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Abstract

The complexity of real-world problems requires modern software systems to be able to

autonomously adapt and modify their behaviour at runtime to deal with unforeseen internal

and external fluctuations and contexts. Consequently, these self-adaptive systems (SAS) can

show unexpected and surprising behaviours which stakeholders may not understand or agree

with. This may be exacerbated due to the ubiquity and complexity of Artificial Intelligence

(AI) techniques which are often considered “black boxes” and are increasingly used by SAS.

This thesis explores how synergies between model-driven engineering and runtime mon-

itoring help to enable explanations based on SAS’ historical behaviour with the objective of

promoting transparency and understandability in these types of systems. Specifically, this

PhD work has studied how the use of runtime models extended with long-term memory can

provide the abstraction, analysis and reasoning capabilities needed to support explanations

when using AI-based SAS. For this purpose, this work argues that a system should i) offer

access and retrieval of historical data about past behaviour, ii) track over time the reasons

for its decision making, and iii) be able to convey this knowledge to different stakeholders

as part of explanations for justifying its behaviour.

Runtime models stored in Temporal Graph Databases, which result in Temporal Models

(TMs), are proposed for tracking the decision-making history of SAS to support explana-

tions. The approach enables explainability for interactive diagnosis (i.e. during execution)

and forensic analysis (i.e. after the fact) based on the trajectory of the SAS execution.

Furthermore, in cases where the resources are limited (e.g., storage capacity or time to re-

sponse), the proposed architecture also integrates the runtime monitoring technique, com-

plex event processing (CEP). CEP allows detecting matches to event patterns that need to

be stored instead of keeping the entire history. The proposed architecture helps developers

in gaining insights into SAS while they work on validating and improving their systems.
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8) J. M. Parra-Ullauri, A. Garćıa-Domı́nguez, and L. G.-P. Bencomo, Nelly. History-aware

explanations: Towards enabling human-in-the-loop in self-adaptive systems. In Proceedings

of the 14th System Analysis and Modelling Conference, 2022. To be published [123].

J. M. Parra Ullauri, PhD Thesis, Aston University 2022. 8



Contents

1 Introduction 16

1.1 Research Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1.1 Challenges when enabling history-aware explainability in SAS . . . . 18

1.1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2 Contributions of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Research strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4 Structure of this Document . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Explanations in Self-Adaptive Systems 26

2.1 Self-Adaptive Systems (SAS) . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.1 A conceptual model of SAS and the MAPE-K loop . . . . . . . . . . 27

2.1.2 Research Challenges in SAS . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.3 Artificial Intelligence and Machine Learning in SAS . . . . . . . . . 31

2.2 Explanations in SAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.1 Classification of Explanations . . . . . . . . . . . . . . . . . . . . . . 34

2.2.2 Current approaches to support explanations in SAS . . . . . . . . . 36

3 Model-Driven Engineering in SAS 39

3.1 MDE in a nutshell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Development Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.2 Runtime Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 The Concept of Time in MDE . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 The application of MDE in SAS . . . . . . . . . . . . . . . . . . . . . . . . . 52

J. M. Parra Ullauri, PhD Thesis, Aston University 2022. 9



4 Runtime Monitoring 56

4.1 What is Runtime Monitoring (RTM)? . . . . . . . . . . . . . . . . . . . . . 56

4.2 Event-driven Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Current event-driven monitoring approaches . . . . . . . . . . . . . . 58

4.2.2 Complex Event Processing (CEP) . . . . . . . . . . . . . . . . . . . 59

4.3 MDE and Event-driven Monitoring . . . . . . . . . . . . . . . . . . . . . . . 61

5 Temporal Models for History-aware Explainability in SAS 64

5.1 Temporal Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.1 Problem-independent execution trace metamodel . . . . . . . . . . . 67

5.1.2 Reusable time-aware query language . . . . . . . . . . . . . . . . . . 71

5.2 Research roadmap for History-awareness with Explanatory capabilities in SAS 77

5.2.1 Level 1: Forensic history-aware explanations . . . . . . . . . . . . . . 77

5.2.2 Level 2: Live history-aware explanations . . . . . . . . . . . . . . . . 78

5.2.3 Level 3: Externally-guided and history-aware decision making with

explanation capabilities . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.4 Level 4: Autonomous history-aware decision-making with explanation

capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Explaining SAS with Temporal Models 84

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Experimental study: RDM SAS . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2.1 RDM and the MAPE-K loop . . . . . . . . . . . . . . . . . . . . . . 88

6.2.2 Enabling History-Aware explainability in RDM SAS . . . . . . . . . 90

6.2.3 Level 1: Forensic history-aware explanations in RDM . . . . . . . . 93

6.2.4 Level 2: Live History-aware explanations in RDM . . . . . . . . . . 98

6.2.5 Level 3: Externally guided history-aware decision making. Introduc-

ing the human-in-the-loop in RDM . . . . . . . . . . . . . . . . . . 103

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7 Scaling up Temporal Models through Event-Driven Monitoring for expla-

nations 112

7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

J. M. Parra Ullauri, PhD Thesis, Aston University 2022. 10



7.2 ETeMoX: Event-driven Temporal Models for eXplanations . . . . . . . . . . 114

7.2.1 Translator component . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2.2 Filter component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2.3 Temporal Model component . . . . . . . . . . . . . . . . . . . . . . . 116

7.2.4 Explainer component . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.3 Experimental Study: ABS SAS . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.3.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.3.2 ETeMoX for explaining the ABS SAS: step by step . . . . . . . . . 122

7.3.3 Level 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3.4 Level 2: Live History-aware explanations in ABS SAS . . . . . . . . 132

7.3.5 Level 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.4.1 Comparing ETeMoX with state-of-the-art techniques for explainabil-

ity in SAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8 Conclusions 154

8.1 Answering the Research Questions . . . . . . . . . . . . . . . . . . . . . . . 157

8.2 Contributions Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

8.3 Limitations, Direction and Future Work . . . . . . . . . . . . . . . . . . . . 163

8.3.1 Technical limitations and possible research directions . . . . . . . . . 163

8.3.2 Theoretical limitations and possible research directions . . . . . . . . 165

Appendix 168

J. M. Parra Ullauri, PhD Thesis, Aston University 2022. 11



List of Figures

1.1 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1 Conceptual model of a SAS [159]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 MAPE-K loop for SAS [111] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 The learning problem and the adaptation problem in ML for SAS [63] . . . . . . . . . . . . . 33

2.4 Classification of Explanations. Dimensions selected from [1] and [138] . . . . . . . . . . . . . 34

3.1 Relationships between models, metamodels and meta-metamodels [145] . . . . . . . . . . . . 41

3.2 Simplified Diagram of the Ecore metamodeling Language [145]. . . . . . . . . . . . . . . . . . 42

3.3 Metamodel describing a Project and its features. . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Hierarchy of property patterns by Dwyer [49]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Pattern scopes by Dwyer [49]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 EUREMA - Runtime models for feedback loops [156]. . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Components and stages of Complex Event Processing [21, 98] . . . . . . . . . . . . . . . . . . 60

4.2 Screenshot of the model-driven GUI for CEP, MEdit4CEP [21]. . . . . . . . . . . . . . . . . . 63

5.1 Example of a time-evolving temporal graph, by Hartmann et al. [68] . . . . . . . . . . . . . . 66

5.2 Class diagram for the core metamodel used to record system history. . . . . . . . . . . . . . . 68

5.3 Proposed research roadmap for history-awareness in SAS (adapted from [59, 119]). . . . . . . 78

5.4 Level 1: Forensic history-aware (H-A) explanations . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5 Level 2: Live history-aware (H-A) explanations . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.6 Level 3: Externally-guided history-aware (H-A) decision-making with explanation capabilities 81

5.7 Level 4: Autonomous history-aware (H-A) decision-making with explanation capabilities . . . 83

6.1 RDM Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2 Overview of causal relationships between runtime models in the MAPE-K loop of the RDM

from [61] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3 Class diagram for the extensions to the core metamodel used to record POMDP-based systems,

such as history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4 UML sequence diagram for interaction between components (RDM case study, level 1) . . . . 95

J. M. Parra Ullauri, PhD Thesis, Aston University 2022. 12



6.5 UML sequence diagram for interaction between components (RDM case study, level 2) . . . . 100

6.6 Stacked area plot with execution times for RDM SAS simulations in milliseconds, by timeslice

and phase, for the queries running without annotations. . . . . . . . . . . . . . . . . . . . . . 101

6.7 Stacked area plot with execution times for RDM SAS simulations in milliseconds, by timeslice

and phase, for the queries running with annotations. “Simulate” times are excluded due to

small values in the other series, being the same as in Figure 6.6. . . . . . . . . . . . . . . . . . 102

6.8 Raw server-side execution times of EOL query implementing Algorithm 3 in milliseconds, by

timeslice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.9 GUI showing the system’s historical behavior. At time slice 646, the user set a higher priority

to the MR NFR (left chart). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.10 UML sequence diagram for interaction between components (RDM case study, level 3) . . . . 106

6.11 Textual pre-adaptation explanation from the system at time slice 646, when user shows interest

in increasing priority of MR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.12 NFRs average satisfaction levels before and after human interaction . . . . . . . . . . . . . . 108

7.1 Event-Driven Temporal Models for Explanations (ETeMoX) architecture. . . . . . . . . . . . 114

7.2 Overview of the ABS (green) SAS from [165] . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.4 ETeMoX for explaining RL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.5 Class diagram for the RL extensions to the core metamodel used to record system history.

Imported core elements are marked with an arrow. . . . . . . . . . . . . . . . . . . . . . . . . 123

7.6 Runtime model object diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.7 Evolution of a metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.8 Reward averages by episode on exploration pattern . . . . . . . . . . . . . . . . . . . . . . . . 135

7.9 Global explanations: exploration & exploitation in RL . . . . . . . . . . . . . . . . . . . . . . 136

7.10 ETeMoX for enabling feedback from external entities . . . . . . . . . . . . . . . . . . . . . . 140

7.11 Comparison of hyperparameter tuning methods in DQN . . . . . . . . . . . . . . . . . . . . . 143

7.12 Reward and discount factor evolution, starting at γ = 0.5 and γ = 0.9 using history-aware

HPO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.13 Comparison of history-aware hyperparameter optimisation vs static values . . . . . . . . . . . 145

J. M. Parra Ullauri, PhD Thesis, Aston University 2022. 13



List of Tables

5.1 Proposed new operations for time-awareness for the Epsilon Object Language, divided by

type. p stands for a Boolean predicate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1 Example of Long Term Effects (LTEs) in the RDM system . . . . . . . . . . . . . . . . . . . 94

7.1 TM size in MBs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.2 T-test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.3 Query execution times in Seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.4 Results and costs of filtering history with the exploration pattern. . . . . . . . . . . . . . . . 134

7.5 Initial configuration for experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.6 Comparison of explainability approaches for SAS . . . . . . . . . . . . . . . . . . . . . . . . . 150

J. M. Parra Ullauri, PhD Thesis, Aston University 2022. 14



Glossary

• ABS: Airborne Base Station.

• AI: Artificial Intelligence.

• CEP: Complex Event Processing.

• DQN: Deep Q-Network.

• EMF: Eclipse Modeling Framework

• EOL: Epsilon Object Language.

• EDM: Event-Driven runtime Moni-

toring.

• ETeMoX: Event-driven Temporal

Models for Explanations.

• EPL: Event Processing Language.

• GDPR: General Data Protection

Regulation.

• H-A: History-Aware.

• MDE: Model Driven Engineering.

• MDP: Markov Decision Process.

• ML: Machine Learning.

• MQTT: MQ Telemetry Transport.

• QL: Q-Learning.

• RL: Reinforcement Learning.

• RSRP: Reference Signal Received

Power.

• RTM: Runtime Monitoring.

• SARSA: State - Action - Reward -

State - Action.

• SAS: Self-Adaptive System.

• SINR: Signal-to-Interference-plus-

Noise Ratio.

• TGDB: Temporal Graph Databases.

• TMs: Temporal Models.

• XAI: Explainable Artificial Intelli-

gence.

• XRL: Explainable Reinforcement

Learning.

J. M. Parra Ullauri, PhD Thesis, Aston University 2022. 15



Chapter 1

Introduction

1.1 Research Problem

Humankind increasingly entrusts computerised systems with complex and critical tasks [30].

Such systems are usually required to autonomously adapt and modify their behaviour at

runtime based on their observations in order to cope with uncertain and dynamic envi-

ronments [111, 35]. These, so-called Self-Adaptive Systems (SAS), collect data during

operation to reason about themselves and based on their goals, to reconfigure or adjust

their behaviour to satisfy evolving conditions and complexities [159]. Early solutions to

self-adaptation tended to adapt according to monitored changes based on the knowledge

that was known at design time (e.g., rule-based systems), providing limited reasoning and

reflection capabilities [35].

Modern solutions can learn new information during execution to provide estimations

about the future that support better-informed and proactive decision-making [108, 31, 124].

However, self-adaptive actions may run into problems or present unexpected behaviour

due to uncertainty in the environment, which is exacerbated by the ubiquity of Artificial

Intelligence (AI)-based SAS [133]. Sudden actions performed by the SAS can create surprise

and consternation in users that may not understand the behaviour of the system even if

correct. Further, these users may cease to use the system due to the lack of trust and

understanding [141]. Providing understandable explanations for surprising behaviour can

be key to tackling the challenges described and has become a topic of relevant interest for

the SAS research community [141, 31, 29]. Explainability of decision-making processes can

be key to enabling users’ understanding and increment confidence, in order to promote the
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widespread adoption of SAS [119, 96].

Explanations shown by a running system can help someone observing the system’s

behaviour to analyse and trace actions to help fix potential faults, convey knowledge about

the decision-making, and foster the trust of end users [59]. This is ratified by the General

Data Protection Regulation (GDPR) law, which enshrines the right to explanation [32], and

the IEEE P7001 - Transparency of Autonomous Systems [162]. In SAS, explainability can

be described as the capability of answering questions about the system’s past, present and

future behaviours [57]. The answers to these questions can explain why a decision was made

or why a particular state was reached [119]. It is argued that history-awareness can help to

explain coherently to various stakeholders (e.g. end-users or other SAS) which situations

have caused the system’s current behaviour [121].

In order to enable these history-aware explanatory capabilities, this PhD work discusses

that a SAS should be equipped with traceability management facilities and offer temporal

links to provide (i) the history of the decisions of the system and the evidence that supports

the decisions made under the observed environmental conditions, and (ii) the impacts of

the adaptation actions over the quality properties of the system over time. These history-

awareness requirements present several challenges such as how the history is structured and

stored considering the availability of resources, how this stored data can be distilled to derive

meaning from the history, and how to minimise the impact of adding these capabilities on

the SAS performance, and how to present explanations for a specific purpose and target

using historical information. A more in-depth discussion about the challenges for history-

awareness in SAS will be presented in Section 1.1.1.

Given the above, this thesis explores how Runtime Monitoring (RTM) and the abstrac-

tion capabilities provided by Model-Driven Engineering (MDE) can be combined to support

the tackling of the previously mentioned challenges to enable explanations based on SAS his-

torical behaviour with the main objective of promoting transparency and understandability

in this type of systems.

On one hand, RTM enables engineers and maintenance personnel to keep track of the

system’s behaviour during operation and to check the interactions that occur between its

components, as well as between the system and its environment [128]. Event-driven mon-

itoring is a common RTM approach to gain insights about a system based on particular

situations of interest (i.e. events) [81]. A goal of event-driven RTM is to determine whether
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a system behaves as intended, allowing the potential correction of the behaviour when

required [44]. However, it can come at a cost of the impact on the performance of the moni-

tored system [128]. Therefore, it is important to deploy the right type of monitoring service

to achieve its objectives whilst minimising negative impact as well as complexity [71].

On the other hand, MDE has evolved substantially and its adoption in industry is in-

creasing [25]. MDE aims to describe (i.e. specify and build) software systems supported

by abstractions called models [69]. MDE has made substantial contributions to leverage

abstraction and automation in many areas of software and systems development and anal-

ysis [25]. Specifically, runtime models [15] seek to extend the applicability of models in

MDE approaches to the execution of a system. They have the potential to be used to

monitor and verify particular aspects of runtime behaviour, and to implement self-* ca-

pabilities (e.g., adaptation technologies used in self-healing, self-managing, self-optimising

systems) [13]. Following a models@run.time (i.e. runtime models) approach, where the

system operates from a formal set of rules described in a modelling language, is a technique

used in the development of SAS [14] and it has been recognised as the third wave of engi-

neering SAS [159]. Crucially, runtime models can be also used to provide the abstraction,

analysis and reasoning capabilities needed to support explanations when using AI-based

SAS.

An extended review of these two areas, RTM and MDE for SAS, is presented in Chap-

ters 3 and 4.

1.1.1 Challenges when enabling history-aware explainability in SAS

Different challenges when enabling explanations based on the historical behaviour of SAS

are listed next:

CH1: Collection, organisation and storage of the historical data produced by

the system

Storing the historical data of a running system can be costly for its performance. For

example, scalability issues may arise when large amounts of logs are produced as a result

of processes in the systems as they need to be stored on disk. Keeping each version of

a time-evolving system would further increase the storage capacity needed exponentially,

and the performance of the system may be affected due to dealing with such an amount
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of data. Therefore, providing the capability of reasoning based on the history of a system

would need to mine a large amount of data, extract a relevant view, and finally analyse

it. This capability would require considerable computational power while being highly

time-consuming, conflicting with the strict real-time response time requirements of modern

software systems [67]. Consequently, it is necessary to find scalable and efficient alternatives

for storing large amounts of data without compromising the SAS performance.

Logs are prevalent in all kinds of computer software. However, principally, they are text-

based and are usually addressed to humans, while showing limited support for automated

processing such as basic filtering and tagging [58]. The increasing level of automation

in cloud deployments has motivated some IaaS (Infrastructure as a Service) platforms to

explicitly collect historical data intended to be used by software systems as well [18]. For

instance, the Google Cloud platform is known to track memory usage and recommend VM

changes1.

There has been considerable work on time-series data mining which attempts to extract

knowledge by looking at the shape of the data as described in the survey presented by Esling

and Agon in [50]. This survey lists a wide variety of approaches for querying by content,

clustering, classification, segmentation, and prediction, among other tasks. However, the

history of a system can be more complex than a sequence of numbers. In its most general

form, the configuration of a system is a complex entity that changes over time. In order

to make a system more explainable, tracking the history requires a fitting data structure.

Therefore, this PhD dissertation defines three crucial aspects to be considered for collecting

a SAS history: (i) formatting the logs to make them machine-parseable, (ii) structuring the

data on a reusable manner to make it suitable for explanations for different SAS, and (iii)

minimising negative impacts on the performance of the monitored SAS.

CH2: Query and extraction of information to provide explanations

If the system shows surprising or unexpected behaviour, users or stakeholders may want to

know why. Answering emerging questions related to such situations would require execution-

tracing features to allow the analysis back and forth in the system’s history for monitoring

the decision-making performance against the available evidence at one or more points in

time. Working with historical information that is accessed through a data structure involves

1https://archive.ph/lAMvF
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being able to perform queries on a given data storage [23]. Accordingly, beyond compact

storage (related to Challenge 1), history-awareness requires an efficient manner to represent

and query the history. To cover these demands, it is argued that a flexible and scalable

approach for querying the history of the SAS is needed to study the evolution for the

validation of the system. Having a suitable way to write queries over the history of the

system is an important aspect of reusable explanatory capabilities [57].

CH3: Provision of explanations for different purposes and consumers

Transparency and trust play an important role in the acceptance of information systems.

Systems able to explain their decisions, concepts, and information sources to users can

demonstrate their trustworthiness and support users’ understanding [40]. Further, systems

able to generate explanations for their own internal use may be able to increase their robust-

ness in dealing with unexpected situations, as well as to improve their future performance,

by refining their internal models and reasoning processes [133]. All of these potential bene-

fits depend on the ability of the systems to generate high-quality explanations. Accordingly,

it is important to understand which is the main purpose of the explanations, who or what

is going to be the consumers of these [1]. If the explanations are human-oriented, it is

important to define first what is the technical expertise of the user involved: for exam-

ple, a developer may need a different level of detail than an end-user. In this PhD work,

explanations are mainly targeted to SAS developers. Another approach could be machine-

oriented. In this case, the explanations may be used for either internal reasoning of the

SAS or for the case of a system explaining its behaviour to other systems in a system-of-

systems deployment. All these scenarios are valid and need research towards history-aware

explainability.

1.1.2 Research questions

Explanations in philosophy have been the focus of vast research over the years [105]. The

philosopher David K. Lewis stated:

“To explain an event is to provide some information about its causal history.

In an act of explaining, someone who is in possession of some information about

the causal history of some event –the explanatory information– tries to convey

it to someone else.” — Lewis, D.[90]
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Based on this premise, this PhD work investigates the importance of history for trans-

ferring knowledge and providing explanations. Consequently, and based on the problem

statement and the key issues and challenges identified above, the research gap and motiva-

tion for this thesis were defined.

To explore the challenges of history-aware explanations discussed in this chapter this far

and considering the selected approaches of RTM and MDE to undertake these challenges,

there are three primary questions and concrete measurable sub-questions that this thesis

aims to address:

• RQ1: How can model-driven engineering and runtime monitoring enable scalable and

structured historical data storage?

– RQ1.1: What is the effectiveness of the proposed solution which combines Tem-

poral Models from model-driven engineering and Complex Event Processing from

runtime monitoring for history-aware explainability?

– RQ1.2: How does the proposed approach compare to existing approaches?

• RQ2: How can the exploration of the stored SAS history support developers wishing

to improve or validate their systems?

– RQ2.1: How useful is the proposed approach, which uses post-hoc explanations

extracted during runtime monitoring, in enabling developers or external entities

to monitor and refine SAS systems?

– RQ2.2: What insights can be gained to improve the system’s behaviour and

decision-making using the proposed approach?

• RQ3: How can external entities using history-aware explanations influence the SAS

decision-making in an informed way?

– RQ3.1: How can a history-aware architecture enable a bi-directional communi-

cation approach between stakeholders and a SAS?

– RQ3.2: How can feedback from external entities through explanations be inte-

grated into the SAS decision-making process to enhance its performance?

Each research question is related to the previously defined challenges. RQ1 will focus

on the feasibility of keeping track of the history of SAS (CH1). RQ2 explores temporal
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assertions that will allow the elicitation of historic information that will conform explana-

tions (CH2). Finally, RQ3 analyses the importance of history-aware explanations for the

purpose of enhancing collaboration between the SAS and external entities as the consumers

or recipients of the explanations (CH3). To study and tackle these research questions, a

series of experiments were designed, conducted and evaluated.

1.2 Contributions of this Thesis

The intention behind the efforts presented within this PhD work was to gain an understand-

ing into how runtime models –from MDE– combined with runtime monitoring of SAS can

be used to keep track of the system’s reasoning over time to extract history-aware explana-

tions on demand. Concretely, the work proposes Temporal Models that seek to add short

and long-term memory to runtime models through the use of temporal databases [119, 120]

(a more in-depth description is provided in Chapter 6). A generic post-hoc (i.e., after the

event) framework based on temporal models towards history-aware SAS is proposed with

two main objectives: i) to allow users to gain trust on a SAS through explanations based

on the system’s historical behaviour, ii) to empower SAS decision-making processes with

explicit reflective capabilities about past performance. Rather than an all-or-nothing situa-

tion, it is argued that it is more cost-effective to develop these capabilities in stages or levels.

Colleagues from the Software Engineering at Aston (SEA)2 research group proposed in [59]

a 4-level spectrum of reflective capabilities in SAS. They go from forensic explanations to

autonomous history-aware decision-making. This research roadmap that was further refined

and presented in [119], acts as the research roadmap for this PhD work. Considering the

above, the main contributions of this thesis are as follows:

i The study, design and implementation of the first three levels of the mentioned gradual

approach for a spectrum of reflective capabilities for history-aware SASs.

ii A novel approach for combining runtime models and temporal databases –Temporal

Models– which record on an structured fashion the goals of a SAS, its decisions, its

observations and its reasoning over time.

iii An evaluation of a set of time-aware extensions to an existing model querying language

2https://cs.aston.ac.uk/sea/
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that enable access to the stored system history to extract information that will conform

explanations.

iv A novel generalizable architecture based on Temporal Models and event-driven run-

time monitoring, called ETeMoX (presented in Chapter 7), for the extraction of

history-aware explanations from data-intensive SAS on a post-hoc manner.

v Two comprehensive experimental studies and accompanying analyses, designed to in-

vestigate the proposed research questions about effects of history-aware explanations,

that establish:

• Temporal models are a convenient solution for storing the history of SAS. The

provision of temporal assertions based on the temporal query language allows

access and exploration of the SAS history.

• Temporal models combined with event-driven runtime monitoring can tackle

the challenges in volume and throughput posed by data-intensive systems in a

resource-aware manner.

• Explanations based on the historical behaviour of SAS help developers and other

stakeholders validate and verify the system’s runtime decision-making processes.

• The consumers of explanations, whether humans or machines, can use the pro-

vided information for internal reasoning and for providing feedback to the system,

online or offline, to the system based on the information acquired.

1.3 Research strategy

In order to meet the established goals, the following approach has been applied:

• To undertake a survey of the state of the art on approaches to support explanations

in SAS, to identify the research gaps.

• To examine and evaluate the state of the art in MDE and RTM for SAS in the context

of knowledge discovery.

• To study the proposed research roadmap for history-awareness in SAS.
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• To investigate, following the research roadmap, how temporal models, model-driven

and event-driven RTM can be complemented between them to support explanations

in SAS.

• To design, implement and evaluate the proposed architecture in different case studies

to validate the feasibility of the approach.

• To report results and limitations after the validation is performed.

The research done aims to demonstrate the viability and the benefits of the generalizable

approach using the proposed techniques to support explanations based on the historical

behaviour of SAS.

1.4 Structure of this Document

The remainder of this thesis is organised into eight chapters with the following structure.

Chapters 2, 3 and 4 describe the baseline and preliminary literature review needed to com-

prehend this work. On the other hand, Chapters 5, 6 and 7 presents the contributions of

this thesis. Figure 1.1 depicts the flow of chapters. Chapter 2 presents the foundations

regarding SAS and motivates the need for explanations on such systems that underlies

this research. An introduction to MDE and its use in the context of SAS is depicted in

Chapter 3. Chapter 4 describes different approaches of runtime monitoring. The proposed

gradual approach for reflective capabilities in SAS is described in Chapter 5. The following

2 chapters are self-contained: Chapter 6 presents a first experiment of the proposed model-

driven approach applied to the case study of a network management SAS, and Chapter 7

describes how model-driven and event-driven monitoring can be combined to support ex-

planations. The approach is demonstrated on a case study for a telecommunications SAS.

Finally, Section 8 presents the conclusions and future work.
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Figure 1.1: Thesis structure
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Chapter 2

Explanations in Self-Adaptive

Systems

This chapter provides a brief introduction about SAS and important concepts relevant for

the present document. It also motivates the need for explanations in SAS, especially in

AI-enhanced SAS. Current approaches to support explanations and its classification are

also presented.

2.1 Self-Adaptive Systems (SAS)

As computer systems become more pervasive in our every day lives with the continual ad-

vancement of technology, software systems are expected to dynamically adapt to changes

in the highly volatile and heterogeneous environments that characterise them. SAS ad-

dress these challenges by being able to automatically modify their behaviour in response to

changes in their operating environment [88]. Scientists and engineers have made significant

efforts to design and develop SAS. These systems address adaptivity in various concerns

including performance, security, and fault management [137].

The applications of SAS are broad and diverse, they go from adaptable user interfaces

to autonomous robots, from embedded systems to mobile ad-hoc networks, and many other

areas of application and research [35]. The common element that enables adaptability

is usually software [43]. Self-adaptive software is expected to fulfil its requirements and

to adjust its behaviour in response to its perception of the environment and the system

itself [35, 137]. For achieving this adaptive behaviour, basic system properties are self-
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awareness and context-awareness [88]. Self-awareness can be seen as the capability of a

system to acquire and access knowledge about its own state and resources [31]. Such

knowledge allows for better understanding and reasoning about its adaptive behaviour.

Self-awareness of a computing system can be related to different specific capabilities such as

goal-awareness [35], requirements-awareness [141] or time-awareness [91]. Time-awareness

is the use of knowledge of historical and perhaps future phenomena [91]. Therefore, history-

awareness is implied in time-awareness [57]. On the other hand, context-awareness means

that the system is aware of its operational environment, the so called context [88].

2.1.1 A conceptual model of SAS and the MAPE-K loop

The workflow of sensing and applying adaptations is typically characterised by a feedback

loop involving four key activities: i) collect data from the system and its context, ii) analyse

this data, iii) subsequently, make a decision regarding the adaptive behaviour, and iv) and

then perform an action [24, 35]. Within this frame of reference, Weyns, D. in [159], defined

a conceptual model of a self-adaptive system (Figure 2.1). It is conformed by four main

elements:

• Adaptation goals: They are the drivers of the system’s reconfiguration and are usually

related to the software quality of the system [159]. Four main adaptation goals can

be recognised: self-configuration (systems that configure themselves automatically),

self-optimisation (systems that continually seek ways to improve their performance or

efficiency), self-healing (systems that detect, diagnose, and repair problems resulting

from defects or failures), and self-protection (systems that defend themselves from

malicious attacks or cascading failures) [159].

• Environment: The environment refers to the part of the external world with which

the self-adaptive system interacts: its context [88]. The environment is where the

effects of the system will be observed and evaluated [159].

• Managed system: It is the system that is controllable and subject to adaptation [63].

In order to realise its functionality, the managed system senses and affects the en-

vironment. To support adaptations, the managed system has to be equipped with

sensors to enable monitoring and actuators to execute adaptations [159].
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• Managing system: It is the system that, based on the adaptation goals, controls the

managed system through an adaptation process [63]. In order to realise the adaptation

goals, the managing system monitors the environment and the managed system and

adapts the latter when necessary [159].

Figure 2.1: Conceptual model of a SAS [159].

The managing system operates the managed system based on the adaptation logic that

deals with internal and external concerns [160]. A common approach to describe this adap-

tation logic is the MAPE-K feedback loop proposed by IBM [111] which consists of four key

stages; Monitor, Analyse, Plan, and Execute around a Knowledge base (See Figure 2.2).

The monitor stage senses the managed system and the environment in which the system

operates (context), filters the accumulated sensor data, and updates the knowledge. The

analyser stage uses the up-to-date knowledge to evaluate the need for adaptation. The plan-

ner stage then selects the best option based on the adaptation goals and generates a plan

to adapt the system from its current configuration to the new configuration. The executor

stage performs the adaptation actions of the plan [24, 111]. The MAPE elements map to

the basic functions of a feedback loop, while the K component maps to runtime models

(causally connected representations) maintained by the managing system to support the

MAPE functions [160]. It is worth noticing that SASs are usually systems-of-systems [88],
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Figure 2.2: MAPE-K loop for SAS [111]

and the managed and managing subsystems can be deployed in a centralised or distributed

fashion [160].

