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Abstract

Reliable deterministic prediction of earthquake occurrence is not possible at present, and may

never be. In the absence of a reliable deterministic model, we need alternate strategies to

manage the seismic hazard or the risk. This involves making statements of the likelihood

or earthquake occurrence in space and time, including a fair and accurate description of the

uncertainty around statements used in operational decision-making. Probabilistic Seismic

Hazard Analysis (PSHA) and Operational Earthquake Forecasting (OEF) have the role of

providing probabilistic statements on the hazard associated with earthquakes on long-term

(decades to centuries) and short-term (days to decades) time frames respectively. Both

PSHA and OEF rely on a source model able to describe the occurrence of earthquakes.

PSHA models are commonly modelled using a spatially-variable Poisson process to de-

scribe earthquake occurrence. Therefore, they are calibrated on declustered catalogues which

retains only the largest earthquakes in a sequence. OEF models, on the other hand, are com-

monly time-dependent models which describes the occurrence of all the events above a certain

magnitude threshold including dependent events such as afetrshocks or swarms. They are

calibrated on the full earthquake catalogue and provide accurate descriptions of the cluster-

ing process and the time-evolution of earthquake sequences. The Epidemic-Type Aftershock

Sequence (ETAS) model is the most commonly used model as time-dependent seismicity

model and belongs to the general class of Hawkes (or self-exciting) processes. Under the

ETAS model, any earthquake in the sequence has the ability of inducing (or triggering) its

own subsequence of earthquakes in a cascade of events, as commonly observed in nature.

The earthquake catalogue is then the union of a set of events occurring independently from

each other (background events) and a set of events which have been induced or triggered by

another (aftershocks).

The reliability of PSHA or OEF strategies depends upon the reliability of the source

model used to describe earthquake occurrence. In order to improve the source model, we

need the ability to (a) incorporate hypotheses on earthquake occurrence in a model, and (b)

validate the model against observed data. Both tasks are problematic. Indeed, the complex

mathematical form of the ETAS model requires ad-hoc methodologies to perform inference on

the model parameters. These methodologies then need further modification if the classical

ETAS model is adjusted to introduce new hypotheses. Comparing forecasts produced by

models incorporating different hypotheses which are and calibrated with different methods is

problematic because it is difficult (if not impossible) to determine where the differences in

the forecasts are coming from. Therefore, a unique framework capable of supporting ETAS

models incorporating different hypotheses would be beneficial. Similarly, the validation step

has to be done on models calibrated on the same data and producing forecasts for the same

spatio-temporal region. Moreover the validation must ultimately be done against future data,

unknown in the moment in which the forecasts are produced, to ensure that no information

about the data used to validate the models is incorporated in the models themselves. Hence,

the Collaboratory for the Study of Earthquake Predictability (CSEP) has been founded with

the role of gathering forecasting models and running fully-prospective forecasting experiments
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in an open environment. CSEP ensures that the models are validated fairly and using a set

of community-agreed metrics which measure the agreement between forecasts and data on

the outcomes.

In this thesis, I present and apply a new Bayesian approximation technique for Hawkes

process models (including ETAS). I also demonstrate the importance of one of the statistical

properties that scores used to rank competing forecasts need to have in order to provide

trustworthy results. The Bayesian framework allows an accurate description of the uncer-

tainty around model parameters which can then be propagated to any quantity of interest. In

the context of Bayesian statistics, the most commonly used techniques to perform inference

are Markov Chain Monte Carlo (MCMC) techniques which are sampling-based methods. In-

stead, I use the Integrated Nested Laplace Approximation (INLA) to provide a deterministic

approximation of the parameter posterior distribution instead of the random sampling. INLA

is faster than MCMC for problems involving a large number of correlated parameters and

offers an alternative way to implement complex statistical models which are infeasible (from

a computational point of view) with MCMC. This provides researchers and practitioners with

a statistical framework to formulate ETAS models incorporating different hypotheses, pro-

duce forecasts that accounts for uncertainty, and test them using CSEP procedures. I build

on the work done to implement time-independent models for seismicity with INLA which

provided a framework to study the effect of covariates such as depth, GPS displacement,

heatflow, strain rate, and distance to the nearest fault but lacked the ability to describe the

clustering process of earthquakes. I show that this work can be extended to include time-

dependent Hawkes process models and run in a reasonable computational time using INLA.

In this framework, the information from covariates can be incorporated both in modelling

the rate of background events, and in modelling the number aftershocks. This resembles

how information on covariates is incorporated in Generalized Linear Models (GLMs) which

are widely used to study the effect of covariates on a range of phenomena. Indeed, this

work offers a way to borrow ideas and techniques used with GLMs and apply them to seis-

micity analyses. To make the proposed technique widely accessible, I have developed a new

R-package called ETAS.inlabru which offers user-friendly access to the proposed methodol-

ogy. The ETAS.inlabru package is based on the inlabru R-package which offers access to

the INLA methodology. In this thesis, I compared our approach with the MCMC technique

implemented through the bayesianETAS package and shows that ETAS.inlabru provides

similar results to bayesianETAS, but it is faster, scales more efficiently increasing the amount

of data, and can support a wider range of ETAS models, specifically those involving multiple

covariates. I believe that this work provides users with a reliable Bayesian framework for the

ETAS model alleviating the burden of modifying/coding their own optimization routines and

allowing more flexibility in the range of hypotheses that can be incorporated and validated.

In this thesis, I have analysed the 2009 L’Aquila and 2016 Amatrice seismic sequences oc-

curred in central Italy and found that the depth of the events have a negative effect on the

aftershock productivity, and that models involving covariates show a better fit to the data

than the classical ETAS model.

On the statistical properties that scores needs to posses to provide trustworthy rankings

of competing forecasts, I focus on the notion of proper scores. I show that the Parimutuel

Gambling (PG) score, used to rank forecasts in previous CSEP experiments, has been used

in situations in which is not proper. Indeed, I demonstrate that the PG score is proper

only in a specific situation and improper in general. I compare its performances with two

proper alternatives: the Brier and the Logarithmic (Log) scores. The simulation procedure

employed for this part of the thesis can be easily adapted to study the properties of other

validation procedures as the ones used in CSEP or to determine important quantities for

the experimental design such as the amount of data with which the comparison should be
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performed. This contributes to the wider discussion on the statistical properties of CSEP

tests, and is an additional step in determining sanity-checks that scoring rules have to pass

before being used to validate earthquake forecasts in CSEP experiments.
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Lay Summary

Neither national institutions nor any scientists have been able to provide a method to reliably

predict major earthquakes. As scientists, we can only provide the probability that an earth-

quake above a certain magnitude will happen in a specified spatio-temporal window. This is

the role of Probabilistic seismic hazard analysis (PSHA) and Operational Earthquake Fore-

casting (OEF) activities that have the scope to provide probabilistic statements on future

seismicity to inform institutions and civil populations on the risk associated with earthquake

occurrence on a long (decades to centuries) and short term (days to decades) time frames

respectively. Our inability to predict major earthquakes is mainly due to the limited amount

of information that we have on earthquakes, the large scale of the geological processes in-

volved, and the inability to reproduce them in laboratory experiments. Indeed, earthquakes

are generated by the interaction between tectonic plates. As they move, stress is accumu-

lated along the faults for periods of time ranging from decades to centuries, and when the

stress level exceeds a certain (unknown) critical value we have an earthquake. The amount

of energy released determines the size of the earthquake and, possibly, triggers more earth-

quakes. Therefore, relevant quantities to predict earthquakes may be the stress accumulated

along the faults, the direction in which the plates are moving, the material of which the

plates are made at their boundaries, the heat flow from Earth’s interior to the surface, and

potentially many more. Most of these quantities are not monitored on a continuous basis

and only in a few places around the globe. Indeed, many models do not use this kind of infor-

mation, and questions on which aspects of the earthquake generation process are explained

by these quantities are still open. Furthermore, a robust statistical framework to study the

effect of available information on earthquake occurrence, as it is done in other fields ranging

from ecology to psychology, is still missing.

In absence of a reliable physical model able to describe observed seismicity, scientists

have had to resort to statistical models describing the frequency of earthquakes occurrence

in time, space, and magnitude. Their findings are summarised by well-established empirical

laws describing these frequencies such as Omori’s law, the Utsu-Seki law, and the Guten-

berg–Richter law. The Epidemic-Type Aftershocks Sequence (ETAS) model is the most used

point process model used in statistical seismology. The main characteristic that made ETAS

successful over the years is its ability to incorporate the aforementioned empirical laws in a

unified framework. Another advantage is that ETAS allows us to directly model the short-

term clustering of seismicity by modeling the ability of each earthquake to induce additional

ones. Specifically, it models the number and spatio-temporal distribution of the aftershocks

induced by each event. In the case of the classical ETAS model, the only information used

to predict the number of induced events and how this number decays with time and space

is the magnitude and location of the event. However, as time passes and technology devel-

ops, a welth of new information is available with great potential of improving our ability to

predict earthquakes. For example, faults maps are more detailed, GPS measures allow us to

calculate the displacements associated with seismic events, updated heatflow and stress rate

maps could be incorporated as well as information on the earth’s focal mechanism. In this
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context, it is crucial to have a reliable statistical framework to formulate and test hypotheses

on how this additional information can be incorporated in the model. This involves being

able to formulate different hypotheses, build models incorporating them, and fairly compare

the models against observed data to determine which hypotheses are most useful to predict

future seismicity.

My Ph.D. project can be divided into two parts: a modelling part and a testing part. Re-

garding the modelling part, I develop a framework to perform Bayesian inference on the ETAS

model. Being Bayesian is foundamental for us because it is the only statistical framework

that allows us to explicitly quantify the uncertainty around the model parameters. This is

crucial, especially in an OEF context, because it allows measuring the level of trust we should

have around the information provided by the model on future seismicity. Not considering the

uncertainty explicitly may lead to overconfident forecasts and potentially underestimate the

seismic risk, which, in turn, may lead to catastrophic consequences. Our approximation

method is based on the Integrated Nested Laplace Approximation (INLA) and constructed

on the R-package inlabru. INLA is a method to perform Bayesian inference on complex

models which are usually not practicable with alternative methods due to the huge com-

putational time required. The inlabru R-package facilitates the use of INLA for spatial

models and generalizes the INLA method to even more complicated models. Both of them

have been largely used to study ecological processes, especially in presence of multiple covari-

ates. My project aims to bring the experience maturated by this community in studying how

available information helps in understanding and forecasting complex ecological processes to

the seismological community. To make our approach as accessible as possible, we made

an R-package ETAS.inlabru to allow users to use our ETAS model implementation with

minimum coding efforts. This provides an accessible framework to researchers to develop

spatio-temporal seismicity models incorporating available information with the potential of

improving our ability to predict earthquakes. We provide applications of our methodology on

the temporal and spatio-temporal ETAS models to seismic sequences in Italy.

Regarding the testing part of my project, I focus on one statistical property that scoring

rules used to rank competing forecasts must have. I consider only positively oriented scoring

rules that are functions of the forecast and the observed data returning a single value, the

highest the value the better the forecasts. In this way, having a set of competing forecasts

and the observed data we can rank them and determine which forecast is better. Different

scoring rules penalize the competing forecasts differently and the obtained rankings may

vary. However, they should always advantage, on average, of the data-generating model.

This property is known as propriety or properness and a score that has this property is said

proper. If a scoring rule is not proper means that it can be biased and favours models that

under/overpredict the target quantity. I prove that the Parimutuel Gambling (PG) score,

which has been used to compare forecasts in recent papers, is indeed proper only in a very

specific situation and not in general. I explore the consequences of using an improper scoring

rule comparing the rankings obtained with the PG score with two proper alternatives. Finally,

I show that we can easily find situations in which the PG score assigns the highest score to

forecasts underestimating the probability of observing earthquakes above a certain magnitude

threshold, and how this does not happen using proper scoring rules. This work shows how

scores that seem proper at first glance may be not if analysed more deeply and shows different

techniques to check for propriety using simulated data.
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Chapter 1

Introduction

1.1 The importance of the source model

Large earthquakes have a devastating impact on our society. During the last century, it has

been estimated that more than 8.5 million people have died and more than 2 trillion dollars in

damage are due to earthquakes (Daniell et al., 2011). Despite strong efforts through the last

century, the aspiration of a model capable of predicting earthquakes, within a narrow time,

space magnitude window, has proven elusive, and may well be impossible 1. Nevertheless,

we need short and long-term strategies to mitigate this risk. We need long-term strategies

(decades to centuries) to strategically determine where sensitive infrastructures should be

placed and design the building codes based on the expected maximum level of ground shaking.

At the same time, we need short-term strategies (days to decades) to inform people and

organizations and guide the recovery efforts while a sequence is happening. Given that

deterministic predictions that try to provide the exact space-time location of future large

events are unreliable, the only other choice is to study at which probability earthquakes

occur, and how these probabilities evolve in time and space. In both kinds of analysis, the

main interest lies in forecasting how much the ground will shake which, in turn, depends on

forecasting the occurrence of earthquakes. The two main branches of earthquake forecasting

are Probabilistic Seismic Hazard Analysis (PSHA, Cornell (1968)) which focuses on long-term

(decades to centuries) aspects of seismicity, and Operational Earthquake Forecasting (OEF,

Jordan and Jones (2010)) which focuses on the short-term (days to decades) aspects of

seismicity. Other techniques such as Deterministic hazard assessment exists (Connor et al.,

2009) but in this thesis, I will focus on probabilistic methods. Both PSHA and OEF have

the goal of providing authoritative probabilistic statements on future earthquake occurrence

to inform people, institutions, and organizations involved in operations to mitigate this risk.

PSHA has been widely used for decades and is now a fundamental ingredient in the process

of designing reliable building codes (Solomos et al., 2008; Hanks et al., 2009) and hazard

maps are routinely produced for many countries such as the United States (Frankel et al.,

2002), New Zealand (Stirling and Wilson, 2002), Italy (Gruppo di Lavoro, 2004a), for the

entire globe (Silva et al., 2020; Pagani et al., 2020). These maps are usually freely available

and can be navigated interactively. Examples are the map provided by the European Facilities

for Earthquake Hazard and Risk (EFEHR) 2 or the one provided by the Global Earthquake

1The United States Geological Survey (USGS) states ”Neither the USGS nor any other scientists

have ever predicted a major earthquake. We do not know how, and we do not expect to know how

any time in the foreseeable future.” https://www.usgs.gov/faqs/can-you-predict-earthquakes#:˜:

text=No.,time%20in%20the%20foreseeable%20future.
2http://www.efehr.org/earthquake-hazard/hazard-map/

1

https://www.usgs.gov/faqs/can-you-predict-earthquakes#:~:text=No.,time%20in%20the%20foreseeable%20future.
https://www.usgs.gov/faqs/can-you-predict-earthquakes#:~:text=No.,time%20in%20the%20foreseeable%20future.
http://www.efehr.org/earthquake-hazard/hazard-map/
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Model (GEM) foundation 3. On the other hand, OEF activities are still at the beginning

(Jordan et al., 2014; Marzocchi et al., 2014).

The standard technique to calculate the probability that the maximum ground-shaking

will exceed a certain threshold over a certain period of time was developed by Cornell (1968)

in the context of PSHA and is composed of 4 steps (Figure 1.1). The first step is to

identify the earthquake sources, essentially where and when the earthquakes are more likely

to occur. This is done using a source model able to represent the properties of seismicity

in space and time. The second step is to determine the magnitude distribution providing

information on how likely it is to observe large earthquakes at a particular site. Information

from step 1 and step 2 are combined in step 3 to calculate the expected peak ground

acceleration distribution which states how probable it is to observe a certain maximum level

of shaking. This is done using ground-motion equations (Douglas, 2003). Step 4 just

calculates the probability that the peak ground acceleration will exceed a certain threshold.

Varying the threshold yields exceedance probability functions can then be used in what is called

Probabilistic Seismic Risk Analysis (PSRA) to calculate expected damages such as structural

failures, fatalities, and economic losses (Baker et al., 2021). The main difference between

PSHA and OEF is in step 1: the source model used to describe earthquake occurrence.

Indeed, in PSHA the interest is on the spatial distribution of earthquakes over extended

periods of time (decades to centuries), and the model employed as source models are time-

independent models. The focus is on estimating the rate of background events, where the

latter indicates events that are assumed to occur spontaneously and not be triggered by

other events known as aftershocks (Chapter 2 gives a more formal definition of background

and aftershock events). The time of the events is used to label the events as background

or aftershocks using a technique called declustering methods (Gardner and Knopoff, 1974;

Reasenberg, 1985; Zhuang et al., 2002), and only the background events are then retained

for the analysis. On the other hand, in OEF, the greatest interest is in describing the temporal

evolution of earthquake sequences and the spatio-temporal distribution of aftershocks to be

able to promptly respond to destructive events. Therefore, OEF analyses make use of the

whole earthquake catalogue. For both of them, the reliability of the final results strictly

depends on the reliability of the source model which needs to provide results as consistent

as possible with observed seismicity patterns. Having an unreliable source model leads to

underestimating/overestimating the risk associated with seismic activity. In this thesis, we

propose a new framework to build complex source models describing earthquake occurrence

and we explore methods to validate them against observed data.

1.2 Evolution of the source model

The source model has the role of describing the evolution of seismic patterns in space and time

and needs to incorporate all the knowledge gained over centuries of observations. Ancient

Greek philosophers, such as Thales and Aristotle, already noticed that earthquakes do not

occur randomly in space and time, and that an earthquake can affect places very far from

where it starts (Oeser, 1992). They explained this by supposing the existence of a complex

system of underground caves where earthquakes were generated by water or wind and that

allowed the effect of an earthquake to travel from one place to another. Similar theories

were also proposed by Kant (1756) who added that these caverns should run parallel to

mountain ranges and large rivers because it was there that the majority of earthquakes

happen. Nowadays, we know that the majority of earthquakes are generated by plate tectonic

movement near plates boundaries and the resulting seismic release of energy is through slip on

3https://www.globalquakemodel.org/gem-maps/global-earthquake-hazard-map

2

https://www.globalquakemodel.org/gem-maps/global-earthquake-hazard-map
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Figure 1.1: The four steps of probabilistic seismic hazard analysis (PSHA). Figure taken

from Chapter 10 of Connor et al. (2009).

faults. It is widely accepted that the earth’s crust is composed of tectonic plates (Wegener,

1912) and that they move relatively to each other (Morgan, 1968; McKenzie and Parker,

1967). Friction prevents the plates from slipping smoothly, and causes the plates to lock,

stress builds up until there is enough to generate a rupture. The rupture creates seismic waves

that travel through the earth’s crust and may trigger additional earthquakes. Scientists have

invented instruments to record these waves (seismometers) and their output (seismograms)

is analysed to determine the spatial location, the time, and the energy released (usually

quantified by a logarithmic measure such as the magnitude) by an earthquake. Seismic

recordings are even used to determine the composition of the Earth’s crust and can be

applied to study the structure of other planets (Shearer, 2019; Stähler et al., 2021). In this

thesis, we used as data the inferred epicenter location, the time, the magnitude, and the

depth of the events composing an earthquake catalogue.

Early models describing seismicity were based on the hypotheses that earthquakes occur-

rence has some sort of periodicity and that large earthquakes occurring on the same fault

should have similar characteristics. These are respectively known as the seismic gap hypothe-

ses (Fedotov, 1965; Sykes, 1971) and the characteristics earthquake hypotheses (Schwartz

and Coppersmith, 1984) and have been the basis of some PSHA models for many years.

