.0)

0.85

(0.76)
90.0
(85.0)

90.0
(80.0)

90.0
(90.0)

0.90

(0.82)
15 71.2

(84.8)
92.5
(81.4)

50.0
(88.1)

0.76

(0.84)
72.4
(81.9)

91.3
(73.3)

93.5
(90.4)

0.76

(0.80)
16 81.8

(85.0)
72.7
(80.0)

90.9
(90.0)

0.80

(0.76)
90.9
(85.0)

90.9
(70.0)

90.9
(100)

0.91

(0.73)
17 75.8

(87.6)
73.0
(85.8)

78.6
(89.4)

0.75

(0.87)
75.8
(82.3)

73.0
(80.0)

78.6
(84.7)

0.75

(0.82)
18 81.6

(90.9)
92.3
(86.6)

71.0
(95.1)

0.83

(0.90)
82.0
(89.4)

92.3
(85.4)

71.6
(93.3)

0.83

(0.89)

Mean 72.6
(84.2)

66.4
(80.5)

78.9
(87.9)

0.67

(0.82)
72.7
(81.3)

66.1
(75.5)

79.3
(87.0)

0.66

(0.78)
SE ±2.7

(±1.2)
±6.8
(±1.5)

±5.3
(±1.8)

±.05
(±.01)

±3.1
(±1.3)

±7.3
(±1.3)

±5.7
(±2.1)

±.05
(±.01)
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Table 7.2: The performance of our proposed MStI-TD and MStI-CPD models obtained using the
KNN classifier. SE shows the standard error of the performance. The numbers in parentheses
are the within-subject classification performance. ACC, SEN, and SPC are presented in percent
(%).

Subject MStI-TD MStI-CPD
ACC SEN SPC F1-S ACC SEN SPC F1-S

1 50.0
(80.0)

0.0
(80.0)

100

(80.0)
0.0
(0.78)

50.0
(90.0)

0.0
(86.6)

100

(93.3)
0.0
(0.87)

2 67.0
(87.7)

96.5
(77.3)

37.4
(98.0)

0.74

(0.86)
62.6
(86.0)

99.2
(76.1)

25.9
(95.7)

0.72

(0.84)
3 33.0

(78.3)
6.0
(76.0)

100

(80.0)
0.11

(0.78)
51.3
(70.0)

2.6
(68.0)

100

(72.0)
0.05

(0.69)
4 55.5

(79.0)
11.1
(70.0)

100

(88.0)
0.20

(0.70)
55.1
(81.0)

10.2
(74.0)

100

(88.0)
0.16

(0.75)
5 91.7

(88.0)
86.1
(76.0)

97.4
(100)

0.91

(0.86)
84.1
(86.6)

84.8
(73.3)

83.5
(100)

0.84

(0.84)
6 59.2

(80.3)
18.5
(72.8)

100

(87.8)
0.31

(0.86)
56.5
(73.9)

13.2
(62.5)

99.7
(85.3)

0.23

(0.70)
7 63.2

(73.2)
28.0
(59.2)

98.4
(87.2)

0.43

(0.59)
60.0
(72.8)

20.1
(62.4)

99.5
(83.2)

0.32

(0.64)
8 63.4

(72.9)
87.0
(62.2)

39.8
(83.6)

0.70

(0.69)
60.5
(69.8)

89.1
(61.8)

31.9
(77.8)

0.69

(0.67)
9 94.7

(96.6)
94.7
(93.3)

94.7
(100)

0.94

(0.96)
86.8
(83.3)

84.2
(66.6)

89.4
(100)

0.86

(0.78)
10 58.5

(76.7)
31.8
(74.8)

85.2
(78.7)

0.43

(0.76)
60.7
(65.1)

43.1
(62.9)

78.4
(67.4)

0.52

(0.64)
11 72.7

(73.9)
75.4
(66.6)

69.9
(81.1)

0.73

(0.72)
74.1
(73.0)

80.3
(64.9)

67.9
(81.1)

0.52

(0.64)
12 73.0

(80.8)
88.9
(62.3)

57.0
(99.4)

0.77

(0.76)
68.9
(80.6)

88.3
(61.7)

49.4
(99.4)

0.74

(0.76)
13 33.1

(80.0)
46.1
(70.0)

100

(90.0)
0.63

(0.69)
73.1
(80.0)

46.1
(70.0)

100

(90.0)
0.63

(0.69)
14 85.0

(80.0)
90.0
(70.0)

80.0
(90.0)

0.85

(0.76)
80.0
(85.0)

80.0
(80.0)

80.0
(90.0)

0.80

(0.82)
15 67.3

(81.6)
95.3
(71.6)

39.3
(91.6)

0.75

(0.79)
61.1
(79.1)

94.2
(69.8)

28.0
(88.4)

0.71

(0.77)
16 86.3

(75.0)
90.0
(70.0)

81.8
(80.0)

0.87

(0.66)
90.9
(90.0)

100

(90.0)
81.8
(90.0)

0.91

(0.89)
17 81.4

(87.6)
86.5
(83.5)

76.4
(91.7)

0.82

(0.87)
82.5
(82.9)

88.7
(77.0)

76.4(88.2)0.83

(0.82)
18 83.1

(90.0)
91.1
(80.6)

75.1
(99.4)

0.84

(0.88)
85.5
(87.5)

91.7
(75.7)

79.3(99.4)0.86

(0.85)

Mean 71.0
(81.2)

62.4
(73.1)

79.6
(89.3)

0.61

(0.77)
69.1
(79.8)

62.0
(71.3)

76.1
(88.3)

0.59

(0.76)
SE ±3.2

(±1.5)
±8.5
(±1.9)

±5.3
(±1.8)

±.07
(±.02)

±3.1
(±1.7)

±8.7
(±2)

±6.0
(±2.2)

±.07
(±.02)
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Table 7.3: The performance of our proposed MStI-TD and MStI-CPD models (using the DTE
classifier) and the competing methods with results averaged over all subjects. The numbers in
parentheses are the within-subject average of IED and non-IED classification rate. ACC, SEN,
and SPC are presented in percent (%).

Models ACC SEN SPC F1-S

SCA 62 (78) 43 (70) 80 (87) 0.47 (0.76)
TF 65 (67) 65 64 0.63

LSR 62 (65) 61 59 59

AAE 66 (68) 66 65 0.65

ASAE 68 (73) 67 68 0.68
MStI-TD 72 (84) 66 (80) 78(87) 0.67 (0.82)
MStI-CPD 72 (81) 66 (75) 79(87) 0.66 (0.78)

Among the compared methods, ASAE achieves the best accuracy of 68%, which is 4%

less than that of our proposed MStI-TD and MStI-CPD models in the between-subject

approach. AAE, ASAE, and LSR map the sEEG to iEEG. However, LSR achieved 62%

accuracy, which is 3% less than the accuracy of TF, while the TF model is based on only

sEEG recordings. SCA is biased to the non-IED class and provides a low sensitivity

value of 43% in the between-subject classification approach.

