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Nowadays, the demand for telecommunication services is rapidly growing. To meet this ever-

increasing connectivity demand telecommunication industry needs to maintain the exponential growth

of capacity supply. One of the central efforts in this initiative is directed towards coherent fiber-

optic communication systems, the backbone of modern telecommunication infrastructure. Nonlinear

distortions, i.e., the ones dependent on the transmitted signal, are widely considered to be one of the

major limiting factors of these systems. When mitigating these distortions, we can’t rely on the pre-

recorded information about channel properties, which is often missing or incorrect, and, therefore, have

to resort to adaptive mitigation techniques, learning the link properties by themselves. Unfortunately,

the existing practical approaches are suboptimal: they assume weak nonlinear distortion and propose

its compensation via a cascade of separately trained sub-optimal algorithms. Deep learning, a sub-

class of machine learning very popular nowadays, proposes a way to address these problems. First,

deep learning solutions can approximate well an arbitrary nonlinear function without making any

prior assumptions about it. Second, deep learning solutions can effectively optimize a cluster of

single-purpose algorithms, which leads them to a global performance optimum.

In this thesis, two deep-learning solutions for nonlinearity mitigation in high-baudrate coherent

fiber-optic communication links are proposed.

The first one is the data augmentation technique for improving the training of supervised-learned

algorithms for the compensation of nonlinear distortion. Data augmentation encircles a set of

approaches for enhancing the size and the quality of training datasets so that they can lead us

to better supervised learned models. This thesis shows that specially designed data augmentation

techniques can be a very efficient tool for the development of powerful supervised-learned nonlinearity

compensation algorithms. In various testcases studied both numerically and experimentally, the

suggested augmentation is shown to lead to the reduction of up to 6× in the size of the dataset

required to achieve the desired performance and a nearly 2× reduction in the training complexity

of a nonlinearity compensation algorithm. The proposed approach is generic and can be applied to

enhance a multitude of supervised-learned nonlinearity compensation techniques.

The second one is the end-to-end learning procedure enabling optimization of the joint proba-

bilistic and geometric shaping of symbol sequences. In a general end-to-end learning approach, the

whole system is implemented as a single trainable NN from bits-in to bits-out. The novelty of the

proposed approach is in using cost-effective channel model based on the perturbation theory and the

refined symbol probabilities training procedure. The learned constellation shaping demonstrates a

considerable mutual information gains in single-channel 64 GBd transmission through both single-

span 170 km and multi-span 30x80 km single-mode fiber links. The suggested end-to-end learning

procedure is applicable to an arbitrary coherent fiber-optic communication link.

Keywords: Telecommunications; nonlinear optics; coherent detection; digital signal processing;

machine learning; deep learning; end-to-end learning; constellation shaping.
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Chapter 1

Introduction

1.1 Deep learning in communication systems

Nowadays, machine learning is an established tool for solving the tasks in the various

domains, including social, natural sciences and engineering [4–6]. The recent significant ad-

vances in the computational power and data storage led this process to gain an unprecedented

momentum. Deep learning - a class of machine learning methods focused on application

of artificial neural network algorithms inspired by the architecture of brain [7], has become

the leading approach in many areas, due to its huge flexibility [8, 9]. A lot of fields were

revolutionized by a the creation of record-beating machine learning techniques, notably, com-

puter vision [10], natural language processing [11], and speech processing [12]. Similarly,

in the optical communications domain, albeit there was an early interest in using machine

learning techniques in late 1990s [13], only in this decade we observed lots of applications

of machine learning techniques to a huge range of tasks in optical communications [14, 15].

1.1.1 Prerequisites for deep learning application

Artificial neural networks (ANNs) can be seen as a computational algorithm made of a

sequence of linear transformations with trainable parameters alternating with the point-wise

nonlinear functions, referred to as the activation functions [9]. Using sophisiticated opti-

mization techniques, the parameters of these algorithms can be optimized to approximate a

complex nonlinear function in the process named deep learning. The quality of the resulting

deep learnt algorithm relies on the presence of a huge body of data objects representative of

searched pattern, making deep learning a data-driven approach. The state-of-the-art deep

learning approach is usually comprised of advanced gradient descent based optimization tech-
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1.1 Deep learning in communication systems

niques [16] and the automatic gradient computation routines [17] based on back-propagation

algorithm [18].

The data-driven deep learning approach to optical communications tasks can pose a vital

alternative to the conventional solutions based on the domain knowledge. Nonetheless, the

task at hand usually must fall into one of categories in order for deep learning to be able to

surpass the classical methods of solving it [19, 20]. In the reminder of the section, we will

review these use cases.

First, the absence of a mathematical model describing the properties of objects invlolved

into the posed problem, can serve as the sign of a possible success of deep learning based

solution. The reason is the inability to create a baseline domain-based algorithm in the

absence of the underlying process model, which makes any operational deep learning solution

a leading one. At the same time, the successful application of deep learning to the problem

requires the availability of the representative dataset. In more detail, the dataset objects

should correctly represent the space of the outcomes of the underlying process. Usually, the

dataset should be also of a big enough size, to provide the precise enough representation of

the underlying process.

Second, if there exists a settled mathematical model, describing the process underlying in

the considered task, one has first to check the presence of the existing task solutions involving

the algorithms based on this model. If there are no existing solutions, the deep learning

might be a viable alternative. In case the dataset required for deep learning is not available,

usually the mathematical model can be employed to generate the required synthetic dataset -

a process called data augmentation.

Finally, if both the established model and the solutions based on it are available for

the considered task, deep learning might produce a solution with better performance-to-

complexity ratio or better performance overall, which might be beneficial given the limitations

imposed by the task.

Despite optical communications engineering being a mature field which has both the

established channel models and the effective solutions based on them, the applications of

deep learning still have considerable promise there. First, lost of important tasks in this

field are not solved yet or use sub-optimal solutions open for the performance boosts by the

implementation of deep learning techniques. Second, for the tasks where an appropriate

solution is available, the deep learning might still outperform this solution by incorporating

the domain knowledge into the architecture of a learnt algorithm (notably in [21]), or by

offering a less precise but more cost-effective alternative. Therefore, the detailed analysis

should be done in any case to decide on the applicability of deep learning.
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1.1 Deep learning in communication systems

1.1.2 Deep learning applications to optical telecommunications

The demand for internet traffic grows nowadays being pushed forward by the steady exponen-

tial growth of the number of the interconnected devices and the amount of data, consumed

by each device [22]. To match this demand surge, the modern communication systems

constantly expand their complexity and scale. This unprecedented growth presents the strong

challenges for the management, developement, and control of the optical communication

systems serving as the backbone of the modern communication infrastructure [23]. Unfor-

tunately, the conventional approaches are exausting their capabilities to keep up with the

ramping requirements to the latency, quality of service, and flexibility required from the mod-

ern links [24]. Meanwhile, the booming opportunities for collecting the datasets describing

the operation of communication systems at both networking and physical level generates

unprecedented opportunities for developing cost-efficient scalable machine learning solutions

addressing the problems emerging in these layers [14, 25].

For the physical layer of optical communication, which this thesis is focused on, deep

learning seems to be a highly promising tool for improving the digital signal processing

(DSP) algorithms. In state-of-the art links, the compensation of a huge range of transmission

impairments, introduced both by the transmitter devices and the optical channel, is usually

done by the digital signal processing algorithms, by thus making them an effective standard

approach improving the quality of transmission and the reach of modern communication

systems [26, 27]. The design of DSP is usually employed in state-of-the art telecommunica-

tions is the modular one: DSP is usually represented as a cascade of several algorithm each

addressing its own flavor of distortion.

Let us briefly describe the digital signal processing stack typically applied to coherent

fiber-optic communication links. At the transmitter (TX), the transmitted information,

usually represented by a sequence of bits (’0’s and ’1’s), is first expanded by forward error

correction (FEC) encoder, and (optionally) distribution matcher, then sampler converts it to a

sequence of complex valued numbers corresponding to the transmitted symbols, which are

finally processed by a digital pre-distorter aiming at pre-compensating the transmitter device

nonlinearities and, partially, channel nonlinear distortions. At the receiver (RX), the received

symbol sequence is first equalized by a cascade of adaptive and static digital filters, second,

timing recovery restoring the location of the boundaries of time-slots corresponding to each

symbol is applied, third, carrier phase and frequency recovery, and, finally, the symbols are

demodulated to bit sequences which are later post-processed by forward error correction

decoder before being fed to customer.
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The aforementioned modular architecture of transmitter and receiver is convenient from

an engineering point of view, since it greatly simplifies the control and training of individual

DSP blocks.

Nowadays, the application of deep learnt algorithms to execute the function of some

of the blocks of a digital signal processing algorithm is a hot topic in both academical and

industrial research. Usually, the deep learning is suggested for improving the performance-to-

complexity ratio of the DSP algorithms or the overall improvement of the DSP performance.

A common approach used in developing effective DSP algorithms is the usage of the domain

knowledge about the underlying distortion approached by a particular algorithm.

For instance, the deep learned artificial neural networks were successfully applied to

create a near-optimal symbol demodulator for the additive white Gaussian noise channel [28].

Deep learning of the forward error correction codes decoding was also studied in details [29–

31]. Notably, in [31] it was shown that the deep-learnt recurrent-neural-network-based (RNN)

algorithms can be employed as the optimal decoders of convolutional codes.

Another important application of deep learning to optical telecommunications are receiver-

based digital signal processing algorithms aimed at equalization of nonlinear distortions

injected into the transmitted signal during its propagation over the fiber-optic communication

link. Typically, the proposed deep learnt solutions are designed using the domain knowledge

about the structure and, if available, the mathematical model of the distortions addressed by

an algorithm.

For example, one model-based approach on which deep learning algorithms could be

based is digital back-propagation (DBP) [32]. This is an efficient approach for compensating

the optical channel distortions, governed by Manakov equations which involves solving

the equations with the negated parameters, by thus reversing the distortions introduced into

the propagated signal. DBP is based on the split-step Fourier method of solving Manakov

equations, where the equations are modeled as a repeating sequence of the so-called "linear

step" and "nonlinear step" alternating operators aimed at compensating, respectively, the

linear and nonlinear distortions emerging in the optical channel. A classical DBP-based

approach has two problems. First, the required number of iterating steps and, therefore,

the algorithm complexity increase with the rise in launch power, transmission distance,

and bandwidth. Second, for effective distortion compensation DBP requires the precise

information about the parameters of compensated link. These two problems are addressed by

the deep learning approach referred to as the learned digital back-propagation (LDBP) [21, 33–

35]. There, the neural network implements the "linear steps" of DBP as trainable general

linear functions with the deep learned parameters, similar to the layers of a convolutional
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neural network. This architecture leads to LDBP being able to learn the parameters of the

compensated link and being more cost-efficient than the classical DBP.

Also, the deep learned equalization of optical channel nonlinearities could be done by

"vanilla" deep learned neural network developed for other tasks. This approach was pioneered

in early 1990s, when neural networks were suggested for the nonlinearity equalization in

satellite communication links [36, 37]. A review and a comparative study of "vanilla" NN

application for channel nonlinear compensation was done in [38] and in the papers cited

in [38].

Another way of nonlinearity mitigation is digital pre-distortion (DPD), i.e., pre-compensation

of the link nonlinear signal distortion at the transmitter by pre-processing in the digital domain

the generated transmitted symbol sequence prior to sending it to the digital-to-analog conver-

tor. Typically, the DPD-based solutions address nonlinear distortions generated not only by

the optical channel, but also by the transmitter devices. The most popular classical approach

to nonlinear DPDs employs Volterra series. Nonlinear digital pre-distortion by Volterra series

was succesfully demonstated both in wireless [39–43] and coherent optical [44–49] links.

Deep learning application to nonlinear digital pre-distortion was pioneered in 1980s [50,

51]. Nowadays, on the wave of ever-increasing interest to neural networks (NNs), many deep

learned NN-based architectures were proposed for digital pre-distortion [52–60].

In wireless communication links, first, a memory-neglecting deep learned DPD based

on simple dense neural network was proposed in [54]. Next, more complex architectures

including the memory effects were proposed: time-delay [52, 55, 58], convolutional [56]

neural networks. Notably, residual neural networks [61], a record-breaking technique in

computer vision, were also succesfully applied to DPD in wireless links [53]. In [57], the

DPD compensating the nonlinear distortion of the whole transmitter was realized on the basis

of recurrent neural networks.

At the same time, the deep learned digital predistortion for coherent optical links is not

so developed yet as for wireless ones. There, deep learned dense neural networks were

suggested for memoryless digital pre-distortion of a Mach-Zehnder modulator [59] and

low-resolution digital-to-analog converter [62]. A model-based approach was taken in [63],

where the deep learned DPD based on Wiener-Hammerstein model was proposed. Finally a

practical dense-neural-network-based DPD solution was proposed [60]. The implementation

of this DPD led to the the transmission records being set for single-channel [60, 64] and

multi-channel dense-wavelength-division-multiplexed transmission [65] over 80 km single

mode fiber coherent optical links.

All the aforementioned deep learning solutions consider the optimization of only some of

the algorithms constituting the whole digital signal processing stack. Notably, the considered
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solutions focus on the DSP located either on the transmitter or receiver. Nonetheless, the

performance of an optical coherent communication link is defined by the joint operation of

the whole DSP. Therefore, the approach of designing and optimizing the communication

system on the basis of a separate consideration of each DSP block most likely leads to

sub-optimal overall performance of the link.

Meanwhile, a more holistic approach to deep learning the DSP, referred to as end-to-end

learning was recently proposed [66]. It utilizes the well-known wide nonlinear function

approximation capabilities of neural networks [9]. In this approach, first, the whole optical

communication link is modelled end-to-end from bits in to bits out as an artificial neural

network. In the resulting ANN-based communication links the parameters of DSP blocks

are left as the trainable blocks. Then, the parameters of all the link block are simultaneously

deep learned to optimize the overall performance of the whole communication links. Such

a comprehensive approach to the DSP design allows obtaining the link performance level

unreachable by a separate optimization of DSP blocks. The applications of end-to-end

learning are especially visible for the transmission schemes, where the set of optimal DSP

modular is not known or too computationally expensive to be implemented. The end-to-end

learning was first introduced for wireless communications [66–68]. Furthermore, there were

a lot of applications of end-to-end learning to the coherent communication links. The detailed

review of the end-to-end learning application to these links is given in Section 3.1 of this

thesis.

To conclude, the ever growing demand for the connectivity poses new challenges in the

design of the modern fiber-optic communication links. These challenges can be addressed

by the novel approaches to the digital signal processing based on deep learning algorithms.

The existing deep learning applications can be grouped around the three main usecases:

equalization, pre-distortion, and end-to-end learning.

1.2 Thesis outline

In this section we outline the structure of the remainder of the thesis.

Section 1.3 outlines the main principles of the deep learning. It starts from the description

of the tasks usually solved by machine learning, the class of algorithms to which deep

learning belongs. Next, the section outlines the main defining components of deep learning:

artificial neural networks and advanced calculation of gradients fed into the optimization.

Section 1.4 describes the performance metrics of a coherent optical communication and

the upper bounds on them. The section starts from outlining the principal scheme of a digital

communication system. Then, the section considers various estimations on the achievable
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information rate of a communication system: Shannon capacity, constrained capacity, and

generalized mutual information. The section continues with a more in-detail description of

forward error correction codes and modulation formats affecting the choice of performance

metrics and the overall performance of the link. The section concludes with the review of

practical ways to measure the performance of the link.

In the following parts of thesis, we describe our original research.

Chapter 2 describes the data aumgentation technique developed for reducing the complex-

ity of supervised learning the algorithms aimed at the equalization of channel nonlinearities in

a coherent fiber optic communication link. Data augmentation describes the set of techniques

aimed at enhancing the performance and reducing the training complexity of a supervised-

learnt algorithm by synthetically expanding the training dataset via diluting it with the

artificial data. The chapter starts from postulating Manakov equations, the model describing

the evolution of signal during its propagation over the fiber-optic communication link. Then,

the data augmentation technique is proposed, based on generating new synthetic solutions of

Manakov equations out of existing ones. Finally, the effect of proposed data augmentation

technique is demonstrated both numerically and in the experiment for several links and

nonlinearity compensation algorithms. First, the proposed data augmentation technique

singificantly improved the performance of the nonlinearity compensation algorithms when

trained on deficient data. Second, for nonlinearity equalizers trained on big enough dataset,

the data augmentation technique led to nearly twice reduction in the complexity of training.

Chapter 3 outlines the end-to-end learning algorithm for finding the optimal constellation

shaping of an arbitrary coherent optical communication link. The proposed algorithm

implements the simplified numerical model of the whole link from bits-in to bits-out. The

chapter starts from the description of how each of the communication link blocks, transmitter,

channel model, receiver, is implemented. The end-to-end algorithm description is concluded

with the loss functions: symbol-wise and bit-wise (generalized) mutual information and the

procedure for calculating the gradients used in their gradient-based optimization. The chapter

is concluded with the numerical demonstration of the performance gains by the proposed

end-to-end learning approach which managed to learn effective single- and multi-symbol

constellation shapings in both state-of-the-art single-span and long-haul coherent optical

communication links.

Finally, Chapter 4 concludes the thesis.
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1.3 Deep learning principles

In this section we describe in more detail the three main components of the deep learning:

artificial neural network (ANN) algorithms and the formulation of the task of ANN parameters

optimization, the gradient descent optimization methods used to train them, and the back-

propagation algorithm used to calculate the gradients used to run the training.

1.3.1 Types of machine learning tasks

Deep learning is a type of machine learning. Therefore, before going deep into the deep

learning specifics we first describe the problems which can be addressed by the machine

learning.

Machine learning can be defined a process of building and operating the methods able to

’learn’, in other words, to improve their performance on a set of tasks using some relevant

data. Usually, the learning process involves the algorithm recognizing and quantifying some

pattern in data [4]. The data used by the machine learning algorithm is referred to as the

training dataset.

Machine learning approaches are ususally categorized into the three main groups deped-

ning on the nature of the data used during training:

• Supervised learning.

• Unsupervised learning.

• Reinforcement learning.

In the supervised learning approach, the training dataset is comprised by the pre-known

set of inputs and desired outputs (labels), referred to as the labeled data. Supervised learning

is the most common flavor of machine learning. The biggest challenge of the supervised

learning is to create the algorithm with high generalizability on the unseen data, i.e. in

other words, which returns correct outputs when fed with the inputs from the data points not

included. We consider this problem in Chapter 2.

In the unsupervised learning approach, the objects of a training dataset have no desired

outputs, only inputs, by thus leaving the algorithm to find its own ways to organize the dataset

objects. Usually, unsupervised learning is done as a goal in itself to find some obscure pattern

in the training data, or a means of a feature engineering, i.e., preprocessing of the labeled

data before using it in the supervised learning. The end-to-end learning of a communication

link, a promising unsupervised learning method, is considered in Chapter 3.
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Finally, in the reinforcement learning approach, the algorithm generates it’s own training

dataset by interacting with the environment. The problem considered there is to find the set

of actions maximizing the reward in a particular context. The main question answered in the

design of a reinforcement learning algorithm is how to share the available resources between

exploration - trying out new types of actions in order to find how much gain they return, and

exploitation - making use of actions about which the system already knows that they provide

high returns. The applications of the reinforcement learning to optical communications are

beyond the scope of this thesis. We advise the interested reader to check the review [15] on

this topic.

1.3.2 Artificial neural networks

Originally, the artificial neural network concept was introduced in the 1940s as a simplified

imitation of the biological neural networks consitituting the human brain [69]. A typical

artificial neural network (ANN) is a sequence of interconnected layers - the groups of basic

processing elements, referred to as the artificial neurons.

In more detail, an artificial neural network can be understood as a set of interconnected

nodes named artificial neurons which roughly model the biological neurons from animal brain.

The connections between nodes are named edges. Every connection, similar to synapses

of a biological brain, transmits "signals" from one artificial neuron to another. Usually the

"signal" is a real-valued number and the connection applies some linear transformation

with the trainable parameters to the transmitted "signals". The parameters of these linear

transformations are referred to as weights. Artificial neurons generate the sent "signals" out

of the received ones by applying a point-wise nonlinear function to them. The nonlinear

fucntion is referred to as an activation function. Typically, the activation function is chosen

to make the artificial neuron behave as a gate, generating non-zero output "signals" only if

the sum of the input "signals" overcomes a particular limit. The intuitive visualization of the

ANN concept can be found in [70].

In the late 1980s it was mathematically proven that an artificial neural network, albeit of

an extremely big size, can be optimized to approximate an arbitrary nonlinear transformation

between the closed and bounded subsets of the of multi-dimensional real-valued vector space

R
Ĥ, i.e. an arbitrary practically important nonlinear function [71–74]. This statement is

referred to as the universal approximation theorem in the machine learning community.

1.3.2.1 Artificial neuron

In this section we bring a more mathematically rigorous definition of an artificial neuron.

It can be represented as a mapping of its real-valued inputs Įğ ∈ R, ğ = 1 . . . Ĥ to a single
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real-valued output į ∈ R done following the procedure

į = Ĝmodel(Į) = ĜĂ

(
Ĥ∑
ğ=1

ĭğĮğ + Ę
)
, (1.1)

where ĭğ ∈ R are weights, Ę is a free parameter referred to as bias, and ĜĂ is the activation

function. The choice of activation function is one of the most important in the artificial

neural network design since it defines the range of nonlinear approximation capabilities of

the resulting algorithm. There are several most popular activation function choices.

The first one is the logistic function which maps the real number range R = (−∞,∞) to

the interval (0,1)
ĜĂ (ī) =

1

1+ exp(−ī) . (1.2)

Logistic function is popular in the classification tasks, because it can map an arbitrary model

output to a probability range of an object belonging to a particular class. There exists

a multiple-input and multiple-output generalization of logistic function referred to as the

softmax

Ĝ
Ġ
Ă (ī1 . . . īĤ) =

exp(ī Ġ )∑Ĥ
ğ=1 exp(īğ)

. (1.3)

where Ĝ
Ġ
Ă , Ġ = 1 . . . Ĥ and ī Ġ , Ġ = 1 . . . Ĥ are, respectively, the softmax inputs and outputs.

Because of the notable properties of its outputs Ĝ Ġ ∈ (0,1), ∑Ĥ
Ġ=1 Ĝ Ġ = 1 softmax outputs can

be interpreted as a discrete probability distribution. For this reason, softmax is frequently

used in neural network architectures for multi-class classification.

Another popular option is hyperbolic tangent which maps real-valued input to a (−1,1)
range

ĜĂ (ī) = tahh(u) =
exp(ī) − exp(−ī)
exp(ī) + exp(−ī) . (1.4)

Both hyperbolic tangent and logistic function belong to the same class of so-called sigmoid

functions, the ones whose plot around ī = 0 resembles "S"-curve.