These models are not interested in describing the clustering behavior of seismicity but only

the occurrence of large earthquakes (mainshocks). For these reason, PSHA still relies on

declustering methods which removes from the catalogue all the earthquakes happened before

(foreshocks) and after (aftershocks) the mainshocks. Then, they assume that the main-

shocks occur independently in time and follow a spatially variable but temporally stationary

Poisson process. This approach resents of various problems, first of all the identification of

mainshocks is non-trivial, there are many alternative declustering algorithms (Gardner and

Knopoff, 1974; Reasenberg, 1985; Zhuang et al., 2002), and this introduces a degree of

subjectivity in the analyses. Second, acquiring more data on earthquake occurrence and

rigorous testing showed that observed seismicity does not verify the seismic gap hypothesis

nor the characteristic earthquake one (Geller et al., 2015; Kagan et al., 2012). This led

to the diffusion (and use) of hazard maps that failed to describe observed seismicity and

3



4 1.3. UNCERTAINTY

damaging earthquakes that happened in areas considered as low-risk by PSHA maps (Muir-

Wood, 1993; Geller, 2011; Stein et al., 2012; Mulargia et al., 2017). This induced part of

the community to deem PSHA methods as unreliable and state that should be abandoned

(Geller et al., 2015; Stark, 2022). A counterargument is that this models tries to capture

departure from the Gutenberg-Richter law (Gutenberg and Richter, 1944) for the magnitude

frequency distribution on data regarding individual faults in cases where the largest earth-

quakes are over-represented (Field et al., 2014). Also, a longer observation period suggests

that earthquakes are happening in high and low risk areas in correct proportion (Hanks et al.,

2012). From a different point of view, these failures are empirical proof of how important is

to properly validate models for seismicity against future data before using them operationally

(Marzocchi et al., 2014; Strader et al., 2018).

A more realistic model to describe seismicity patterns is the Epidemic Type Aftershocks

Sequence (ETAS) model (Ogata, 1988). The ETAS model assumes that the events can be

divided into background events happening spontaneously and independently from each other,

and aftershocks that are triggered by a parent event, and in turn can trigger others. In

this way, events do not need to be discarded and the ETAS model provides a description of

the entire earthquake catalogue. It is considered the state-of-the-art in modern earthquakes

forecasting due to its ability to incorporate the most widely accepted (and empirically vali-

dated) laws of seismicity such as the Omori’s law for aftershock decay (Omori, 1894) and

the Gutenberg-Richter law describing the magnitude frequency distribution (Gutenberg and

Richter, 1944). The ETAS model is based on the idea that any earthquake is capable of

creating its own aftershock sequence, this allows for cascades of events as they are observed

in nature, as opposed to the models described above where only the mainshocks have this

capability. This makes ETAS particularly suited to quantify the risk due to aftershock ac-

tivity (Iervolino et al., 2018) and is used or considered in the majority of OEF applications

(Marzocchi et al., 2014; Rhoades et al., 2016; van der Elst et al., 2022). Moreover, the

supremacy of the ETAS model against competitors has been proved in many prospective

forecasting experiments in different tectonic settings (Woessner et al., 2011; Strader et al.,

2017; Taroni et al., 2018; Nandan et al., 2019; Savran et al., 2020). For these reasons, ETAS

is now considered the state-of-the-art in modern earthquake forecasting. In this thesis, I of-

fer a new way to estimate the parameters of the ETAS model with the ability to quantify

the uncertainty relative to these estimates and to extend the classic ETAS formulation to

include possible covariates. A detailed description of the ETAS model and the empirical laws

of seismicity incorporated in it is provided in Chapter 2.

1.3 Uncertainty

Accounting for uncertainty is fundamental to have a fair representation of our knowledge

around future earthquakes; not including uncertainty may lead to under/overestimating the

risk associated with earthquakes and, in turn, to make poor decisions (Crowley et al., 2005).

In the same way, the act of rejecting or accepting a hypothesis based on observed data is

rooted in the concept of uncertainty, and decisions are taken based on how the uncertainty of

the result is quantified. This is the case for example of classical hypotheses testing where a

hypothesis is rejected based on the probability distribution of appropriate statistics (function

of the data) under the hypothesis under analysis. The common ontological framework for

probabilistic forecasting models considers two kinds of uncertainty: aleatory and epistemic

(Budnitz et al., 1997; Marzocchi and Jordan, 2014; Marzocchi et al., 2015). The aleatory

uncertainty stems from the intrinsic randomness of the system itself, for example, the result of

tossing a coin is an aleatory event because every time we toss the coin a potentially different

4
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result may occur. Indeed, aleator is the Latin word for dice thrower. Aleatory uncertainty is

well represented by a single model with fixed parameters, for instance, statistical models like

ETAS are capable of generating many different realistic synthetic catalogues from the same

set of parameters. Instead, the epistemic uncertainty stems from our lack of knowledge of the

system and our ignorance of the laws governing the phenomenon under study. This includes

uncertainty around the value of the parameters of the model and, on a higher level, on the

model formulation itself. Aleatory variability is independent of our knowledge of the system

and is often characterized as known unknowns, while epistemic uncertainty comes from our

state of knowledge and is characterized as unknown unknowns. Epistemic uncertainty can

be reduced by acquiring more information on the process, while aleatory uncertainty can not

be reduced within one representation or model (Goldstein, 2013), but could be reduced by

more adequate representations.

The Bayesian approach to statistical analysis provides a theoretical framework to quantify

the epistemic uncertainty around a model. Indeed, in Bayesian statistics, every parameter is

considered as a random variable with its own probability distribution, as opposed to the fre-

quentist approach where is supposed to exist a true value of the parameters and uncertainty

about the estimates only comes from the aleatory variability of the data used to calibrate the

model (Jeffreys, 1998). Moreover, the Bayesian approach offers a way to quantify the reduc-

tion in epistemic uncertainty due to the information provided by an experiment. Any Bayesian

analysis is composed of three main ingredients: the prior distribution, the likelihood, and the

posterior distribution. The prior distribution synthesises the knowledge on the parameters

before the experiment is run, or before looking at the data. Any knowledge coming from

previous experiments and expert opinions can be used to determine the prior distribution.

The likelihood describes the aleatory variability of the data, and is a way to formalise the

information provided by the observations on the parameters of interest. Frequentist analyses

rely on analysing only the likelihood and parameters are estimated as the set of parameters

under which the probability of observing the data is maximized. The posterior distribution

is a normalised combination of the prior and the likelihood and synthesises the updated level

of knowledge on the parameters after the experiment. In other words, the prior distribution

describes the epistemic uncertainty before the experiment while the posterior distribution

after. Comparing the two gives us a measure of how much information we gained running

the experiment. In the case of a new experiment, the posterior distribution can be used as

prior and the whole process repeated. This offers the possibility of tracking the evolution of

our knowledge through multiple experiments.

The epistemic uncertainty, however, does not include only the parameter values but also

the model formulation. This includes which hypotheses are incorporated in the model, exam-

ples of unresolved questions are, is the aftershock triggering isotropic? If not, which shape

is more appropriate? Do the parameters vary with time or space or both? Is there any

external factor influencing the earthquake generation process? If yes, on which aspects? and

which factors? There is no clear answer to these questions, and the answer may change with

the data. This uncertainty led to the formulation of many different alternative models for

seismicity. The collection of all the possible outputs from all the viable models gives a rep-

resentation of the level of epistemic uncertainty around the earthquake-generating process.

A standard approach based on this idea is the logic tree which offers a hierarchical frame-

work to handle the problem (Kulkarni et al., 1984; Henley and Kumamoto, 1996; Musson,

2012; Marzocchi et al., 2015). The nodes of the tree represent sources of uncertainty, like

hypothesis A versus hypothesis B where the alternatives are mutually exclusive and each one

creates its own branch. This is repeated until all the sources of uncertainty are considered.

The collection of the end nodes represents the complete epistemic uncertainty and nodes

are combined using a probabilistic structure. The logic tree falls under the more general

5
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class of ensemble models (Lorenz, 1965; Parker, 2013), and offers a way to combine possibly

contradictory hypotheses combining the output of different models. The impact of each

model on the final result is expressed by the weight associated with that branch of the tree.

The weights are usually inferred from expert judgement or based on a measure of how well

the models fit the data. However, also in this case, the Bayesian approach can be used to

quantify the uncertainty around the logic tree weights (Kwag and Gupta, 2017).

The only difficulty of applying the Bayesian approach is actually retrieving the posterior

distribution which often involves integrals with no closed form solution. This task is par-

ticularly challenging when coming to the ETAS model which has a mathematically complex

likelihood function and parameters are correlated with each other (meaning that different

combinations of parameters explain equally well the observed data). The technique that has

become standard in the last decades to perform bayesian inference is called Markov Chain

Monte Carlo (MCMC, Robert et al. (1999)) and relies on the ability to sample from the

posterior distribution of the parameters without having explicitly calculated it. Then, the

posterior distribution is empirically estimated using the obtained samples. This means that

to have a trustworthy representation of the posterior distribution over the whole domain we

need to sample extensively from the posterior and we do not have to specify the uncertainty

structure a priori. This makes MCMC methods notoriously slow compared to frequentist al-

ternatives, and the problem is exacerbated by the number of parameters and the correlation

between them. This is because the interaction between parameters may lead to part of the

domain being undersampled which, in turn, increases the number of samples needed for a

decent representation of all parameters. But MCMC methods are not the only option. In this

work, we develop a new approximation method for the Bayesian ETAS model based on the

Integrated Nested Laplace Approximation (INLA, Rue et al. (2009, 2017)) and implemented

through the package inlabru (Bachl et al., 2019). INLA is an alternative method to MCMC

for bayesian inference of Latent Gaussian models, and inlabru is an R-package providing

user-friendly access to this methodology. Chapter 3 provides an introduction to bayesian

inference, latent Gaussian models, in there I explain how the INLA methodology works, and

it is extended by inlabru.

1.4 Validation of the source model

The key to advance our knowledge on the earthquake-generating process, in order to make

better forecasts, is to be able to falsify hypotheses based on the evidence provided by observed

data. Validating models (and hypotheses there-in) against observed data is a formidably

challenging task when it regards natural phenomena like earthquakes. Indeed, in fields such

as seismology or astronomy, data can not be acquired from experiments but it must come

from monitoring naturally occurring events over long periods of time. This makes verifying

hypotheses against observed data a long-term enterprise that could last decades. A typical

example is the time required to validate the hypothesis that earthquakes are periodic or

quasi-period events. The idea was first proposed by Gilbert (1884) more than 100 years ago.

Schwartz and Coppersmith (1984) introduced the characteristic earthquake hypothesis that

gives the theoretical foundation to study the quasi-periodicity of earthquakes by assuming

that there is a class of recognizably similar events happening on the same fault branch from

which statistics about recurrence intervals can be calculated. The notion of a characteristic

earthquake is the base of any model based on the seismic gap (or seismic cycle) hypothesis.

The debate over these assumptions went over in the 90s, but it was not until large earthquakes

contradicting forecasts based on these hypotheses occurred that it was reconsidered (Jackson

and Kagan, 2006; Kagan et al., 2012; Geller et al., 2015), even though the debate is still open
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today in some areas (Husker et al., 2023). Forecasts based on the characteristic earthquake

hypothesis failed to describe seismicity in several occasions, the most noticeable being the

2004 Parkfield earthquake (Bakun and Lindh, 1985; Bakun et al., 2005), the 2004 Sumatra

earthquake (McCaffrey, 2007; Okal and Stein, 2009) and, the 2011 Tohoku earthquake

(Geller, 2011; Onishi, 2011). The fact that took 30 years to accumulate enough data to

discredit a hypothesis gives the idea of how difficult hypothesis testing could be when dealing

with natural phenomena of this scale.

The previous example shows the importance of prospective testing, i.e. validating fore-

casts against future data, which is the only tool we have to validate hypotheses on the

earthquake-generating process through the comparison between forecasts produced accord-

ingly to a hypothesis and observed data. This process has to be done as rigorously as possible,

meaning that the validation of a model should be done independently from the calibration

of the model, competing models should be compared against the same data and using the

same metrics, and the results of the experiments should be fully-reproducible and accessible.

To smooth the difficulties of the forecast validation process and create community standards

on the way in which models are evaluated against future seismicity the Southern California

Earthquake Centre (SCEC) launched the Regional Earthquake Likelihood Models experiment

(RELM, Field (2007)). Researchers joining the RELM experiment were asked to submit their

forecasts (or code) to a testing center (Schorlemmer and Gerstenberger, 2007b) in which

they have been tested prospectively between January, 1, 2006 and December, 31, 2010. The

submitted models were evaluated using a set of community-agreed likelihood based tests

(Schorlemmer et al., 2007b; Zechar et al., 2010b). The RELM experiment is the first case

where researchers agreed to submit their models in a standardized format to a common,

community-agreed testing center to be validated independently against future observations.

The RELM experiment was a success (Zechar et al., 2013) and was extended to the period

from 2011 to 2015 (Strader et al., 2017). As the idea of rigorous independent testing gained

support from the community, the Southern California Earthquake Center (SCEC) founded the

Collaborative study of earthquake predictability (CSEP4, Jordan (2006); Schorlemmer et al.

(2010); Zechar et al. (2010b)) with the aim of expanding internationally the methods and

philosophy applied in the RELM experiment. CSEP is now composed of three testing centers

besides the SCEC one: the GNZ Science in New Zealand Gerstenberger and Rhoades (2010),

the Earthquake Research Institute (ERI) of the University of Tokyo in Japan Tsuruoka et al.

(2012), and the ETH Zurich in Switzerland Marzocchi et al. (2010) in Europe (Figure 1.2).

This gave the possibility of validating more than 400 hundred models in different tectonic

regimes (Taroni et al., 2014, 2016, 2018; Eberhard et al., 2012; Bayona et al., 2021; Savran

et al., 2020; Rhoades et al., 2018).

The experiments organized by CSEP, however, highlighted the problems of having physical

testing centers in terms of reproducibility, accessibility, and flexibility in accommodating new

types of forecasting experiments (Schorlemmer et al., 2018). Specifically, the main problem

was that the testing center software was strongly entangled with the testing center system

architectures, and, despite the code always being open source, reproducing the experiment

results outside of the testing center was impracticable. Furthermore, maintaining a physical

testing center is expensive in terms of economic costs for extended periods of time. To

increase the reproducibility and availability of the experimental results, in accordance with

the modern open-science principle (Wilkinson et al., 2016), CSEP decided to decouple the

testing center from the evaluation routine. This led to the development of an open-source

Python library, called pyCSEP (Savran et al., 2022), which provides a beginner-friendly,

extendible interface for practitioners to validate earthquake forecasts. pyCSEP aims to be the

4website: https://cseptesting.org/

7

https://cseptesting.org/


8 1.5. MY PROJECT

Figure 1.2: Global map of CSEP testing centers (Blue) and testing regions (Red)

first step towards making research in earthquake forecasting more sustainable (Anzt et al.,

2020) providing a bridge between software developers and scientists. Indeed, the open-

source nature of the pyCSEP toolkit allows researchers to contribute to the refinement and

development of testing procedures by identifying potential issues and creating new features

by themselves, as it has been successfully done in other contexts (Hunter, 2007; McKinney

et al., 2010; Team, 2020). As part of CSEP, I have been involved in discussions around the

statistical properties of the metrics used within CSEP to validate earthquake forecasts. In

Chapter 7, I explore the notion of proper scoring rules used to rank competing earthquake

forecasts based on their consistency with observed data. We show that being proper is an

essential requirement and provide ways to check if a score is proper or not. Chapter 2.5

reviews the main metrics provided by pyCSEP to validate earthquake forecasts.

1.5 My project

In this thesis, I develop a new bayesian approximation technique to perform inference on the

ETAS model. The novelty resides in a new log-likelihood approximation and differs from

alternative bayesian techniques (Rasmussen, 2013; Ross, 2021). The main difference resides

in the technique used to retrieve the posterior distribution. The methodology proposed in

this thesis is based on the Integrated Nested Laplace Approximation (INLA) which, unlike

MCMC techniques which are based on sampling the posterior distribution and approximating

the posterior density using the samples, relies on a deterministic approximation of the joint

posterior distribution. This has two major implications. The first one is that our methodology

is faster than MCMC alternatives and scales more efficiently increasing the amount of data

provided. I show in Chapter 4 that it can be 10 times faster than MCMC alternatives for the

temporal ETAS model on catalogues with 2000-3000 observations, and we can expect the

computational gain to be even larger for the spatio-temporal case. Second, the same data

and initial settings produce exactly the same results, increasing the level of reproducibility of

8
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any result obtained with this technique. Moreover, the approximation technique I developed

is not limited to the ETAS model but could be applied, in principle, to any Hawkes (or

self-exciting) process model.

This new methodology is implemented through the R-package inlabru which provides

a user-friendly interface to use the INLA method. On top of inlabru, I have developed a

new R-package called ETAS.inlabru (Naylor and Serafini, 2023) with the aim of providing a

user-friendly, extendible framework to work with our implementation of the ETAS model. In-

deed, we want to provide a methodology able to accommodate different modifications of the

ETAS model, including the possibility of accounting for the effect of external covariates (e.g.

strain rate maps, fault geometry, fault displacement, heat flow), with minimal variations so

that differences in the forecasts can be imputed only to differences in the model formulation.

This build on the work presented by Bayliss et al. (2020) in which the inlabru methodology

is used for spatially variable time-independent models of seismicity and the effect of including

different combinations of available covariates is studied. My aim was to extend that ap-

proach to time-dependent models. Having the ability to accommodate a variety of models

within the same framework is useful because when models are implemented using different

methodologies is difficult to distinguish the effect of different hypotheses from the effect of

different methodologies. In this way, researchers could run their own forecasting experiments

producing forecasts with the ETAS.inlabru package and testing them with pyCSEP being

sure that the parameters of each model are estimated with the same technique. All the

results showed in Chapter 4, 5, and 6 are obtained with the ETAS.inlabru package. The

last part of the thesis is dedicated to my work on the statistical properties of scoring rules

employed to rank earthquake forecasts. I focus on the notion of proper scoring rule and illus-

trate why this property is fundamental for a score to be effective and to provide trustworthy

results. I show that scores may be proper only in specific situations and when used in a certain

way and not in general, and therefore, a rigorous check before using them is always needed.

The Parimutuel Gambling (PG) score (Zhuang, 2010; Zechar and Zhuang, 2014) was shown

to be an example of a score that is proper only in a specific situation and its performance

when improper compared poorly with two proper alternatives: the Brier (Brier, 1950) and

the logarithmic (Good, 1952) scores. This work provides an additional step towards having

a suite of community-agreed safety checks that testing procedures and scores need to pass

prior to being employed by CSEP or other organizations/users to rank earthquake forecasts.

1.6 Thesis overview

Chapter 2 provides an introduction to the most widely accepted empirical laws of seismicity

(i.e. the Omori’s law (Omori, 1894) and the Gutenberg-Richter law (Gutenberg and Richter,

1944)) as well as a detailed illustration of the ETAS model. The chapter also shows the

difficulties in estimating the parameters and some of the many ETAS modifications that have

been proposed during the last 20 years. For space-time reasons, the list will not be exhaustive

but gives an idea of the possible generalizations. The last part of Chapter 2 is dedicated to

model validation. The section is divided into consistency tests to measure the agreement

between a forecast and the observations, and comparison scores to rank competing forecasts

in the light of the observations. We describe only the main validation techniques used within

CSEP, and again many others have been proposed in the literature but their analysis is beyond

the scope of this chapter.