2.1.2 Research Challenges in SAS

Various researchers have dedicated their efforts to identify and define the research chal-

lenges for SAS [35, 43, 30, 159, 88, 141]. They are related to the fundamentals to engineer

SAS, key elements for the concrete realisation of SAS regarding to its goals and assurances,

uncertainty management, and the exploration and exploitation of established and new re-

search trends [35, 159]. In this context, the challenges relevant to this thesis are listed and

described next:

• Modeling dimensions [35]: The challenge is to define models that can represent a wide

range of systems properties to support run-time analyses and decision processes [35].

Runtime models have been widely used for SAS management [15]. They underpin self-

awareness, by allowing systems to abstract their own state and behaviour in a way

that is amenable for automated adaptation strategies [43]. Apart from the challenges

in the use of runtime models regarding domain specific modelling languages [159], it

is discussed that full potential use of runtime models in SAS is still not accomplished.

Runtime models for SAS will be further discussed in Sections 3.1.2 and 3.2

• SAS requirements [141, 43]: Once uncertainty is considered at the requirements def-

inition stage, requirements monitoring is necessary for the reason that deviations
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between the system’s run-time behaviour and the requirements model may trigger

the need for a system modification [43]. As such, a SAS is likely to exhibit emergent

behaviour. Developers need to be able to trace the origin of this behaviour and users

need to gain confidence in the system. These both require an ability for the system

to account for its behaviour in some appropriate form [141].

• SAS assurances [30, 43]: The provision of perpetual assurances during the entire life

cycle of a SAS poses three key challenges: how to obtain a better understanding of

the nature of uncertainty in software systems and how it should be balanced, how to

monitor and quantify uncertainty, and how to derive and integrate new evidence. Run-

time validation and verification (V&V) is crucial in SAS to guarantee the system’s

desired properties and goals [30]. However, performing V&V tasks can come at a cost

on the performance of the monitored system. Therefore, it is important to perform

the right V&V tasks at an appropriate time and location to achieve its objectives

whilst minimising negative impact as well as their complexity [71].

The present work tries to tackle some features of the previous stated challenges in the

following manner:

• Runtime Models to convey knowledge: This thesis further argues that runtime models

can be exploited not only for internal reasoning but also external. Runtime models can

be used to provide abstraction, analysis and reasoning capabilities needed to explain

to external entities (i.e. humans or other systems) why the system shows a given

emerging behaviour. Section 3.1.2 will describe runtime models more in detail.

• Explaining a SAS surprising behaviour: SAS’s behaviour is best explained in terms

of the satisfaction of its requirements [12]. The emerging behaviour caused by a SAS

trying to fulfil its requirements under the uncertainty in the environment, needs to be

explained [141]. This thesis’ main goal is to provide the tools to extract explanations

about a SAS’ historical behaviour to promote understandability and trustworthiness

in this type of systems.

• Explanations for Validations in runtime V&V: This thesis argues that post-hoc ex-

planations extracted during run-time monitoring can be used for Validation in V&V

processes by developers and/or external entities. By combining MDE and effective
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run-time monitoring techniques, this work tries to minimise the impact of the Valida-

tion processes in the SAS performance.

In addition to the previous challenges, this thesis targets AI-enhanced SAS, one recognised

challenge in [159]. Rather than focusing on how to introduce AI into SAS, this work tackles

the “black-box” challenges [1, 141] that the use of AI brings to SAS. The following section

describes some applications of AI in SAS.

2.1.3 Artificial Intelligence and Machine Learning in SAS

Artificial Intelligence (AI) aims to mimic cognitive functions for real-world problem solving,

building systems that learn and think like people do [125]. AI represents an effective way

of emulating adaptivity, making organised and efficient systems easier to reconfigure and

more highly adaptive [100]. Machine Learning is a sub-discipline of AI that focuses on

building AI models of human learning and understanding how machines can be empowered

with the ability of learning [106]. In ML, agents 1 learn either from training data or from

policies to create AI models with minimal or no human intervention [102]. ML can broadly

be categorised into supervised, unsupervised and reinforcement learning (RL) [106].

In recent years, we witness a rapid increase in the use of machine learning in SAS [141].

ML has been used for a variety of reasons, ranging from learning a model of the environment

of a system during operation to filtering large sets of possible configurations before analysing

them [140]. Gheibi et al. in [63] differentiates the adaptation problem and the learning

problem (Figure 2.3). The adaptation problem is related to the managing system’s problem-

solving based on the adaptation goals (commonly driven by the MAPE-K loop). Meanwhile,

the learning problem is related to the AI approach used by a machine learner2 to support

the MAPE-K loop in solving the adaptation problem.

The machine learner as part of the managing system can assist in different stages of the

MAPE-K loop described in Section 2.1.1.

• At the Monitor stage, ML can be used for pre-processing the incoming data from the

sensors and to update the knowledge models [63]. For example, in [11] the authors

use Bayesian Learning to update and infer the models (i.e., descriptions) that the

managing system has about the managed system.

1agent: autonomous or semi-autonomous AI-driven system, in other words, the learner [147]
2machine learner or agent: autonomous or semi-autonomous AI-driven system. [148]
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• At the Analyse stage, ML can be used to classify large sets of adaptation options

reducing the adaptation space such that only the relevant options need to be analysed,

improving the efficiency of the system [127].

• At the Plan stage, ML can be applied for updating rules/policies [63]. For instance,

in [73] the authors propose model-based Reinforcement Learning for policy evolution.

• At the Execution stage, ML can support the realisation of an adaptive action. For

example, in [117], the authors proposed a classifier to choose the actuator that the

system should use to adapt.

Besides the previous mentioned applications of AI in SAS, ML has been also applied

to SAS without the concept of the an architecture or framework as the MAPE-K loop.

These approaches use traditional control loops which refer to collect, analyse, decide, and

act towards an adaptation without a formal architecture [140].

The adoption of AI has become ubiquitous in software-based systems when needing to

provide better levels of autonomy and self-management in modern SAS. AI and ML has

been successfully applied in vast domains such as transportation, recommendation systems

or natural language processing among others [1]. Despite its broad applicability, the nature

of ML is still considered as a “black-box” where system decisions can become opaque to

stakeholders [162]. In this context, explanation-aware computing has received growing

interest due to the ubiquity and complexity of AI-based systems, creating the notion of

explainable AI (XAI) [138] to gain insight into the “black boxes” associated with AI. The

next section will describe some approaches that have been used for providing explanations

in AI-based SAS.

2.2 Explanations in SAS

Calinescu et al., emphasise uncertainty in the environment or domain in which the software

is deployed as a prevalent aspect of SAS [29]. This uncertainty may cause surprising or

unexpected behaviour [136]. The emergent behaviour caused by uncertainty may result

on users not understanding or trusting a SAS. Such a lack of intelligibility can mean that

users may cease to use a SAS [141]. Systems able to explain their decisions, concepts,

and information sources to users can demonstrate their trustworthiness and support users’
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Figure 2.3: The learning problem and the adaptation problem in ML for SAS [63]

understanding [133].

Explanations provide a key capability to shape the human understanding of the environ-

ment, especially when their perceptions diverge from their expectations [40]. Explanations

can prove or refute user hypotheses or mental models about system behaviour, and help fill

the gaps in those incomplete mental models for causal accountability [92]. SAS increasingly

use AI-based approaches for their flexible decision-making, which often appear to users as

“black boxes” that are not inherently interpretable [159, 162]. There are different arguments

in favor of explanations in AI. Adadi et al., stated four arguments in [1]:

• Explain to justify: AI is involved in more and more areas of our everyday lives.

People affected by AI-influenced decisions (e.g. when refused a loan) may demand a

justification for the particular outcome. This transparency is needed to ensure fair

and ethical decisions [150] are being made.

• Explain to control: Explanations can often be used to keep agent actions inside an en-

velope of good behaviour. The explanations allow to discover the origin of a problem

or to clarify misunderstandings between the system and the user [3]. Indeed, expla-

nations can contribute to prompt identification of errors in non-critical situations [1].

• Explain to discover: Modern AI systems can process large amounts of data that

otherwise would be difficult for humans to process. Asking for explanations is a

helpful tool to extract insights about the knowledge acquired by this processing [1].
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Figure 2.4: Classification of Explanations. Dimensions selected from [1] and [138]

• Explain to improve: In order to improve an AI system, it is key to discover its flaws.

An AI system that can be explained and understood can be easier to enhance and use

to the best advantage [138].

The XAI community has differentiated three main phases for building and conveying

explanations [3]: i) the explanation generation, this phase focuses on the methods that allow

the construction of the explanation (i.e, how to enable access to information that will build

explanations) ii) the explanation communication, which deals with what information will be

provided and how will it be presented and iii) explanation reception which studies how well

the human understands the explanation. In order to assess this, typically, research relies

on user studies and subjective evaluation [70].

This thesis focuses on the first two stages: explanation generation and explanation

communication for explanations to control and improve AI-based SAS.

2.2.1 Classification of Explanations

From the literature, there are different techniques and approaches that are proposed to

confer explainability [1, 138, 126, 70, 130, 41]. This section will focus on four dimensions

selected from [1] and [138]: the type of the explanations, the scope of the explanations,

the method for presenting the explanations and the profile of the audience targeted by the

explanations. Figure 2.4 depicts the selected criteria.

By type

Explanations differ on whether they arise from the system’s decision-making processes, or

whether their generation requires post-processing [42]. In that sense, the extraction and/or
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generation of explanations can be intrinsic or post-hoc [1]. The most straightforward way to

get an interpretable AI system is to make it intrinsically explainable, thus self-explainable

by design. One example are decision trees: they have a defined structure and can provide

convincing capabilities to gain the trust of domain experts [42]. This type of explanations

are model-specific by definition [1, 126]. Post-hoc explainability, on the other hand, aims

to mimic the original system to provide the needed explanations without altering or even

knowing the inner works of the original AI-model [42]. Rule extraction is an example of

this type. By analysing the input and output of an artificial neural network, it provides

a description of the knowledge learned by the network during its training by extracting

rules that approximate the decision-making processes [130]. This type of explanations are

generally AI-model -agnostic [1, 126]. This thesis focuses on post-hoc explainability of

AI-enhanced SAS.

By scope

The explanations can either be local or global [42]. Local explanations focus on data and pro-

vide individual explanations, helping provide trust on AI-model outcomes. Local explana-

tions focus on why the AI-model made a certain decision for one or a group of instances [126],

whereas global explanations focus on the AI-model and provide an understanding of the

overall decision process. A global explanation aims to provide a general understanding of

how the AI-model works [1]. For example, a local explanation would be explaining the

denial of a loan by a financial system to an end user (a single decision/prediction), while

a global explanation would be the case of developers trying to understand the whole logic

and reasoning that leads to all possible outcomes for the acceptance or denial of a loan for

any user.

By targeted audience

Besides the motivation for explaining a system, it is also important to understand who or

what is going to receive the explanations, in other words, the public to whom the explana-

tions will be addressed [162]. It is essential to take into account the concept of audience,

as the intelligibility and comprehensibility of a model is dependent on the goals and the

cognitive skills of its users [70]. The target audience can consist both of humans or ma-

chines. In the case of humans, its crucial to identify the level of expertise of the explanation
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consumer. They can be developers, domain experts or lay-users [70]. On the other hand,

the explanations could be directed at another computer system. The SAS can explain its

behaviour to other systems for example, on a systems of systems community. Furthermore,

the consumer of the explanations can be the system itself, where explanations could enable

reflective capabilities in SAS.

By presentation method

Different ways to communicate the explanations have been recognised [3]. Text-based ex-

planations are the most common type presented in the form of natural language or logs [42].

This type of explanations Visual representations such as graphs, plots, or heatmaps among

others are also used to depict explanatory information [70]. Other approaches include ex-

pressive motions and indicators, as well as text-to-speech for explaining robots [3]. The

selection of the presentation method should be coherent with the targeted audience. For

example an end-user may find easier to understand a high-level well defined graph than a

set of logs. On the other hand, detailed information, may be more useful for developers

trying to comprehend system’s inner works.

2.2.2 Current approaches to support explanations in SAS

In recent years, explainability has been in the agenda of the SAS community [29, 141, 136].

In SAS, explainability can be described as the capability of answering questions about

the system’s past, present and future behaviours. The answers to these questions can

explain why a decision was made or a particular state was reached [59]. Users may require

explanations about why, for example, the system reached a certain state from the current

state, which goals and requirements caused the system current behaviour, or how an external

entity can help the system to achieve a certain goal [65].

This thesis discusses that explaining a SAS behaviour is related on explaining the adap-

tation problem, different from XAI approaches that focus on explaining the learning prob-

lem from Section 2.1.3. The previous can be mapped to the idea of Machine Reasoning

Explainability proposed by Ericsson Research in [41], where explanations of a system are

conformed not only by explaining AI black-boxes but, also explaining all the inner workings

and system observations, and its interactions with the environment.

Although the field can be considered relatively new for SAS, there has been some re-
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search interest in providing support for explanations as a self-* capability. For example,

Bencomo et al., in [12] describes how goal-based requirements models can be adopted to offer

explanation of how a system is meeting its requirements. In [48] the authors design method-

ology for self-explainable systems, and argue that beyond user acceptance, self-explanation

also has other applications such as self-verification and reconfiguration. In [19], the authors

propose an architecture for building self-explainable systems. They propose the MAB-EX

loop as a framework that can extend the SAS MAPE-K loop in order to support explana-

tions. The basic idea of MAB-EX is to first Monitor and Analyse a certain behaviour of a

system, then Build an explanation from explanation models and convey this explanation in

a suitable way to a stakeholder. Li et al. [92] propose explanations for human-in-the-loop.

Their target is to define when an explanation should be provided as a tactic of the SAS

to support human interaction. They analyse the cost or the latency of the explanation

receptions (the third stage in [3]). Reynolds et al. proposed in [131] automated provenance

graphs to explain the behaviour of SAS based on runtime models. Provenance graphs relate

the entities, actors and activities in the system over time, recording the reasons why the

system reached its current state. In [87], the authors of propose a framework based on

self-descriptions and the Smart Object Description Language (SODL) for the realisation of

self-explainability in SAS. By using this framework, smart objects and applications can be

connected dynamically to control each other.

All the previous approaches are focused on the intrinsic type of explanations. Therefore,

they focus on explanations that are generated and planned as a self-* capability of a SAS

(i.e., self-explanations). While this is a valid approach, it is model-specific by definition

and requires changes in the SAS, which is difficult to generalise [1]. Moreover, the existing

work has focused on justifying specific decisions (i.e., local explanations). However, it is

argued that an approach able to justify the whole logic of a model and follow the entire

system reasoning is also required (i.e., global explanations) [126]. Apart from the previous

mentioned, the approaches found in the literature don’t define formally a targeted audience.

This thesis focuses on AI-enhanced SAS developers and AI-enhanced SAS domain experts.

These two groups of users are familiar with developing and/or using SAS and are hence

interested in understanding, diagnosing, as well as refining such systems in a given appli-

cation context [97]. In summary, there are some approaches towards enabling explanatory

capabilities in SAS. However, to the best of the author’s knowledge, none focus on explain-
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ing of self-adaptive actions in a decoupled post-hoc manner nor allow both the extraction

of local and global explanations targeting SAS developers and experts.
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Chapter 3

Model-Driven Engineering in SAS

The development of self-adaptive software requires the engineering of an adaptation en-

gine (i.e., managing system) that controls the underlying adaptable software (i.e., managed

system) in feedback loops [159]. This separation decouples the engine from the adaptable

software but it makes the feedback loop a crucial element of the overall software archi-

tecture [156]. Models can be helpful abstract representations of feedback loops and their

interactions, among other wide range of aspects in SAS [35, 156]. In this context, MDE in

SAS refers to the systematic use of models as primary artifacts for engineering, refining and

managing such systems both at design time and runtime [43].

This chapter provides a brief introduction to MDE, and key features of the approach

that will be used to enable post-hoc explanations in SAS. Important concepts relevant

for the present work as run-time models and the notion of time in MDE are presented.

Additionally, how MDE has been used in SAS is also discussed.

3.1 MDE in a nutshell

The human mind inadvertently and continuously re-works reality by applying cognitive

processes that alter the subjective perception of it. Among the various cognitive processes

that are applied, abstraction is one of the most prominent ones. Abstraction is also widely

applied in science and technology, where it is often referred to as modeling [22]. In software

engineering, applying advantages of modeling approaches for the development of software

artifacts can be defined as Model-Driven Engineering (MDE) [22]. The process of analysing

a problem, conceiving a solution, and expressing a solution in a high-level programming
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language can be viewed as an implicit form of modeling and thus one can argue that

software development is essentially a model-based problem solving activity [56].

Abstraction, automation, and analysis are the peculiar aspects of Model Driven En-

gineering that refer to the systematic use of models as first class entities throughout the

software development life-cycle [142]. Some of the benefits of MDE are:

• Systematic reuse of development knowledge and experience: models can be used to

capture knowledge about a specific domain and describe processes and principles.

MDE supports how explicitly and systematically reusing these knowledge and expe-

rience representations [22].

• Higher levels of abstraction: MDE allows the level of abstraction at which developers

operate to be raised, with the goal of both simplifying and formalising the activities

and tasks of the software life-cycle [79].

• The ability to synthesise artifacts through generators and transformation engines:

which allows access and analysis of certain aspects of models to automatically synthe-

sise various types of artifacts, such as source code, deployment descriptions, or even

other kinds of models representations [142].

MDE brings and adapts well-understood and long-established principles and practices

of trustworthy systems engineering to software engineering; it is unthinkable to start con-

structing e.g. a bridge or an aircraft without designing and analysing several models of

it first [83]. It’s used extensively in organisations that produce business or safety-critical

software, including in the aerospace, automotive and robotics industries, where defects can

have catastrophic effects (e.g. loss of life), or can be very expensive to remedy, for ex-

ample requiring large-scale product recalls. MDE is also increasingly used for non-critical

systems due to the productivity and consistency benefits it delivers, largely through auto-

mated code generation [83]. The high re-usability and reliability of the code generated by

this software paradigm, as well as its increased productivity and less costly maintenance,

have led to its application in various fields including railway systems, automotive, business

process engineering among many others [25].

In order for models to be amenable to automated processing, they need to be defined in

terms of rigorously specified languages [114]. In this scope, a metamodel describes the struc-

ture of models in an abstract way. Particularly, a metamodel is defined using a metamodel
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Figure 3.1: Relationships between models, metamodels and meta-metamodels [145]

language joined to a set of rules which specify the constraints so that the metamodel is well-

formed [21]. Consequently, models represent abstractions of real systems that are analysed

and engineered by identifying a coherent set of interrelated concepts precisely captured in

metamodels. A model therefore is said to conform to a metamodel and model transfor-

mations generate target artefacts from source models. Models are analysed by means of

queries specifically conceived with respect to the properties to be checked [36] that is a key

element of the present document.

The relationship between models and metamodels can be explained with the four-level

architecture [22] depicted in Figure 3.1, as detailed below:

• Data level (M0): it represents real-world data that conforms to a given model. For

example a movie, in this case the 1942 film Casablanca directed by Michael Curtiz.

• Model level (M1): it characterises models describing M0-level data. Every model is

an instance of a metamodel. In the given example, the model depicts the concept of

Video with an attribute of the type string that describes the title of the movie.

• Metamodel level (M2): it represents metamodels describing M1-level models. Ev-

ery metamodel is an instance of a meta–metamodel. The metamodel describes the

concepts used at M1 for defining the model, such us: Class, Attribute and Instance.
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Figure 3.2: Simplified Diagram of the Ecore metamodeling Language [145].

• Meta-metamodel level (M3): it characterises meta-metamodels describing M2-level

metamodels. A meta–metamodel is an instance of itself.

One of the most popular and widely-used frameworks that facilitate the creation of

metamodels is The Eclipse Modeling Framework (EMF) 1 which is used in this thesis.

In EMF, metamodels are defined using the Ecore metamodeling language. A simplified

overview of Ecore concepts is illustrated in the class diagram of Figure 3.2 with four main

Ecore classes [145, 7].

• EClass is used to represent a modeled object including name, attributes and references.

• EAttribute is used to represent a modeled attribute. They have a name and a type.

• EReference is used to depict one end of an association between classes. It has a name,

a Boolean flag to indicate if it represents containment (i.e. ownership relation), and

a target type, which is another class.

• EDataType is used to represent the type of an attribute. It can be primitive (e.g.,

int) or an object type (e.g., java.util.Date)

EMF offers a robust framework for MDE that streamlines the modeling process and

improves the quality of software development [145]. By providing a standardised way of

1https://www.eclipse.org/modeling/emf/
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Figure 3.3: Metamodel describing a Project and its features.

defining models using a metamodel, EMF enhances reusability and maintainability of mod-

els across different projects. Furthermore, EMF facilities simplify code generation and ease

interoperability with other frameworks and tools, which promotes collaboration and shar-

ing of models across teams. Additionally, EMF allows for automated testing of models

using automated tools, which improves the quality and consistency of models. Lastly, EMF

and its variants support large-scale modeling, allowing complex models to be easily created

and managed. Overall, EMF provides a robust framework for MDE that streamlines the

modeling process and enhances the quality of software development [145].

The Epsilon Object Language (EOL) [85] is a programming language that plays an im-

portant role in MDE [85]. EOL facilities the navigation and modification of models. EOL

can be use to manage models from diverse technologies such as XML, and the previous men-

tioned EMF. This metamodel-independent language is inspired by the Object Constraint

Language (OCL) first developed by IBM in 1995. OCL enables expressing all kinds of

(meta)-model querying, manipulation and specification requirements [28]. However, OCL

has its limitations as a general-purpose language for different model management tasks [85].

To overcome these constraints, EOL proposes a syntax and set of constructs that allow the

creation and manipulation of (meta)models in a technology-agnostic fashion. Similar to

EMF, in EOL, developers establish the design of their models by means of a metamodel.

This metamodel outlines the types of components that can be present in a model and the

connections between them. Subsequently, models are constructed using instances of these

components specified in the metamodel and can be altered with the help of operations

supplied by the EOL libraries and frameworks [85].

EOL programs are organised in modules: each one contains a body and a number of
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operations. When the module is executed, the body block is evaluated. Operations have a

kind of objects on which they are applicable (i.e. a context), a name, a set of parameters

and optionally a return type. Based on the Epsilon Playground tool proposed by Kolovos

and Garcia-Dominguez in [84], an example for the use of EOL is presented next. Con-

sider the metamodel of Figure 3.3 describing a Project, its Task, and the Person objects

associated to the Task. Then, the EOL program depicted in Listing 3.1 can be used for

model navigation. When the body is evaluated, the operation getTotalEffort() of the

type Task can be accessed. This EOL query will print, for every Task in the model, its title

and the total person-months of the Task. Additionally, it will print the count of tasks that

are undertaken by a single Person.

EOL enables developers to create and modify EMF models, query model contents, and

perform model transformations. EOL provides numerous features that facilitate working

with EMF models, including a rich syntax for expressing complex queries and transforma-

tions [84]. Additionally, EOL has a range of built-in functions and operations that can be

utilised to manipulate models, such as selecting, creating, and modifying model elements.

In essence, EOL is a programming language purpose-built for EMF models that offers pow-

erful features for manipulating and transforming models [85]. In this PhD work, EOL has

been extended with temporal assertions that allow the exploration of model transversion

over time. More details will be presented in Section 5.

Listing 3.1: EOL program example

for (t in Task.all) {

(t.title + ”: ” + t.getTotalEffort()).println();

}

Task.all.select(t|t.effort.size() = 1).size().

println(”One−person tasks: ”);

operation Task getTotalEffort() {

return self.effort.

collect(e|self.duration∗e.percentage/100.0).sum();

}

Overall, in Software Engineering, the uses of models and their associated tools have been

extensive. They vary from models as description of the system’s domain, to models for doc-
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umentation, to models as specification for testing, among many others [89]. MDE combines

process and analysis with architecture bringing in model abstractions at the various phases

of the software life cycle. In this context, models can be broadly classified in development

models and runtime models [56] which will be described further in the following sections.

3.1.1 Development Models

Model-driven approaches are improving the way we build software. They increase devel-

oper productivity, decrease the cost (in time and money) of software construction, improve

software reusability, and make software more maintainable [94]. In the context of software

development, models provide an abstract representation of a software system or a part of

it. In the software development process, models are used for documentation and communi-

cation purposes in analysis, design, and implementation activities. MDE further increases

the importance of models, as in MDE models are not only used for documentation and

communication, but as central artefacts of the software development process [22].

MDE researchers have largely applied models to selected elements of the development

process, particularly structural and compositional aspects in the design phase and model

checking and verification in the testing phase [142]. Development models are models of

software at levels of abstraction above the code level. MDE researchers and practitioners

focus on how modeling techniques can be used to tackle the complexity of bridging the gap

between the problem domain and the software development [56]. Examples of development

models are requirements, architectural, implementation and deployment models [135].

Eliciting, defining and agreeing on the requirements for a system demand considerable

effort, involving different stakeholders and a large amount of information [141]. At the re-

quirements level, MDE techniques can be used to provide a common framework to integrate

requirements capturing activities (i.e., eliciting, defining, modelling, agreeing, communicat-

ing and validating) from all necessary perspectives [10]. For example, model transforma-

tions may ensure consistency between different kinds of requirements models such as goal,

scenario, and domain models. Furthermore, MDE approaches may help to automatically

construct architectural models from requirements (e.g., by deriving a more detailed UML

model from a goal or scenario model), allowing for a tighter integration of requirements

models and architectural/design models [69].

In the architectural space, MDE can empower the specification of the parts and connec-
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tors of the system and the rules for the interactions of the parts using the connectors [22].

Architectural models include interface, interconnections, and specifications for components

within a system but not their implementation. They describe the interactions between

components and their arrangement in the system, but the components themselves are black

boxes. The component implementations can be described separately by implementation

and or deployment models [38]. The implementation issue deals with the mapping of the

models to some existing or future running systems. It consists of defining three core aspects;

i) models, ii) transformations or code and, iii) artifacts [22, 145].

All these aspects presented form part of Model-Driven Development (MDD), that is a

development paradigm that uses models as the primary artifact of the development pro-

cess [22]. In the present document, the focus of interest of models goes beyond the devel-

opment paradigm and targets the analysis of the runtime behaviour of software systems.

Further details about models in the context of runtime software behaviour, will be described

in the following section.

3.1.2 Runtime Models

As previously discussed, in MDE, models are used as central artefacts of software devel-

opment. Recent studies take the idea of using models as central artefacts one step further

by using models during execution, known as runtime models, to cope with the dynamic

aspects of ever-changing software and its environment [56]. The basic underlying motiva-

tion for runtime models is the need for managing the complexity that arises from the large

amounts of information that can be associated with runtime phenomena [159]. Bencomo et

al., described a runtime model as an abstract causally-connected representation of a running

system. It allows monitoring and controlling the system as well as reasoning about it [14].

It can also serve as a knowledge base for SAS. The approach followed in the present thesis

depends on runtime architectural models that allow access to monitoring results. This is a

typical use case of runtime models as mentioned in [35].

Given information about the running system, the runtime models allow the system to

reason about its state and environment, and take corrective actions at a higher level of

abstraction [14]. Furthermore, performing changes at the model level of those models at

runtime improves the synchronisation between design artefacts and the implementation of

the software system [149]. Different problems can be addressed by runtime models [15,

J. M. Parra Ullauri, PhD Thesis, Aston University 2022. 46



149]. For example, inaccurate predictions result from unknown requirements evolution

(e.g., requirement change produced by the user)and associated impacts. In a changing

environment, it is no easy task to monitor and visualise the impact of adaptation rules which

are applied when a system should meet new requirements. Runtime models help to visualise

such impacts by analysing the affected software parts at the model level and checking

whether specified application constraints have been violated [157]. Another example of

a problem addressed by runtime models is checking rules or constraints. The previous

mentioned means that the model contains or implies rules or constraints, such as consistency

requirements with the running system or other artefacts that should not get violated [149].

The purposes and objectives pursued when using runtime models are varied. From the

literature [15, 149], they can be classified as follows:

• Abstraction: refers to the use of models to provide a higher level of abstraction,

regardless of whether used at design time or runtime [14]. The aim is to tackle the

problems of level abstraction, maintenance and reusability resulting from hand-written

artefacts and manual human interventions [149].

• Adaptation: denotes the application of runtime models to build, operate or man-

age SAS [15]. One main objective of using runtime models is to ease adaptation

in environments with continuously changing requirements [149]. Common scenarios

addressed by adaptation through runtime models are: user interface adaptation [62],

requirements changes [11], contextual changes [54], QoS enforcement [124], and change

impact analysis [157]. Further details about runtime models, and in general MDE,

for SAS will be described in section 3.3.

• Error handling : refers to the application of runtime models to increase the fault

tolerance of systems [15]. Runtime models provide system operators with enhanced

capabilities to localise faults in behavioural models like workflows [112]. Beyond

that, with runtime models faults can not only be localised, but also eliminated by

architecture-based self-repair features [2].

• Interoperability : denotes the application of runtime models to bridge architectural mis-

matches between individual systems [15]. In this context, runtime models can be used

to capture meta-information about networked systems that need to cooperate, includ-

ing their interfaces and additional knowledge about their associated behaviour [13].
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• Monitoring, simulation and prediction: refers to monitoring the system by using mod-

els which help to trace application behaviour, to simulate changes at the model level

to analyse their consequences, and to predict system properties like performance by

analysis at the model level [149, 34].

• Consistency and conformance checking : denotes the application of runtime models

to assure that there are no contradictions between the different parts of a software

system and/or software artefacts related to the system [149]. Conformance ensures

that a software system meets a specified standard [149].

• Policy checking and enforcement : encompasses models used at runtime to cope with

policies, such as real-time constraints, access control and security regulations, or other

compliance rules [149].

Similar to the purposes for using runtime models, the types of such models are also

diverse [149]. Bencomo et al., in [15], differentiated the following:

• Structural runtime models: refer to models capturing the system elements and their

state at runtime.

• Behavioural runtime models: refer to models describing the runtime dynamics of the

systems, i.e., what the system can or will do based on its current state.

• Quality runtime models: stand for models capturing the current values of quality

properties (i.e., non-functional properties) of a system or its elements.

• Goal runtime models : denote models describing the current state of the system’s goals

(e.g., if they are currently fulfilled or violated).

• Variability runtime models : refer to models representing possible variants of the sys-

tem or it’s elements and which variant is currently in use.

• Design runtime models : refer to design-time decisions, which are continuously syn-

chronised with an evolving running system (used, e.g, for eternal system approaches).

• Requirements runtime models : denote models representing the current set of require-

ments a system has to meet.
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• Runtime models for feedback loops: refer to models representing one or more feedback

loops, their connections and current state (i.e., are a special type of behavioural

model).

• Physical runtime models: refer to models capturing the dynamics and current state

of physical (i.e., continuous) phenomena (e.g., in Simulink.)

• Runtime metamodels: describe runtime models that are used to specify how the system

or its environment are modelled.

The present PhD work focuses on runtime models with the purpose of monitoring SAS.