Finally, the most popular option [75] is rectified linear unit (ReLU), which nullifies

negative inputs and keeps the positive ones

ĜĂ (ī) = max(0, ī). (1.5)

Compared to the aforementioned sigmoid functions, ReLU has an advantage of being a much

simpler one. It is less computationally expensive to calculate and speed-up the training by

avoiding the problem of vanishing gradients, characteristic to sigmoid functions.
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Sometimes, a ’softer’ version of ReLU, referred to as a Leaky ReLU, is used, which

passes through negative values, albeit, with a small slope

ĜĂ (ī) =


ī, if ī g 0;

ġ ·ī, if ī < 0,
(1.6)

where ġ j 0. Leaky ReLU is popular in contexts where one wants to combine the simplicity

of ReLU with the ability to keep information about negative inputs too, for instance in

generative adversarial networks [76] and object detection networks [77].

1.3.2.2 Dense artificial neural network

Dense artificial neural network is the simplest yet already powerful ANN architecture. It

also known as a multilayer perceptron. It consists of interconnected layers of neurons. The

neurons in each layer have no connection with each other, but have an edge connection to

each of the layers of the preceding layer (or network inputs for the case of the first layer). In

a more mathematically rigorous way, an N-layer dense artificial neural network maps the

input real-valued vector x0 to the output vector xĈ via the following iterative procedure

xĢ = Ĝ ġĂ

(
WĢx

Ģ−1 +bĢ

)
, Ģ = 1, . . . , Ċ. (1.7)

Here ĮĢ ∈ RĚĢ and ĮĢ−1 ∈ RĚĢ−1 are, respectively, outputs of Ģ-th and (Ģ −1)-th layers of the

dense ANN, ĚĢ is the dimensionality of Ģ-th layer, ēĢ ∈ RĚĢ×ĚĢ−1 is Ģ-th layer weight matrix,

with bĢ ∈ RĚĢ and Ĝ ġĂ being its bias vector and activation function, correspondingly.

Nowadays, more sophisticated artificial neural network architectures were developed,

notably, convolutional, recurrent, residual ANNs [9] and transformers [78]. However, they

are not used in the following chapters, and, therefore, left beyond the scope of this thesis.

1.3.3 Learning procedure

Along with the aforementioned artificial neural networks, optimization techniques, tailoring

the parameters of ANN to the training datasets, are the integral part of the deep learning. In

this section, we will, first, describe the optimization objective; then, introduce the gradient

descent optimization techniques used to reach this goal, and, will conclude the section with

the description of the backpropagation algorithm used for the effective calculation of these

gradients.
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1.3.3.1 Optimisation goal. Loss function.

In machine learning the common practice is to formalize the goals of the training procedure

via a loss function L - a single overall quantitative measure of the quality of training, usually

a real-valued one L ∈ R. The loss function is defined in a way so that the desired solution

should minimize its value.

Now we’ll bring a more mathematically rigorous definition of loss function L. In the

following we focus on the case of training over a labeled dataset, considered in this thesis.

Let the training data D consist of the set of input vectors xğ = [Įğ,1, . . . , Įğ,Ĥ], Įğ, Ġ ∈ R and

the desired output vectors ydata
ğ

= [įğ,1, . . . , įğ,Ĥ], įğ, Ġ ∈ R, corresponding to each input xğ,

i.e., D =
[
{x1,y

data
1

}, . . . , {xĊ ,ydata
Ċ

}
]
. Next, we define the output predicted by the trained

algorithm for every dataset input as ymodel
ğ

= Ĝmodel(Įğ, ĉ). Obviously, the model predictions

depend also on its parameters ĉ. For instance, for dense artificial neural network Eq. (1.7)

the parameters are model weights and biases, i.e. ĉDNN = {W1, . . . ,WĈ ,b1, . . . ,bĈ}.
In terms of these notations, the loss function L can be defined as

L(ĉ,D) = 1

Ċ

Ċ∑
ğ=1

Ģ
(
ydata
ğ , Ĝmodel(xğ, ĉ)

)
(1.8)

where Ģ (ydata
ğ

,ymodel
ğ

) is per-example loss function, and Ċ is the training data cardinality. At

the same time, the task of training a deep learning model can be expressed as

ĉlearned = argmin
ĉ

L(ĉ,D), (1.9)

i.e. finding the set of model parameters ĉlearned minimizing the loss function L given the

training dataset D.

There are several popular loss functions [4, 79]. The supervised learning task is usually

subdivided into regression and classification tasks each having its own goals and, therefore,

requiring, its own loss functions.

For the regression task, the model is required to predict the continuous value correspond-

ing to the input. That mean that the desired outputs and hence model predictions are defined

as real-valued variables įdata
ğ, Ġ

, įmodel
ğ, Ġ

∈ R. The most popular loss functions for this case are

mean squared error (MSE) and mean absolute error (MAE).

The per-example loss function ĢMSE(ydata
ğ

,ymodel
ğ

) of the mean-squared absolute error is

defined as

ĢMSE(ydata
ğ ,ymodel

ğ ) =
(
ydata
ğ −ymodel

ğ

)2

(1.10)
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At the same time the per-example loss function ĢMAE(ydata
ğ

,ymodel
ğ

) of the mean-squared

absolute error is defined as

ĢMAE(ydata
ğ ,ymodel

ğ ) =
��ydata
ğ −ymodel

ğ

�� . (1.11)

Mean squared error is computationally simpler to optimize. Nonetheless, it is highly

sensitive to incorrect outliers present in the training data, i.e., the data points erroneously

having a big incorrect label value. Therefore, MAE is the preferred option when working

with noisy training dataset.

In the classification task the model predicts the probability of the object described by

training data input belonging to a particular class, or a group of classes. As a result, the

desired and predicted output values are defined as vectors of probabilities of the object

belonging to any of the range of classes, i.e. įdata
ğ, Ġ

, įmodel
ğ, Ġ

∈ (0,1). Furthermore, if single-class

classification is considered, the output should describe a discrete probability distribution and,

therefore, an additional condition is applied to answers that
∑Ĥ

Ġ=1 įğ, Ġ = 1, ∀ğ.
The most popular loss function for classification tasks is cross-entropy, also known as

log-loss, with the per-example loss function ĢCE defined as

ĢCE(ydata
ğ ,ymodel

ğ ) = −
Ĥ∑
Ġ=1

įdata
ğ, Ġ log

(
įmodel
ğ, Ġ

)
+

(
1− įdata

ğ, Ġ

)
log

(
1− įmodel

ğ, Ġ

)
. (1.12)

1.3.3.2 Gradient descent optimization method

Gradient descent (GD) is an iterative optimization technique for minimizing a function

using information about its gradients. Gradient descent is the de-facto stadard for training

deep learning solutions [9]. The technique was suggested in 1847 by Augustin Cauchy for

optimization of linear functions [80] and nearly a century later was extended for nonlinear

optimization problems by Haskell Curry [81].

The gradient descent method is based on utilizing the famous gradient property of pointing

in the direction opposite to the steepest descent of the function. The method assumes that

the optimized function is defined and differentiable in a neighbourhood of the considered

point. This condition is typically fulfilled during minimizing the loss function as part of the

artificial neural network training, with the notable exception of optimization of the mean

absolute error loss, which is non-differentiable at LMAE = 0 point.

In general, the gradient descent method proposes making small iterative steps in the

direction opposite to the gradient in order to find the set of variables minimizing the studied
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function. For a scalar function Ĝ (x) of a vector variable x ∈ RĤ the method can be stated as

xĪ+1 = xĪ −Ĉ
ą Ĝ (xĪ)
ąxĪ

, (1.13)

where ą Ĝ (xĪ)/ąxĪ is the gradient, Ĉ ∈ R is a learning rate - a hyper-parameter of a gradient

descent method. We expect the function value to descrease after every algorithm iteration

Ĝ (xĪ+1) < Ĝ (xĪ), the behavior is referred to as the convergence of a gradient descent. Eventu-

ally the gradient descent is expected to stop at a function minimum, where the gradient is

equal to zero. The choice of the learning rate values heavily affects the convergence - too

big Ĉ values prevent the algorithm convergence to the minimum, while too small Ĉ values

increase the number of iterations required to approach the function optimum.

In the context of deep learning, first, the optimized variable is a set of artificial network

parameters ĉ. Second, the gradient of a loss function over the ANN parameters ąL/ąĉ is

calculated over all the objects of the training dataset D. As a result, the gradient descent

algorithm for artificial neural network training takes shape

ĉĪ+1 = ĉĪ −Ĉ
1

|D|
∑

(x,ydata)∈D

ąĢ (ĉĪ ,x,ydata)
ąĉĪ

, (1.14)

where |D| is the cardinality of the training dataset, and Ģ (ĉĪ ,x,ydata) is the pre-sample loss

function introduced in the loss function definition Eq. (1.8).

A notorious flaw of the gradient descent optimization technique is that it converges to the

local minimum lim
Ī→∞

xĪ → xLM, i.e. the point where the function takes the minimum value in

some points neighbourhood O(xLM), i.e

xLM : Ĝ (xLM) f Ĝ (x) ∀x ∈ O(xLM) ∈ RĤ, (1.15)

instead of the desired global minimum point xGM, the smallest possible value reachable by

the optimized function overall.

Furthermore, the gradient descent algorithm might even not reach the local minimum.

The gradient value may reach zero and cause gradient descent to stop at a point where there

is no local minimum, notably, in a saddle point [9]. In practical deep learning, several

improvements to the gradient descent method were suggested in the context of deep learning

to improve the chances of it reaching a reasonably small loss function value. The two

most notable improvements of gradient descent - stochastic gradient descent and Adam

optimization algorithm, are considered in the two following Sections 1.3.3.2.1 and 1.3.3.2.2,
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respectively. For a more detailed description of the optimization methods used in deep

learning an interested reader is referred to [16].

1.3.3.2.1 Stochastic gradient descent

As noted in the previous section, to execute the vanilla gradient descent iteration Eq. (1.14)

gradient has to be averaged over the whole, typically large, training dataset D. This averaging

requires a lot of numerical resources, by thus, making the gradient descent algorithm compu-

tationally too expensive. A popular approach to reduce the complexity of a gradient descent

algorithm is to use a stochastic approximation [82] of a gradient during an optimization

algorithm iteration Eq. (1.8). The resulting algorithm is known as a stochastic gradient

descent (SGD) [9, 16, 83]. In more detail, for every iteration SGD calulates the gradient

using a small randomly selected sample of training data points D′ ¢ D, |D′| j |D|. This

subset is referred to as a mini-batch. The resulting algorithm can be formulated as

ĉĪ+1 = ĉĪ −Ĉ
1

|D′
Ī |

∑
(x,ydata)∈D′

Ī

ąĢ (ĉĪ ,x,ydata)
ąĉĪ

, D′
Ī ¢ D (1.16)

Notably, since the gradient calculation is approximate in SGD, even the convergence of this

algortihm to a local minimum of a loss function L is not guaranteed, compared to the vanilla

gradient descent Eq. (1.14). Nonetheless, the stochastic gradient descent, typically, finds the

set of ANN parameters ĉ resulting is a reasonably low value of a loss function [9].

The batch size |D′| is typically kept fixed during the algorithm execution and so consti-

tutes a hyper-parameter of the stochastic gradient descent algorithm. It is typically chosen

not too small to avoid introducing excessive noise in the stochastic gradient computation and

not too big to keep the SGD algorithm numerical complexity at a reasonable level.

1.3.3.2.2 Adaptive learning rates. Adam optimization algorithm

The choice of a learning rate (Ĉ in Eqs. (1.14, 1.16)) heavily affects the convergence rate

of a gradient descent optimization algorithm, and, therefore, constitutes another important

consideration in its design.

The first approach is to introduce into the training procedure the scheduler changing the

learning rate in course of the optimization procedure. These approaches are referred to as the

adaptive learning rate ones. The common intuition in there is that:

• In the beginning of the optimization, it is better to have bigger learning rate, when we

are far from the minimum and gradients are huge, to have higher speed of convergence.
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• At later stages of the optimization, it is better to decrease the learning rate to avoid

overshooting the minimum point.

Many particular heuristics varying the learning rate were proposed and are actively used

nowadays in deep learning algorithm training. An interested reader can find the description

of these heuristics in the documentation of the popular deep learning packages, namely,

PyTorch [84].

Another popular way to fine-tune the learning rates, is to set unique learning rate per

every ANN parameter. Since the number of parameters of a typical artificial neural network

is extremely big, such a precise tuning of learning rate can be done only via an automatic

algorithm.

Adam [85] (an acronym for adaptive moment estimation) is the most popular stochastic

gradient descent algorithm. The algorithm is based on customizing the learning rate computa-

tion per parameter. The intuition here is: if we consider the gradient descent as a ball running

down a slope, then Adam behaves like a heavy ball with friction, therefore, preferring ’flat’

minima in error surface [16, 86].

Mathematically speaking, first, Adam introduces the exponentially moving average of

mean čĪ and variance ĎĪ of gradient

čĪ+1 = ă1 · čĪ + (1− ă1) · ∇Ī

ĎĪ+1 = ă2 · ĎĪ + (1− ă1) · (∇Ī)2

∇Ī =
1

|D′
Ī |

∑
(x,ydata)∈D′

Ī

ąĢ (ĉĪ ,x,ydata)
ąĉĪ

, D′
Ī ¢ D

(1.17)

where ∇Ī is the stochastic estimation of gradient over mini-batch D′ from Eq. (1.16), and

(·)2 is point-wise squaring. After some bias corrections, čĪ+1 and ĎĪ+1 are used to calculate

an update of the artificial neural network parameters

ĉĪ+1 = ĉĪ −Ĉ · čĪ+1√
ĎĪ+1 + Ċ

, (1.18)

where Ċ j 1 is a regularization term added for the numerical stability.

Usually, practical deep learning solutions involve both ways of fine-tuning the learning

rate mentioned in this section: adaptive learning rate scheduling routes and Adam stochastic

gradient descent optimisation.
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1.3.3.3 Backpropagation

The speed of gradient calculation is the bottleneck defining the overall exectuion speed of

gradient descent optimization. In artificial neural network training this problem is addressed

by backpropagation - a simple and cost-effective algorithm for gradient computation [9,

18]. In this section we explain the algorithm on the example of a dense artificial neural

network. Nonetheless, generalizations of backpropagation algorithm exist for the other

classes of artificial neural networks. A great video full of intuitive animations illustrating the

backpropagation algorithm can be found there [87].

The backpropagation is based on the chain rule of calculating the derivatives of a function

cascade. The chain rule states that the derivative of the composition of two differentiable

functions ℎ(Į) = Ĝ (ĝ(Į)) can be calculated as

ąℎ

ąĮ
=
ą Ĝ

ąĝ
· ąĝ
ąĮ

. (1.19)

If the considered function can be represented as the recursive repeat of the same function

block ℎ = ĜĊ (ĮĊ , ĜĊ−1(ĮĊ−1 . . . Ĝ1(Į1))), one can utilize the already calculated and stored

gradients over the parameters of the later function iterations ąℎ/ąĮğ, ąℎ/ą Ĝğ−1 to calculate

the gradients over the parameters of earlier iterations, e.g. ąℎ/ąĮğ−1, ąℎ/ą Ĝğ−2 via chain

rule. The naive alternative - applying chain rule to calculate the gradients of each iteration

separately is computationally much costlier.

Let us now notice that the dense artificial neural network (DNN) Eq. (1.7) can be

represented as the aforementioned recursive application of the same functional block

xĈ
= ĜDNN(x0),

xĢ = Ĝ ĢĂ (sĢ), sĢ = WĢx
Ģ−1 +bĢ , for Ģ = 1,2, . . . , Ĉ,

(1.20)

where sĢ is the sum of the ’signals’ received by an artificial neuron plus its bias bĢ . To remind,

point-wise nonlinear activation fucntion Ĝ ĢĂ is applied to the sum of ’signals’ sĢ to calculate

the output of the ANN layer xl .

In these terms, the backpropagation can be described via the iterative algorithm 1. The

algorithm description uses the following vector notation of the chain rule. Let ℎ(y) be the

scalar function of a vector argument y ∈ RĤ which is itself mapped from another vector

x ∈ Rģ via a differentiable mapping y = ĝ(x). Then, the gradient of ℎ over x can be expressed

via
ąℎ

ąx
=

(
ąy

ąx

)Đ
ąℎ

ąy
(1.21)
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Algorithm 1: Backpropagation algorithm for calculation of the loss gradients over

parameters of dense artificial neural network

1 g ← ąL/ąxĈ // Initialize buffer with the gradient of loss w.r.t

the final DNN output

2 for Ģ = Ĉ, Ĉ−1, . . . ,1 do

/* Iterate starting from the final DNN layer */

3 ąL/ąsġ =
(
ąxġ/ąsġ

)Đ
g // Calculate gradients over input 'signal'

4 g ← ąL/ąsġ // Store these gradients

5 ąL/ąbġ = (ąsġ/ąbġ )Đ g = g // Calculate gradients over bias

6 ąL/ąWġ = (ąsġ/ąWġ )Đ g // Calculate gradients over weights

7 ąL/ąxġ−1 =
(
ąsġ/ąxġ−1

)Đ
g // Calculate gradients over the

previous layer output

8 g ← ąL/ąxġ−1 // Store these gradients

9 end

where

ąy

ąx
=

©«

ąį1

ąĮ1
. . .

ąį1

ąĮģ
...

. . .
...

ąįĤ
ąĮ1

. . .
ąįĤ
ąĮģ

ª®®®¬
(1.22)

is the Ĥ×ģ Jacobian matrix of the mapping ĝ : x → y, and the gradient of a scalar function

over a vector variable is defined as

ąℎ

ąx
=

[
ąℎ

ąĮ1

,
ąℎ

ąĮ2

, . . . ,
ąℎ

ąĮĤ

]
. (1.23)

The gradients of the loss over the artificial neural network parameters ąL/ąĉ = [ąL/ąW1, . . . ,

ąL/ąWĈ , . . . , ąL/ąb1, . . . , ąL/ąbĈ] obtained by the backpropagation algorithm are recorded

and fed into a gradient descent optimization algortihm.

There exist the generalization of backpropagation for all the conventional artificial neural

network algorithms [9]. In general, the backpropagation algorithm can be formulated for any

differentiable function which can be represented as an unidirectional computational graph.

This generalized backpropagation is implemented in modern deep learning computational

packages, e.g., in PyTorch [17]).
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Fig. 1.1 Principal scheme of a digital communication system.

1.4 Digital telecommunication system

Having introduced in the previous Section 1.3 the main components of the deep learning, in

this section we consider the basic digital telecommunication system and the key metrics of

its performance.

1.4.1 The general scheme of a digital telecommunication system

The main goal of a digital telecommunication system is to ensure the nearly error-free

information transmission via a given physical media undeterred by the signal distortions, both

deterministic and stochastic, arising in the media. The main functional blocks constituting

a digital communication link are given in Figure 1.1. Using this scheme, now we bring a

general description of how it operates.

Telecommunication starts with a digital source generating the stream of information bits

(’0’s and ’1’s) describing the transmitted message. Then, the generated bit stream undergoes

the so-called source encoding where the bit sequence is compressed to remove redundancy.

Source encoding decreases the transmission cost by reducing the number of bits needed to be

sent to transmit the required message. The bit sequence at the output of source encoder can

be safely assumed to be a sequence of independent and identically distributed (i.i.d.) bits.

Next, the compressed i.i.d. bit sequence is processed by a channel encoder, which increases

the robustness of the message transmission to link distortions by introducing the controlled

redundancy (i.e., more bits) into the transmitted bit sequence. The process of managing the

errors by injecting controlled redundancy is referred to as forward error correction (FEC).
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After FEC the resulting pre-processed bits are mapped to symbols drawn from a fixed

finite set referred to as a constellation alphabet. The constellation alphabet along with some

additional rules on the symbol choice, e.g., the symbol occurrence probability, is referred

to as the modulation format. The block converting the FEC-encoded bit sequence into the

symbol sequence is referred to as mapper. For a constellation alphabet of size ĉ , the number

of the bits carried per symbol is ģ f log2(ĉ). Notably, ģ = log2(ĉ) only in the case of

equiprobable symbols, i.e. when the occurence probabilitiy of each symbol in the transmitted

sequence are equal.

For example, let’s consider the constellation alphabet S of size |S| = ĉ defining the set of

symbols S = {ĩ1, ĩ2, . . . , ĩĉ} for the transmission using an equiprobable modulation format.

This case, the mapper will map each ģ encoded bits into a single symbol Įġ ∈ S resulting in

the transmitted bit sequence (Į1, Į2, . . . , Įġ , . . .), Įġ ∈ S.

Nowadays, the information is usually transmitted over a physical medium via electromag-

netic waves. Since electromagnetic waves are analogous, the discrete symbols produced by

the mapper have to be transformed to a stream of analogous time-limited states in a procedure

referred to as a pulse shaping. The choice of proper pulse shaping is similarly important

as of the modulation format. While the latter defines how much information can a single

symbol carry, the former one determines the time- and spectral- width of a pulse carrying the

single symbol, and, therefore, the upper limit on the pulse rate.

In addition to pulse shaping, the various types of pre-equalisation techniques, aimed

at mitigating the deterministic distortions arising in the link, are applied to the transmitted

symbol and pulse sequences. The current availability of high-resolution digital-to-analog

converters opens the way for implementing sophisticated pre-equalization algorithms aiming

at the signal distortions injected by both transceiver devices and physical media.

After pulse shaping and pre-equalisation, the signal is modulated onto the carrier and

transmitted from source to destination via a physical media, referred to as the physical

channel. In coherent optical communications, considered in this thesis, the signal is first

converted to an analogous electrical signal form by a digital-to-analog converter and then

carved out of a laser-generated continuous waveform radiation via an electro-optic I/Q-

modulator. Optical fiber is used as a physical channel there. At the destination, after the

physical channel the received electromagnetic waveform is converted back to the digital

domain. There, first, post-equalization digital signal processing algorithm stack is applied to

the received signal to filter the deterministic distortions out of it and obtain back a sequence

of discrete symbols y = (į1, į2, . . . , įġ , . . .).
The received filtered symbol sequence y is next processed by a channel decoder. There,

first, the demodulator maps each received symbol to a most likely transmitted bit sequence
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corresponding to it. Second, the forward error correction (FEC) decoder removes the

redundancy introduced during the FEC encoding from the received bit sequences.

Finally, source decoder restores the transmitted message by decompressing the received

bits.

Following the information theory notation, all the digital communication system blocks

between channel decoder and channel encoder are named communication channel. In other

words, these are all the communication link blocks working at the symbol level.

1.4.2 Estimations of achievable information rate

1.4.2.1 Shannon capacity

The channel capacity ÿ is the maximum information rate achievable in a given digital

communication system. It was formulated by Claude Shannon in his seminal paper [88]

in 1948. In other words, the information rate Ď at which a reliable communication can be

achieved, is smaller or equal to channel capacity, i.e., Ď f ÿ.