Chapter 3 describes the Integrated Nested Laplace Approximation (INLA) and the ex-

tensions provided by the inlabru R-package. The INLA methodology is designed for the

general class of Latent Gaussian models, and therefore the chapter starts introducing this

9
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class. Then, I describe the Laplace approximation and how this is applied to various parts

of the bayesian inferential problem to obtain the final INLA output. The second part of

the chapter is dedicated to inlabru and especially to Log-Gaussian Cox Processes (LGCP),

which are a class of point processes widely used for time-independent applications. We de-

scribe the method with which LGCP models are approximated by inlabru. This is relevant

because we use a modification of this technique for the ETAS model and illustrating it is

useful to fix the ideas used in Chapter 4 on a simpler case. The last section is dedicated

to the inlabru iterative method which is used to extend the INLA methodology to Latent

Gaussian models with non-linear predictors which are also needed to approximate Hawkes

process models.

Chapter 4 is an article recently submitted to the Enivonmetrics journal and currently

under review. The article is also available in pre-print at (Serafini et al., 2022a). The

article describes the approximation method for general Hawkes process models and provides

an application to the temporal ETAS model. The article compares my new implementation

with the one provided by the bayesianETAS R-package (Ross, 2021) using data regarding

the 2016 Amatrice seismic sequence in central Italy. In the article, I compare, retrospectively,

the two implementations in terms of the number of expected events, branching ratio, and a

generic measure of goodness-of-fit. Results on simulated sequences show the advantages of

our approach in terms of computational time when increasing the number of events used to

estimate the parameters.

Chapter 5 is an article submitted to the Frontiers in Earth Science journal and accepted for

publication. The article is also available in pre-print at (Naylor et al., 2022). The article shows

the capabilities of the ETAS.inlabru package on synthetic catalogues representing a set of

situations in which standard methods struggle to correctly retrieve the ETAS parameters.

We limit ourselves to the temporal case and we demonstrate that reliable estimates of the

model parameters require that the catalogue data contains periods of relative quiescence as

well as triggered sequences. We explore the robustness under stochastic uncertainty in the

training data and show that the method is robust to a wide range of starting conditions.

We show how the inclusion of historic earthquakes prior to the modelled domain affects the

quality of the inversion. Finally, we show that incompleteness after large earthquakes has a

significant and detrimental effect on the ETAS posteriors.

Chapter 6 generalizes the method described in Chapter 4 and used in Chapter 5 to the

spatio-temporal case and shows how to include available covariates to model the number of

aftershocks generated by an event. The chapter considers three modifications of the classical

ETAS model: one accounting for the depth of the event, one for the mean strike of the

nearest fault, and one with both covariates. The models are compared retrospectively using

data on the 2009 L’Aquila sequence and the 2016 Amatrice sequence in central Italy, and

the models are ranked using the Akaike Information Criterion (AIC). The aim of this chapter

is not to evaluate how well the models perform in forecasting future seismicity but rather if

introducing additional information from the covariates yields models offering a more precise

description of seismicity. The AIC shows that all the modified ETAS model provides a better

(in terms of likelihood) description of the observed data in a retrospective analysis. Forecasts

produced by the models considered in this chapter would be part of the next prospective Italian

forecasting experiments, and they are being used in a study on the feasibility of real-time

rapid loss assessment.

Chapter 7 is an article published by the Geophysics Journal International (GJI) and can be

found at Serafini et al. (2022b). The article explores the notion of proper scoring rules and

applies the concept to ranking earthquake forecasts. Specifically, the paper investigates the

consequences of using an improper scoring rule using as an example the Parimutuel Gambling

(PG) score (Zhuang, 2010; Zechar and Zhuang, 2014), and proves analytically that the PG

10
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score is proper only in a specific situation and improper in all the others. Its performance

using simulated data is compared with two proper alternatives. The simulation example can

be used to test if a score is proper if it can not be proved analytically. The article provides

an additional step in defining sanity checks for a scoring rule that needs to be passed before

a scoring rule is used to validate earthquake forecasts.

Chapter 8 contains a discussion of the proposed methodology and obtained results and

outlines future research directions.
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Chapter 2

Earthquake modeling and validation

2.1 Introduction

Modeling seismicity is a challenging task (Kagan and Vere-Jones, 1996). Indeed, earthquakes

are usually conceptualized as multidimensional entities characterized by an origin time, a

space location (2-D or 3-D), a measure of magnitude, and a focal mechanism. This means

that, excluding the focal mechanism, we already have at least 4 dimensions. In addition,

earthquakes tend to cluster around large events which occur relatively rarely and for which

we have observations on a small interval of time compared to the recurrence of these events.

Also, having more accurate or larger catalogs does not reduce the uncertainty around their

occurrence (Marzocchi et al., 2015). Moreover, earthquake occurrence exhibits a fractal

behavior and, therefore, models aiming to describe seismicity have to be scale-invariant over

a certain range of scales (Sornette, 2006; Mandelbrot and Mandelbrot, 1982). Furthermore,

earthquake occurrence is influenced by fault geometry, the presence of volcanos, the level

of heat flow, the material composing the lithosphere, the deformation rate, and many other

possible covariates. These complexities have so far prohibited the development of a reliable

forecasting model describing future earthquakes and, therefore, the analysis of earthquake

occurrence focused on describing the statistical properties of the earthquake patterns. This

led to the formulation of empirical laws describing the frequencies of earthquakes in different

domains (magnitude, time, space). More specifically, they are the Gutenberg-Richter (GR)

law (Gutenberg and Richter, 1944, 1956), the Omori’s law (Omori, 1894) and the Utsu-Seki

law (Utsu, 1955; Utsu and Okada, 1969). These laws were founded to describe seismicity well

in a variety of tectonic settings. Nowadays all models used in practice have to be consistent

with these empirical laws, and models which do not explicitly include these laws, like machine

learning models or non-parametric models, are thought to be satisfactory if they are able to

learn them from the data van der Elst and Page (2018); Zhu et al. (2021).

Statistical analysis of earthquake occurrence based on stochastic point process theory

(Daley and Vere-Jones, 2008) provides the groundwork to analyse the multidimensional struc-

ture of seismicity and to provide long and short-term forecasts. The first application of a

stochastic process to the earthquake process was made by Vere-Jones (1970) who used a

Neymann-Scott (Neyman and Scott, 1958) cluster process. The Neymann-Scott process

was developed to study the clustering properties of galaxies in cosmology, specifically, how

stars cluster to form a galaxy and how galaxies are distributed. The model is based on the

idea that there are a number of unobserved cluster centers forming a homogeneous Poisson

process, each center generates its own offsprings following an inhomogeneous Poisson pro-

cess, the collection of all offsprings of all centers (but not the centers themselves) forms a

realization of the Neymann-Scott process. Earthquakes can be described by this model think-
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ing of stars as earthquakes and galaxies as seismic sequences. The underlying hypothesis is

that there exist a number of unknown cluster centers which generate their own sequences

and we observe the superposition of all offspring sequences. This is in line with the idea that

there exists a number of mainshocks capable of triggering their own seismic sequence (after-

shocks) and a catalogue contains a mixture of random, independent parent events and the

collection of all aftershocks. The limitations of this model are that only the mainshocks are

capable of generating aftershocks which means that the model does not explain secondary

triggering (aftershocks of aftershocks) and the analysis is influenced by how mainshocks are

determined.

The idea in Vere-Jones (1970) was generalized by Kagan (1973) who instead takes in-

spiration from population modeling and uses an ”immigration and birth” process. In this

process, a number of immigrants appear independently and spontaneously, and each immi-

grant generates their own offsprings who, in turn, generate their own offsprings, and so on.

The cluster (or family) is composed of the immigrant, its offsprings, the second generation

offsprings, and so forth. In contrast to the previous model, each point now has the abil-

ity to generate its own sequence. The analogy with the earthquake process is natural, the

immigrants are the mainshocks and the offsprings are the aftershocks. These types of pro-

cesses belong to the class of branching processes (Harris et al., 1963; Athreya et al., 2004)

where the observations can be grouped hierarchically following a tree structure (Fig 2.1 left).

Kagan (1973) considered a branching process along the magnitude axis (Fig 2.1 right (b))

where each parent can only trigger events with a lower magnitude. A branching process on

the magnitude axis has the advantage that irrespective of the magnitude of completeness

chosen for the analysis, the parent nodes are always retained and only offspring are removed.

On the other hand, this model does not allow an earthquake to trigger a larger one, therefore,

smaller foreshocks cannot be used as precursory signals of large earthquakes (Jones, 1985).

Nowadays, due to its intuitive appeal, statistical analysis of earthquake patterns is car-

ried out almost exclusively with a branching process on the time axis (Fig 2.1 right (c)) in

which each event can generate only future events irrespective of the magnitude. Branching

processes in time are also known as Hawkes processes (Hawkes, 1971a,b), or self-exciting

processes due to the fact that every observation increases the probability of additional obser-

vations in its surroundings. The clear advantage is now that any earthquake can be induced

by a previous one paving the way to study precursory signals. On the other hand, excluding

the events below a certain magnitude threshold may lead to breaking the link between parent

and offspring (broken linkages), which, in turn, may bias the parameter estimates (Harte,

2016). The first application of Hawkes processes to seismicity can be dated back to Kagan

and Knopoff (1987) who call it the Critical Branching Model (CBM, Kagan (2013) Chapter

9 Section 4). A different version of this model was proposed by Ogata (1988), namely,

the Epidemic-Type-Aftershock-Sequence (ETAS, Ogata and Zhuang (2006); Ogata (2011))

model. Due to its ability to incorporate all the most established empirical laws of seismicity,

the ETAS model is now the most commonly used model to describe the earthquake process

and has been used to analyze seismicity in various countries such as Japan (Zhuang, 2011;

Ogata, 2011), California (Field et al., 2017, 2021; Schneider and Guttorp), Italy (Lombardi

and Marzocchi, 2010b; Marzocchi and Zhuang, 2011; Lombardi, 2017), and New Zealand

(Cattania et al., 2018) to name a few.

Despite being widely used, unbiasedly estimating the ETAS model parameters is a chal-

lenging task. The nature of the inversion process means it is far too easy to invert for a

set of ETAS parameters and then uncritically progress assuming they are correct. The prob-

lem of broken linkage is just the tip of the iceberg, indeed the ETAS likelihood is afflicted

by multimodality and flatness around the optima which makes the application of standard

estimation methods, such as maximum likelihood, unstable (Kagan, 1991; Veen and Schoen-
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Figure 2.1: Left: Illustration of branching process hierarchical structure. Right: (a) Illus-

trative time vs magnitude scatter plot with magnitude of completeness varying over time.

(b) Example of a branching process along the magnitude axis. (c) Example of a branching

process along the time axis. The figures are taken from Kagan (2013)
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berg, 2008; Lombardi, 2015; Harte, 2013). This is true for the most basic version of the

ETAS model which makes extending it to include additional information or random effects a

highly challenging task. Another issue is model validation which comprehends ranking mod-

els and evaluating how good the probabilistic forecasts are (Bray and Schoenberg, 2013;

Savran et al., 2020). Indeed, validation is typically problematic for point process models with

almost no widely accepted method to rank competing forecasts or measure the agreement

between forecasts and observed data (Daley and Vere-Jones, 2004; Brehmer et al., 2021;

Heinrich-Mertsching et al., 2021). As Kagan said ”the major challenge facing earthquake

seismology is that new methods for hypothesis verification need to be developed. These

methods should yield reproducible, objective results, and be as effective, for instance, as

double-blind, placebo-controlled randomized testing in medical research” (Kagan, 2013).

Developing such methods, along with running prospective forecasting experiments, is

the aim of a global initiative such as the Collaboratory Study for Earthquakes Predictability

(CSEP, Zechar et al. (2010b); Schorlemmer et al. (2018); Savran et al. (2022)) which builds

on the progress made during the Regional Earthquake Likelihood Models (RELM, Schorlem-

mer and Gerstenberger (2007b); Zechar et al. (2013)) experiment. The goal of CSEP is

indeed to organize global forecasting experiments, gather forecasts from participants, collect

data and test the models against future observations in a fully prospective fashion. This

allows to test hypothesis on the earthquake generation process in a scientific fashion (Pop-

per, 2015; Jordan et al., 2011). However, part of the seismological community believe that

probabilistic forecasts for earthquake occurrence are not falsifiable (Stark, 1997; Luen et al.,

2008; Freedman and Stark, 2003) and therefore, these kind of experiments are meaningless.

At the same time, it is not clear what the alternative would be and the debate is still open.

This Chapter is structured as follows: Section 2.2 describes earthquake catalogues and

illustrates some of the problems relative to working with this data. Section 2.3 describes the

most established empirical laws incorporated in almost any statistical model for earthquake

occurrence. Section 2.4 describes the classical ETAS model, illustrates the methods currently

used in research to estimate the parameters (Section 2.4.1), possible ETAS extensions and

limitations are described in Section 2.4.2. Section 2.5 provides more detail on the validation

problem and describes the statistical tests employed by CSEP.

2.2 Earthquake catalogues and missing data

Statistical analysis of real data is always challenging due to the fact that statistical models

offer only a simplified (but nevertheless useful) description of reality (see Section 2.4.2),

and the data collection procedure may introduce additional biases. The latter is particularly

relevant in seismology where earthquake-specific information such as location, time, and

magnitude is estimated from the signals provided by the seismograms network. Indeed,

an earthquake’s location and magnitude are not directly recorded but calculated from the

signal captured by seismograms. Different methods can be applied to retrieve earthquakes

summary information and therefore alternative earthquake catalogues exist. Regarding Italy,

for example, there is the new Italian Homogenized instrumental seismic catalogue (HORUS,

Lolli et al., 2020), the ’Catalogo Parametrico dei Terremoti Italiani’ (CPTI15, Rovida et al.,

2020), and the Italian Seismological Instrumental and Parametric Database (ISIDE, Group,

2007), all providing slightly different information for the same events. New algorithms to

detect earthquakes are proposed every year, for example, Wimez and Frank (2022) develop

a deep-learning method to identify earthquakes which found 97% more events than (Lough

et al., 2013) in Antarctica known as template matched events. However, catalogues based

on template matching may lead to numerical problems when analysed given that many events
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are reported as having the same location and many models are based on the distance between

events (which would be zero in this case). Besides the problems, the choice of the catalogue

is subjective and there is no standard method to choose one or the other. This is again

problematic when comparing models incorporating different hypotheses and calibrated on

different data because it is impossible to determine whether the difference in the results is

due to the difference in the hypotheses or the data. For the analyses presented in Chapter 4

and Chapter 6 I have used data from the Horus catalogue.

As we said, the ability of an algorithm to detect earthquakes strictly depends on our ability

to extract the event information from seismograms. This ability is limited and is commonly

accepted that earthquake catalogues are incomplete (Ogata, 1983; Utsu et al., 1995; Kagan,

2013). The most typical case is when an event is not detected because its signal is covered

by the signal of a stronger one. This may happen if i) the earthquake is so small that the

noise covers its signal; ii) a large earthquake has just happened and its signal dominates the

seismogram. This means that missing events are likely to be preferentially clustered in time

and space around large events. For example, Kagan (2004) calculated that 1/4 of all events

above magnitude 2 following the 1992 Landers earthquake were missing from the California

catalogue of Hauksson et al. (2012). Therefore, catalogues are usually characterized by

a magnitude of completeness above which the catalogue is thought to be complete. This

magnitude of the completeness is a property of the catalogue that varies smoothly over time

and space, due to changes in the seismographic network, and, sharply after large earthquakes,

due to interference between the seismograms of the large and smaller event. Also, different

estimation techniques can be used providing different values (Kagan, 2004; Hainzl, 2016a;

Helmstetter et al., 2006a).

The usual approach to handle missing data is to define a magnitude threshold M0, called

cutoff magnitude, for which all events with magnitude m > M0 are assumed to be detected

(Mignan and Woessner, 2012). The cutoff magnitude is a subjective choice of the researcher

doing the analysis and is usually different (larger) than the magnitude of completeness to

account for possible biases in the estimation of the latter. However, in this way, we are

wasting potentially useful information from small events. Indeed, including small events

highlights important aspects of seismicity such as the cluster spatial distribution, which may

help in identifying the extent of the rupture plane, or anomalies in the earthquake’s occurrence

before large events, that could in principle be used as precursors (Ebel, 2008; Mignan, 2012;

Schurr et al., 2014). Moreover, including small events provides more accurate parameter

estimates due to increased sample size (Wang et al., 2010; Schoenberg et al., 2010; Harte,

2016).

Many studies investigate how the choice of M0 influences the estimates of the ETAS

model (Wang et al., 2010; Schoenberg et al., 2010; Hainzl et al., 2013; Harte, 2016; Seif

et al., 2017). The main problem is that estimation techniques such as maximum likelihood

assume complete data and using incomplete data may lead to biased estimates. This is

due to the problem of broken linkage. The problem is that the parent of an event may

be missing, which leads to associating the event with another parent, which leads to biased

estimates of the clusters, which determines the bias in the parameter estimates. The problem

is exacerbated by the strong correlation between parameters. Indeed, if we underestimate one

parameter, we are likely to underestimate all the parameters positively correlated with this

one, and overestimate all the negatively correlated. The opposite happens if one parameter

is overestimated.

Focusing on data incompleteness, some approaches have been proposed to circumvent

the problem. Hainzl et al. (2008) discard all events recorded within a certain time from a large

event. Helmstetter et al. (2006a) and Werner et al. (2011) describe incompleteness in terms

of mainshock characteristics but this approach relies on the identification of mainshocks and
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an ad-hoc estimation procedure. A more general approach is the one proposed by Omi et al.

(2014) which extends the idea of Ogata and Katsura (1993). Specifically, they assume that

each earthquake has a detection probability, which is a function of the time elapsed from the

last large events. In this way, they can calculate the expected number of missed events and

adjust the estimates based on this value. However, the parameters of the detection function

have also to be estimated from incomplete data. Alternatively, Zhuang et al. (2017) propose

an algorithm to add synthetic observations to the real catalogue, however, the space-time

evolution of M0 must be defined. Lastly, Hainzl (2022) developed a method based on the

simple assumption that an earthquake cannot be detected if it occurs within a certain time

after a larger event. All of these methods use maximum likelihood and there is no bayesian

counterpart nor commonly accepted method to handle the problem.

Regarding the temporal ETAS model, how characteristics of the data influence parame-

ter estimates are described in Chapter 5. Specifically, I investigate the effect of estimating

parameters from sequences with zero, one, or more large events, the effect of data incom-

pleteness, and the effect of considering events before the time interval chosen for the study.

2.3 Fundamental Empirical Laws

Statistical models for seismicity are based on three well-established empirical laws. The

Gutenberg-Richter (GR) law (Gutenberg and Richter, 1944), Omori’s law ((Omori, 1895),

and the Utsu-Seki law (Utsu, 1955; Utsu and Okada, 1969). The first describes the mag-

nitude distribution, the second describes the time distribution of aftershocks, and the third

relates the rupture area to the magnitude of the event. These laws have been successfully

applied to a variety of tectonic settings and they now constitute the backbone of any statis-

tical model for seismicity. Indeed, the magnitude of completeness is determined by checking

how well the data abide by the GR-law (Woessner and Wiemer, 2005) and the same is

done to measure the quality of the data provided by high-resolution catalogs (Herrmann and

Marzocchi, 2021). In the same way, models which do not explicitly assume Omori’s law are

considered successful if they retrieve a similar relationship.

2.3.1 The Gutenberg-Richter law

The GR law provides a relationship between a magnitude value m and the logarithm of the

number of earthquakes N(m) with a magnitude greater or equal to m:

log10N(m) = a − b(m −M0), (2.1)

where M0 is the cutoff magnitude which should be always higher than the magnitude of

completeness of the catalogue. The quantity a is the intercept of the model and it is usually

estimated as the logarithm of the total number of events with magnitude abovem0. The term

b is called b-value and characterizes how the number of events scales with the magnitude.