Though our proposed method is biased toward the non-IED class in very few sub-

jects, there is a good balance between sensitivity and specificity. We project the IED

and non-IED segments onto the temporal factors. Therefore, the bias occurs when the

IED morphology of the test subject differs from those of the training subjects, which

is rare. On the other hand, in SCA, the IED and non-IED segments are projected onto

the spatial components. Because of spatial projection, SCA depends on the IED source

location. Therefore, when the location of IED sources for the test subject differs from

that of the training subjects, the system tends to be biased toward the non-IED class.

As it can be seen from Table 7.3, SCA performs significantly better in the within-subject

approach (the accuracy of 78% and sensitivity of 70%) as compared to the between-

subject approach (the accuracy and sensitivity values of 62% and 43%, respectively).

This difference between the performances of within- and between-subject approaches

indicates that SCA is sensitive to the epileptiform source location and is not necessarily

suitable for being employed in a between-subject classification approach.

7.4 DISCUSSION

IED identification can establish a guideline for pre-ictal state monitoring, seizure pre-

diction, treatment, and surgical planning. However, the sensitivity of scalp recordings

is low in capturing epileptiform discharges, and around 30% to 40% of patients con-
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sidered for epilepsy surgery require intracranial recordings [5]. On the other hand,

intracranial recordings are invasive and have side effects. Therefore, ameliorating the

sensitivity of sEEG to detect IEDs motivates developing a new direction for more con-

cise seizure prediction.

In some studies, the IEDs are detected with high sensitivity from sEEG signals [10,

85]. Thanh et al. proposed a tensor-based method to detect epileptic and non-epileptic

spikes [10]. Their model achieved a sensitivity value of 83%. In [85], the authors de-

veloped a method based on deep neural networks. The model detects the epileptiform

discharges with 81% sensitivity, while it suffers from low specificity of 46%. However,

in both studies, scalp recordings are utilized for scoring IEDs. The main disadvantage

of studies in which sEEG signals are used as ground truth for labeling IEDs is that they

miss the scalp-invisible IEDs or spikes, which often contribute to more than 80% of the

IEDs by default.

Among the compared methods, TF and SCA detect IEDs from the concurrent sEEG

recordings. In these methods, the iEEG recordings are used as ground truth for labeling

both scalp-visible and scalp-invisible IEDs, while only sEEG recordings are employed

to detect IEDs. There is an appropriate balance between the sensitivity and specificity

values in TF, although they are not high enough. On the other hand, SCA suffers from

low sensitivity, though it achieves high specificity. SCA is based on spatial components.

Different subjects may have different epileptiform source locations. When the data from

different subjects are combined, the spatial factors are corrupted, and consequently, the

model performance deteriorates. Therefore, SCA fails to detect the IEDs in the between-

subject classification approach. However, it is a powerful method for the within-subject

classification approach and enables to classify the IEDs and non-IEDs with high accu-

racy.

LSR, AAE, and ASAE map the sEEG to iEEG recordings. The performance of LSR

is worse than all other methods. ASAE achieves the highest accuracy and sensitivity

values among the competing methods in the between-subject approach, 68% and 67%

respectively. Meanwhile, it provides a higher accuracy of 73% in the within-subject

approach. However, when the training and test datasets come from different subjects

(between-subject classification) and have different distributions, AAE and ASAE cannot

be successful since the neural networks are highly sensitive to the data distribution.

One of the advantages of our proposed tensor-based method is that it enjoys flexibil-

ity in terms of TF feature extraction and tensor decomposition structure. Here, the mag-

nitude of continuous wavelet coefficients is extracted as TF features. Other TF methods,

such as discrete wavelet transform, spectrogram, or synchrosqueezed transform highly

used in biomedical signal processing [8, 139, 140], can be employed to extract the TF

features. In addition, CPD and TD are applied here for decomposing the tensor into

its factor matrices. Other algorithms, for example, nonnegative- or sparse-based tensor

decomposition methods, can be employed to decompose the tensor into the factor ma-
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trices. Here, the performances of both mapping methods are comparable. Therefore, it

cannot be concluded which one is superior to another.

The main limitation of our proposed method is that it depends on the morphologies

and shapes of IEDs. In our mapping model, the projection is performed onto the tem-

poral factors that can vary if the IED morphologies significantly differ. Therefore, the

model’s performance may be adversely affected for a new subject with an IED of very

different morphology and shape.

Intracranial recordings are necessary for training the mapping-based methods. This

can be a limitation for such methods. However, these methods can detect IEDs from

new subjects without any need for intracranial signals. Furthermore, we need to have

some recorded iEEG signals from the training subjects to score the scalp-invisible IEDs.

7.5 CONCLUSION

This chapter proposes a method based on TF features and tensor decomposition to

design a mapping algorithm for projecting sEEG to iEEG. At first, the TF features

of intracranial IEDs from the training set are extracted and concatenated into a four-

way tensor with time, frequency, channel, and IED segment slabs. Then, two tensor

factorisation algorithms, CPD and TD, are employed to decompose the tensor into

factor matrices. In the mapping procedure, the TF features of scalp IEDs and non-IEDs

from both training and test sets are computed and projected onto the temporal factors

obtained from CPD and TD, respectively called MStI-CPD and MStI-TD. The results

of the other four methods, namely SCA [138], TF [8], LSR [133], and AAE as well

as ASAE [9], are reported here for comparison. The methods are validated in within-

and between-subject classification approaches. MStI-CPD and MStI-TD outperform the

competing methods in both approaches and achieve respectively the accuracy values

of around 84.2% and 72.6% in within- and between-subject classifications. Meanwhile,

among the competing methods, ASAE obtains the highest accuracy value of 68% in

the between-subject classification approach. SCA and LSR provide the worse accuracy

value of 62%. These findings show that when the training and test data come from

different subjects, ASAE and SCA cannot perform favorably because of being sensitive

respectively to the data distribution and epileptiform source location. However, the

proposed method does not suffer from these limitations. Firstly, unlike AAE and ASAE,

tensor factorisation is not highly sensitive to data distribution. Secondly, unlike SCA,

in which the data is projected onto the spatial factors, in the proposed MStI-CPD and

MStI-TD methods, the data is projected onto the temporal factors, which is independent

from the IED source location.



