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Schneekloth, U, Schörner-Sadenius, T, Selyuzhenkov, I, Shchedrolosiev, M,
Shcheglova, LM, Sherrill, N, Skillicorn, IO, Słomiński, W, Solano, A, Stanco,
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29Università del Piemonte Orientale, Novara 13100, and INFN, Torino 10125, Italy
30Department of Physics and Astronomy, University of Sussex,

Brighton, BN1 9QH, United Kingdom
31Department of Physics, Jagellonian University, Krakow 31-007, Poland
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Lorentz and CPT symmetry in the quark sector of the Standard Model are studied in the context of an
effective field theory using ZEUS e�p data. Symmetry-violating effects can lead to time-dependent
oscillations of otherwise time-independent observables, including scattering cross sections. An analysis
using five years of inclusive neutral-current deep inelastic scattering events corresponding to an integrated
HERA luminosity of 372 pb−1 at

ffiffiffi
s

p ¼ 318 GeV has been performed. No evidence for oscillations in
sidereal time has been observed within statistical and systematic uncertainties. Constraints, most for the
first time, are placed on 42 coefficients parametrizing dominant CPT-even dimension-four and CPT-odd
dimension-five spin-independent modifications to the propagation and interaction of light quarks.

DOI: 10.1103/PhysRevD.107.092008

I. INTRODUCTION

Relativity is one of the best established principles in
physics. It concerns the invariance of physical laws under
transformations of spacetime orientation including spatial
rotations and velocity boosts. As a core principle of
classical and modern theories, relativity implies that iden-
tical measurements performed with different spacetime
orientations observe the same laws of motion, with their
respective results linked by the appropriate transformation.
In general, any theory exhibiting isotropy under rotations
and relativistic boosts is said to be Lorentz invariant.
Searches for violations of isotropy date back to the

Michelson–Morley experiment, which attempted to mea-
sure the rotational anisotropy of light propagation [1]. Its
null result heavily influenced the support of special

relativity. As rotations and boosts do not commute, the
violation of rotation invariance implies the violation of
boost invariance and vice versa. However, experimental
indications of such symmetry violations do not necessarily
imply Lorentz violation in an underlying fundamental
theory. This can be seen, for example, by considering
the Earth’s motion in the presence of a hypothetical
Lorentz-invariant background field, perhaps representing
a galactic dark-matter halo. If the field’s velocity distribu-
tion is isotropic in the galactic frame as is commonly
assumed, it will be anisotropic in an Earth-based laboratory
frame, leading to locally time-dependent observations
primarily as a function of the Earth’s annual revolution
around the Sun and its axial rotation. Lorentz violation
implies CPT violation in many theoretical frameworks.
Generic searches for violations of rotation invariance
encompass a wide range of possible physical effects.
Model-independent experimental tests of Lorentz invari-

ance and related fundamental symmetries have been
intensively performed for over two decades, with no
significant deviations observed [2]. In spite of the sub-
stantial progress achieved in understanding possible
Lorentz andCPT violation, relatively few studies involving
the quark sector directly have been performed, leaving
unexamined a vast array of potential signals. One reason for
this stems from the difficulty in interpreting quark-level
interactions in stable-hadron and lepton processes. A few
previous collider-based searches have resulted in con-
straints on renormalizable and rotationally invariant
quark-sector effects in the final states of eþe− collisions
using LEP data [3] and on top-quark effects [4] using
Tevatron data [5]. Studies of Lorentz-violating effects in
hadronic processes have recently been addressed in a
series of theoretical studies on deep inelastic scattering
(DIS) [6–8] and the Drell–Yan process [9,10].
This paper describes a search for effective rotation-

violating signals affecting light quarks (f ¼ u, d, s)
performed with e�p data collected by the ZEUS detector
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at HERA. DIS is chosen as a suitable test process because
of its strong theoretical foundation and the wealth of
available data. To remain model independent, the technical
framework employed is rooted in an effective field theory
(EFT) [11] and is reviewed in the following section.
Modified DIS cross sections and related observables
incorporating the effects of interest are then described,
followed by the experimental setup, analysis method and
associated Monte Carlo studies, and a description of
systematic uncertainties. Constraints on effective couplings
parametrizing signals that violate rotational symmetry in
light-quark interactions are given.

II. THEORY

A. The standard model extension

Searches for Lorentz-violating effects often make use of
the comprehensive EFT framework known as the Standard
Model Extension (SME) [12–15]. In the absence of general-
relativistic effects, the SME action may be written as

SSME ¼ SSM þ SLV; ð1Þ

where SSM is the action of the Standard Model and SLV
represents all possible Lorentz-violating terms constructed
from additional interactions of StandardModel fields. These
terms are typically treated as perturbations with respect to
conventional effects. The analysis presented here is restricted
to selected dimension-four and -five operators. As CPT
violation implies Lorentz violation in a unitary and local
quantum field theory [12,16], CPT-violating operators are
also contained in the SME. Further information on the SME
can be found in, e.g., accessible reviews [17,18].
The dimension-four operators, ψ̄fγμiDνψf, considered

here are the dominant spin-independent and renormalizable
quark-sectormodifications of quantumelectrodynamics [6],1

Lc ¼
1

2

X
f

cμνf ψ̄fγμiDνψf þ H:c:; ð2Þ

whereDν ¼ ∂ν þ ieefAν, e is the electron charge, ef are the
relative quark charges and Aν is the photon field. The
coefficients cμνf control the magnitude of Lorentz-violating
effects. Since the coefficient and operator Lorentz indices in
Eq. (2) are contracted, Lc is invariant under coordinate
transformations, known as “observer transformations” [12].
Accordingly, observer transformations have no sensitivity to
anisotropies parametrized by cμνf . If instead a “particle
transformation” is performed, the particle fields ψf; Aν;…
are transformed while the coordinates are unaffected. This
could be realized, for example, by physically rotating the
system described by the particle fields. In this case, Lc is not
Lorentz invariant in general. This occurs because cμνf is
invariant under particle transformations, whereas the system

described by the particle fields is not. A distinction between
transforming the system as opposed to transforming the
observer is present. This violates Lorentz invariance. These
c-type coefficients may be taken as symmetric and traceless,
leaving nine observable coefficients per flavor f [13].
All gauge-invariant effects in the minimal and non-

minimal sector of non-Abelian gauge theories were
classified and dimension-five, spin-independent, and
CPT-violating effects

Lað5Þ ¼ −
1

2

X
f

að5Þf
μαβ

ψ̄fγμiDðαiDβÞψf þ H:c:; ð3Þ

parametrized by the að5Þ-type coefficients að5Þμαβf , were
considered for DIS [8]. Note that Lað5Þ represents the
dominant nonminimal and spin-independent CPT-violat-
ing effects on quarks, and the parenthesis notation denotes
symmetrization with respect to the indices α, β. Similar to
the case of the c-type coefficients, the að5Þ-type coefficients
may be taken to be totally symmetric and traceless
[9,19,20]. This subset of coefficients is denoted að5ÞμαβSf
and contains 16 independent observable components per
flavor.
Simulations have been performed assessing the sensi-

tivity of the c-type and að5Þ-type coefficients for quarks and
antiquarks as measured in DIS data from HERA [21],
Electron–Ion Collider pseudodata [7], and in the Drell–Yan
process using LHC data [22].