Despite the b-value being thought to be a universal constant (Kagan, 1999), many studies

have investigated its variation in space and time (Herrmann et al., 2022; El-Isa and Eaton,

2014; Lombardi, 2022).

Regarding the classical GR law, Aki (1965) showed that equation 2.1 can be rewritten as

N(m) = exp{a log(10)} exp{− log(10)b(m −m0)}, (2.2)

where exp{a log(10)} can be seen as the total number of events and exp{− log(10)b(m−m0)}
as the probability of having an event with magnitude greater thanm. Framed this way, the GR
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law assumes an exponential distribution for the quantitym−m0 with parameter β = log(10)b.
This implies that the maximum likelihood estimator for β is

β̂ =
1

m̄ −m0
, (2.3)

where m̄ is the average magnitude in the catalogue.

Assuming an unbounded exponential distribution, however, is not realistic. Specifically,

the exponential distribution has no upper bound, implying the possibility of an infinite seismic

energy, which is unphysical. Furthermore, this is problematic when considering catalogue-

based forecasts, in which a forecast is a collection of synthetic catalogues (usually 10000 or

100000) simulated according to the forecasting model. In this case, it is highly probable to

generate an event with magnitudes over 9 even if the catalogue used to estimate the GR law

parameters has a maximum magnitude equal to 7. This leads to overpredicting the expected

number of events in an area.

Two approaches have been proposed to address this problem leading to two modifications

of the classical GR law to model the tails of the magnitude distribution. They are known as

the Truncated GR law (Cosentino et al., 1977) and the Tapered GR law (Utsu, 1999; Kagan,

2002). The former requires the specification of a maximum magnitude and applies a hard

bound to the tail of the distribution (the probability of observing a magnitude greater than

the maximum is zero). The latter, instead, requires the specification of a corner magnitude

and applies a softbound to the tail meaning the probability density function rapidly goes

to zero after the corner magnitude. Here we describe only the Tapered GR law (Tap-GR)

because estimating there is no reliable method to estimate the maximum magnitude needed

to define the Truncated GR law (Zöller and Holschneider, 2016). Instead, we have reliable

methods to estimate the corner magnitude of the Tapered GR law (Kagan and Schoenberg,

2001).

The idea behind the Tapered and Truncated GR law is that the GR law on the magnitude

(m) domain is equivalent to the Pareto distribution on the seismic moment (M) domain

(Kagan, 2002). The Tapered and Truncated GR laws are then obtained considering a tapered

or truncated Pareto distribution on the seismic moments. The density of a tapered Pareto

distribution with cutoff seismic moment M0 and corner moment Mc is:

ftap(M) =

(
β

M
+
1

Mc

)(
M0
M

)β
exp

{
M0 −M
Mc

}
, (2.4)

for M > M0. The parameter β regulates the slope of the GR law and is linked to the b-value

by β = b2/3.

A source of bias in the b estimates obtained with 2.3 comes from the binning of the

magnitude as shown in (Marzocchi and Sandri, 2003). In fact, assuming an exponential

distribution implicitly assumes that the magnitude is a continuous random variable while the

observed values are binned through the rounding to 1 decimal place, this is true also for the

Tapered or Truncated GR laws. This brings two sources of bias in the estimator b̂ i) the

distribution in each bin is not uniform and, therefore, the average of the binned variable is

different from the average of the continuous one; ii) the minimum magnitude is not m0. The

average m̄ using binned observations systematically overestimates the true mean. However,

this effect is negligible when the bin size is ∆m = 0.1 (Bender, 1983). The second and more

important source of bias is that by fixing a threshold on the binned magnitude, observations

with m = m0 are ranging from m0 − ∆m/2 to m0 + ∆m/2 and, perhaps, m0 is not the
minimum. Utsu (1966) proposed a simple but effective modification of β̂ in which m0 is

replaced with m0 − ∆m/2.
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Typical observations report b-values in the range 0.5 − 2. Variations of b-value in time
and space have been largely investigated in past years and have proven to be a rich source of

information about the seismotectonic of a region (Christensen and Olami, 1992; Wiemer and

Wyss, 2002; Boettcher et al., 2009). For example, b-value variations have been linked to type

of faulting (Schorlemmer et al., 2005), surface creep rate (Tormann et al., 2013), property of

the materials composing the earth crust (Goebel et al., 2017), more examples can be found

in Herrmann et al. (2022). In fact, even if the debate on the source of b-value variations is

still open (Marzocchi et al., 2020), it is widely accepted that they reflect the heterogeneity

in the earth’s crust. In general, variations in the b-value need to be evaluated carefully,

they can depend on varying magnitude of completeness during seismic sequences (Herrmann

and Marzocchi, 2021), sample size and magnitude range (Nava et al., 2017; Geffers et al.,

2022), the used magnitude scale, magnitude binning, windowing, and maximum likelihood

estimator (Marzocchi et al., 2020). Some progress has been made to develop methods that

do not require estimates of the magnitude of completeness or data windowing (van der Elst,

2021b), however, most analyses heavily rely on subjective choices (Herrmann et al., 2022).

In Chapter 6, we use a Tapered GR law to produce the forecasts.

2.3.2 Omori’s Law

This law (Omori, 1895) was the first discovered empirical law that holds for different earth-

quake sequences taking place in different tectonic settings. A sequence can be identified as

a cluster of events in time and space, where the one having the highest magnitude is retro-

spectively identified as the mainshock, the events before this are called foreshocks, and the

ones after are referred to as aftershocks. This classification can be made only once the entire

sequence has been observed and, thus, it can not be done in real-time when forecasting.

The Omori law describes the rate R of occurrence of aftershocks as a function of time

t from the mainshock. The first version of Omori’s law stated that:

R(t) =
K

t + c
, (2.5)

where K, c > 0, and t ≥ 0. This version was generalized by Utsu (1957, 1966) to

R(t) =
K

(t + c)p
, (2.6)

with p > 1. The parameter p has to be greater than one otherwise an earthquake can

generate an aftershock sequence with an infinite number of events in infinite time which is

unphysical. This is known as the modified Omori law. A complete review of the evolution of

Omori’s law can be found in Utsu et al. (1995).

The parameter p regulates how fast the number of aftershocks decays with time (the

larger the faster). It needs to be greater than 1 otherwise the total number of aftershocks

generated by a mainshock in infinite time is infinite, which is unphysical. Mogi (1962) studied

more than 30 sequences in Japan and observed that the spatial distribution of p values was

similar to the surface heat-flow distribution. In particular, higher p values (faster aftershocks

decay) were found in regions with higher temperatures, such as volcanic regions, where the

stress is supposed to relax faster, with the opposite being true for regions with low temper-

atures. Kisslinger and Jones (1991) found the same relationship while studying California,

and tried to link the p values and the surface temperature using a linear regression model

(Kisslinger, 1993). However, data about surface temperature is not always available, which

prevents proper testing of this hypothesis. The relationship between p and the magnitude of
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the mainshock has been studied in different articles, early studies stated no relationship was

found between the two quantities Utsu et al. (1995), Hainzl and Marsan (2008); Ouillon and

Sornette (2005) found a significant increase of p with m. However, this is usually not taken

into account in forecasting models.

The parameter K regulates the number of aftershocks and, therefore, it is strictly con-

nected to the magnitude of completeness applied to the data used to estimate it, while

parameter c prevents R(0) = ∞. The parameter c acts as a minimum time interval and
describes the aftershock decay close to the mainshock. The value of c is determined both by

temporal incompleteness near the mainshock and foundamental physics. Being able to detect

a greater number of aftershocks a lower magnitudes leads to smaller value of c (Narteau

et al., 2002; Peng and Zhao, 2009). However, using standard catalogues, the intervals of

time just after the mainshock are the ones most affected by missing data, especially for

lower magnitudes, Section 5.2.4 shows the consequences of using incomplete data to esti-

mate the parameters of the temporal ETAS model. Therefore, lowering the magnitude of

completeness may lead to biased estimates of c .

Omori’s law has been applied in a plethora of studies. However, as formulated above,

it presents some problems in application. For example, if we have two mainshocks close

enough in time, their aftershock sequences will be superposed, and parameter estimates may

be biased. One approach has been to study superposed sequences assuming that all of them

should obey the same Omori’s law (Davis and Frohlich, 1991; Utsu, 1992). However ap-

proached, those analyses relied on an underlying declustering algorithm in order to distinguish

aftershocks generated by mainshocks from background seismicity. Most estimation methods

for the ETAS model are affected by the same problem.

2.3.3 The Utsu-Seki Law

The magnitude is a measure of the energy released by an event and is therefore linked to the

extent of the rupture generated by an earthquake. Such rupture generates the aftershock

sequence that will be concentrated near the rupture, resulting in clustering in space. The

area S containing the aftershocks well approximates the rupture area (Marsan and Lengline,

2008; Grimm et al., 2022a), and is natural to search for a mathematical relationship between

the magnitude of the event m and the rupture area S. Utsu (1955) formulated that this

relationship has the same log-linear form as the GR law

logS = au + bum, (2.7)

with au ∈ R, and bu ∈ R+ to reflect the fact that stronger earthquakes generate larger
ruptures. Equation 2.7 is referred as the Utsu-Seki law. The other empirical finding that is

usually reported with the Utsu-Seki law is the fact that aftershocks are usually contained in an

ellipsoid around the mainshock or, at least, containing also the mainshock (Utsu and Okada,

1969) and that aftershocks diffuse anomalously slowly in space (Huc and Main, 2003).

2.4 Epidemic-type Aftershock Sequence model

The Epidemic-Type Aftershocks Sequence model (ETAS, Ogata (1988, 1998) can be con-

sidered the state-of-the-art model for describing seismicity having outperformed competitors

in several experiments (Taroni et al., 2018; Cattania et al., 2018; Nanjo et al., 2012; Schor-

lemmer et al., 2018). The ETAS model belongs to the family of Hawkes process models

(Hawkes, 1971a,b), or self-exciting processes, which are point process models designed to

model phenomena exhibiting clustering in time and space-time. This is done by considering
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every earthquake as a point in time (or space-time) equipped with a magnitude and allowing

every point to generate its own sequence of aftershocks (or offspring). The branching is done

with respect to time, meaning that events can only trigger events in the future. This gives

Hawkes process models the ability to model phenomena with cascades of events strongly

clustered in time (space-time). For a more general introduction and examples of Hawkes

process applications, I refer to Chapter 3 or Laub et al. (2021).

Point process models are completely specified by defining a conditional intensity function

Daley et al. (2003). Indeed, given a point x in a space X ⊂ Rn, a set of N observations
constituting the history of the process H = {xh : xh ∈ X ∀h = 1, ...., N}, and a point process
with conditional intensity λ(·|H) : X → (0,∞), the probability of observing a point in ball
b(x) around x is given by λ(x)|b(x)| where |b(x)| is the volume of the ball. Section 4.2.3
gives a more formal conditional intensity definition. Hawkes process models share the same

functional form of the conditional intensity, considering x = t consisting of only time, the

Hawkes process conditional intensity is

λ(t|Ht) = µ+
∑
h:th<t

g(t − th), (2.8)

where Ht is the history of the process, namely, the collection of all recorded events that
happened strictly before t, Ht = {th ∈ H : th < t}. The quantity µ > 0 is referred to as
the background rate and is the rate at which events arise spontaneously, in other words, µ

is the rate of the Poisson process regulating the immigrants’ arrival. The summation is over

all the events recorded before t at which we wish to evaluate the conditional intensity and

represent the aftershocks rate a time t and is given by the sum of the rate of the aftershocks

sequence initiated by events in the past. The function g(·) is referred to as triggering or
excitation function and it is the conditional intensity of the Poisson process regulating the

offspring’s arrival. The model can be easily extended to account for space, magnitude, or

other variables changing the form of the triggering function.

The basic temporal ETAS model as formulated by (Ogata, 1988) uses the following

conditional intensity

λ(t|Ht) = µ+
∑
h:th<t

Keα(mh−M0)(t − th + c)−p, (2.9)

where M0 is the magnitude of completeness, and the history of the process is composed by

time-magnitude couples Ht = {(th, mh) ∈ H : th < t,mh > M0} and the parameters of
the model are µ,K,α, c > 0 and p > 1. The parameter K regulates the number of events

generated by an event with magnitude mh = M0, while the parameter α regulates how the

number of aftershocks scales with the magnitude, it is expected to be positive because it has

to reflect the fact that stronger earthquakes generate more aftershocks. The parameters c

and p are the parameters of the Omori law and regulate how the aftershocks’ number decays

with time.

This model describes only the occurrence times of earthquakes. The magnitude in a

given seismic zone is usually considered to be independent of time and space and follows a

GR law described in Section 2.3.1. Ogata (1988) extends the ETAS model to include also

space. Indeed, it is sufficient to multiply the triggering function for a function describing the

aftershock decay in space gs(s, sh). This function usually accounts also for the magnitude

of the triggering event and is parametrized as:

gs(s, sh, mh) =
1

πσ(mh)
h

(
(s− sh)A(s− sh)t

σ(mh)

)
, (2.10)
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where σ(mh) is an increasing function of the magnitude there to represent the fact that the

aftershock region increases with the magnitude of the triggering event as a consequence of

the Utsu-Seki law, and the usual choice is σ(mh) = e
γ(mh−M0). The quantity A is a 2 × 2

matrix (3× 3 if s is 3-D). The quadratic form is in place because the aftershock occurrences
are supposed to be contained in an ellipsoid whose shape is regulated by A and its size by

σ(mh). Considering A equal to the identity matrix we have the function gs is a function of the

Euclidean distance between s and sh, which means that the aftershock process is isotropic.

Ogata (1998) presented different choices of h() and compared them using data from

Japan. The most natural choices are the exponential for which g(s, sh, mh) is a bivariate

Gaussian density with mean sh and variance σ(mh), or a power-law function such as

gs(s, sh, mh) =

(
(s− sh)A(s− sh)t

σ(mh)
+ d

)−q
. (2.11)

Ogata (1998) and Zhuang et al. (2004) analyzing sequences in Japan found that equation

2.11 provides better results in terms of Akaike information criterion (AIC, Akaike, 1974) than

the bivariate Gaussian density. This is due to the fact that equation 2.11 is more flexible and

can model a spatial decay slower than exponential. However, the Gaussian case should not

be ruled out given the mathematical advantages and the fact that while AIC is most effective

for regular processes (Daley and Vere-Jones, 2004), its applicability to Hawkes processes is

questionable (Kagan, 2013).

The complete conditional intensity for a point x = (t, s, m) is then given by:

λ(x = (t, s, m)|Ht) =

µ+ ∑
h:th<t

Keα(mh−M0)(t − th + c)−pgs(s, sh, mh)

π(m), (2.12)
where π(m) is a magnitude distribution derived from the GR-law.

The main advantage of ETAS is that provides a theoretical framework to incorporate

in the model all the most established empirical laws regarding earthquake occurrence. The

GR-law is taken into account by the term π(m), while Omori’s law determines how the

aftershocks sequences distribute in time, and the Utsu-Seki law is incorporated considering

a space triggering function gs() that scales with the magnitude of the event.

2.4.1 Parameter Estimation for simple ETAS

One of the main goals of any statistical analysis based on the ETAS model is estimating

the parameters based on observed data. The most important quantity in doing this is the

log-likelihood of the model. It is convenient to group the parameters to be estimated in

one parameter vector θ ∈ Rp, for the temporal ETAS model θ = (µ,K,α, c, p), while
for the spatio-temporal model with space-triggering function given by equation 2.11 and

σ(m) = exp{γ(m −M0)} is θ = (µ,K,α, c, p, d, q, γ). The information on the parameters
carried by the data is usually synthesized by the likelihood of the model. The likelihood of a set

of parameters, given an observed point pattern, is the probability of observing that pattern

with those parameter values. For point process models, calling H the set of all observed
points in a region of interest X , and θ the parameters of the model, the log-likelihood of the
model is given by:

L(θ|H) = −Λ(X ) +
∑
xh∈H

logλ(xh|Hth), (2.13)
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where Λ(X ) is the integral of the conditional intensity over the domain X . In the case
where x = (t, s) is composed by a time t, a 2D location s, the domain is X = (T1, T2] ×
W × [M0,Mc), with 0 < T1 < T2, and W ⊂ R2 is the spatial domain. Given that the
frequency-magnitude distribution π(m) is independent of the space-time location and that

the magnitude of the event does not appear in other parts of the intensity, the integral over

the magnitude domain of the intensity is equal to the intensity multiplied by the integral

of π(m). The latter is 1 by definition if the magnitude distribution is a proper probability

distribution and therefore it can be omitted from the calculations. Then, the integral of the

conditional intensity is given by

Λ(X ) =
∫
W

∫ T2
T1

λ(x = (t, s)|Ht)dtds

= (T2 − T1)|W |µ+
∑
h:xh∈H

Keα(mh−M0)
∫
W

∫ T2
T1

g(t − th, s− sh)dtds, (2.14)

where

g(t − th, s− sh) = (t − th + c)−pgs(s, sh, mh). (2.15)

Equation 2.14 refers to the simple case in which the background rate is assumed to be

homogeneous in space and time. This assumption can be relaxed, in that case, it is sufficient

to substitute (T2−T1)|W |µ with the integral of the inhomogeneous background rate on the
domain.

The ETAS log-likelihood just described is problematic under multiple aspects when infer-

ence needs to be performed. The first thing is the evaluation of the integral Λ(X ) that often
has no closed-form solution and researchers had to resort to numerical integration (Ogata,

1998; Schneider and Guttorp) or to the use of simplifying assumptions (Schoenberg, 2013).

Also, the sum of the logarithm of the conditional intensity presents its own issues, indeed

just calculating it for n points scales as O(n2) which slows down any numerical iterative
method employed to optimize the log-likelihood. Regarding the likelihood optimization, this

is probably the most problematic part, indeed, the maximum likelihood estimator has been

reported multiple times to be unstable (strongly dependent from the starting point of the

optimization algorithm) and potentially biased, especially for short catalogues (Harte, 2013;

Seif et al., 2017). This is due to the fact that the ETAS likelihood is multimodal and flat

near the optima (Veen and Schoenberg, 2008; Lombardi, 2015), which, in turn, is due to the

fact that the parameters are strongly correlated with each other (Guo and Ogata, 1997).

The correlation stems from the fact that different combinations of parameters may assign

the same probability to a given catalogue making them indistinguishable from a likelihood

point of view.

To mitigate the problems arising from the ETAS likelihood function, the most commonly

used methods for ETAS parameters’ estimation are based on a different likelihood function

leveraging on the unknown branching structure of the process. Indeed, both the EM algorithm

developed by Veen and Schoenberg (2008) (frequentist) and the Gibbs sampler developed

by Ross (2021) (bayesian) are based on the same conditional likelihood. For each event i , a

variable Bi is defined assuming value

Bi =

{
0 if event i is a background event

j if event i is an aftershock of event j
. (2.16)
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Then, the likelihood conditional on the knowledge of Bi is

Lbr =|A0| logµ+
n∑
h=1

|Ah|(log(K) + α(mj −M0)) + ∑
j :xj∈Ah

log g(tj − th, sj − sh)

+
− Λ(X ), (2.17)

where A0 is the set of background events composed by |A0| elements, while Ah is the set
of aftershocks of the event h (set of events with Bi = h), and |Ah| the number of such
aftershocks.