7.6 AKNOWLEDGE 92

7.6 AKNOWLEDGE

Electronic version of an article published as "Higher-order tensor decomposition based

scalp-to-intracranial EEG projection for detection of interictal epileptiform discharges,"

Journal of Neural Engineering, 18(6), p.066039., doi: 10.1088/1741-2552/ac3cc4.



8
E E G - T O - E E G : S C A L P - T O - I N T R A C R A N I A L E E G
T R A N S L AT I O N U S I N G G E N E R AT I V E
A D V E R S A R I A L N E T W O R K S

In the previous chapter, we have proposed two methods based on tensor factorisation

to map the TF features of sEEG to those of iEEG to improve an IED detection system

performance. In this chapter, we develop and examine two novel mapping methods

based on GANs to map raw sEEG to iEEG.

Mapping sEEG to iEEG using deep neural networks can be considered as generat-

ing iEEG by feeding sEEG to a network. GANs [141] and variational AEs (VAEs) [142]

are powerful tools for generating data (such as image, text, and speech). Generally, a

GAN consists of a generator and a discriminator network. The generator network gen-

erates the data, and the discriminator network discriminates the real and generated

data. GANs map either a noise vector [141, 143] or an observed data sample [144–148]

to a data space. When the generator generates a data space from the observed data, it is

called the conditioning generator. Conditions may also be applied to the discriminator.

In a conditioning discriminator, the generator input data is concatenated with either

the real or generated data and fed to the discriminator. Generally, if a condition (or con-

ditions) is applied to a generator, a discriminator, or both generator and discriminator

networks of GAN, it is called conditional GAN (cGAN). cGANs have been employed in

different applications, such as text-to-image [144, 149], speech-to-image [145], speech-

to-speech [146], and particularly image-to-image [147, 148, 150, 151]. Here, our main

contribution is to design two types of cGANs for EEG-to-EEG mapping. We feed sEEG

to the generator to generate an estimation of iEEG, called scalp-to-intracranial EEG

translation. In this study, we propose two EEG-to-EEG mapping techniques. The first

one is a cGAN based on U network (U-net) [152], called Unet-cGAN. In the second

method, we propose a novel cGAN technique based on VAE, called VAE-cGAN. In

other words, in this method, VAE is incorporated in the generator of cGAN.

The rest of the chapter is structured as follows. First, an introduction to deep learn-

ing methods, including CNN, LSTM, VAE, and GAN, is presented. Then, the proposed

Unet-cGAN and VAE-cGAN for EEG-to-EEG translation are explained. Next, the exper-

imental setup is provided. Afterward, the results are presented. Finally, the last section

concludes the chapter.
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Figure 8.1: Schematic diagram of a basic convolutional neural network architecture.

8.1 DEEP LEARNING TECHNIQUES

Deep neural networks (DNN) have been provided in different structures for different

applications. The most popular architectures are CNN, LSTM, GAN, and VAE.

8.1.1 CNN

CNNs mainly comprise three types of layers: convolutional, Pooling, and fully con-

nected (FC). A CNN architecture is formed by stacking these layers. A simplified CNN

architecture is shown in Figure 8.1. The convolution layer applies a convolution to the

previous layer data and forwards the result to the next layer. A non-linear activation

function follows it. The pooling layer gradually reduces the dimensionality of the rep-

resentation to decrease the computational complexity. Finally, a FC layer performs like

standard neural networks.

convolutional layer : A convolution is performed by sliding a filter (or mask)

over the input, multiplying it by the data, and aggregating the result. The layers’ param-

eters focus on the use of learnable filters. In a convolution layer, the data is convolved

with a sliding mask (a.k.a. filter) which can be two dimensions for images or one dimen-

sion for signals. After each convolution, the results are accumulated using the following

pooling layer.

pooling layer : A pooling layer is usually applied after a convolutional layer. It

downsamples the data along the spatial (for images) and temporal (for signals) dimen-

sions of the given input. Consequently, it reduces the number of parameters and the

computational complexity of the model. The pooling layer operates over each activa-

tion map in the input. It scales its dimensionality using either a “Max” or an “Average”

function—the Max and Average pooling functions return respectively the maximum

and the average values of each filter mask.
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Figure 8.2: An RNN (a) and its unfolded representation.
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Figure 8.3: A long short-term memory network architecture.

fc : In an FC network, each neuron in the current layer is connected to all the neurons

of the next layer.

8.1.2 LSTM

LSTM is a modified model of RNN. In an RNN based model, shown in Figure 8.2,

the output from previous step is fed as input to the current step. In traditional neural

networks, all the inputs and outputs are independent. However, in data prediction or in

places (such as speech and video) where the data history is helpful in data classification,

RNNs become advantageous.

However, standard RNNs fail in learning to connect the information when the gap

length increases. LSTM proposed by Hochreiter and Schmidhuber [153] can tackle the

problem of long-term dependencies of RNN in which the RNN cannot predict the word

stored in the long-term memory but can give more accurate predictions from the recent

information. LSTMs are explicitly designed to avoid the long-term dependency prob-

lem. Remembering information for long periods is practically their default behavior.

Standard RNN and LSTM can be presented as a chain of repeating neural network

modules. The standard RNN has a single layer performing hyperbolic tangent (Tanh)
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Figure 8.4: The variational autoencoder architecture.

activation. Meanwhile, LSTM contains four neural networks and different memory

blocks called cells, shown in Figure 8.3.

The key factor of LSTMs is the cell state, the horizontal line running through the

top of the diagram. The LSTM has the ability to remove or add information to the

cell state, carefully regulated by structures called gates. As a result, the cells retain the

information, and the gates carry out the memory manipulations. There are three gates,

namely, Forget gate, Input gate, and Output gate, to protect and control the cell state.

forget gate : The Forget gate decides which information should be removed from

the cell state. It looks at xt (input at the particular time) and ht−1 (previous cell output),

and outputs a number between 0 and 1 for each number in the cell state ct−1. If the

output is 0 for a particular cell state, the piece of information is forgotten, and for

output 1, the information is retained for future use.

input gate : The Input gate decides which values are to be updated. First, the infor-

mation is regulated using the sigmoid function similar to the Forget gate using inputs

xt and ht−1. Next, a layer with the Tanh function creates a vector of new candidate

values, giving an output from -1 to +1. At last, the vector and regulated values are

multiplied to create an update to the state.

output gate : The Output gate filters the cell state and presents an output. First, a

vector is generated by applying the Tanh function to the cell to push its values between

-1 and 1. Then, the information is regulated using the sigmoid function. At last, the

vector and regulated values are multiplied to be sent as an output and input to the

next cell.