B. Adding SME effects to the description of DIS

The class of operators that modify the free propagation
of quarks and their covariant couplings to gauge fields was
examined [9], resulting in the development of a tree-level,
Lorentz-violating version of the parton model. This leads to
a modified description of DIS.
In the following, the external momenta of the incident

lepton and proton are denoted by lμ and pμ, respectively,
while the scattered lepton and exchanged momentum are
denoted by l0μ and qμ ¼ lμ − l0μ, where −q2 ≡Q2 is the
momentum transfer. The Bjorken variables are

xBj ¼
Q2

2p · q
; yBj ¼

p · q
p · l

; ð4Þ

where s ≈ 2p · l and Q2 ≈ xBjyBjs. In the DIS limit, and
working at zeroth order in the strong coupling constant, the
inclusion of Lorentz-violating effects described by Eq. (2)
at tree level results in the cross section2

dσ
dxBjdyBjdφ

¼ α2yBj
2Q4

X
f

e2f
1

Q̃2
f

LμνH
μν
f ffðx̃fÞ; ð5Þ

1The notation H.c. is an abbreviation for Hermitian conjugation.

2Equation (5) reduces to the leading-order Standard Model
cross section in the limit cμνf → 0.
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where φ is the scattered lepton azimuthal angle, Q̃2
f ¼ −q̃2f ¼ −ðqμ þ cμqf Þðqμ þ cfμqÞ where cμqf ≡ cμνf qν, and

LμνH
μν
f ¼ 8

�
2ðk̂f · lÞðk̂f · l0Þ þ k̂f · ðl − l0Þðl · l0Þ þ 2ðk̂f · lÞ

�
c
k̂fl0

f þ c
l0k̂f
f − cl

0l0
f

�

þ2ðk̂f · l0Þ
�
c
k̂fl
f þ c

lk̂f
f þ cllf

�
− 2ðl · l0Þck̂fk̂ff

�
; ð6Þ

with k̂μf ¼ x̃fðpμ − cμpf Þ. The parton distribution functions
(PDFs) are denoted ffðx̃fÞ and are evaluated at the shifted
Bjorken variable [9]

x̃f ¼ xBj

�
1þ 2cqqf

q2

�
þ x2Bj

q2
ðcpqf þ cqpf Þ; ð7Þ

where cqqf ≡ cμνf qμqν, etc. The PDFs are taken to be the
conventional leading-order Standard Model PDFs

evaluated at x̃f using the MSTW 2008 variable-flavor
PDF set [23], as implemented in the program ManeParse

[24,25].3 Note that since the c-type coefficients control
CPT-even effects, the quark and antiquark contributions
are identical in the cross section Eq. (5), except for the PDF
dependence. Thus, for these coefficients, dσ ∝ ðff þ ff̄Þ
and the dominant sensitivity is expected at low xBj.
The cross section including effects of the að5Þ-type

coefficients from Eq. (3) is [6,9]

dσ
dxBjdyBjdφ

¼ α2

Q4

X
f

F2f

�
yBjs2

π
½1þ ð1 − yBjÞ2�δSf þ

yBjðyBj − 2Þs
xBj

xSf −
4

xBj

�
4x2Bja

ð5Þppl
Sf þ 6xBja

ð5Þlpq
Sf þ 2að5ÞlqqSf

�

þ2yBj

�
4x2Bja

ð5Þppp
Sf þ 4xBja

ð5Þppq
Sf þ 4xBja

ð5Þlpp
Sf þ 2að5ÞlpqSf þ að5ÞpqqSf

�
þ 4yBj

xBj

�
2xBja

ð5Þllp
Sf þ að5ÞllqSf

��
; ð8Þ

where F2f ¼ e2fffðx0SfÞx0Sf with x0Sf ¼ xBj − xSf and

δSf ¼
π

yBjs

�
1þ 2

yBjs

�
4xBja

ð5Þppq
Sf þ3að5ÞpqqSf

��
; ð9Þ

xSf ¼−
2

yBjs

�
2x2Bja

ð5Þppq
Sf þ3xBja

ð5Þpqq
Sf það5ÞqqqSf

�
; ð10Þ

að5ÞμαβSf ¼ 1

3

X
ðμαβÞ

�
að5Þμαβf −

1

6
að5Þμρσf ηρση

αβ−
1

3
að5Þρμσf ηρση

αβ

�
;

ð11Þ

where að5ÞqqqSf ≡ að5ÞμαβSf qμqαqβ, etc. The sum in Eq. (11)
denotes symmetrization with respect to the indices μ, α, and
β, and ηρσ is the Minkowski metric. As the operator in
Eq. (3) is odd under a CPT transformation, for the
antiparticle contributions to the sum in Eq. (8), a replace-

ment að5ÞμαβSf → −að5ÞμαβSf for antiquark flavors must be
performed, along with multiplication of the appropriate
PDFs. In contrast to the c-type coefficients, this feature
implies dσ ∝ ðff − ff̄Þ, thus giving weaker sensitivity at

low xBj. A depiction of the DIS process with Lorentz
violation is shown in Fig. 1.