Statistical properties of the channel define its capacity. To illustrate this mechanism,

we further consider the simplest model of a communication channel - the additive white

Gaussian noise (AWGN) one. In this approach, the input and output of the channel are

connected as

ĕ = Ĕ + Ė. (1.24)

Here Ĕ,ĕ ∈ C are complex-valued variables representing, repspectively, the input and the

output symbols of the channel, while Ė =N
(
0,Ă2

AWGN

)
∈ C is the channel distortion repre-

sented by a complex-valued random Gaussian noise with zero mean and variance Ă2
AWGN

.

For this system, a Gaussian probabilistic distribution will define the conditional probability

of receiving a particular realization of output į ∈ C given the particular input symbol Į ∈ C
being sent into the channel

Ħĕ |Ĕ (į |Į) =
1

ÿĂ2
AWGN

exp

(
−|į− Į |2

Ă2
AWGN

)
. (1.25)

This conditional distribution Ħĕ |Ĕ (į |Į) defines the channel statistic properties and can be

used to estimate the capacity of the channel. For a given channel input and output, mutual

information (MI) ą estimates the maximum amount of information which can be sent over a
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channel [89]. It can be expressed as

ą (Ĕ,ĕ ) =
∬

ĚĮĚį ĦĔĕ (Į, į) · log2

(
Ħĕ |Ĕ (į |Į)
Ħĕ (į)

)
=

=

∬
ĚĮĚį ĦĔĕ (Į, į) · log2

(
ĦĔĕ (Į, į)

ĦĔ (Į) · Ħĕ (į)

)
,

(1.26)

where ĦĔĕ (Į, į) is the joint probability distribution and ĦĔ (Į), Ħĕ (Į) are marginal probability

density functions of, respectively, channel input Ĕ and output ĕ .

Let’s notice that the only variables in mutual information which the system designer is

able to control are the channel conditional distribution Ħĕ |Ĕ (į |Į) and the probability density

function of the channel input ĦĔ (Į). The joint probability distribution ĦĔĕ (Į, į) and the

marginal probability density function of the channel output Ħĕ (į) can be expressed from

them as
ĦĔĕ (Į, į) = Ħĕ |Ĕ (į |Į) · Ħ(Į),

Ħĕ (į) =
∫

ĚĮ Ħĕ |Ĕ (į |Į) · Ħ(Į).
(1.27)

In turn, the channel capacity can be introduced as the maximum of mutual information

over all possible input distributions ĦĔ (Į), provided the fixed channel conditional distribution

Ħĕ |Ĕ (į |Į), i.e.,

ÿ = max
ĦĔ

[ą (Ĕ,ĕ )] . (1.28)

In [88] Shannon proved that for an AWGN channel the following complex-valued Gaussian

input distribution maximizes the mutual information

ĦĔ (Į) =
1

ÿČ
exp

(
−|Į |2
Č

)
. (1.29)

where Č is the signal power. By substituting the optimal input probability distribution

Eq. (1.29) into the mutual information ą (Ĕ,ĕ ) definition Eq. (1.26) we obtain the following

famous formula of the channel capacity of an AWGN channel, also known as the Shannon

capacity

ÿ = log2 (1+SNR) , (1.30)

expressed in bits per channel used. Here SNR is the signal-to-noise ratio (SNR)

SNR =
Č

Ă2

, (1.31)
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in other words the ratio of average signal power Č to the variance of the signal distortion Ă2.

The channel capacity, therefore, expresses the maximum information rate achievable over

the AWGN channel with a given SNR value.

1.4.2.2 Constrained capacity

The definitions of the previous Section 1.4.2.1 were obtained in the assumption of input

Ĕ and output ĕ of the channel being defined as a continuous variable allowing the infinite

variants of inputs and outputs. Meanwhile, in practice, as mentioned in Section 1.4.1, the

input Ĕ is sampled from a discrete finite distribution referred to as a constellation alphabet.

The resulting upper limit on the information rate, corresponding to a finite input alphabet,

is referred to as the modulation constrained capacity and is lower than the Shannon one

Eq. (1.30).

Furthermore, the mutual information definition Eq. (1.26) developed for continuous inputs

has to be adapted to become applicable to the more realistic case of digital communication

system with discrete inputs. For a finite communication alphabet we have to estimate the

integral over all the possible input and output realizations in definition Eq. (1.26) via a

Monte-Carlo time averaging over a long enough transmitted symbol sequence of length

Ċ →∞

ą̃ (Ĕ,ĕ ) = 1

Ċ

Ċ∑
ġ=1

log2

(
Ħ(įġ |Įġ )∑

ĩ∈S Ħ(įġ |Į)ĦĔ (Į)

)
, (1.32)

where Įġ , įġ are, correspondingly the symbols transmitted and received at ġ-th timeslot,

and S is the constellation alphabet. This formula estimates the maximum information rate

achievable in a digital communication system with a given finite constellation S and set

of symbol occurence probability ĦĔ (Į) Į ∈ S. Nonetheless, to reach this limit, the FEC

coding scheme and mapping should be jointly designed, an approach referred to as the coded

modulation.

1.4.2.3 Generalized mutual information. Source entropy

The coded modulation approach results in rather complex systems, therefore, in practical

digital communication links a simpler alternative is usually employed - bit-interleaved coded

modulation (BICM) scheme.

Bit-interleaved coded modulation (BICM) systems employ a more flexible design with

a separate forward error correction (FEC) encoder and mapper. BICM scheme has several

important details. First, the bits at the output of FEC encoder are interleaved to spread

possible burst errors affecting a group of neighbouring bits over the whole bit sequence.
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Second, at the receiver side, the information about the received bit is communicated from

demapper to the FEC decoder via soft bits - a posteriori probabilities of bit values or their

logits.

Usually, the implementation of bit-interleaved coded modulation scheme causes only

minor capacity losses compared to the full coded modulation scheme, if mapping uses Gray

code [90], the so-called Gray mapping. Gray mapping is designed in a way that confusing

the received constellation symbol with a neighboring one results in a single bit error.

Thanks to bit-interleaving, one can consider a bit-interleaved coded modulation system as

separated into ģ parallel independent memoryless binary channels. The maximum achievable

information rate in BICM system is typically referred to as generalized mutual information

(GMI) and defined as [91, 92]

GMI ≈ Ą (Ĕ) − 1

Ċ

Ċ∑
ġ=1

ģ∑
ğ=1

log2

( ∑
Į∈S ħĔ |ĕ (įğ |Į)ĦĔ (Į)∑
Į∈S+ ħĕ |Ĕ (įğ |Į)ĦĔ (Į)

)
, (1.33)

Here ħĕ |Ĕ is the approximation of the actual channel conditional probability distribution Ħĕ |Ĕ
used by demapper to produce the soft bit estimations, S is the constellation alphabet, and

S+ ¢ S is the subset of all alphabet symbols, which have the same value of the ğ-th bit similar

to the bit label of the ġ-th transmitted symbol, and Ą (Ĕ) is the source entropy. It describes

the amount of information carried by a single transmitted symbol in a given modulation

format, in other words. By thus, source entropy Ą (Ĕ) defines the upper limit on information

rate achievable in the link implementing the given modulation format. Source entropy is

expressed as

Ą (Ĕ) = −
∑
Į∈S

ĦĔ (Į) · log2 (ĦĔ (Į)) . (1.34)

Notably, Ą (Ĕ) reaches maximum when the modulation format is equiprobable, i.e., when

ĦĔ (Į) = 1/ĉ,∀Į ∈ S with ĉ = |S| being the constellation alphabet size. This case, source

entropy acquires its maximum value

argmax
Ĕ,ĦĔ

Ą (Ĕ) = log2(ĉ). (1.35)

1.4.3 Forward error correction codes

To remind, the main purpose of forward error correction codes to make the transmitted bit

sequence robust to distortions by adding redundancy to it. At the receiver, FEC decoder uses

this redundancy to recover the original information-bearing bit sequence near error-free. The
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important FEC parameter - code rate is defined by

Ĩę =
ćę

Ċę

, (1.36)

where ćę and Ċę are the sizes of the processed block of bits before and after the FEC

encoding, correspondingly. In other words, FEC encoder takes the blocks of ćę bits and

injects Ċę −ćę into each of them. Also, we can define the FEC overhead by

ċĄ =
Ċę −ćę

ćę

=
1− Ĩę

Ĩę
. (1.37)

The Shannon capacity and the GMI Eq. (1.33) are defined in an assumption of an ideal

forward error correction code used with the infinite block length Ċę →∞. Application of a

practical FEC code with finite block lengths causes the information rate in the system to go

below the aforementioned achievable information rate estimations.

The performance of a digital telecommunication system is often quantified via the bit-

error-rate (BER), a ratio of the number of erroneously received bits to the number of all the

transmitted ones. The efficacy of a forward error correction coding scheme is, therefore,

often evaluated via a coding gain metric, a difference of signal-to-noise ratios required for

the system to reach a desired bit-error-ratio level with and without forward error correction.

Typically, optical communication systems, considered in this thesis, require bit-error-rates

(BER) no more than 10−15.

There exist a lot of different forward error correction coding schemes: Reed-Solomon

codes, Hamming codes, Bose–Chaudhuri–Hocquenghem (BCH) codes, turbo codes, low-

density parity check (LDPC) codes, et al. Nowadays, low density parity check codes

with coding overhead ċĄ ≈ 20% are the common choice for the state-of-the-art coherent

optical transmission systems with the transmission rate beyond 100 GB/s per channel.

Spatially coupled low-density parity check codes, a new flavor of LDPC codes is becoming

increasingly more popular nowadays with enables capacity reaching performance in the links

at a reasonable complexity costs.

Although forward error correction is not the main topic of this thesis, we refer an

interested reader to [93] for the comprehensive review of forward error correction applications

to coherent optical communications.

1.4.4 Modulation format. Constellation shaping

In coherent optical communication systems the information is encoded onto the amplitude

and phase of the propagated wave packets. As a result, constellation alphabet S, i.e., the set
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of all possible transmitted symbols, for this type of systems can be represented as a set of

complex-valued numbers ĩġ ∈ S ∈ C. The real and imaginary components of a constellation

symbol are referred to as the in-phase (I) and quadrature (Q) components that are usually

modulated using separate digital-to-analog converters. The constellation diagrams, i.e.

the figures plotting the real Re(Į) and imaginary parts Im(Į) for all the symbols of the

constellation alphabets Į ∈ S are given in Figure 1.2.

Remind ourselves that modulation format in addition to constellation alphabet includes

the discrete probability distribution of each of the symbols being transmitted ĦĔ (Į),∀Į ∈ S.

Various modulation formats were suggested for coherent optical communications.

In coherent optical communication systems the baseline conventional family of modula-

tion formats is equiprobable quadrature amplitude modulation (QAM). Symbols in QAM

constellations are defined on the square grid

ĩ = ė + Ę · ğ; ė, Ę ∈ [−1,1,−3,3, . . . ,±2ġ +1, . . .], ∀ĩ ∈ SQAM, (1.38)

with ğ being the imaginary unit, to simplify sampling of these symbols via low-resolution

digital-to-analog converters. The particular QAM constellations differ in the number of

symbols they include, with the constellation names explicitly including this number as ĉ-

QAM, where ĉ is the number of symbols in the alphabet referred to as the constellation

order, e.g., 16QAM. QAM constellation with ĉ = 4, depicted on Figure 1.2a, is the notable

exception being referred to as the quadrature phase-shift keying (QPSK), since all the symbols

there have the same amplitude. In practice, QAM constellations with symbol numbers equal

to the natural powers of two ĉ = 2ģ,ģ ∈ N are only used, to simplify mapping by making

each symbol to carry an integer number of bits ģ = log2(ĉ), e.g. 16QAM (Figure 1.2b),

32QAM (Figure 1.2c), 64QAM (Figure 1.2d), et al. Furthermore, the preference is given to

the constellations carrying the number of bits divisible by two ģ mod 2 = 0, since they can

be represented via a square grid which effectively uses the resolution of digital-to-analog

converters.

The choice of the appropriate QAM constellation is about finding a balance. On the

one hand, obviously, using QAM constellations with higher order is preferential, because,

it can improve the information rate of the system by increasing the amount of information

we pack in each symbol, Ą (Ĕ) from the definition of generalized mutual information (GMI)

Eq. (1.33). On the other hand, for the link with a fixed average power level and the transmitter

resolution, the higher order constellations are more susceptible to the distortions arising in

the link, because of more tightly packed constellation points. This affects the second term in

GMI Eq. (1.33) via a channel probability distribution ħĕ |Ĕ .
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(a) QPSK (b) 16QAM (c) 32QAM

(d) 64QAM (e) PAS-64QAM (f) 64APSK

Fig. 1.2 Constellation diagrams illustrating the constellation alphabets S described in Sec-

tion 1.4.4: quadrature phase shift keying (QPSK), 16-, 32-, and 64-symbol quadrature

amplitude modulation (16QAM, 32QAM, 64QAM), 64-symbol probabilistic amplitude shap-

ing (PAS-64QAM), and 64-symbol amplitude phase-shift keying. The size of each marker is

proportional to the occurrence probability ĦĔ of the corresponding symbol.

A detailed study of the dependence of the achievable information rate on signal-to-noise

ratio in the link for various QAM constellation formats was done in [89]. Notably, this study

highlighted that, counterintuitively, at low signal-to-noise ratio, lower order constellations

can lead to better information rates overall.

Nonetheless, the conventional quadrature amplitude modulation formats, even with the

fine-tuned constellation order, are suboptimal and lead to the information rates considerably

lower than the Shannon capacity Eq. (1.30). Gaussian-like modulation formats were pro-

posed for reaching the Shannon capacity. In this approach, the finite constellation alphabet is

shaped to make the symbol distribution to approach the optimal continuous Gaussian distri-

bution Eq. (1.29), via a technique named constellation shaping (CS). First, the shaping can

be done by rearranging the equiprobable alphabet symbols to make their spatial distribution

to appear like Gaussian, the method referred to as the geometrical constellation shaping
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(GCS). Second, the QAM constellation points can be drawn non-uniformly according to a

discrete propability distribution approaching the Gaussian one - the technique known as the

probabilistic constellation shaping (PCS). Finally, probabilistic and geometric shapings can

be combined to better approach the Gaussian - the method referred to as the hybrid constel-

lation shaping. Although constellation shaping is well known in the general information

theory [94, 95], it was introduced for coherent optical communication theory only recently,

where it was shown to considerably outperform the conventional QAM formats [92, 96–102].

A notable example of practical geometric constellation shaping in coherent optical

communications was proposed in [102]. It combined amplitude phase shift keying (APSK),

assembling the constellation alphabet of several rings with uniformly distributed symbols, an

approach well known on satellite communication, with Gray coding. In [100], a 64-symbol

amplitude phase-shift keying (64APSK), depicted on Figure 1.2f, was applied for long-haul

6000 km coherent fiber-optic transmission, where it outperformed the convetional 64QAM.

A practical implementation of probabilistic constellation shaping based on QAM con-

stellation was recently proposed in [103]. This method was later referred to as probabilistic

amplitude shaping (PAS). In this approach, the locations of original QAM symbols re-

main intact, while the probability mass function is defined following a Maxwell-Boltzmann

distribution with a parameter Ď f 0 as

ĦĔ (Į) =
exp(−Ď |Į |2)∑
Į∈S exp(−Ď |Į |2)

. (1.39)

The parameter Ď can be optimized to modify the source distribution and, by thus, to maximize

the achievable information rate for a given signal-to-noise ratio present in the link. In general,

the probabilistic shaping of a QAM constellation with the probablility distribution Eq. 1.39

is referred to as the Maxwell-Boltzmann shaping.

Another notable feature of the PAS approach is that imposing the probabilistic mass

function onto the constellation symbols is done by a separate block referred to as the

distribution matcher (DM). At the transmitter, the distribution matcher is applied to a bit

sequence before the FEC encoder. Accordingly, at the receiver, the inverse DM is applied

after the forward error correction code decoder. The design of a distribution matcher is a

complex topic and is beyond the scope of this thesis.

The probabilistic amplitude shaping approach to PCS have two notable advantages.

First, it uses the conventional QAM constellations, which are desirable thanks to their

overall simplicity leading to easiness of implementation via low-resolution transceivers, and

for which a cost-effective bit-interleaved coded modulation scheme can be implemented

with low cost via Gray mapping. Second, the separation of FEC encoder and distribution
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matcher allows finer rate adaptation, leading to overall higher information rates [96]. Notably,

in [101] it was shown that for 64-symbol transmission over 6600 km probabilistic amplitude

shaping outperformed the amplitude phase shift keying one, while at the same time showing

higher tolerance to phase noise and frequency offsets, leading to lower implementation

penalties [104]. Because of these advantages, the probabilistic amplitude shaping has

become the most important constellation shaping technique.

Unfortunately, the AWGN channel model considered in the previous discussions, is a

significant oversimplification of the actual distortion introduced by the fiber-optic commu-

nication link. In reality, because of nonlinear distortions present in the link, the distortion

injected into the transmitted signal depends on its properties. In general, this dependence is

described as enhanced Gaussian noise (EGN) model [105, 106] which models the nonlinear

distortion as a constellation dependent noise. Nonlinearity-aware shaping is an important

research topic, with some solutions already being implemented in the recent coherent optical

telecomunication products, e.g., by Ciena [107] and Infinera [108]. This topic is covered in

Chapter 3 of this thesis.

1.4.5 Performance metrics of a digital communication system

Despite the bit-error rate of the bit sequence after forward error correction decoder (post-FEC

BER) being one of the most important performance metrics of a digital communication

system, it is almost impossible to estimate it directly in practice. With the required post-FEC

BER < 10−15, it takes too long to send enough bits over the link to measure it.

Thankfully, the two approaches were suggested to estimate the post-FEC BER indirectly

via the other metrics. The first one is FEC limit - the bit-error rate before the FEC decoder

required to ensure that post-FEC BER is lower than 10−15. This approach works well with

the hard-decision forward error correction codes (HD-FEC), operating on the demapped

bit sequence of 0s and 1s, however, it is less accurate when applied to the soft-decision

forward error correction code (SD-FEC) decoder, operating on soft bits, i.e. the estimated

probabilities of ’1’s being transmitted in each of received bit slots [109]. When an SD-

FEC is used, generalized mutual information (GMI) Eq. (1.33) and mutual information

(MI) Eq. (1.32) provide better post-FEC BER estimations for, respectively, bit-interleaved

coded modulation and coded modulation systems. It this thesis, we focus on the three

aforementioned metrics - pre-FEC BER, MI, GMI.

While we already described the MI and GMI estimation process in the previous section,

we now focus on pre-FEC BER calculation. The pre-FEC BER can be estimated from the se-

qences of transmitted x = [Į1, Į2, . . . , Įġ , . . .] and the received symbols y = [į1, į2, . . . , Įġ , . . .]
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as

BER =
1

Ċ ·ģ

Ċ∑
ġ=1

ĚHamming (M[Įġ ],M[Į̃ġ ]) . (1.40)

Here Ċ is the symbol sequence length, ģ is the number of bits per symbol, M[·] is mapping

of the symbols to corresponding bit labels, ĚHamming is the Hamming distance between the

two bit sequences, and Į̃ġ is the ġ-th hard-decided symbol.

Į̃ġ = argmin
Į∈S

[|įġ − Į |2] (1.41)

with S being the constellation alphabet.

Sometimes, bit-error rate is converted to the performance metric named č2-factor ex-

pressed in decibels, defined as

č2
= 20log10

(√
2 · erfc−1(2∗BER)

)
(1.42)

where erfc−1(·) is the inverse complimentary error function.

Another popular metric of a digital communication system is signal-to-noise ratio (SNR)

Eq. 1.31 - the ratio of the average signal power to the signal distortion variance. This metric

directly quantifies the signal distortions, and, therefore, does not depend on the choice of

modulation format and modulation scheme like the aforementioned pre-FEC BER, MI, GMI.

In state-of-the-art long-haul high-baudrate fiber-optic communication links all the distortions

arising in the channel can be well approximated via a Gaussian noise [105], which makes

the signal-to-noise ratio, estimating the variance of the an effective metric for estimating the

nonlinear distortions. SNR can be estimated from the sequences of received y and transmitted

x symbols via

�SNR =

[
(x,x)2(y,y)2

(x,y)2
−1

]
(1.43)

where (a,b) = ∑Ċ
ğ=1 ėğĘ

∗
ğ , a,b ∈ CĊ is a dot product of complex-valued vectors.
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Chapter 2

Data augmentation for nonlinearity

compensation algorithms in coherent

optical communications

2.1 Introduction

The fiber Kerr nonlinearity is often considered as one of the major limiting factors affecting

the performance of modern optical communication systems [89]. Nonlinear signal dis-

tortions restrict the possibility to mitigate the detrimental impact of random noise on the

data transmission quality by merely increasing the optical signal power, in contrast to the

linear channels. Several approaches have been proposed and studied for the digital Kerr

nonlinearity compensation (NLC) at the receiver and transmitter [110–112]. An important

group of those constitute the supervised-learnt nonlinearity compensation (SL-NLC) algo-

rithms which estimate the system parameters required for the compensation by analysing

the pre-collected training datasets formed by pairs of known transmitted patterns and the

corresponding received signals [4]. The key features of SL-NLC algorithms are: (i) relaxing

the requirement of a priori knowledge of the channel parameters, and (ii) their capability

to automatically adapt themselves to the changes in the link by re-training on the newly

collected dataset. Importantly, these algorithms include not only the emerging machine

learning (ML) based techniques covered in reviews [15, 25, 113], notably, [34, 114–117], but

also more conventional approaches like the adaptive perturbative post-distortion (PPD) [118].

The training of SL-NLC algorithms can consume considerable time and computational

resources [34, 119, 120], which leads to inevitable challenges in practical implementation of

such methods. As a matter of fact, currently, the training stage of the SL-NLC algorithms
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is typically executed offline using the separately collected transmission data [34, 120], and

the training complexity is proportional to the size of the dataset used [119]. Therefore,

decreasing the size of this dataset, under the condition of keeping the same performance

level, allows us to reduce the numerical complexity of the training stage.

Apart from the numerical complexity issues, the size of the required training dataset may

impact the overall performance of a communication system. The transmission of known

signal patterns during collection of large training datasets increases the redundancy in the

system and reduces the amount of available information that it carried. Further, when flexible

routing is used or if the parameters of communication system evolve fast, the frequent

recollection of large datasets needed for SL-NLC re-training can effectively reduce the

overall capacity of the link. Besides this, the required dataset may be too large to fit into the

limited memory resources.