Both (Veen and Schoenberg, 2008) and (Ross, 2021) report that inference based on the

log-likelihood expressed in equation 2.17 is more robust than using the classical one. Both

methods are based on an iterative procedure. For the EM algorithm, starting from an initial

guess of the branching structure Bi , the conditional likelihood is optimized with respect to

the ETAS parameters θ, then, a new branching structure is estimated from θ, and a new

optimization step is performed. This is repeated until convergence is reached. The MCMC

method developed by Ross (2021) is similar, they start from an initial guess of the branching

structure Bi given by the prior, then sample from the conditional (on Bi) distribution of θ,

the sample is used to estimate a new branching structure, which, in turn, is used to update

the conditional distribution of the ETAS parameters θ. This is repeated until a sufficiently

large number of posterior samples is obtained. In both cases, the branching structure given

the value of the ETAS parameters is given by

Pr[Bi = j |θ] =


µ
λ(xi )

if j = 0

g(ti−tj ,si−sj )
λ(xi )

if j = 1, 2, ..., i − 1
. (2.18)

Once the parameters have been estimated, another challenging task is to estimate the

uncertainty around the parameter values. This is not a problem for Bayesian methods,

for which each parameter is a random variable and has its own distribution, but it is a

problem for frequentist methods for which the uncertainty around the parameter comes only

from the uncertainty in the observations. The classical way to estimate the uncertainty

around maximum likelihood estimators is based on the use of the second-order derivatives

(Hessian matrix) of the likelihood (Wilks, 1964). One of the assumptions of this method

is that the likelihood isoline should be elliptic, but this assumption is rarely satisfied by

earthquake catalogues due to their limited time-extension and uncertainty estimates based

on this method are unstable and may be unreliable (Harte, 2013). Moreover, they require the

likelihood function to be differentiable twice, however, parameters are subject to constraints

that introduce points in which the likelihood is not differentiable (Jackson and Matsu’Ura,

1985; Kagan, 2013). For this reason, the bayesian approach seems most appropriate.

Other techniques have been proposed based on maximizing the likelihood Lombardi

(2015); Chiodi and Adelfio (2011); Kasahara et al. (2016) but do not address the prob-

lems above nor biases due to data incompleteness. For example, Seif et al. (2017) reports

that productivity parameter K is usually overestimated by maximum likelihood methods which

is correlated with the underestimation of p. In general, p is thought to decrease if M0 is

increasing due to reduced sample size (Harte, 2016), however, Schoenberg et al. (2010) and

Seif et al. (2017) observed that it increases in simulated sequences. This apparent contradic-

tion can be explained with the broken linkage problem. In fact, Harte (2016) studies events

that may have been associated with the wrong parent and they will be likely associated with

the tails of the nearest large events widening the distribution of its aftershocks and inducing
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smaller values of p. All the reported studies also remark that the bias depends on the poor

performance of the maximum likelihood for sequences with a branching ratio close to 1 (crit-

ical regime). The bias is smaller considering sequences with a smaller branching ratio (Seif

et al., 2017).

2.4.2 ETAS limitations and extensions

The ETAS model as presented in 2.12 provides a simplified description of reality and, if applied

to real earthquake catalogues, parameter estimates can be biased by incorrect assumptions.

For example, various studies observe a bias in the estimation of parameter α (Seif et al.,

2017; Hainzl et al., 2008, 2013). They argue that the bias may be due to the assumption of

isotropic spatial triggering function or constant background rate which have been reported

to influence the estimates of α. In fact, also the background rate estimates are influenced

by the choice of M0. Specifically, have been observed that higher M0 values lead to smaller

background rates (Sornette, 2006). This is expected, and the background rate varies similarly

to what the GR law predicts (Seif et al., 2017). Other model assumptions which may lead

to biased estimates are the infinite duration of triggering, temporally and spatially varying

parameters, or 3-D earthquake locations, we show in this section how these assumptions can

be relaxed.

In the classical ETAS formulation, the background rate is supposed to be constant over

space, meaning that background points are assumed to be homogeneous over space and

time. This assumption is usually relaxed considering a substituting µ(s) to µ in expression

2.12 and considering:

µ(s) = µν(s), (2.19)

for s ∈ W ⊂ R2 and assuming
∫
W ν(s)ds = 1.

Different choices of ν(s) can be employed. Ogata (1998) uses bi-cubic B-splines for

log ν(s) and optimizes a penalized log-likelihood assuming a non-homogeneous Poisson model

for the observations and a smoothness penalty (Goodd and Gaskins, 1971) using a declustered

catalogue as observed data. Many researchers have employed similar procedures with different

kernel estimators for ν(s) (Lombardi and Marzocchi, 2010b; Zhuang, 2011; Ogata, 2011;

Nandan et al., 2021b). The usual choice is to use a Gaussian kernel with adaptive bandwidth,

however, the bandwidth is usually not estimated from the data and estimate the other ETAS

parameters using Zhuang et al. (2002) or Veen and Schoenberg (2008) methods. The results

of these types of procedures depend on the choice of declustering algorithm. Alternatively,

non-parametric approaches have been used to estimate a spatially varying background rate

(Adelfio and Chiodi, 2015; Zhuang et al., 2002). On the Bayesian side, Molkenthin et al.

(2022) modified the MCMC algorithm proposed by Ross (2021) and models the background

rate as a spatially varying Gaussian process.

In the same way, researchers have investigated the hypothesis that the other ETAS

parameters are also spatially varying. The most intuitive method is to divide the region of

interest into sub-regions and estimate the parameters in each region separately (Veen and

Schoenberg, 2008) but this approach is not completely satisfactory and the values of the

correlation between parameters values in adjacent regions is not accounted for. Another

approach is to define spatially varying parameters using the same functional form used for

the background rate in equation 2.19 (Ogata, 2011). Specifically, (Ogata, 2011) defines the

spatially varying parameters using a triangulation of the space and estimating the value of

the parameter only at the nodes. Then, a piecewise linear basis function assuming value 1 at

the node and 0 at adjacent nodes is used to calculate the value of the parameter at different

locations. This is a similar approach used in Section 3.3.2 used to approximate Gaussian
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fields. Despite the generality of the approach, in practice, only the background rate and the

productivity parameters (α or K) are considered as spatially varying. As before, gaussian

kernels with adaptive bandwidth are also considered (Mizrahi et al., 2021; Nandan et al.,

2021a) but the bandwidth is not estimated from the data.

A different approach is the one used by Adelfio and Chiodi (2021) which provides a link

between Generalized Linear Models (GLM) and the ETAS model. Their approach is based

on the observation that the number of aftershocks generated by an event xi = (ti , si , mi) is

given by:

n(xi) = π(mi)

∫
W

∫ T2
max(T1,th)

K exp{α(mi −M0)}g(t − ti , s− si)dtds. (2.20)

Excluding boundary effects, the expected number of aftershocks depends only on the

magnitude. The idea of Adelfio and Chiodi (2021) is to replace the term α(mi −M0) with
a linear predictor

ηi = β0 + βz
t
i , (2.21)

where zi is the vector of covariates relative to the i-th point, β is the vector of coefficient,

and β0 is an intercept term. In this way, two points with the same magnitude can still

generate a different number of aftershocks if, for example, they are at different depths, at

different distances from mapped faults, or in regions with different levels of heatflow. In

Chiodi et al. (2021) they found out that the depth and a measure of the displacement rate

improve the model in terms of AIC. A further extension of their approach would be to include

a structured random effect to account for any spatial (or temporal) correlation not explained

by the covariates. We describe this kind of random effect in Section 3.3.2.

Many studies have shown that considering an isotropic kernel for the spatial triggering

function is not appropriate (Ogata, 2011; Hainzl et al., 2013; Seif et al., 2017; Zhang et al.,

2018). Indeed, the isotropic assumption may be acceptable only for moderate and small

earthquakes, while large earthquakes usually produce a rupture with an elongated shape and,

therefore, aftershocks usually form an elliptic shape (Utsu, 1955). The usual method is

to define a number of mainshocks and consider different triggering functions for each of

them Ogata (2011); Bach and Hainzl (2012); Grimm et al. (2022a). For example, Ogata

(2011) uses a valid covariance matrix as S in expression 2.10 with different parameters for

each mainshock. Bach and Hainzl (2012) uses information provided by ShakeMaps, ground

motion maps, and static Coulomb stress changes to add anisotropy. Grimm et al. (2022b)

uses the distance from an estimated rupture segment.

The list of extensions we mentioned above is not meant to be exhaustive but just gives

an idea of the efforts made by the seismological community to improve the ETAS model.

Other noticeable examples are the Renewal ETAS model (Stindl and Chen, 2021) that

uses a renewal process instead of a homogeneous Poisson process as background. The

Restricted ETAS model (Gospodinov and Rotondi, 2006) allows only aftershocks above a

certain threshold to generate secondary earthquakes. (Mizrahi et al., 2021) and (Nandan

et al., 2021a) use an Exponentially Tapered Omori Kernel instead of the classical Omori’s law

to describe aftershocks decay in time. The ETAS Incomplete model Hainzl (2016a, 2022)

assumes a blind time of detection after the occurrence of a large event.

The flexibility of the ETAS model is what makes it a powerful tool to describe earthquake

occurrence. On the other hand, every extension uses a different optimization algorithm. If

two of these models had to be compared on the basis of the produced forecasts, understanding

the impact of the different optimization procedures on the difference in the results would be

impossible. Having a unified framework able to accommodate different models using the
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same optimization routine would certainly increase the robustness of the comparison. The

methodology proposed in this thesis to approximate the Bayesian ETAS model have the

potential to accommodate a large number of different models.

2.5 Validation

Earthquake model validation is the process of evaluating the accuracy and reliability of seis-

micity forecasts produced by a model against observed data. This process helps to ensure

that the models are accurately representing real earthquake occurrences or to identify as-

pects where there could be potential improvements. Furthermore, they provide a measure of

how well a model represents the earthquake-generating process, and therefore, in presence of

multiple competing models, these techniques can be used to rank models in terms of agree-

ment between forecasts and observations. The statistical tests used to verify the agreement

between a forecast and the observations are called consistency tests and the output is usually

binary (passed or failed). On the other hand, ranking competing models is usually done using

positively (or negatively) oriented scoring rules. A scoring rule is a function of the data and

the forecast, and the higher (or lower) the score the better the forecast. Both consistency

tests and scores can be designed to target specific aspects of seismicity such as the num-

ber of events, the magnitude distribution, or the spatial distribution. Therefore earthquake

model validation usually comprises the application of multiple tests/scores in order to validate

earthquake models on different aspects.

In order to avoid potential biases, model validation has to be done in a prospective,

or, at least, pseudo-prospective fashion. An earthquake forecasting experiment is said to be

prospective if the forecast is tested against data that have yet to be recorded at the moment in

which the forecast is produced. On the other hand, the experiment is said pseudo-prospective

the data is divided into a training and testing catalog, the former is used to calibrate the

model while the latter is used for validation. Pseudo-prospective experiments are similar to

how models are evaluated by the machine learning community but they often overestimate

the forecast skills because knowledge about the test data may still be incorporated into the

model (even unconsciously). Therefore, the fairest way to validate the model is through fully

prospective experiments, which require considerable effort to run. Indeed, forecasts need to

be collected before the testing period, then a data collection period needs to pass (usually 5

or 10 years), and only afterward forecasts can be validated and compared against each other.

Additionally, prospective (or pseudo-prospective) model validation can not be done just by

collecting results from the literature. Indeed, differences in the data, region of interest, time

scale, and reported metrics, make it impossible to have reliable and reproducible results.

In order to test the models in a rigorous, standardized, and reproducible way the Col-

laboratory Study for Earthquake Predictability was founded (Jordan, 2006). Having such

infrastructure ignited the discussion about earthquake forecast validation and forecast for-

matting. It drove the development and refinement of statistical procedures for this forecast

validation, and around which format should be used to represent adequately the uncertainty

around the forecasted values. This section revises the metrics used provided by the pyCSEP

library to validate earthquake forecasts (Savran et al., 2022). We start by defining the cur-

rently preferred forecast format within CSEP in Section 2.5.1 and introducing the relevant

notation. After, the next two Sections are dedicated, respectively, to consistency tests and

scores for the comparison of competing forecasts.
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2.5.1 Earthquake forecasts

In the early CSEP experiments, modelers were provided with a regular space-time-magnitude

grid covering a certain region and were asked to provide their estimate of the expected

number of events above a certain magnitude thresholdM0 for each bin (Rhoades et al., 2011;

Zechar et al., 2010b; Schorlemmer and Gerstenberger, 2007a; Werner et al., 2011). Then,

models were evaluated under the assumption that the bin counts are independent, Poisson

distributed, and that points in each bin are homogeneously distributed in space. This kind

of forecast is known as grid-based forecast. With this format, models without a likelihood

can also be evaluated with likelihood-based techniques. On the other hand, observed, as well

as simulated with self-exciting models, bin counts are not independent (in space and time),

not Poisson distributed, and not homogeneously distributed. This led to models verifying the

false assumptions to be unfairly advantaged as pointed out by many authors (Harte, 2015;

Werner and Sornette, 2008; Nandan et al., 2019; Lombardi and Marzocchi, 2010a).

Most recently, catalog-based earthquake forecasts are considered (Savran et al., 2020;

Brehmer et al., 2021) in which each forecast is a collection of simulated catalogues (∼
10, 000 or ∼ 100, 000). Considering catalog-based forecasts allows for a fair evaluation
of the competing forecasts because using the sampled point process directly rather than

smoothing into bins removes many unnecessary assumptions and allows the application of

Monte Carlo methods to estimate the distribution of quantities of interest under the model.

To better describe the advantages of having catalog-based forecasts is useful to introduce

some notation first.

Any experiment has its own testing region R = [0, T ]×W × [M0,Mc ] where [0, T ] is the
time domain, W is the space domain, and [M0,Mc ] is the magnitude domain composed by

a magnitude of completeness M0 and a corner magnitude Mc . Therefore the generic event

in R is defined by a time t a location s and a magnitude m, namely e = (t, s, m) ∈ R.
The observations against which the models will be evaluated are defined as Ω = {ei : i =
1, ..., Nobs , ei ∈ R}. In the same way, a synthetic catalogue is Λ = {ẽi : i = 1, ..., N, ẽi ∈
R}. A forecast is a collection of J ∈ N synthetic catalogues and can be written as F =
{Λ1, ....,ΛJ} with Λj = {ẽi j : i = 1, ..., Nj , ẽi j ∈ R}.
Any characteristic of the earthquake generation process can be seen as a measurable

mapping S : P → B from the space of possible point patterns P to a simpler space. The
synthetics catalogues composing a forecast Λ1, ...,ΛJ , and the observed catalogue Ω, all

belong to the space of possible point patterns P, and a mapping S : P → B is just a
function of the catalogue returning a number or another function. For example, the number

of earthquakes can be seen as a mapping from P to the set of natural numbers (B = N),
so that S(Λj) = Nj and S(Ω) = Nobs . In the same way, Ripley’s K-functions (Ripley, 1976,

1977) is a mapping from P to the space of univariate functions on the positive real line, so that
S(Λj) = K(t), t ≥ 0. Modern model testing is based on the intuitive idea of comparing the
mapping calculated on the observed catalogue with the mapping calculated on the synthetics

(Savran et al., 2020; Brehmer et al., 2021; Heinrich-Mertsching et al., 2021). Indeed, the

values of the mapping on the synthetics can be used to empirically estimate the distribution of

the mapping (the characteristic) under the model. This is used as null hypothesis, and if the

mapping calculated on the observations falls in the tail of the distribution, we can reject the

hypothesis that the model and the forecasts come from the same distribution (on the specific

aspect under study) and consider the forecast as inconsistent with the observations at some

level of confidence. Therefore, the mapping is used as test statistic, and the critical values

are determined by the distribution of the test statistics provided by the model. The suite

of consistency tests applied in CSEP applies the above principle to different test statistics

(mappings) to study the consistency between observations and forecasts on different aspects.
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I will now show how this can be applied also when two competing models need to be compared

against observed data.

2.5.2 Consistency tests

Below, we describe one by one the consistency tests implemented in the pyCSEP package,

namely the N-test, M-test, S-test (where N refers to number, M to magnitude, and S to

space), and the Pseudolikelihood test. Besides the scores presented here many more tech-

niques were developed to test the consistency between forecasts and observations. Remark-

able examples are: error diagrams or receiver operating characteristic (ROC) curves (Swets,

1973), also known as Molchan diagrams (Molchan, 1991, 2010; Kagan, 2009) are diagnostic

tools testing the performance of a model in casting alarms; residual analysis techniques for

point process models such as thinning (Lewis and Shedler, 1979; Schoenberg, 2003), super-

position (Brémaud, 1981), super-thinning (Clements et al., 2012), rescaling (Meyer, 1971;

Schoenberg, 2004). We refer the reader to Clements et al. (2012) and Bray and Schoenberg

(2013) for a review.

N-test

The N-test assesses if the forecasted number of events is consistent with the observed one. It

was introduced in Kagan and Jackson (1995) and refined in Schorlemmer and Gerstenberger

(2007a); Zechar et al. (2010b); Savran et al. (2020). The test statistics is the number of

events per catalogue in a given window in time and space. The distribution of the number of

events provided by the model is estimated empirically from Nj , j = 1, ...., J, and the following

two quantities are calculated

δ1 = 1− FN(Nobs − 1) = Pr(Nj ≥ Nobs) (2.22)

δ2 = γN = FN(Nobs) = Pr(Nj ≤ Nobs), (2.23)

where FN(·) is the empirical predictive cumulative distribution of the number of events. The
two quantities are the probability of predicting at least (δ1) or at most (δ2) the observed

number of events Nobs .

The test is based on the fact that if the observed number of points is distributed accord-

ingly to FN , if we repeat this process over multiple independent periods of time obtaining a

sequence of values of γN , then, the γN values are uniformly distributed between 0 and 1. In

practice, if γN values calculated over multiple testing periods (like daily or monthly forecasts)

are not uniformly distributed in [0, 1] the model fails the test.

M-test

The M-test assesses if the forecasted magnitude frequency distribution is consistent with the

observed one (Savran et al., 2020), therefore only the magnitude component is used. The

test statistic relies on the magnitude domain to be divided into bins and the logarithm of

bin counts is used for comparison. Using the logarithm places more weight on the bins with

smaller counts which will be the ones at higher magnitudes for which it is desirable to have

more weight.

The forecasted magnitude distribution is determined by merging all the magnitudes in

the synthetics catalogues composing the forecast, namely

ΛU = {ẽi j , i = 1, ..., Nj , j = 1, ..., J}, (2.24)
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then, given a partition of magnitude domain composed by k bins, the counts per bin are

calculated, Λ
(m)
U (k) is the number of events in the union catalogue with magnitude falling

inside the k-th bin. We refer to the total number of simulated events as NU =
∑
k Λ
(m)
U (k).

The counts per magnitude bin are calculated also for each synthetic catalogue and for the

observed catalogue, respectively Λ
(m)
j (k) and Ω

(m)(k).