C. Sidereal signals

An experiment is sensitive to the c- and að5Þ-type
coefficients as they appear in the laboratory frame. The
cross sections Eqs. (5) and (8) therefore must be evaluated
in the laboratory frame of the ZEUS detector. This frame is
noninertial due to the Earth’s axial rotation and revolution
around the Sun. By convention, an approximately inertial
frame with spatial coordinates fixed on the center of the
Sun, known as the Sun-centered frame (SCF), is introduced
as a convenient frame to report constraints on the SME
coefficients [26–28]. In the SCF, the coefficients are
typically assumed to be spacetime constants, implying
the preservation of translation invariance and the conser-
vation of four-momentum [14]. Thus, in another frame
rotating with respect to the SCF, such as the laboratory
frame, the coefficients will oscillate as a function of time.
To make this time dependence explicit, the coefficients

3It was checked that effects of a variation of the input PDF set
are negligible. Potential effects from Lorentz violation on the
PDF starting scale parametrization and on the PDF evolution
were neglected.
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appearing in the laboratory-frame cross sections are reex-
pressed in terms of the SCF coefficients by performing the
appropriate Lorentz transformation Λμ

ν. For example, the
transformation for the c-type coefficients is

cμνlab ¼ Λμ
αΛν

βc
αβ
SCF: ð12Þ

In what follows, coefficients that appear with Greek and
numeric indices denote laboratory-frame coefficients and
those with capital Latin indices denote SCF coefficients.
After performing this transformation and reexpressing the
laboratory-frame coefficients, the laboratory cross sections
are functions of the fixed SCF coefficients and sinusoidal
functions with periods controlled by the length of the
sidereal day. The boost of the Earth with respect to the Sun,
β⊕ ≈ 10−4, is suppressed relative to the effect of Earth’s
rotation by several orders of magnitude and can be
neglected. Also, the fact that the Earth’s orbit is translated
with respect to the SCF has no physical effect because
of translation invariance. Therefore, the transformation Λμ

ν

in Eq. (12) is well approximated as a pure rotation:
Λ0

0 ¼ 1, Λμ
0 ¼ 0 ¼ Λ0

0, and Λi
j ¼ Ri

jði; j ¼ 1; 2; 3Þ is
an orthogonal matrix.
The SCF is depicted in Fig. 2. It is defined by coordinates

Xμ ¼ ðT; X; Y; ZÞ as follows: T ¼ 0 is identified with the
date of the 2000 vernal equinox, March 20, 2000, at 7∶35
UTC; the Z axis is aligned with the Earth’s rotation axis; the
X axis points from the Earth to the Sun at T ¼ 0; and the Y
axis completes the right-handed coordinate system. At
T ¼ 0, the Earth’s equator lies in the XY plane and the
longitude λ0 ≈ 66.25°will observe theSun directly overhead,
towards the local zenith. Therefore, T ¼ 0 is a suitable
moment for easily relating the SCF coordinates to the
laboratory-frame coordinates. The small effects of the
Earth’s noncircular orbit can be neglected. For the ZEUS
detector, the colatitude, orientation of the electron/positron-
or proton-beam direction and the local sidereal time T⊕ must
be specified. The zero ofT⊕ is defined as one of themoments
when the y axis of the laboratory is parallel to the SCFY axis,
which on the date of the equinox occurs shortly after T ¼ 0.
In other words, since HERA is not situated at the longitude
λ0, but the longitude λ ≈ 9.88°, T⊕ ≠ T. Instead, T⊕ is
related to T by an offset given by [20]

T − T⊕ ¼ λ0 − λ

360°
Tsidereal ¼ 3.748 h; ð13Þ

where Tsidereal ¼ 23 h 56 min 4.091 s is the sidereal day.
The first occurrence for which T⊕ ¼ 0 is therefore approx-
imately 3.75 hours after the 2000 vernal equinox, or March
20, 2000, at 11∶20UTC. This is the chosen initial condition
for referencing the time of ZEUS e�p events. The colatitude
of HERA is χ ≈ 36.4°, and the electron/positron-beam
orientation for ZEUS is Ψ ≈ 20° south of west. Finally,
the net rotation R from the proton-beam direction in the
laboratory frame to the SCF is given by

FIG. 1. Parton-model picture of deep inelastic scattering with
Lorentz violation. The dots on the incident parton, struck parton,
and at the photon-parton vertex correspond to modified propa-
gation and interaction due to Lorentz violation. The parton carries
a momentum fraction xf that is perturbed from xBj by the
coefficients for Lorentz violation at first order.

FIG. 2. Sun-centered frame (SCF) (a). The orbit of the Earth in the SCF is shown in green. As the Z axis is parallel to the Earth’s
rotation axis, the orbit is inclined by the angle η. The effect of Lorentz violation is depicted as red background arrows. A laboratory on
Earth studying a particle with spin (blue disk and green arrow) with coordinates given by black arrows centered on the particle will
observe background configurations as a function of the sidereal period Tsidereal ≈ 23 h 56 min (b). The times depicted are an illustration
of the sidereal effect.
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R ¼

0
B@

1 0 0

0 0 1

0 −1 0

1
CA
0
B@

cosΨ sinΨ 0

− sinΨ cosΨ 0

0 0 1

1
CA
0
B@

cos χ cosω⊕T⊕ cos χ sinω⊕T⊕ − sin χ

− sinω⊕T⊕ cosω⊕T⊕ 0

sin χ cosω⊕T⊕ sin χ sinω⊕T⊕ cos χ

1
CA; ð14Þ

where ω⊕ ¼ 2π=Tsidereal is the Earth’s sidereal frequency. Performing the rotation R to express the laboratory-frame
coefficients in terms of the constant SCF coefficients induces a sidereal-time dependence at multiples of the Earth’s sidereal
frequency.
As an example, the transformation of the coefficient c33u reads:

c33u ¼ 1

2
ðcXXu þ cYYu Þðcos2χsin2Ψþ cos2ΨÞ þ cZZu sin2χsin2Ψ

− 2cXZu sin χ sinΨ½cos χ sinΨ cosðω⊕T⊕Þ þ cosΨ sinðω⊕T⊕Þ�
− 2cYZu sin χ sinΨ½cos χ sinψ sinðω⊕T⊕Þ − cosψ cosðω⊕T⊕Þ�
þ cXYu ½ðcos2χsin2Ψ − cos2ΨÞ sinð2ω⊕T⊕Þ − cos χ sinð2ΨÞ cosð2ω⊕T⊕Þ�

þ 1

2
ðcXXu − cYYu Þ½ðcos2χsin2Ψ − cos2ΨÞ cosð2ω⊕T⊕Þ þ cos χ sinð2ΨÞ sinð2ω⊕T⊕Þ�; ð15Þ

where it is seen that the terms proportional to ðcXXu þ cYYu Þ and cZZu possess no sidereal-time dependence, the terms
proportional to cXZu and cYZu oscillate with angular frequency ω⊕ and the terms proportional to cXYu and ðcXXu − cYYu Þ oscillate
with angular frequency 2ω⊕.
After expressing the cross section given in Eq. (5) in terms of the SCF coefficients, only the following 18 combinations of

coefficients yield sidereal-time oscillations:

cTXf ; cXZf ; cTYf ; cYZf ; cXYf and ðcXXf − cYYf Þ; ð16Þ

with f ¼ u, d, and s. Analogously, after the replacement að5Þμαβlab ¼ Λμ
νΛα

ρΛβ
σa

ð5Þνρσ
SCF in Eq. (8), it is found that, for each

quark, only the following 12 combinations of coefficients yield sidereal-time oscillations:

FIG. 3. Regions in xBj, Q2 and yBj that have sensitivity to Lorentz-violating effects for a single c-type and að5Þ-type coefficient. The
points displayed in the plots are taken from Figures 2 and 4 of Ref. [9], where no experimental restrictions on the kinematic region have
been considered.
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�
að5ÞTXXSf − að5ÞTYYSf

�
;

�
að5ÞXXZSf − að5ÞYYZSf

�
; að5ÞTXYSf ; að5ÞTXZSf ; að5ÞTYZSf ; að5ÞXXXSf ;

að5ÞXXYSf ; að5ÞXYYSf ; að5ÞXYZSf ; að5ÞXZZSf ; að5ÞYYYSf and að5ÞYZZSf ; ð17Þ

giving a total of 36 combinations. For antiquarks with
flavor f ¼ ū; d̄, and s̄, the coefficients effectively appear in
the cross section Eq. (8) with opposite signs relative to the
quark coefficients. Since the contributions from s and s̄ are
equal, only the 24 coefficients for f ¼ u and d are
considered. The c- and að5Þ-type coefficients in Eqs. (16)
and (17) induce oscillations with frequencies up to 2ω⊕ and
3ω⊕, respectively. More generally, an SCF coefficient with
n Lorentz indices will include sidereal oscillations up
to nω⊕.
The expected sensitivities to the c- and að5Þ-type coef-

ficients that can be extracted from DIS data have been
studied [6,7,9]. In particular, the combined DIS cross
sections from ZEUS and H1 [21] have been used to
estimate the sensitivity of a sidereal-time study using these
data. For each value in the ðxBj; Q2Þ plane, potential
constraints based on four sidereal intervals have been
extracted. A subset of simulated results describing the
sensitivity to the c- and að5Þ-type coefficients as a function
of phase are shown in Fig. 3. It is observed that the
sensitivities to the c- and að5Þ-type coefficients are roughly
at levels of 10−4 and 10−6 GeV−1, respectively.

III. EXPERIMENTAL SETUP
AND DATA SELECTION

The analysis is based on events collected with the ZEUS
detector at HERA during the HERA II run period 2003–
2007. For this configuration, the initial-state proton- and
electron/positron-beam energies were Ep ¼ 920 GeV and
Ee ¼ 27.5 GeV, respectively, with a center-of-mass energy
of

ffiffiffi
s

p ¼ 318 GeV and an integrated luminosity 372 pb−1.
Details of the ZEUS detector are given elsewhere [29].
The NC DIS events were selected with the following

criteria [30]:
(i) the final-state lepton was identified using an algo-

rithm based on a neural network [31,32], giving a
probability larger than 90%;

(ii) the energy of the final-state lepton E0
e > 10 GeV to

ensure a high electron-identification efficiency;
(iii) Q2 > 5 GeV2;

(iv) θe > 1 rad, where θe is the scattering angle between
the outgoing lepton and incoming proton direction to
ensure the high efficiency of the electron-identifica-
tion algorithm. This provides an upper limit on Q2;

(v) the scattered lepton was required to enter the
calorimeter at a radial position larger than 15 cm,
implying an upper bound on the lepton scattering
angle θe ≲ 3 rad;

(vi) the position of the event vertex along the laboratory
z axis was required to be within 30 cm of its nominal
value and the transverse distance of the event vertex
from the interaction point was required to be within
0.5 cm, to reject background; and

(vii) 47 GeV < E − pz < 69GeV, where E and pz are
the total energy and z-component of the final state,
to reject background.

This selection resulted in 4.5×107 events covering the kin-
ematic range 7.7×10−5 <xBj < 1 and5<Q2 < 8800GeV2.

IV. ANALYSIS METHOD

Possible variations of cross sections with periodicity Tp
were studied. The starting point was the triple differential
DIS cross section

dσ
dxBjdQ2dϕTp

; ð18Þ

where the temporal phase ϕTp
¼ ModðT⊕; TpÞ=Tp is the

phase of a given DIS event with the time stamp T⊕ for the
chosen period, Tp, and is defined in the range [0, 1]. Within
the SME, only Tp ¼ Tsidereal yields a nonvanishing depend-
ence on ϕTp

, as the sidereal angle is ω⊕T⊕. If a different
period is used, the time dependence quickly averages out;
the larger the difference between Tp and Tsidereal, the faster
this occurs.
It was necessary to eliminate uncertainties related to the

instantaneous luminosity, which decays over several hours
during each fill. To do so would have required the
integrated luminosity to be measured roughly every minute,
but this information was not available. Instead, double
ratios of the form

rðPS1; PS2Þ ¼
R
PS1

dxBjdQ2 dσ
dxBjdQ2dϕTp

=
R
PS1

dxBjdQ2dϕTp
dσ

dxBjdQ2dϕTpR
PS2

dxBjdQ2 dσ
dxBjdQ2dϕTp

=
R
PS2

dxBjdQ2dϕTp
dσ

dxBjdQ2dϕTp

; ð19Þ

SEARCH FOR EFFECTIVE LORENTZ AND CPT VIOLATION … PHYS. REV. D 107, 092008 (2023)

092008-7



where PS1 and PS2 are two regions of the ðxBj; Q2Þ
kinematic range, for which luminosity uncertainty cancels,
were used. Essential properties of Eq. (19) are that it is
independent of the luminosity and equal to unity in the
absence of SME effects. Evaluating the contributions
involving integrations of ϕTp

results in zero sensitivity to
SME coefficients and when summing the contributions of
all quark flavors produces the Standard Model cross
section. Moreover, if the regions PS1;2 are chosen appro-
priately, the double ratio shows a strong ϕTp

dependence in
the presence of SME effects. As explained in Sec. II B, a
strong sensitivity at low xBj ( ≈ 10−5–10−3) for the c-type
coefficients and xBj ≳ 10−3 for the að5Þ-type coefficients is
expected. However, for xBj ≲ 10−4 and xBj ≳ 10−2, fewer
DIS events are available and thus the statistical uncertain-
ties become larger. The xBj distribution is sharply peaked
around xBj ≈ 10−3, implying a statistically optimal choice
of cut xc in the ðxBj; Q2Þ kinematic range.