8.1.3 VAE

A VAE is made up of two networks, namely, encoder and decoder. The encoder network

E encodes a data sample X into a latent representation z based on the distribution, and
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Figure 8.5: The generative adversarial network architecture.

the decoder network decodes the latent representation to reconstruct the data (called

the reconstruction or generated data X̃) with minimum error. An architecture of VAE

is presented in Figure 8.4

A VAE imposes a prior over the latent space p(z) to ensure that it follows a Gaussian

distribution, ϵ ∼ N (0, I). In other words, rather than mapping the data sample X

directly to z, the encoder network E maps X into two different vectors that are the mean

µ and the standard deviation (STD) σ of multivariate Gaussian distribution. Then, the

Gaussian sample ϵ is shifted and scaled by the predicted µ and σ as follows

z = µ + ϵ⊙ σ, (8.1)

where ϵ ∼ N (0, I) is an auxiliary noise variable, and ⊙ indicates the element-wise

product.

To enforce the encoder to map the data sample X into a Gaussian distribution, the

Kullback-Leibler (KL) divergence DKL is calculated as follows:

LDKL = DKL(E(X)∥p(z)). (8.2)

The reparameterization trick in [142] is employed for estimating the objective loss (8.2)

as follows:

LDKL ≃ −
1
2

Z

∑
z=1

(1 + log(σ2
z )− µ2

z − σ2
z ), (8.3)

where Z is the dimension of latent space.

8.1.4 GAN

A GAN consists of a generator G and a discriminator D, shown in Figure 8.5. The

generator G maps the latent space z with a prior probability distribution p(z) to a data
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Figure 8.6: The generator network architecture of Unet-cGAN.

space to generate a data sample. The discriminator D takes either real or generated data

samples as input and predicts a binary class of real or fake (generated). An adversarial

loss is employed to train the generator and discriminator. The original GAN study

[141] introduced the binary cross entropy in a min-max game approach according to

the following loss function:

G
min

D
maxLGAN(G,D) = EY[log(D(Y))] + Ez[log(1−D(G(z)))], (8.4)

where G minimizes the objective loss function against an adversarial D maximizing

it, Y is the real data sample, G(z) is the generated sample, and z is the latent space

(random noise).

In cGANs, both the generator and discriminator can be conditioned. In conditioning

the generator, instead of latent space, an observed data sample is fed to the generator

to generate a data space and, consequently, the adversarial loss function is defined as

follows:

G
min

D
maxLcGAN(G,D) = E(X,Y)[log(D(X, Y))] + EX[log(1−D(X,G(X)))], (8.5)

where X is the observed data (given data to the generator).
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8.2 SCALP-TO-INTRACRANIAL EEG TRANSLATION

Let X ∈ RL×M and Y ∈ RL×M̄ be respectively sEEG and iEEG, where L is the number

of time samples, and M and M̄ are respectively the number of channels in sEEG and

iEEG. Each observed source of sEEG is considered to comprise of a number of iEEG

sources plus noise. In other words, the sEEG is treated as a noisy version of the iEEG.

Their relationship can be modeled as

X = HY + noise. (8.6)

where H is the mapping model. Here, we propose two methods based on GANs,

namely Unet-cGAN and VAE-cGAN, as the mapping methods.

In contrast to the original GAN that maps a noise vector to a data space [141], the

cGANs map an observed data sample X into data space X̄ [150]. Inspired by image-

to-image translation methods [147, 148, 150, 151, 154] and Speech Enhancement GAN

[146], which are based on cGANs, the proposed scalp-to-intracranial EEG translation

methods map sEEG to iEEG using the proposed cGANs.

8.2.1 Unet-cGAN

In this mapping model, we employ a conditioning generator and discriminator net-

works. Our generator network is designed based on a U-net, referred to as Unet-cGAN.

Our conditioning generator is fed with sEEG to generate an estimation of iEEG. Either

the generated or real iEEG is concatenated with sEEG and applied to our conditioning

discriminator to be classified as real or fake. Here, we set the number of scalp channels

the same as that of intracranial channels since the sEEG is concatenated with the iEEG

to be fed to the discriminator. Since the IEDs originate from these brain regions, we

select scalp channels from temporal and frontal areas.

8.2.1.1 Generator of Unet-cGAN

The architecture of the generator is shown in Figure 8.6. It is made up of a contracting

path (left side) and an expanding path (right side). The contracting path consists of

repeated convolutional layers with the filter size of lg × 1, each followed by a normal-

ization layer operation across the time domain and an average pooling operation with

stride 2× 1 for downsampling. At each downsampling step, we double the number of

feature channels.

Every step in the expanding path consists of an upsampling of the feature map with

the size of 2× 1 performed bilinearly, a 1× 1 convolution, a concatenation with the

corresponding feature map from the contracting path, two lg × 1 convolutions, and a
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Figure 8.7: The discriminator network architecture of Unet-cGAN.

normalization layer operation across time domain. The output of the final expanding

layer is fed to a 1× 1 convolutional layer. Finally, a time-distributed dense layer maps

each time component to M̄ neurons (the same number as iEEG channels).

8.2.1.2 Discriminator of Unet-cGAN

Our discriminator follows the typical architecture of a convolutional network, Fig-

ure 8.7. It consists of an ld × 1 convolutional layer followed by a rectified linear unit

(ReLU) activation layer and a dropout layer, max pooling with the size of 2× 1, and an

FC layer. The sEEG is concatenated with either the estimated or real iEEG to be fed to

the discriminator. The effectiveness of this concatenation technique has been proven in

some mapping studies [146, 150].

8.2.1.3 Optimization and loss function of Unet-cGAN

To have a more accurate estimation, we regularize the cGAN objective function, shown

in (8.5), with L2 loss LL2 . L1 and L2 loss functions are defined as the distance between

the real data sample Y and the generated data X̃. In Unet-cGAN, L2 loss is estimated

as follows:

LL2 = E(X̃,Y)[∥Y− X̃∥2]. (8.7)

Here, the discriminator network remains unchanged, but the generator loss is coupled

with L2 loss and applied to train the generator:

LG =
G

min
D

maxLcGAN(G,D) + λLL2 (8.8)

where λ is the coefficient of the L2 loss function.
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Figure 8.8: The overview of our proposed VAE-cGAN. X and Y are respectively sEEG and iEEG.

8.2.2 VAE-cGAN

In this mapping model, we combine the generator G of our cGAN with VAE, called

VAE-cGAN, by letting them share their parameters and train jointly. The overview of

our networks is shown in Figure 8.8.

Apart from differences in structures, loss functions, and their applications [155–157],

the main difference between the previously developed GAN-VAE with our proposed

VAE-cGAN is that both the input data sample X and the encoded latent space z are

given to the generator G in our proposed method, while in others the input of generator

is only the latent space z.