The idea is to compare the counts from the synthetic catalogues Λ
(m)
j (k) against the

union catalogue counts Λ
(m)
U (k) using test statistic. This allows to estimate empirically

the distribution of the test statistic according to the model, and see in which part of the

distribution the test statistics calculated between the observed bin counts Ω(m)(k) and the

union catalogue counts falls. All the bin counts are normalized such that the sum of the bin

counts is equal to the number of observations. The test statistics is the sum of the square

differences between the logarithm of the normalized bin counts, for the observed catalogue

is

dobs =
∑
k

log

(
Nobs
NU
Λ
(m)
U (k) + 1

)
− log

(
Ω(m)(k) + 1

)
. (2.25)

The test statistic for the j-th synthetic catalogue is

Dj =
∑
k

log

(
Nobs
NU
Λ
(m)
U (k) + 1

)
− log

(
Nobs
Nj
Λ
(m)
j (k) + 1

)
. (2.26)

Unity is added to each bin to avoid zero-count bins, for which the test statistic is ∓∞. We
can use the sequence Dj , j = 1, ..., J to estimate the distribution of the test statistic under

the model FD(·), and calculate the quantile score

γM = FD(dobs) = Pr(Dj ≤ dobs). (2.27)

As for the N-test, the values of γM for different independent observed catalogues are

uniformly distributed if the observations and the forecasts are consistent with each other.

S-test

The S-test assesses if the spatial distribution of the forecasts is consistent with the observed

one. Similarly to the magnitude test is based on the discretization of the domain (space in

this case) in bins. The test statistic is based on the spatial distribution of the expected rates.

For each bin bk , the average number of events per bin per catalogue is calculated, λ̃(bk)

which can be seen as the approximate mean rate per bin provided by the forecast. Then, it

is normalized to

λ̃∗(bk) =
λ̃(bk)∑
k λ̃(bk)

. (2.28)

The quantity λ̃∗(bk) approximates the probability of having an event in bin bk under the

model. Therefore, it can be used as a likelihood to calculate a statistic. For the observed

catalogue Ω composed by events e1, ..., eNobs we call the bin in which each observation falls

b1, ..., bNobs . Then, the test statistic calculated on the observed catalogue is

Sobs =
1

Nobs

Nobs∑
i=1

log λ̃∗(bi), (2.29)

where λ̃∗(bi) is the normalized approximated forecasted rate in bin bi where the i-th ob-

servation has fallen. Essentially Sobs can be interpreted as the average probability at which
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observed events would have occurred under the forecasting model. The same quantity is

calculated for each synthetic catalogue

Sj =
1

Nj

Nj∑
i=1

log λ̃∗(bi j), (2.30)

where bi j is the bin containing the synthetic event ẽi j .

As before, the distribution of the test statistic FS(·) can be approximated empirically
from S1, ..., SJ , and the following quantile score calculated

γS = FS(Sobs) = Pr(Sj ≤ Sobs), (2.31)

and, when γS is computed for multiple independent observed catalogues, the consistency of

the forecast and the observations can be assessed by testing the uniformity of the quantile

scores γS for the different catalogues.

Pseudolikelihood-test

The Pseudolikelihood-test assesses the consistency between forecast and observations in

general, without focusing on a specific aspect. Being a likelihood test, it accounts for all

aspects of the distribution of the events, i.e number, spatial, and magnitude. The first

version of this test was the L-test as presented in Schorlemmer and Gerstenberger (2007a);

Rhoades et al. (2011). The L-test however, was relying on the Poisson log-likelihood and

penalized models with non-Poissonian event distribution. The present test relies on the

use of the more general point process log-likelihood (Daley and Vere-Jones, 2004). The

log-likelihood of a point process model with conditional intensity λ(e|Ht) having observed
Ω = {ei ∈ R, i = 1, ..., Nobs} is given by

L = −
∫
R
λ(x|Ht)dx+

Nobs∑
i=1

logλ(ei |Hti ). (2.32)

The idea is to consider an approximate conditional intensity function that can be calcu-

lated from the set of synthetic catalogues. This plays the role of the forecasted conditional

intensity. Then, the log-likelihood can be calculated for the observed catalogue and for all

the synthetics, and, as before, compared.

More formally, to calculate the log-likelihood we need to approximate the two log-

likelihood components: the integral and the summation. The integral is the expected number

of points by the model and can be easily approximated by the average number of synthetic

events per catalogue N̄ =
∑
j Nj/J. The elements of the summation represent the expected

rate at which points are supposed to occur at the observed location. They can be approxi-

mated by dividing the entire space-time-magnitude region in bins and calculating the average

number of synthetic events per catalogue per bin. This gives us a discrete representation of

λ(§|H) that can be calculated also for models which do not present an explicit likelihood.
As before, we indicate with b1, ..., bNobs the space-time-magnitude bin in which observa-

tion ei , then the test statistic for the observed catalogue is

L̃obs = −N̄ +
Nobs∑
i=1

log λ̃(bi), (2.33)

where λ̃(bi) is the average number of synthetic events in the i-th space-time-magnitude bin
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where observation ei have fallen.

Similarly, the test statistics can be calculated for each synthetic catalogue as

L̃j = −N̄ +
Nj∑
i=1

log λ̃(bi j), (2.34)

where bi j is the bin containing the synthetic event ẽi j .

As usual, the sequence of values of L̃j , j = 1, ..., J is used to estimate empirically the

distribution of the test statistics under the model FL(·) and the quantile is calculated

γL = FL(L̃obs) = Pr[L̃j < L̃obs ]. (2.35)

If the model and the observations are coherent, if tested over multiple independent cata-

logues, the values of γL will be uniformly distributed. Any departure from uniformity can be

seen as an inconsistency between the model and the observations. Thus all four tests result

in a uniformly distributed metric if the model is consistent with the observations. This rises

the question - how do we measure the departure of the metrics from a uniform distribution

for different models, and decide which is best? This is done by a scoring rule, as described

in the next section.

2.5.3 Comparison scores

The comparison between models is usually carried out with the use of a scoring function.

A scoring function is just a function of the data and forecasts can be ranked according to

its values. Scoring functions, as the test statistics seen in the previous section, target a

specific property of the forecast and assign to each competing model a number based on the

similarity between forecasts and observations. To be effective the scoring rule has to possess

some statistical properties, the most important being consistency and properness (Gneiting

and Raftery, 2007). In Chapter 7 we define formally when a score is proper and explore the

consequences of using an improper scoring rule. Here, it is sufficient to say that, for positively

oriented scoring rules (the higher, the better) a scoring function is consistent for a property

if the expected score with respect to the data-generating model is maximized (minimized if

negatively oriented) by the value of the property calculated for the data-generating model.

A scoring rule is said to be proper if the expected score with respect to the data-generating

model is maximized (minimized) by the data-generating model. In essence, they assure that

a model will get on average the highest (lowest) score if tested against data simulated with

the model. Scoring rules that are consistent and proper can be used for a variety of tasks

other than forecasts comparison, indeed they can be employed in regression and M-estimation

(Gneiting, 2011; Fissler and Ziegel, 2016), as loss functions to estimate the value of tuning

parameters (Steinwart et al., 2014; Frongillo and Kash, 2021) or to calculate the weights

of an ensemble model (Marzocchi et al., 2012). We refer to Brehmer et al. (2021) for an

extensive review of the topic and on the link between the consistency tests introduced above

and the theory of scoring rules.

A common approach is to use the log-likelihood of the model to build scoring functions.

This led to the application of information criteria such as the Akaike Information Criterion

(AIC, Akaike (1974) to compare earthquake models (Ogata, 1998, 1999; Bayliss et al.,

2020). Information criteria such as AIC are usually composed of a goodness-of-fit measure

(the likelihood) and a penalty (in the case of AIC the number of free parameters). They are

thought for retrospective testing, in which models are tested against the same data used to

estimate the parameters. The penalty component is there to prevent overfitting models to
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get the highest score. However, this makes the scoring rule not consistent and therefore not

ideal for prospective testing (Brehmer et al., 2021). In the bayesian framework, the Bayes

factor is usually employed to compare models. The Bayes factor indicates which model is

more likely after the data has been observed. It also heavily relies on the log-likelihood of

the model, see Marzocchi et al. (2012) and Bray and Schoenberg (2013) for applications.

Also, residual methods can be used for models comparison (Baddeley et al., 2005; Clements

et al., 2012). The approach currently used within CSEP is to compare the models in terms

of Information Gain (Vere-Jones, 1998; Rhoades et al., 2011), and therefore, we are going

to describe only this one.

Information Gain

The Information Gain (IG) approach was first proposed by Vere-Jones (1998) for temporal

models and extended by Zechar et al. (2010b) and finalized by Rhoades et al. (2011). The

IG approach compares two models in terms of log-likelihood given the same observed data.

Intuitively, the log-likelihood measures how likely is the observed point pattern under the

model, and therefore, the model with the highest log-likelihood should be preferred. As

before, given a partition of the domain R in non-overlapping bins, a testing catalogue Ω =
{ei ∈ R, i = 1, ..., Nobs}, and two competing forecasts FA = {ΛA1, ...,ΛAJ} and FB =
{ΛB1, ...,ΛBJ}, we can estimate the average rate per bin provided by the two forecasts
λ̃A(bi) and λ̃B(bi) for i = 1, ..., k . Then, the pseudolikelihood in equation 2.33 can be

used to approximate the log-likelihood assigned by each forecast to the observations and the

difference can be considered, namely

Robs = −(N̄A − N̄B) +
Nobs∑
i=1

log λ̃A(bi)− log λ̃B(bi), (2.36)

where N̄A and N̄B are the average numbers of events per catalogue provided by the forecasts

and bi , i = 1, ..., Nobs are the bins where the observed events ei falls.

Then, Rhoades et al. (2011) propose the R-test, in which we have to calculate the test

statistics RAj and RBj , with j = 1, ..., J, using the synthetic catalogues composing the two

forecasts. Doing this provides two sequences of test statistics from which we can empirically

estimate the distribution of the test statistics under the two models FRA(·) and FRB(·). If
Robs lies in the tail of the distribution FRA(·) then, model A is considered worse than model
B, and vice-versa. As noted in Rhoades et al. (2011) the R-test is more a consistency test

than a way to compare models because does not provide information on which model has

the highest likelihood or if the difference is significantly different from zero. Also, it can lead

to contradictory results, i.e model A is preferred when using FRA(·) and model B is preferred
when using FRB(·) (Bray and Schoenberg, 2013; Brehmer et al., 2021), as well as models
mutually rejecting each other (Gerstenberger et al., 2009).

Consequently, Rhoades et al. (2011) provides two modifications to circumvent the above

problems. They proposed the T-test and W-test, both based on the Information Gain per

earthquake (IGPE) (Harte and Vere-Jones, 2005) which is given by

INobs (A,B) = −
N̄A − N̄B
Nobs

+
1

Nobs

Nobs∑
i=1

log λ̃A(bi)− log λ̃B(bi) =
Robs
Nobs

. (2.37)

The idea is to test whether INobs (A,B) is significantly different from zero or not. This

approach is rooted in the view that INobs (A,B) is an unbiased estimate of the true average

IGPE I(A,B) and that INobs(A,B) → I(A,B) as Nobs → ∞. Assuming a distribution for
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I(A,B) it is possible to test whether, based on the sequence log λ̃A(bi) − log λ̃B(bi), the
IGPE is significantly different from zero or not. The T-test and the W-test differ in the

distribution assumed for I(A,B)

More formally, the T-test assumes that the differences log λ̃A(bi) − log λ̃B(bi) are in-
dependent samples from a Gaussian distribution with mean µ and variance σ2. This im-

plies that INobs has a Gaussian distribution with mean µ − (N̄A − N̄B)/Nobs and variance
σ2/Nobs . Then, a classic paired t-test (Student, 1908) can be used to test the null hypoth-

esis µ− (N̄A− N̄B)/Nobs = 0 versus the alternative µ− (N̄A− N̄B)/Nobs ̸= 0. This requires
the variance σ2 to be estimated from the data, (Rhoades et al., 2011) proposes to use the

following estimator

σ̃2 =
1

Nobs − 1

Nobs∑
i=1

(
log λ̃A(bi)− log λ̃B(bi)

)2
+

+
1

N2obs − Nobs

(
Nobs∑
i=1

log λ̃A(bi)− log λ̃B(bi)

)2
. (2.38)

Under the hypothesis that I(A,B) = 0 the quantity T = INobs (A,B)/(σ̃/
√
Nobs) follows

a t-student distribution with Nobs − 1 degrees of freedom, and the null hypothesis can be
rejected if |T | exceed a certain quantile of the t-student distribution, tq. In the same way, this
allows to construct confidence intervals for the score difference as INobs (A,B)∓tq s̃ igma/

√
N

on which a decision rule can be constructed following the method illustrated in Chapter 7.

The W-test was developed to relax the assumption that the differences log λ̃A(bi) −
log λ̃B(bi) are normally distributed. Indeed, it works as the T-test but applies a Wilcoxon

signed-rank test (Wilcoxon, 1992) instead of a paired t-test. The W-test verifies, in a non-

parametric fashion, the hypothesis that the median of the IGPE is significantly different from

zero and does not assume symmetry in the distribution of log λ̃A(bi)− log λ̃B(bi). Both the
T-test and W-test can be expressed as modifications of the Diebold-Mariano test (Diebold

and Mariano, 2002; Diebold, 2015), we refer to Brehmer et al. (2021) for more details on the

connection with scoring theory. This terminates the review of earthquake forecast validation

techniques.

2.6 Conclusion

In this chapter, we have described earthquake catalogues, the difficulties that they bring,

how to model earthquake occurrence using point process models such as the ETAS model,

how catalogue-based forecasts are defined, and how to validate them in the light of observed

data.

In this thesis, I propose a novel Bayesian technique to approximate the ETAS model. This

technique is not limited to the ETAS model but could be applied (in principle) to any Hawkes

process model. The technique is described in Chapter 4 where it is compared with a MCMC

alternative. There, I show that it can be up to 10 times faster than the latter on catalogues

with more than 2000 events, and that scales more efficiently increasing the amount of data.

Chapter 5 shows in detail the difficulties linked to the quality of the data used to estimate the

parameters. In there, I investigate how the parameters’ posterior distributions are influenced

by the number of large events in the sequence if including quiet periods yields more robust

parameter estimates. In the same way, I investigate if including a period of pre-conditioning

(events that are accounted in the history but not in the set of events on which the likelihood is

calculated) helps. Finally, I investigate the effect of missing data on the posterior distributions
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of parameters. This is done using the temporal ETAS model.

Chapter 6 generalizes the proposed approach to the spatio-temporal case with a spatially

varying background rate and covariates described in Section 2.4.2. In there, we compare

retrospectively models with different combinations of covariates and rank them using the

Akaike Information Criterion. Retrospective forecasts produced with our approach for the

2009 L’Aquila sequence and the 2016 Amatrice sequence that happened in central Italy will be

used in a novel study on the feasibility of real-time rapid loss forecasting. Moreover, forecasts

produced with this approach will be submitted to the next Italian CSEP experiments where

they will be evaluated prospectively with the validation metrics described in this chapter. For

both forecasts, I consider a Tapered GR law to model the magnitude distribution.

The validation metrics used within CSEP needs to be validated themselves, at least to

check if they are biased or to estimate the power of statistical test as the one described

in this chapter based on these quantities. For example, we have found that the M-test is

problematic when applied to forecasts overestimating the number of events. More details

on the issue can be found at https://github.com/SCECcode/pycsep/issues/196. I have

proposed a solution and also designed a modified multinomial likelihood score test that does

not suffer from this problem and is more powerful than the M-test. We plan to write an

article assessing the performance of the M-test similarly to what is done in Khawaja et al.

(2023) for the S-test. We plan to use a simulation technique similar to the one described in

Chapter 7 for the Parimutuel Gambling score.

The next chapter introduces the Bayesian methodology, namely the Integrated Nested

Laplace Approximation (INLA, Rue et al., 2009) which is the base of our method.
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Chapter 3

Methodology

3.1 Introduction

Bayesian methods have seen increasing popularity in the last decades, especially due to the

development of efficient Markov Chain Monte Carlo (MCMC) schemes (Robert et al., 1999)

to obtain samples from the posterior distribution without explicitly calculating it and to

software packages such as WinBUGS (Lunn et al., 2000), JAGS (Plummer et al., 2003), and

Stan (Carpenter et al., 2017) which gives the possibility to use such schemes without having

to explicitly code them. Bayesian methods are appealing in many fields of science, they

provide a complete description of the uncertainty about the parameters, specifically, they

provide the posterior distribution of the parameters combining the likelihood of the observed

data and a prior distribution that elicits the state of our knowledge about the parameters

before the data is observed. Thus, they provide a clean and clear way to merge what we

know about the phenomenon under study before an experiment and the information provided

by the experiment itself. This mechanism of updating our knowledge, which resembles how

humans learn things, is particularly appealing for forecasting purposes.

As such, Bayesian methods have seen increasing popularity also in seismology (Holschnei-

der et al., 2012; Shcherbakov, 2014; Omi et al., 2015), however, an efficient, general, ex-

tendible Bayesian framework is still missing. This is mainly due to the fact that, the ETAS

model has all the characteristics to make MCMC methods inefficient, i.e. complex likelihood

preventing analytical results, highly correlated parameters, non-Markovianity. Indeed, early

studies had to resort to frequentist-style estimation techniques (Ebrahimian et al., 2014;

Omi et al., 2015). First attempts to develop a fully Bayesian framework are Vargas and

Gneiting (2012) and Ebrahimian and Jalayer (2017) which used the estimation technique

introduced by Rasmussen (2013), however, their methods provide biased estimates and did

not scale well when the number of events were increased. A new framework mitigating these

problems was developed by Ross (2021), which uses a latent variable formulation, and has

been extended to have a spatially varying background rate (Molkenthin et al., 2022; Ross

and Kolev, 2022). However, the proposed method still does not scale efficiently with the

number of events, especially in the most complicated cases. In Chapter 4, we show that our

method is 10 times faster than the MCMC method developed by Ross (2021) for a simple

temporal ETAS model using catalogs with more than 2000 events.

Alternative methods to MCMC exist, and we should use them whenever MCMC methods

are inappropriate. The Integrated Nested Laplace Approximation (INLA, Rue et al., 2009;

Bakka et al., 2018) is one of these. INLA was designed to handle efficiently large Latent

Gaussian models with strongly correlated parameters and has been used in many applied fields

such as air pollution (Forlani et al., 2020), disease mapping (Riebler et al., 2016; Santer-
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mans et al., 2016; Schrödle and Held, 2011a,b), genetics (Opitz et al., 2016), public health

(Halonen et al., 2015), ecology (Roos et al., 2015; Teng et al., 2022), more examples can be

found in Bakka et al. (2018); Blangiardo et al. (2013); Gómez-Rubio (2020). INLA is based

on a deterministic approximation of the posterior distribution which makes it substantially

faster than MCMC methods. Also, being deterministic, any result is easier to reproduce

on different machines. The inlabru R-package (Bachl et al., 2019) facilitates the use of

INLA and extends its capability to more complex models, such as LGCP which has already

been applied to seismic data for time-independent models (Bayliss et al., 2020, 2022). Fur-

thermore, the inlabru package uses an iterative method to handle more complex models.

This iterative method will be heavily used in the approximation of Hawkes process models

presented in Chapter 4.

This chapter describes the Integrated Nested Laplace Approximation (INLA) and the

inlabru iterative method. The first section describes the INLA algorithm starting from the

definition of a Latent Gaussian model, the Laplace approximation, and how this is used to

retrieve the posterior of the parameters. The second section is about inlabru describing how

spatial LGCP models are implemented when including a particularly relevant type of random

effect and then, the iterative method. Having a clear idea of INLA and inlabru, and how they

work together is essential to understand better the Hawkes process approximation technique

described in the next chapter.