Nonetheless, the naive decimation of the training dataset may lead it to the loss of accuracy

in representing the ensemble of real world objects (e.g., sequences of quadrature-amplitude

modulated (QAM) symbols) [4, 119]. This typically manifests itself in overfitting, i.e. the

trained model performing poorly on the real-world data while showing satisfactory results on

the training one. Therefore, it is desirable to have the possibility to reduce the required dataset

in a flexible manner without causing a substantial drop in the performance or, alternatively,

to improve the performance by using the same dataset. One of the techniques used in ML

to efficiently address the overfitting issue is data augmentation (DA) – the expansion of the

dataset by adding the synthetically generated new training objects. The new objects can be

generated in many ways depending on the dataset structure. For example, in computer vision,

the simple transformations of the images (e.g., mirroring, rotation, cropping) are widely

used to expand incomplete training datasets [121]. In optical communications, the DA has

been recently considered in network scenario for predicting failures [122, 123] and traffic

peculiarities [124, 125]. The aforementioned network applications suggested new object

generation by graph-adversarial networks (GANs) [123–125] utilising the heuristics [122].

It is worth noting, that training supervised learnt algorithms for every particular task requires

a unique dataset structure, and, hence, a unique data augmentation procedure. Therefore,

aforementioned data augmentation techniques from the networking layer are not applicable

to signal distortion mitigation in the physical layer of optical communications, considered in

this article.

In this work, we propose the DA technique for improving the training of SL-NLC

algorithms. To the best of our knowledge, this is the first time that a DA technique has been

proposed for nonlinear distortions’ compensation in fiber-optic communication systems. We

show that the suggested DA technique may improve the system performance in two different
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contexts. The first case is when we have an insufficient amount of training data leading to

poor performance of SL-NLC. As mentioned before, the maximum size of the available

dataset can be bounded by capacity and memory limits. In this case, the DA can enable

the SL-NLC algorithm to reach the same level of performance as if it was trained with a

much larger dataset. The second case is when a dataset is large enough to enable the optimal

SL-NLC performance. Here, the DA can be used to shrink an available dataset, by thus,

reducing also the overall numerical cost of algorithm training while preserving a similar

performance level.

We have studied the effect and benefit of the proposed DA both numerically and ex-

perimentally. For generality, we considered different types of systems numerically and

experimentally. In numerical study, we focused on the case of the more idealized link with

the optical intra-channel nonlinearity being the only source of nonlinear distortion. In the

numerical modeling, in order to demonstrate the generality of the approach, we have shown

the effect of DA on two dissimilar SL-NLC algorithms (see Figure 2.2) when considering

several testcases. For clarity, only the channel-induced distortions described by the Manakov

equations (2.1) were enabled in the numerical simulations. For the considered testcases,

we show that the DA leads to the same performance as when using 4× – 6× larger datasets

(see Figure 2.4). Moreover, in the case of a large enough dataset, the DA enabled reducing

the numerical complexity by 2× while still leading to the same system performance (see

Figure 2.5). Meanwhile, in the experimental study we applied the DA to a realistic link where

the distortions caused by transceiver device nonlinearities were also present. In the experi-

ment we considered a field trial of a metro coherent-detection system employing a low-cost

transceiver (i.e., with considerable transceiver-induced impairments). In the experiment, the

DA enabled reducing the training dataset by 4× while keeping the same NLC performance

of the case without it (see Figure 2.7).

This Chapter is based on the original published contribution [126]. Also, original

unpublished material is included.

The remainder of the chapter is organized as follows. In Sec. 2.2 we introduce the data

augmentation procedure and illustrate how it can be implemented in a Kerr nonlinearity

equaliser (NLE) based on SL-NLC. Sec. 2.3 describes the SL-NLC algorithms considered in

this work and the testcases evaluated in the numerical simulations. In Sec. 2.4 we describe

the obtained numerical results, while Sec. 2.5 describes the experimental study. Finally,

Sec. 2.6 outlines the main conclusions of the chapter.
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2.2 Data augmentation mechanism

To demonstrate the proposed technique, we consider, without loss of generality, the Manakov

equations describing the practical case of the evolution of a dual-polarization light envelope

during propagation down a fiber-optic communication link. Within certain limits, we write

these equations as [89]:

ĉīℎ/Ĭ
ĉİ

=
ă (İ)

2
īℎ/Ĭ − ğ

ă2(İ)
2

ĉ2īℎ/Ĭ

ĉĪ2
+ ğ8Ą(İ)

9
( |īℎ |2+|īĬ |2)īℎ/Ĭ + ď (İ, Ī). (2.1)

Here īℎ (İ, Ī) and īĬ (İ, Ī) are, respectively, the horizontal (ℎ) and vertical (Ĭ) polarizations of

the two-component optical signal waveform ī(İ, Ī); ă2(İ) is the group velocity dispersion

(GVD) coefficient; Ą(İ) is the effective nonlinear coefficient; ă (İ) = −Ă(İ) +∑ĊOA

ģ=1
�ģą(İ− Ĉģ)

stands for the optical power loss Ă(İ) fully compensated by the lumped optical amplifiers

(OAs) with gain �ģ situated at Ĉģ positions in the end of every fiber span (the summation

runs over the span number ģ), and ď (İ, Ī) is the amplified spontaneous emission (ASE) noise

injected by OAs, which is modelled as additive white Gaussian noise (AWGN) added at each

amplification point.

Let us now define a solution of Manakov equations Eq. (2.1) through the pair of functions

corresponding to the channel input and output: {īℎ/Ĭ (0, Ī), īℎ/Ĭ (İ, Ī)}. Several transformations

can be used to construct new solutions of Eq. (2.1) starting from the existing ones without

solving the equation again. The simplest solution-generating transformations, considered

further in this paper, are listed in Table 2.1. One can check their validity by substituting the

generated solutions into Eq. (2.1).

In essence, the NLC algorithms aim at predicting the transmitted signal īℎ/Ĭ (0, Ī) given the

information about the received one īℎ/Ĭ (İ, Ī) by reverting the deterministic nonlinear propaga-

tion effects introduced by the channel. Therefore, the training dataset of the supervised-learnt

nonlinearity compensation (SL-NLC) algorithms is formed by the sampled input-output

pairs {īℎ/Ĭ (0, Ī), īℎ/Ĭ (İ, Ī)} and/or the features derived from them. A larger and more diverse

dataset usually leads to the better performance of a supervised-learnt algorithm. This is be-

cause the expanded dataset represents more accurately the multitude of all possible received

signals [119] and, hence, enables the algorithm to learn more accurately the approximation of

the inverse channel. Nonetheless, when the dataset is large and diverse, the further increase

of its size leads to negligible or even no performance improvement.

We propose to use the transformations given in Table 2.1 and depicted in Figure 2.1

for synthetically expanding the training dataset of the SL-NLC algorithm. The synthetic

expansion of the data is referred to as the data augmentation (DA) in the general ML context.
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We implement the DA in a way that preserves memory, therefore eliminating the need to

remember all the synthetic data. For every training epoch (i.e., single pass of the algorithm

optimizer over the dataset during training) we generate the unique training dataset by taking

the pre-collected original one and applying the transformations from Table 2.1 to a randomly

picked part of its objects. As a result, every training epoch is done on a new dataset made up

from original and artificial objects, unlike the conventional training approach which uses a

fixed original dataset. The augmented dataset size is kept constant during all epochs.

(a) Continuous phase shift �ącont. (b) Discrete phase shift �ądisc.

(c) Time-inversion Īinv. (d) Polarization swapping Ą/Ēswap.

Fig. 2.1 The scheme of the transformations generating the new solutions of Manakov Eq. (2.1)

out of the existing ones. The more rigorous description of the transformations is given in

Table 2.1.

The procedure describing in more details the training of SL-NLC algorithm with the

augmented dataset is presented in pseudocode Algorithm 2. Furthermore, we have published

the Python code implementing it on [127]. We assume that every dataset object consists

of the desired transmitted symbol of interest (SOI) in both polarizations ĄTX, ĒTX and the

input vector containing features like the received symbol sequence Ą̄, Ē̄ centered around
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Transformation name Symbol Mathematical formulation

Continuous phase shift �ącont {ī̄ℎ/Ĭ (0, Ī), ī̄ℎ/Ĭ (İ, Ī)} → {ī̄ℎ/Ĭ (0, Ī) ··· expğą, ī̄ℎ/Ĭ (İ, Ī) ··· expğą}
Discrete phase shift �ądisc {īℎ/Ĭ (0, Ī), īℎ/Ĭ (İ, Ī)} → {ī̄ℎ/Ĭ (0, Ī) · expğą, ī̄ℎ/Ĭ (İ, Ī) · expğą}

Time-inversion Īinv {ī̄ℎ/Ĭ (0, Ī), īℎ/Ĭ (İ, Ī)} → {ī̄ℎ/Ĭ (0,−−−ĪĪĪ), īℎ/Ĭ (İ,−−−ĪĪĪ)}
Polarization swapping Ą/Ēswap {īℎ/Ĭ (0, Ī), īℎ/Ĭ (İ, Ī)} → {īĬĬĬ´́́ℎℎℎ (0, Ī), īĬĬĬ´́́ℎℎℎ (İ, Ī)}

Table 2.1 Transformations generating the new solutions of Manakov Eq. (2.1) out of the

existing ones. These transformations can be used to synthetically expand the training dataset

in data augmentation.

SOI Ą0,Ē0, i.e., Ą̄ = {Ą−Ĥ, ..., Ą−1, Ą0, Ą1, ..., ĄĤ}. For continuous (�ącont) and discrete

(�ądisc) phase shift, the unique phase rotation randomly chosen from, respectively, [0,2ÿ) or

{0, ÿ/2, ÿ,3ÿ/2} is applied to each object in the dataset. In the case of time-inversion (Īinv)

and polarization swapping (Ą/Ēswap), the transformation is applied to a randomly chosen

half of training objects to get a higher variability in data. The time-inversion Īinv is obtained

by reversing the order of elements in the input feature vector Ą Ġ ,Ē Ġ → Ą− Ġ ,Ē− Ġ ∀ Ġ . The

polarisation swapping is done by exchanging ℎ- and Ĭ- polarisation components in the

received sequences Ą̄´Ē̄ and the transmitted SOIs ĄTX´ĒTX. To apply DA to the other

features derived from the received signal Ą̄, Ē̄ , like nonlinear perturbation terms (NPTs)

(see Eq. (2.4)), one can, first, apply transformations to the received signal Ą̄, Ē̄ and, then,

generate the needed features out of the augmented signal, or find analytically the effect of

transformations on the features and directly apply it for feature augmentation.

Moreover, DA can combine several transformations from Table 2.1, leading to the better

NLC performance caused by stronger data versatility. For instance, in Sec. 2.4 we consider

the augmentation based on the combination of discrete phase shift, time-inversion and

polarization swapping: (�ądisc + Īinv +Ą/Ēswap) and show that it significantly outperforms the

augmentations based on just a single transformation (Figure 2.4).
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Algorithm 2: Training of an SL-NLC algorithm implementing the suggested data

augmentation.

Input: A randomly initialised SL-NLC algorithm (model); a training dataset

(dataset) formed by the objects (object) each consisting of: a transmitted

symbol of interest (SOI) (ĄĐĔ ,ĒĐĔ) and received soft-symbol sequences

centered around SOI (Ą̄,Ē̄)

Output: The trained SL-NLC algoritm model

1 for every epoch do

2 for object in dataset do

3 if �ącont-based augmentation is applied then

4 choose random �ą on interval [0,2ÿ)
5 object ← object × exp(ğ�ą)
6 end

7 if �ądisc-based augmentation is applied then

8 choose �ą randomly from set {0, ÿ/2, ÿ,3ÿ/2}
9 object ← object × exp(ğ�ą)

10 end

11 Ą̄,Ē̄ ,ĄTX,ĒTX ← object

12 if Īinv-based augmentation is applied then

13 choose T randomly from set {True, False}

14 if T then

// Invert the time order of received signal

15 Ą̄ ← Ą̄ flipped around SOI Ą0

16 Ē̄ ← Ē̄ flipped around SOI Ē0

17 end

18 end

19 if Ą/Ēswap-based augmentation is applied then

20 choose P randomly from set {True, False}

21 if P then

// swap h and v polarizations

22 Ą̄ ´ Ē̄ // in received signal

23 ĄTX ´ ĒTX // in desired signal

24 end

25 end

26 object ← Ą̄,Ē̄ ,ĄTX,ĒTX

27 add to object the other features generated from Ą̄, Ē̄

28 end

29 update model parameters using augmented dataset

30 end

31 return model
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On the other side, only the solution-generating transformations of Eq. (2.1) can be used

to effectively augment the dataset. Some general symmetries, including the ones of the signal

constellation, namely of quadrature-amplitude modulation (QAM), cannot be used for data

augmentation and would lead to the poorer performance of NLC. To illustrate this effect, we

also considered the augmentation based on the complex conjugation of a randomly chosen

half of training objects in the dataset:

Ĕ∗ : {ī̄ℎ/Ĭ (0, Ī), ī̄ℎ/Ĭ (İ, Ī)} → {ī∗∗∗
ℎ/Ĭ (0, Ī), ī̄

∗∗∗
ℎ/Ĭ (İ, Ī)}, (2.2)

where ()∗ stands for the complex conjugation. Eq. (2.2) constitutes the symmetry of QAM

constellation but not of the channel model Eq. (2.1), and was shown to decrease the perfor-

mance of SL-NLC, see Figure 2.4.

It is worth noting that the transformations shown in Table 2.1 are still valid if the received

signal īℎ/Ĭ (İ, Ī) is multiplied by an arbitrary complex-valued coefficient K ∈ C. This means

that the data augmentation can be used for improving the SL-NLC methods operating on the

data already processed by linear digital signal processing (DSP) algorithms [26], notably,

adaptive filters and phase recovery. The reason is that the collateral effect of DSP on the

ideally restored received signal can be viewed as a multiplication by a constant KDSP ∈ C
minimising the mean squared error between the transmitted īℎ/Ĭ (0, Ī) and the received

īℎ/Ĭ (İ, Ī) signals:

KDSP = min
K

K ·īℎ/Ĭ (İ, Ī) −īℎ/Ĭ (0, Ī)
 , (2.3)

where ∥ · ∥ is the Euclidean norm. To illustrate the robustness of data augmentation gains for

the SL-NLC combined with other DSP algorithms, we included the normalization Eq. (2.3)

in the numerical simulations, which are described in detail in Secs. 2.3 and 2.4. Furthermore,

in Sec. 2.5 we show (see Figure 2.7) the considerable performance improvement resulting

from augmentation in the experiment where the full receiver-based DSP was applied.

2.3 Setup of the numerical study

2.3.1 Considered SL-NLC algorithms

To demonstrate the generality of the proposed augmentation technique, we have considered

several different transmission scenarios where we applied it to the two distinct supervised-

learnt nonlinearity compensation (SL-NLC) algorithms presented in the literature. We want

to concentrate on studying the effect of data augmentation, and, therefore, we have brought
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Fig. 2.2 Schemes of the published supervised-learnt nonlinearity compensation (SL-NLC)

algorithms considered in this chapter: the perturbation-based post-distortion (PPD) and the

deep neural network (DNN).

the architecture and hyper-parameters of the algorithms considered in the article as close as

possible to their published versions.

The first is the perturbation-based post-distortion (PPD) algorithm [118, 128], the block

diagram of which is depicted in Figure 2.2a. It is one of the most popular algorithms for Kerr

nonlinearity compensation [111]. This algorithm is based on the assumption that the input of

the channel īℎ/Ĭ (0, Ī) can be expressed through a sum of the received signal īℎ/Ĭ (İ, Ī) with

the weighted nonlinear perturbation triplets (NPTs) generated from it [129]:

īℎ (0, Ī0) = īℎ (İ, Ī0) +
∑
Ġ ,ġ

ÿ Ġ ,ġ (Ą ĠĄ
∗
Ġ+ġĄġ +Ē ĠĒ

∗
Ġ+ġĄġ ), (2.4)

where Ą Ġ = īℎ (İ, Ī0 + Ġ�Ī), Ē Ġ = īĬ (İ, Ī0 + Ġ�Ī) are, respectively, the elements of the received

symbol sequences in horizontal (ℎ) and vertical (Ĭ) polarizations Ą̄,Ē̄ ; �Ī is the symbol

period; ÿ Ġ ,ġ ∈ C are learnt coefficients; Ġ and ġ are the symbol indices with respect to the

symbol of interest (SOI) īℎ (İ, Ī0) =Ą0, īĬ (İ, Ī0) =Ē0. Since the coefficients ÿ Ġ ,ġ are assumed

to be independent of the received signal, they are learnt from the labeled training data via

the optimisation procedure. The algorithm is trained to predict the nonlinear distortion in a

single polarization: �īℎ/Ĭ = īℎ/Ĭ (İ, Ī0) −īℎ/Ĭ (0, Ī0).
The second algorithm is the deep neural network (DNN) proposed in [115, see Figure 4].

The scheme of this algorithm is given in Figure 2.2b. The DNN input consumes the received

soft symbol sequences Ą̄ and Ē̄ , each centered around the SOI, and the aforementioned

NPTs are generated from these symbol sequences. The considered DNN is real-valued

and, therefore, the real and imaginary parts of symbols and NPTs are separately fed to the

DNN input. The DNN has two hidden layers with 2 and 10 neurons, respectively. They are

followed by the output layer with two outputs, each one predicting the real or imaginary part
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DP-QAM ↑+RRC

SSFM

xNspans

RRC+↓CDC �DSP

soft RX symbols
FE DA

offline training

DA

xNepochs

NLC

desired
TX symbols

Fig. 2.3 Scheme of the numerically studied system implementing the offline training of an

SL-NLC algorithm on the augmented dataset. DA stands for data augmentation and FE

stands for feature extraction.

of nonlinear distortion of the evaluated signal polarisation �īℎ/Ĭ. The scaled exponential

linear units (SeLU) [130] are used as the activation functions of the hidden neurons. Since

we consider the regression task, there is no activation function on the output of the DNN. The

second hidden layer is followed by a dropout layer [131], which omits randomly selected

20% of neurons during every training instance. Dropout is a regularization technique applied

to prevent the neural network neurons from relying too much on specific set of input features

and forces them to learn more robust features that generalize better to new data.

For PPD a training dataset object consists of the transmitted SOI in the studied polar-

ization Ą0, being the desired output of PPD, and a set of NPTs (Ą ĠĄ
∗
Ġ+ġĄġ +Ē ĠĒ

∗
Ġ+ġĄġ )

corresponding to SOI, which form the PPD input. For DNN the dataset object also includes

another DNN input - a sequence of symbols transmitted in both polarizations Ą Ġ ,Ē Ġ centered

around the symbol of interest.

2.3.2 Numerical testcase

In the numerical study we consider an idealized case of the single-channel long-haul optical

transmission link where channel Kerr nonlinearities, introduced via Manakov equations

Eq. (2.1), are the only source of nonlinear distortions. Provided that, for long-haul links,

fiber media response is, indeed, the leading source of nonlinear distortion [132, Sec 2.3],

we assume this numerical model to be a reasonable approximation of this class of optical

systems.

The scheme of the numerically considered communication system is given in Figure 2.3.

To illustrate the effect of the application of the proposed data augmentation to the SL-NLC

algorithms, we numerically simulated the transmission of a single-channel signal at 64 GBaud

pre-shaped by a root-raised cosine (RRC) filter with 0.06 roll-off at 512 GSamples s−1. We

considered the following three testcases: (i) dual-polarisation (DP)-16QAM transmission over
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a system consisting of 25×80 km large effective area fiber (LEAF) spans; (ii) DP-16QAM

over 25×80 km standard single-mode fiber (SSMF) spans; (iii) DP-64QAM over 13×80 km

SSMF spans. Optical signal evolution during fiber propagation was simulated by solving

the Manakov equations Eq. (2.1) via split-step Fourier method (SSFM) [132]. In addition to

SSMF, by far the most widely deployed fiber, we also decided to test our data augmentation in

a different type of fiber with larger nonlinearities. We chose LEAF optical fiber as the one of

the most widely deployed [133] non-zero dispersion shifted fibers in the world, i.e., the fibers

having low chromatic dispersion in the studied wavelength region. The suppressed dispersive

broadening leads to stronger Kerr nonlinearities in LEAF fibers. The considered parameters of

LEAF fiber are: Ă = 0.225 dB km−1 is the attenuation parameter, � = 4.2 ps nm−1 km−1 is the

dispersion coefficient, and Ą = 1.3 W−1 km−1 is the effective nonlinearity coefficient; while

the SSMF ones are: Ă = 0.21 dB km−1, � = 16.8 ps nm−1 km−1, and Ą = 1.14 W−1 km−1.

Every span was followed by an optical amplifier (OA) with the noise figure NF = 4.5 dB,

which fully compensated fiber losses and added the amplified spontaneous emission (ASE)

noise. At the receiver, after full electronic chromatic dispersion compensation (CDC) by

the frequency-domain equaliser and downsampling to the symbol rate, the received symbols

were normalised by Eq. (2.3) to the transmitted ones. No other transceiver distortion was

considered.

The algorithms were applied off-line to the pre-collected received and transmitted soft

symbol sequences. Since both considered algorithms aim at predicting the nonlinear dis-

tortion �īℎ/Ĭ, the considered datasets consisted of: 1) the inputs formed by the sequences

of the received symbols ĄĤ, ĒĤ centered around SOI Ą0, Ē0 and the NPTs generated from

these sequences; 2) the nonlinear distortion �īℎ/Ĭ induced into the SOI being the desired

NLC response. To produce the training and testing datasets, two random symbol sequences

were separately generated by a Mercenne twister pseudo-random number generator [134]

and, later, propagated over the link. The size of the testing dataset was kept at 217 objects

in all simulations, while the size of training data varied. To correctly represent the memory

of the nonlinear distortion, we considered symbol sequences of length 2 ∗ 75+ 1 centered

around the SOI, i.e. | Ġ | f 75. The symbol sequence length is taken from [120]. Indeed,

we found that this length is enough to get the noticeable performance gain by nonlinearity

compensation, which is further used to illustrate the data augmentation functioning. Fol-

lowing the conclusions of Ref. [120], we considered only the NPTs fulfilling the condition:

|ġ | f min{+75/| Ġ |,, 75}, where +·, stands for ceil function, i.e., rounding toward positive in-

finity. This procedure produced 301 complex-valued input symbols and 1929 NPTs generated

from both polarizations.
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Both PPD and DNN algorithms were trained using the same loss function and optimiser.

The following mean-squared error (MSE) loss function was implemented:

MSE = ∥ĄTX − (Ą0 −�īℎ)∥ , (2.5)

where ĄTX, ĒTX are the SOIs transmitted in ℎ and Ĭ polarizations, Ą0, Ē0 are the received

SOIs and �īℎ/Ĭ is the nonlinear distortion in a single polarisation predicted by the NLC

algorithm. The MSE loss function given by (2.5) was optimised using the adaptive moments

(Adam) optimiser [85] and the automatic differentiation was realised using the PyTorch

package [135]. The training was carried out for 200 epochs with the batch size of 100. The

training dataset was shuffled at the beginning of every epoch to avoid overfitting caused by

learning the connections between the neighboring training pairs [136]. For every studied

testcase, we used several learning rates and chose the one leading to the best bit-error rate

on the testing data. The grid of the considered learning rates was a geometrical progression.