In our VAE-cGAN model, the encoder E encodes the sEEG X to the latent space z.

The objective of the generator G is to translate/map the sEEG X as well as the latent

space z to the iEEG Y, where the translated signal is named estimated iEEG X̃. On

the other hand, the goal of the discriminator D is to distinguish the iEEG Y from the

estimated iEEG X̃. As a result, VAE-cGAN is

z = E(X),

X̃ = G(X, z),
(8.9)

where X̃ ∈ RL×M̄ is the estimated iEEG.

8.2.2.1 Encoder

The sEEG X is given as the input to the encoder network. As shown in Figure 8.9, our

encoder E consists of a sequence of convolutional layers with the filter size of (le × 1)

and stride of (2× 1), followed by the instance normalization (IN) [158] and leaky ReLU

(LReLU) layers. The output of the last convolutional layer is projected onto a couple of

dense layers which are the mean µ and STD σ of a Gaussian distribution. Finally, the

latent space with the dimension of Z is obtained by scaling the Gaussian distribution

ϵ ∼ N (0, I) using µ and σ, shown in (8.1).
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Figure 8.9: The encoder network E of VAE-cGAN. Ce is the coefficient of the number of filters
in the Conv layer, and IE is the total number of layers in the encoder.

Figure 8.10: In the SPADE block, the sEEG is first projected onto an embedding space and then
convolved with two different filter masks to produce the modulation parameters α and β. After
normalizing the activation layer, it is multiplied by γ and added to β element-wise. The SPADE
is firstly proposed in [147].
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Figure 8.11: The SPADE ResNet consists of two SAPDE blocks followed by Tanh activation and
convolutional layers.

8.2.2.2 Generator of VAE-cGAN

We develop the generator G based on SPatially-Adaptive (DE)normalization (SPADE)

[147]. SPADE is a type of conditional normalization. In contrast to standard normal-

ization methods, conditional normalization techniques require external data. In con-

ditional normalization, the layer activations are firstly normalized to have zero mean

and unit STD. Then, the external data, here sEEG X, is employed to denormalize the

normalized activations [147, 159, 160].

The SPADE block is shown in Figure 8.10. In SPADE, the activation is normalized in

a channel-wise manner, like batch normalization [161]. Then, it is multiplied by γ and

added to β element-wise:

SPADEout = γ×A+ β, (8.10)

where A is the normalized activation layer and γ and β are the learned modulation pa-

rameters of the normalization layer whose parameters are inferred from X. The SPADE

networks are used in the ResNet approach, called SPADE ResNet, shown in Figure 8.11.

The SPADE ResNet is made up of two SAPDE blocks which are followed by Tanh

activation and convolutional layers. When the input and output dimensions of SPADE

ResNet are different, a SPADE block is used instead of the skip connection for matching

the dimensions as well. For more details, the reader is referred to [147].

The generator, whose architecture is shown in Figure 8.12, is fed by both the latent

space z and the sEEG X. Our generator is made up of a series of SPADE ResNets,

which are followed by nearest neighbor upsampling with the size of 2× 1 and a couple



8.2 SCALP-TO-INTRACRANIAL EEG TRANSLATION 104

Figure 8.12: The generator network G of VAE-cGAN. Iup is the number of upsampling or SPADE
ResNet layers.

of LSTM layers. The sEEG given to a SPADE ResNet is downsampled according to the

dimension of activation layer A to match the resolution. LSTM is powerful in capturing

time-varying features. Therefore, the output of the last upsampling layer is applied

to a couple of LSTM layers. The LSTM layers are employed with L number of time

steps. The output of each time step of the second LSTM is given to a dense layer with

M̄ dimensions, called time distributed dense layer, followed by the Tanh activation

function. The output dimension X̃ is L× M̄, the same dimension as Y.

8.2.2.3 Discriminator of VAE-cGAN

In VAE-cGAN, a Markovian discriminator is employed [162]. For these discriminators,

the output dimension is not 1, it is rather p1 × p2, called patch, and the discriminator

distinguishes each patch as fake or real [162, 163].

The input of the discriminator is either the iEEG Y or the estimated iEEG X̃, having

L time samples and M̄ source observations. Our discriminator network is made up of

a sequence of convolutional layers. Except for the last convolutional layer, the filter size

of all the convolutional layers is selected to be ld × 1 with stride 2× 1, followed by IN

and LReLU layers. The last convolutional layer with the filter size of ld× 1 and stride of

1 does not have a normalization or activation layer. The size of the discriminator patch

is set to 1× M̄. This means that the discriminator tries to classify each observation as

either real iEEG or estimated iEEG.

8.2.2.4 Optimization and loss function of VAE-cGAN

Depending on the dataset and application, various types of loss functions are employed

to train the discriminator and generator in GANs. Here, the hinge loss, which has
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already been used in an adversarial loss approach [147, 164, 165], is employed to train

the discriminator D:

LD =−EY[min(0,−1 +D(Y))]

−EX,z[min(0,−1−D(G(X, z)))]

LGh =−EX,z[D(G(X, z))].

(8.11)

Apart from the generator hinge loss LGh , another three loss functions – namely KL

divergence loss LDKL , L1 loss LL1 , and feature matching loss LFM – are coupled together

and applied to train the generator:

LG = LGh + λ1LDKL + λ2LL1 + λ3LFM, (8.12)

where λ1, λ2, and λ3 are the coefficients of the corresponding loss function.

LDKL is estimated using (8.3). In Unet-cGAN, L2 loss function is used as the recon-

struction error. However, here L1 loss provides better performance and is estimated as

follows:

LL1 = E(X̃,Y)[∥Y− X̃∥1]. (8.13)

Feature matching loss LFM has been used in image-to-image studies to improve the

adversarial loss [148, 166]. It is estimated from the discriminator and makes the GAN

module learn the global information using multi-scale features. The feature matching

loss LFM is obtained from multiple layers of the discriminator. It tries to match the

intermediate maps of the iEEG Y with those of the estimated iEEG X̃. Let D(i) be the

ith layer in the discriminator D. Then, the feature matching loss LFM is estimated as

follows:

LFM = E
ID

∑
i=1

1
Fi
|D(i)(Y)−D(i)(X̃)|1, (8.14)

where ID is the total number of layers in the discriminator, and Fi is the number of

features in layer i.

8.3 EXPERIMENT

The proposed mapping methods are employed to translate the sEEG to iEEG recordings.

After mapping, the IEDs are detected from the estimated iEEG.
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Figure 8.13: The proposed Unet-cGAN for mapping sEEG to iEEG.

8.3.1 Dataset

We use a concurrent EEG dataset in which sEEG and iEEG were recorded simultane-

ously from 18 people with epilepsy. The details of the dataset are given in Section 3.1.