In evaluating Eq. (19) for several values of xc, it was
found that the combinations simultaneously giving the
most sensitivity to the cross section while producing the
lowest statistical uncertainties are xc ¼ 5 × 10−4 and 10−3

for c- and að5Þ-type coefficients, respectively. However, as
no higher-order QCD corrections are included in the cross
sections given in Eqs. (5) and (8), potential large correc-
tions are expected, of the order ½αsðQ2Þ log 1=xBj�n at very
low xBj, which need to be resummed. Numerically, such
effects could shift the value of x entering the PDFs. Thus, x
would not coincide with xBj. This issue is partially
alleviated by cutting at moderate values xBj ≳ 10−3, where
QCD corrections have a smaller influence. The value
xc ¼ 10−3 was therefore chosen for both the c- and að5Þ-
type coefficients.
By employing Eqs. (5) and (8), the integrations above

and below xc ¼ 10−3 were performed for the kinematic
range in xBj; Q2 and θe as described in Sec. III. The double
ratios from Eq. (19) evaluated in the laboratory frame are:

rcðxBj > xc; xBj < xcÞ ¼ 1 − 12.8c03u − 13.9c33u þ 0.9
�
c11u þ c22u

�
− 4.2c03d − 2.9c33d þ 0.1

�
c11d þ c22d

�

− 3.4c03s − 1.8c33s þ 2.9 × 10−2
�
c11s þ c22s

�
; ð20Þ

rað5Þ ðxBj > xc; xBj < xcÞ ¼ 1 − 6.1 × 103að5Þ003u þ 6.8 × 103að5Þ033u − 2.5 × 103að5Þ333u

þ 5.0 × 102
�
að5Þ113u þ að5Þ223u − að5Þ011u − að5Þ022u

�
− 4.1 × 102að5Þ003d

þ 4.7 × 102að5Þ033d − 1.7 × 102að5Þ333d þ 40
�
að5Þ113d þ að5Þ223d − að5Þ011d − að5Þ022d

�
; ð21Þ

where the numerical prefactors multiplying the að5Þ-type
coefficients in the latter expression are in units of GeV.
These expressions only contain terms linear in the
coefficients, as higher-order corrections are greatly sup-
pressed. The ratio rað5Þ has negligible sensitivity to að5Þμαβs

because of the nearly identical and opposite-in-sign s; s̄
contributions to the cross section, see Eq. (8). After
reexpressing the laboratory-frame coefficients appearing
in Eqs. (20) and (21) in terms of rotational-symmetry
violating combinations of the SCF coefficients described
in Sec. II C using Eq. (14), it is found that 42 SCF
coefficients result in deviations of rc or rað5Þ from unity.
Comparisons between these double ratios and the analo-
gous ratios constructed purely from the binned DIS events
were made under the assumption of constant efficiency
corrections. Constraints were placed on each coefficient
one at a time by setting all others to zero, in accordance
with standard practice [2].

V. SYSTEMATIC EFFECTS

A. Initial considerations

A luminosity-independent ratio, Eq. (19), that does not
possess a sizeable dependence on SME effects was used to
test the data. The ratio rðQ2 > Q2

c ; Q2 < Q2
cÞ with Q2

c ¼
20 GeV2 fulfills this requirement.
The data rate in the detector is not constant. In particular,

more data were taken in the evenings than in the morning.
To display this effect, the entire DIS selection in the twoQ2

regions was binned using the solar phase ϕsolar ¼
ModðT⊕; TsolarÞ=Tsolar with Tsolar ¼ 24 h. In Fig. 4(a),
the resulting normalized count of the events passing the
selection described in Sec. III is displayed. It is clear that an
Oð25%Þ effect is present. Switching from solar to sidereal
binning with ϕsidereal ¼ ModðT⊕; TsiderealÞ=Tsidereal dilutes
this solar-phase dependence for long data-taking periods.
As shown in Fig. 4(b), sidereal dilution over ≈ 5 years
reduces the effect toOð10%Þ, but is not sufficient to erase it
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completely. The dilution effect of a much longer period of
data taking can be simulated by binning using a short
period. In Fig. 4(c), a plot of the same data binned using a
Tp ¼ 1 h period with ϕtest ¼ ModðT⊕; 1 hÞ=1 h is shown.
The initial solar-phase dependence disappears almost
completely. Figure 4(d) shows that for a period slightly
longer than the solar day, Tp ¼ 24 h 4 min, a similar level
of dilution as for the sidereal-phase binning in Fig. 4(b) is
observed. For each choice of phase, the histograms for
events with Q2 above and below Q2

c closely track each
other and their ratios are consistent with unity.
An important question is whether systematic uncertain-

ties can be neglected. A partial answer can be found by
performing Kolmogorov–Smirnov (KS) tests on the binned
ratios rðQcÞ. This test calculates the probability that the
observed distributions are compatible with an unsorted

sampling of a normal distribution with mean unity and
standard deviation identical to the observed statistical
uncertainties. The ratios are plotted in different numbers
of bins Nbins to estimate the size of systematic relative to
statistical effects. The results are presented for Tp ¼ 24 h in
Fig. 5 and for Tp ¼ Tsidereal in Fig. 6. It is observed that,
independently of the period, Tp ¼ 24 h or Tp ¼ Tsidereal,
and of the number of bins, the results are statistically
compatible with unity as indicated by the high KS
probabilities. The impact of systematic uncertainties
appears to be minimal in these distributions. However,
this is insufficient to conclude that systematic uncertainties
can be neglected when looking at sidereal and solar
distributions for SME-sensitive xc ratios given by
Eqs. (20) and (21). This is because low- and high-xBj
regions, where the trigger behaves differently and could be

ZEUS

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

N
or

m
al

iz
ed

 c
ou

nt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.97
0.98
0.99

1
1.01
1.02
1.03

) c
r(

Q
)2 = 20 GeVc

2 > Q2 (Q-1ZEUS 372 pb
)2 = 20 GeVc

2 < Q2 (Q-1ZEUS 372 pb

ZEUS

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

N
or

m
al

iz
ed

 c
ou

nt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 = 23h56min)pT (

0.97
0.98
0.99

1
1.01
1.02
1.03

) c
r(

Q

)2 = 20 GeVc
2 > Q2 (Q-1ZEUS 372 pb

)2 = 20 GeVc
2 < Q2 (Q-1ZEUS 372 pb

(b)(a)