Furthermore, the proposed approach aims to exploit runtime models’ capabilities to reason

and convey knowledge about the behaviour of a SAS in the form of explanations. The types

of runtime models used in the proposed approach are behavioural, goals and requirement

runtime models to analyse how well does the system fulfil its requirements over time towards

a targeted goal. The proposed approach will be further described in Chapters 5, 6 and 7.

3.2 The Concept of Time in MDE

As mentioned in the first chapter of the present document (Chapter 1), the proposed ap-

proach exploits the importance of a SAS history to transfer knowledge and to provide

explanations. By using MDE, specifically runtime models, the history can potentially be

represented on a causally connected abstraction of the system’s behaviour. However, before

further describing the approach, it is important to understand the concept of time and,

therefore, history in MDE.

There are several ways to consider time in MDE. One way is to include it in the concepts

of the modelling language itself. For instance, the OMG MARTE (Modeling and Analysis of

Real-Time and Embedded Systems) profile [113] includes a framework for representing time,

supporting several abstractions: a causal one (modelling event precedence), a clock-based

one (dividing time into “instants” in which several processes may run simultaneously),

or a physical one (with real-world duration values). Different from [113], the concern of

this work is more about the evolution of the models themselves over time, along with the

modifications made by either human modellers, by an automated process (e.g. the operation

or monitoring process of a system) or by the running system itself. As an example of early
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Figure 3.4: Hierarchy of property patterns by Dwyer [49].

work, Ziemann and Gogolla proposed in 2002 TOCL (Temporal OCL), an extension of the

OCL for describing temporal constraints on an object-oriented model [166]. Their proposal

extended OCL with a number of past expressions (e.g. “prev e” is true if e is true in the

“previous state”) and future expressions (e.g. “always e1 until e2” is true if e1 is true “from

then on” until e2 is true “for the first time in the future”). While the proposal included

formal semantics and a type system, it did not include any suggestions on how to implement

this language.

In 2014, later work by Kanso and Taha [78] stated that existing research on temporal

OCL extensions at the time only brought syntactic proposals without any concrete im-

plementation, and required knowledge of specific temporal logics. The work proposed a

temporal extension of OCL based on the work of Dwyer, Avrunin and Corbett on speci-

fication patterns for finite-state verification [49] to make temporal logics more accessible.

Dwyer et al. organised the patterns into a hierarchy (as shown in Figure 3.4). They also

added a mapping from each pattern to various formalisms (including linear temporal logic).

Dwyer et al. collected 555 specifications from at least 35 different sources, and identified the

described patterns to cover 92% of them; with Response, Universality and Absence being

the most common out of all three. In terms of scopes, Dwyer et al. defined five, which

are shown in Figure 3.5: “global” (the entire execution of the program), “before” a certain

event, “after” an event, “between” two events, and “after” a certain event “until” another

event.

In the work by Kanso and Taha cited above, events are of two types: either a certain

operation op has been invoked in a context where pre is a pre-condition and post is a post-

condition (“isCalled(op, pre, post)”), or a certain predicate has become true after some
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invocation (“becomesTrue(P )”, a shorthand for “isCalled(any,¬P ,P )”). The notation was

implemented as an extension of the Eclipse MDT OCL plugin 2, with a new grammar,

new editors, and new pivot metamodels. A transformation from OCL temporal properties

to test scenarios for object-oriented software was implemented. The work by Kanso and

Taha focused on generating test cases, and did not consider the use of these extensions for

querying the histories of the models themselves [78].

In 2016, Hilken and Gogolla presented a mapping of several Linear Temporal Logic

primitives to standard OCL, using so-called filmstrip models [72]. These models conform to

an enriched version of their original metamodels, which consists of a trace of model states

that are linked by operation calls. This enriched structure allows for implementation of LTL

operators such as “finally” or “globally” with regular OCL closures and logic quantifiers.

Unfortunately, in their work the authors did not address how the filmstrip-based temporal

constraints would scale to longer traces, neither in terms of both memory requirements nor

processing time.

Later in 2017, Dou, Bianculli and Briand presented TemPsy [47], a pattern-based spec-

ification language inspired as well by the primtives of Dwyer et al. The TemPsy patterns

were translated to OCL constraints on the fly, as requested by their industrial pattern.

The constraints ran on models which conformed to dedicated trace metamodels. The

authors compared their TemPsy-Check tool against MonPoly, an existing tool based on

MFOTL (metric first-order temporal logic), using a case study from the eGovernment do-

main. TemPsy-Check had similar or better performance, while having a notation that was

easier to use than MFOTL.

Beyond temporal extensions to constraint languages, Benellalam et al. argued for the

2Eclipse Model Development Tools (MDT) https://www.eclipse.org/modeling/mdt/?project=ocl
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need to raise time-awareness in model-driven engineering in 2017 [16], identifying gaps in

the capabilities of conceptual modelling approaches, query languages and storage solutions.

Their work used an example based on the smart grids domain, where a SmartMeter meta-

class is annotated with time sensitivity, periodicity and precision concerns. The authors

suggest that time should be a first-class property orthogonal to all model elements, allowing

each element to evolve independently over time (e.g. more time-sensitive concepts would

store more versions).

Mouline et al. presented a metamodel for interactive diagnosis of adaptive systems which

combines design-time and run-time concerns [110]. The design-time parts cover the available

strategies and actions, whereas the run-time parts cover the observations made and the

decisions that were taken. The authors propose allowing users to use temporal queries to

find out why a specific action was taken, helping with the self-explainability of the system.

Meyers et al. described ProMoBox in [104], a framework for building behavioural domain-

specific modeling languages with the ability to define and verify temporal properties. A

DSML description is turned into five DSMLs: design-time concerns, run-time concerns,

event inputs, traces, and a Dwyer-inspired temporal property language. Properties are

translated into Promela models for the Spin model checker.

This thesis examines the trade-offs imposed by adding time-awareness to a model-based

approach. Specifically, the present work focus on the use of runtime models and the timeline

of the running system for the explanation generation and explanation communication about

a SAS’s behaviour over time. Further details regarding the proposed approach will be

discussed in Chapters 5, 6 and 7.

3.3 The application of MDE in SAS

Model definition and transformations between models and from models to code are key

factors in developing automatic systems. The use of MDE techniques in self-adaptive au-

tonomous software systems has mainly focused on the use of runtime models to support

adaptation management, run-time analyses and decision processes [35]. The goals of run-

time models in SAS are to: depict abstractions of runtime phenomena, automate runtime

adaptation, and analyse the running system and its domain [156]. The predominant applica-

tion of runtime models in SAS is the use of structural models to support self-adaptation [15].
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A structural runtime model upholds self-adaptation with a high-level, holistic view of the

running system, in such a way that the self-adaptation engines can use the model to analyse

the runtime phenomenon and enact the system directly [15]. For example, Fouquet et al.

in [55] proposed µ-Kevoree, a dynamic component model which relies on runtime models to

support dynamic adaptation of distributed resource-constrained devices such as microcon-

trollers. The authors use the concepts of Component, Node, Channel and Group to model

the infrastructure and communications semantics of a running SAS. This modeling layer

enables efficient and safe reasoning for adapting microcontroller-based nodes [55].

On the other hand, goal runtime models describe the relationships between a system

and its environmental context. With contextual information, goal models allow the system

to assess candidate solutions against high-level criteria towards an objective [149]. For

example, the work proposed in [158] where the authors propose the use of goal runtime

models for the realisation of requirements-aware systems by checking assumptions made

at design time. When the assumptions are not longer valid, system wide adaptations are

triggered to enable alternative goal realisation strategies [158]. Silva Souza et al. in [144]

proposed requirements runtime models which are characterised syntactically as requirements

that refer to other requirements or domain assumptions and their success or failure at

runtime. Awareness Requirements (AwReqs) are represented in a formal language and can

be directly monitored by a requirements monitoring framework. Moreover, they propose

a graphical representation that allows to define the AwReqs in goal models to enact the

communication among system developers and users [144].

A prominent work that exploits the benefits of runtime models for SAS is the EUREMA

(ExecUtable RuntimE MegAmodels) project by Vogel and Giese [156]. The authors propose

the use of different types of runtime models, their integration and synchronisation to support

the execution of adaptation engines (i.e., managing systems) and feedback loops in SAS. In

order to systematically describe and automate the coaction between runtime models and

adaptation activities, runtime megamodels (i.e., models constituted of other models) are

defined [156, 15]. EUREMA includes a domain-specific modeling language and a runtime

interpreter for managing systems using feedback loop concepts. Figure 3.6 depicts the

runtime models considered in the approach based on the MAPE-K feedback loop described

in Section 2.1. Reflection models correspond to the knowledge component in the MAPE-K

loop and reflect the managed system and its environment. Monitoring models denote the

J. M. Parra Ullauri, PhD Thesis, Aston University 2022. 53



Figure 3.6: EUREMA - Runtime models for feedback loops [156].

mapping of system-level observations to the reflection models. Evaluation models support

the analysis of the reflection models to diagnose adaptation needs. Change models are

related to the planning stage depicting the SAS variability space (i.e. reconfiguration or

adaptation space). Finally, execution models refine model-level adaptation to system-level

adaptation [156].

Apart from the use of runtime models, MDE have been also used to develop SAS [134].

For example, Burmester et al. in [26] presented Mechatronic UML a model-driven de-

velopment approach for reconfigurable mechatronic systems. The authors extended UML

to specify and generate a hierarchical scheme that addresses control, reconfiguration, and

planning by distinct feedback loops at different layers. However, the adaptation is de-

fined before deployment and cannot be dynamically changed [26, 156]. Sansores and Pavon

proposed an adaptive agent model for self-organising multi-agent systems (MAS) using an

extended version of the INGENIAS methodology [139]. INGENIAS is a methodology for

the development of MAS. Its development tools rely on its MAS modeling language, which

is specified with a meta-modeling language, MOF (Meta-Object Facility), a standard by

OMG [113, 139]. A similar work was developed by Rougmaille et al., in [134]. The authors

presented an model-driven engineering approach to improve the development process and

the quality of the software. The goal is to reduce the duration and the complexity of the

designing of adaptive MAS [134].

The use of MDE techniques in SAS have increased with the evolution and adoption of

this area of software engineering [25, 20]. As described in this section, both development

and runtime models have been utilised for the engineering and management of SAS includ-
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ing applications at design time and runtime. However, only little research has been done

regarding to the exploitation of the benefits of MDE for explainability and transparency in

SAS, important in the context of trustworthiness and the understandability of these sys-

tems. The approach presented in this thesis aims to address these aspects using runtime

models for post-hoc explainability in SAS. For doing so, runtime models are used to trace

and monitor the system’s, thus to perform run-time monitoring (RTM). RTM will be further

described in the following section.
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Chapter 4

Runtime Monitoring

The full behaviour of complex software systems often only emerges during operation. They

thus need to be monitored at runtime to check that they adhere to their requirements [128].

In order to explain AI “black boxes”, their behaviour should be observed [1]. Run-time

monitoring (RTM) is a common approach to gain insights about a running system [81].

This chapter discusses the role of RTM in SAS and describes the RTM approaches relevant

for the comprehension of this thesis (i.e., Event-driven Monitoring).

4.1 What is Runtime Monitoring (RTM)?

RTM is a lightweight and dynamic verification technique that involves observing the in-

ternal operations of a software system and/or its interactions with other external entities,

with the aim of determining whether the system satisfies or violates a correctness specifica-

tion [33]. RTM has been extensively studied in different areas of computer science, such as

distributed systems, requirements engineering, programming languages, and aspect oriented

development among others [5]. In SAS, RTM can be related to: i) how the managing sys-

tem correctly monitors the managed system and the environment to guarantee that their

assurances and assumptions are accurate [30] or, ii) run-time V&V tasks over the entire

system to ensure that desired properties, goals and requirements are fulfilled [43]. This

thesis focuses on the latter, on RTM of SAS to provide explanations about the system’s

behaviour regarding its goals and requirements.

Existing RTM approaches are very diverse. Some present monitoring tools to support

end-users, while others demand expert domain knowledge by their users (e.g., [132] and
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[155]) ; a number focus on specific architectural components, while others focus on general

purposes (e.g., [6] and [132]); some automatically generate monitors based on models, while

others require that probes to be manually developed (e.g., [132] and [153]) [128]. Despite

its diversity, RTM approaches can be categorised into two main classes, online and offline

monitoring [33]. In offline RTM, the system is not directly monitored at runtime. Instead,

events of interest are recorded as execution traces inside a data store for further analysis

after the system completed its executions. On the other hand, in online RTM, the executing

system is dynamically monitored for violations or satisfactions, for example on the Quality of

service (QoS) attributes, during the course of its execution [33]. The present work proposes

a flexible approach that is for either class of RTM, where explanations from a monitored

SAS can be obtained during its execution or after-the-fact.

Most RTM frameworks employ compilation techniques that synthesise monitors from

high-level specifications (i.e. properties), expressed in terms of a formal logic, which are

executed in tandem with the monitored system [33]. The approaches for performing RTM

can be either time-driven or event-driven [81, 44, 128]. Time-driven RTM, also known as

sampling, only allows statistical statements about the program behaviour [81]. Event-driven

RTM checks specific sequences of events that have to occur, the presence and absence of

a specific event, or data/performance properties [128]. In the present document, an event-

driven approach is used and is further described in the following section.

4.2 Event-driven Monitoring

During the past two decades, event-driven programming (EDP) has emerged as a central

and almost ubiquitous concept in modern software development [99]. In RTM, event-driven

monitoring is a common approach to gain insights about a system based on particular

situations of interest [81]. An event is defined as a detectable condition that can trigger a

notification. In this context, a notification is an event-triggered signal sent to a runtime-

defined recipient [51]. Event-driven monitoring focuses on detecting the occurrences of

predefined events on one or multiple incoming data streams, in order to notify interested

stakeholders and/or run some palliative processes [45]. Event-driven monitoring approaches

are commonly designed to listen for system events and handle them in the background

without interfering in any way with the system’s execution [109].
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4.2.1 Current event-driven monitoring approaches

There are several proposals for event-driven monitoring in the literature [45]. These include

monitoring QoS attributes of the services, resource utilisation, as well as business-related

information relevant for Key Performance Indicator (KPI) progression or Service Level

Agreement (SLA) fulfilment [109]. For instance, Konno et al.’s work [86] uses a rule inference

method that integrates dynamic case-based reasoning and root cause analysis. It allows for

autonomous recovery and failure prevention to guarantee long-term QoS of cloud systems.

Another event-driven monitoring approach integrates Wireless Sensor Networks (WSNs)

with sentinel nodes [52] to detect heavy road vehicles as well as raising alarms in monitoring

nodes. In [37], Cicotti et al. presented a cloud-based platform-as-a-service based on event-

driven monitoring and cloud computing. SLAs can be analysed by collecting KPIs and

defining event patterns. When KPIs exceed certain thresholds, the violation condition is

prevented.

However, some challenges arise when using an event-driven approach. Klar et al., defined

the essential questions to be asked when using such approaches [81]:

• What is the aim of the measurement?

• Which events are necessary for describing the functional behaviour?

• How should the events be defined?

Answering these questions requires; i) knowledge about the aim of the measurement and ii)

precise formal knowledge about the functional behaviour of the object program at an ade-

quate level of abstraction [81]. Moreover, Moser et al., in [109] stated four key requirements

for event-driven monitoring:

• Platform agnostic and unobtrusive: the monitoring system should be independent of

any concrete monitored system while being unnoticeable for the monitored system.

• Integration with other systems: the monitoring system should be capable of integrating

monitoring data from other subsystems. This enables a holistic view of all monitoring

data in a system.

• Multi-process monitoring : the monitoring system should enable monitoring across

multiple services, and instances.
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• Detecting anomalies : The monitoring system should be capable of unveiling potential

anomalies in the monitored system.

Complex Event Processing (CEP) is an event-driven monitoring approach that has been

widely used to address these requirements [109, 37, 21]. CEP is a core technology used in

the present thesis and is further discussed in the following subsection.

4.2.2 Complex Event Processing (CEP)

CEP [98] is a technology that can capture, analyse and correlate large amounts of data in real

time in a domain-agnostic way. CEP is used to identify complex meaningful circumstances

and to respond to them as quickly as possible [21]. The main objective is to detect situations

of interest in a specific domain or scenario [163]. These situations of interest are detected

through a set of event patterns that specify the conditions that incoming events to the

system must fulfil. An incoming event can be simple (something that happens in the

system at a point in time) or complex (patterns of two or more events that happen over a

period of time). Any detected complex events can be fed back to the CEP system for further

matching, which creates a hierarchy of complex event types [74]. The defined patterns must

be deployed to a CEP engine, i.e. the software responsible for analysing and correlating

the data streams received from different sources, as well as for raising alerts to users or

systems interested in complex events generated by the detected event patterns [21]. Each

CEP engine provides its own Event Processing Language (EPL) for defining the patterns

to be deployed.

As depicted in Figure 4.1, CEP is conformed by three main components [98]:

• Event Sources : which send events in the form of data streams (e.g. sensor updates)

or message queues (e.g. business events).

• CEP Engine: the event processor, which performs various actions such as adding

timestamps, adding information or metadata and processing multiple information at

once. It is conformed by a rule engine where event patterns are defined, and an event

handler where a match of the defined patterns generates a complex event. Some

examples of CEP engines are Apache Flink1, IBM InfoSphere Streams2, and Esper3.

1https://flink.apache.org/
2hhttps://www.ibm.com/docs/en/streams/4.1.0?topic=welcome-introduction-infosphere-streams
3https://www.espertech.com/
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Figure 4.1: Components and stages of Complex Event Processing [21, 98]

Apache Flink is an open-source stream processing framework that supports both batch

and stream processing and provides a high-performance, distributed processing engine

for analysing data in real-time. IBM InfoSphere Streams is a CEP engine that is specif-

ically designed to handle real-time analytics for processing high-speed data streams at

rates of up to millions of events per second. Esper, another open-source CEP engine, is

capable of processing and analysing high-volume event streams in real-time and offers

a range of features for complex event processing, pattern matching, aggregation, and

correlation. Each engine has its unique features and capabilities, and choosing the

right one for a specific use case depends on several factors, including the complexity

of the data, the volume of events, and the performance requirements.

• Event Consumers: which perform a certain action upon being notified of a complex

event. For instance; updating a database, interacting with external services, start-

ing/closing new applications or services.

Also from Figure 4.1, it can be noted that CEP is performed in three stages [21]:

• Event capture: this stage focuses on the definition of the simple events to be analysed.

Simple events are occurrences of particular low-level patterns of something that hap-

pened at a point in time [98]. These low-level occurrences can then be processed and

analysed to produce higher-level occurrences/events [21]. For example, the occurrence
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of a water drop (low-level) plus the occurrence of the sound of a thunder (low-level)

can suggest that a storm (high-level) is approaching.

• Analysis : this is stage where operations over events are performed. The CEP engine

will use the defined event patterns to correlate the arriving events and detect situations

of interest in real time.

• Response: after the detection of a concrete situation of interest in the analysis stage,

there will be a notification to an event consumer that can trigger an action in response.

The present thesis proposes the use of CEP as technology to detect temporal and causal

dependencies between events, in order to gain insights from events as they occur during

execution (Chapter 7).

4.3 MDE and Event-driven Monitoring

Now that event-driven monitoring and CEP have been introduced, the combination of these

approaches with MDE will be explored. Putting in place a working event-driven monitoring

process involves several activities, including the collection of raw observation data, the in-

terpretation of such raw information to recognise higher-level events that are relevant at the

business level, and the effective presentation of the monitoring results [17]. Consequently,

in order to answer the what, which and how questions mentioned in Section 4.2.1, event-

driven monitoring approaches require domain experts to define the activities indicating such

situations of interest and the appropriate actions to be executed in their information sys-

tems [21]. Unfortunately, the outcome of such effort is time-consuming, hard to generalise

and to reuse, and, as a matter of fact, the resulting monitoring configuration typically is only

relevant in the specific situation at hand [17]. In order to address some of these challenges,

MDE has been used in the context of event-driven monitoring [81, 21, 17, 82, 4].

The key MDE features exploited in event-driven monitoring are; i) the use of models

of different levels of abstraction for graphical abstract representation of a system and ii)

model transformation and model to code features [21]. For example, Klar et al. in [81]

presented a concept for model-driven execution of event-driven monitoring. The authors

propose the use of MDE tools to represent the instrumentation needed to perform RTM on

a system. The monitoring model can be used as a guideline for dynamic visualisation of the
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system behaviour (execution animation). In a more recent work, Bertolino et al., proposed

a property-driven approach to event-driven monitoring that is based on a comprehensive

Property Meta-Model (PMM) [17]. PMM allows the definition of prescriptive/descriptive

and qualitative/quantitative properties, and the metrics needed to quantify them. PMM is

combined with GLIMPSE, a CEP based engine for model-driven monitoring based on the

occurrence of events. In [82], the authors propose aPro, a modular architecture for business

process optimisation that uses CEP as a monitoring tool. This work’s main contribution

is to provide a model-driven approach for monitoring business processes. They propose a

modeling language (ProGoalML) for process metrics, KPIs and goals, which automates the

creation and setup of the monitoring infrastructure including the CEP engine setup. Simi-

larly, Boubeta-Puig et al., in [21], propose the use of MDE to facilitate user-friendly design

of complex event patterns for the CEP engine setup. The authors introduce MEdit4CEP, a

model-driven approach for CEP together with graphical model editors for defining the CEP

domain, event patterns and actions, and code generators. Figure 4.2 shows an screenshot

of the editor that allows the definition of the situation of interest to be detected as well as

rules, logic and actions to be performed by an event pattern. This event pattern will be

automatically validated, transformed into code and deployed into a CEP engine.

In the present thesis, MDE is combined with event-driven monitoring for gaining insights

about SAS behaviour. The approach is used to present explanations at runtime using

Temporal Models and CEP. Further details will be described in Chapter 7.
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Figure 4.2: Screenshot of the model-driven GUI for CEP, MEdit4CEP [21].
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Chapter 5

Temporal Models for

History-aware Explainability in

SAS

The work presented in this chapter has been adapted from the following publications:

[119] J. M. Parra-Ullauri, A. Garćıa-Domı́nguez, L. H. Garćıa-Paucar, and N. Bencomo.

Temporal models for history-aware explainability. In Proceedings of the 12th System Anal-

ysis and Modelling Conference, pages 155–164, 2020.

[59] A. Garćıa-Domı́nguez, N. Bencomo, J. M. Parra-Ullauri, and L. H. Garćıa-Paucar.

Towards history-aware self-adaptation with explanation capabilities. In 2019 IEEE 4th

International Workshops on Foundations and Applications of Self* Systems (FAS* W),

pages 18–23. IEEE, 2019.

[60] A. Garćıa-Domı́nguez, N. Bencomo, J. M. Parra-Ullauri, and L. H. Garćıa-Paucar.

Querying and annotating model histories with time-aware patterns. In 2019 ACM/IEEE

22nd International Conference on Model Driven Engineering Languages and Systems (MOD-

ELS), pages 194–204. IEEE, 2019.

This thesis proposes that ideally, a SAS should be able to access its decision-making his-

tory and adjust future adaptations taking into account past results of previous adaptations.

These so-called reflective and history-aware capabilities can be exploited for the system

itself to perform better-informed decisions based on past behaviours, and this information
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can be conveyed to different stakeholders to analyse SAS historical behaviour. However,

adding these capabilities into a SAS can be costly and hard to evaluate. In the context of

this document and from the challenges identified in Section 1.1, these trade-offs are related

to how to store, access and extract historical information, and how to communicate the

extracted information to different stakeholders in the form of explanations to promote un-

derstandability and trustworthiness in SAS. This chapter presents the proposed approach

using Temporal Models to tackle these challenges and the research roadmap that guided

the research in this thesis.

5.1 Temporal Models

This PhD study delves into the concept of history-awareness, which refers to a SAS’s ability

to use past behaviour to inform decisions or predictions about future behaviour. The study

also discusses how enabling a SAS’s reflective capabilities can lead to a better understanding

of its past behaviour. By examining what the system did in a specific context, one can more

coherently explain the SAS’s decision-making process. To achieve this history-awareness

for explainability, a SAS needs to be equipped with appropriate tools to track its decision-

making, store this information, extract knowledge from the stored data, and communicate

this knowledge to various stakeholders. Various methods, such as data mining, knowledge

distillation, and MDE, can be employed to enable these capabilities. The thesis proposes

an MDE approach for achieving history-awareness.

As reviewed in previous chapters, in MDE, models are used as central artefacts of soft-

ware development [56]. Further, runtime models are used to cope with the dynamic aspects

of ever-changing software and its environment [14]. The basic underlying motivation for

runtime models is the need of managing the complexity that arises from the large amounts

of information that can be associated with runtime phenomena [56]. In this context, run-

time models are described as an abstract causally-connected representation of a running

system. It allows monitoring and controlling the system as well as reasoning about it [14].

Temporal Models (TMs) go beyond representing and processing the current state of

systems [64]. They seek to add short and long-term memory to runtime models through

the use of temporal databases [103]. Examples of temporal databases used for TMs, in-

clude Time Series Databases (TSDB) and Temporal Graph Databases (TGDB) [103, 120].
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Figure 5.1: Example of a time-evolving temporal graph, by Hartmann et al. [68]

Conceptually, each attribute to be monitored in a running system can be considered as a

time series: a sequence of values along an axis [50]. TGDB go beyond traditional event logs

and time series in their ability to track the appearance and disappearance of entities and

connections, and the capability to relate the changes in several properties of an entity over

time [121]. The approach proposed in this thesis uses TGDBs.

TGDBs record how nodes and edges appear, disappear and change their key/value pairs

over time. Several TGDB implementations have been proposed. They include Greycat [68]

from Hartmann et al. and Chronograph [66] from Haeusler et al. In particular, Greycat is

an open-source solution which reuses several existing database engines (e.g. the LevelDB

key/value store) to implement a TG data model. Nodes and edges in Greycat have a

lifespan: they are created at a certain time-point, they may change in state over the various

time-points, and they may be “ended” at another time-point. Greycat considers edges to be

part of the state of their source and target nodes. It also uses a copy-on-write mechanism

to store only the parts of a graph that changed at a certain time-point, to save disk space.

In this data model (shown in Figure 5.1), the graph is stored as a collection of nodes,

which are conceptual identifiers that are mapped to specific state chunks depending on

the world and timepoint chosen to visit it. Nodes have a lifespan between two specific

timepoints, and within that lifespan they may take on a sequence of state chunks. Each

state chunk appears at a specific timepoint and overrides any previous state chunk.

In the example in Figure 5.1, during timepoint i + 1 a “watched” edge is created from

“Eve” to “Video”, and in i+2 “Alice” enters the graph and posts a “friendReq” to “Bob”.

Instead of storing the three full graphs outright, only new state chunks are created for “Eve”
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and “Alice” as needed, using a copy-on-write style. State chunks are keyed by node, time

and (in Greycat) by world. This third coordinate makes it possible to “fork” the graph into

multiple branching paths, which enables what-if analyses.

The approach presented in this document adopts the data model by Hartmann et al. of

an evolving labelled attributed graph. If models the system operates upon can be turned

into this type of temporal graphs, it could allow the system to reflect on what it has been

doing in the long and the short term, and provide clear explanations about its history to

the user. In the present work, TMs build on top of Greycat TGDB, allow accessing and

retrieving causally connected historical information about runtime behaviour of SAS. The

end goal of this thesis is to develop a generic and reusable framework to allow SAS to reflect

upon their past execution and to improve the explanations provided to the users about their

behaviour. In this context, a generic tracing facility and a method to access and retrieve

the historical information are required. They will be described next.

5.1.1 Problem-independent execution trace metamodel

SAS are generally built as feedback loops (e.g. those following the MAPE-K architecture).

At each timepoint or time slice, observations are made and analysed, then future behaviour

is planned, and those plans are executed. Since the goal is to make the queries on the

execution history reusable, the history must be expressed in a language that can be reused

across multiple problems (e.g. network management).

The proposed execution trace metamodel for SAS that need to switch between multiple

configurations is shown in Figure 5.2. It has been implemented on top of the previously

described EMF for linking the system goals and decisions to its observations and reasoning.

In the trace metamodel (Fig. 5.2), the Log records the Decisions to be made by a the Agent,

the available Actions and their probabilities for satisfying a requirement and the Observa-

tions of the environment. Each Decision is based on an Observation of the environment,

which produces a set of Measurements of the Metrics. Different types of measurements are

allowed (e.g., DoubleMeasurement and StringMeasurement).

The proposed infrastructure built upon the trace metamodel allows the behaviour of

measures/observations and decisions to change from time-step to time-step. However, in

a SAS, at each timepoint or time-step, observations are made and analysed, then future

behaviour is planned, and those plans are executed. In practice, it is expected to see a stable
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Figure 5.2: Class diagram for the core metamodel used to record system history.

set of SAS agents with their own decisions over time. In the metamodel of Figure 5.2, a Log

for a give time slice records the Observations, Measures, and the different Actions that can

be taken. These are used in the various Decisions that the system must take. Depending

on the sensors, probes, and data collection mechanisms (e.g., observations collected with a

certain data rate) implemented, different observations and measures can be recorded in the

trace log.

The proposed approach intends to be generalisable, problem-independent and can be

feasible for different log recording approaches. However, some rules or conditions must

be satisfied in order for a new model instance to be considered well-formed. The instance

should have a timestamp tag and a log ID. Once these conditions are met, a log trace can be

reshaped into the form of the core metamodel used to record system history by the use of a

Log Parser. To ensure that models are consistent, complete, and syntactically correct they

should follow some well-formedness constraints. These constraints specify the rules that a

model must adhere to in order to be considered valid. They are classified into structural,

type, and multiplicity constraints. These well-formedness constrains (WFC) are:

• Structural constraints:

– WFC1: Every Log must have a timesliceID.

– WFC2: Every Agent must have a name.

– WFC3: Every Decision must have a name.

– WFC4: Every Action must have a name.
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– WFC5: Every Measure must have a name.

– WFC6: Every Observation must have a description.

– WFC7: Every Observation must have a probability.

– WFC8: Every RangeMeasurement must have a position.

– WFC9: Every IntegerMeasurement must have a value.

– WFC10: Every IntegerListMeasurement must have a list of values.

– WFC11: Every BooleanMeasurement must have a value.

– WFC12: Every DoubleMeasurement must have a value.

– WFC13: Every StringMeasurement must have a value.

– WFC14: Every DoubleListMeasurement must have a list of values.

• Type constraints:

– WFC1.1: Every timesliceID must be of type string.

– WFC2.1: Every name must be of type string.

– WFC3.1: Every name must be of type string.

– WFC4.1: Every name must be of type string.

– WFC5.1: Every name must be of type string.

– WFC6.1: Every description must be of type string.

– WFC7.1: Every probability must be of type double.

– WFC8.1: Every position must be of type integer.

– WFC9.1: Every value must be of type integer.

– WFC10.1: Every value in a list must be of type integer.

– WFC11.1: Every value must be of type boolean.

– WFC12.1: Every value must be of type double.

– WFC13.1: Every value must be of type string.

– WFC14.1: Every value in a list must be of type double.

– WFC15: DoubleListMeasurement must be derived from the Measurement.

– WFC16: IntegerListMeasurement must be derived from the Measurement.
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– WFC17: IntegerMeasurement must be derived from the Measurement.