An expert epileptologist annotated the IEDs based on the morphology and spatial

distribution of the observed waveforms from the iEEG, meaning that the iEEG record-

ings were used as ground truth in the IED annotation. For mapping and classification,

32 samples before and after the peaks marked as the onset of IED waveforms (totally

64 samples) were selected as IED segments. The non-IED segments were randomly

selected from time segments with no annotated IEDs. The same number of IEDs and

Table 8.1: The total number of IED and non-IED segments for each subject. The same number
of IED and non-IED segments have been chosen for each subject.

Subject No. of segments Subject No. of segments

S1 684 S10 488

S2 100 S11 1696

S3 144 S12 1906

S4 330 S13 1658

S5 316 S14 1082

S6 944 S15 520

S7 398 S16 1212

S8 634 S17 228

S9 682 S18 236
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Figure 8.14: The proposed VAE-cGAN for mapping the sEEG to iEEG.

non-IEDs were selected. Table 8.1 shows the total number of IED and non-IED segments

for each subject.

A highpass filter with a cutoff frequency of 1 Hz was applied to both sEEG and iEEG

recordings. In addition, a notch filter with a notch frequency of 50 Hz was employed

to eliminate the power line interference. Furthermore, CAR is applied to the sEEG to

eliminate the artefacts.

8.3.2 Translating/Mapping sEEG to iEEG

The proposed sEEG-to-iEEG translation methods are employed to map sEEG to iEEG.

The architecture of Unet-cGAN is shown in Figure 8.13. In Unet-cGAN, the sEEG

is concatenated with either the real or estimated iEEG, then fed to the discriminator.

Therefore, the number of scalp channels and FO channels must be the same. Twelve out

of twenty scalp channels are selected and fed to the generator network. These twelve

channels, namely Fp1, F3, F7, C3, T3, Fp2, F4, F8, C4, T4, Fz, and Cz, are selected from

temporal and frontal regions, where the IEDs originate from.

The whole architecture of VAE-cGAN is shown in Figure 8.14. In the training stage,

the sEEG with 64 time samples and 20 observations is projected onto a latent space

z with the dimension of 256. Then, the latent space, as well as the sEEG, is fed to the

generator G to generate an estimation of the corresponding iEEG. Finally, the estimated

iEEG and the real iEEG are given to a patch discriminator.

8.3.3 Classification

We employ EEGNet [167] to detect IEDs from the estimated iEEG. The effectiveness

of EEGNet in EEG classification has been proven [167, 168]. For classifying IEDs and

non-IEDs, an EEGNet with minor changes is employed. The EEGNet consists of three

blocks.
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Table 8.2: EEGNet architecture. The rate of Dropout layer is set to 0.2, r=0.2.

Block Layer No. of filters Size of filters Output size Options

1 Input - - (64, 12, 1) -

Conv2D 128 (5, 1) (64, 12, 128) Mode=same

DepthwiseConv 2× 128 (1, 12) (64, 1, 256) Mode=valid, depth=2

Activation - - (64, 1, 256) Type=ReLU

MaxPooling - (2,1) (32, 1, 256) -

Dropout - - (32, 1, 256) r=0.2

2 SeparableConv 256 (5, 1) (32, 1, 256) Mode=same, depth=1

Activation - - (32, 1, 256) Type=ReLU

MaxPooling - (2,1) (16, 1, 256) -

Dropout - - (16, 1, 256) r=0.2

3 Flatten - - 4096 -

Dense - - 512 No. of neurons=512

Activation - - 512 Type=ReLU

Dropout - - 512 r=0.2

Sigmoid - - 1 -

• In block 1, the estimated iEEG is fed to a convolutional layer with 128 filters of size

5× 1. We then use a “depthwise” convolution layer of size 12× 1 to learn a spatial

filter. The size is set to 12 to contain all channels. The “depthwise” convolution is

a type of convolution in which each input channel is convolved with a different

kernel (called a depthwise kernel). It is the first step in a depthwise separable

convolution [169]. The depthwise kernel is set to 2. We add ReLU as the nonlinear

activation function and the Dropout layer for regularization. Then, Max pooling

of size 2× 1 is added.

• In block 2, the output of block 1 is fed to a Separable convolution layer with 256

filters of size 5× 1. In the Separable convolution layer, a depthwise spatial convo-

lution (which acts on each input channel separately) is first performed, then it is

followed by a pointwise convolution which mixes the resulting output channels.

The Separable convolution is followed by the ReLU, Dropout, and Max pooling

layers like block 1.

• In block 3, the output of block 2 is flattened, then fed to a dense layer of size 512,

followed by the ReLU and Dropout layers. Finally, we have a sigmoid layer to

identify samples as IED or non-IED.

8.3.4 Cross Validation

The IEDs are detected in the within- and between-subject classification approaches. In

the within-subject classification approach, the data of a subject is divided into training
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(70%), validation (10%), and test datasets (20%). On the other hand, in the between-

subject classification, the data from N subjects are used for training and the data of a

subject for testing. Here, N is the number of subjects whose IEDs are detected with

high accuracy in a within-subject classification approach. This approach is repeated for

all 18 subjects. In this classification approach, the sEEG of all N training subjects and

the test subject are mapped to the iEEG using each of the trained Unet-cGAN or VAE-

cGAN (Gn, n = {1, 2, . . . , N}) to obtain the estimated iEEG, X Gn−→ X̃n. Then, each of the

estimated iEEG X̃n is given to the EEGNet to classify IEDs and non-IEDs. Finally, to find

the segment labels in the test data, the output probabilities of N EEGNets are averaged

(average voting classification). Figure 8.15 shows the diagram of the between-subject

classification approach.

Figure 8.15: The diagram of the between-subject classification approach.

8.4 EXPERIMENTAL RESULTS

ACC, SEN, and SPC are obtained as the evaluation criteria. Our proposed Unet-cGAN

and VAE-cGAN techniques are compared with three previously developed methods [9,

133], namely LSR, AAE, and ASAE, explained in Section 7.2.5.

The sEEG, the iEEG, and the estimated iEEG obtained from VAE-cGAN are shown

in Figure 8.16. The estimated iEEG (middle row) exactly follows the iEEG in the IED

samples. While the epileptic spikes are not observable in the sEEG, the estimated iEEG

nicely follows the real iEEG trend, and the IEDs are well pronounced. In the non-IEDs,

the estimated iEEG follows the trend of the iEEG.
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Table 8.3: The classification accuracy of our proposed Unet-cGAN and VAE-cGAN methods and
the compared LSR, AAE, and ASAE methods in the between-subject classification approach.
The amounts in parenthesis show the within-subject classification performance. The values are
in percent (%).