ZEUS

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

N
or

m
al

iz
ed

 c
ou

nt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.97
0.98
0.99

1
1.01
1.02
1.03

) c
r(

Q

)2 = 20 GeVc
2 > Q2 (Q-1ZEUS 372 pb

)2 = 20 GeVc
2 < Q2 (Q-1ZEUS 372 pb

ZEUS

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

N
or

m
al

iz
ed

 c
ou

nt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 = 24h4min)pT (
test

0.97
0.98
0.99

1
1.01
1.02
1.03

) c
r(

Q

)2 = 20 GeVc
2 > Q2 (Q-1ZEUS 372 pb

)2 = 20 GeVc
2 < Q2 (Q-1ZEUS 372 pb

(d)(c)

 = 24h)pT (
solar sidereal

 = 1h)pT (
test

FIG. 4. Solar (a), sidereal (b), Tp ¼ 1 h (c), and Tp ¼ 24 h 4 min (d) phase dependence of the normalized counts in 100 bins with the
kinematic region divided by Q2

c ¼ 20 GeV2. The vertical axis displays the number of events per bin normalized to the total number of
events times the bin width. The ratios of the counts rðQcÞ above and below Q2

c are given in the bottom panels. For the solar phase,
ϕsolar ¼ 0 is identified with 11∶20 UTC. Only statistical uncertainties are displayed.
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affected by the instantaneous luminosity, could be subject
to systematic effects which would not cancel in the ratio
defined in Eq. (19).
As long as each bin is considerably smaller than the

duration of a fill, which is typically several hours [e.g., for

Tp ¼ 1 h, each bin is between 0.6 min (Nbins ¼ 100) and
2.4 min (Nbins ¼ 25)], it is expected that all such effects
will average out. On the other hand, for the solar or sidereal
phase, the time bins range between ≈ 15 min and 1 h. It is
possible that fluctuations in trigger efficiencies and
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FIG. 5. Ratio rðQcÞ of normalized counts for Q2
c ¼ 20 GeV2 binned with the solar phase where Nbins ¼ 25 and 100. The Nbins ¼ 100

ratio is identical to that presented in Fig. 4(a). The displayed uncertainties include statistical uncertainties only and the one-sigma
spreads (bands) are the standard deviations of the central values. The observed distributions are compared to a Gaussian distribution in
which only statistical errors are included using a Kolmogorov–Smirnov test.
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FIG. 6. Ratio rðQcÞ of normalized counts for Q2
c ¼ 20 GeV2 binned with the sidereal phase where Nbins ¼ 25 and 100. The Nbins ¼

100 ratio is identical to that presented in Fig. 4(b). The displayed uncertainties include statistical uncertainties only and the one-sigma
spreads (bands) are the standard deviations of the central values. The observed distributions are compared to a Gaussian distribution in
which only statistical errors are included using a Kolmogorov–Smirnov test.
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accelerator effects could affect high-luminosity and low-
luminosity parts of the fill differently. This might result in
non-negligible residual effects in the solar- and sidereal-
ratio distributions.

B. Data analysis of xc and Monte Carlo simulation

When separating the kinematic range into regions above
and below the cut xc ¼ 10−3, the normalized counts
presented in Fig. 7 strongly resemble those from Q2

c cuts
in Fig. 4. Similarly, in light of the discussion in Sec. VA, it
is expected that the Tp ¼ 1 h distributions for the ratios
rðxBj > xc; xBj < xcÞ given explicitly in Eqs. (20) and (21)
will be distributed around unity and will be dominated by
statistical uncertainties. As discussed, any potential solar
and sidereal effects should be removed when binning data
using a test period much smaller than 24 h. This is indeed
the case, as can be seen from the results for ϕtest presented

in Fig. 8. In contrast to the Q2
c distributions for all phases,

the solar phases for the xc distributions contain more
structure, as is immediately evident from Fig. 9.
The Nbins ¼ 25 case exhibits a 1% KS probability for

Tp ¼ 24 h (Fig. 9), implying the presence of systematics
that are unaccounted for. This is also apparent as the one-
sigma spreads are much wider than the uncertainty bars on
the central values with larger deviation around unity than in
the test-phase case (see Fig. 8), particularly for the smaller
bin-number case Nbins ¼ 25. This is not sufficient to
identify the origin of the additional systematic effects.
However, an estimate of this systematic contribution for a
given Nbins may be obtained by calculating

σsyst ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − σ2stat

q
; ð22Þ
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FIG. 7. Solar (a), sidereal (b), Tp ¼ 1 h (c), and Tp ¼ 24 h 4 min (d) phase dependence of the normalized counts in 100 bins with the
kinematic region divided by xc ¼ 10−3. The vertical axis displays the number of events per bin normalized to the total number of events
times the bin width. The ratios of the counts rðxcÞ above and below xc are given in the bottom panels. For the solar phase, ϕsolar ¼ 0 is
identified with 11∶20 UTC. Only statistical uncertainties are displayed.
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where σ and σstat are the standard deviation and mean
statistical uncertainty of the points of the distribution,
respectively.
As already stressed, the observed systematic effects are

not directly connected to large fluctuations of the

instantaneous luminosity. They have not been previously
observed because such small uncertainties were negligible
in all previous ZEUS analyses. This was confirmed by
means of a Monte Carlo study. Inclusive DIS events
with Q2 > 4 GeV2 were generated with Djangoh 1.6 [33]
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FIG. 8. Ratio rðxcÞ of normalized counts for xc ¼ 10−3 binned using the test phase with Tp ¼ 1 h where Nbins ¼ 25 and 100. The
Nbins ¼ 100 ratio is identical to that presented in Fig. 7(c). The displayed uncertainties include statistical uncertainties only and the one-
sigma spreads (bands) are the standard deviations of the central values. The observed distributions are compared to a Gaussian
distribution in which only statistical errors are included using a Kolmogorov–Smirnov test.
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FIG. 9. Ratio rðxcÞ of normalized counts for xc ¼ 10−3 binned using the solar phase where Nbins ¼ 25 and 100. The Nbins ¼ 100 ratio
is identical to that presented in Fig. 7(a). The displayed uncertainties include statistical uncertainties only and the one-sigma spreads
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interfaced to Ariadne [34–37]. The CTEQ5D [38] PDFs were
used. The events were subsequently passed through the
ZEUS detector and trigger simulations based on GEANT3

[39]. The Monte Carlo events contain leading-order QCD
corrections plus parton showering at matrix-element level.
Also, the x in the PDFs is no longer identified with xBj,
although this is not expected to affect results significantly.
The parton-level calculation is based purely on the