– WFC18: BooleanMeasurement must be derived from the Measurement.

– WFC19: DoubleMeasurement must be derived from the Measurement.

– WFC20: RangeMeasurement must be derived from the Measurement.

– WFC21: StringMeasurement must be derived from the Measurement.

• Multiplicity constraints:

– WFC22: Log must have a one-to-many relationship with Decision.

– WFC23: Log must have a one-to-many relationship with Action.

– WFC24: Log must have a one-to-many relationship with Measure.

– WFC25: Log must have a one-to-many relationship with Observation.

– WFC26: Log must have a one-to-many relationship with Agent.

– WFC27: Decision must have a many-to-one relationship with Agent.

– WFC28: Decision must have a one-to-one relationship with Observation

– WFC29: Decision must have a one-to-one relationship with Action.

– WFC30: Agent must have a one-to-many relationship with Decision.

– WFC31: Agent must have a one-to-many relationship with Observation.

– WFC32: Observation must have a one-to-one relationship with Agent.

– WFC33: Observation must have a one-to-many relationship with Measurement.

– WFC34: Measurement must have a one-to-one relationship with Measure.

The resulted runtime model will then be used to update the TGDB, creating a new snap-

shot at the current point in time: all relevant versions are kept. A model indexer is used to

automatically compare the runtime model as an object graph against the current version of

the temporal graph model. A model indexer is a tool that enables indexing and querying

of models based on various criteria. An indexer can help to improve the efficiency of model

queries and support model discovery and reuse. Some examples of models indexers are EMF

Index1, NeoEMF2, and Eclipse Hawk3. The proposed approach uses Eclipse Hawk given its

1https://www.eclipse.org/proposals/emf-index/
2https://neoemf.atlanmod.org/
3https://www.eclipse.org/hawk/
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maturity, ease to use, and community support. Hawk operates on Greycat temporal graphs

as firstly described in [57]. By using TGDBs, it is possible to track the evolution of certain

metrics at each node, as well as the changes in the relationships of the various entities in the

system, or their appearance and disappearance. The backend used by Hawk (i.e. Greycat)

uses a copy-on-write approach that only creates a new version which updates the temporal

graph model where needed, for efficient storage.

In order to implement the proposed solution, some storage specifications are required.

These storage requirements refer to the specific features and capabilities that the storage

layer needs to provide in order for the proposed approach to work. The current imple-

mentation bases its functionality on a temporal graph model construction with elicitation

time-aware capabilities. The time-aware indexing in Hawk relies on the implementation of

the ITimeAwareGraphDatabase interface4, which specifies the requirements for a temporal

graph with lifetimes for nodes and edges, per-node and per-edge versioning, and time-aware

lookup indices. Hawk uses Greycat for the implementation of the basic temporal graph and

combines it with Apache Lucene for time-aware lookup. Using Hawk, a evolving temporal

graph database conforming the defined metamodel is created. This can be reused for dif-

ferent goal-oriented SAS. Moreover, it can be easily extended to meet the need of specific

applications as will be shown in the Chapters 6 and 7.

5.1.2 Reusable time-aware query language

Eclipse Hawk already had its own query language, the previously described EOL [85] which

conceptually is a mix of OCL and JavaScript. EOL was extended with time-aware primi-

tives, and with the concept of “history” for any type and its instances. The definitions for

the history of a model element and a type are as follows:

• The history of a model element starts from the moment it is created, and ends when

it is destroyed. Model elements are assumed to have a unique identity, which could

be a natural or artificial identifier or its location within the model. There will be a

new version of a model element every time its state changes, whether by changing the

value of an attribute or the target of one of its references to other model elements.

• Model element types are considered “immortal”, in the sense that they are created at

4https://www.eclipse.org/hawk/advanced-use/temporal-queries/
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the first timepoint in the graph and last to the virtual “end of time” of the graph. We

will have a new version of a model element type every time an instance of the type is

created or destroyed.

For model elements and model element types, the basic time-aware operations that must

be supported by the temporal graph backend (e.g. Greycat) are: i) retrieving all versions,

ii) all versions within a range, iii) versions from/up to a certain timepoint (included), iv)

earliest/previous/next/latest version, and v) retrieving the timepoint for that version. The

semantics for these basic operations represented using EOL are shown in the Table 5.1 as

Version Transversal.

In an outcome of this thesis [60], the time-aware EOL dialect was further extended

with primitives inspired on Dwyer’s work on temporal specification patterns mentioned in

Section 3.2, with the ability to use temporal assertions (e.g. always, never) and version

scopes (e.g. when, until). The same work presented a first version of timeline annotation,

a mechanism for automatically annotating specific moments in history where an event of

interest happened, speeding up its retrieval in a later query. These extensions to EOL are

found in Table 5.1 and are described next.

In order to find model elements in the history according to these time-aware patterns,

users need a conceptual model about what “the versions of x” means. In these queries, x

may be a model element (in the EMF an EObject), or it may be a type of model element

(in EMF, an EClass). x has a certain identity and a lifespan:

• Model elements may receive an identity through a natural identifier (a “business key”),

an artificial identifier (e.g. XMI identifiers), or their location within the model. Their

lifespans are limited by the moment they are created, and when they are destroyed.

• Types are identified by a combination of the metamodel identifier (in EMF, the meta-

model URL) and its name. Types are “immortal”, as their lifespans start at the

“beginning of time” and end at the “end of time” (the latest timepoint that the

system is able to represent).

With the lifespans and the versions of both model elements and their types, time-

awareness can be added as a new set of operations. These operations are collected in

Table 5.1. The operations can be divided into several types, which will be discussed in

separate subsections next.
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Operation Syntax

Version traversal

All versions, from newest to oldest x.versions

Versions within a range x.getVersionsBetween(from, to)

Versions from a time point (included) x.getVersionsFrom(from)

Versions up to a time point (included) x.getVersionsUpTo(to)

Earliest / latest version x.earliest, x.latest
Next / previous version x.next, x.prev / x.previous

Version timepoint x.time

Temporal assertions

True for all versions? x.always(v | p)

False for all versions? x.never(v | p)

Any matching version? x.eventually(v | p)

At least n matching? x.eventuallyAtLeast(v | p, n)

At most n matching? x.eventuallyAtMost(v | p, n)

Predicate-based version scoping

View with versions since match (inclusive, exclusive) x.since(v | p), x.after(v | p)

... until match (i., e.) x.until(v | p), x.before(v | p)

... with matching x.when(v | p)

Context-based version scoping

View with versions since current (i., e.) x.sinceThen, x.afterThen
... until current (i., e.) x.untilThen, x.beforeThen

Version unscoping

Original without version scoping x.unscoped

Table 5.1: Proposed new operations for time-awareness for the Epsilon Object Language, divided by type.
p stands for a Boolean predicate.
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Basic version traversal

These primitives provide access to all the versions of a type or a model element. To retrieve

the instances of the latest version of a type, a user would write Type.latest.all instead of

Type.all. The new semantics of Type.all would need to default to either the earliest or the

latest version. x.versions would return the collection of the versions of x: therefore, finding

the versions of x that meet a predicate could be done with x.versions.select(version

| predicate). Type.latest.all.first would produce the first instance of that type in

its latest version: the instance would be at the timepoint of the latest version of that type.

Temporal assertions

These operations provide concise ways to check if certain temporal properties hold for a

type or model element. For instance, x.always(version | predicate) would answer if

a particular predicate has always held for x. eventuallyAtLeast and eventuallyAtMost

would not be as easy to implement in one line, given their ability to stop as soon as enough

or too many elements are found, respectively.

Predicate-based version scoping

In some cases, it may be desired to examine specific version ranges, e.g. from the first

moment P was true onward. Rather than extending the assertions with arguments for

version ranges, a better design is to have dedicated primitives which will return a view

of the original type or model element, which only exposes some of the versions. This can

produce richer patterns by composition: for example, with x.since(v | Q).always(v |

R), it would be able to check whether since an arbitrary predicate Q first held from the

current timepoint of x, R was always true. The scoping can also be composed: for instance,

x.since(v|Q).until(v|R) would produce a view over x that would only report the versions

between Q and R. The returned views are still model element or types, as the originals, and

the view will always switch to the oldest matching version within the scope. For instance,

if x was a Person, x.since(v|Q) will still be the same Person, but at the first timepoint

when Q held.
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Context-based version scoping

As mentioned above, every type and model element visited at each step of a query will be

at a specific timepoint. This timepoint may be used as the reference for the version scoping:

there are xThen variants of since, after, before and then that use the timepoint of the

current model element or type rather than a predicate.

Version unscoping

Crucially, one final operation which was not part of the works by Dwyer and Kanso is

the unscoped operation. This operations returns the same model element or type, but

without any of the version scoping: all versions are visible once more. This is useful in more

advanced queries which need to switch between different scopes in the same query.

Time-aware EOL example

As an example using these primitives, suppose that there is a Semaphore model element s

with two features: the shown color (red, yellow or green), and the count with the number

of vehicles that passed in the last 5 seconds. Assume that it is desired to check, for example,

if across all intervals where the light was yellow, no more than 5 vehicles passed.

To determine the querying primitives for a particular scenario, it is necessary to locate the

versions that define the intervals in question. In this case, the intervals refer to the moments

when the light changes to yellow. To do this, one must determine if there was no previous

version or if the previous version had a different colour.

Once these delimiters have been found, the test function .always(v | predicate) can be

applied to each of them. The predicate would be evaluated using a variable v that only

includes versions when the semaphore changed to yellow. In order to access the appropriate

interval within the always predicate, it is necessary to first undo the scoping with the

unscoped function. The final query would involve undoing the scoping within always and

adding together the vehicle counts for all versions from that point until the semaphore

changes colour. This total would then be compared with the upper bound to complete the

query, as shown in Listing 5.1.
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1 s.when(v | v.color = ’yellow’
2 and (v.prev.isUndefined()
3 or v.prev.color <> ’yellow’))
4 .always(v | v.unscoped.sinceThen
5 .before(v | v.color <> ’yellow’)
6 .versions.collect(v | v.count).sum() <= 5)

Listing 5.1: Example Epsilon Object Language query for the unscoped primitive: Semaphore s does not
let more than 5 vehicles through in any of its yellow intervals.

Timeline Annotation

Scalability is a challenge when indexing models with potentially very long histories: both in

terms of storage size, and in terms of query times. Finding rare events across many versions

can take a long time if it is needed to iterate through each version while testing a predicate.

For design-time models, this may happen in artefacts that have been worked on for a long

time, whereas runtime models may quickly run into this problem if they are updated very

frequently. Being able to answer a query as soon as possible could be critical for approaches

based on runtime models which need to interact with the outside world.

In [9] Barmpis et al. proposed expensive calculations in advance, storing them into

derived attributes that extended existing types, and keeping the model elements indexed by

these values. Finding which elements matched a predicate could be done with an efficient

lookup, rather than expensive iteration. The same approach can be adopted for finding

occurrences of an event in the history of a model instance. The predicate describing such

an event can be defined as a derived Boolean attribute on its type, which would be pre-

computed and indexed incrementally across the versions of each of its instances. Queries

will naturally be multidimensional in this case: they will have to look up matches based on

the desired value, and the appropriate range of timepoints.

In effect, such an extension is annotating the timeline of each model element with

markers for these events of interest. These markers can be used in queries through al-

ternative versions of the version scoping primitives of Table 5.1. whenAnnotated(a) will

produce a view that exposes the versions for which the derived Boolean attribute named

a will be true, by index lookup. sinceAnnotated(a) / afterAnnotated(a) will produce

views with left-closed and left-open version ranges by index lookup. untilAnnotated(a) /

beforeAnnotated(a) will produce views with right-closed and right-open version ranges.

Beyond model queries, these annotations could also be used for incrementally computed
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model monitoring as well. If a certain model element matched a certain predicate, it could

trigger a notification to an external system or a modeller. Users would be able to quickly

recall past occurrences of the same event, for the sake of comparison.

These time-aware extensions to EOL and timeline annotations have been used in this

research for analysing back and forth the stored SAS history in the TMs. The extracted

information conforms the explanations to be presented. Detailed examples will be described

in Chapters 6 and 7.

5.2 Research roadmap for History-awareness with Explana-

tory capabilities in SAS

When enabling reflective and history-aware capabilities in SAS, it is argued that rather

than an all-or-nothing situation, it is easier, safer and more rewarding in the short-term, to

do it in stages or levels. Figure 5.3 shows the envisioned levels of reflective capabilities that

a SAS should offer (adapted from [59, 119]). These capabilities are framed in four incre-

mental levels which are: i) forensic history-aware explanations, ii) live history-aware expla-

nations, iii) externally-guided history-aware decision-making, and iv) autonomous history-

aware decision-making. Incremental capabilities imply that capabilities at level n should be

available for capabilities at level n + 1. This spectrum of reflective history-aware capabili-

ties in SAS acts as a research roadmap for this thesis and will be described further in the

following sections of this chapter.

5.2.1 Level 1: Forensic history-aware explanations

This level operates very much like a “black box”. From the runtime monitoring approaches

discussed in Section 4.1, this is part of the offline type of runtime monitoring where the

system runs as normal, while capturing logs in a machine-parseable form. After the system

has finished its execution (whether gracefully or crashing), the history of the system is

stored and processed for after-the-fact analysis. In this document, Temporal Models are

proposed and used as a key enabler for efficient and reusable storage and analysis of a SAS’s

history. Users can then study its history with a temporal query language. In the present

work, a temporal database supports the storage of massive amounts of historical data, while

providing fast querying capabilities to support reasoning about runtime properties in the
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Figure 5.3: Proposed research roadmap for history-awareness in SAS (adapted from [59, 119]).

monitored SAS.

Figure 5.4 depicts the flow diagram of level 1. The SAS starts its execution, the log

traces are stored after every point in time in conformance of the metamodel of Figure 5.2.

Once the execution has finished, the information is available for extraction. The extracted

information will conform the explanation to be presented. Finally, the explanation’s recip-

ient can perform and action if required. This could be the case of SAS developers trying to

validate and improve their systems. This first level is useful for either post-mortem analysis

after an unexpected behaviour, or for internal evaluation during development. The storage

and querying facilities present in this level are the base for the subsequent levels.

5.2.2 Level 2: Live history-aware explanations

This level allows users to evaluate past observations, decisions and performance on a run-

ning system without having to stop it or waiting until the end of the system’s execution. It

exploits the storing and querying capabilities of level 1 but requires extra features to allow

online monitoring. As such, it requires an incremental importer mechanism that loads peri-

odically the latest state of the decision algorithms into the TM, adding one more timepoint

to its history. To keep storage and memory costs manageable, the history of the TM may be

bounded to a specific time window. The TM may be structured as a strict linear sequence of

system states, or as a graph of states that the system may go to and from: this will depend
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Figure 5.4: Level 1: Forensic history-aware (H-A) explanations

on whether there is a restricted and finite number of possible system states, or not.

A live visualisation platform will allow various types of stakeholders (developers, end

users) to study the history of the system. This level can help users gain trust in the SAS

during its day-to-day operation, and does not require modifying the existing decision making

process.

Figure 5.5 depicts the flow diagram of level 2. The SAS starts its execution and after

each time step traces are reshaped to conform to the trace metamodel (Figure 5.2) and

stored as a new version in the TM. If an explanation is required at any point in time, the

information is extracted and presented using a live visualisation platform. The forensic

capabilities from level 1 are available for off-line analysis if required.
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Figure 5.5: Level 2: Live history-aware (H-A) explanations

5.2.3 Level 3: Externally-guided and history-aware decision making with

explanation capabilities

This level allows external entities to interact actively with the SAS at runtime. These

external entities can be either a human or another software system. The explanation’s

recipients are able to perform changes in the SAS through a set of effectors (i.e. input

parameters or some type of configuration facility). For example, at the Plan stage of

the MAPE-K architecture, an external entity could influence the high-level goals of the

system by guiding the system and their priorities, or the internal parameters governing their

algorithm (i.e, hyperparameters): in both cases, the explanation’s recipient would need an

appropriately abstracted explanation to allow them to make an informed decision about the

relevance and impact of the intended changes. At the Execute stage, effectors could allow

external entities to explicitly select certain actions; for example, on an autonomous car the

user could decide to go on a specific direction that goes against the system’s reasoning. In

this case the system may need to reconfigure its decision-making to meet a new preference
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Figure 5.6: Level 3: Externally-guided history-aware (H-A) decision-making with explanation capabilities

introduced by a user.

In the case of humans, collaboration, communication and trustworthiness between the

human and SAS is promoted by the provision of history-based explanations extracted from

the TM, and a set of effectors allow human users to influence the system based on the

received information. Effectors designed for humans should be defined in a notation flexible

enough to express the evolving preferences of the user, while also concise enough to not

overwhelm the user with low-level details. As control would be partly given to an external

entity, it would be important for the trustworthiness and accountability of the level 3 system

to record these interventions accordingly.

Figure 5.6 describes the flow diagram for level 3. Similar to the previous level, an

explanation is presented if required. If the external entity (i.e., the explanation’s recipient)

considers that an action should be performed to steer the SAS behaviour, a validation

process should take place to avoid inconsistencies in the system decision-making. If the

intended action is allowed, the changes are performed in the SAS execution. Proposed

changes by external entities should be recorded as part of the TM for accountability. Finally,
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the same offline analysis capabilities of level 1 are available if required.

5.2.4 Level 4: Autonomous history-aware decision-making with explana-

tion capabilities

At this last level, a history-aware decision making process is introduced to further support

autonomous behaviour. It will be an improved version of the existing decision-making

process that takes its own control over its history as one more dimension to adapt [154]. For

example, one way to use the history would be to recognise major trends that may require

reconfiguration, and which may not be evident from a single timeslice: e.g. continued

performance degradation over time in a particular indicator. This may trigger its own

adaptations aiming at long-term effects. As there may be too few observations to support

it, or these observations may be too different to the original ones, the system should evaluate

its confidence level on the estimated trajectory.

Any interventions based on the history of the system should also have to be tracked

into a dedicated automated control accountability. At this level, the explanation capability

based on the infrastructure provided by level 1 and level 2, will enable reasoning about the

history of the SAS, i.e. the system and the adaptation logic will be history-aware (HA).

Figure 5.7 shows the flow diagram for level 4. This level mimics level 3 but with the

difference that all the runtime processes (i.e. online processes) are part of the SAS decision-

making. The system is able to look back and reflect on previous experiences. If desired,

the SAS history can be recorded for post-mortem analysis (level 1).

From the point of view of the type of explanations recognised in Section 2.2.1, the

levels 1 to 3 can be categorised as post-hoc explanations. Thus, the explanation generation

and communication are processes that are external to the SAS’ inner workings. The H-

A facilities identified in every graph are processes running in parallel to the main SAS.

In the case of level 4, the H-A facilities and, therefore, the explanation generation and

communication should be part of the SAS itself. Thus, they would be categorised as the

intrinsic type where the system is self-explainable. The level 4 is out of the scope of this

thesis. The following chapters will describe the implementation of levels 1 to 3 for different

case studies, analysing different trade-off, of enabling history-aware explainability in SAS

through the use of TMs.
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Figure 5.7: Level 4: Autonomous history-aware (H-A) decision-making with explanation capabilities
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Chapter 6

Explaining SAS with Temporal

Models

The work presented in this chapter has been adapted from the following publications:

[119] J. M. Parra-Ullauri, A. Garćıa-Domı́nguez, L. H. Garćıa-Paucar, and N. Bencomo.

Temporal models for history-aware explainability. In Proceedings of the 12th System Anal-

ysis and Modelling Conference, pages 155–164, 2020.

[121] J. M. Parra-Ullauri, A. Garćıa-Domı́nguez, J. Boubeta-Puig, N. Bencomo, and G. Or-

tiz. Towards an architecture integrating complex event processing and temporal graphs

for service monitoring. In Proceedings of the 36th Annual ACM Symposium on Applied

Computing, pages 427–435, 2021.

[123] J. M. Parra-Ullauri, A. Garćıa-Domı́nguez, and L. G.-P. Bencomo, Nelly. History-

aware explanations: Towards enabling human-in-the-loop in self-adaptive systems. In Pro-

ceedings of the 14th System Analysis and Modelling Conference, 2022. To be published.

[60] A. Garćıa-Domı́nguez, N. Bencomo, J. M. Parra-Ullauri, and L. H. Garćıa-Paucar.

Querying and annotating model histories with time-aware patterns. In 2019 ACM/IEEE

22nd International Conference on Model Driven Engineering Languages and Systems (MOD-

ELS), pages 194–204. IEEE, 2019.

[59] A. Garćıa-Domı́nguez, N. Bencomo, J. M. Parra-Ullauri, and L. H. Garćıa-Paucar.

Towards history-aware self-adaptation with explanation capabilities. In 2019 IEEE 4th

International Workshops on Foundations and Applications of Self* Systems (FAS* W),

pages 18–23. IEEE, 2019.
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6.1 Motivation

It is argued that explanations shown by a running SAS about its decisions and behaviour

helps someone diagnose the behaviour of the system to analyse and trace past actions,

helping fix potential faults and fostering the trust of the end users [119]. To enable these

capabilities, this work proposes that SAS should be equipped with traceability management

facilities and offer temporal links to provide (i) the impacts of the adaptation actions over

the quality properties of the system over time and (ii) the history of the decisions of the

system, together with the data that informed those decisions.

History-awareness requires an efficient manner to represent and query past history. Logs

are prevalent in all kinds of computer software: however, most of them are text-based and

are usually intended to be used by humans, with precarious support for automated pro-

cessing such as simple filtering and tagging. This chapter presents contributions towards

allowing the system to support explanations to operators and end users based on the generic

metamodel defined in Section 5.1.1 (Figure 5.2). This generic metamodel structures execu-

tion traces of SAS, using a parser, it shows how a sequence of traces can be turned into a TM.

The temporal query language of Section 5.1.2 is used to extract information from TMs that

will construct explanations. Explanations should be human-friendly and machine-friendly.

Specifically, explanations should be available to different stakeholders such as end-users,

developers, external systems, or the SAS itself.

This chapter describes an implementation of the proposed approach to a case study from

the domain of SAS using runtime models: a Remote Data Mirroring (RDM) system [61,

75, 129]. A SAS frequently updates its knowledge about the environment and its decision

processes. Being able to query this evolution would allow users to know the reasons why

particular actions were taken. The section starts with a description of the RDM system.

This is followed by an outline of the experimental setup for implementing levels 1, 2 and 3

of the proposed research roadmap (Section 5.2). Finally, the results are discussed.
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Figure 6.1: RDM Case Study

6.2 Experimental study: RDM SAS

The first case study in this dissertation is the RDM SAS, which uses Bayesian Learning (an

AI approach) [61]. RDM is a technique to protect data against inaccessibility to therefore

provide further resistance to data loss [75, 129]. RDM maintains data availability and

prevents data loss by storing copies (i.e., replicas) on servers (i.e., data mirrors) in physically

remote locations [11].

Its overall structure is shown in Figure 6.1. Uncertainty exists due to different unex-

pected situations such as delayed or lost messages, noise in sensors, or network link failures.

RDM self-adapts to these situations by reconfiguring itself. Specifically, RDM can use

two topologies: minimum spanning tree (MST) and redundant topology (RT). These two
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possible configurations allow the RDM selectively activate and deactivate network links to

change its overall topology at runtime [11].

The RDM SAS self-adapts at runtime according to the changes in its environment. Each

network link in the RDM brings upon an operational cost and has a measurable throughput,

latency, and loss rate. The performance and reliability of the RDM are determined by these

metrics according to the following trade-off: while RT is more reliable than MST, RT can

be prohibitively more computationally expensive than MST in some contexts. Each config-

uration provides its own levels of reliability and energy costs which are taken into account

while estimating the levels of satisfaction of the Non-Functional Requirements (NFRs) ob-

served, the Maximization of Reliability (MR), the Minimization of Energy Consumption

(MC), and the Maximization of Performance (MP). MST is more efficient in terms of energy

consumption and performance, whereas RT is more reliable.

It is not possible to directly observe whether these NFRs are being met or not. In that

sense, observations about their states are obtained by using monitoring variables (called

MON variables in the Figure 6.1). The three MON variables are Ranges of Bandwidth

Consumption (RBC <x, RBC in [x,y) and RBC>=y), Active Network Links (ANL<r, ANL

in [r,s) and ANL >=s) and Total Time for Writing (i.e., TTW<f, TTW in [f,g) and TTW

>=g). In [124], the authors show the requirements specification based on Partial Observable

Markov Decision Processes (POMDP) that enables reasoning and decision-making about

partial satisfaction of NFRs. Trade-offs are analysed using evidence collected at runtime

based on the formalism for decision-making under uncertainty provided by POMDPs (See

Figure 6.1). POMDPs provide an approach to making rational decisions in the face of

uncertainty within changing environments [11].

A POMDP model can be specified as a 6-tuple (S,A,Z, T,O,R), where: S, A, and

Z represent the system’s state space, action space and observation space, respectively. T

represents the transition function that describes the stochastic nature of actions’ effects

over the state of the system. O is the observation function that describes the conditional

probability of observing Z when an action A is performed and a state S is reached. Finally,

R is the reward function [11]. In the case of RDM, S are the possibles states for the NFRs

(MR, MC, MP), shown in yellow in Figure 6.1. A corresponds to the action of switching

topologies from MST to RT and vice versa, shown as red in Figure 6.1. Z the observation

space of the monitored variables (RBC, TTW, ANL), shown as blue in Figure 6.1.
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The approach considered by the implementation of RDM is proactive, where R-POMDP

considers future evolutions (i.e. projections into the future) of the satisfaction of the NFRs

to decide the next action a ∈ A, to reason about long-term effects of immediate actions [61].

These future evolutions are represented by a belief b over possible states. Proactive ap-

proaches can be produce not favourable results at first while improving the behaviour in

the long term. The operators may find themselves asking the reasons why the RDM SAS has

used one topology instead of the other. These kind of situations may require explanations.

6.2.1 RDM and the MAPE-K loop

This section presents the RDM architecture based on the MAPE-K loop (described in

Section 2.1.1) and the role played by the Requirements-aware Model (RaM-)POMDPs [11].

A RaM-POMDP serves as a runtime model that supports the decision making by a SAS and

which is driven by the trade-off of the levels of satisfaction of the NFRs. It uses Bayesian

inference based on evidence collected from the environment [11].

Figure 6.2 describes the different stages of the MAPE-K loop in RDM proposed by

Garcia-Paucar et al in [61]. They are described next:

• Monitor: During the SAS execution the variables RBC, ANL and TTW are monitored

to offer evidence that is later used to compute the probability distributions in order

to check the satisfaction of the NFRs [11].

• Analyse: At this stage, adaptation needs are evaluated. Examples of data processing

needed are given by the fact that the RBC can be directly observed by sensors, while

ANL is computed using a reachability algorithm which studies which RDM nodes can

be reached by traversing active network links [11].

• Plan: The online POMDP planning is used to choose the best action under the current

state of the RDM system. Online POMDP planning is a technique that interleaves

planning with plan execution, which allows computationally tractable solutions for

POMDPs [61]. At each time slice, the system searches for an optimal action a ∈ A at

the current belief b. It then executes the chosen action immediately [11].

• Execute: At this stage, model-level adaptation is refined to system-level adaptation.

The action selected at the Plan stage is executed. The system will reach a new state
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Figure 6.2: Overview of causal relationships between runtime models in the MAPE-K loop of the RDM
from [61]

s′ ∈ S with probability T and experience an observation z ∈ Z with probability O,

with the resulting reward value R [11].

• Knowledge: Using the observed monitored values, the action a ∈ A, and the previous

belief b, the state estimator infers the current belief b′ over the possible states i.e. the

current probability distributions about the satisficement of the NFRs for the RDM

SAS [11].

The studied implementation of the RDM SAS bases its functionality on runtime models

that are causally connected to the MAPE-K architecture. The proposed approach aims

to differentiate the SAS functionality to the explanation generation and communication.

Therefore, it is desired to provide a post-hoc approach which is agnostic to the SAS archi-

tecture. The following section will describe the requirements to be met by the proposed

generic and reusable framework based on TMs for the RDM SAS.
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6.2.2 Enabling History-Aware explainability in RDM SAS

In order to facilitate the exploration of the history to generate and communicate expla-

nations through TMs, a different steps are required. The process will be described in the

following subsections.

Log collection and preprocessing

The RDM SAS produces execution traces for each time slice. The traces (logs) contain

information related to the observations made by the agent about its decisions, actions,

states, rewards, and environment, and the preferences currently being applied in the decision

process. The log is made available to the proposed framework for explanation purposes.

Listing 6.1 shows an excerpt of the log for the first time slice. The system collects a large

number of logs and transform them into a TM, answering queries away after the system

has completed its execution (i.e., in an “post-hoc” fashion).

The steps required for this process are:

1. Collection of monitoring variables: The variables used for decision-making in RDM are

collected for every timeslice. They include (from Figure 6.1 and Listing 6.1) timeslice

ID, RBC, TTW, ANL, MC satisfaction, MR satisfaction, MP satisfaction,and the

action performed, among others. This process does not add extra computing overheads

as the variables are monitored by the system as part of the decision-making process.

2. Log construction: The log can follow structured (JSON / XML) or unstructured

(plain text) formats: JSON has been selected for this implementation as it is a widely

adopted. This JSON log containing unprocessed data is converted into the data format

required by the model indexer, Eclipse Hawk.

3. Log exposure: In order to construct the TM that will then enable history exploration,

the JSON trace logs have to be exposed to Eclipse Hawk. Hawk offers different

approaches for adding the repositories to be indexed (i.e., TM versions). They include

Git-based, SVN-based, and file-based configurations. Additionally, it is possible to

develop customised configurations. In the present work, both approaches (existing

and customised connectors) have been explored and will be described it the following

sections.
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Listing 6.1: Excerpt of the original JSON trace execution logs from the Remote Data Mirroring self-
adaptive system

1 {
2 ”0”: {
3 ”current belief mec true”: 0.5,
4 ”current belief mr true”: 0.25,
5 ”current observation code”: −1,
6 ”current rewards”: [
7 [90.0, 45.0, 25.0, 5.0],
8 [100.0, 10.0, 20.0, 0.0]
9 ],

10 ”ev.mst”: 465.104345236406,
11 ”ev.rt”: 326.710194366562,
12 ”flagUpdatedRewards”: 0,
13 ”observation description”: ”None”,
14 ”observation probability”: 0.0,
15 ”selected action”: ”MST”
16 },
17 ”1”: {
18 ”current belief mec true”: 0.94, ...
19 },...
20 }

Temporal Model construction

After the JSON trace logs are exposed to the model indexer, the TM construction can take

place. The log information about the state of the system is reshaped into the trace meta-

model (Figure 5.2) based on the EMF metamodel of figure 6.3 for linking the system goals

and decisions to its observations and reasoning. This metamodel is generic for goal-oriented

autonomous systems. However, a more specific metamodel for systems that take into ac-

count NFRs and their satisfaction to support the system’s decision-making can facilitate the

history exploration for this domain specific case study. In this regard, the proposed meta-

model of Figure 5.2 was extended for systems that uses POMDPs. The proposed extebsuis

are shown in Figure 6.3.