For the PPD algorithm, the grid contained 10 values in the range ĈPPD = {10−3.5, ...,10−6.5};

while for DNN, it contained 10 values in the range ĈDNN = {10−1, ...,10−7}.

2.4 Numerical results

2.4.1 Performance improvement on deficient datasets

Firstly, we examined the impact of the data augmentation (DA) on the relation between

the size of the training dataset Ċtr and the bit-error rate (BER) achieved by the considered

supervised-learnt nonlinearity compensation (SL-NLC) algorithms. With this objective, we

compared the BER achieved by the perturbation-based pre-distortion (PPD) (Figure 2.2a) and

the deep neural network (DNN) (Figure 2.2b) algorithms trained with datasets of different

sizes Ċtr. We define the size of the dataset ĊĪĨ as the number of objects in it. It is worth

recalling from Section 2.2 that, since we implement DA via replacing a random part of

the objects of the original dataset with the synthetic ones at the beginning of each epoch,

both augmented and the original training datasets have the same number of objects ĊĪĨ .

For every considered size Ċtr and augmentation type, we separately optimised the power

level on a grid with 1 dB step size and the learning rate on grids ĈPPD or ĈDNN to reach the

best BER value. To remove local performance fluctuations, the BER was averaged over 20

consequent epochs before its minimal value was recorded. We compared BERs obtained

on the collected dataset: (i) before SL-NLC; (ii) after SL-NLC trained with the collected

non-augmented (pure) data; (iii) after SL-NLC trained with the data augmented by a single

transformation from Table 2.1 (�ącont, �ądisc, Īinv, Ą/Ēswap); or (iv) by the combination of
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≈6 times

(a) DNN at SSMF 25×80 km DP-16QAM.

≈6 times

(b) PPD at SSMF 25×80 km DP-16QAM.

≈6 times

(c) DNN at LEAF 25×80 km DP-16QAM.

≈6 times

(d) PPD at LEAF 25×80 km DP-16QAM.

≈6 times

(e) DNN at SSMF 13×80 km DP-64QAM.

≈4 times

(f) PPD at SSMF 13×80 km DP-64QAM.

Fig. 2.4 Bit-error rate (BER) obtained by the perturbation-based post-distortion (PPD) and the

deep neural network (DNN) SL-NLC algorithms trained with datasets of various sizes Ċtr. The

datasets are: non-augmented (pure data), augmented by the application of a signle transformation

from Table 2.1 and Eq. (2.2), or with the joint augmentation (joint aug) combining the transformations

�ądisc + Īinv +Ą/Ēswap. The horizontal dashed line at each plane depicts the BER value before the

application of NLC.
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several transformations (�ądisc + Īinv +Ą/Ēswap). We chose to omit the continuous phase shift

�ącont out of joint augmentation because it works similarly to the discrete one �ądisc and

provided the same BER improvement but at the cost of higher complexity.

The dependence of the achieved BERs on the size of training dataset Ċtr, is presented

in Figure 2.4. The solid dashed black line in Figure 2.4 is the BER measured before

SL-NLC. In all studied testcases, the application of a single transformation-based data

augmentation (�ącont, �ądisc, Īinv, Ą/Ēswap) led to same BER as when using 2× larger pure

training dataset, while the augmentation based on the combination of three transformations

(�ądisc + Īinv +Ą/Ēswap; marked as "joint aug" in the Figure 2.4) enabled achieving the same

BER with an approximately 4× to 6× smaller dataset. Figure 2.4 also shows that the BER

improvement obtained via the data augmentation decreases, as expected, when increasing

the size of the training dataset, and it becomes negligible when the dataset is very large

(≳ 105 objects). This saturation effect supports our claim that the data augmentation leads

to performance gains mainly by adding variability to the training dataset and, therefore,

can be applicable to a huge range of SL-NLC algorithms. The data augmentation based

on complex conjugation Ĕ∗ Eq. (2.2) (wide green line in Figure 2.4) led to the smallest

performance increase among considered testcases, thus supporting the claim that only the

transformations generating the true new solutions of channel model Eq. (2.1) are effective

for data augmentation.

2.4.2 Reduction of training cost on full datasets

In this section we analyze the potential of data augmentation to reduce the numerical cost

of training an SL-NLC algorithm. We start by assuming that our dataset is large enough

to reach the desired SL-NLC performance level without augmentation. Since the training

complexity is proportional to the size of the dataset Ċtr, it is interesting to decrease the cost

of SL-NLC training by performing it on a smaller dataset. The results reported in Figure 2.4

already indicate that, if data augmentation is used, the same BER value can be reached using

a dataset several times smaller than the original one.

When training an SL algorithm we repeatedly optimize it for each element of the dataset

using the same routine [4]. Therefore, the numerical cost of training the same algorithm on

different datasets is directly proportional to the number of the dataset objects Ċobj. Typically,

during training the algorithm passes several times over the whole dataset, with every pass

referred to as an epoch. Hence, the numerical cost of the training can be estimated as

cost ≈ Ċobj = number of epochs×Ċtr, (2.6)
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≈2 times

(a) DNN at SSMF 25×80 km DP-16QAM.

≈2 times

(b) PPD at SSMF 25×80 km DP-16QAM.

≈2 times

(c) DNN at LEAF 25×80 km DP-16QAM.

≈2 times

(d) PPD at LEAF 25×80 km DP-16QAM.

≈2 times

(e) DNN at SSMF 13×80 km DP-64QAM.

≈2 times

(f) PPD at SSMF 13×80 km DP-64QAM.

Fig. 2.5 Dependence of the training complexity estimation Eq. (2.6) on the achieved BER for the con-

sidered SL-NLC algorithms: the perturbation-based post-distortion (PPD) and the deep neural network

(DNN). The complexity is compared for the NLC algorithms trained with the datasets: non-augmented

(pure) or augmented by the triple of transformations listed in Table 2.1 �ądisc + Īinv +Ą/Ēswap (joint

aug). The vertical dashed line at the right border each plane depicts the BER value before the applica-
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where Ċtr is the size of the training dataset fully processed each epoch. Since the training

procedure does not depend on the dataset content, we used Eq. (2.6) to compare the cost of

training the SL-NLC algorithm on both the augmented and pure data. We assumed that the

complexity of augmenting the dataset by the simple analytical operations listed in Table 2.1

is negligible compared to the training costs.

The numerical complexity of applying augmentation is much smaller than one of the

model optimisation and feature extraction for the considered algorithms. Numerical cost

can be expressed as a number of required multiplications, since the complexity of all the

other operations is much smaller [32, 137]. Polarisation Ą/Ēinv and time Īinv inversion are

done by a mere re-indexing of the input elements not requiring any multiplications. Discrete

phase shift �ądisc by angles proportional to ÿ/2 can be done multiplier-free by swapping and

changing signs of the real and imaginary parts of the processed complex variable. Finally,

the continuous phase shift �ądisc can be implemented in hardware at low numerical cost

by CORDIC algorithm [138]. On the contrary, even the preparation of qubic nonlinear

perturbation terms (NPTs) used in the input of studied DNN and PPD algorithms requires 4

complex multiplications per NPT Eq. (2.4), which leads to 1929×4 = 7116 multiplications.

Figure 2.5 shows the estimated numerical cost – following Eq. (2.6) – required to achieve

the desired BER level by the PPD and DNN SL-NLC algorithms when trained on the pure

data (red line) and on the augmented one (blue line). Here we considered only the joint

augmentation: �ądisc + Īinv +Ą/Ēswap. For every Ċtr, we optimised the power level and the

learning rate (as in Figure 2.4). However, we noticed that the number of epochs required

to reach the minimum BER at the optimal learning rate was 2−3× higher than for that for

the slightly bigger learning rate. Thus, in this subsection, we estimated the cost according

to Eq. (2.6) with a slightly bigger learning rate than the optimal value. The complexity

reduction brought by the introduction of a sub-optimal learning rate greatly outweighted the

slight reduction in BERs. As mentioned before, this choice provided nearly 2−3× drop in

the required number of training epochs at the cost of no more than 5% BER increase. We

define the number of epochs in Eq. (2.6) as the one with which we reach the optimal BER

with 3% accuracy.

Figure 2.5 shows that, in all studied testcases, the dataset reduction enabled by joint

augmentation allows the PPD algorithm to reach the target BER at nearly 2× lower training

complexity. For the DNN, the proposed dataset reduction technique also reduced the required

training complexity by ∼ 2× for the BERs situated in the region of interest (near the smallest

achieved BER).
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x4

ICR

Fig. 2.6 Scheme of the experimental setup. Green solid lines: digital electrical signals;

blue lines: analogous electrical signals; black lines: optical signals; green dashed lines:

data collected for the offline processing by the DNN (Figure 2.2b). The acronyms used are

introduced in Section 2.5.

2.5 Experimental study

In Section 2.4, we numerically illustrated the effect of data augmentation on the supervised-

learnt nonlinearity compensation (SL-NLC) algorithms acting on the pure Kerr nonlinear

channel, governed by the Manakov equations described by Eq. (2.1). Nonetheless, in

practical fiber-optic communication systems, not only Kerr nonlinearities but also transceiver

impairments play a significant role in generating signal distortion [139]. Therefore, to

evaluate the applicability of data augmentation, in this section we demonstrate how the

transceiver impairments may affect augmentation performance gains. With that objective,

we considered an experimental model of a metro communication link where both Kerr

nonlinearity and the transceiver impairments make a noticeable contribution to the signal

distortion. For this reason, the link, considered in the experiment, significantly differs

from the link, considered numerically in the previous Section 2.4. We found that the

transformations from Table 2.1, except for time-inversion Īinv, can be effectively used for

data augmentation even in the presence of considerable components distortion.
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2.5.1 Experimental setup

Figure 2.6 illustrates the experimental setup. We considered a single-channel transmission.

At the transmitter (TX), the dual-polarisation (DP)-16QAM 34.4 GBd symbol sequence was

mapped out of data bits generated by a 232−1 order pseudo random binary sequence (PRBS),

which has a periodicity of 232 bit or 230 ≈ 109 4-bit 16QAM symbols. The length of the

considered dataset (f 217 ∼ 105) was much less than the periodicity of the used PRBS. There-

fore, the PRBS-generated dataset didn’t repeat itself, and so, SL-NLC algorithms weren’t

been able to memorize the repeating sequence, which could led to inadequate performance

estimations, as [136] warns. On the other hand, the considered PRBS sequence was long

enough to neglect the effects caused by possible imbalance between "0" and "1" bits represen-

tation in the sequence. Digital root-raised-cosine (RRC) filter with roll-off 0.1 was applied

to the symbol sequence to limit the channel bandwidth to 37.5 GHz. The filtered digital

samples were uploaded to a digital-to-analog converter (DAC) operating at 88 Gsamples s−1.

The analog electrical outputs of DAC were amplified by an electrical amplifier (EA) and

drove a dual-polarization in-phase/quadrature (IQ) Mach–Zehnder modulator (DP-MZM),

modulating the continuous waveform (CW) carrier produced by an external cavity laser

(ECL) at Č = 1.55 čm. We transmitted the signal at different power levels in order to be able

later to choose the optimal one. The investigated power levels formed a grid with 1 dBm

stepsize.

The optical path consisted of 9×50 km spans of TrueWave Classic (TWC) optical fiber.

Each span was followed by an EDFA-type optical amplifier (OA), compensating for the

losses on the fiber span. The parameters of the used TWC fiber spans at Č = 1.55 čm are:

Ă = 0.23 dB km−1 attenuation coefficient, � = 2.8 ps nm−1 km−1 dispersion coefficient, and

Ą = 2.1 W−1 km−1 effective nonlinear coefficient. The OA noise figure was in the 4.5 to 5

dB range.

At the receiver (RX), the optical signal was firstly detected using an integrated coher-

ent receiver (ICR). The resulting electrical signal was sampled at 80 Gsamples s−1 by an

analog-to-digital converter (ADC), and processed using a linear receiver-based digital signal

processing (DSP). In the DSP, the bulk accumulated chromatic dispersion was firstly com-

pensated by a frequency domain equalizer (FDE), which was followed by the removal of the

carrier frequency offset. Next, the constant-amplitude zero-autocorrelation-based training

sequence was located in the received frames. This training sequence was then extracted

and used to estimate the equalizer transfer function. After the equalization the following

algorithms were applied: polarization demultiplexing, time correction, and pilot-aided carrier

phase recovery. Finally, the soft symbols at the output of the DSP were collected for an

offline processing by the studied NLC algorithm.
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The feature extractor (FE) was then employed to prepare the sequences of input symbols

Ą̄,Ē̄ and nonlinear perturbation terms (NPTs) Eq. (2.4) fed into the SL-NLC algorithms as

input. The transmitted soft symbols were used as the desired response during the training of

the SL-NLC algorithm. For every studied power level, the two separately generated random

symbol sequences were transmitted through the system and used, respectively, to prepare

the training and testing datasets. The testing datasets considered in the experiment had 217

objects.

2.5.2 Experimental results

≈4 times

Fig. 2.7 BER before and after the DNN (Figure 2.2b) SL-NLC algorithm trained with the

experimentally measured datasets of various sizes Ċtr augmented in different ways.

Similar to the numerical study in Sec. 2.4, we considered the perturbation-based post-

distortion (PPD) and the deep neural network (DNN) SL-NLC algorithms of Sec. 2.3.

Nonetheless, we found that the PPD led to only marginal performance improvement in terms

of BER for the considered testcase, which demonstrates that it is not designed to operate in

the considered metro systems with considerable transceiver-induced distortions [139, 140].

Specifically, PPD relies on the overall nonlinear distortion being representable as the linear

combination of qubic triplets, which is correct only in the case when the optical channel is

the dominant source of nonlinearity. Therefore, we limit our further discussions to the effect

of data augmentation on the DNN training.
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We analyzed how does the training dataset size Ċtr and the application of different

augmentation types affect the BER obtained by the DNN. The training procedure and the

dataset structure were the same as the ones described in Sec. 2.3 and 2.4. Similarly to the

numerical study, for every studied dataset size Ċtr and augmentation type we recorded the

best BER obtained at the optimal learning rate and signal power level.

Figure 2.7 shows that the data augmentation based on one of the following transformations

from Table 2.1: discrete phase shift �ądisc, continuous phase shift �ącont, and polarisation

swapping Ą/Ēswap – enables the DNN to obtain the same BER using a dataset with nearly

half the size compared to the training with the non-augmented (pure) dataset. Moreover, just

like the numerical results of Sec. 2.4, the data augmentation by a joint application of the

several transformations �ądisc +Ą/Ēswap performed better than any single-transformation-

based augmentation and allowed ≈4× reduction of the dataset size while keeping the same

BER. Unlike the numerical simulations (Figure 2.4), the time-inversion-based augmentation

Īinv led to an increase of the BER after DNN with respect to training it with the pure dataset.

We associate that with the asymmetrical memory introduced by the transceiver impairments

violating the time-inversion symmetry, which was not considered within the numerical

study. Thus, we conclude that some augmentation methods can be affected by the specific

transceiver properties. Nevertheless, the overall performance improvement and complexity

reduction demonstrate the viability of the augmentation strategy for the realistic applications.

2.6 Summary

We proposed the data augmentation technique for improving the training of supervised-

learnt algorithms for the compensation of nonlinear distortion (SL-NLC) in fiber-optic

communication systems. The technique is based on the generation of new training data

objects out of the pre-measured ones using special transformations such as the ones given in

Table 2.1. We showed the validity of our approach by using both numerical and experimental

data. In the numerical study, we focused on systems where the Kerr nonlinearity was the

dominant distortion. For these testcases, the data augmentation enabled the NLC to achieve

comparable performance when using up to 6× less data with respect to the conventional

training, see Figure 2.4. In the case of having a large enough dataset, we showed that the

data augmentation enables reducing the size of the dataset leading to the equivalent SL-NLC

performance at ∼ 2× lower training complexity, see Figure 2.5. The experimental study was

aimed at the illustration of data augmentation applicability for the practical case of the links

distorted not only by Kerr nonlinearity, but also by the transceiver-induced distortions. In this

case, the data augmentation enabled reducing the training dataset by a factor of ≈4× without
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reducing the NLC performance, see Figure 2.7. We anticipate that the proposed generic

approach can find applications in a number of problems where underlying propagation

equation symmetries can be used for augmentation of the relevant datasets used for signal

processing.

2.6.1 Contribution statement

I have developed the method proposed in this article, obtained the presented numerical results,

wrote its text, and prepared all the illustrations by myself. The computer code used in the

presented research was written by me and Pedro Freire. The experimentally measured traces

were kindly provided by Antonio Napoli, Bernhard Spinnler, and Wolfgang Schairer. I have

applied nonlinear compensation and data augmentation to the experimental data by myself.

The research presented here was done under supervision of Jaroslaw E. Prilepsky, Antonio

Napoli, and Sergei K. Turitsyn.
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Chapter 3

End-to-end learning in the coherent

fiber-optic communications

3.1 Introduction

When dealing with optical communication systems, there is still the lack of the general

communication theory describing nonlinear fiber channels (where the dispersive effects

intertwine with the fiber nonlinearity), in contrast to the classical additive white Gaussian

noise (AWGN) communication channel. Thus, many fundamental and practically important

questions related to the optimal coding, modulation, pulse-shaping, and channel equalization

for the nonlinear optical transmission systems, remain either partially solved or even yet to

be answered [23, 141]. In particular, the optimal signal statistics (the Gaussian distribution

for AWGN [88]) is not known for the transmission affected by the simultaneous action of

fiber dispersion and nonlinearity. Addressing this problem numerically, in general, is not

practically feasible due to the high computational cost of modelling high-speed transmission

via dispersive nonlinear channels. Thus, there remains the research challenge related to

developing practical transmitters and receivers with signal format and modulation inherently

adjusted to nonlinear transmission. We note that currently-used transceivers are suboptimal,

which bring about a cap on the achievable data rates and transmission distances. Recently,

machine learning (ML) methods and, in particular, artificial neural networks (NNs) have

been applied to the design of optical communication systems, see, e.g., recent Refs. [14, 15,

113, 142–145] and numerous literature sources therein. Albeit it is rather difficult (if possible

at all) to obtain the general conclusions on the optimal signal shaping and modulation in the

realistic nonlinear fiber systems, it is possible to obtain some sub-optimal results by using

specific ML techniques tailored to deal with complex nonlinear problems.
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It is important to point out that the properties of optical fiber-channels strongly depend

on signal parameters: the power is linked to the nonlinear effects, and the carrier pulse

width defines the dispersive signal broadening and respective memory effects. Then, the

transmission distance defines how essential the noise-induced corruptions are, the strength of

nonlinear signal distortions, and the dispersive effects. Therefore, different nonlinear fibre

channels can have rather distinct optimal signal modulations and coding.

The end-to-end (E2E) learning approach, proposed in [66], is a machine learning tech-

nique offering a way to automatically tailor signal modulation and coding for an arbitrary

communication link. The basic idea of E2E learning lies in representing the link from

messages-in to messages-out as a single NN, differentiable with respect to the link parameters,

to simultaneously optimize these parameters by using, e.g., the efficient gradient-descent-

based optimization. Many applications of the E2E learning in different communication links

then followed [146, 147].

The first applications of E2E learning to optical communication systems were done

for intensity modulation / direct detection (IM/DD) systems. In Refs. [114, 148–150], the

E2E learning of geometric constellation shaping (GS), i.e., optimal symbol locations, for

IM/DD optical communication systems was proposed. further, in [151] the E2E learning

of waveforms was considered for the specific case of a link based on nonlinear frequency

division multiplexing.

The following works are dealt with the E2E learning of the optimal constellation points

locations, i.e. on the GS, and the pre-distortion techniques in coherent systems. In [152–156],

the E2E learning of single-symbol GS was considered for a coherent communication system.

While [152–155] considered the distortions generated only by the nonlinear channel, in

Ref. [156] a more realistic link model that included the laser noise, was studied. In Refs. [60,

64, 65, 147, 157–159], the E2E learning of GS, signal waveform, and nonlinear pre-distortion

resistant to transmitter distortions was considered. However, the true complexity of nonlinear

fiber-optic channel distortions was neglected in these works, namely, the distortions were

either neglected completely, or modelled via a simplified Gaussian noise model. Conversely,

in [160] the authors considered the joint E2E learning of GS and linear pre-distorter mitigating

the fiber channel distortion. Nonetheless, the pre-distorter learnt in that work was rather

trivial: it combined the Nyquist pulse shaper and chromatic dispersion compensator, and,

hence, it actually did not contribute to the nonlinearity mitigation.

In this chapter, we propose a machine learning algorithm for E2E learning of the con-

stellation shaping that takes into account the nonlinearities and memory present in optical

channel distortions. With this algorithm, we jointly optimized the symbol locations in the

constellation diagram, the symbol probabilities, and the nonlinear pre-distortion. The learnt
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transmitted signal distribution chooses the transmitted symbol based not only on the message

sent in the corresponding time slot, as in the conventional constellation shaping, but also on

the messages sent in the neighbouring time slots. Therefore, we refer to the resulting signal

distribution as the multi-symbol constellation shaping (MSCS).

In the proposed E2E learning algorithm, we implement two key new features. The first

one is the utilization of the auxiliary channel model based on perturbation theory [2], which

allows us to reduce the computational efforts/resources needed to model the complex mixture

of nonlinear and linear distortions taking place in fiber-optic links. Second, we implemented

the procedure for the simultaneous learning of symbol probabilities and locations, proposed

first in Ref. [161] for the AWGN channel.

We applied the proposed algorithm to a single-channel 64 GBd transmission over a pair

of completely different state-of-the-art links to indicate that the proposed method is rather

generic and is applicable to improving the quality of transmission in an arbitrary coherent

fiber-optic communication link.

First, we considered the single-span 64 GBd transmission of a 256-symbol constellation

over 170 km standard single mode fiber (SMF) link, where the expected gains by nonlinear

shaping are particularly high [162]. In this test, we compared the learnt constellations with

the conventional Maxwell-Boltzmann (MB) probabilisitc shaping, where the latter is optimal

for the AWGN channel [163]. The learnt multi-symbol constellation shaping led to the

bit-wise mutual information (BMI) gain of 0.48 bits/2D-symbol over the conventional MB

shaping. Furthermore, we show that the proposed E2E learning is applicable for the cases

when, because of hardware- or complexity-related limitations, we cannot use multi-symbol

constellation shaping. For the same test case, we learnt a single-symbol joint probabilistic and

geometric shaping showing 0.074 bits/2D-symbol BMI gain over the reference MB shaping.

On top of it, for the case when geometric shaping is not an option, we learnt the single-symbol

probabilistic shaping which outperforms the MB shaping by 0.043 bits/2D-symbol in terms

of BMI.