Standard Model and does not introduce any direct time
dependence. The generated events do not possess time
stamps. However, the detector response and the trigger
configuration depend on the instantaneous luminosity and
may change over time. Data events are grouped into blocks
with the same detector and trigger configurations and, for
each of these blocks, appropriate Monte Carlo events were
generated. In order to include time dependence in the
Monte Carlo events and to simulate accurately the impact
of the variable instantaneous luminosity over the course of
5 years, the following procedure was performed. For each
luminosity block containing a given number of data events,
all time stamps were extracted and assigned Monte Carlo
events randomly selected from all those events generated
with the same detector and trigger status. The obtained
Monte Carlo sample simulates accurately any time depend-
ence associated with the instantaneous luminosity and the
detector response.
This study was performed on a subset of experimental

data (namely electron data taken in 2006) corresponding to
an integrated luminosity of 54.8 pb−1. It was found that
phase distributions obtained from Monte Carlo events are

perfectly compatible with statistical uncertainties alone: no
evidence of any residual systematic contribution to the
fluctuation of the binned central values around unity is
observed in these simulations. This is also confirmed by
comparing the one-sigma spreads of data and Monte Carlo,
with the former being much larger than the latter (and the
latter being in agreement with the statistical uncertain-
ties alone).
This analysis shows that the residual systematic uncer-

tainties observed in data are not modeled in existing
Monte Carlo simulations. As explained above, a reasonable
strategy is to use the difference in quadrature between the
one-sigma spreads and the corresponding statistical uncer-
tainties as an estimate of the additional systematics. Note
that, in the present study, all previously known sources of
systematic uncertainties cancel.
As additional checks, separate studies involving events

taken under different trigger settings, which are constant
within each luminosity block, have been performed. No
discernible impact on the presence of the systematic
uncertainties discussed above is observed [40].

C. Estimated systematic uncertainties

The binned solar xc analyses clearly indicate the presence
of an unknown, substantial, and pervasive time-dependent
systematic effect with mean systematic uncertainty σ̄syst ≈
0.26%. The extraction of systematic uncertainties for periods
Tsidereal ≈ Tsolar − 4 min (σ̄syst ≈ 0.18%) and 2Tsolar −
Tsidereal ≈ Tsolar þ 4 min (σ̄syst ≈ 0.11%) both result in
smaller systematic uncertainties relative to the period
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FIG. 10. Ratio rðxcÞ of normalized counts for xc ¼ 10−3 binned using the test phase with Tp ¼ 24 h 4 min where Nbins ¼ 25 and 100.
The Nbins ¼ 100 ratio is identical to that presented in Fig. 7(d). The displayed uncertainties include statistical uncertainties only and the
one-sigma spreads (bands) are the standard deviations of the central values. The observed distributions are compared to a Gaussian
distribution in which only statistical errors are included using a Kolmogorov–Smirnov test.
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Tsolar, further suggesting a possible unaccounted for solar-
periodic effect, whichmay be a consequence of the operation
of the experiment. The systematic uncertainties on the ratio
binned in sidereal time may therefore reflect a dilution of the
observed potential solar-periodic effect. While, at this stage,
a claim of a genuine solar-time effect cannot bemade, there is
no significant indication of a comparable sidereal-time effect.
This establishes a baseline for extracting constraints. Under
the assumption of a genuine solar systematic effect, the
2Tsolar − Tsidereal distributions determine the dilution of the
solar systematicwhen changing the periodbyþ4 minutes; in
fact, dilution effects for very small positive or negative time
shifts are very similar. This method makes possible an
estimate of the systematic uncertainties on the sidereal-time
distributions without risking an absorption of potential
genuine sidereal signals.
In the next section, the constraints on the SME coef-

ficients are extracted using Nbins ¼ 100. For consistency,
the systematic uncertainty used in the constraint-setting
procedure is also extracted from the 2Tsolar − Tsidereal
distribution with 100 bins. This distribution is presented
in Fig. 10 and yields σsyst ≈ 0.16%. A fuller understanding
of this systematic effect is left for future studies and is
beyond the scope of the present analysis.

VI. CONSTRAINTS OF EFFECTIVE COUPLINGS

The sidereal-phase distributions of the ratio of normal-
ized counts for xBj above and below xc ¼ 10−3 are shown in

Fig. 11. This is the main result of this paper from which
constraints on the SME coefficients will be extracted.
Compared to the solar-phase case, much higher KS
probabilities are observed. To extract constraints, the
following procedure was performed. The laboratory coef-
ficients in the ratios Eqs. (20) and (21) were replaced with
the SCF coefficients as explained in Sec. II C, replacing one
coefficient at a time. The ratios then depend on the local
sidereal angle θ⊕ ¼ ω⊕T⊕. For a given bin i, the theo-
retical ratios rtheoi were calculated as

rtheoi ¼ Nbins

2π

Z
2πi

Nbins

2πði−1Þ
Nbins

rðx > xc; x < xc; θ⊕Þdθ⊕; ð23Þ

where i ¼ 1;…; Nbins. This quantity can be compared
directly with the experimental sidereal ratios rexpi . A χ2

function was constructed

χ2 ¼ 1

σ2tot

XNbins

i¼1

ðrexpi − rtheoi Þ2; ð24Þ

for each of the 42 observable SCF coefficients. The total
uncertainty σtot in Eq. (24) is given by combining in
quadrature the statistical uncertainty (½σstat�Nbins¼100 ¼
0.32%) and the systematic uncertainty estimated in the
previous section (σsyst ¼ 0.16%) taken as an additional
random uncertainty at each point, so that σtot ¼ 0.35%.
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FIG. 11. Ratio rðxcÞ of normalized counts for xc ¼ 10−3 binned using the sidereal phase where Nbins ¼ 25 and 100. The Nbins ¼ 100
ratio is identical to that presented in Fig. 7(b). The displayed uncertainties include statistical uncertainties only and the one-sigma
spreads (bands) are the standard deviations of the central values. The observed distributions are compared to a Gaussian distribution in
which only statistical errors are included using a Kolmogorov–Smirnov test.
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The χ2 in the Standard Model is obtained by setting all
the SME coefficients to zero (the theory prediction in the
Standard Model is identically 1 in each phase bin), and is
113.8 for 100 degrees of freedom. The p-value for this
goodness-of-fit (GOF) test is pSM ¼ 0.16, indicating a
reasonable description of the data by the Standard Model.
In Tables I and II, lower (upper) values of each coefficient
are presented, below (above) which the p-values for the
same χ2 GOF test are smaller than 0.05. These values are
indicative of the disfavored ranges for which the c-type
coefficients are roughly at the level of 10−4 for the u-quark
coefficients and 10−3 for the d- and s-quark coefficients.
The corresponding ranges for the að5Þ-type coefficients are
mostly at the level of 10−7 GeV−1 for the u-quark coef-
ficients and 10−6 GeV−1 for the d-quark coefficients.
Figure 12 shows the time dependence associated with

nonvanishing cTYu , cXXu − cYYu , and að5ÞXXYSu coefficients.
These three coefficients have been chosen because they
are examples of time dependence with angular frequencies
ω⊕, 2ω⊕, and 3ω⊕, respectively. In each case, the data
points are identical to those presented in Fig. 11, the solid
and dashed curves correspond to selected values of the
disfavored regions presented in Tables I and II, and the
dotted curves correspond to coefficients that are roughly an
order of magnitude larger.
Comparison with existing constraints is informative [2].