The RDM trace metamodel contains the RewardTable, which is a lookup table made up

of RewardTableRows. The lookup key is the truth value of the NFRSatisfactions for each

NFR, and the Action under consideration. To produce these Boolean values, the estimated

probability of each NFRBelief is compared against the matching RewardTableThreshold.

For instance, the NFR MEC (minimisation of energy consumption) may be considered to
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Figure 6.3: Class diagram for the extensions to the core metamodel used to record POMDP-based systems,
such as history
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be satisfied if the estimated probability is higher than 70% (as stated by the developer’s

requirements specifications).

Once the trace metamodel is defined, it can be registered in an Eclipse Hawk instance

using the guidelines described in its documentation1. The main steps are:

1. Create Hawk instance.

2. Define backend: The Greycat TGDB is the backend used throughout this work.

3. Define the parser to transform the SAS log to an EMF model in line with the trace

execution metamodels.

4. Select the query language: Temporal EOL which include the time-aware extensions

to EOL presented in 5.1.2.

5. Register the metamodel, by providing the .ecore files representing the metamodels in

Figure 5.2 and 6.3.

6. Add a connector that will access the exposed JSON logs (e.g., by reading from Git,

SVN, customised repositories).

7. (Optional) Add annotations through derived attributes. This step will be further

described in 6.2.4.

8. Leave Hawk running in the background as it monitors the JSON logs while querying

the TM using the reusable time-aware query language described in Section 5.1.2.

Depending on the approach followed from the proposed research roadmap described in

Section 5.2, the monitor will vary, and further steps may be taken. The following sections

will describe the experimentation for Levels 1, 2 and 3 of the mentioned roadmap for the

RDM SAS.

6.2.3 Level 1: Forensic history-aware explanations in RDM

According to Section 5.2, the first step to achieve automated history-awareness in SAS is to

offer forensic capabilities. This section shows a description of this level’s implementation

for RDM. It also describes the scenario that motivates the need for explanations in the

RDM SAS. Finally, the experiment results are presented.

1Hawk: https://www.eclipse.org/hawk/basic-use/core-concepts/
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Timeslice Action Monitored NFR Satisfaction SLA

0 MST MC 0.91 0.90
1 RT MC 0.80 0.90
2 RT MC 0.81 0.90
3 RT MC 0.84 0.90
4 RT MC 0.92 0.90

Table 6.1: Example of Long Term Effects (LTEs) in the RDM system

a. Scenario

An interesting aspect to be monitored is the effect of the proactive adaptation exposed by

the RDM system [61]. An example is when an apparent bad decision turns out to be a good

one in the long run. A decision may be, surprisingly and even unexpectedly, considered by

the user, non-ideal at first when the level of satisfaction of an NFR is below the threshold

defined in the Service Level Agreements (SLAs) and the action suggested by the system

results in a reduction on the level of satisfaction after the decision made. Nonetheless, as

the system continues under the same action the level of satisfaction gradually increases

until reaching or even exceeding its threshold. These kinds of events are called Long Term

Effects (LTEs) in the present work. Let’s consider the simplified information of timeslice

information shown in Table 6.1: the NFRs are monitored over timeslices. The monitored

NFR is Minimization of Cost (MC). From ts 0 to 1, RDM decided to change (adapt) the

topology from MST to RT. It ended in a reduction of the level of satisfaction of MC that drops

below the threshold of the defined SLA, i.e. 0.8 < 0.9. At first this can be considered a

“bad decision”. However, for the following ts 2 to 4, the system kept the same topology

while the level of satisfaction of the NFR reached and even exceeded its SLA, i.e. 0.92 >

0.9 shown in the last row.

If a user sees a SAS dip in performance momentarily, they may become anxious about

its long-term viability. RDM may have cases like this, as it is proactive and estimates

the future trajectory of the system: it may decide to make a decision that is bad in the

short-term but good in the long-term. Therefore, these surprising situations required to be

explained.
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Figure 6.4: UML sequence diagram for interaction between components (RDM case study, level 1)

b. Implementation

Figure 6.4 shows a UML sequence diagram of how the components communicate in level 1.

The user asks RDM to run, producing an all-timeslices log. This log is given to a BatchIm-

porter (further described below), which produces a Git repository with one revision per

timeslice, containing an XMI file conforming to the metamodel in Figure 6.3 per timeslice.

The user then tells Hawk to turn the Git repository into a TM, which can be queried as

needed. More details about the implementation are described next:

1. The RDM SAS had been previously run in a different machine through a simulation

over 2000 time slices, producing a sequence of entries in JSON format which took

536KB.

2. BatchImporter: A small Java program (381 lines of code) was created to transform the

JSON logs into EMF models conforming to the trace execution metamodel Figure 6.3.

The batch log importer works by taking the all-timeslices JSON file and reshaping it

into a Git repository with a sequence of XMI files conforming to the metamodel in

Figure 6.3. The Git repository can then be indexed by Hawk into a Greycat TDB.

The Git repository was produced after 48 seconds, taking up 7.3MB of disk space,

J. M. Parra Ullauri, PhD Thesis, Aston University 2022. 95



and resulted in 1888 commits. Git naturally ignores cases when the model has not

changed at all from one time slice to the next.

3. Hawk was instructed to index the full history of the Git repository into a Greycat

temporal graph, using its new time-aware updater component. From the second re-

vision onwards, Hawk used its incremental updating capabilities to propagate any

differences observed since the previous revision. The Greycat temporal graph over

the 1888 commits was produced after 21 seconds, taking up 31MB of disk space.

Git was chosen over SVN or manually time-stamped files (for example, slice1.xmi,slice2.xmi,

and so on) because the version of the local folder indexing component in Hawk at the time

would index all time-stamped files separately, rather than as a single evolving model. The

Git component in Hawk is designed to provide the full history of each file, which produced

the intended results. In the future, a version of the local folder indexing component can

be created which understands that files time-stamped according to a certain convention are

versions of the same model.

Regardless, ignoring those 112 timepoints when the model did not change did not result

in loss of information. Indeed, if only Git revisions were found for timepoints 1 and 10, that

means that the model did not change at all between timepoints 2 and 9. Therefore, if the

state of the model is asked at timepoint 5, the version at timepoint 1 will be showcased.

Omitting timepoints which did not introduce any changes can result in significant space

savings when changes are infrequent, i.e. in a stable system configuration. This also reduces

the number of results to go through in the queries. It can be thought of as a form of

compression.

Once the TM is constructed, the history can be queried to extract explanations based

on the scenario described in the previous Section 6.2.3. Algorithm 3 (in the appendix

Section) was implemented in the Hawk time-aware dialect of EOL. The algorithm can find

the examples to present to the user on demand as a simple plot of estimated requirement

satisfaction levels over time. This takes the monitoring beyond a passive set of listings and

figures, to allowing users to ask questions or request examples of particular relevant nuances

of the SAS. The implementation of this and additional EOL queries can be found in the

project repository2.

2https://gitlab.com/sea-aston/hawk-rdm/-/tree/dronesLocal/bundles/uk.ac.aston.mrt2018.

queries/LTL_QueriesRDM_3NFRs
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Listing 6.2: Excerpt of output from Algorithm 3 about long term effect of immediate actions.

[..., [719, Minimum Spanning Tree Topology, Maximization of Reliability,
0.852294921875, [[720, Minimum Spanning Tree Topology, Maximization of
Reliability, 0.840590259674336], [721, Minimum Spanning Tree Topology,
Maximization of Reliability, 0.935284515844998], [722, Minimum Spanning Tree
Topology, Maximization of Reliability, 0.94331412096612]]],

[1597, Minimum Spanning Tree Topology, Maximization of Reliability,
0.835166769728076, [[1598, Minimum Spanning Tree Topology, Maximization of
Reliability, 0.0.824842465933626], [1599, Minimum Spanning Tree Topology,
Maximization of Reliability, 0.934522400804845], [1600, Minimum Spanning Tree
Topology, Maximization of Reliability, 0.935870208967967]]], ...]

c. Results

Listing 6.2 shows an excerpt of the examples found by the query using the time-aware

query language, which are shown to the user in a human-readable way. One of the detected

sequences started at timeslice 719, when RDM decided to use the Minimum Spanning Tree

(MST) topology. As an immediate consequence, a reduction on the satisficement level of

the NFR Maximization of Reliability (MR) is observed: from 0.85229 (timeslice 719) to

0.84059 (timeslice 720). However, the satisficement grew during the subsequent timeslices,

until it exceeded its threshold in timeslice 722. Similar situations were observed in different

timeslices such as timeslice 1597. 29 such situations were found during the 2000-timelice

run. This shows us that decisions with apparently immediate negative effects, may produce

the required expected increase of the satisficement level of the NFRs in the long term.

Developers and end users need to be aware of this kind of behaviour, which otherwise could

be found unreasonable at first.

This type of query allows the system to explain why it took a decision and why it

is showing the current behaviour. For this specific case, the insight gained through the

temporal query would make the user aware of the use of time windows within the decision

making process, and would prepare the user to better interact with the SAS if required.

The scalability of this approach is limited by the fact that such a log may grow to be

very large: indeed, naively parsing a log which is in the gigabytes may tax the memory

capacity of the computer. For the parsing problem, one approach would be to index not a

single JSON file, but rather a database (e.g. a collection of Mongo documents) or a stream

of events. This would still not prevent the temporal graph from growing too large. For very
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long runs, compressing and/or pruning the history may be needed: for instance, it may

only keep the last X timeslices (time windows), index only one out of every X timeslices

(sampling), and/or keep only versions matching certain situations of interest (filtering). The

risk with these strategies is that queries would be limited in scope (with time windows), or

would become approximate (sampling and filtering). Studying the impact of these strategies

in the query results for long-running systems will be explored in the following sections of

this thesis.

The trace metamodel assumes that the system follows a reward-oriented strategy around

non-functional requirements. This suggests that queries written against this metamodel may

still be reusable beyond R-POMDP, and could work with other types of self-adaptive algo-

rithms (e.g. those based on reinforcement learning). On the other hand, if the SAS follows

a different type of strategy, it could still reuse the Decision / Observation / Measurement

concepts from the core metamodel described in Figure 5.2 in Section 5.1.1.

6.2.4 Level 2: Live History-aware explanations in RDM

Level 1 has focused on after-the-fact analysis, taking a sequence of system models to turn it

into a single temporal graph, which can subsequently be queried. It presents the advantage

that it does not require any changes in a system that is already producing its own logs in a

machine-parsable format. However, users may want to demand questions about the system

while it is running, and not just after an event has happened. The next step on the defined

research roadmap (Section 5.2), is to enable online explanatory capabilities. Extending

concepts and components from Level 1, this subsection will describe the implementation of

Level 2(Live history-aware explanations) in RDM.

a. Scenario

In order to test the feasibility of the proposed TM approach for both online and offline

analysis, the scenario of Level 1 (Subsection 6.2.3) was repeated to find LTEs at runtime.

In this scenario, RDM talks directly to Hawk for storing the history of the system. To

test the proposed approach, trace logs produced by RDM were monitored while looking

for LTEs. The aim of the experiment was to successfully detect these LTEs and keep the

stakeholders informed of the otherwise surprising behaviour.
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b. Implementation

The proposed approach takes advantage of the fact that Hawk can be run as a network

service [58], with the ability to run queries at any time via its Thrift-based API3. Therefore,

both RDM and Hawk can be running at the same time. The query to detect proactive

adaptations (see Algorithm 3), was implemented in the Hawk time-aware dialect of EOL.

The EOL query, the incremental importer and the query tool are available in the project’s

Gitlab repository4.

Hawk was extended with a component that can read the single-timeslice JSON log

produced by RDM, and reshape its contents into an in-memory model while conforming to

the trace metamodel of Figure 6.3. This in-memory model can be given directly to Hawk,

while significantly reducing overheads. In addition, the RDM SAS has been extended with

the ability to notify Hawk when to update its temporal graph, by sending Hawk a message

through the same Thrift-based API. This also significantly reduces overheads compared to

spawning new Java subprocesses. When told to synchronise, Hawk will compare the trace

model represented by the JSON file with the latest version in the temporal graph, to create

a new timepoint by applying the differences. The new timepoint then becomes available for

querying done by users.

Figure 6.5 shows a UML sequence diagram about the communications between compo-

nents in level 2. Hawk is assumed to be running and set up, having registered the trace

metamodel and the repository with the JSON file to be indexed. The user then starts RDM.

At the end of each timeslice, RDM will update the JSON file with the information from

the timeslice, and will ask Hawk to update its graph from it. Hawk will acknowledge the

update, and then RDM will continue on to the next timeslice. At any point in time, the

user can run a query based on the current state of the temporal graph in order to obtain

an explanation about how it got there.

c. Timeline annotation

Level 2 can take advantage of the timeline annotations introduced in Section 5.1.2. This

allows the system to jump directly to situations of interest without having to scan the full

history of the temporal graph. Using this new capability only requires minor preparations.

3https://archive.is/lJwUP
4https://gitlab.com/a.garcia-dominguez/hawk-rdm
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Figure 6.5: UML sequence diagram for interaction between components (RDM case study, level 2)

Before RDM starts, the user will signal Hawk about which situations it should monitor.

Once RDM has started, specifically when Hawk notices that a new timepoint matches a

situation of interest, it will subsequently record it to therefore provide fast retrieval of the

timepoint through the whenAnnotated operation.

Listing 1 shows the EOL query implemented using the proposed temporal query language

and timeline annotation. The LTE query was written with the full selection of primitives

from Table 5.1. The query spans 39 lines of EOL, and it has three sections:

• An operation which detects “apparently bad” decisions in the short-term. This oper-

ation does not use any temporal primitives: it only compares pre/post-action satis-

ficement levels and the threshold. This pattern is defined using timeline annotations

(line 3).

• An operation which computes information from an version interval where satisficement

improved from a certain decision. This version uses the primitives to define an interval

of versions of the belief since the timeslice after the change (if it exists), until the

timeslice before the action changed or satisficement dropped (lines 9 to 26).

• The main body of the query (Lines 1 to 7). This section finds the belief for the MR

NFR and the potentially bad decisions, computes the interval information for each
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Figure 6.6: Stacked area plot with execution times for RDM SAS simulations in milliseconds, by timeslice
and phase, for the queries running without annotations.

decision, and discards decisions with no such intervals. In the first timeslices, there

may not be any such decisions: the current definition of whenAnnotated will return

an undefined value in that situation. To cover against that situation, ifUndefined is

used to return an empty collection in that case.

In order to study the impact of the temporal assertions and the scoping primitives on

conciseness, the query was revised so it would only use the basic version traversal primitives.

This required two changes. The first one was simple: .when().ifUndefined().versions

in the main body was replaced with .versions.select. The second change was in the

interval computation: the declarative use of sinceThen and before had to be replaced with

a while loop, which also accumulated the information to be returned about the interval.

d. Results

The queries for finding LTEs with and without timeline annotation were performed. Figure

6.6 includes the execution times for a simulation of RDM over 2000 timeslices without

timeline annotation. This stacked area plot shows the different stages: the simulation

of a timeslice, the update of the temporal model within the Hawk indexer, and the full

execution of the query. The query times include client-server communication overheads.

The simulation times ranged from 1087 and 1148 milliseconds. Temporal graph update

times represented the 1.36% in average of the total time and remained stable. Query

invocation times grew over time, together with the length of the history of the temporal

graph. Query times came to represent up to 14% of the execution time in average. This
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Figure 6.7: Stacked area plot with execution times for RDM SAS simulations in milliseconds, by timeslice
and phase, for the queries running with annotations. “Simulate” times are excluded due to small values in
the other series, being the same as in Figure 6.6.

is because the query has to go through each time-point in the system history every time

the query is executed. For example, at timeslice 500 the query needs to consider all the

500 time points that the simulation has gone through and for the timeslice 2000 the query

needs to consider 2000 time-points in history.

One way to attenuate the impact of querying every point in history in the system’s

performance is to use timeline annotation. This is done in such a way that a situation of

interest would be defined in advance, and matching timeslices would be annotated during

execution. Then, instead of going through the whole system’s history, the query would

jump to those annotations. For this experiment, the situations to be tagged were the “bad

decisions” mentioned in Section 6.2.4. In other words, when the system changed (i.e. adapt)

the topology and this action ended in a reduction of the satisficement level of the NFR.

Figure 6.7 shows the different stages, except for the simulation time that is the same as

in Figure 6.6. Updates represented 1.47% of the total times on average, similar to the

first experiment, only presenting a initial peak of 147 ms. This shows the time of setting

up the indices for the annotation. On the other hand, query times presented a significant

improvement in the simulation time, from representing up to 14% of the total time, to only

1.5% of the total time on average.

In total, the 2000-timeslice simulation took 43.54 minutes without timeline annotation

and 38.36 with timeline annotation. The simulation time without the Level 2 capabilities

would have been 37.49 minutes. It can be concluded that using timeline annotation, the

reduction in the system’s performing time can be kept to 2–3% due to overheads. Figure 6.8
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Figure 6.8: Raw server-side execution times of EOL query implementing Algorithm 3 in milliseconds, by
timeslice.

shows the raw execution times for the EOL implementation of the query in Algorithm 3 for

both approaches, using a logarithmic scale for the times. These execution times exclude the

wait for synchronisation with the server and the network overheads, which dominate most

of the time in the “Query” series of Figures 6.6 and 6.7. Query times without annotation

ranged from 2ms to 486ms, with a median of 162ms. For the timeline annotation approach,

times ranged between 2ms to 54ms with a median of 12ms, which shows the advantages of

timeline annotation. The peaks can be attributed to the natural variability in inter-process

communication times, and overheads.

6.2.5 Level 3: Externally guided history-aware decision making. Intro-

ducing the human-in-the-loop in RDM

Users may feel that the decision-making process of SAS is oblivious to the user’s own

decision making criteria and priorities. Inevitably, users may mistrust or even avoid us-

ing the system. Furthermore, SAS could benefit from human involvement for satisfying

stakeholders requirements. Integrating humans in this enclosed loop is an ongoing research

challenge as these systems are in principle foreseen to be autonomous [35]. The previous

levels (Sections 6.2.3 6.2.4 on history-aware explanations have focused on the analysis of

decision-making over time with no active role played by the human. Level 1 offered forensic

explanations. In contrast, Level 2 provided on-line explanations of the decision making

for monitoring purposes. This subsection addresses the third stage proposed in 5.2, using

history-aware explanations to enable a human-in-the-loop approach where users take an
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active role in the decision-making of the SAS.

a. Scenario

The RDM SAS has been configured with Service Level Agreements (SLAs) for the satis-

faction levels of the NFRs MC, MR and MP. These SLAs guide the system on its adap-

tive decision-making based on values defined by the developer. The defined SLAs were:

P(MC=True) ≥ 0.8 (the observed level of satisfaction of MC is greater than or equal to 0.8

out of 1), P(MR=True) ≥ 0.9, and P(MP=True) ≥ 0.75 respectively. Initial stakeholders’

preferences about the NFRs and adaptation topologies have also been provided. They are

represented by the Reward/Penalty node shown in Fig. 6.1. In RDM, the initial preferences

provided by the domain experts favour the MST topology under stable conditions [61]. Sta-

ble conditions represent a system context where the average satisfaction levels (since the

system started the execution) of the NFRs meet their SLAs. This work will showcase how a

user can take a more active role in the decision-making based on history-aware explanations

provided by the RDM SAS under unexpected contexts (i.e. unstable conditions) detected

at runtime.

b. Implementation

This PhD work discusses that the human role in the decision-making loop of a SAS can

be seen as either passive (i.e. observing and understanding the decision-making process)

or active (i.e. steering the decision-making process). Ideally, the decision-making should

take into account the execution history [59]. Moreover, the understanding of the decision

making by stakeholders should also include the system’s reasoning history [119]. Therefore,

a SAS should (i) offer access and retrieval to historic data about its behaviour, (ii) track

over the time the reasons for its decisions so they can be used to explain and further inform

end users and other stakeholders, and (iii) if an active role by the user is required, the

SAS should also provide effectors to therefore empower human stakeholders to steer the

decision-making while being informed by (i) and (ii).

The proposed framework has been extended to support both explanation capabilities

and user interaction towards introducing the human-in-the-loop of SAS. A graphical user

interface (GUI) including effectors that allow the user to provide feedback to the SAS at

runtime was developed. Figure 6.9 shows the designed GUI. Through graphical explana-
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Figure 6.9: GUI showing the system’s historical behavior. At time slice 646, the user set a higher priority
to the MR NFR (left chart).

tions, users are able to improve their mental model about the system’s current behaviour.

If system behaviour does not agree with the mental model of the user, changes can be

requested. Since the decision-making in the RDM is driven by the satisfaction levels of the

NFRs, the effectors exposed by the system, the buttons “+” and “-”, will allow the user to

manipulate the system’s preferences (in this case, the relative priorities or weights of the

NFRs).

The sequence diagram in Figure 6.10 shows the communication between the various

components for level 3 (human-guided history-aware decision-making with explanation ca-

pabilities) of the RDM case study. The user initialises the simulation and the GUI assuming

that Hawk is running, the trace metamodel is registered and the log file to be indexed is

defined. At the end of each timeslice, the system will update the log file with the corre-

sponding information. The GUI is fed by the temporal graph that is being built in Hawk.

At any point in time, the user can run a query based on the current state of the temporal

graph in order to obtain an explanation about how it got there. Predefined queries can be

implemented to run periodically, or the user can develop new queries and implement them

using Hawk’s interface. If the user considers that the system is not fulfilling the user’s pref-

erences or that an external action could improve the system performance, reconfiguration
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Cond

Figure 6.10: UML sequence diagram for interaction between components (RDM case study, level 3)

can be made using the effectors/controls in the GUI. A reconfiguration in the system will

be made in compliance of a developer defined condition.

c. Results

The information provided can be used to generate visual explanations such as those in

Figure 6.9, which summarise the behaviour of the RDM SAS as it runs. It is observed that

initially, the satisfaction levels of the NFRs Minimization of Cost (MC), Maximization

of Reliability (MR), and Maximization of Performance (MP) are in general over their

Service Level Agreements (SLAs), with some values below their thresholds, but this noise

is considered to be normal for the system. Later, from time slice 324 (See Figure 6.9,
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Maximization of Reliability), a period of consecutive and unexpected data packet losses

while using the MST topology reduces the observed reliability of the system. Data packet

loss may represent link failures in a RDM, which can be caused by problems with the

equipment (e.g. failures in a switch or router, or power failures). Despite the new detected

conditions and based on the initial RDM configuration, the selected topology continues

to be MST (See Figure 6.9, Maximization of Reliability: time slice 324). Specifically,

under the current context, initial stakeholder preferences are not suitable anymore as they

continue favouring the use of a topology that does not contribute to improve the satisfaction

level of MR, which is mainly under its tolerance threshold (See Fig. 6.9, Maximization of

Reliability: time slices 324 - 646). The preferences should be eventually reassessed and

updated to assign higher importance to NFRs with poor satisfaction levels (e.g. MR, the

reliability of the system) and to improve the selection of the topology in the RDM SAS.

Complementing the scenario presented above, through the integration of the human-in-

the-loop based on the RDM components, the user is able to explore the history and steer the

decision-making. History-aware explanations are presented to the SAS developer through

the GUI. Under the current runtime context, special attention is paid to: (i) the NFRs

satisfaction levels from time slice 324 onwards, (ii) the current preferred topology (MST),

and (iii) the current preferences about the NFRs. These explanations help the developer

refine their “hypotheses” or mental models about the current state of the system.

Next, based on the information provided by the graphical explanations, the user is

allowed to potentially improve the current behaviour of the system. If the user considers

that the system is not fulfilling the intended behaviour or that an external action could

improve its performance, a reconfiguration can be made using the effectors/controls in the

GUI. In order to reconfirm the external action selected by the user, Figure 6.11 shows a

pre-adaptation explanation of how relevant the effectors “increase the priority of MR” can be

(the+ button under MR). After the change is applied, Figure 6.9 shows how the satisfaction

level of MR increases from time slice 646 onward as a result. The satisfaction levels of MC

and MP went down, but they still met their SLAs.

The experiment has covered how some unforeseen dynamic contexts may affect nega-

tively the NFR satisfaction levels when initial assumptions, e.g. stakeholder preferences,

are not updated in response. The “NFRs without update of preferences” series in Figure

6.12 shows this behaviour in the satisfaction levels of the NFRs from time slice 324 to time
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Figure 6.11: Textual pre-adaptation explanation from the system at time slice 646, when user shows
interest in increasing priority of MR.

Before update of 
preferences

After update of 
preferences

Figure 6.12: NFRs average satisfaction levels before and after human interaction

slice 646. The average satisfaction level of MR is always below the SLA given in the initial

stakeholder preferences, despite the new detected context, and the RDM SAS continues

favoring the MST topology as shown in Figure 6.9. In contrast, by including the human-

in-the-loop in the decision-making of the RDM SAS, it is possible to improve the general

performance of the system and the NFR trade-offs. Going back to Figure 6.12, “NFRs with

update of preferences” shows this new behaviour from time slice 646 onwards. It can be

seen that after the user intervened, the average satisfaction level of MR started meeting its

SLA. There is also a slight reduction on the satisfaction levels of MC and MP, but they still

met their SLAs.
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6.3 Discussion

This chapter has focused on the implementation of Levels 1, 2 and 3 of the proposed research

roadmap (Section 5.2) for enabling history-aware explanations in the RDM SAS case study.

Using temporal models it is possible to access historical information for the explanation

generation and presentation discussed in Section 2.2. Users (specially, SAS developers)

can gain insights about the system’s decision-making and can interact with RDM either

passively or actively.

Level 1, (forensic history-aware explanations), focused in enabling black-box analysis

after the system finished its execution. The main infrastructure was constructed to keep

track of RDM SAS decision-making process based on it logs. The collected information was

reshaped and stored in a TM conforming to the proposed trace metamodel of Figure 5.2

(Section 5.1.1) and its extension for RDM, Figure 6.3. Through the temporal query language

it is possible to extract information from the TM. It is an evolving graph representation

that depicts changes in metrics and relationships between entities of the previous mentioned

metamodel. This level acts as a base from the upper levels.

The experimentation on Level 1 (Section 6.2.3) showed the feasibility of the approach

for forensic analysis. However, query execution took longer as the history grew. This is

expected as the queries need to visit more points in time when the history expands. In order

to tackle this behaviour, timeline annotation (defined in Section 5.1.2) can be an option. It

consists of creating tags in certain versions of the TM that the query will visit instead of

the whole history. This approach requires to create annotations at runtime which logically

is part of Level 2.

Level 2 enabled the analysis of the RDM SAS at runtime, extracting explanations while

the system is running. In order to facilitate this interaction, Hawk’s Thrift-based API was

used. RDM notified Hawk when there is a new version of the Log and it will be added

to the TM considering the copy-on-write capability. The user was able to run queries on

demand or a predefined query can be programmed to run periodically. When using timeline

annotations, the user defines specific situations of interest that will be tagged in the TM

when they occur during RDM SAS execution. Once a query is performed, either on-demand

or periodically, it will only visit the tagged time-points.

The experiment of Section 6.2.4 showed the functionality of Level 2. The system was able
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to extract explanations related to the specific situation of interest (i.e., the long term effects)

at runtime and periodically. Timeline annotations reduced querying times considerably

from representing the 14 % of execution time to the 1.5% which showed the feasibility of

the approach.

Level 3 built on the previous two levels, for constructing and presenting explanations

and adding the functionality for an external entity to provide feedback to the RDM system

at runtime. Thus, switching from passive runtime monitoring to active runtime monitoring.

Through the information provided by the presented explanations, the users (i.e. developers)

are able to understand the system and feel confident about making changes to the system

at runtime through the use of effectors displayed in the developed GUI.

Through the experimentation in Level 3 (Subsection 6.2.5), it has been shown how

human stakeholders, as external entities, are able to evaluate and update the parameters of a

SAS based on live explanations of the SAS behaviour, participating in the tradeoffs between

the NFRs in a SAS. The explanations presented in the experiment are based on the evolution

of a metric (e.g., NFR average). However, explanations based on relationships between

metrics and events spanned over time can be obtained by exploiting the full potential of

the TMs as shown in the previous Sections 6.2.3 and 6.2.4. Changes in the system are only

allowed to take place if they meet defined criteria or conditions defined by the developer. For

the seek of experimentation, the condition defined by the developer is always set to true in

this implementation. An example of criteria to be met can be that an update can only take

place when the system is not performing critical tasks. Another option could focus on the

human capabilities for performing a task as the work presented in [92, 93]. The authors use

the Opportunity-Willingness-Capability (OWC) model to define when a user fulfils defined

conditions for interacting with a SAS. In this thesis, an explanation is deemed to be useful

if the recipient understands the system’s behaviour and feels confident to interact with it

either passively or actively. However, the evaluation of the explanations reception and the

impact of human interaction in SAS (for example through the OWC model) are outside

of the scope of this work. Evaluating how users understand the explanations and the full

impact of their interactions with SAS (for example, through the OWC model) is outside

the scope of this thesis.

This chapter has described how TMs are able to represent the RDM SAS history. TMs

combined with the temporal query language, allow the generation and presentation of ex-
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planations to users. From the classification of explanations from Section 2.2.1, the approach

corresponds to the post-hoc type where the explanations are not part of the system decision-

making. The scope of the explanations has been local, describing specific situations during

the SAS execution. The targeted audience are humans, specifically domain experts and

developers. Finally, both textual and graphical presentation methods have been designed,

matching the targeted audience expertise.

The experimentation has shown the feasibility of the approach. Different aspects have

to be taken into account as the computing resources. Using timeline annotations improves

the system performance for presenting an explanation however it does not tackle the TMs’

growing size for data intensive systems. Different optimisation strategies are required and

will be tested in the following chapter. These strategies can include: sampling, for only

storing logs at a certain rate; time windows, for focusing on the last n time-slices; or event-

oriented processing, for storing logs only when certain events happen. These strategies would

allow to further reduce the storage and processing overheads imposed by the addition of

history awareness and will be explored in the next chapter.
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Chapter 7

Scaling up Temporal Models

through Event-Driven Monitoring

for explanations
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Part of the work in this chapter is also under review at MLSys 2023

7.1 Motivation

The previous chapter (Chapter 6), presented an MDE solution for traceability in SAS using

TMs. Using the proposed approach, it was possible to present history-aware explanations

about a running SAS, its decisions and behaviour. The approach allowed for explanations in

both cases: interactive diagnosis (i.e. at runtime or during execution) and forensic analysis

(i.e. after the system has finished its execution), based on the trajectory or history of the

execution. These explanations can help someone monitoring the system to analyse and

trace past actions, allowing to fix potential faults and fostering users’ trust in the SAS.

However, some trade-offs emerged when the system’s history increased, particularly around

scalability. Scalability issues in MDE can be split into the following categories [8]:

• Model persistence: storage of large models; ability to access and update such models

with low memory footprint and fast execution time.

• Model querying and transformation: ability to perform intensive and complex queries

and transformations on large models with fast execution time.

• Collaborative work: multiple developers checking out a part of their model and query-

ing or editing it, as well as being able to commit their changes successfully.