Second, we successfully applied the E2E learning technique to a 64 GBd transmission

of 64-symbol signal over long-haul 30x80 km (2400 km) SMF link. For this testcase,

the E2E-learnt multi-symbol constellation shaping led to symbol-wise mutual information

(MI) gain of ≈ 0.20 bits/2D-symbol over the reference constellation. Similarly to the

aforementioned single-span case, the E2E learning managed to learn the effective single-

symbol constellation shaping resulting in reasonable performance gain even for the case

when complexity limitations prevent us from using the multi-symbol constellation shaping.

Particularly, the E2E-learnt single-symbol constellation shaping resulted in MI gain of ≈ 0.14

bits/2D-symbol over the reference one.
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Fig. 3.1 Principal scheme of the end-to-end learning algorithm implemented in this paper.

Blue denotes trainable blocks, dashed lines denote feedback from loss function. MF stands

for matched filtering, CDC stands for chromatic dispersion compensation.

This Chapter is based on the original published contributions [1, 3, 164]. Also, original

unpublished material is included.

The remainder of the chapter is organized as follows. Section 3.2 describes in the

proposed E2E learning algorithm. Section 3.3 describes the considered testcase and the

results achieved by the proposed E2E learning. Section 3.4 concludes the chapter.

3.2 Models and the algorithm description

3.2.1 End-to-end learning

In the end-to-end learning approach, the whole system from bits-in to bits-out, including

transmitter, channel, receiver, is implemented as a single NN, thus enabling the joint training

of transmitter and receiver. The idea of the approach was first suggested in Ref. [66]. The

scheme of end-to-end platform used in this paper is given in Fig. 3.1.

3.2.2 Transmitter design, constellation shaping, and pre-distortion

We consider the two-stage transmitter, consisting of a sampler followed by a nonlinear

pre-distorter. Note that the transmitter’s separability into autonomous stages, with each stage

having its well-defined purpose, improves its interpretability and cost-efficiency [147].

In the sampler, the input data is mapped to some complex-valued constellation points

ĩģ ∈ S ∈ C,|S| =ĉ and then transmitted over a channel. A fixed bit label lģ = [Ģģ,1, . . . , Ģģ,ć],
Ģģ,ġ ∈ {0,1}, ć = log2(ĉ) is set for each symbol in the alphabet lģ ⇐⇒ ĩģ, ∀ĩģ ∈ S. The

input data is generated in a way that symbols ĩģ are sampled according to the discrete

probabilistic distribution Ħď (ĩģ) ∀ĩģ ∈ S. We assume here that for an arbitrary distribution

Ħď there exists the mapper which maps the original input data stream in such a manner that

the resulting symbols are distributed according to Ħď. Because of the imperfections of the
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communication channel, the information rate of the system depends on the locations of con-

stellation points S and their probability distribution Ħď. Therefore, it is possible to maximize

the system information rate by optimizing symbol locations S and occurrence probabilities

Ħď. Optimizing S is called a geometric constellation shaping (GS), and optimizing Ħď is

called a probabilistic constellation shaping (PS) [92]. Notably, for linear channels, the family

of Maxwell-Boltzmann (MB) distributions leads to the optimal PS [163]

Ħď (ĩģ) ≈ exp
(
−ĉ |ĩģ |2

)
, (3.1)

where ĉ is a distribution hyper-parameter referred to as the MB shaping parameter. Nonethe-

less, finding the optimal shaping for nonlinear-dispersive optical fiber channels is a subtle

problem [162].

In this work, we consider a separate optimization of PS, GS, along with the joint opti-

mization of both S and Ħď; the latter method is referred to as the joint shaping (JS). The

sampler generated the dual-polarized signal Ĕ = {Ĕℎ, ĔĬ} with both polarization components

Ĕℎ, ĔĬ sampled from the same alphabet Įğ,ℎ/Ĭ ∈ S according to the same distribution Ħď.

The sampler was followed by a trainable nonlinear pre-distorter. The goal of the latter

is to pre-compensate the nonlinear channel distortions through pre-processing the symbol

sequence Ĕℎ/Ĭ generated by the sampler, before the sequence is sent into the optical channel.

The pre-compensation is made in such a way that the symbol sequence at the channel

output, ĕ , approximates the sampled input symbol sequence. We consider a perturbation-

based pre-distortion (PPD) [129], which adds to each transmitted symbol Įğ,ℎ/Ĭ an additive

correction �PPDĮğ,ℎ/Ĭ, depending on the characters transmitted in the neighboring slots in

both polarizations Įğ,ℎ, Įğ,Ĭ. The pre-distortion �PPD is defined as a linear combination of

cubic polynomials Đģ,Ĥ calculated from the symbols co-propagated with the pre-processed

symbol at the neighboring time slots. In more detail, for any symbol Įğ,ℎ/Ĭ transmitted at the

ğ-th time slot in the H- or V-polarization, the pre-distortion takes the form:

�PPD(Įğ,ℎ/Ĭ) =
∑
ģ,Ĥ

ÿģ,Ĥ ·Đģ,Ĥ; ĐĤ,ģ = Įğ+Ĥ,ℎ/Ĭ ·
(
Į∗
ğ+Ĥ+ģ,ℎ/ĬĮğ+ģ,ℎ/Ĭ + Į∗ğ+Ĥ+ģ,Ĭ/ℎĮğ+ģ,Ĭ/ℎ

)
, (3.2)

where Įğ+ģ,ℎ/Ĭ is the symbol in H-/V-polarization shifted by ģ time slots from the target

symbol Įğ,ℎ/Ĭ, and ÿģ,Ĥ are the trainable weights.

The performance-to-complexity ratio of PPD is determined by the range of polynomials

Đģ,Ĥ taken into consideration in a particular algorithm. Since the PPD is a linear regression

over Đģ,Ĥ terms, the importance of each term in the trained PPD can be assessed by the

absolute value of the coefficient |ÿģ,Ĥ | corresponding to it. Hence, one can reach a cost-
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effective PPD by training an excessively complex one and then pruning its coefficients,

i.e. zeroing ones with the absolute value smaller than the chosen cut-off value ÿģ,Ĥ :=

0, for |ÿģ,Ĥ | < ÿcutoff. This makes the cut-off value ÿcutoff an important hyper-parameter of

PPD learning, defining the performance-to-complexity ratio of the resulting algorithm. We

consider its optimization as part of E2E learning in Sec. 3.3.1.4.

3.2.3 RP-based channel model

The second autoencoder block, the auxiliary channel model, maps the signal generated by the

transmitter Ĕ to a sequence of symbols ĕ collected by the receiver. The model includes both

deterministic and stochastic distortions, expressed via the probability of ĕ given Ĕ , Ħĕ |Ĕ .

The approximate channel model must be computationally simple and easy to differentiate,

to allow for fast transmitter learning; but, simultaneously, it has to describe the distortion

introduced by the channel accurately enough, so that the learned transmitter and receiver

could emulate well a real-world communication link.

The nonlinear dispersive channel is typically modelled by the Manakov equations, see

Eq. (3.3) below, which are simulated by a serial cascade of alternating convolutional and

pointwise nonlinear operators; the solution scheme is referred to as the split-step Fourier

method (SSFM) [165]. The SSFM can be represented by the convolutional NN consisting of

many layers [35, 160], and the complexity of such a convolutional NN makes the calculation

of gradients of the model outputs over its inputs (in the back-propagation learning [9]) very

slow and rather challenging. First, the learning process implies that all the intermediate

states are stored, and it makes the process memory hungry. Second, the back-propagation

through many layers often results in numerical errors, leading to the infamous uncontrolled

growth or vanishing of gradients [61, 144]. One way to bypass these problems is to consider

a channel approximation with simplified models. For instance, for this purpose the following

approaches were proposed: the E2E learning using a dispersion-free nonlinear channel

model [166]; a nonlinear interference noise (NLIN) model [153, 164, 167], which considers

nonlinear distortion as a costellation-dependent additive Gaussian noise [105, 106]; or

neglecting the optical channel nonlinearity entirely by modelling its distortion as an additive

white Gaussian noise [147]. Nonetheless, these models neglect the channel memory. On top

of it, NLIN and AWGN-based channel models erase the information about the determinism

of nonlinear distortions, replacing it with stochastic noise. These two factors prevent any

memory-aware constellation shaping or pre-distorters from learning about the inter-symbol

behavior of nonlinear distortion.
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Fig. 3.2 Principal scheme of the split-step Fourier method, Eq. (3.5). The scheme is given to
illustrate the derivation of RP model, Eq. (3.4). This figure is licensed under the CC BY 4.0 
license, taken from [1] created by V. Neskorniuk, et al.

Fig. 3.3 Principal scheme of the first-order regular perturbation (RP) model [2] introduced in

Eq. (3.4). This figure is taken from [1].

Following our previous work [3], in this paper, we propose the application of the first-

order regular perturbation model (RP-model) as an auxiliary channel model. In this section,

we describe the model and the benefits of its application in more detail.

Consider the Manakov equations describing the evolution of the waveform of a dual-

polarized optical signal E(İ, Ī) = u(İ, Ī)
√
Ĝ (İ) during its propagation over a fiber-optic link

with lumped optical amplifiers (OAs) [168]:

ĉu

ĉİ
= −ğ ă2

2

ĉ2
u

ĉĪ2
+ ğ8

9
Ą Ĝ (İ)∥u∥2

u+Ĉ(İ, Ī), (3.3)

where Ĝ (İ) = exp
(
−Ăİ+ĂĈsp+İ/Ĉsp,

)
models the optical losses (with Ă being the atten-

uation coefficient) and amplification, Ĉsp denotes the fiber span length, ă2 and Ą are the

chromatic dispersion and Kerr nonlinearity coefficients; Ĉ(İ, Ī) denotes the amplified sponta-

neous emission noise (ASE) injected by OAs.

The first-order regular perturbation (RP) [2, 168, 169] is an elaborate method to approxi-

mate u(İ, Ī) in a weakly nonlinear regime. The principal scheme of RP model is given in

Figure 3.3. The channel output u(İ, Ī) is approximated using the perturbations according to
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expressions:

u(İ, Ī) = uL(İ, Ī) +uNL(İ, Ī) +O(Ą2),
uL(İ, Ī) =Dİ [u(0, Ī) +Ĉ(İ, Ī)] ,

uNL(İ, Ī) =
Ċbr−1∑
ģ=1

Dİ−(ģ−0.5)ą
[
Ką,ģ [uL((ģ−0.5)ą, Ī)]

]
,

(3.4)

with
Dİ [·] = F −1

[
exp(ğă2İĈ

2/2)F [·]
]
,

Ką,ģ [u(Ī)] = ğ
8

9
Ą

1− ě−Ăą

Ă
Ĝ

(
(ģ− 1

2
)ą

)
∥u(Ī)∥2

u(Ī).

Here ą = İ/(ĊĘĨ −1) is the algorithm’s spatial step size, ∥ · ∥ is the Euclidean vector norm, and

F denotes the Fourier transform. Dİ [·] is the operator introducing the chromatic dispersion

accumulated by our signal over the distance İ, Ką,ģ [·] introduces the Kerr nonlinear phase

shift accumulated over the fiber span of length ą centered around the point (ģ−0.5)ą. Since

the linear distortion uL and every term of sum in uNL can be calculated independently,

we refer to their calculation routines as to “branches”. The number of branches Ċbr is

a main RP-model hyper-parameter, defining both its precision of approximation and its

complexity. Typically, Ċbr is chosen between 2 and 10 resulting in step size being in the

range ą ≈ İ/10 ... İ.

The RP model can be better understood through its comparison with the split-step Fourier

method (SSFM) applied for solving the Manakov equations [2], see Figs. 3.2, 3.3. SSFM

is formulated as a sequence of alternating steps: the linear steps introducing the dispersive

broadening �ą [·] and accounting for linear losses, and the full nonlinear one, exp(ćą,ģ),
introducing Kerr nonlinear phase shift:

u(İ, Ī) =Dą/2 exp
(
Ką,ģ

)
Dą/2︸                     ︷︷                     ︸

repeat İ/ą times

[u(0, Ī)],

exp
(
Ką,ģ

)
[u(Ī)] = exp

(
ğ
8

9
Ą

1− ě−Ăą

Ă
Ĝ

(
(ģ− 1

2
)ą

)
∥u(Ī)∥2

)
u(Ī).

(3.5)

So we can think of the RP model as of the simplified SSFM model, Eq. (3.5), where at every

particular nonlinear step we neglect all the nonlinear steps done before or occurring after it.

The RP model assumes the first order approximation in the nonlinear parameter Ą, meaning

that we disregard the effect of all nonlinear steps on each other, and reduce the exponent in

the nonlinear step of SSFM in Eq. (3.5), to a linear approximation exp
(
Ką,ģ

)
≈ Ką,ģ, i.e.

use the expansion exp(Į) ≈ 1+ Į +O(Į2).
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Compared to the “conventional” channel modelling by applying the full SSFM, the

RP-model application for channel modelling has two main advantages in the context of

end-to-end learning. First, the key advantage of RP is its parallel structure, i.e. its separability

into the branches, where each particular branch requires approximately the same routine for

its contribution’s calculation. This RP property allows speeding up the computation of signal

evolution and the computation of gradients via the "back-propagation" stage. Hence, the

overall E2E learning is parallelizable in a straightforward way, which obviously benefits our

using modern multi-thread computational hardware, e.g. multicore processors and graphics

processing units (GPUs). Second, the parallel structure of the RP model can increase the

numerical stability of end-to-end learning. As noted in [21], the SSFM structure mimics the

one of a typical convolutional NN made up of interchanging convolutions and point-wise

nonlinearities. These complex multi-layered structures are prone to numerical errors in

gradient estimation, referred to an infamous exploding/vanishing problem [61, 144]. The

simpler structure of RP model allow us to circumvent the gradient estimation problems by

having a single nonlinear step per branch.

Notably, in addition to all the aforementioned benefits, the RP model offers a rather good

approximation for the precise SSFM model. We compare RP and SSFM channel models

later for state-of-the-art short-range and long-haul links, correspondingly, in Sections 3.3.1.2

and 3.3.2.2.

3.2.4 Receiver

For each received symbol įğ ∈ Y, the receiver can estimate the posterior probabilities of

either each symbol ĩģ ∈ S, ĉ = |S| or the bit label bğ = [Ęğ,1, . . . , Ęğ,ć],ć = log2(ĉ) being

transmitted in the corresponding ğ-th time slot. Particularly, in the first case, the receiver

estimates the vector of posterior probabilities ħď |ĕ (Įğ = ĩģ |įğ) of each alphabet symbol ĩģ ∈ S

being transmitted in the time slot Įğ which corresponds to the received one įğ. In the second

case, the receiver estimates the posterior probability ħþ|ĕ (Ęğ, Ġ = Ę |įğ) of bit values Ę = {0,1}
sent in every Ġ-th element of the transmitted bit vector bğ.

We applied a commonly used mismatched Gaussian receiver to estimate the posterior

probabilities [170, 171]. In this approach, the conditional probability linking the channel

input and output, ħĕ |Ĕ , is assumed to obey a Gaussian distribution:

ħĕ |Ĕ (įğ |Įğ) =
1

ÿĂ2
ă

exp

(
−∥įğ − Įğ∥2

Ă2
ă

)
, (3.6)
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where Ăă is estimated as the mean squared error between the received symbol sequence Y

and the transmitted symbol sequence X recorded before the pre-distorter: Ă2
ă
= E

[
∥Y−X∥2

]
.

First, the estimated distribution ħĕ |Ĕ is used to estimate the symbol posterior probabilities

ħď |Ĕ in a closed form via the Bayesian rule from the symbol occurrence probabilities Ħď and

the assumed conditional channel probability distribution ħĕ |Ĕ . This results in the following

expression

ħď |ĕ (ĩģ |įğ) =
ħĕ |Ĕ (įğ |ĩģ)Ħď (ĩģ)∑ĉ
ģ̃=1 ħĕ |Ĕ (įğ |ĩģ̃)Ħď (ĩģ̃)

. (3.7)

The bit posteriors ħþ|ĕ can be estimated from the symbol ones ħď |ĕ if we have the

information about bit labels corresponding to each transmitted symbol lm ⇐⇒ ĩģ, ∀ĩģ ∈ S.

Let us introduce SĘ Ġ=Ę = {ĩģ ∈ S : Ģģ, Ġ = 1} as the subset of transmission alphabet for

which the Ġ-th bit in the corresponding bit labels is set as "1". The bit posterior probability is

then estimated as

ħþ |ĕ (Ęğ, Ġ = 1|įğ) =
∑
ĩģ∈S

Ħþ |ď (Ęğ, Ġ = 1|ĩģ) ħĔ |ĕ (ĩģ |įğ) =
∑

ĩģ∈SĘ Ġ=1

ħĔ |ĕ (ĩģ |įğ), (3.8)

since Ħþ|ď (Ęğ, Ġ = 1|ĩģ) = {1, if ĩģ ∈ SĘ Ġ=1; 0, if ĩģ ∉ SĘ Ġ=1}. Similarly, defining SĘ Ġ=0 =

{ĩģ ∈ S : Ęğ, Ġ = 0}, we get:

ħþ |ĕ (Ęğ, Ġ = 0|į) =
∑

ĩğ∈SĘ Ġ=0

ħĔ |ĕ (ĩğ |į). (3.9)

Note that ħþ|ĕ (Ęğ, Ġ = 0|į) + ħþ |ĕ (Ęğ, Ġ = 1|į) = 1, ∀į.

3.2.5 Loss and the training procedure

Having described the E2E learning principle of operation and the blocks of the E2E learning

platform, we now bring in a more rigorous description of the learning process. We followed

the training procedure proposed in Ref. [161]. During the training, we optimize the symbol

locations, probabilities, and pre-distorter parameters via a batch gradient descent procedure,

i.e., by a repeated generation of the training symbols’ batches of fixed size and updating the

trainable parameters using the loss gradients (averaged over the batches).

Let us first describe how the training batch of size Ċ is generated. Recall that the

considered transmitter consists of two stages: sampler and pre-distorter. The sampler ran-

domly draws with replacement Ċ indices from the discrete symbol probability distribution

Čď = {Ħď (ĩ1), Ħď (ĩ2), . . . , Ħď (ĩĉ)}, ĩģ ∈ S. Each drawn index is mapped to a corresponding

transmitted normalized symbol Įğ ∈ {ĩģ/
√∑ĉ

ģ=1 Ħď (ĩģ)ĩ2
ģ} and a bit label bğ ∈ L. The sam-
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pled normalized symbols Įğ and labels bi are stacked, respectively, in the input symbol vector

X = [Į1, Į2, . . . , ĮĊ ] and the bit vector B = [b1, . . .bĊ ]. The symbol power normalization

is required to keep the batch power constant during the training. Thereby, we prevent the

algorithm from optimizing the information rate by trivial power level shifts.

The generated training batch is processed by a cascade of pre-distorter, followed by

the channel model. The cascade maps input symbols X to the vector of channel output

symbols Y = [į1, į2, . . . , įĊ ] according to the cascade’s joint probability distribution Čĕ |Ĕ .

The differentiability of both pre-distorter and channel model allows calculating the gradients

of output symbols over the input symbols and over the pre-distorter parameters. Finally, the

receiver estimates the probabilities of “1” and “0” transmitted in every bit slot corresponding

to each of the received symbols: ħþ |ĕ (Ęğ, Ġ = Ę |įğ), įğ ∈ ĕ, Ę ∈ {0,1}.
Having considered the dataset generation, let us describe the losses optimized in the tasks

of end-to-end learning. In [109] it was recommended that the performance metrics based

on information theory offer the most precise predictions of the resulting link performance.

In line with this recommendation, as performance metrics we considered the so called

"mismatched" information rates, which define the performance of communication system

taking into account the non-ideality of decoder. In more detail, the optimal performance in

the link is reached if the decoder produces its decisions based on the real channel conditional

probability distribution Ħĕ |Ĕ . At the same time, the real-world decoders always have to

approximate the distribution Ħĕ |Ĕ with a simpler one ħĕ |Ĕ since Ħĕ |Ĕ is usually extremely

complex. The "mismatched" performance metrics, therefore, estimate an upper bound on

the channel performance for the link using the imprecise decoder ħĕ |Ĕ , in comparison to the

classical metrics assuming ideal Ħĕ |Ĕ-based decoding.

Particularly, we consider the two "mismatched" metrics introduced in [92]. The first one is

the mismatched bit-wise mutual information (BMI), also referred to as the generalized mutual

information (GMI) [153, 172]. BMI defines the information rate achievable in a system with

a bit-metric decoding, a decoding principle where every bit is considered separately. The

second one is mismatched symbol-wise mutual information (MI), usually referred to just as

the mutual information, assuming the per-symbol decoding. The principal difference between

BMI and MI is that the former neglects the information present in the inter-bit dependencies

Ħ(Ęğ, Ġ1 |Ęğ, Ġ2) ∀ Ġ1 ≠ Ġ2 and, hence, produces the lower bounds on information rate.
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3.2.5.1 Mismatched bit-wise mutual information loss

Mismatched bit-wise mutual information (BMI) loss LBMI is defined as [92]

LBMI := max


0; Ą (S) −

ć∑
Ġ=1

Ą (B Ġ |Y)

,

Ą (B Ġ |Y) := −
∑

Ę∈{0,1}
Ħ(Ę∗, Ġ = Ę) ·

Ċ∑
ğ=1

Ħ(įğ |Ęğ, Ġ = Ę) log2

(
ħþ |ĕ (Ęğ, Ġ = Ę |įğ)

)
,

Ą (S) := −
ĉ∑
ģ=1

Ħď (ĩģ) log2(Ħď (ĩģ)), Ħ(Ę∗, Ġ = Ę) =
ĉ∑
ģ=1

Ħď (ĩģ){Ģģ, Ġ = Ę},

(3.10)

where Ċ is dataset size, ĉ is a transmission alphabet cardinality, ć = log2(ĉ) is a bit

label length. Ħ(Ę∗, Ġ = Ę) is a marginal probability of a particular bit value Ę ∈ {0,1} being

transmitted in a Ġ-th position of the bit label corresponding to an arbitrary time-slot, with ∗
being a placeholder for arbitrary index. Ą (S) is the source entropy quantifying the amount

of information carried per a transmitted symbol, Ą (B Ġ |Y) is the Ġ-th bit entropy conditioned

on the channel output, which quantifies the amount of uncertainty left about the Ġ-th bit in

the transmitted bit label Ęğ, Ġ after processing the corresponding received symbol įğ. In turn,

the BMI itself (i.e. our loss L) is interpreted as the amount of information one can extract

about the transmitted bit sequences B from the bit posterior probabilities ħþ |ĕ (Ęğ, Ġ = Ę |įğ)
estimated by the receiver via Eqs. (3.8), (3.9).