3.2 Integrated Nested Laplace Approximation (INLA)

3.2.1 Latent Gaussian models

The class of Latent Gaussian models (LGMs) is a flexible and powerful class of statistical

models, particularly useful when the aim is to describe the dependency between observations

and covariates and between observations themselves. Rue et al. (2017) reports a long list of

successful applications of Latent Gaussian models implemented with R-INLA. The compo-

nents of such models form a three-stage hierarchy composed by: the observations (y ∈ Rn),
the latent field (x ∈ Rm), and the hyper-parameters (θ = (θ1, θ2) ∈ Rp), with n,m, p ∈ N.
In this context, θ1 are parameters determining the distribution of the data, while θ2 are hy-

perparameters determining the distribution of the latent field. From now on π(·) will be used
to generically represent distributions and π(·|·) for conditional distributions. The hierarchy is
then,

y|η(x), θ1 ∼
∏
i

π(yi |η(x), θ1) (3.1)

x|θ2 ∼ N(µ(θ2), Q−1(θ2)) (3.2)

θ ∼ π(θ). (3.3)

The vector x contains all the unobservable quantities also called the latent field, which is

supposed to have a multivariate Gaussian distribution with mean function µ(θ2) and covari-

ance function Q−1(θ2), so that Q(θ2) is the precision matrix. The latent field includes the

effect of the covariates and possible random effects which influences the observations. The

observations depends on the latent field only through the function η(x) which usually repre-

sents the expected value of y given the latent field x. The hyper-parameters of the model

are θ which is divided into hyper-parameters of the likelihood θ1 and hyper-parameters of the

latent field θ2. Assuming to have observed y = y1, . . . , yn, with n ∈ N, in Bayesian statistics
we are interested in the conditional distribution of the latent field and the hyper-parameter
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given the observations y. This is called the posterior distribution and it is given by

π(x, θ|y) ∝ π(θ)π(x|θ2)
∏
i

π(yi |x, θ1), (3.4)

where π(θ) and π(x|θ2) are, respectively, the prior of the hyper-parameters and the prior of
the latent field. The product of π(yi |x, θ1) is the likelihood of the observed sample.

The likelihood synthesizes the information coming from the data and reflects our hy-

potheses on the observed variable, e.g. is the distribution symmetric around the mean? Is

the mean comparable with the variance? Is the distribution heavy-tailed or not? The above

formulation assumes that observations are independent of each other conditionally on the

latent field and the hyper-parameters. In fact, the role of the latent field is to explain the

dependence between observations which typically depends on the observations having similar

levels of the covariates or similar spatio-temporal locations. For example, consider a region

divided into small non-overlapping bins, y represents the number of earthquakes in each bin

during a defined spatio-temporal window. For spatially varying time-independent models,

given the clustering (in space) nature of the earthquake generation process, if the bin i and j

are close enough, one would expect yi and yj to be correlated. However, the observed counts

are generated by the same latent mechanism, let’s say the movements of the tectonic plates,

which will be described by the latent field x. The likelihood of each observation yi depends

only on the corresponding xi , and the dependence between yi and yj is then described by

the dependence between xi and xj . In other words, knowing the underlying process makes

the observations independent. For time-dependent models using real earthquakes data the

situation is more complicated because the presence of large events could make events in

their neighbours undetectable, and at the same time increases the number of events in its

surroundings.

The priors, instead, should reflect our knowledge of the process that we have before

running any experiment. This usually comes from previous studies or expert knowledge. It

also reflects our hypotheses on the processes generating the observations such as: What is

the domain of the parameters? Are they correlated? Do they vary over space or time? For

LGMs the latent field has a Gaussian distribution and, from now on, we will always assume

it is a Gaussian Markov Random Field (GMRF, Rue et al., 2009).

A GMRF can be defined through two functions µ(θ2) (mean function) and Q
−1(θ2)

(covariance function). A GMRF is completely specified by these two functions, in fact, if

x|θ2 ∼ GMRF(µ(x, θ2), Q(x, θ2)),

the vector x has a multivariate Gaussian distribution with mean vector µ(x, θ2) and precision

matrix Q(x, θ2). We use the precision matrix instead of the covariance matrix because it

comes with the following useful property: if the elements i and j are conditionally independent,

then the component i j of the precision matrix is zero (Qi j = 0). Therefore, the dependency

structure between elements of the latent field is entirely specified by the non-zero elements

of the precision matrix.

We use additive models to give an example of the components usually included in the

latent field. For additive models, the observations yi depend on the latent field x only through

the linear predictor ηi . The linear predictor is usually the linear combination of covariates

and random effects, formally,

ηi = µ+
∑
j∈J

βjzi j +
∑
k∈K

fk,jk(i) + ϵi , (3.5)
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where µ ∈ R is the overall intercept, zi j ∈ R is the value of the j-th covariate for observation
i with coefficient βj to be estimated. We refer to those as fixed effects because depends

on known covariates and are the same as the effects founded in classical linear regression

problems. The terms fk , k ∈ K represent, instead, random effects, and they are assumed
to be Gaussian processes. The values fk,jk(i) are the components of fk influencing the i-

th observations. Being a Gaussian process, fk = fk,1, ..., fk,n have a multivariate Gaussian

distribution with given mean and covariance function. Examples of model components fk
include auto-regressive models, stochastic spline models, models for smoothing, and random

effects models with different types of correlations.

The variety of possible alternatives for this model component reflects the flexibility of this

class of models. The quantity ϵi is a small error component. The latent field in the general

is

x = (η, µ,β, f1, f2, ....). (3.6)

The components fk are usually represented by a vector of length mk at which the com-

ponent is evaluated. In the case of spatial random effect, the component fk may be the

spatial field evaluated at a set of fixed locations mk . The dimension of the latent field is

given by the number of observations plus the number of the fixed effects and intercept, plus

the number of the mk ’s. This number (especially for spatial models) is usually between 10
3

and 105 in real data applications. The large dimension of the latent field and the correlation

structure in each component usually prevent MCMC methods to be practical. I’ll present

another example in section 3.3.1.

3.2.2 Laplace Approximation

The Laplace approximation was introduced by Pierre-Simon Laplace (1774) and has been

used for centuries to approximate integrals. In modern times, the Laplace approximation was

one of the main tools to evaluate high-dimensional integrals in pre-MCMC times, however, it

was quickly replaced once computers became fast enough to mitigate the high computational

cost of MCMC. The Laplace approximation is meant to evaluate integrals of the form

In =

∫
X
exp{nf (x)}dx, (3.7)

as n →∞. The function f (·) is assumed to be smooth in the sense that the first and second
derivative exists and to have a unique global maximum. We assume that f (·) is a function
of a scalar x , but what is said can be extended to the case in which x is a vector. Further,

assuming x0 = argmaxx f (x), the second order Taylor expansion of f (x) around x0 is

In ≈
∫
X
exp{n(f (x0) +

1

2
(x − x0)2f ′′(x0)}dx

= exp{nf (x0)}

√
2π

−nf ′′(x0)
, as n →∞ (3.8)

where x0 is the maximum of f (x) for x ∈ X , f ′′(·) is the second derivative of f (·); the first
derivative is zero when evaluated at x0. This shows that the integral of exp{nf (x)} can be
approximated by the integral of a Gaussian density matching the value and curvature of the

original function at the mode. The more the function is close to be Gaussian the more the

Laplace approximation is accurate. For our purposes, the function nf (x) will be interpreted

as a sum of log-likelihoods. In this case, if the central limit theorem holds, the Gaussian

approximation matches perfectly the objective function as n goes to infinity. Following this
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interpretation, we will refer to the quantity n as the number of observations, this allows us

to reformulate the sentence above as ”the accuracy of the approximation increases as the

number of observations increases”. Keeping the parallelism with the central limit theorem,

fixing the number of observations n the approximation will be more accurate if the curve

exp{nf (x)} satisfies typical Gaussian properties such as uni-modality, symmetry, and tail
behavior.

The efficiency of the INLA method is based on the fact that the Laplace approximation is

deterministic and fast to compute once we have the mode. Hence, the most computationally

expensive steps are i) find the mode, and ii) computing the log-determinant of the Hessian

(in the multivariate case). For the first problem, INLA uses a gradient base method, which

requires the Hessian to be calculated, and this is usually retrieved computing the Cholesky

factorization of the Hessian which decompose the matrix in the product of a lower triangular

matrix and its transpose. This speeds up the calculations because the Cholesky factor is now

a sparse matrix, also, this reduces also significantly the time needed to compute the log-

determinant of the Hessian which can also be expressed in terms of the same Cholesky factor

which needs to be calculated only one time. When the function of interest is multidimensional

or multi-modal (or both), determining the mode could be problematic, however, the original

integration problem is now a maximization problem that is more much manageable and faster

to solve.

For our purposes, the Laplace approximation will be used to compute marginal distribu-

tions from the joint distribution. Assuming to know the joint distribution π(θ) and to be

interested in the marginal distribution of the first component π(θ1), formally

π(θ1) =
π(θ)

π(θ−1|θ1)
, (3.9)

where π(θ−1|θ1) is the joint distribution of the θ components except the first one conditional
on the first one. Tierney and Kadane (1986) showed that approximating the denominator of

Equation 3.9 with a Gaussian distribution is equivalent to the Laplace approximation of the

marginal, namely

π(θ1) ≈
π(θ

πG(θ−1;µ(θ1), Q(θ1)

∣∣∣∣∣
θ−1=µ(θ1))

, (3.10)

where πG(·, µ,Q) is a multivariate Gaussian density with mean µ and precision matrix Q.
This approximation, however, gives the approximated value for only one value of θ1; if are

interested in a large number of θ1 values, we have to solve as many maximization problems.

Before going there, however, we give more details on the actual approximation used by INLA.

3.2.3 Integrated Nested Laplace Approximation

Here, I describe the classic INLA model formulation as originally proposed by Rue et al.

(2009), in which the predictors are part of the latent field. Recent developments (van

Niekerk and Rue, 2021; Van Niekerk et al., 2023) have shown that the INLA framework can

be rewritten without the nested component, by using a Variational Bayes correction to the

Gaussian approximation, and that this provides faster inference, improved numerical stability,

and scalability. Since November 2022 version 22.11.06 the modern INLA model formulation

has become the default used by the R-INLA package on which the implementation proposed

in this thesis relies. The method proposed in this thesis works with both formulations and

the advantages of the new formulation for our problem have yet to be quantified properly,

therefore I describe only the classical INLA formulation.
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Any Bayesian analysis has the purpose of retrieving the marginal posterior distributions of

the latent field and the hyper-parameters, namely π(θj |y) for all θj ∈ θ and π(xj |y) for all xj ∈
x, where y represents the observed data. Once we have the marginal posterior distributions

we can compute all the quantities of interest such as mean, median, and quantiles. The INLA

approach is tailored to Latent Gaussian models in which θ is low dimensional (usually between

3 and 5, never greater than 20), and x is a GMRF, the observations y are conditionally

independent given the field x and hyper-parameters θ and each yi depends only on the one

element of the field xi .

The analytical expression of the marginal posterior distributions that we want to retrieve

is

π(θj |y) =
∫
π(θ|y)dθ−j (3.11)

π(xj |y) =
∫
π(xj |θ, y)π(θ|y)dθ. (3.12)

The idea behind the INLA methodology is to approximate π(θj |y) and π(xj |y) by approxi-
mating π(xj |θ, y) and π(θ|y) in equation 3.11 and 3.12. We use the notation f̃ (·) to indicate
an approximation of the function f (·).

The first step is to approximate π(θ|y) which appears in both equations 3.11 and 3.12.
This is given by

π(θ|y) =
π(θ)π(x|θ)π(y|x, θ)

π(x|θ, y) , (3.13)

which can be approximated using the Laplace approximation as done in equation 3.10. This

leads to the following approximate joint θ posterior

π̃(θ|y) =
π(θ)π(x|θ)π(y|x, θ)

πG(x|θ, y)

∣∣∣∣∣
x=x0(θ)

, (3.14)

where πG(x|θ, y) is the Gaussian approximation of π(x|θ, y) with mean x0(θ) and variance
depending on the second derivative of π(x|θ, y) calculated at x0(θ). The function in 3.14 is
then normalized to be a valid density distribution. The value x0(θ) is the mode of the full

conditional π(x|θ, y) for a given value of the hyper-parameters θ. The above approximation
is likely to be accurate because x|θ is a GMRF. Therefore, it has a Gaussian distribution,
and conditioning on the data will not dramatically change the shape of the distribution and

we can expect π(x|θ, y) to be close to a Gaussian. The only drawback here is that if we are
interested in evaluating the approximation for k different sets of hyper-parameters θ1, ..., θk
this would require solving k maximization problems to find the corresponding x0(θi).

The next step is to approximate π(xj |θ, y). Three methodologies were available in R-INLA
R-pacakge to perform this step, now the default is the methodology proposed by Van Niekerk

et al. (2023). The fastest between the three is to marginalize the Gaussian approximation

πG(x|θ, y) with respect to xj to retrieve the marginal distribution. The only extra cost of this
operation is to compute the marginal variance, which is frequently not very expensive. Despite

this method working fine in many cases, there are situations in which it may be not accurate,

for example in the cases of highly skewed or highly asymmetric posterior distributions. In such

cases, two other approximations have been implemented, details about these methods can be

found in Martins et al. (2013). Once a method has been chosen, π(xj |y) is approximated by
numerically integrating an approximate version of the function in equation 3.12 with respect
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to θ. This is done considering k values θ1, ..., θk with weights w1, ..., wk and

π̃(xj |y) =
∑
i

π̃(xj |θi , y)π(θi |y)wi . (3.15)

The choice of θ1, ..., θk is crucial for the efficiency and reliability of the INLA methodology.

The trade-off is that for each value θi we need to solve a maximization problem to obtain

π̃(xj |θi , y), therefore we want k to be as small as possible. On the other hand, the smaller
k is the worst the numerical approximation in equation 3.15 will be. This is also the reason

why θ has to be low dimensional, otherwise, we would need a large number of values for the

approximation to have sufficient accuracy losing too much in efficiency. Bearing this in mind

we arrive at the last step of INLA: approximation of the posterior marginal distribution of

the hyper-parameters θj .

The approximation of π(θj |y) could be obtained by integrating numerically expression
3.11 considering π̃(θ|y) instead of π(θ|y). However, such integration scheme would require
evaluating the function π̃(θ|y) for many points and we already said that retrieving these
values could take a large amount of time. The idea proposed by Rue et al. (2009) was to

use the values π̃(θi |y) that have already been calculated for equation 3.15. Specifically, they
interpolate the values π̃(θ1|y), ..., π̃(θk |y) obtaining the function I(θ|y) which approximate
the true π̃(θ|y), and the integral in equation 3.11 is performed with respect to I(θ|y). The
obtained approximated marginal posterior distribution is given by

π̃(θj |y) =
∫
I(θ|y)dθ−j . (3.16)

This concludes the review of the INLA methodology. The approach is not flawless and can

give unrealistic results when one of the many approximations involved in the process is biased.

However, it allows applied researchers to fit Bayesian models with complicated correlation

structures that are usually impractical using MCMC methods. Indeed, many of the features

introduced in the R-INLA package come from the needs manifested by the users themselves.

For this thesis, I implemented for the first time a self-exciting process with the inlabru R

package showing that the INLA methodology can be extended to this class of processes.

These processes are the most commonly used model to describe earthquake occurrence, and

the INLA methodology provides a robust framework to perform Bayesian inference on complex

models. In this way, researchers and practitioners in statistical seismology have access to the

complex models supported by INLA and successfully applied in disease mapping, ecology, and

environmental statistics, to name a few.

3.3 inlabru

The inlabru R-package (Bachl et al., 2019) facilitates fitting spatial models to non-specialist

users, it simplifies the syntax and extends the class of models that can be fitted to include

models with non-linear predictors. Indeed, the R-INLA R-package requires the user to im-

plement their own likelihood approximation scheme, while inlabru does that automatically

using an iterative algorithm. Also, inlabru provides an automated way to implement Log-

Gaussian Cox processes (LGCP, Cox, 1955; Møller et al., 1998) which are an important

class of models widely used in spatial statistics. An important feature of inlabru is the

possibility of including a Gaussian random field (GRF) in the predictor, a continuous ran-

dom process in which values at different locations are normally distributed and correlated

depending on the distance between each other. Specifically, the inlabru package considers

a GRF with a Matérn covariance function approximated using the Stochastic Partial Dif-
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ferential Equation (SPDE) approach (Lindgren et al., 2011, 2022). The SPDE approach

is fundamental for the efficiency of the approach which otherwise would be infeasible. The

GRF has the role of capturing the correlation not explained by the covariates and can be in-

terpreted as the combined effect of the non-observed processes influencing the observations.

LGCP models including covariates and a GRF have already been used to model seismicity in

a time-independent framework (Bayliss et al., 2020). They offer a robust statistical frame-

work to compare models including different combinations of covariates and determine the

best-performing combination.

3.3.1 Log-Gaussian Cox Process models

Cox processes (Cox, 1955; Møller et al., 1998) are a fruitful class of models particularly

suitable for problems involving prediction of a partially observed spatio-temporal process.

Thus, it seems to us appropriate to model earthquake data in which observations below

a certain magnitude threshold are discarded. The generic Log-Gaussian Cox process in d

dimensions has to respect the following two postulates:

• The log-intensity is given by λ(x) = exp{S(x)} for x ∈ Rd , where S(x) is a Gaussian
process.

• Conditionally on a realization of S(x) the process is an inhomogeneous Poisson process
with intensity function λ(x), x ∈ Rd

Specifically, the first point of the definition highlights why they are called Log-Gaussian

Cox processes, indeed, the logarithm of the intensity has to be a Gaussian process. To

establish a link with the INLA methodology, the Gaussian field S(x) is the latent field. The

second point implies that knowing the latent field, the observations follow a Poisson process,

and therefore, they are independent of each other. This means, that the correlation between

points is supposed to be completely explained by the latent field and thus, particular attention

has to be devoted to its construction.

The Gaussianity of the latent field makes the moments of an LGCP model analytically

tractable, which is not the case when we depart from Gaussianity. Furthermore, this for-

mulation provides an elegant way to model the observations hierarchically, using the same

framework of generalized linear models (GLM). In fact, assuming to have observed N points

at locations s1, ..., sN ∈ W ⊂ Rd , let S = (S(s1), ..., S(sN)) be the vector containing the
latent field value at the observed locations. Given that, S(x) is a Gaussian field, the vector

S has an N-dimensional Gaussian distribution with mean vector µ(S) = µ(s1), ..., µ(sN) and

N × N covariance matrix Q−1 such that Q−1i j is equal to the covariance between S(si) and
S(sj) for i ̸= j and, to the variance of S(si) when i = j . The corresponding LGCP model

can be formulated in a way that resembles the Latent Gaussian models’ formulation:

λ(si)|x ∼ exp{η(si)}

η(s)|x = β0 +
p∑
j=1

βjzj(s) + u(s)

u|θ ∼ N(0, Q−1(u)|θ) (3.17)

θ ∼ π(θ),

where zj(s) ∈ R is the value of the j−th available covariate at location s, u = {u(s1), ..., u(sN)},
and u(s) is a Gaussian field with 0 mean and precision matrix Q(S) determined by specifying

a covariance function r(si , sj) which returns the covariance between location si and sj . The
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quantities β0, ..., βN ∈ Rp+1 are coefficients; they are assumed to be independent and to have
a normal distribution with 0 mean and standard deviation σj . The vector of hyper-parameters

θ is composed of the variances of the coefficients βjs and the parameters determining the

covariance function r(s, s0). The linear predictor η(s), being a linear function of u(s), is

in turn a Gaussian field with mean µ(s) = µ +
∑
j βjzj(s) and same covariance matrix as

u(s). To continue the parallelism with the Latent Gaussian models, the latent field here is

composed by x = {η(s1), ...., η(sN), β0, ..., βN , u(s1), ..., u(sN)} which is again a Gaussian
field.