In the previous chapter, through the use of time-line annotation (Section 6.2.4), it was

demonstrated how the approach offers substantial benefits regarding model querying, but

at the cost of disk space (model persistence). Nevertheless, these costs can be prohibitive

when dealing with data-intensive systems, as it is the case of AI-based systems, where the

volume and complexity of the data can grow considerably.

In this chapter, additionally to TMs, the proposed approach integrates the EDM tech-

nology, called Complex Event Processing (CEP) [98] for rapid detection of situations of

interest. CEP is used to tackle the challenges associated with data-intensive systems and

model persistence. It serves as a real-time filter that selects relevant points in time that

need to be stored in the TGDB as runtime models. The criteria for storing the system’s
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history can be configured through event patterns on a CEP engine. For example, a cer-

tain data rate can be imposed, or the history may only keep points in time where certain

conditions are met instead of the full history, saving memory resources and disk space.

This chapter applies an implementation of the proposed approach to a case study from

the domain of AI-based SAS: Autonomous Airborne Base Stations (ABS). The section starts

with the presentation of the ETeMoX (Event-driven Temporal Models for eXplanations)

framework that combines TMs and CEP. Next, a description of the ABS system is presented.

This is followed by an outline of the experimental setup of ETeMoX for implementing levels

1, 2 and 3 of the proposed research roadmap (Section 5.2) in the ABS SAS. Finally, the

results are discussed.

Filter

 
 CEP Engine

Event patterns

Temporal Model

 
 Translator

Trace Log A B C Runtime
Model 

TGDB

Explainer

 
 User 

Interface
Visual

Analytics

ETeMoX

D

E

Figure 7.1: Event-Driven Temporal Models for Explanations (ETeMoX) architecture.

7.2 ETeMoX: Event-driven Temporal Models for eXplana-

tions

This section presents the architecture of ETeMoX, which integrates CEP and TMs to sup-

port the generation of explanations for AI-based goal oriented systems. Based on the

J. M. Parra Ullauri, PhD Thesis, Aston University 2022. 114



categorisation from Section 2.2.1, the aim is to build an architecture for model-agnostic

post-hoc explainability, using the benefits of EDM and MDE. Understanding what the sys-

tem did requires the SAS to: i) track its own decision history, and ii) to explain those

decisions to the users coherently. Both requirements are targeted by ETeMoX while also

considering the scalability concerns mentioned in the motivation of this chapter. Figure 7.1

depicts the proposed architecture that is conformed by four main components:Translator,

Filter, Temporal Model and Explainer. These will be described in detail next.

7.2.1 Translator component

The proposed implementation decouples the decision-making processes in the SAS sys-

tem from the generation of the explanations (i.e., post-hoc explainability). The translator

component receives data streams with execution traces. The traces (Logs) contain infor-

mation related to the observations made by the SAS about its decisions, actions, states,

rewards, and environment. The monitored system collects and exposes the data streams to

the translator component through a message broker. An example of a broker is the open

source Eclipse Mosquitto MQTT message broker [95]. This broker uses a publish-subscribe

messaging pattern, where messages are published according to a set of topics and users

subscribe to the topics of their interest. The log can follow structured (JSON / XML) or

unstructured (plain text) formats: JSON has been selected for this implementation. This

JSON log containing unprocessed data is converted into the data format required by the

CEP engine, and then inserted into the Filter component for processing (“A” in Figure 7.1).

7.2.2 Filter component

This component performs the transformation, processing, analysis and routing of data from

the Translator component to the Temporal Model component. The main element in this

component is a CEP engine for event capture, analysis and response (for more details, see

Section 4.2.2). The Esper CEP engine1 has been selected, as it is mature, has an active

user community and is known to scale well with demand. Esper offers a Domain Specific

Language (DSL) for processing events, the Esper Event Processing Language (EPL). The

Esper EPL is similar to SQL but extended with temporal, causal and pattern operators, as

well as data windows. Esper processes and correlates the simple events coming from the

1https://www.espertech.com/esper/
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Translator component, aiming to detect in real time situations of interest that will match

the filtering criteria. Compared to the CEP engines mentioned in Chapter 4, Esper is widely

regarded as having a more user-friendly experience due to its simple and intuitive query

language that enables developers to quickly and easily define event patterns and queries.

On the other hand, Flink and InfoSphere can be more challenging for developers who are

unfamiliar with distributed computing, as it has a steeper learning curve.

In a CEP engine, situations of interest are described through event patterns deployed

into a rule engine (Figure 4.1, Section 4.2.2). Developers define the focus of interest, i.e.

the subset of the data that will be recorded in the TM. Event patterns are implemented

in Esper EPL and deployed to the Esper engine. When the filtering conditions are met

(i.e. pattern matches are detected), the engine automatically generates complex events that

collect the required information, and sends them to the Temporal Model component. The

communication from the Filter component to the Temporal Model component (“B” to “C”

in Figure 7.1) is performed using a message broker similar to the one employed by the

Translator component.

7.2.3 Temporal Model component

The incoming complex events containing the log information about the state of the system

are reshaped into the trace core metamodel of Figure 5.2 (Section 5.1.1) for linking the

system goals and decisions to its observations and reasoning. This metamodel is generic

for goal-oriented SAS and can be extended for specific domains as shown in the previous

chapter (Section 6.2).

Within the Temporal Model component, the runtime model based on the core metamodel

will then be used to update the TGDB, creating a new snapshot at the current point in

time: all relevant versions are kept. A model indexer is used to automatically compare the

runtime model as an object graph against the current version of the temporal graph. It

creates a new version which only updates the temporal graph where needed, for efficient

storage. Specifically, ETeMoX uses the previously mentioned Eclipse Hawk, which operates

on Greycat temporal graphs. By using TGDBs, it is possible to track the evolution of certain

metrics at each node, as well as the changes in the relationships of the various entities in

the system, or their appearance and disappearance.
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7.2.4 Explainer component

This component is where the explanations are constructed and presented. The explainer

component can run a query on the TGDB using time-aware query language of Section 5.1.2,

an extension of the Epsilon Object Language (EOL) to define temporal patterns that tra-

verse the history of a model. The result of this query contains the information that will

be used to construct the explanations. These explanations could be presented in textual or

graphical ways, e.g. plots of various kinds, yes/no answers, or specific examples of matches

of a certain temporal pattern.

In relation to the explanation phases defined in Section 2.2, ETeMoX tackles the first

two: i) the explanation generation is the construction of the causally connected TGDB

(performed on the previous component), and ii) the explanation communication is the ex-

traction of the information using the temporal query language (what information will be

provided) and the presentation of explanations, whether textually or graphically (how will

it be presented).

In order for an explanation to satisfy its recipient, it needs to be expressed in a way that

is easy to understand for that recipient. Therefore, a rigid system for which developers or

domain expert have defined explanations with no awareness of the needs and expectations

of the recipients may be not convenient for users with different backgrounds. The Explainer

component in ETeMoX allows users to specify their own custom queries over the historic

behaviour of the system, helping the users to complete their mental model of how the system

works, or test hypotheses about its behaviour. This is done by forwarding the queries to

the query engine in the Eclipse Hawk model indexer through the Hawk API (the “D-E”

communication in Figure 7.1).

7.3 Experimental Study: ABS SAS

The Airborne Base Station SAS (ABS SAS) uses Reinforcement Learning (RL), an AI

technique, to autonomously decide where to move in order to provide connectivity to as

many users as possible (in a self-adaptive way) [165]). RL is a popular AI method used

in support for self-adaptation [63]. RL can learn the effectiveness of adaptation actions

through interactions with the system’s environment [115].

Mobile connectivity requires that an adequate network of base stations has been set in
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Figure 7.2: Overview of the ABS (green) SAS from [165]

place. When these networks cannot meet unexpected spikes with respect of user demand

(e.g. due to a large concentration of users in one place, or due to failures in nearby commu-

nication towers), a swarm of ABS can act as a backup [165]. The goal of the system under

study (the ABS SAS from [165]) is to precisely control the location of the ABS in relation

to the locations of the users and the other stations, trying to serve as many users as possible

while ensuring high-signal strength and minimising interference among ABSes [165].

The 5G Communications System Model performs the necessary calculations to esti-

mate the Signal-to-Interference-plus-Noise Ratio (SINR) and the Reference Signal Received

Power (RSRP) [165]. The SINR and RSRP values measure the signal quality of the com-

munications between the ABS and the mobile stations. SINR and RSRP thresholds are

used to determine whether a station can be considered to be “connected” or not [165]. Fig-

ure 7.2 shows the ABS system that can potentially be deployed upon a failure of the base

stations (red in Figure 7.2), which cause communication difficulties for public safety and

emergency communications [165]. The developers of the system are interested in studying

the reasons why the SAS acted as it did, both regarding single decisions and regarding its

overall performance.

In order to test the model agnosticism offered by ETeMoX , three variants of the

underlying RL algorithm have been used: Q-Learning, State-Action-Reward-State-Action

(SARSA) and Deep Q-Network (DQN) and will be described next.

7.3.1 Reinforcement Learning

Influenced by behavioural psychology [116], RL is an ML approach where software agents

learn actions based on their ability to maximise defined rewards in a trial-and-error fashion.
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As shown in Figure 7.3, an RL agent interacts with the environment at discrete time steps

(t). The agent initiates the learning process by performing a random action (at) that leads

to a certain environmental state (st). The reward (rt) corresponding to this state is assigned

depending on how desirable the outcome is. After several iterations, the agent will learn a

certain policy (π) (a function that maps states to actions), and will update the value function

V (s) or action-value function Q(s, a) in order to maximise a cumulative reward, aiming to

select an optimal action in every situation in order to achieve a long-term goal [147].

Agent

Policy 
𝝅

Value Function 
V(s)

Environment 

Action 
at

State 
st

Reward 
rt

Figure 7.3: Reinforcement Learning

In RL, there are two main categories of algorithms: value-based algorithms and policy-

based algorithms. The value-based algorithms focus on finding a V (s) function that assigns

state-action pairs a reward value. These reward values can then be used in a π. The policy-

based algorithms, however, directly focus on finding an optimal π [147]. The value-based

algorithms focus on trying to maximise the action-value function described as the Bellman

Optimality Equation [147]:

Q∗(s, a) = E{rt+1 + γ ∗maxa′Q
∗(st+1, a

′)|st = s, at = a} (7.1)

where E means that goal is to maximise the expected sum of future rewards characterised by

the hyperparameter γ, which is the discounting factor that refers to a planning horizon [147].

Common examples of value-based functions and the ones used for the experimentation in this

chapter are Q-learning, State-Action-Reward-State-Action (SARSA) and Deep Q-Networks

(DQN) [147].

J. M. Parra Ullauri, PhD Thesis, Aston University 2022. 119



Q-learning

Q-Learning is an RL algorithm where an agent uses an action-value function Q(s, a) to eval-

uate the expectation of the maximum future cumulative reward. This reward rt is obtained

from different executions of an action at in a given state st [147], which provides agents

with the capability of learning to act with the aim of maximising the global reward [147].

NewQ(s, a) = Q(s, a) + α
[︁

R(s, a) + γ ·maxQ′
(︁

s′, a′
)︁

−Q(s, a)
]︁

(7.2)

Traditional Q-Learning uses a simple lookup table for calculating the maximum expected

future rewards for an action at each state. It is often referred to as the Q-table, as it is a way

of representing the Q-values (or Action-Values) in the Value function Vs [147]. Equation

7.2 is used to update the Q-table, where the α is the learning rate to determine how much

of the sum of immediate rewards will be used. γ is the discount factor to determine the

importance of future rewards and R(s, a) is the reward of the action at state st. Q′(s′, a′)

is the new Q value in next time step; s′ is next sate of environment; a′ is the next action

that ABSes is planning to take.

SARSA

SARSA is an RL algorithm very similar to Q-Learning [147]. The main difference between

the SARSA and Q-Learning algorithms is the policy (π) type. The Bellman Optimality

equation for SARSA presented in Equation 7.3, α is the learning rate, γ is the discount

factor and R(s, a) is the reward of the action at state s.

NewQ(s, a) = Q(s, a) + α
[︁

R(s, a) + γ ·Q′
(︁

s′, a′
)︁

−Q(s, a)
]︁

(7.3)

The most important difference between Q-learning and SARSA is how Q(s, a) is updated

after each action. Although the update of Q(s, a) in SARSA is quite similar to Q-learning,

both algorithms have different ways of choosing actions. SARSA uses the behaviour policy

(meaning, the policy used by the agent to generate experience in the environment randomly)

to select an additional action at+1, and then uses Q(st+1, at+1) (discounted by γ) as the

expected future return in the computation of the update action and state value [147]. Q-

learning does not use the behaviour policy to select an additional action at+1. Instead,
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it estimates the expected future returns in the update rule as maximum action and state

value. In other words, it tries to evaluate the policy while following the old policy, therefore

it is seen as an off-policy algorithm. In contrast, SARSA uses the same policy all the time,

hence it is seen as an on-policy algorithm.

DQN

Developed by DeepMind in 2015, DQN has produced some breakthrough applications able to

solve a wide range of Atari games even more efficiently than humans [107]. DQN attempts to

learn (i.e. maximise) an action-value function or Q-function [147]. In contrast to Q-Learning

and SARSA, DQN avoids using a lookup table by instead predicting the Q-value of the

current or potential states and actions using artificial neural networks (NN) or deep learning

networks [147]. This Q-function (see Equation 7.1) provides the expected discounted reward

that results from taking an action at in the state st while following a policy π.

For most problems, it is impractical to represent the Q-function as a table containing

values for each combination of s and a as in the case of Q-Learning and SARSA. Instead,

DQN introduces a function approximator, such as a NN with parameters θ, to estimate the

Q-values, thus: Q∗(s, a) ≈ Q(s, a; θ) [107]. Applying the Bellman equation, the network is

then trained to minimise the loss L using the parameters θ such as:

Li(θi) = E(s,a,r,s′)≈U(D)[(yi −Q(s, a; θ))2]

where

yi = r + γ ∗maxa′Q(s′, a′; θi−1)

(7.4)

In this equation, yi represents the TD (temporal difference) target, and yi −Q is called

the TD error. For the calculation, DQN stores the transition tuple (st; at; rt; st+1) in a

replay buffer (i.e. experience replay) [107]. This also stabilises the algorithm since samples

taken for training the NN are drawn uniformly from the replay buffer (U(D)) and the gra-

dient is estimated in typical mini-batch fashion using these samples, thus de-correlating it.

Furthermore, DQN uses the concept of a target network, which is only updated occasionally

to make the learning target (predicted q-values) stationary [53].
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Figure 7.4: ETeMoX for explaining RL

7.3.2 ETeMoX for explaining the ABS SAS: step by step

Currently, generality is the biggest challenge for RL. Although many RL methods can be

seen as performing well, it is difficult to apply them for generalisation purposes due to un-

foreseen situations [120]. Further, the traditional perception of RL methods is often viewed

as black boxes. Without the proper tools, it is challenging to understand the behaviour

of complex RL methods to solve general issues, especially when combining multiple neural

networks for evaluating value functions during learning stages.

The different RL algorithms have been extended to expose their made decisions and

observations in a trace log to ETeMoX at each simulation step as shown in Figure 7.4. In

order to use ETeMoX , a user requires: i) an RL system that exposes its decision-making

traces, ii) a parser to translate these traces into the metamodel in Figure 7.5, iii) a set of

event patterns that define the filtering criteria (and their deployment to the Esper CEP

engine), iv) a Hawk instance indexing the translated traces into a temporal model, and v)

a set of temporal queries that extract the history-aware explanations from the temporal

model. The RL-specific metamodel (Figure 7.5) imports elements from the core package

(Figure 5.2). In particular, the RL package provides a specialised RLAgent which keeps

track of the RLState that can be observed in the environment, an RLDecision which tracks

the QValues of each available action, and an RLObservation which tracks the current state

before the action was taken, and the current Reward values.

The detailed step-by-step guidelines are as follows:

1. The proposed post-hoc approach is designed to be as least intrusive as possible for the
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Figure 7.5: Class diagram for the RL extensions to the core metamodel used to record system history.
Imported core elements are marked with an arrow.
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RL agent to be explained. The first step is to collect observations from the system’s

decision-making. The available information about the agent’s states, rewards, actions,

and environment is exposed to the system through logs, which may be structured or

not.

2. Once this log is constructed, the next step is to feed it to the architecture. MQTT

is used as the core communication protocol, with MQTT clients in the different com-

ponents talking to a central MQTT broker. The trace log is published to a MQTT

topic to which the translator component is subscribed.

3. In order to handle the incoming data (i.e. trace log), ETeMoX requires the Transla-

tor component to parse the log. In the current implementation, this parser has been

manually defined at design time, and is specific for each case study. However, differ-

ent techniques for log and stream pre-processing are being studied for automatically

creating these translators, such as the one proposed by Corral-Plaza et al. in [39].

4. When the parser that processes the log is ready, the next step is the creation of the

event patterns needed by the Filter component. These EPL patterns will contain

the criteria to curate the data, based on events of interest. Some predefined filtering

criteria can be reused across projects (e.g., sampling at a certain rate). Also, problem-

specific event patterns of interest can be added as needed. Afterwards, the filtered

data is sent to the Temporal Model component over MQTT.

5. Next, the filtered information is stored in a casually-connected and efficient way in

an Eclipse Hawk instance. This instance needs to be configured to use the execution

trace metamodel of Figure 7.5 o structure the graph, and to have a Greycat temporal

graph database as backend.

6. Once the information is structured as a TM, it is possible to extract information

for explanations using EOL queries from the Explainer component. Depending on

the requirements, some predefined temporal queries can be reused, or new domain-

specific queries can be formulated. Information for explanations can be extracted

after-the-fact or at runtime.

7. The final step is to construct an explanation from the queries. The specific way this

is done depends on the requirements and the targeted audience. For instance, textual
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explanations (logs or natural language) or visual ones (graphs, plots or heatmaps)

could be used.

The complete user manual that explains how to apply ETeMoX to an RL system can be

found in the GitLab project at [118]. An implementation of the proposed approach for the

different RL algorithms (i.e., Q-learning, SARSA and DQN) and the first three levels of the

research roadmap for history-awareness with explanatory capabilities in SAS (Section 5.2),

is presented next.

7.3.3 Level 1

Accorcing to Section 5.2, the first step to achieve automated history-awareness in SAS is to

offer forensic capabilities. This section shows a description of this level’s implementation

for the ABS SAS. It also describes the scenario that motivates the need for explanations in

the ABS SAS. Finally, the experiment results are presented.

a. Scenario

Providing developers and users the tools for using explanations to monitor and analyse the

performance of RL based SAS systems is key for V&V and understanding. In the ABS SAS

case study, the locations of users and the signal interference levels from ABS keep changing.

Presenting the evolution of this change can help developers to understand if the ABS SAS

is progressing towards its ultimate goal. In the SAS, the RL agents analyse and update

their decision-making criteria based on the rewards received at each time step: it is key for

the explanatory system to keep track of these rewards.

ETeMoX is capable of tracking both the individual and global rewards on every time

step in the system’s training history, and present an average reward by episode. Without

any filtering, the results would match exactly what the system experienced, but at high

storage and processing costs. CEP is used to tackle this issue. Event patterns defined

using EPL allow the sampling of the data at a certain data rate, instead of storing the

entire system history. Analysing the accuracy of the sampled data will help to answer if the

information stored can provide similar conclusions (i.e., explanations) as storing the entire

history.

Furthermore, in a multi-agent system, explaining collaborative aspects can help to un-

derstand whether agents in the ABS SAS learn to coordinate to achieve the global goal or
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not. This can be difficult without the support of a monitoring tool like ETeMoX , consider-

ing that each RL agent has only access to its own local observations and is only responsible

for choosing actions from its own action-state values. A challenge in mobile wireless com-

munication is the hand-off or handover process. This is the process of providing continuous

service by transferring a data session from one cell to another [165].

In the presented collaborative system, ABS agents are assumed to have ideal com-

munication among themselves and cannot occupy the same position (state) at the same

time. Therefore, considering these conditions, handovers should be kept at a minimum,

demonstrating effective communication and stability within the system. In the present im-

plementation of the ABS SAS, a handover could be considered when a user is connected

to one ABS and then transferred to a different ABS in a short period of time. Explaining

these situations would help to developers to discover moments when handovers are tacking

place and to validate if the system is behaving as expected.

b. Implementation

This subsection describes the implementation of ETeMoX for explaining the situations

presented in the scenario. The experiments focused on i) tracking the evolution of a metric,

and ii) explaining the multi-agent collaborative behaviour.

Evolution of a metric: Regarding the tracking of the evolution of a metric, three Esper

EPL event patterns that apply various sampling rates to update the TM (every 10, 100 and

500 steps of the simulation) were applied. Listing 2 shows the event pattern for indexing the

runtime model into the TM every 10 steps. Finally, the log about the state and observations

of the system when this criteria is met is recorded for further analysis.

An object diagram with an instance of the runtime model at a certain step in the

simulation is shown in Figure 7.6. The Log contains Decisions and Observations for ABS 1

at Episode 9 and Step 199. The possible Actions are linked to their ActionBelief s that

represent the estimated values (Q-values), which maximise the cumulativeMeasure: Global

reward at the given Measure: State. Having recorded the history of the system so far,

at any time the TM can answer queries from the Explainer component. The Hawk GUI is

used to extract the information needed to build the required explanations after the system

has finished its execution (i.e., forensic explanations).
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Figure 7.6: Runtime model object diagram

Multi-agent collaboration: Regarding multi-agent collaboration, in order to find han-

dover situations in the different RL algorithms, a query was run on TMs containing the

whole history of each RL approach. Algorithm 1 describes the logic followed in the query,

which was implemented in the temporal query language supported by Hawk. A user (U) is

connected to an ABS (D) when its received SINR (SINRu,d) is above a defined threshold

αSINR [165]. Therefore, to find handovers over the history, it is necessary to analyze the

SINR between each (user, ABS) pair at every simulation step. For example, a handover

of user u1 from ABS 1 to ABS 2 happens when at step t, SINRu1,1 > αSINR (the SINR

between user u1 and ABS 1 is above the threshold), and then at step t + x (where x is

a certain time window, measured in numbers of steps) the SINRu1,2 > αSINR (the SINR

between user u1 and ABS 2 is above the threshold) and also SINRu1,2 > SINRu1,1 (user u1

is better connected to ABS 2 than to ABS 1).

c. Results

This sections presents the evaluation of the results of using ETeMoX to explain the evolu-

tion of a metric and the multi-agent collaboration in the ABS SAS case study. Q-Learning,

SARSA and DQN were tested under the same conditions. A training run consisted of 10

episodes and 2000 steps for 2 ABS agents with 1050 users scattered on a X-Y plane. As

mentioned, ETeMoX follows a post-hoc approach that decouples the running RL system
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Algorithm 1 Query to detect handovers. L is the current runtime log, T the set of
timeslices in L, U the users, D the ABSes, SINRu,d(t) the link measurement between u ∈ U
and d ∈ D at timeslice t, αSINR the threshold for the SINR, and x a defined time window.

1: Result = {}
2: for each u ∈ U do

3: for each d ∈ D do

4: TB = {t ∈ T |SINRu,d(t) > αSINR}
5: for each tb ∈ TB do

6: if (SINRu,d(tb + x) < SINRu,d+1(tb + x)∧
SINRu,d+1(tb + x) > αSINR) then

7: Add (tb, u, SINRu,d(tb), SINRu,d+1(tb + x))
to Result

8: end if

9: end for

10: end for

11: end for

12: Result: Sequences showing handover transitions.

from the generation of explanations. In that sense, the experiments were performed using

two machines dedicated to different purposes: one performing the training of the different

RL algorithms, and the other running ETeMoX . The RL algorithms ran on a virtual ma-

chine in the Google Cloud Platform2: specifically, an a2-highgpu-1g machine with 2vCPUs

running Debian GNU/Linux 10 with 13GB RAM and an NVIDIA Tesla K80 GPU, using

the ABS SAS simulator, Anaconda 4.8.5, matplotlib 3.3.4, numpy 1.19.1, paho-mqtt 1.5.0,

pandas 1.1.3, and pytorch 1.7.1. The machine running ETeMoX was a Lenovo Thinkpad

T480 with an Intel i7-8550U CPU with 1.80GHz, running Ubuntu 18.04.2 LTS and Oracle

Java 1.8.0 201, using Paho MQTT 1.2.2, Eclipse Hawk 2.0.0, and Esper 8.0.0.

Evolution of a metric: The proposed architecture was able to sample the incoming data

produced by the ABS SAS for each RL algorithm. Table 7.1 shows the costs of storing the

TM using each approach. The full history of the system consisted of 40 000 model versions

(10 episodes × 2 000 iterations × 2 ABS agents). Depending on the sampling data rate

selected, the size of the TM showed a linear decrease, going from approximate 130 MBs for

the full history, to less than 1MB when sampling the history each 500 time steps.

In order to test the accuracy of the results, a temporal query was ran on the different

TMs to find the averages from each training episode and see how they evolved. Figure

7.7 show the results for a) Q-Learning, b) SARSA, c) DQN. Additionally, a t-test [146]

2https://cloud.google.com/
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Approach Model Versions Q-Learning SARSA DQN

Full history 40000 126.00 129.00 162.00
History sampled r=10 4000 15.00 16.00 24.00
History sampled r=100 400 1.70 1.80 1.90
History sampled r=500 80 0.95 0.46 0.77

Table 7.1: TM size in MBs

Approach Q-Learning SARSA DQN

History sampled r=10 0.95 0.94 0.88
History sampled r=100 0.37 0.62 0.39
History sampled r=500 1E-4 2E-3 5E-3

Table 7.2: T-test results

was used to compare the means of each group. A t-test is an inferential statistic used to

determine if there is a significant difference between the means of two groups and how

they are related [146]. The results using the full history are compared to those from doing

sampling at different rates. Table 7.2 shows the p-values for the null hypothesis H0 defined,

as there is no statistically significant difference between the sample sets. Anything with

p < 0.05 is classed significant [146]. Thus, only the null hypothesis for the sample sets

corresponding to the history sampled with data rate of 500 is rejected. Therefore, they are

significantly different to the base sample set (full history).

Furthermore, the costs for retrieving the information that built these visual explanations

were also evaluated. Results are shown in Table 7.3. The query execution times also

presented a linear decrease. Running the query in the TM corresponding to the full history

took up to 43.23 seconds while running the query on the TM with the smaller size took

between 0.08 and 0.09 seconds.

Approach Model Versions Q-Learning SARSA DQN

Full history 40000 42.91 43.23 41.95
History sampled r=10 4000 4.68 4.78 4.63
History sampled r=100 400 0.34 0.34 0.38
History sampled r=500 80 0.09 0.09 0.08

Table 7.3: Query execution times in Seconds
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Figure 7.7: Evolution of a metric
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Listing 7.1: Excerpt of output from Algorithm 1 about handovers on the system’s history (SARSA).

1 [ ...
2 EolMap {SINR 1=80.76815264, ABS=1, user id=477, SINR 2=81.39525019, episode

=3, step=912, step handover=915, ABS to handover=2},
3 ...
4 EolMap {SINR 2=80.52090196, ABS=2, user id=925, SINR 1=81.20204141, episode

=2, step=1231, step handover=1234, ABS to handover=1},
5 ... ]

Multi-agent collaboration: In order to study the multi-agent collaboration behaviour

in the SAS, the experiment for explaining situations when handovers took place, was per-

formed. The goal of this experiment was to prove the hypothesis of the developer that under

ideal conditions and ideal communication between the ABS agents, the system should reduce

the number of handovers. A temporal query was implemented on the different TGDBs con-

taining the full history. The selected SINR threshold was 40 (αSINR = 40 in Algorithm 1),

and a time window of 3 time steps (x = 3 in Algorithm 1) was suggested by the developer to

consider as the transition time. 1 784 handovers were found for Q-Learning, 590 for SARSA

and 82 176 for DQN. An excerpt of the query results is presented in Listing 7.1. Line 2

indicates that a handover from ABS 1 to ABS 2 happened on SARSA on the episode 3

between time steps 912 and 915, when the user 477 was initially connected to ABS 1, and

after 3 time steps was connected to ABS 2. A similar situation happened on line 4, but in

this case there was a handover from ABS 2 to ABS 1 at episode 2 between time steps 1231

and 1234.

Due to the nature of the query, the execution times increased compared to previous

queries. They were: 917s for Q-Learning, 1132s for SARSA and 7914s for DQN. This

is because for each time slice (model version), it was needed to check how the SINRs

for each user u ∈ U changed over the defined time window. Thus, it was necessary to

check across all 10 episodes (each spanning 2000 time steps) the SINRs for each of the

1050 users corresponding to each of the 2 ABSes. This produced 10 × 2000 × 2 × 1050 =

42 000 000 situations to check. Considering the previous, the situations found were very

rare, representing only 4.2× 10−5% for Q-Learning, 1.4× 10−5% for SARSA. The previous

mentioned is inline with that in this controlled experiment, the handover situations are

expected to be minimum. However, in DQN, although the situations still represented a

very small percentage 1.9× 10−3%, further studies about collaborative tasks are needed.
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7.3.4 Level 2: Live History-aware explanations in ABS SAS

The previous section presented the implementation of ETeMoX to enable forensic analysis

and obtain explanations after the system had finished its execution. This section focuses

on the Level 2 implementation of the proposed research roadmap (Section 5.2) for the ABS

SAS. The main goal is to allow the extraction of explanations when the system is running,

while considering storage and processing concerns.

a. Scenario

An important aspect for RL-based SAS developers is to analyse the agent’s learning process

and how the initial conditions affect it. As part of its use of RL, the agent changes between

exploration and exploitation states. In the exploration state, the agent is trying to discover

new features of the environment by selecting a sub-optimal action. In the exploitation state,

the agent chooses the best action according to what it already knows [147]. The developers

may want to gain a general idea of how the system changes between these two states.

In order to find when a decision was performed using exploration or using exploitation,

ETeMoX tracks the actual action taken and the Q-values (i.e. the ActionBelief s) for each

possible action at given state. On one hand, when the action performed has the maximum

Q-value then it could be said that the decision was taken by exploitation. On the other hand,

if the action taken does not have the maximum Q-value, the action was taken by exploration.

Considering the object diagram of Figure 7.6, where the Action selected (represented by

the reference from d1 to a5 ) was down. It can be seen that it is the one with the maximum

estimated value: thus, it can be concluded that the decision was performed by exploitation.

Additionally, the experiment aims to analyze how these types of actions affected the overall

goal of the system (connecting as many users as possible).

b. Implementation

In order to evaluate the effect that a domain-specific filtering pattern could have on costs

and accuracy, an Esper EPL pattern was developed to only capture in the TGDB the

moments when a decision was performed using exploration. Listing 3 shows the Esper EPL

pattern for finding this situation. At every point in time, the Q-value of the action selected

(drone.qtable.action) is compared to the maxValue(), the action with the maximum
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Q-value. If these values do not match a decision was taken by exploration and the log

about the state and observations of the system at that point in time is recorded. For this

experiment, two TMs were created in parallel. One using the sampled data, and another

containing the full history of the system. In this last one, the temporal query of Listing 4

was run for validation. The temporal query written in EOL follows the same logic of the

Esper EPL pattern, but traverses the full history. It looks for the Q-value of the action

selected in each decision (actionTakenValue) and compares it with the maximum Q-value

(maxAB). It returns a sequence of situations where the criteria is met. Finally, it reports a

count of these situations.