For the c-type coefficients, the results derived in this work

represent the first constraints using sidereal oscillations.
For the u and d quarks, there are existing and considerably
more stringent constraints derived from interpretations of
cosmic-ray measurements [41]. The latter constraints rest
on a number of model-dependent assumptions, so that
direct comparison between those results and what is
presented here requires caution. The constraints on the
s-quark coefficients are derived for the first time. The
results for the að5Þ-type coefficients are the first of their
kind. One potential point of comparison would be the
constraints on effective að5Þ-type coefficients for protons,
as reported in Table D11 [2]. Using hydrogen 1S–2S
transitions, similar combinations of proton constraints are
currently at the level of 10−7–10−8 GeV−1, which is
similar in magnitude to that found for u-quark að5Þ-type
coefficients [42].

TABLE I. Lower (upper) values of the c-type coefficients
below (above) which the p-values for the χ2 GOF test are smaller
than 0.05.

Coefficient Lower Upper

cTXu −2.5 × 10−4 6.6 × 10−5

cTYu −1.7 × 10−4 9.8 × 10−5

cXYu −3.2 × 10−4 4.1 × 10−5

cXZu −5.4 × 10−4 1.4 × 10−4

cYZu −3.7 × 10−4 2.1 × 10−4

cXXu − cYYu −2.1 × 10−4 2.5 × 10−4

cTXd −7.8 × 10−4 2.0 × 10−4

cTYd −5.2 × 10−4 3.0 × 10−4

cXYd −1.6 × 10−3 2.0 × 10−4

cXZd −2.7 × 10−3 7.0 × 10−4

cYZd −1.8 × 10−3 1.0 × 10−3

cXXd − cYYd −1.0 × 10−3 1.2 × 10−3

cTXs −9.6 × 10−4 2.5 × 10−4

cTYs −6.4 × 10−4 3.7 × 10−4

cXYs −2.6 × 10−3 3.3 × 10−4

cXZs −4.4 × 10−3 1.2 × 10−3

cYZs −3.0 × 10−3 1.7 × 10−3

cXXs − cYYs −1.7 × 10−3 2.0 × 10−3

TABLE II. Lower (upper) values of the að5Þ-type coefficients
below (above) which the p-values for the χ2 GOF test are smaller
than 0.05.

Coefficient Lower (GeV−1) Upper (GeV−1)

að5ÞTXXSu − að5ÞTYYSu −5.1 × 10−7 4.3 × 10−7

að5ÞXXZSu − að5ÞYYZSu −1.7 × 10−6 2.0 × 10−6

að5ÞTXYSu −8.3 × 10−8 6.5 × 10−7

að5ÞTXZSu −2.9 × 10−7 1.1 × 10−6

að5ÞTYZSu −4.3 × 10−7 7.4 × 10−7

að5ÞXXXSu −3.9 × 10−7 1.2 × 10−7

að5ÞXXYSu −2.3 × 10−7 1.8 × 10−7

að5ÞXYYSu −4.6 × 10−7 9.2 × 10−8

að5ÞXYZSu −2.6 × 10−6 3.3 × 10−7

að5ÞXZZSu −5.4 × 10−7 1.4 × 10−7

að5ÞYYYSu −2.9 × 10−7 1.5 × 10−7

að5ÞYZZSu −3.6 × 10−7 2.1 × 10−7

að5ÞTXXSd − að5ÞTYYSd −7.3 × 10−6 6.1 × 10−6

að5ÞXXZSd − að5ÞYYZSd −2.4 × 10−5 2.8 × 10−5

að5ÞTXYSd −1.2 × 10−6 9.4 × 10−6

að5ÞTXZSd −4.1 × 10−6 1.6 × 10−5

að5ÞTYZSd −6.1 × 10−6 1.1 × 10−5

að5ÞXXXSd −5.7 × 10−6 1.7 × 10−6

að5ÞXXYSd −3.4 × 10−6 2.7 × 10−6

að5ÞXYYSd −6.8 × 10−6 1.3 × 10−6

að5ÞXYZSd −3.7 × 10−5 4.6 × 10−6

að5ÞXZZSd −8.1 × 10−6 2.1 × 10−6

að5ÞYYYSd −4.3 × 10−6 2.3 × 10−6

að5ÞYZZSd −5.4 × 10−6 3.1 × 10−6
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VII. SUMMARY AND OUTLOOK

An analysis searching for effective coefficients para-
metrizing Lorentz and CPT violation in the light-quark
sector has been performed using ZEUS e�pDIS NC data at
HERA. Conservative estimates of previously unknown
time-dependent systematic uncertainties independent of
instantaneous luminosity and trigger configuration have
been made by binning and analyzing events as a function of
the sidereal-rotation frequency of the Earth. By combining
binned sidereal statistical uncertainties with systematic
uncertainties in quadrature, the data are shown to be
compatible with the Standard Model. First constraints have
been placed on the 24 combinations of the nonrenormaliz-
able, CPT-violating, and spin-independent að5Þ-type oper-
ators associated with rotationally anisotropic u- and d-quark
effects. For the renormalizable CPT-preserving c-type
coefficients, the first constraints have been placed on the
six rotationally anisotropic s-quark coefficients and the first

experimental constraints have been extracted on the analo-
gous 12u- and d-quark coefficients. In total, 42 coefficients
have been constrained, 30 for the first time.
Partonic-physics studies of fundamental symmetries and

experimental analyses searching for unconventional time-
dependent signatures are in their infancy. A statistically
significant indication of Lorentz or related fundamental-
symmetry violation in EFT would not unequivocally
indicate the presence of phenomena outside the description
of quantum field theory and metric theories of gravity.
Nonetheless, such a discovery would indicate the presence
of new physics, which is a strong motivation for further
work in this area.
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