Subject LSR [133] AAE[9] ASAE[9] Unet-GAN VAE-cGAN

S1 65 (72) 85 (80) 87 (78) 67 (78) 75 (88)
S2 86 (81) 92 (82) 94 (88) 83 (95) 80 (95)
S3 65 (69) 72 (72) 69 (82) 74 (90) 75 (72)
S4 58 (62) 58 (71) 59 (77) 66 (81) 64 (76)
S5 55 (55) 64 (64) 65 (75) 67 (73) 67 (78)
S6 61 (59) 70 (60) 71 (63) 68 (68) 72 (73)
S7 59 (64) 54 (62) 67 (72) 64 (67) 63 (61)
S8 55 (66) 55 (62) 57 (68) 63 (72) 60 (68)
S9 63 (65) 61 (74) 62 (68) 61 (71) 72 (76)

S10 66 (70) 71 (65) 74 (77) 75 (91) 87 (87)
S11 63 (64) 65 (67) 65 (68) 61 (62) 63 (62)
S12 73 (79) 75 (84) 77 (84) 79 (84) 73 (87)
S13 62 (71) 62 (72) 64 (71) 63 (74) 68 (77)
S14 59 (62) 66 (71) 67 (65) 63 (69) 62 (74)
S15 50 (46) 50 (53) 50 (52) 55 (59) 53 (62)
S16 51 (55) 67 (77) 68 (72) 75 (77) 74 (82)
S17 54 (62) 59 (54) 62 (71) 66 (78) 64 (80)
S18 66 (64) 61 (53) 67 (75) 65 (72) 64 (66)

Mean 62 (65) 66 (68) 68 (73) 68 (76) 69 (76)

Figure 8.16: Samples of (a) IEDs and (b) non-IEDs averaged over all channels. The sEEG, iEEG,
and estimated iEEG obtianed using VAE-cGAN are shown. The IEDs start at time sample 32,
and the sampling rate is 200 samples/sec.
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Table 8.4: The SEN and SPC obtained using our proposed Unet-GAN and VAE-cGAN methods
and the compared LSR, AAE, and ASAE methods in the between-subject classification approach.
The values are in percent (%).

Criteria LSR[133] AAE[9] ASAE[9] Unet-GAN VAE-cGAN

SEN 61 66 67 65 68
SPC 59 65 68 70 70

The obtained accuracy levels of our proposed Unet-cGAN and VAE-cGAN methods

and the compared methods (LSR, AAE, and ASAE) are provided in Table 8.3. The

Table shows the obtained ACC from both within- and between-subject classification

approaches. Our proposed methods provide the best ACC in the within-subject classi-

fication approach. Both methods obtain 76% ACC, which is respectively 11%, 8%, and

3% higher than the obtained ACC values using LSR, AAE, and ASAE. In the between-

subject classification approach, the VAE-cGAN has an increase ACC of respectively 7%,

3%, and 1% over LSR, AAE, and ASAE. It also outperforms Unet-GAN by 1%.

SEN and SPC values are shown in Table 8.4. In both criteria, the VAE-cGAN provides

the best values of 68% and 70%, respectively. Unet-cGAN provides 65% SEN and 70%

SPC. The SEN and SPC values achieved by ASAE are close to VAE-cGAN. Its reason

is that, in ASAE, the data is mapped onto the iEEG two times. In contrast, in the VAE-

cGAN, we map the sEEG to iEEG one time.

8.5 CONCLUSION

This study proposes two EEG-to-EEG translation methods based on cGAN to transfer

a low-resolution EEG to a high-resolution counterpart to best highlight the IEDs. A U-

net is employed as the generator in the first one, named Unet-GAN. On the other hand,

in VAE-cGAN, the generator is designed based on the VAE architecture. The VAE and

the cGAN are trained together by sharing parameters. This improves the performance

of cGAN in generating high-quality data samples. A Markovian discriminator (patch

discriminator) [162] is used to distinguish the real from the estimated iEEG. In the

patch discriminator, each channel of real and estimated iEEG is projected onto a patch

using a CNN, meaning that the discriminator classifies each channel as either real or

estimated iEEG. The proposed systems learn from jointly recorded iEEG and sEEG and

are then applied to the classification of sEEG. This enables the detection of IEDs that

are not visible from over the scalp.

Our proposed methods are employed to map the sEEG to iEEG recordings collected

from epileptic patients containing epileptic spikes/IEDs. The VAE-cGAN provides

higher ACC, SEN, and SPC compared to Unet-cGAN and the previously developed

methods [9, 133]. It achieves an average ACC of 69% for the between-subject classifi-

cation approach, which is 1% higher than the Unet-cGAN ACC and respectively 7%,
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3%, and 1% higher than ACC values obtained using LSR, AAE, and ASAE. In ad-

dition, the VAE-cGAN and Unet-cGAN outperformed the compared methods in the

within-subject classification approach by achieving the average ACC of 76%, which is

respectively 11%, 8%, and 3% higher than ACC values achieved using LSR, AAE, and

ASAE. However, here the trade-off is between the higher accuracy of the system and

its high computational complexity as for other DNN algorithms.

Due to conditioning the discriminator in Unet-cGAN, we used the same number of

sEEG and iEEG channels. This means we have not exploited the full sEEG multichan-

nel information in Unet-cGAN. We overcome this limitation using VAE-cGAN, which

includes all sEEG channels in our analysis. Also, in this study, we assumed the back-

ground brain activity is additive uncorrelated noise. This is not an accurate assumption.

The noise can change with the brain’s state. Therefore, a more flexible algorithm to-

gether with more accurate assumptions may improve the results. This can be a subject

of our future work.
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C O N C L U S I O N A N D F U T U R E R E S E A R C H

IEDs are transient activities occurring between two seizure onsets. Automatic detection

of IEDs helps manage and monitor epilepsy patients. Therefore, in clinical practice,

it is crucial to automatically detect IEDs using widely available EEG systems with

high sensitivity. However, the problem is that IEDs are generated from deep sources

and mainly captured by iEEG recordings. They are attenuated by the skull and either

appear as very weak spikes or sharp waves on sEEG recordings or disappear completely.

Consequently, a large proportion of IEDs are invisible over the scalp, and 30% to 40% of

patients considered for epilepsy surgery require invasive iEEG recordings. To overcome

this limitation and detect all visible and invisible IEDs from the sEEG, we started with

detecting IEDs from the concurrent sEEG and iEEG recordings and then developed

models to extract the iEEG information from the sEEG.