In order to analyse the impact of the actions taken by exploration or exploitation, further

Esper EPL event patterns following Algorithm 2 were defined. From the different instances

T of TM M , actions marked as ER (exploration) or ET (exploitation) are analysed and

classified into the respective group. Depending on the impact of an action on the reward for

the subsequent time point (it produces an increment, a decrease, or no change), the counters

cI, c0, cD are incremented. The produced results are used to build global explanations in

the form of an event graph [27].

Algorithm 2 EPL pattern to detect the impact of actions taken by exploration and ex-
ploitation. M is the current runtime model, T the set of instances of M , A the type
of actions either exploration or exploitation, R the rewards (users connected), cI, c0, cD
counters for the type of impact on rewards (Increased, no impact, Decreased) of action A

1: Result = {}
2: cI, c0, cD = 0
3: for each t ∈ T do

4: for each a ∈ A do

5: if Ra(t) = Ra(t+ 1) then
6: Add (t, cI, c0 + +, cD) to Result

7: else if Ra(t) < Ra(t+ 1) then
8: Add (t, cI ++, c0, cD) to Result

9: else if Ra(t) > Ra(t+ 1) then
10: Add (t, cI, c0, cD ++) to Result

11: end if

12: end for

13: end for

14: Result: Sequences showing the impact of actions taken by exploration or exploitation
in the rewards over the time.
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RL Approach Model Versions TGDB (MB) Exploration (%) Exploitation (%)

Q-Learning 562 8.80 1.41 98.60
SARSA 3195 18.00 7.99 92.01
DQN 3126 21.00 7.82 92.19

Table 7.4: Results and costs of filtering history with the exploration pattern.

c. Results

This experiment focused on finding situations where the action performed by the ABS SAS

differs from the one that it currently thinks is best. An EPL query deployed in the CEP

engine filters the history, letting through only the time steps where the ABS SAS was using

exploration rather than exploitation. Table 7.4 shows a summary of the results of applying

this filtering using the exploration EPL pattern. Both SARSA and DQN presented similar

results, showing the system using exploration 8% of the time. In the case of Q-Learning,

exploration was done during 1.41% of the time steps. The results of the EPL query selected

the same time steps as a temporal query (EOL query) on the TGDB with the full history

containing exploration events.

In order to compare the impact on accuracy of custom EPL-based filters in comparison

with uniform sampling, the same temporal query from Section 7.3.3 was performed to

find the reward averages for each episode on the different TGDBs for each RL-algorithm.

Figure 7.8 shows the results for each approach. A similar behaviour to the one presented in

the previous experiment is exhibited. Less data (model versions) create less precise results,

as it is the case of Q-Learning. Although for SARSA and DQN similar number of model

versions were found (3195 and 3126), the results show a significant variability for the case

of DQN.

Regarding the impact of actions taken by exploration or exploitation, this experiment

tried to find events that occur over the execution of the case under study. The aim was

to find whether the system acted based on exploration (event ER) or exploitation (event

ET ). As shown in Fig. 7.9, the event graph represents how frequently the system acts

one way or the other, and how often it changes between the two behaviours. Additionally,

the experiment was interested on the effects of these events on the system’s overall goal

(rewards). These ER and ET events produced the subsequent events; R+ the event of an

increase in the reward, R the event where the reward stayed the same as in the previous
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Figure 7.9: Global explanations: exploration & exploitation in RL

time point and, R− the event of a decrease in the reward. The features of the summarised

final event graph are:

• Events:

– Start: initial event.

– ER: action chosen by exploration.

– ET : action chosen by exploitation.

– R+: reward increased.

– R: reward stayed the same

– R−: reward decreased.

• State Variables:

– NxR: number of ER events detected.

– NxT : number of ET events detected.

– Nr+: number of R+ events detected.

– Nr: number of R events detected.

– Nr−: number of R− events detected.

• Parameters:
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– {To} = time delay between Start and ER.

– {Ta} = sequence of time delays between ER and ET .

– {Tb} = sequence of time delays between ET and ER.

– {Tc} = sequence of time delays between ET and ET .

– {Td} = sequence of time delays between ER and ER.

– {TER
} = sequence of time delays between ER and [R+, R,R−] ∈ {To, Ta, Td}

– {TET
} = = sequence of time delays between ET and [R+, R,R−] ∈ {Tb, Tc}

– (a): (U(0, 1) < pa) where pa = probability of a

ER ⇒ ET transition and U(0, 1) a random value chosen in the [0, 1] range fol-

lowing a uniform distribution.

– (b): (U(0, 1) < pb) where pb = probability of a

ET ⇒ ER transition.

– (c): (U(0, 1) < pc) where pc = probability of a

ET ⇒ ET transition.

– (d): (U(0, 1) < pd) where pd = probability of a

ER ⇒ ER transition.

– (e): (U(0, 1) < pe) where pe = probability of a

ER ⇒ R+ transition.

– (f): (U(0, 1) < pf ) where pf = probability of a

ER ⇒ R transition.

– (g): (U(0, 1) < pg) where pg = probability of a

ER ⇒ R− transition.

– (h): (U(0, 1) < ph) where ph = probability of a

ET ⇒ R+ transition.

– (i): (U(0, 1) < pi) where pi = probability of a

ET ⇒ R transition.

– (j): (U(0, 1) < pj) where pj = probability of a

ET ⇒ R− transition.
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In total, 36 395 of the actions (90.99%) were chosen by exploitation (the system was in

the ET state), whereas 3 605 actions (9.01%) were taken by exploration (the system was in

the ER state). The simulation began with a “Start” event and always transitioned to ER

first, starting with exploration. From ER, it was observed from the complex events that

there was a 90.98% (3 280 out of 3 605) chance that the subsequent action was chosen by

exploitation (ET ), and a 9.02% (325 out of 3 605) chance that the system kept exploring.

Likewise, from ET it was observed that there was a 90.96% (33 104 out of 36 395) chance

to stay in ET , and a 9.04% (3 291 out of 36 395) chance to transition to ER. Moreover,

from the 36 395 actions chosen by exploitation, 5 159 produced an increase (R+) on the

rewards, 5 101 produced a decrease (R−) on the rewards and, 26 135 kept the same (R)

reward from the previous time point. Correspondingly, after an action taken by exploration

there was a 14.18% chance that the number of users connected increased, a 14.01% chance

that it decreased, and a 71.81% that it stayed the same. In case of the 3 605 actions chosen

by exploration 474 increased the reward, 555 decreased it and 2 576 kept the same reward.

Furthermore, there was a chance of 13.15% that an action taken by exploration led to an

increase of the reward, a 15.4% that it led to a decrease and a 71.45% chance that the

reward stayed the same.

7.3.5 Level 3

The previous sections in this chapter have demonstrated how TMs combined with CEP can

enable history-aware explainability in AI-based SAS while making efficient use of compu-

tational resources. The experiments of Sections 7.3.3 and 7.3.4 depicted how explanations

can be obtained after the system has finished its execution or at runtime. The conveyed

information can help developers to validate and improve their systems and fix potential

faults for a next round of the SAS execution. In other words, the explanations were used

for passive monitoring. In this section, an active approach in line with the Level 3 of the

research roadmap (Section 5.2) is presented. This level aims to allow external entities to

interact with SAS at runtime using the information provided by the history-aware expla-

nations. Different to 6.2.5, this Section targets another software system as the consumer of

the explanations instead of humans. A SAS can be part of a system-of-systems deployment

and explanations can be useful to promote collaboration between systems. Furthermore, a

different system monitoring a SAS can potentially provide feedback based on information
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that is not available to the SAS internal decision-making process (e.g., situations in the

past). An example of this scenario is presented in the following subsections.

a. Scenario

The initial conditions or hyperparameters of the AI approaches used in a SAS need to be

carefully tuned to obtain state-of-the-art performance during execution [53]. The search for

the best hyperparameter configuration is a sequential decision process in which initial values

are set, and later adjusted, through a mixture of intuition and trial-and-error, to optimise an

observed performance on typically the hold-out validation set, i.e. to maximise the accuracy

or minimise the loss [76]. This process often requires expensive manual or automated

hyperparameter searches in order to perform properly on an application domain [164].

Traditional hyperparameter optimisation (HPO) approaches include manual search, grid

search, and random search [53]. However, a noticeable limitation is the high cost related

to algorithm evaluation for complex models, which makes the tuning process highly in-

efficient, computationally expensive, time-consuming, requires domain-specific knowledge

and commonly adds extra algorithm developing overheads to the RL agent decision-making

processes [164, 76, 53].

The present section proposes the use of ETeMoX to quickly detect temporal and causal

dependencies between events on the fly, in order to gain insights from events as they occur

during the execution of the RL agent, which is crucial for HPO [53]. The previously men-

tioned approach enables a scalable platform allowing the use of short- and long-term memory

to reason about the RL agents’ historical behaviour for HPO. This knowledge is conveyed

to an external system for further processing. The external entity provides feedback to the

SAS based on its historical behaviour, aiming to find the hyperparameter combination that

produces the best SAS performance.

b. Implementation

Figure 7.10 describes the implementation of ETeMoX for Level 3 of the RL-based ABS SAS

using DQN algorithm. An external entity is able to gain insights about the SAS historical

behaviour by running queries over the stored TM. For this experiment, the external entity

is a Graph Listener or GL. This system runs periodically a query in the TM to obtain

information about the evolution of a metric: in this case, the value of the reward function
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Figure 7.10: ETeMoX for enabling feedback from external entities

R. In order to provide advantageous feedback, the efficient continuous monitoring of internal

operations and parameters of the RL agent and its interactions with the environment over

time are required. ETeMoX proposes the use of CEP for short-term analysis and TMs for

navigation through the system history to provide feedback to the RL-based SAS.

In RL, the N -dimensional hyperparameter configuration space is defined as Λ = Λ1 ×

... × ΛN , and a vector of hyperparameters is denoted by λ ∈ Λ. Let us denote the RL

algorithm as Φ and Φλ as the algorithm instantiated to a vector of hyperparameters λ. Let

us define the objective function to maximise the value of a reward function R. The HPO

problem can be defined as, given an algorithm Φ, the environment E and time T , finding

the optimal hyperparameter vector λ∗ that maximises the reward value achieved by Φ such

as:

λ∗ = argmax
λ∈Λ

R(Φλ, E, T ) (7.5)

where R(Φλ, E, T ) measures a reward value generated by the algorithm Φ under a

configuration of the λ hyperparameter while interacting with the environment E at time T .

For the current implementation, the aim is to study the impact of optimising the discount

factor as the key element in the Bellman equation (Equation 7.4) for the proposed case-

study. The discount factor determines how much the RL agents care about rewards in

the distant future, relative to those in the immediate future [147]. In this regard, the
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hyperparameter vector is expressed as follows:

λ(γ, κ)

where γ represents the hyperparameter to be optimised (i.e. discount factor) and κ the

hyperparameters that remain fixed.

With these preliminaries, different experiments using the proposed framework were per-

formed under the same scenario. It consisted of a training round (i.e., a single lifetime) of

100 episodes and 1000 steps for a set of 4 ABS with 1050 users scattered on a X-Y plane.

The ABS try to maximise the number of users connected by performing actions (i.e. moving

on different directions) and calculating the SINR to users on a collaborative fashion.

The main goal of the GL as an external entity is to try to solve Equation 7.5 using

the information provided by ETeMoX . The history-aware epsilon-greedy logic for HPO de-

scribed in Appendix 1 and 2 was implemented in GL and ETeMoX . In order to choose the

correct moment to provide feedback to the SAS, the GL asks ETeMoX for moments when

the value of the reward function R is stable over a period of time (rewardWinAvg). When

the GL has discovered that the SAS is on an stable state, in terms of the value of reward

function, a reconfiguration of the hyperparameters is suggested: return γ. Listing 5 shows

the implementation that attempts to detect stable conditions on time windows of 3 episodes

(w = 3). Every pattern AvgByEpisode, followed (->) by two subsequent AvgByEpisode and

a EpiWinAVG (which refers to the average in a time window), is analysed (where statement)

in compliance of the boolean conjunction. When the condition is met (i.e., boolean conjunc-

tion = True), the engine automatically generates complex events that collect the required

information to be stored in the TM.

In order to show the feasibility of the approach, two different experiments were defined

and are described next.

History-Aware HPO vs traditional HPO: A comparison with traditional HPO tech-

niques is performed. Specifically, the previously mentioned grid search and random search.

For this experiment, hyperparameter tuning with these techniques was performed during

the training processes. The experiments encompassed of a run of the DQN using each of the

defined hyperparameter tuning techniques. In this context, the initial hyperparameters for

each approach are described in table 7.5. From the literature [147], commonly used values
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Approach γo Tuning criteria

Manual setting 0.9 static
Grid search 0.9 updated every 10 episodes

Random search random updated every 10 episodes
History-aware HPO 0.9 automated-tuning

Table 7.5: Initial configuration for experiment 1

for the discount factor are within the range of 0.9 and 0.99. A manual setting with static

discounting factor has been included for comparison. For the case of grid search, in order

to cover the hyperparameter-value space, the initial value of γ is set to 0.9 and decays over

the time with a rate of 0.1. Random search starts randomly and the history-aware HPO

starts in the centre of the value-space.

History-Aware HPO vs static hyperparameters A second experiment was per-

formed to analyse the impact of the proposed approach on the performance of the system in

comparison to keeping the hyperparameters static during the training. For this purpose, the

training round was initialised with the same seeds, and the progression of the rewards over

time was compared across the various hyperparameter configurations. The initial values of

the discount factor that conformed the experiment were:

γo ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} (7.6)

c. Results

In this section, the evaluation of the results of using the proposed framework implementing

the history-aware epsilon-greedy logic for HPO is presented. The RL-based SAS was trained

using DQN under the same conditions for the different experiments.

History-Aware HPO vs traditional HPO The first experiment corresponded to a

qualitative study of the performance of the ABS system using the proposed approach,

comparing against traditional HPO techniques. Figure 7.11 shows the results. As it can

be observed, the approach using feedback provided by the GL (red line) outperformed

the different approaches, obtaining its maximum values from episode 42 onward. The

periodic random search (blue line) fluctuates and its performance is closed to that of the
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Figure 7.11: Comparison of hyperparameter tuning methods in DQN

static configuration (green line). It is interesting to note that periodic grid search (green

line) achieved the same performance. However, the sharp dip at episode 70 to 80 shows a

potential instability.

The proposed approach allows to gain more insights about the HPO process by analysing

the history stored in the TM in conformation of metamodels of Figures 5.2 (page 63) and 7.5

(page 114). Listing 6 describes an EOL temporal query ran using the Hawk GUI to obtain

the evolution of the rewards based on hyperparameter tuning. For each version of the TM

where feedback was provided (Agent = ’HAWK’), the values of (episode, gamma, reward)

are obtained. Figure 7.12 (a) depicts the results. The extracted information shows that the

maximum value of the reward function R was 727.055 at episode 72 with discounting factor

γ=0.204. Therefore, under the configuration Φλ(γ,κ) the optimal value found for the HPO

problem of Equation 7.5 is:

λ∗ ← λ(γ = 0.204, κ) (7.7)

History-Aware HPO vs static hyperparameters The second experiment included

an exhaustive analysis of the performance of the RL algorithm using different initial values

for the discount factor. The comparison includes the analysis of the reward value function

R with and without the proposed approach for each system configuration Φλt(γ,κ). The
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(a) Gamma = 0.5.
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(b) Gamma = 0.9.

Figure 7.12: Reward and discount factor evolution, starting at γ = 0.5 and γ = 0.9 using history-aware
HPO.

boxplots of Figure 7.13 display the results. As evidenced, by using the proposed history-

aware HPO (in red) the system was able to reach greater maximum values (the upper end of

the whiskers) for each system configuration. Furthermore, the interquartile ranges (boxes)

in each case had a greater upper quartile. Regarding the medians, that represent the middle

of the set, they were also greater for each case except for γ = 0.2 and γ = 0.3. This can

suggest two things: i) the optimal values of γ is within this range 0.2 < γ∗ < 0.3, which

reinforce the result obtained in experiment 1, and ii) the variance in the data corresponds

to that of the optimiser exploring the hyperparameter value-space with probability ϵ.

The best performance of the RL system using the history-aware HPO approach occurred

when the initial value of the discounting factor was the centre of the hyperparameter value-

space, γo = 0.5 with an average of connected users of 636.104 and a median of 702.886. In

the same manner, the worst performance occurred with γo = 0.9 with an average of 309.818

connected users and a median of 323.774. The temporal-query of Listing 6 was run for

further analysis. As shown in Figure 7.12 (b), after exploring the hyperparameter value-

space, the optimiser was going towards the optimal value of γ as the rewards increased.

Thus, the system would have needed longer to find the optimal value.

J. M. Parra Ullauri, PhD Thesis, Aston University 2022. 144



Figure 7.13: Comparison of history-aware hyperparameter optimisation vs static values

7.4 Discussion

This chapter has presented the implementation of Levels 1, 2 and 3 of the proposed research

roadmap (Section 5.2) for enabling history-aware explainability in data-intensive AI-based

SAS. By the introduction of an event-driven runtime monitoring approach (CEP), it is possi-

ble to analyse and correlate large amounts of data in real-time based on situations of interest

or events while making use of parallel resources. CEP can be used as a real-time filter or

for analysis of defined time-windows which enables short-term volatile memory capabilities.

These capabilities combined with TMs and the temporal query language (presented in the

previous Chapter 6), create a generalisable post-hoc approach for explainability that tackles

the challenges in volume and throughput imposed by data-intensive systems as in the case

of RL-based SAS.

Explanations are generated using CEP and TMs, and presented visually through graphs

and plots in the case of Levels 1 and 2, and in the form of machine parsable logs for Level

3. The architecture outcome produced from this PhD work, ETeMoX , has been applied to

an RL-based SAS for mobile communications. In order to test the model-agnosticism of the

approach, three different RL algorithms were used. The experiments were performed during

the training of the models, to help developers gain insights about the learning process while

J. M. Parra Ullauri, PhD Thesis, Aston University 2022. 145



they work on validating and improving their systems.

The objectives of the experiment of Level 1 (Section 7.3.3) were to keep track of the

evolution of a metric throughout the history of the ABS SAS and to analyse the collab-

orative work in this multi-agent system after the system finished its execution. Different

filtering criteria were defined and the results were evaluated. Costs of storing and retrieving

the system’s history as well as the accuracy of the explanations provided have been anal-

ysed. Uniformly sampling the history of the system every 10 time steps produced a good

representation: a statistical t-test did not report significant differences in the query results

compared to using the full history. This allows for extracting similar conclusions, while

requiring less disk space (85% to 88% less) and taking less time to compute (88% less).

Furthermore, the system was able to correlate, process and filter data at runtime, providing

the ability to flexibly define filtering criteria for building a TM of complex events.

From the RL developer’s point of view, retrieving historical information about the lo-

cations of the ABS, their SINRs, and how many users were connected at specific time

steps provided a better understanding of how ABS agents interacted with the environment

when using various RL systems. The interaction data that was collected during training

and execution retained more information than just the learned policy: studying how these

metrics evolve revealed interesting challenges encountered by the ABS SAS. By analysing

the collaborations within the multi-agent system, the behaviour of each ABS provides an

understanding about the reasons why the ABS SAS with the Q-Learning system had more

connected users overall (i.e. maximum global reward) than SARSA and DQN. The Q-

Learning ABS SAS had fewer handovers during simulation compared to the systems using

SARSA and DQN.

Furthermore, the analysis of collaborations shows that the SARSA-based ABS SAS had

a level of knowledge of their neighbour’s position and capacity. In this case study, an ABS

was rewarded if it increased its number of connected users, even if it reduced the number

of users of other ABS agents. The total reward was not an implicit learning constraint for

the ABS agents. Experiment 7.3.3 showed, in both SARSA and Q-Learning cases, that the

number of handovers that happened during the simulation were minimal. The latter seems

to demonstrate that the ABS agents were able to perceive the intention of neighbouring ABS

agents in this controlled experiment. In contrast, in the case of DQN, multiple situations

were found that show violations of the collaboration principle. Therefore, more analysis on
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collaborative ABS SAS with DQN system is needed to have better understand how Q-value

function works in this case study. Regarding Level 2 (Section 7.3.4), it was known in advance

that the ABS system changed between two behaviours (i.e., exploration and exploitation)

as part of the RL algorithms. The objective of the experiment was to discover situations

where actions were taken by exploration and exploitation and to build an event graph that

approximated the way in which it changed between the two events. The observed numbers

of transitions between the two events and to themselves were counted, and these counts

were used to populate the transition conditions in the event graph.

These results can help to prove hypothesis about the systems behaviour. With the

presented global explanation, the user can discover how frequent and interrelated are these

events. With this information, the developer was able to confirm that the system was

acting as expected by contrasting the results with the hyperparameters defined at design

time in the RL agent (e.g. in this case, a parameter for exploiting 90% of the time).

Statistical and historical information can guide developers when working with AI systems to

improve the learning performance: for example, by imposing a balance between exploration

and exploitation if necessary. The exploration and exploitation query can give developers

further insights about how to improve Q-Learning RL system performance by increasing

the exploration time.

In relation to Level 3 (Section 7.3.5) the results from the conducted experiments showed

the feasibility of the history-aware approach for HPO. Combining CEP and TMs offers

both the short and long term memories required for hyperparameter tuning with reflective

capabilities. An external entity, in this case a GL, is able to provide feedback to the ABS

SAS at runtime for tuning its hyperparameters. The history-aware epsilon-greedy logic

implemented in the GL allowed to explore the hyperparameter value-space with explicit

long-term memory to remember good/optimal system configurations. The experiments

provide valuable insights into the effects of the tuning of the discount factor and its influence

on the stability of training and overall system performance (maximised cumulative rewards).

The presented work has helped the case study developers to gain deeper insights about

the behaviour shown by the running system and the reasons for its decisions, and to allow

external entities to provide feedback actively (e.g., Experiment 7.3.5.
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7.4.1 Comparing ETeMoX with state-of-the-art techniques for explain-

ability in SAS

This subsection contrasts the architecture produced by this PhD thesis (i.e., ETeMoX ) with

the state-of-the-art approaches for explainability in SAS mentioned in Section 2.2.2. Rele-

vant approaches for explainability in RL (i.e., explainable RL or XRL) are also discussed.

The research challenges to enable history-aware explainability stated in Sections 1.1.1

and 2.1.2 were i) the collection, organisation and storage of historical data produced by

a SAS, ii) the query and extraction of information to provide explanations, and iii) the

provision of explanations for different purposes and consumers. Based on these challenges,

the features required by an architecture for history-aware explainability in SAS are defined

below.

• D1 On the Historical Analysis: Can the architecture support the exploration of

historical behaviour? The main focus of this PhD work is to demonstrate how the

analysis of historical behaviour of a SAS can be used for conveying knowledge to

external entities (either humans or machines) in the form of explanations.

• D2 On SAS Model Agnosticism: Can the approach be applied to different types

of SAS? Generalizability is a key aspect that is targeted in this thesis. The use of

the problem-independent execution trace metamodel (Section 5.1.1) enables a formal

structure for storing and accessing the historical behaviour for different types of SAS.

• D3 On the type of explanations: Is the approach for explainability unobtrusive

to the SAS decision-making? Being able to introduce explainability in SAS without

the risk of impacting the decision-making process is important aspect targeted by

this PhD work. Different to intrinsic explanations that are part of the SAS decision-

making processes, post-hoc explainability aims to convey knowledge to users using

surrogate models and processes.

• D4 On the scope of the explanations: Does the architecture support local and

global explainability? Local explanations focus on data and provide individual expla-

nations, helping provide trust on AI-model outcomes. A global explanation aims to

provide a general understanding of how the AI-model works. This PhD work focuses

on a complete solution that allows both types of explanation approaches.
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• D5 On the use of explanations for justifying: Can the information extracted

using the architecture be used for justifying SAS behaviour and decisions? Proving

the reasons why a decision was made or an action was taken is one of the main scopes

of explanation in SAS. These type of explanations refer to local explanations and can

target different stakeholders, ranging from non-expert users to developers.

• D6 On the use of explanations for discovering: Can the information extracted

using the architecture be used to discover knowledge from SAS? Asking for explana-

tions is a helpful mechanism to learn new facts, collect information and consequently

gain knowledge. Moreover, through the help of explanations, users can discover situ-

ations that only emerge at runtime.

• D7 On the use of explanations for controlling and improving: Can the ex-

planations help users to refine their systems? Thanks to the information obtained

through explanations, external entities can provide feedback to the SAS either after-

the-fact or at runtime. Explaining a system through runtime monitoring to help

improve it is one of the main objectives of ETeMoX .

• D8 On the explanation generation: Does the framework allow the collection and

construction of explanations? This phase of explainability focuses on the methods

that allow the construction of the explanation. What information is collected for an

explanation, and how it is recorded and accessed, are aspects considered by this phase

of explainability.

• D9 On the explanation communication: Does the architecture allow multiple

presentation methods for explanations? This phase deals with what information will

be provided to the explanation consumer and how will it be presented. As mentioned

in Section 2.2, different presentation methods can be used to convey explanations

(e.g., textual, graphical, motions among others).

• D10 On the explanation reception: Does the architecture have an awareness of

the mental state of the targeted audience for providing explanations? This phase

studies how well the explanation consumer understands the conveyed information. In

order to assess this, typically, research relies on user studies, probabilistic models and

subjective evaluations.
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D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Bencomo et al. [12] ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✗

Drechsler et al. [48] ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✗

Blumreiter et al. [19] ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✗

Li et al. [92] ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓

Reynolds et al. [131] ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✗

Kordts et al. [87] ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✗

Diallo et al. [46] ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗

Khalid et al. [80] ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✗

van der Waa et al. [151] ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗

Juozapaitis et al. [77] ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗

Madumal et al. [101] ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗

Sequeira et al. [143] ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗

Verma et al. [152] ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✗

ETeMoX ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

Table 7.6: Comparison of explainability approaches for SAS

Table 7.6 compares ETeMoX with the state-of-the-art approaches for explainability in

SAS using the criteria defined in the previously mentioned dimensions. The discussion of

which of these works meet the defined criteria is presented next.

• D1 On the Historical Analysis: Only few works in the literature have focused in the

historical analysis for explainability in SAS. The interestingness elements approach

proposed by Sequeira et al. in [143], collects data produced by the RL agent to present

visual explanations. The authors conclude that the diversity of aspects captured

by the different elements is crucial to help humans correctly understand an agent’s

strengths and limitations. Unfortunately, this approach lacks a formal structure to

store the information, which is the advantage of using a MDE approach. Having

this defined structure for representing decision traceability would allow algorithm

developers to decouple the system to be explained from the rest of the explanation

infrastructure. Reynolds et al. proposed in [131] automated provenance graphs to

explain the behaviour of SAS based on runtime models. Provenance graphs relate

the entities, actors and activities in the system over time, recording the reasons why

the system reached its current state. However, the authors do not provide a querying

system to traverse the history which is offered by the temporal query language in this

thesis. Moreover, the authors do not consider or tackle scalability issues for storing

and accessing history in data-intensive which is offered by ETeMoX with the use of
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CEP.

• D2 On SAS Model Agnosticism: Some works in the literature target this important

aspect for an explainability approach that can be reused across domains [19, 77, 48,

143, 87, 101]. The approach more closely related to ETeMoX for explainability in SAS

is the work proposed by Blumreiter et al. in [19]. The authors propose the Monitor-

Analyze-Build and Explain (MAB-EX) framework for building self-explainable sys-

tems. This work proposes a framework that can be applied to different SAS. They

claim that it can be extended to any type of systems. However, this is not demon-

strated nor described. Moreover, the authors do not analyse the impact of the expla-

nations’ generation and communication that are important aspects to consider when

generalising, which are tackled in this PhD work through data sampling (Section 7.3.3)

and time-line annotation (Section 6.2.4).

• D3 On the type of explanations: From the literature review, most of the works

on explainability in SAS focus on intrinsic explanations or what they define as self-

explanations. Post-hoc explainability is more recognised in the XRL community [77,

151, 143, 101]. However these approaches only target RL-loop based systems while

ETeMoX can be used for different SAS like those based on the MAPE-K loop for

example.

• D4 On the scope of the explanations: Existing approaches for integrating explanatory

capabilities into SAS have focused on local explanations, which help stakeholders

understand specific decisions [12, 48, 19, 92, 131, 87, 46]. Global explainability aims

at providing higher-level abstractions in order to convey a general understanding of

the behaviour of the system [77, 151, 101]. Providing the capability of presenting both

global and local explanations is a main contribution of this PhD work and ETeMoX .

Using the historical behaviour of the SAS stored in an structured way allows the

construction of explanations about specific situations as well as understanding the

entire evolution of the system. To the authors knowledge, this is the first work that

enables this capability specifically for SAS.

• D5 On the use of explanations for justifying: From the literature, all the works revised

cover this dimension. For example in [19], the system explains why a car is disallowed
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to enter a a defined section because other cars are passing the obstacle in the opposite

direction. In this PhD work, an example is the explanations of LTE in Section 6.2.3),

where a decision apparently bad is justified because its long-term effect.

• D6 On the use of explanations for discovering: For example, in [12] through the pro-

vided explanations the user can identify that using Bluetooth will lead to a greater

fragmentation than using WiFi. Another example that depicts this dimension is the

check-in scenario in [80] where the user discovered that there is a time threshold for

registering. In this document, an example of explanations for discovering knowledge

is the multi-agent collaboration experiment of Section 7.3.3, where the developer dis-

covered that the ABS SAS using DQN produces more handovers than the SAS using

SARSA or Q-Learning.

• D7 On the use of explanations for controlling and improving: From the literature,

the only work that tackles this dimension is [92] by Li et al. The authors proposed

a probabilistic model to reason when to provide explanations for human-in-the-loop

in SAS. Their target is to define when an explanation should be provided as a tactic

of the SAS to support human interaction at runtime. However, their work does not

specify how the user can interact with the SAS, which ETeMoX enables through

the use of effectors as depicted in Sections 6.2.5 and 7.3.5. Moreover, through the

experiment developed in Section 7.3.5, it is demonstrated how other systems can also

consume explanations.

• D8 On the explanation generation: Most of the works in the literature and ETeMoX

focus on this phase. For example, in [87], the authors present a description language

as well as a framework to support self-explaining ambient applications. ETeMoX

supports this dimension through trace metamodels, TMs, and the temporal query

language presented in Chapter 5.

• D9 On the explanation communication: This phase is targeted by all the works in

this literature review as well as by ETeMoX . For example, Maduma et. al., presented

in [101] an approach for explainability based on causal lens. The authors used different

presentation methods (e.g., text and graphs) in different case studies to depict the

feasibility of the approach. Similarly, in ETeMoX , the presentation methods are
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textual and graphical on predefined situations to be explained. Moreover, the user

can query on-demand the system, extract the required information, and presented in

the format of preference.