All the parts of E2E learning algorithm: transmitter, channel model, receiver, and loss,

were implemented via PyTorch deep learning package [135]. The package implements the

autograd algorithm [17], which calculates the gradient of loss over the trainable parameters,

and the gradient-based optimization routines using the calculated gradients to find the optimal

values of symbols. We now describe the calculation of the gradients in more detail.

We start from calculating the loss gradients over symbol’s locations and pre-distorter

parameters:

ąLBMI

ąĩģ
= −

ć∑
Ġ=1

ąĄ (B Ġ |Y)
ąĩģ

,

ąĄ (B Ġ |Y)
ąĩģ

= −
∑

Ę∈{0,1}
Ħ(Ę∗, Ġ = Ę) ·

Ċ∑
ğ=1

Ħ(įğ |Ęğ, Ġ = Ę)
ą log2

(
ħþ |ĕ (Ęğ, Ġ = Ę |įğ)

)
ąĩģ

,

(3.11)

where the second line expression is simplified since ħþ |ĕ (Ęğ, Ġ = Ę |įğ) is the only term in

LBMI, which depends on symbols and pre-distorter parameters.
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As far as the discrete dataset is used, Ħ(įğ |Ęğ, Ġ = Ę) can be estimated as

Ħ(įğ |Ęğ, Ġ = Ę) =



1

number of batch points with Ęğ, Ġ = Ę
for (įğ,bğ) pairs in the batch;

0 for all other (į,bğ) pairs.

(3.12)

Furthermore, according to the law of large numbers, for big enough batches (Ċ →∞) we

have:

Ħ(Ę∗, Ġ = Ę) ≈
number of batch points with Ęğ, Ġ = Ę

Ċ
. (3.13)

We can simplify Eq. (3.11) by substituting Eqs. (3.12), (3.13) into it:

ąLBMI

ąĩģ
=

1

Ċ

ć∑
Ġ=1

Ċ∑
ğ=1

ą log2(ħþ|ĕ (Ęğ, Ġ |įğ))
ąĩģ

. (3.14)

Similarly, for the loss gradient over the pre-distorter parameters ÿģ,Ĥ, we have:

ąLBMI

ąÿģ,Ĥ

=
1

Ċ

ć∑
Ġ=1

Ċ∑
ğ=1

ą log2

(
ħþ |ĕ (Ęğ, Ġ |įğ)

)
ąÿģ,Ĥ

. (3.15)

Finally, the gradients ą log2

(
ħþ |ĕ (Ęğ, Ġ |įğ)

)
/ąĩģ and ą log2

(
ħþ |ĕ (Ęğ, Ġ |įğ)

)
/ąÿģ,Ĥ can be cal-

culated by autograd algorithm.

In contrast to the gradients above, it is more difficult to calculate the gradient of BMI

loss over the symbol probability distribution ąLBMI/ąĦď (ĩģ). First, we cannot use the

approximation Eq. (3.13), since we have to take into account the dependence of Ħ(Ę∗, Ġ = Ę)
on symbol probabilities Ħď (ĩģ). Second, the source entropy Ą (S) cannot be ignored here,

since it also depends on symbol probability distribution Ħď (ĩģ). Therefore, the gradient

ąLBMI/ąĦď (ĩģ) has a more complex form:

ąLBMI

ąĦď (ĩģ)
=

ąĄ (S)
ąĦď (ĩģ)

−
ć∑
Ġ=1

ąĄ (B Ġ |Y)
ąĦď (ĩģ)

,

ąĄ (B Ġ |Y)
ąĦď (ĩģ)

= −
∑

Ę∈{0,1}
Ħ(Ę∗, Ġ = Ę) ·

Ċ∑
ğ=1

Ħ(įğ |Ęğ, Ġ = Ę)
ą log2

(
ħþ|ĕ (Ę Ġ = Ę |įğ)

)
ąĦď (ĩģ)

−
∑

Ę∈{0,1}

ąĦ(Ę∗, Ġ = Ę)
ąĦď (ĩģ)

·
Ċ∑
ğ=1

Ħ(įğ |Ęğ, Ġ = Ę) log2

(
ħþ |ĕ (Ę Ġ = Ę |įğ)

)
.

(3.16)
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The first term of ąĄ (B Ġ |Y)/ąĦď (ĩģ) is simplified in the same way as Eq. (3.14) by substi-

tuting Eqs. (3.12), (3.13) into it. The second term can be simplified by the substitution of the

actual value of ąĦ(Ę∗, Ġ = Ę)/ąĦď (ĩģ) = {Ģģ, Ġ = Ę}. After that, we arrive at the expression:

ąLBMI

ąĦď (ĩģ)
=

ąĄ (S)
ąĦď (ĩģ)

+ 1

Ċ

ć∑
Ġ=1

Ċ∑
ğ=1

ą log2

(
ħþ |ĕ (Ęğ, Ġ |įğ)

)
ąĦď (ĩģ)

+
ć∑
Ġ=1

Ċ∑
Ĥ=1

Ħ(įğ |Ęğ, Ġ = Ģģ, Ġ ) log2(ħþ |ĕ (Ę Ġ = Ģģ, Ġ |įğ)).
(3.17)

The straightforward application1 of autograd to calculating the gradient ąLBMI/ąĦď (ĩģ)
results in the third term in Eq. (3.17) being neglected. The reason is that the autograd assumes

that the proportion of objects with different classes in the dataset does not depend on the

parameters of trained algorithms, which is the case when an ordinary machine learning

algorithms is trained. In other words, the autograd incorrectly assumes that ąĦ(Ę∗, Ġ =
Ę)/ąĦď (ĩģ) = 0. Therefore, to obtain the correct value of ąLBMI/ąĦď (ĩģ) we calculated the

first two terms of Eq. (3.17) via autograd and, then, added to them the separately calculated

third term.

The computed gradients: ąLBMI/ąĩģ, ąLBMI/ąÿģ,Ĥ, and ąLBMI/ąĦď (ĩģ), were then

used by the Adam optimizer [85] to train the respective communication system parameters.

3.2.5.2 Mismatched symbol-wise mutual information loss

Mismatched bit-wise mutual information (MI) loss LMI is defined as

LMI := max[0; Ą (X) −Ą (X|Y)] ,

Ą (X) := −
ĉ∑
ģ=1

Ħď (ĩģ) log2(Ħď (ĩģ)),

Ą (X|Y) := −
ĉ∑
ģ=1

Ħď (ĩģ) ·
Ċ∑
ğ=1

Ħ(įğ |Įğ = ĩģ) log2

(
ħĔ |ĕ (Įğ = ĩģ |įğ)

)
(3.18)

where Ċ is a dataset size, ĉ is a transmission alphabet cardinality. Ħ(įğ |Įğ = ĩģ) is a

conditional probability of a particular symbol įğ being received given that ĩģ ∈ ď symbol

was transmitted in the i-th time-slot Įğ corresponding to the received one. Ą (X) is the source

entropy quantifying the amount of information carried per a transmitted symbol, Ą (X|Y)
is the source entropy conditioned on the channel output, which quantifies the amount of

1By the “straightforward” autograd application we imply applying it to the calculation of gradients over the

whole BMI loss LBMI, Eq. (3.10), instead of the separate processing of loss terms from Eq. (3.17).
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uncertainty left about which symbol ĩģ ∈ ď was transmitted in slot Įğ after processing the

corresponding received symbol įğ. In turn, the MI LMI itself can be interpreted as the amount

of information one can extract about the transmitted symbol sequence X from the symbol

posterior probabilities ħď |ĕ (ĩģ |įğ) estimated by the receiver via Eq. (3.7).

As with BMI optimization, described in Section 3.2.5.1, we utilize the PyTorch deep

learning package [135] to automatically calculate the gradient of loss LMI over the parameters

of the learnt shaping via autograd algorithm [17]. To do this, following the E2E learning

paradigm, we implement the transmitter, channel model, receiver, and loss, as trainable

blocks described via PyTorch’s constructions. Unfortunately, similar to BMI optimization,

the straight-forward application of autograd to the calculation of loss gradients would result

in wrong results. In the following we describe the proper gradient calculation procedure.

We start from calculating the loss gradients over symbol’s locations ĩģ ∈ ď and pre-

distorter parameters ÿģ,Ĥ. First, let’s focus on the gradient over symbol locations ĩģ. Let’s

note that ħď |ĕ (ĩģ |įğ) is the only term in LBMI, which depends on symbols and pre-distorter

parameters. Therefore,

ąLMI

ąĩĢ
= −ąĄ (X|Y)

ąĩĢ
,

ąĄ (X|Y)
ąĩĢ

= −
ĉ∑
ģ=1

Ħď (ĩģ) ·
Ċ∑
ğ=1

Ħ(įğ |Įğ = ĩģ)
ą log2

(
ħď |ĕ (ĩģ |įğ)

)
ąĩĢ

,

(3.19)

where Ģ ∈ {0,1, . . . , ĉ} is an arbitrary symbol index. Since we operate on the discrete-

sampled finite-batch dataset, Ħ(įğ |Įğ = ĩģ) can be estimated from this limited sample as

Ħ(įğ |Įğ = ĩģ) ≈



1

number of batch points with Įğ = ĩģ
for (įğ, ĩģ) pairs belonging to the batch;

0 for all the other (į, ĩģ) pairs.

(3.20)

Furthermore, according to the law of large numbers, for the batch of the size big enough

Ċ →∞ we have:

Ħď (ĩģ) ≈
number of batch points where Įğ = ĩģ

Ċ
. (3.21)

We can simplify Eq. (3.19) by substituting Eqs. (3.20), (3.21) into it:

ąLMI

ąĩĢ
=

1

Ċ

Ċ∑
ğ=1

ą log2

(
ħď |ĕ (Įğ |įğ)

)
ąĩĢ

, (3.22)
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where Įğ denotes the symbols actually transmitted in the i-th timeslot corresponding to įğ one.

We consider here the receiver decisions ħď |ĕ only for the pairs of the transmitted and received

symbols (Įğ, įğ) belonging to the considered batch, not for an arbitrary alphabet symbol ĩģ.

This results from the simplification introduced by Eq. (3.20) that Ħ(įğ |ĩģ) = 0, if ĩģ ≠ Įğ.

Similarly, for the loss gradient over the pre-distorter parameters ÿģ,Ĥ:

ąLMI

ąÿģ,Ĥ

=
1

Ċ

Ċ∑
ğ=1

ą log2

(
ħď |ĕ (Įğ |įğ)

)
ąÿģ,Ĥ

. (3.23)

Autograd algorithm can be further applied to calculate the gradients ą log2

(
ħď |ĕ (Įğ |įğ)

)
/(ąĩĢ)

and ą log2

(
ħď |ĕ (ĩĢ |įğ)

)
/ąÿģ,Ĥ.

The main difficulties arise when calculating the gradients of MI loss LMI over the

symbol probability distribution ąLMI/ąĦď (ĩĢ). First, we can no longer use the approximation

Eq. (3.21) to replace the symbol probabilities Ħď with a constant, since Ħď is the differentiated

variable now. Second, the source entropy Ą (X) has to be taken into account, since it

also depends on the variable symbol probability distribution Ħď. Therefore, the gradient

ąLMI/ąĦď (ĩĢ) is more complex than the previously considered ones:

ąLMI

ąĦď (ĩĢ)
=

ąĄ (X)
ąĦď (ĩĢ)

− ąĄ (X|Y)
ąĦď (ĩĢ)

,

ąĄ (X|Y)
ąĦď (ĩĢ)

= −
ĉ∑
ģ=1

Ħď (ĩģ) ·
Ċ∑
ğ=1

Ħ(įğ |Įğ = ĩģ)
ą log2

(
ħď |ĕ (ĩģ |įğ)

)
ąĦď (ĩĢ)

−
Ċ∑
ğ=1

Ħ(įğ |Įğ = ĩĢ) log2

(
ħď |ĕ (ĩĢ |įğ)

)
.

(3.24)

We simplify the first term of ąĄ (X|Y)/ąĦď (ĩģ) in the same way as Eq. (3.22) by substituting

Eqs. (3.20), (3.21) into it. Also, we can simplify the second term of ąĄ (X|Y)/ąĦď (ĩģ) by

substituting Eq. (3.20) there. After that, we arrive at the expression:

ąLMI

ąĦď (ĩĢ)
=

ąĄ (S)
ąĦď (ĩĢ)

+ 1

Ċ

Ċ∑
ğ=1

ą log2

(
ħþ |ĕ (Įğ |įğ)

)
ąĦď (ĩģ)

+
Ċ∑
Ĥ=1

Ħ(įğ |Įğ = ĩĢ) log2

(
ħď |ĕ (Įğ |įğ)

)
.

(3.25)

In view of the approximation defined by Eq. (3.20) the third term can be understood as a

mathematical expectation of the receiver decision over all the batch data pairs (Įğ, įğ) where
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the symbol of interest ĩĢ was transmitted įğ : Įğ = ĩĢ , i.e

Ċ∑
Ĥ=1

Ħ(įğ |Įğ = ĩģ) log2

(
ħď |ĕ (Įğ |įğ)

)
= E

ğ:Įğ=ĩĢ

[
log2

(
ħď |ĕ (ĩĢ |įğ)

) ]
(3.26)

Similar to BMI, the straightforward application of autograd to calculating the gradient

ąLMI/ąĦď (ĩĢ) results in the neglection of the third term in Eq. (3.25). The reason is that

autograd assumes that the distribution of transmitted characters in batch does not depend on

the training parameters, while this is not true for the symbol occurence probabilities Ħď (ĩĢ).
Hence, to obtain the correct gradient value ąLMI/ąĦď (ĩĢ) we calculated the first two terms

of Eq. (3.25) via autograd and, then added to them the third term.

The transmitter parameters ĩĢ , Ħ(ĩĢ), and ÿģ,Ĥ were trained via Adam optimizer [85]

consuming the respective gradients ąLMI/ąĩĢ , ąLMI/ąÿģ,Ĥ, and ąLMI/ąĦď (ĩĢ).

3.3 Results

3.3.1 End-to-end learning the single-span link

3.3.1.1 Testcase

Having proposed the end-to-end learning algorithm for the general coherent fiber-optic

communication link, we illustrate its benefits on the particular case of a single-span link.

More specifically, we numerically consider the dual-polarized (DP) 64 GBd transmission of

256-symbol constellations over the 1x170 km single mode fiber (SMF) link. A root-raised-

cosine with roll-off factor of 0.1 is used for pulse shaping. The SMF parameters were taken

as: chromatic dispersion coefficient � = 16.8 ps/(nm*km), effective nonlinear coefficient

Ą = 1.14 (W*km)−1, loss coefficient Ă = 0.21 dB/km. The span is followed by a lumped

optical amplifier (OA) with the noise figure 4.5 dB.

During the E2E system training, we used the RP model, Eq. (3.5), with ĊĘĨ = 100

branches, as an auxiliary channel model. RP model was applied at 2x upsampling to grasp

the spectrum distortion caused by nonlinearity. At the same time, the performance of the

learnt constellations was estimated using the “precise” SSFM, i.e. via the channel model

shown in Eq. (3.4).

In our current work we focus on a single-span link, because in such a case the nonlinearity-

aware constellation shaping is expected to produce a considerable gain [162]. However,

we emphasize that our method is equally applicable for other fiber-optic communication

systems, where, of course, the ultimate gain figures can be different. For instance, in [3] we
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(a) The received signal-to-noise ratio (SNR) for

SSFM and RP models.

(b) Signal-to-distortion ratio (SDR) comparing the

mismatch in the deterministic distortion injected

by SSFM and RP with the SNR for SSFM model.

Fig. 3.4 Comparison between channel models based on first-order regular perturbation

(RP) and split-step Fourier method (SSFM) approximating the 64 GBd single channel dual-

polarised transmission of unshaped 256QAM signal over 1x170 km SMF link. This figure is

taken from [1].

successfully applied the similar E2E learning technique to train the geometric constellation

shaping and the nonlinear pre-distorter for the 64 GBd transmission over the long-haul 30x80

km (2400 km) SMF link.

3.3.1.2 RP model channel approximation precision

We start from showing that RP model, despite being a simplified one, offers a decent

approximation of the precise SSFM model. For the testcase, considered in this paper, we

compared how do RP and SSFM model the propagation of an unshaped 256-QAM signal.

In Fig. 3.4, first, we plot the signal-to-noise ratio (SNR) of the received signals after the

chromatic dispersion compensation (CDC) was applied. One can see that the SNR is nearly

the same for both the SSFM and RP models in the weakly nonlinear regime (up to 10 dBm),

and, most notably, the correspondence is still good around the optimal launch power level

of Čopt ≈ 10 dBm. To demonstrate that this SNR-value-similarity comes directly from RP

model correctly approximating the determenistic nonlinear distortions introduced by SSFM,

we compared the outputs of the models in the noiseless scenario: we fed the same input

signal to both models, while they generated no ASE noise, i.e. them were modelling only

the deterministic distortions introduced into the propagated signal - chromatic dispersive

broadening and Kerr nonlinearity. We quantified the difference between the outputs of nois
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eless RP YRP and SSFM YSSFM in terms of signal-to-distortion ratio (SDR), defined as

−20log10 (∥YSSFM∥/∥YRP −YSSFM∥), also added to Fig. 3.4b. We see there that up to 10.5

dBm, the SDR is at least 20 dB larger than the received SNR, modelled by SSFM, implying

that the approximation error of the RP model is much smaller than the total distortion in

the link. As from Fig. 3.4 we readily see that the RP model renders a very good channel

approximation for the case considered, and the deterministic mismatch between the models

cannot noticeably affect the E2E system training.

3.3.1.3 Learning the constellation shaping without pre-distorter

Fig. 3.5 The performance of the constellation shaping without pre-distortion: the refer-

ence Maxwell-Boltzmann (MB-256QAM) shaping, learnt probabilistic shaping (E2E-PS-

256QAM), and the learnt joint probabilistic and geometric constellation shaping (E2E-JS-

256). This figure is taken from [1].

Once we have tested the accuracy of the RP model, we turn to the results for the E2E

learning the constellation shaping.

In the first case, we consider learning the constellation shaping in a link without a pre-

distorter, i.e. it was disabled and we learnt only PS and GS of separate symbols. This

option is well suited for the use cases when there is no opportunity to implement a separate

pre-distorter at the transmitter, typically, because of the limited complexity and/or power

budget.

Before training, we initialized the encoder with a MB-shaped 256QAM constellation,

defined in Eq. (3.1). To find the MB shaping parameter ĉ we, first, initialized the constellation
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(a) MB-256QAM (b) E2E-PS-256QAM (c) E2E-JS-256

Fig. 3.6 Constellations applied at the optimal power level for the case of the link where no

nonlinear pre-distortion has been applied. This figure is taken from [1].

(a) Effective SNR. (b) 4th constellation moment č4. (c) 6th constellation moment č6.

Fig. 3.7 The comparison between the metrics of reference Maxwell-Boltzmann 256QAM

(MB-256QAM) and the E2E learnt JS (E2E-JS-256) constellations. The effective SNR

was measured in the 1x170 km SMF link modelled by precise SSFM. This figure is taken

from [1].

as an unshaped 256QAM one and recorded the SNR produced by this constellation between

the input and output of the auxiliary channel model. The MB shaping parameter ĉ was

chosen as to have the optimal value for the AWGN channel producing the same SNR level.

The MB constellation with the ĉ parameter value found in this way was used as a starting

seed for all the following learning of constellation shapings and its performance was used as

a reference one.

We did the two types of constellation shaping learning. In the first experiment, we

learnt just the PS. This is a preferable case for the links, where introducing the GS is not

favored. The benefit of PS is that, while providing the performance gain, it keeps the square

grid of QAM constellation intact (see Fig. 3.6b). Having the square grid of the transmitted

constellation allows one to use the cost-effective blind DSP algorithms to recover the signal

at the receiver [26] and lower the required precision of a digital-to-analog converter at the

transmitter by limiting the range of signal powers along I- and Q- components present in the

transmitted signal. In the second experiment, we jointly learnt the PS and GS to highlight the
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full single-symbol joint shaping (JS) gains reachable by the E2E learning strategy. For the

PS, the training started from the reference MB shaped constellation. Then, the PS, learnt at

the first stage, was used as an initial seed for the JS E2E learning.

The whole training procedure: constellation initialization as the MB-shaped one, learning

the PS, and learning the JS, was done separately for a range of power levels. Fig. 3.5

showcases the performance achieved by these shaped constellations in a validation SSFM

simulation. The learnt PS (E2E-PS-256QAM) resulted in the 0.043 bits/2D-symbol BMI

gain on top of MB-shaping, and led to ≈ 0.25 dBm increase in optimal power level. The

learnt JS (E2E-JS-256) including both PS and GS, led to nearly doubling the performance

gain: it resulted in 0.074 bits/2D-symbol BMI gain on top of MB-shaping.

The better performance of learned constellations can be partly explained by the fact that

they produce a higher effective SNR in the link. Figure 3.7a shows that the effective SNR of

the learned JS is higher than that of the reference MB shaping. Furthermore, we can quantify

the difference between the constellations, leading to different SNR values. The extended

Gaussian noise (EGN) model [105] suggests that the SNR of a signal propagated over a

non-linear channel depends on the constellation and is inversely proportional to its 4th č4 and

6th č6 standard moments, where the k-th standard moment čġ of the input symbol sequence

X is defined as

čġ [X] =
E

[
|X−E[X] |ġ

]
(
E

[
|X−E[X] |2

] ) ġ/2 (3.27)

and E[·] stands for the expectation value. Indeed, Figs. 3.7b, 3.7c show that č4, č6 moments

of the E2E learnt JS are lower than the ones for the MB constellation. Furthermore, the

difference in SNR, and č4, č6 moments, increases with the rise of the launch power, when

the nonlinear distortions strengthen.

3.3.1.4 Learning the cost-effective pre-distorter via end-to-end learning

Once we have considered the single-symbol conventional constellation shaping, we move to

the more advanced case of memory-aware shaping, i.e., the shaping when the transmitted

symbol depends not only on the message transmitted in the corresponding time slot, but also

on the messages transmitted in the neighbouring slots. To be effective, a constellation shaping

should take into account the symbols co-propagating in the neighbouring slots, since they

contribute to the deterministic nonlinear distortions introduced into the transmitted symbol

of interest. We name this approach as the multi-symbol constellation shaping (MSCS).

Thankfully, the RP-based auxiliary channel model, Eq. (3.4), implemented into the E2E

learning algorithm proposed in this work, allows the E2E learning of MSCS, since the RP

introduces inter-symbol deterministic nonlinear distortions. Conversely, the EGN-based
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Fig. 3.8 The dependence of the performance of pruned indirectly learnt perturbation-based

pre-distorter (PPD) with |ģ |, |Ĥ| f 10 on the margin of the most significant ÿģ,Ĥ coefficients

non-zeroed during the pruning procedure. The PPD training was done on the RP model,

while the performance was measured in precise SSFM simulation. Inset: The distribution of

PPD coefficients ÿģ,Ĥ learnt and pruned with the cut-off leaving 25% of the coefficients. PPD

coefficients zeroed by pruning are denoted as white squares. This figure is taken from [1].

auxiliary channel model [105], suggested in previous works for end-to-end learning the

coherent optical communications [152, 167], does not support the MSCS learning: the EGN

replaces the actual inter-symbol nonlinear distortion with the symbol-independent Gaussian

noise and, therefore, prevents the E2E learning of dependencies between the neighbouring

symbols.