In this thesis, we first developed methods based on tensor factorisation to automat-

ically detect IEDs from the concurrent sEEG. Then, we proposed an algorithm based

on sparse regularization. Finally, we developed two different methods based on multi-

way analysis and GAN to map the sEEG to iEEG to boost the sensitivity of sEEG. This

work opens up several new interesting and important fronts for further research and

investigation. In this chapter, we conclude the thesis with an overview of the main

contributions and propose new possible directions for further investigations.

9.1 REAL TIME IED DETECTION

Detecting IEDs from the ongoing EEG is more critical than the segmented EEG. In the

real world, the EEG is not segmented, and it is needed to be detected from the ongoing

signals. Meanwhile, most studies detected IEDs from only the segmented signals. In

Chapter 3, we have proposed a method based on tensor factorisation to detect IEDs

from ongoing sEEG and iEEG. In this work, we detected the IEDs from the ongoing

sEEG and iEEG recorded simultaneously. Since the data has not been segmented, we

slide a window with a high percentage of overlap over the signal.

IEDs originate from the temporal brain regions, and their signatures can be cap-

tured using several electrodes simultaneously. Therefore, it is expected to have temporal

and spatial correlation among IED segments. Thus, multi-channel and multi-segment

EEG processing using higher dimensional decomposition methods can effectively de-

tect IEDs. On the other hand, non-IEDs are random, and there is no shared feature

among them. Therefore, spatial and temporal components of IED can provide the most

113
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distinguishable features. To exploit temporal and spatial components, we concatenate

all IEDs of training data into a three-way tensor (time, channel, segment) and decom-

pose the tensor into temporal, spatial, and segmental factors using CPD. Finally, we

employ temporal and spatial components for IED detection. The proposed approach

provides promising SEN values in detecting IEDs from the ongoing sEEG and iEEG.

9.2 EXPLOITING THE MORPHOLOGY OF IEDS IN THE TENSOR STRUC-

TURE

A tensor is a multi-way data representation. Tensor factorisation applies to both non-

stationary and under-determined cases. The signal, which generally changes in time,

space, and morphology, can be identified using tensor factorisation. In terms of mor-

phology, IEDs can be various. In Chapter 4, we have exploited the morphology of IEDs

within the tensor structure. We construct a four-way tensor with the dimension of time,

channel, segment, and morphology, then decompose the tensor into temporal, spatial,

segmental, and morphological factors using CPD. Finally, we use spatial and morpho-

logical factors for IED detection. The method has been applied to detect IEDs from the

iEEG. In this work, we show that exploiting the IED morphology can boost the perfor-

mance of an IED detection system. However, the IED morphologies change with age

[49]. Therefore, to generalize the application, we should have access to the data from

a wider age range. As part of future work, individuals with a wider age range, from

children to older adults, can be participated in the study.

9.3 INCORPORATING LABELING UNCERTAINTY IN AN IED DETECTION

SYSTEM

As mentioned in Section 9.2, IEDs appear in various morphologies: sharp waves, spikes,

or poly-spikes, often followed by an inhibitory damped oscillation. Source locations of

IEDs are different among subjects as well. Furthermore, there is a similarity between

IED waveforms and physiological artefacts or normal brain activity waveforms. The

mentioned characteristics of IEDs cause uncertainty in IED labeling. In Chapter 5, we

have incorporated this uncertainty into an IED detection system.

We construct a three-way data tensor (time, channel, and segment) and a probability

(uncertainty) tensor with the same size as the data tensor. The probability tensor is

constructed based on the uncertainty level assigned to each IED segment by an expert.

We employ CP-WOPT for decomposing the data tensor based on the probability tensor

into temporal, spatial, and segmental factors. Finally, the spatial components are used

for IED detection from the sEEG.
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This work has been applied to both between- and within-subject classification ap-

proaches. However, this work is based on spatial component analysis. Consequently,

its performance is not very good in the between-subject classification approach ow-

ing to different IED source locations in different subjects. As part of future studies, a

source localization algorithm can be used to group the subjects according to their IED

locations before applying a between-subject-based approach.

9.4 SPARSE COMMON FEATURE ANALYSIS FOR IED DETECTION

IEDs are naturally sparse in temporal and spatial domains. In addition, as mentioned in

Section 9.1, there are common features among the IED segments. In Chapter 6, we have

proposed a new algorithm to exploit sparse common features among the IED segments.

This algorithm can be used for other types of signals. However, we have evaluated

the performance of our proposed method on an IED detection system. By exploiting

sparse common features, we have improved the system’s performance compared to the

systems without the sparsity constraint.

Our proposed method can extract sparse common features from a three-dimensional

dataset. As part of future studies, the algorithm can be extended to extract the sparse

common features of high-dimensional datasets. By doing so, we can exploit other di-

versities of data, such as morphology.

9.5 MULTI-WAY ANALYSIS FOR MAPPING SEEG TO IEEG

The sEEG is easy to use and is non-invasive. However, the main problem is that the

sEEG electrodes are not close to the IED sources. On the other hand, the iEEG channels

are placed directly on the exposed surface of the brain to record electrical activity

from the cerebral cortex. However, the problem with iEEG recordings is that they are

recorded using invasive techniques and have side effects for patients. In Chapter 7, we

proposed a method for mapping sEEG to iEEG based on multi-way analysis.

Multi-way analysis provides an opportunity to consider different domains of data to-

gether. Our proposed method had three stages. In the first stage, we extract TF features

of the iEEG segments, then we construct a four-way tensor with the dimensions of time,

frequency, channel, and segment. In the second stage, the tensor is decomposed using

CPD and TD into factor matrices (temporal, spectral, spatial, and segmental factors). To

map the TF features of the sEEG to iEEG, in the third stage, the TF features of sEEG are

projected onto the temporal factors, and the projected segments are used for IED detec-

tion. The results show that the mapping model can significantly boost the performance

of the model, particularly in the between-subject approach.
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For obtaining TF features, we apply CWT in this work. Since the magnitudes of

continuous wavelet coefficients are non-negative, non-negative-based tensor decom-

position is likely to perform better. In future work, non-negative tensor factorisation

methods can be considered.

9.6 MAPPING THE SEEG TO IEEG USING GANS

GANs can be used for generating data samples from random noise (latent space) or

given samples. In Chapter 8, we have proposed two deep networks based on GANs

for mapping sEEG to iEEG. In our proposed methods, the developed GANs generate

an estimation of iEEG from the given sEEG. The generated signals are used for IED

detection.

The application of DNNs and GANs is fast growing. As part of future work, more

complex GANs can be developed for mapping. Furthermore, Transformer neural net-

works introduced recently [170] provide promising performance for machine transla-

tion [171]. They may provide high performance for EEG-to-EEG translation as well.

This type of network can be considered in future work.
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