• D10 On the explanation reception: As demonstrated by Li et al. in [92] probabilistic

models can be used for assessing this dimension. This is the only work that analyses

the user perspective as explanation consumer. The authors propose the use of the

Opportunity-Willingness-Capability (OWC) model. This is a modelling approach

used to quantify how much a participant who is performing a given task can affect

systems. Only when the model is evaluated as true, explanations are provided. This

is the least explored stage in explainability and it is out of the scope of this thesis.

ETeMoX , as an outcome of this PhD, is an open-source implementation that tackles

most of the dimensions for an state-of-the-art approach for history-aware explainability in

SAS. The code can be found the SEA research group repository https://gitlab.com/

sea-aston/etemox.
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Chapter 8

Conclusions

This PhD dissertation presented two comprehensive experimental studies that were de-

signed to investigate how temporal models (TMs) (from model-driven engineering—MDE)

combined with complex event processing (CEP) (from event-driven runtime monitoring—

EDM) can enable explainability based on the historical behaviour of self-adaptive systems

(SAS). Furthermore, this PhD work has studied how the use of runtime models extended

with short and long-term memory can provide the abstraction, analysis and reasoning capa-

bilities needed to support explanations when using AI-based SAS. Finally, enabling filtering

capabilities on data-streams produced by SAS allows the effective use of parallel resources.

For an explanation to meet its purpose, it needs to be expressed in a way that is under-

standable for the recipient. In this PhD dissertation, the primary focus was on explanations

targeting SAS developers and knowledgeable users or domain experts. These two groups of

users are familiar with developing SAS (in the case of the former group) and using SAS.

Hence, they are interested in understanding, diagnosing, and refining such systems in the

given application contexts. Explanations shown by the running system help stakeholders

who are observing the system’s behaviour to analyse and trace actions that can help fix

potential faults, convey knowledge to support better informed decision-making, and foster

trust of end users.

A four-stage research roadmap for history-aware explainability was followed. This re-

search roadmap was previously proposed in [59] and then refined in [119]. The stages

consisted of 1) forensic history-aware explainability, 2) live history-aware explainability,

3) externally-guided history-aware decision making, and 4) autonomous history-aware self-

J. M. Parra Ullauri, PhD Thesis, Aston University 2022. 154



adaptive systems (i.e., self-explanation). This PhD research has focused on the first three

stages of the research roadmap. The design, implementation and evaluation of these levels

have been analysed through two SAS case studies: Remote Data Mirroring (RDM) and

Airborne Base Stations (ABS).

RDM (Chapter 6) ensures data availability to avoid data loss by replicating (i.e., mir-

roring) data across servers. RDM is a MAPE-K-based SAS which uses Bayesian Learning

and Partial Observable Markov Decision Processes for its self-adaptive decision-making [61].

RDM switches between two topologies, minimum spanning tree and redundant topology,

while balancing three non-functional requirements (NFRs): energy consumption, reliability,

and performance. Due to its proactive self-adaptation technique, this SAS can expose sur-

prising behaviour for a developer that is monitoring the system. Long-term effects (LTEs)

of immediate actions are an example of surprising behaviour. LTEs depict situations when

an action with a negative immediate impact produces an increase in the SAS performance

in the long term. The experimentation for Levels 1 and 2 focused on the explanation of

these types of situations both after-the-fact and while the system is running. The proposed

approach in TMs supports forensic analysis and interactive diagnosis based on explanations.

Regarding level 3, through TMs and the temporal query language, users can query the his-

tory of the system to improve their understanding about the behaviour exposed by the SAS

and provide feedback if required using effectors. The type of explanations presented, either

textual or graphical, fit the audience (RDM developers), who are able to understand the

data representations and can extract knowledge from their system.

Regarding the second case study, the ABS SAS (Chapter 7) uses Reinforcement Learning

(RL) to move autonomously a set of base stations for providing connectivity to as many

users as possible. The ABS SAS performs the necessary calculations to estimate the Signal-

to-Interference-plus-Noise Ratio and the Reference Signal Received Power towards its global

goal of maximising rewards (number of users connected). In order to test the generalizability

of the proposed approach, three variants of the underlying RL algorithms are used: Q-

Learning, SARSA and DQN. The experiments are performed during training to support

developers in gaining insights about the learning process while they work on validating

and improving their systems. Due to the amount of data that RL and the ABS SAS in

particular generate, the initial approach based only on TMs did not scale. Consequently,

CEP was included as a real-time filter to select relevant points in time to be recorded in the

J. M. Parra Ullauri, PhD Thesis, Aston University 2022. 155



TMs, instead of recording whole history. This architecture resulting from the combination

of TMs and CEP was named Event-driven TEmporal MOdels for eXplanations (ETeMoX )

which is an outcome of this PhD work. Accordingly, Levels 1, 2, and 3 of the proposed

research roadmap were implemented to show the feasibility of the approach. Through the

use of ETeMoX , developers were able to obtain explanations about both the evolution of a

metric and relationships between metrics. They were also able to track relevant situations

of interest that spanned over time (i.e. over time windows) while making efficient use of

computational resources. Finally, in Level 3, it is shown how an external entity can benefit

from explanations in order to provide feedback to the SAS.

From the developers’ point of view, the RDM and ABS case studies presented different

explainability challenges to be addressed. On one hand, RDM considered the satisfaction

of NFRs for its decision-making which are not directly measurable nor easy to understand.

Furthermore, its proactive self-adaptation nature can surprise an user observing the system.

Therefore, providing the right tools for asking for explanations about situations that are

connected over time is crucial for trustworthiness and for promoting the use of the system

which is provided by TMs. On the other hand, the ABS SAS used RL for its decision-

making which is a promising area of ML where autonomous agents learn through trial-

and-error how to find good solutions to a problem. Thus, the underlying decision-making

criteria may become opaque to users that interact with the system and who may require

explanations about the system’s reasoning. Furthermore, the developers wanted to study the

collaborative behaviour of this multi-agent SAS which is not directly observable. ETeMoX

provided an scalable solution that allows developers exploring, validating and improving

their systems.

Based on the results of the experimental studies conducted in this PhD dissertation,

it has been demonstrated how TMs can enable history-aware explainability in SAS. Addi-

tionally, CEP was used to tackle the challenges in volume and throughput posed by data-

intensive systems. For example in the RL-based ABS SAS. Explanations obtained using

the proposed approach were used for different purposes, such as explanations for justifying

surprising behaviour from a SAS (e.g., LTE in RDM, § 6.2.3), explanations for runtime veri-

fication and validation (e.g, evolution of a metric, Sec. 7.3.3, and exploration vs exploitation

in ABS Sec. 7.3.4), explanations for discovery (e.g. handovers in ABS Sec. 7.3.3), and expla-

nations for controlling and improving the system decision-making (e.g, human-in-the-loop
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in RDM Sec. 6.2.5 and hyperparameter optimisation in ABS Sec. 7.3.5). In relation to the

explanation phases defined in [3], this work tackles the first two: i) the explanation genera-

tion is the construction of the TM, and ii) the explanation communication is the extraction

of the information using the temporal query language and the presentation of explanations

either textually or graphically.

8.1 Answering the Research Questions

The studies conducted to investigate the research questions in this PhD dissertation demon-

strate the feasibility of the approach towards the targeted three stages of the research

roadmap on history-explainability. In Section 1.1.2, three main research questions were

presented. After the research carried out in this PhD dissertation, the answers to these

questions are as follows:

• RQ1: How can model-driven engineering and runtime monitoring enable scalable and

structured data storage?

The integration of model-driven engineering (MDE) and runtime monitoring (RTM)

has been investigated in this PhD thesis to enhance the explanatory capabilities of

SAS systems based on their historical behaviour. However, storing the historical data

of a running SAS can be costly, both in terms of storage space and performance.

To overcome this challenge, the thesis proposed different approaches for efficiently

processing large amounts of data generated by a SAS, such as logs. These approaches

were based on RTM and enabled the extraction of valuable information in the form

of explanations while following a defined structure based on models from MDE. By

combining the strengths of MDE and RTM, the thesis demonstrated the potential to

provide useful insights into the behaviour of a running SAS system and explain any

issues that may arise. This work represents an important contribution to the field of

software engineering and has the potential to benefit organisations that rely on SAS

systems for critical operations.

– RQ1.1: What is the effectiveness of the proposed solution which combines Tem-

poral Models from model-driven engineering and Complex Event Processing from

runtime monitoring for history-aware explainability?
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The proposed solution, which combines Temporal Models (TMs) based on run-

time models and a temporal graph database with Complex Event Processing

(CEP), is effective for history-aware explainability. This solution allows effi-

cient storage of historical data by only saving changes in the model to save disk,

using a copy-on-write approach. The structured format defined by the problem-

independent trace metamodel (from Section 5.1.1) enables the extraction and

storage of information for constructing explanations. By defining a translator

component from system logs to this metamodel, the infrastructure and queries

written against the trace metamodel can be reused. Additionally, the trace

metamodel enforces a consistent level of abstraction across multiple algorithms,

facilitating comparisons among various SAS decision-making algorithms in the

same domain. However, TMs alone may not be able to scale for data-intensive

SAS (e.g., RL systems), and a complete solution for history-aware explainability,

such as the proposed ETeMoX , integrates CEP to handle vast amounts of data

at runtime. CEP is used for detecting matches to event patterns that need to be

stored, instead of keeping the entire history.

– RQ1.2: How does the proposed approach compare to existing approaches?

Compared to existing approaches, such as those presented in Section 7.4.1 the

proposed solution offers a more efficient and scalable approach to history-aware

explainability. Different dimensions have been analysed and compared against

state-of-the-art techniques to provide explanations in SAS. These dimensions are

related to the approaches followed by the existing works regarding their scope,

form, construction methods, objective, and target. The open-source architecture

outcome of this thesis ETeMoX meets the defined criteria in 9 out 10 dimensions.

The detailed comparative information can be found in Section 7.4.1.

• RQ2: How can the exploration of the stored SAS history support developers wishing

to improve or validate their systems?

The ability to perform queries on a given data storage is crucial for analysing historical

information, which is particularly important for providing explanations to users and

stakeholders in cases where a SAS exhibits unexpected or surprising behaviour (related

to RQ1). By utilising execution-tracing features, it becomes possible to analyse the

J. M. Parra Ullauri, PhD Thesis, Aston University 2022. 158



system’s history and monitor decision-making performance against available evidence

at various points in time. The proposed methodology in this PhD work for structuring,

processing, and analysing historical data provides developers with a valuable tool to

better understand, validate, and refine their systems. This methodology can also aid

in identifying potential issues that may arise in the future and provide insights into the

root causes of these issues. Overall, the methodology proposed in this work represents

an important contribution to the field with the potential to benefit developers, users,

and stakeholders alike.

– RQ2.1: How useful is the proposed approach, which uses post-hoc explanations

extracted during runtime monitoring, in enabling developers or external entities

to monitor and refine SAS systems?

The proposed approach, which uses post-hoc explanations extracted during run-

time monitoring, is useful in enabling developers or external entities to validate

and refine SAS systems. By promoting users’ understanding of the system’s

decision-making and behaviour, explainability is key to discovering the system’s

flaws. To this end, the monitoring system should be capable of unveiling poten-

tial anomalies in the monitored system. The proposed approach uses a defined

structure (i.e., TMs) that allows the exploration of stored past history through

reusable Epsilon Object Language (EOL)-based queries. The EOL was extended

with time-aware primitives and the concept of history, enabling the use of tem-

poral query language and timeline annotations to tag specific moments in history

where an event of interest happened. Furthermore, CEP can be used to analyse

specific events at runtime while they occur in time or concrete time windows,

allowing for the reuse of queries or event patterns across different domains.

– RQ2.2: What insights can be gained to improve the system’s behaviour and

decision-making using the proposed approach?

Experiments 6.2.4 and 7.3.4 demonstrate how explanations can be used to vali-

date developers’ hypotheses and gain insights to improve the system’s behaviour

and decision-making. For instance, in Experiment 6.2.4, the proactive self-

adaptation approach of the RDM using POMDPs when an action is performed

towards a future reward instead of an immediate one can be confirmed. In Ex-
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periment 7.3.4, developers of the ABS SAS can validate if the system behaves

as expected regarding the initial hyperparameter, such as the exploration and

exploitation rate. By using the proposed approach, developers can refine their

systems if required, while users can gain confidence in the system and potentially

influence its improvement passively or actively.

• RQ3: How can external entities using history-aware explanations influence the SAS

decision-making in an informed way?

The use of history-aware explanations is a powerful tool for enhancing collaboration

between a SAS and external entities, such as consumers or recipients of explanations.

This PhD thesis discussed that by utilising the extracted information from the SAS’s

historical data, users and stakeholders can interact with the system either passively

or actively, thereby enabling them to make more informed decisions. In addition, by

providing explanation-driven feedback, users and stakeholders can help to improve

the performance and functionality of the SAS. The use of history-aware explanations

can also facilitate communication and understanding between the SAS and its users,

which is especially important in cases where the SAS is used for critical operations or

decision-making.

– RQ3.1: How can a history-aware architecture enable a bi-directional communi-

cation approach between stakeholders and a SAS?

This PhD work advocates for the ability of a SAS to explain its behaviour and

communicate how it reached its current state, especially if the SAS learns from

its past execution. External entities that receive these explanations may feel

that the SAS is not taking their decision-making criteria and priorities into ac-

count, but they can provide valuable feedback to enhance the SAS performance.

To enable this two-way communication, a SAS should provide access to historic

data, track its decision-making reasons over time, and offer capabilities called

”effectors” to allow external entities to steer its decision-making process.

– RQ3.2: How can feedback from external entities through explanations be inte-

grated into the SAS decision-making process to enhance its performance?

The experiments conducted at Level 3 (Sections 6.2.5 and 7.3.5 of the research

roadmap) demonstrate how external entities can provide useful feedback to the
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SAS based on received explanations. In Section 6.2.5, explanations were used

to introduce human-in-the-loop, and the feedback provided allowed the SAS to

prioritise a non-functional requirement and improve performance. In the ex-

periment of Section 7.3.5, an external system used the information provided by

explanations to provide feedback that updated the RL-based SAS initial condi-

tions. The results show that the proposed history-aware architecture, ETeMoX ,

significantly improves SAS performance through the feedback provided by exter-

nal entities.

8.2 Contributions Revisited

To summarise the major contributions of this PhD dissertation are as follows:

i The study, design and implementation of the first three levels of the gradual approach

for a spectrum of reflective capabilities for history-aware self-adaptive systems (Sec-

tion 5.2). This research roadmap was revised, analysed and adapted from [59]. Level

1, “Forensic-history aware explanations”, focuses in conveying knowledge to different

stakeholders after the SAS has finished it execution. The system’s history is stored

in a TM and analysed through the temporal query language. The features developed

for this level are reused in the subsequent levels. Level 2, “Live history-aware ex-

planations”, describes the passive analysis of the SAS online while the system is in

execution. It exploits the storing and querying capabilities of Level 1 but requires

extra features to extract and present explanations at runtime. Level 3, “Externally

guided history-aware decision making with explanation capabilities” allows external

entities to interact with the SAS at runtime. The explanation consumers (humans or

machines) are able to perform changes in the SAS through a set of effectors. These

levels were implemented and analysed in two SAS case studies considering different

dimensions, such as performance overheads, storage space impact and feasibility.

ii A novel approach for combining runtime models and temporal databases that produces

TMs (Section 5.1), which records in an structured fashion the goals of a SAS, its

decisions, its observations and its reasoning over time. TMs based on the problem-

independent execution trace metamodel (Section 5.1.1) are proposed and used as key

enablers for efficient and reusable storage and analysis of a SAS’s history.
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iii An evaluation of a set of temporal assertions that enable access to the stored system’s

history to extract information that will conform explanations. The queries developed

for each experiment in Chapters 6 and 7 allowed the extraction of information of

situations of interest spanned over time. Explanations about specific points in time,

a set of time points (i.e., time-windows) and the whole history were extracted using

the time-aware model querying language.

iv A novel generalizable architecture based on Temporal Models and event-driven runtime

monitoring, called ETeMoX (presented in Chapter 7), for the extraction of history-

aware explanations from data-intensive SAS in a post-hoc manner. In order to tackle

the computational constrains such as storage capacity and time to response, TMs

were combined with the event-driven approach (CEP) for runtime monitoring based

on situations of interest (i.e., events). The criteria for storing the SAS history can

be configured through event patterns on a CEP engine. For example, a certain data

rate can be imposed, or the history may only keep points in time where certain

conditions are met instead of the full history, saving memory and disk resources. The

ETeMoX framework and the user manual are available at [118].

v Two comprehensive experimental studies and accompanying analyses, designed to in-

vestigate the proposed research questions about effects of history-aware explanations,

that establish:

• Temporal models are a convenient solution for storing the history of SAS. The

provision of temporal assertions based on the temporal query language allows

access and exploration of the SAS history.

• Temporal models combined with event-driven runtime monitoring allows lever-

aging the challenges in volume and throughput posed by data-intensive systems

in a resource-aware manner.

• Explanations based on the historical behaviour of SAS permit developers and

other stakeholders the validation and verification about the system’s runtime

decision-making processes.

• The consumers of explanations, humans or machines, can benefit from the in-

formation received for internal reasoning, or for providing feedback, online or

offline, to the system based on the information acquired.
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8.3 Limitations, Direction and Future Work

The two experimental studies presented in Chapters 6 (pages 74 to 102) and 7 (pages 103 to

144) were designed to answer the three research questions detailed in Chapter 1. After the

research carried out during this PhD work, the feasibility of proposed approach based on

Temporal Models for History-Aware Explainability in SAS has been demonstrated. Using

the post-hoc explainability approach, SAS developers and knowledgeable users are able to

explore the system’s history and obtain local explanations about specific decisions taken by

the SAS, and global explanations that promote a general understanding of the behaviour of

the system. The explanations, whether textual or graphical, allow stakeholders to discover

and justify SAS decisions, verify systems requirements and goals, control, and improve the

system runtime performance based on the obtained information.

Based on the carried out experiments, the goals of this PhD dissertation have been

successfully met in the context of the research roadmap and experimentation. However,

there are still some limitations and threats to validity identified during the carried out

research. They are defined as technical limitations and theoretical limitations that open

exciting future research directions.

8.3.1 Technical limitations and possible research directions

From the technical point of view, the approach presented in this PhD dissertation focuses

on the use of historical information to convey knowledge about SAS behaviour. This implies

that the decision-making history has to be tracked and stored in an structured and effective

manner. Regarding structure, in the current implementation, the trace logs produced from

a SAS need to be reshaped in order to comply with the problem-independent metamodel.

Defining this log-to-model parser requires user expertise which can be a deterrent for lay-

users. In terms of scalability, the TMs used in this PhD work are based on the Greycat

TGDB. Greycat uses a copy-on-write approach to store only the nodes and edges changed

between time-points, saving disk space. Nonetheless, when the history increases the disk

space required also increases. CEP was introduced to select only situations of interest that

will conform explanations instead of the whole history. These situations can be a specific

point in time or situations spanning over the time. The approach scaled well, however, it

can be further improved. In terms of filtering criteria, CEP time window capabilities could
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be exploited for focusing on the last n versions to only keep a time window of the history in

the TMs. Moreover, enabling the capability of forgetting time-points that are no longer of

interest to the TMs would help keeping resource consumption bounded and requires further

studies.

The information that constructs the explanations is obtained through querying the

stored information in TMs using the temporal query language. The query language al-

lows exploring the history back and forth looking for situations of interest spanned over

time. Some of the developed queries can be reused across different case studies. For ex-

ample evolution of a metric was used in experiments of Sections 6.2.5, 7.3.3, and 7.3.5, or

the exploration vs exploitation query of Section 7.3.4 that is recurrent in every RL-based

system. These queries can be found in the ETeMoX project repository1. However, develop-

ing domain-specific queries requires expert knowledge. Initial guidelines on how to develop

temporal queries using EOL can be found in the Eclipse Hawk project website2 but further

studies would be required depending on the application domain and scope.

The presented explanations targeted domain experts and developers. The textual and

graphical presentation methods suited the audience, providing the users the tools to validate

and improve their systems. The Hawk user interface (GUI) was used for Level 1 for forensic

analysis in both case studies. For Levels 2 and 3 a dedicated GUI was developed. This GUI

allowed the users to implement queries to be executed at runtime (e.g., in Level 2). This

GUI can be further developed to meet users requirements. Additionally, the queries used for

different consumers can be explored for providing the right level of abstraction depending

on the user’ level of expertise. Using the defined GUI the user can provide feedback to

the SAS using effectors (as shown in Level 3). These effectors can vary depending on

the monitored SAS. For example, instead of updating hyperparameters and NFR priorities

as shown in the experiments of Sections 6.2.5 and 7.3.5, the effectors can force an action

to be taken by the SAS. Moreover, the exploration of different explanations presentation

techniques for different users and purposes is possible future research line. Finally, the

current implementation is designed to be used in a central control node for a SAS. It would

require further efforts to be applied to the case of a distributed SAS such as the ones

discussed in [161].

1https://gitlab.com/sea-aston/etemox/-/tree/main/hawk/EOLQueries
2https://www.eclipse.org/hawk/advanced-use/temporal-queries/
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8.3.2 Theoretical limitations and possible research directions

In relation to theoretical limitations, two main areas of research were defined as out of the

scope of this PhD dissertation. The first one corresponds to human factors in the generation

and reception of explanations. The focus of this PhD work was to describe, develop and

test an architecture that would enable post-hoc explainability using MDE and EDM. The

validation of the provided explanations was performed by the SAS developers of the different

case studies. Therefore, further studies using other SAS scenarios and developers about

how explanations are understood, are required. The type of explanations presented, either

textual or graphical, make the targeted audience able to understand the data representations

and extract knowledge from their system. However, in order to fully analyse the role

of history-aware explanations for the SAS community, additional user studies would be

required. These studies should consider different aspects such as the SAS developer’s level

of expertise (e.g., senior or beginner), the underlying system architecture (e.g., following

or not following a MAPE-K feedback loop), the type of explanations (i.e., local or global),

and the presentation methods (i.e., textual, graphics) and follow ethical guidelines for user

studies.

Furthermore, this work has focused on explanations for developers and knowledgeable

users. However, there are other stakeholders that can also be affected by SAS. As mentioned

in [70] and [162], there are different target audience profiles, each one with a different tech-

nical background. They include: developers, experts (knowledgeable users), non-technical

users, executives and regulatory agencies. Therefore, it is important to define the intended

target audience and the pursued goal of the generated explanations (e.g., trustworthiness,

informativeness, fairness, etc.). As such, more studies related to the explanation require-

ments from different actors in different scenarios are necessary.

A different area of research yet to be explored corresponds to Level 4 of the proposed

research roadmap, “Autonomous history-aware decision-making with explanation capabili-

ties” 5.2. The recipient of the explanations could be the system itself (i.e., self-explanations).

With self-explanation support, there is potential for the system to use its own history as

another input to underpin its own decision-making. For example, the SAS could use the

history for the identification of similar situations in the past and the consequent evalua-

tion of the long-term performance of the decisions that were made at those times. This
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evaluation could be factored into the SAS’ perceived utility levels of the available options

for adaptation. The system could double-check the long-term performance of those deci-

sions and establish a confidence level on its own prediction model. Decisions made on top

of self-explanation could be tracked for automated control accountability. Furthermore, if

the SAS is able to explain itself, this knowledge and information could be also useful for

different users and other type of systems.

The studies conducted within this PhD dissertation explore the synergy of MDE and

EDM for enabling explainability in SAS. This work provides a foundation on which the

open research questions mentioned above can be explored, which are all viable avenues for

future research into trustworthy and reflective SAS.
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Appendix

Chapter 6: Explaining SAS with Temporal Models

Algorithm 3 Query to detect proactive adaptation: the long term effects of immediate
actions. L is the current runtime log, T the set of timeslices in L, SNFR(t) the level of
satisfaction of the NFR at timeslice t, and αNFR the threshold for the NFR.

1: Result = {L}
2: TB = {t ∈ T |SNFR(t) < αNFR}
3: for each tb ∈ TB do

4: if SNFR(tb + 1) < SNFR(tb)∧
∃n ∈ N>0, ∀j ∈ [1, n] |
SNFR(tb + j + 1) > SNFR(tb) then

5: Add (tb, n) to Result

6: end if

7: end for

8: Result: Sequences showing proactive adaptation.
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Listing 1: EOL query to analyse the system history looking for LTEs at runtime using timeline annotation

1 return Decision.latest.all.first.nfrBeliefsPre
2 .selectOne(blf | blf.nfr.name.contains(’Reliability’))
3 .whenAnnotated(’shortTermNegativeAction’)
4 .ifUndefined(Sequence {})
5 .versions.collect(v | v.intervalInformation())
6 .reject(s | s.containsKey(’noMatchAt’))
7 ;
8

9 operation NFRBelief intervalInformation() : Map {
10 var intervalStart = self.unscoped.next;
11 if (intervalStart.isDefined()) {
12 var actionTaken = self.actionTaken();
13 var interval = intervalStart.sinceThen
14 .before(w | w.actionTaken() <> actionTaken
15 or w.estimatedProbability < w.prev.estimatedProbability
16 );
17

18 if (interval.isDefined()) {
19 return Map {
20 ”matchAt” = self.versionInformation(),
21 ”versions” = interval.versions.collect(v|v.versionInformation())
22 };
23 }
24 }
25 return Map { ”noMatchAt” = self.time };
26 }
27

28 operation NFRBelief versionInformation() : Map {
29 return Map {
30 ”timesliceID” = self.eContainer.eContainer.timesliceID,
31 ”actionName” = self.eContainer.actionTaken.name,
32 ”nfrName” = self.nfr.name,
33 ”estimatedProbability” = self.estimatedProbability
34 };
35 }
36

37 operation NFRBelief actionTaken(): String {
38 return self.eContainer.actionTaken.name;
39 }
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Chapter 7: Scaling up Temporal Models through Event-Driven Monitoring

for explanations

Listing 2: EPL pattern to sample the data every 10 steps

@public @buseventtype @Name(”Sampler”)

insert into Sampler

select drone as complexEventInfo

from pattern [every drone = DronesLog(drone.step%10=0)]

Listing 3: EPL pattern to select when the system performs an action based on exploration

@public @buseventtype @Name(”Exploration”)

expression selectedActionValue{

droneLog => case drone.qtable.action

when ”east” then drone.qtable.position.east

when ”west” then drone.qtable.position.west

when ”south” then drone.qtable.position.south

when ”north” then drone.qtable.position.north

when ”stay” then drone.qtable.position.stay

end}

expression maxValue{

droneLog => max(drone.qtable.position.east,

drone.qtable.position.west,

drone.qtable.position.south,

drone.qtable.position.north,

drone.qtable.position.stay) }

insert into Exploration

select drone as Log

from pattern [every drone = DronesLog] as droneLog

where maxValue(droneLog) != selectedActionValue(droneLog)

and maxValue(droneLog) != 0

J. M. Parra Ullauri, PhD Thesis, Aston University 2022. 170



Listing 4: EOL query to select when the system performed an action based on exploration

var results : Sequence;

for (decision in Decision.latest.all) {
var totalCount = decision.versions.size;
var exploration = decision.versions

.select(v|v.isExploration());
var totalExploration = exploration.size;

results.add(Map {
’total’ = totalCount,
’exploration’ = totalExploration
});
}
return results;

operation Decision isExploration() : Boolean {
var maxAB = self.actionBeliefs.estimatedValue.max();
var actionTakenName=self.actionTaken.name;
var actions = self.actionBeliefs.action;
var actionTakenValue = actions

.selectOne(a|a.name = actionTakenName)

.revRefNav action.estimatedValue.first;
return actionTakenValue <> maxAB and maxAB <> 0.0;
}

Listing 5: Esper EPL pattern to select when the system is on an stable condition on a defined time-window

@public @buseventtype @Name(”isStableAVG”)
insert into isStableAVG
select w.averageWindow as avg,

w.episode as episode,
’ CEP’ as agent,
CAST(a3.drone number as INT) as drone number,
a3.step as step,
a3.gamma as gamma

from pattern [every a1 = AvgByEpisode −>
a2 = AvgByEpisode −>
a3 = AvgByEpisode −>
w = EpiWinAVG]

where

w.episode = a3.episode and

Math.abs(a1.avg−w.averageWindow) < 30 and

Math.abs(a2.avg−w.averageWindow) < 30 and

Math.abs(a3.avg−w.averageWindow) < 30
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Algorithm 4 History-aware epsilon-greedy hyper-parameter optimisation:
Optimising the discounting factor - Variables definition and initialisation

variables def

R, reward function
reward, reward by episode
rewards, array of rewards by episode
rewardWinAvg, reward average by time window
maxRW , maximum reward average by time window
γ, discounting factor
Γ, value of γ that produces max reward
γ’, updated discounting factor
cV , cutoff value
x, time window size
to, time window initial point
ϵ, probability of exploring γ-value space
edf , ϵ decay factor
gvf , γ variance factor

end variables def

γ ← 0
x← 3
to ← 0
reward← 0
rewards← size[x]
rewardWinAvg ← 0
maxRW ← 0
c← 0
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Algorithm 5 History-aware epsilon-greedy hyper-parameter optimisation:
Optimising the discounting factor - Process

episodes ∈ R

for each e ∈ episodes do

rewards← add(rewarde)
γ ← γ at e
if e = to + x then

rewardWinAvg = rewards/x

if

to+x
∏︂

i=to

|reward[i]− rewardWinAvg| < rewardWinAvg ∗ cV then

if maxRW < rewardWinAvg then

Γ← argmaxγ R(γ)
γ’ ← Γ ▷ Act greedily
maxRW ← rewardWinAvg ▷ Update the maximum reward average
initialise flag ▷ random integer number between 0 and 1

else

ϵ← ϵ ∗ edf
if n < ϵ then ▷ n uniform random decimal number between 0 and 1

switch flag do

case 0 ▷ decrease discounting factor
γ’ ← γ − gvf
if rewardWinAvge < rewardWinAvge+x then

continue
else

flag ← 1
γ’ ← Γ

end if

case 1 ▷ increase discounting factor
γ’ ← γ + gvf
if rewardWinAvge < rewardWinAvge+x then

continue
else

flag ← 0
γ’ ← Γ

end if

else

γ’ ← Γ ▷ Act greedily
end if

end if

end if

to = e
γ ← γ’
return γ

end if

end for
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Listing 6: EOL query to analyse the system history regarding the discounting factor and reward values

var results : Sequence;
for(agentVer in Agent.latest.all){
var agentHawk = agentVer.versions
.select(c|c.name=’HAWK’);
for (agent in agentHawk){
var episode = agent.eContainer

.observations.first

.measurement(’Episode’);
var gamma = agent.eContainer

.observations.first

.measurement(’Gamma’);
var average = agent.eContainer

.observations.first

.measurement(’Reward by episode’);
results.add(Map {

’gamma’ = gamma,
’reward’ = average,
’episode of change’ = episode});

}}
return results;
operation Observation measurement(n:String) {
var value;
if (self.measurements.isDefined()) {

value= self.measurements
.selectOne(m|m.measure.name = n);
}

return value;
}
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