We propose the MSCS implementation as a combination of single-symbol JS, described

in the previous subsection, and the nonlinear PPD-based pre-distorter, Eq. (3.2), jointly

trained in a single run of E2E learning. Before considering the MSCS training as a whole,

we focus on the E2E learning for the cost-effective pre-distorter. We note that it is important

to reduce the complexity of pre-distorter, inasmuch as its complexity defines the additional

costs of MSCS implementation over the single-symbol JS, and, therefore, denominates the

feasibility of the whole MSCS implementation.

As mentioned in Sec. 3.2.2, the PPD-based pre-distorter performance-to-complexity ratio

is defined by the range of nonlinear perturbation terms Đģ,Ĥ. An effective way to set it is by

keeping in the algorithm only the terms Đģ,Ĥ for which the corresponding coefficient |ÿģ,Ĥ |
has the absolute value above the fixed cut-off threshold: |ÿģ,Ĥ | > ÿcutoff. We refer to this
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approach as the pre-distorter pruning, in analogy with the similar technique from neural

networks optimization [173].

We seek to find the optimal ÿcutoff value by a grid search. First, we loaded the unshaped

256QAM constellation to the sampler, and excluded it from E2E learning. Then we trained

the PPD with |ģ |, |Ĥ| f 10, and pruned it with the range of various cut-off values ÿcutoff.

We measured the performance of the generated family of E2E learnt pre-distorters on the

precise SSFM channel model. The dependence of the measured performances of the link

with the pruned PPD, on the share of pruned coefficients ÿģ,Ĥ, is given in Fig. 3.8. The figure

shows that when we keep aroung 25% of the most significant PPD terms Đģ,Ĥ, adding the

new ones leads to negligible improvement in the resulting algorithm’s performance. This

pruning scheme will be used in the following MSCS learning.

Notably, the distribution of the learnt PPD coefficients |ÿģ,Ĥ | agrees with the approx-

imation suggested in [120], implying that |ÿģ,Ĥ | ∼ 1/|ģĤ|. The inset of Fig. 3.8 shows

the distribution of the absolute value of coefficients |ÿģ,Ĥ | in the aforementioned indirectly

trained PPD with 25% coefficients left. One can see that, the cut-off boundary, where

|ÿģ,Ĥ | ≈ ÿcutoff, indeed has the hyperbolic shape ģ ∼ 1/Ĥ, as the theory suggests[120].

3.3.1.5 Learning the memory-aware constellation shaping

We have defined the cost-effective perturbation-based pre-distorter (PPD) in the previous

subsection, and now we consider the E2E learning of the MSCS enabled by the pre-distorter.

The MSCS estimates the performance gains reachable by the proposed E2E learning algo-

rithm, when no complexity-limiting constraints are put on it. The set of non-pruned triplets

Đģ,Ĥ, defined during the PPD initialization, was kept fixed during the following E2E learning.

After the initialization, we simultaneously optimized the PPD with joint probabilistic and

geometric single-symbol constellation shaping, thereby arriving at the MSCS shaping.

The pre-distorter initialization followed by the E2E MSCS learning was done separately

for a range of launch powers. The performance of the resulting learnt constellation measured

on the precise SSFM channel model is given in Fig. 3.9. For comparison, we also plotted the

performance of the single-symbol constellation shapings learnt in Sec. 3.3.1.3: MB-256QAM

and E2E-JS-256. Compared to the reference MB constellation shaping, the MSCS led to the

considerable improvement in system’s GMI, giving 0.48 bits/2D-symbol, and the optimal

power level moved up by ≈ 1.25 dBm.

V. Neskorniuk, PhD Thesis, Aston University 2022. 87



3.3 Results

Fig. 3.9 The performance of the end-to-end learnt multi-symbol constellation shaping (E2E-

MSCS-256). For reference, we added to the figure the performance of Maxwell-Boltzmann

(MB-256QAM), and the learnt JS (E2E-JS-256). This figure is taken from [1].

3.3.2 End-to-end learning the long-haul link

3.3.2.1 Testcase

In the previous section, we brought the results achieved by the end-to-end (E2E) learning

of the constellation shaping for a single-span link. In this section, we apply E2E learning

to a state-of-the-art coherent link. By considering this testcase we intend to show that the

proposed E2E learning algorithm is applicable to a broad range of fiber-optic communication

links.

In more detail, in this section as a testcase we numerically consider single-channel (SC)

dual-polarized (DP) 64-symbol transmission at 64 Gbaud over a long-haul link formed by 30

spans of 80 km SSMF. The pulse shaping and fiber parameters were taken the same as in the

previous Section 3.3.1.1. Every span was followed by an ideal lumped OA with noise figure

NF = 4 dB.

Another difference from the previous testcase is that here we considered a multi-stage RP

model as an auxiliary channel model during E2E learning. The compared RP-based channel

model was made by a sequence of the three same RP algorithms each covering one third of

the link and covering every 80 km fiber span with 10 branches. This configuration of RP

model gave the optimal accuracy to complexity ratio for the considered testcase.

Furthermore, the receivers considered in this testcase differed in two main ways from the

ones considered in the previous testcase. First, they were designed to map every received
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Fig. 3.10 Comparison of 3-stages RP model with the SSMF simulation. The approximation

error of the RP model is much smaller than the total distortion. This figure is taken from

article [3]. ©IEEE 2022.

symbol įğ ∈ Y to a set of posterior probabilities Č(ĩģ |įğ) of each constellation point ĩģ ∈ ď

being transmitted, not bit posteriors Č(Ęğ, Ġ |įğ) considered in previous sections. The second

difference was that the decoders considered in this section used more complex trainable

algorithms to estimate the posteriors.

First, we applied a neural-network (NN)-based trainable receiver. It was implemented

as a dense NN with trainable weights. The network started with the input layer having the

two neurons accepting separately the real Re[įğ] and imaginary Im[įğ] parts of the received

symbol įğ. The input layer is followed by two hidden layers, with 32 neurons each, and

a 64-neuron output layer. The hidden layers and the output layer, correspondingly, used

rectified linear unit (ReLU) [174] and softmax [9] as activation functions.

Second, to illustrate the quality of the learnt NN-based receiver we compared it with the

optimal decoder implementation estimating the symbol posteriors ħĔ |ĕ (ĩģ |įğ) via formula

Eq. (3.7) with the channel conditional probability distribution ħĕ |Ĕ being estimated via

kernel density estimator (KDE) instead of analytical expression Eq. (3.6). In more detail,

the channel conditional probability linking the channel input and output, ħĕ |Ĕ is estimated

from the set of transmitted X and received symbols Y via kernel density estimator (KDE)

implementation from [175].

Meanwhile, similar to the previous test, while end-to-end learning the constellation

shaping was done using RP as an auxiliarry channel model, the performance of learnt con-

stellations was estimated using the "precise" SSFM solver of Manakov equations, Eq. (3.4).
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3.3.2.2 RP model precision

In the beginning, we checked whether the RP model is accurate enough by comparing it

with precise SSFM in terms of signal-to-noise ratio SNR(X,Y) = 20log10 ( | |X| |/| |Y−X| |),
where X is the baseband signal at the input of the channel and Y is the signal on the output

of the channel post-processed by an ideal chromatic dispersion compensation (CDC). The

comparison procedure was similar to the one outlined in Section 3.3.1.2. In more detail,

we fed RP and SSFM with the same DP-64QAM symbol sequence X and compared SNRs

between the input X and the output post-CDC Y baseband symbol sequences. The obtained

SNRs for RP and SSFM models are given in Fig. 3.10. One can see that the difference

between SNRs for RP and SSFM is at negligibly small level < 0.06 dB up until the practically

important optimal power level Č = 2.5 dBm, where the links typically operate. Nevertheless,

at higher powers, the SNRs mismatch between RP and precise SSFM model increases,

since the assumption of weak nonlinearity laid in the foundation of RP model is no longer

applicable here.

Similar to Section 3.3.1.2, we illustrated the strength of RP model approximation error

by comparing the deterministic distortion introduced by RP and SSFM models. To do this,

we considered RP and SSFM models with the ASE noise being turned off. We fed both

noiseless models with the same unshaped DP-64QAM signal and compared their outputs.

As in previous section, the difference between the RP and SSFM mode outputs, YRP and

YSSFM, respectively, was quantified in terms of the signal-to-distortion ratio defined as

SDR = 20log10 (∥YSSFM∥/∥YRP −YSSFM∥). The results are given in Figure 3.10. Notably,

up to the optimal power level 2.5 dBm, SNRs of RP and SSFM models agree. Furtermore,

up to this level SDR is at least 13 dB larger than the received SNR, implying that the

approximation error of the RP model is much smaller than the total distortion in the link. As

expected, at higher power levels in highly nonlinear regime the disagreement between RP

and SSFM models strengthens.

3.3.2.3 Performance gains of end-to-end learning

Following Section 3.3.2, for the aforementioned testcase of a long-haul link, we considered

end-to-end learning of single-symbol and multi-symbol constellation shapings. First, we

learnt the single-symbol geometrical shaping of a 64-letter constellation (GS-64). Second,

we learnt the multi-symbol constellation shaping made up by the aforementioned geometrical

constellation shaping and nonlinear pre-distortion (GS-64 + PPD), in a way similar to

the one considered in Section 3.3.1.5. Particularly, in an end-to-end learning process we

simultaneously optimized the constellation shaping and the weights of perturbation-based
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pre-distorter. We considered a perturbation-based pre-distorter Eq. (3.2) with the range of

considered nonlinear perturbation triplets Đģ,Ĥ : |ģ | f 10, |Ĥ| f 10. No pruning of nonlinear

perturbation triplets Đģ,Ĥ was considered in this experiment.

As performance metrics we optimized the symbol-wise mutual information (MI). The

shapings were separately trained for every considered launch power level over RP-based

auxiliary channel model. Later, we validated the performance of learnt constellations on the

precise SSFM-modelled link.

Fig. 3.11a shows the mutual information reached by the validation SSFM-based link im-

plementing the E2E-learnt single-symbol and multi-symbol geometric constellation shaping.

As reference, we compare the performance of the learnt constellations with the unshaped

64QAM constellation (referred as 64QAM). Since, the autoencoder training results are

dependent on the initial random generator seed, we run the training 10 times with 10 different

starting seeds for every power level by redefining in every training run the starting NN weights

distribution and the distribution of ASE noises injected by channel model. For each point on

the Figure 3.11a we estimated the actual value of MI and its error via, correspondingly, the

mean and standard deviation of the range of obtained MI values.

We observe that implementation of the E2E learnt constellations results in a considerable

mutual information gain. The learnt single-symbol geometric constellation shaping produced

MI gain of ≈ 0.14 bits/sym./pol. while the MI gain of a multi-symbol constellation shaping

rose further to ≈ 0.20 bits/sym./pol. The optimal launch power also increased by ≈ 0.5 dB.

Next, we quantified the differences between the considered signal shapings. First, in

Figure 3.11b we compared the effective signal-to-noise ratios produced by the considered

shapings. Notably, the pure GS-64 shaped signal produced SNR worse than the unshaped

64QAM signal. At the same time, multi-symbol GS-64 + PPD shaping, managed to reverse

this trend and produced effective SNR values higher than both 64QAM and GS-64 shapings.

To illustrate the possible reasons for the reported SNR difference, we consider the

statistics of the learnt constellations. As mentioned in Section 3.3.1.3, the SNR generated by

constellation is known to be inversely proportional to its 4th č4 and 6th č6 order standard

moments described by Eq. 3.27. On Figures 3.11c and 3.11d we compared, respectively,

the 4th and 6th standard moments for the 64QAM, GS-64 constellation shaping, and the

geometrical shaping component of the multi-symbol GS-64 + PPD shaping. Similar to our

findings reported in [164], we found there that the lower SNR value of E2E learnt GS-64

shaping compared to the reference unshaped 64QAM constellation corresponds to the GS-64

signal having higher values of the standard moments č4 and č6. Notably, the moments’

value for GS-64 and the GS part of multi-symbol shaping is nearly the same, which might
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(a) Symbol-wise mutual information (MI).

(b) Effective signal-to-noise ratio

(SNR).

(c) 4th order standard

constellation moment.

(d) 6th order standard

constellation moment.

Fig. 3.11 The results of end-to-end learning the geometric constellation shaping in a realistic

case of a 64GBd 30x80 km SSMF link, described in Section 3.3.2.1. In the figures we

compare the performance and metrics for unshaped 64QAM signal (64QAM), single-symbol

geometrically shaped 64-letter constellation (GS-64), and the multi-symbol geometrical

constellation shaping implemented as a combination of simultaneously learnt GS-64 shaping

and the perturbation-based pre-distorter (PPD + GS-64). For GS-64 and PPD + GS-64

cases the stadard moments are calculated only for the single-symbol geometrically shaped

constellation via formula Eq. 3.27.

indicate that higher SNR and MI values corresponing to GS-64 + PPD shaping compared to

single-symbol GS-64 shaping are mostly caused by an addition of the trainable pre-distorter.
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3.4 Summary

The end-to-end learning of the optical coherent detection communication system offers

a possibility to specialize the characteristics of the transmitted signal to the properties of

the nonlinear channel. However, we underline that the two main problems are typically

associated with the E2E learning implementation.

The first problem relates to the overall complexity of modelling the channel distortions,

where the latter constitute an intricate mix of instantaneous nonlinear fiber responses in-

tertwining with a dispersive pulse broadening. The modelling of modern high-baudrate

links is especially difficult because of a huge dispersive memory, implying a considerable

complexity and time consumption of the split step simulations. In our work, we address this

issue by proposing a parallelizable simplified channel model based on the first-order regular

perturbtaion [2]. The model is described in Section 3.2.3.

The second challenge is the difficulty of introducing the concept of trainable discrete

probability distribution into the machine learning algorithm. In our paper, this problem is

addressed by adopting a novel training procedure proposed first in Ref. [161] for the AWGN

channel. The training procedure combines the conventional batch gradient descent with the

custom gradient calculation procedure. The training procedure is described in Section 3.2.5.

The resulting composite solution, proposed and demonstrated in this work, made possible

learning the joint probabilistic and geometric shaping of symbol sequences. Even though the

considered approach is still sub-optimal, the computed multi-symbol constellation shapings

have shown the considerable performance improvement in the both considered testcases of

short-haul and long-haul communication links. Particularly, E2E learnt joint probabilistic and

geometric shaping has shown a considerable bit-wise mutual information (BMI) improvement

(of 0.48 bits/2D-symbol) over the conventional Maxwell-Boltzmann shaping for a single-

channel 64 GBd 256-symbol transmission over the 170 km SMF link. Furhtermore, for the

case of a state-of-the-art long-haul transmission link - 64 GBd 64-symbol transmission over

30x80km SMF spans - the E2E learnt geometric shaping has shown a significant symbol-

wise mutual information (MI) gain of 0.2 bits/2D-symbol over the reference unshaped

constellation.

Moreover, we observed that the proposed end-to-end learning is applicable in situations

when, because of hardware or complexity limitations, we cannot use the multi-symbol

shaping. For the aforementioned single-span transmission testcase, we found that a single-

symbol joint probabilistic and geometric shaping gives 0.074 bits/2D-symbol BMI gain

over the reference MB shaping. Similarly, for the considered long-haul communication link,

the single-symbol geometrical shaping outperformed the reference constellation by 0.14

bits/2D-symbol in terms of MI.
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We believe that the end-to-end learning approach, proposed in this chapter, can lay a path

to finding the optimal signal distribution for a variety of nonlinear fiber-optic channels.

3.4.1 Contribution statement and attribution

Chapters 3.1, 3.2, 3.3.1, and Figures 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9 are taken from article

[1] which I co-authored as a leading and corresponding author. Figure 3.10 is taken from

conference paper [3] which I also co-authored as a leading and corresponding author.

I have obtained all the results presented in this chapter, drafted its text, and prepared

all illustrations, besides Figure 3.10, by myself. The method proposed in this chapter was

developed by me together with the co-authors of these articles [1, 3, 164]. The computer

code used in the presented research was written by myself, except for the RP model, written

jointly with Andrea Carnio. This research was done under the supervision of Dr. Vahid Aref,

Prof. Sergei K. Turitsyn, and Dr. Jaroslaw E. Prilepsky.
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Chapter 4

Conclusion

4.1 Results summary

Meeting the capacity demands required nowadays from the telecommunication service

providers necessitates the development and implementation of new approaches to coherent

fiber-optic communication, which forms the backbone of the modern telecommunication

infrastructure. Simultaneously, in the last two decades, a novel class of algorithms, referred

to as machine learning, was shown to reach record-breaking performance in a huge scope of

tasks. These algorithms can improve their performance on a given task by analyzing the set of

processed objects, referred to as the training dataset. A subfield of machine learning, namely

deep learning, has recently enjoyed considerable attention by the research community. In this

thesis, we present applications of the solutions developed in general deep learning domain to

the important problem of mitigating the nonlinear distortions arising in the physical layer of

coherent fiber-optic links.

Chapter 1 lays the theoretical foundation for the key results presented in the following

chapters of this thesis. It introduces the background and main concepts in both deep learning

and digital communication systems, reviews the recent applications of machine learning and

deep learning to mitigating the nonlinear distortions in fiber-optic communication links.

Chapter 2 proposes the method of using the pre-collected datasets in a more effective

way for training the machine learning algorithms aimed at receiver-based nonlinear distortion

compensation. The technique proposes expanding the existing dataset with synthetic points,

generated from the naturally collected ones, an approach known as data augmentation in

a broader machine learning domain. Particularly, the technique suggests employing the

symmetries of the nonlinear Schrödinger equation, the numerical model linking the inputs

and outputs of an optical channel. These symmetries are used to generate the synthetic data

points, which are used along with the originally collected ones in the algorithm training.
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It is shown both numerically and experimentally that the suggested data augmentation

technique reaps considerable benefits when applied to the two dissimilar cases. First, it is

shown to improve the performance of the nonlinearity compensation algorithm training on

insufficient datasets. For the considered testcases, the nonlinearity compensator training on

the augmented dataset led to the same performance, as if it was done on an at least 4 times

bigger natural dataset. Second, when a big enough dataset is used, the data augmentation

can reduce the numerical complexity of training the nonlinearity compensation algorithm. In

more detail, data augmentation allows reducing the size of the dataset used in the algorithm

training, while keeping the same level of the algorithm performance, which leads to the

reduction in the training complexity. For the systems studied in this work, ≈ 2 times training

complexity reduction was observed.

Chapter 3 proposes a novel approach for the nonlinearity mitigation by simultaneous

learning of pre-distorter, equalizer, and constellation shaping robust to the nonlinear dis-

tortions present in a coherent fiber-optic link. These methods are referred to as end-to-end

learning, since they are based on implementing via a single trainable neural network all

the blocks of a fiber-optic communication link end-to-end. The parameters of the link are

then taken from the neural network. The novelty of the proposed approach for end-to-end

learning the coherent fiber-optic communications comes from the two innovations brought

into it. First is the refined training procedure enabling the simultaneous optimization of both

locations and the occurrence probabilities of symbols in the constellation alphabet. Second

is the auxiliary channel model based on the first order perturbation theory allowing a cost-

effective pre-distorter training. Since the resulting combination of the joint single-symbol

shaping and nonlinear pre-distorter is effectively the constellation shaping involving several

neighboring symbols, we refer to it as multi-symbol constellation shaping. The proposed

end-to-end learning technique was successfully applied to learning the multi-symbol shaping

in a single-channel transmission over both a state-of-the-art short-haul single-span link and a

long-haul multi-span link.

Finally, this Chapter concludes the thesis by providing the overall summary of the results

presented in thesis and the directions for future research.

4.2 Possible research directions

As mentioned in the previous section, the results presented in this thesis can be grouped

around two topics - the data augmentation for nonlinearity compensation algorithms, and

the end-to-end learning of multi-symbol shaping. In the following, we outline the possible

directions for the research continuation in each of these fields.
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Regarding the data augmentation, presented in Chapter 2 of this thesis, we believe that

the following research should concentrate on bringing it close to the industrial applications:

• First, the channel model used to derive the transformations, present in the link, should

be refined to include the transceiver distortions present in the link. The currently

considered model Eq. (2.1) describes only the nonlinearities arising in the optical

channel, and therefore, not all the transformations derived from it are applicable to

the real-world links, where the overall distortion is more complex. Notably, in the

field trial, presented in Section 2.5.2, the time-inversion-based data augmentation

stopped providing performance gains. Therefore, a more systematic study of the

real-world links is needed to make a decision on the limits of the applicability of data

augmentation.

• Second, the application of data augmentation to a broader class of nonlinearity compen-

sation algorithms should be considered to verify that gains of data augmentation have

general applicability, i.e, that its performance gains do not depend on the particular

choice of the compensator. Particularly, we suggest to consider various nonlinearity

compensation algorithms based on artificial-neural-network solutions, reviewed in

Section 1.1.2.

End-to-end learning of multi-symbol constellation shaping, proposed in Chapter 3 of this

work, could be also improved in several ways:

• First, one can consider a more general task formulation for a multi-symbol constellation

shaping. Particularly, one can remove the assumption, taken in this work, of multi-

symbol shaping being a cascade of single-symbol conventional constellation shaping

algorithms followed by a nonlinear pre-distorter, and consider the constellation shaping

directly mapping several consecutive bit strings into a sequence of blocks. This should

allow the end-to-end learning algorithm to find more optimal constellation shaping by

allowing it to explore a higher number of degrees of freedom.

• Second, one can improve the applicability of the end-to-end learned constellation

shaping by implementing a more precise auxiliary channel model as part of it. Particu-

larly, employing an auxiliary channel model describing both transceiver and optical

channel nonlinearities should be of great practical and scientific interest. In the results,

presented in the thesis, we focused on the nonlinear distortion generated by the chan-

nel. Nonetheless, the optical channel is not a single source of nonlinear distortions

in the fiber-optic communication link, the transceiver devices could also introduce

considerable nonlinear distortions [176], which have to be taken into account.
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• Third, one can improve the overall performance of the presented end-to-end learning

solution by introducing a trainable receiver into it, able to do some nonlinearity equal-

ization. In the presented work, we considered a fixed mismatched Gaussian receiver

which performed no nonlinearity compensation, since we focused on learning the

constellation shaping. Nonetheless, end-to-end learning the nonlinearity compensation

on top of the constellation shaping should have a better performance than learning the

nonlinearity compensation only.
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