From the above formulation, it is possible to understand the centrality of the role played

by the latent field in LGCP models. The role of the latent field is to explain the correlation

between observations due to an unobserved underlying phenomenon. Examples include un-

observed soil characteristics in studying plant locations; the presence of competing animal

species in studying animals’ behaviour; underlying factors in studying the spread of disease.

The value β0 has the same interpretation of the intercept in a simple Linear model, it repre-

sents the mean value of the linear predictor when the effect of the covariates is equal zero.

The value β0, the vector β, the value of the random field u, and the hyper-parameters θ

have to be estimated from the data.

The choice of the covariance function r(s, s0) is more critical because it has to reflect

the hypothesis on the correlation between points. In my project, we are going to use the

Matérn covariance function (Matérn, 1960) which defines a flexible and widely used class of

Gaussian fields. The Matérn covariance function is specified as follows:

r(s, s0) =
σ2

Γ(ν)2ν−1
(k∥s− s0∥)νKν(k∥s− s0∥), (3.18)

where Kν is the modified Bessel function of second kind of order ν > 0, σ > 0 is the

marginal standard deviation, k > 0 is a scaling parameter, and ∥s − s0∥ is the Euclidean
distance between s and s0. The parameter ν determines the differentiability of the process

and, due to identifiability issues, it is usually fixed. The scaling parameter k does not have

an intuitive interpretation, however, it is strictly linked to the quantity ρ =
√
8ν/k which

is the Euclidean distance at which the correlation between s and s0 is around 0.13. The

inlabru R-package provides an efficient way to estimate σ and ρ which are part of the

hyper-parameters of the model.

The Matérn covariance function accounts only for the relative position of the points,

specifically, it is a function only of the distance between points. Thus, processes with such

a covariance function and with a constant mean are invariant to translation (stationary)

and rotation (isotropic). In other words, the closer two points are to each other the more

they are correlated. This is coherent with the interpretation that the field represents an

unknown latent phenomenon that influences the point-generating process. This phenomenon

is supposed to be continuous and thus, closer points will tend to have more similar values.

Due to its nice property and clear interpretation of the parameters, the Matérn covariance

function has become one of the most commonly used covariance functions in spatial statistics

applications (Stein, 1999) and machine learning (Williams and Rasmussen, 2006).

3.3.2 The SPDE approach

Despite their popularity, models involving a continuously indexed Gaussian field with Matérn

covariance function are not very manageable. Having observed N points, the latent field

values have a multivariate normal distribution S = (S(s1), ..., S(sN)) ∼ N(µ(S),ΣN). The
matrix ΣN is an N ×N dense matrix which makes the cost to evaluate the likelihood O(N3)
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(Heaton et al., 2019). This means that any analysis involving more than hundreds of obser-

vations become infeasible. A common approach is to approximate the value of the Gaussian

field using a number n,N ≫ n of basis functions such that:

S(s) =

n∑
i=1

ωiψi(s), (3.19)

where, ω1, ..., ωn ∼ N(0,Σn) are Gaussian weights and ψ1(·), ..., ψn(·) are basis functions.
With this method evaluating the likelihood costs now n3, which is a noticeable gaining when

N ≫ n. However, this approach prevents the model to capture fine-scale variations if n is too

low. On the other hand, the computational time is cubic in the number of basis functions.

As before, this is due to the fact that Σn, as well as Σ
−1
n , is a dense matrix that prevents

the application of fast sparse matrix methods to perform calculations.

The SPDE approach (Lindgren et al., 2011, 2022) consists in considering n ≈ N and to
approximate the precision matrix Σ−1n with a sparse matrix Q

−1
n . In this way, no local variation

is discarded and the Gaussian weights are a Gaussian Markov Random Field (GMRF, Rue

and Held, 2005). The fact that now the weights are from a GMRF brings two advantages:

the computational time required to evaluate the likelihood is now O(n3/2) which is feasible
for n in the order of thousands, and GMRF models are supported by INLA. Lindgren et al.

(2011) shows that this approximation is valid and draw an explicit link between continuously

indexed Gaussian fields (which in general are not tractable) and GMRF which are tractable.

Lindgren et al. (2011) exploited the fact that a Gaussian field S(x), x ∈ Rd with Matérn
covariance function is a solution of the following Stochastic Partial Differential Equation

(SPDE, Whittle, 1954):

(k2 − ∆)α/2S(x) =W(x), (3.20)

where ∆ =
∑d
i=1 ∂

2/∂x2i is the Laplacian operator, and W(x) is Gaussian white noise.
There exists a one-a-one correspondence between the parameters of the above SPDE and

the parameters of the Matérn covariance function of the solution as expressed above.

The link between GF and GMRF is, then, that it is possible to find a finite element rep-

resentation of the SPDE solution with the form given by equation 3.20. Such representation

is based on a discretization of the space. In particular, considering a triangularization of the

space composed of a set of n nodes, the basis functions ψi(·) are piecewise linear functions
assuming value 1 at node i and 0 at the other nodes j ̸= i . Using such basis functions, the
value ωi can be interpreted as the value of the Gaussian field at the node and the discrete

approximation as piecewise linear in each triangle.

The advantages of this approach which made us believe it may be effective in modelling

earthquake data are:

1. The Matérn covariance parameters, being the same as in the SPDE formulation, has a

clear physical meaning and can be used as quantities of interest in analysing earthquake

data.

2. The number n of mesh points is independent of the number of observations N. It

is related, perhaps, to the accuracy of the approximation, to the ability to capture

local variations of the field, and to the computational time required to evaluate the

likelihood. The trade-off, as usual, is between accuracy and computational time.

3. The sparsity of the precision matrix of the weights, allows us to exploit the advantages

of the INLA approach. Furthermore, inlabru and R-INLA offer a general framework

to perform Bayesian analysis using such models.
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4. The SPDE representation allows to obtain different Matérn covariance functions chang-

ing the differential operator. In particular, this approach can be generalized to include:

i) models with physical barriers (Bakka et al., 2019) ii) non-stationary fields (Fuglstad

et al., 2015), iii) fields on general spaces (e.g. spheres, Lindgren et al., 2011).

A vast number of examples of applications of the SPDE approach can be found in Bakka

et al. (2018), while Bolin and Kirchner (2020) extends the approach further allowing to work

with precision matrices for the Gaussian weight which are not sparse.

3.3.3 LGCP model approximation

This section shows how LGCP models are approximated by inlabru. A modified version

of this method will be used in the proposed Hawkes process approximation in Chapter 4,

therefore, going through the LGCP approximation detail now will fix the fundamental ideas

for later. The approximation relies on the fact that the INLA method can deal with Poisson

Counts (PC) models but not with Poisson Process (PP) models. We start showing how

point patterns can be represented as PP models and PC models.

Given a set of observations {yi : yi ∈ W, i = 1, ..., n} of a point process in a region W
we can model this data in two ways: as a PP model or as a PC model. The point process

log-likelihood for this data is given by:

LPP = −
∫
W

λ(s)ds+

n∑
i=1

logλ(yi), (3.21)

where λ(·) is the intensity function of the point process. In this case, the data is composed
of the actual observations y1, ..., yn.

The second way (PC model) relies on a discretization of the region W . Suppose that the

region W is divided in K non-overlapping bins b1, ..., bK such that ∪kbk = W and bk ∩bj = ∅
for any k ̸= j . For each bin bk , Nk represents the number of observations y1, ..., yn in bk .

Also, for each bin bk , λk represents the expected number of points by the model in bk . The

log-likelihood for the PC model is given by:

LPC = −
K∑
k=1

λk +
∑
k=1

Nk logλk . (3.22)

In the equation above, we have omitted the term Nk ! because it is a known quantity. Here,

the data is composed of the Poisson counts per bin N1, ..., NK .

The goal is to find a way to represent the PP log-likelihood using the PC log-likelihood

to ensure LPP ≈ LPC. To achieve this task we need to approximate the integral and the
sum of log intensities in a way that∫

W

λ(s)ds ≈
K∑
k=1

λk

n∑
i=1

logλ(yi) ≈
K∑
k=1

Nk logλk . (3.23)

The first bit regards the total number of points expected in the region W . In fact, the

integral of the intensity represents the expected value of the number of points in W and

the sum of the expected number of points in each bin represents exactly the same thing.

The sum of the intensity calculated at the observed points is a measure of how likely is to

observe the present point patterns while the second summation is a measure of how likely is

to observe the present counts.
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We can reformulate the PC model in a way that is more convenient to approximate the

PP model. Suppose that the intensity, in each bin bk , is constant and equal to λ(pk), where

pk is the centroid of the bin bk . Suppose, also, that the bin bk has volume (in 3D, area

in 2D, length in 1D) Ek . Ek is also known as the exposure of the bin bk . In this case,

the expected number of points in the bin bk is given by the product between λ(pk) and Ek ,

namely λk = λ(pk)Ek . The log-likelihood of the PC model becomes:

LPC = −
K∑
k=1

λ(pk)Ek +
∑
k=1

Nk logλ(pk), (3.24)

we have ignored the term log(Ek)Nk in the second summation because it is a known quantity.

The problem now is to find pk , Nk , and Ek , such that∫
W

λ(s)ds ≈
K∑
k=1

λ(pk)Ek

n∑
i=1

logλ(yi) ≈
K∑
k=1

Nk logλ(pk). (3.25)

The idea is to use two different sets of pk , Nk , and Ek , one to approximate the integral

and one to approximate the sum of log intensities.

Approximation of the integral

In order to provide a better approximation of the integral of the intensity, it is convenient to

base the approximation on a triangulation (or mesh) of the region W . Calling s1, ..., sJ the

mesh points with weights ω1, ..., ωJ , the integral is approximated by:∫
W

λ(s)ds =

J∑
j=1

λ(sj)ωj . (3.26)

Essentially is like considering a PC model with J bins defined by the triangulation. Here,

sj is the centroid of the bin bj and ωj is its exposure. The likelihood of this PC model is

Lint = −
J∑
j=1

λ(sj)ωj +

J∑
j=1

Nj logλ(sj). (3.27)

Considering Nj = 0,∀j we have that

Lint = −
J∑
j=1

λ(sj)ωj ≈ −
∫
W

λ(s)ds, (3.28)

which approximates the target integral.

Approximation of the summation

To approximate the summation, it is convenient to consider as centroids the observed points

y1, ..., yn. In this way, the summation is approximated by:

n∑
i=1

logλ(yi) ≈
n∑
i=1

Ni logλ(yi). (3.29)
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The associated PC model log-likelihood is given by:

Lsum = −
n∑
i=1

λ(yi)Ei +

n∑
i=1

Ni logλ(yi). (3.30)

Considering Ni = 1, and ωi for all i = 1, ..., n we have

Lsum =
n∑
i=1

logλ(yi). (3.31)

Putting it all together

In order to provide a reliable approximation we need to combine the approximation of the

integral with the approximation of the summation in a single PC model. Following the

terminology defined above, we need to specify a set of centroids p1, ...,pP representing the

bins, a vector of exposures E1, ..., EP representing the “size” of the bins and a vector of

counts N1, ..., NP representing the number of observed events in each bin.

The dimension P is given by the the number of mesh points J and the number observations

n, such that P = J + n. Binding the specifications of centroids, exposures, and counts used

previously, the three vectors are specified as follows:

centroids =



s1
...

sJ
y1
...

yn


, exposures =



ω1
...

ωJ
0
...

0


, counts =



0
...

0

1
...

1


.

The resulting PC model has log-likelihood given by

LPC = Lint + Lsum

= −
J∑
j=1

λ(sj)ωj +

n∑
i=1

logλ(yi)

≈ −
∫
W

λ(s)ds+

n∑
i=1

logλ(yi) = LPP.

With the above approximation, the error depends only on how well we approximate the

integral, given that the sum of log intensities is exact. The accuracy of the approximation

of the integral depends on the mesh used to discretize the space and can be decided by the

user. The trade-off is between accuracy and computational time, indeed, considering a finer

mesh means considering more mesh points which, in turn, means considering more points in

the surrogate PC model.

3.3.4 inlabru iterative method

The approximation method used for LGCP models requires the log intensity to be linear in the

parameters, however, we will need to relax this hypothesis to approximate Hawkes process

models. The inlabru package offers a way to approximate LGCP models in the case of a

non-linear log intensity function. The framework was developed to allow the users to include
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in the linear predictor non-linear effects of the covariates and therefore, we are going to refer

to this framework to explain how the approximation can be extended.

Consider the following model,

logλ(s) = η(s, θ) (3.32)

η(s) = β0 +

p∑
i=1

fi(zi(s, θi)) + u(s), (3.33)

where β0 ∈ R is a scalar and u(s) is a GMRF, and fi(·) is a deterministic function of the
covariate zi(·) depending on a set of parameters θi . The function fi(·) is supposed to be
smooth, meaning that first and second derivatives exist. The linear predictor depends on the

set of all parameters θ = ∪iθi given by the union of the parameters needed by each function
of the covariate. The parameters θ have to be estimated from the data. For example, in the

linear case fi(zi(s)) = βizi(s), θi = βi .

The idea is to work with a linearised predictor with respect to θ0 given by the first order

Taylor expansion of η(s, θ) around θ0.

η(s, θ, θ0) = η(s, θ0) + (θ − θ0)
∂

∂θ
η(s)

∣∣∣∣∣
θ=θ0

. (3.34)

The approximation is exact at θ0 and degrades for values of θ far away from that point.

It is natural to choose θ0 to be the value of the parameters in which we are most interested.

In a Bayesian setting, this point is the posterior mode of θ, in this way, the approximation is

exact at the posterior mode (where there is the greatest amount of probability) and degrades

in the tails. However, knowing the posterior mode implies knowing the posterior distribution

which is the final goal of any Bayesian analysis. The inlabru package uses an iterative

method to determine the posterior mode around which the model is approximated.

The iterative method works as follows:

1. Let θ0 be an initial linearisation point.

2. Compute the linearised predictor at θ0.

3. Run INLA on the linearised model and obtain posterior mode θ1

4. Let θα = αθ0 + (1− α)θ1 and find the value of α that minimises ∥η(θα)− η(θ1)∥

5. Set θ0 = θα as a new linearisation point and repeat from step 2.

The procedure ends when the maximum component-wise difference between θα and θ0
is less than 1% of the component posterior standard deviation. The default value 1% can be

changed by the user. A potential improvement to step 4 is to also take into account the prior

distribution for θ as a minimisation penalty, to avoid moving further than would be indicated

by a full likelihood optimisation. A schematic of the iterative method can be found in Figure

5.3 in Chapter 5.

The properties of this method of providing reliable posterior distributions of the parame-

ters are part of an ongoing study which still needs to be finalized, preliminary details can be

found at https://inlabru-org.github.io/inlabru/articles/method.html.
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3.4 Time-independent LGCP models for seismicity

Here, we show how the inlabru approximation method for LGCP models described in this

Chapter can be used to build spatially-varying time-independent models for seismicity. This

is the approach used in Bayliss et al. (2020) and Bayliss et al. (2022) to model seismicity in

Southern California. In this section, we show the results obtained in Bayliss et al. (2022).

The articles consider different LGCP models with intensity for a generic location s ∈ W ,
where W ⊂ R2 is the spatial domain represented by the polygon in Figure REF, given by:

λ(s) = exp{β0 +
J∑
j=1

βjzj(s) + u(s)}

(3.35)

u(s) ∼ GMRF(0, Q−1(s, s′)),

where βj ∈ R for j = 0, ...., J and J ∈ N : J ≥ 1, and u(s) is a Gaussian random field with
Matérn covariance function and parameters estimated using the SPDE approach. The model

is identical to the one described by Equation REF (3.17).

Figure 3.1: Input model covariates: (a–d) strain rate (SR), NeoKinema slip rates from

UCERF3 (NK), smoothed seismicity from a Gaussian random field for events before 1984

(MS), distance to nearest (UCERF3, dip and uniformly buffered) fault in km (FD). This

Figure is the same as Figure 2 of Bayliss et al. (2022).

The quantities zj(s) for j = 1, ..., J represent the value of the covariates included in

the model at location s. Bayliss et al. (2022) considers three models based on different
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combinations of four spatially-varying covariates which were found to perform well in terms

of Deviance Information Criterion (DIC, REF) in Bayliss et al. (2020). The covariates

considered are shown in Figure REF and include the strain rate (Kreemer et al., 2014) (SR)

map, NeoKinema model slip rates (NK) attached to mapped faults in the UCERF3 model

(Field et al., 2014), a past seismicity model (MS) and a fault distance map (FD) constructed

using the UCERF3 fault geometry, with fault polygons buffered by their recorded dip. The

past seismicity model is a smoothed seismicity map derived from events in the UCERF3

catalogue that occurred prior to 1984 and not included in the data used to fit the models.

The smoothed seismicity map is the posterior mean of an LGCP model composed of an

intercept and a random field as u(s) defined above.

The models considered are

1. SRMS model uses the strain rate and the past seismicity.

2. SRMSNK model uses the strain rate, the past seismicity, and the NeoKinema slip rates.

3. FDSRMS model uses the fault distance, the strain rate, and the past seismicity.

The LGCP models considered in Bayliss et al. (2022) are time-independent meaning that

although the rates are spatially varying and modeled as an inhomogenous Poisson process

with intensity given by 3.35, they are assumed to be homogeneous in time. However, this

assumption is not verified by observed data which is not Poissonian due to spatiotemporal

clustering (Vere-Jones, 1970; Gardner and Knopoff, 1974). The aim of the article is to

investigate the effect of clustering on the models and does that by fitting the above three

models on two different catalogues. The first one is composed by all theM4.95+ events from

1985 to 2005 from the UCERF3 dataset (Field et al., 2014), while the second one is obtained

by considering only the mainshocks of the first one determined using the Gardner and Knopoff

(1974) declustering algorithm (UCERF3 Appendix K). This results in 6 different spatial

models. The models using the declustered catalogue are named SRMSDC, SRMSNKDC,

and FDSRMSDC which include the same combinations of covariates described above.

Figures 3.2 and 3.3 show the logarithm of the posterior median of the intensity (diagonal),

the differences in the log median (top-right side), and the differences in model variances

(bottom-left side) of the models using, respectively, the full catalogue and the declustered

one to estimate the parameters of the model. The models are then used to produce grid-

based and catalogue-based forecasts and tested pseudo-prospectively against data in the

periods 2006-2011 and 2011-2016 using the CSEP consistency tests described in Chapter

2. The models passed the CSEP tests in the period 2006-2011 while performing poorly in

the period 2011-2016. The declustered catalogue models performed better than the full

catalogue models in the latter period.

The approach presented in this section is coherent with current practice in time-independent

forecasting and PSHA where the catalogues are declustered to conform to the Poisson as-

sumption. It also provides a general framework to test the importance of different covariates

in the model and a fully Bayesian method for forecast generation.

The main limitation of this approach is how aftershocks are handled and the dependence

of the results upon a declustering algorithm. In fact, many different declustering algorithms

exist and there is no formal way to identify which one is best. Also, the effect of declustering

in the results presented here is attenuated by the (relatively) high magnitude threshold. With

a smaller magnitude threshold, the number of discarded events by the declustering procedure

would have been higher increasing the differences between models. These problems, however,

are not exclusive of the inlabru approach but affect most time-independent models for

seismicity. The real solution to this is to formally model the clustering process as it is done

by time-dependent models such as the Epidemic-Type Aftershock Sequence (ETAS) model.
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Figure 3.2: Pairwise comparison of models for full catalogue models. The top-right side

of the plot shows differences in log median intensity and the lower left section shows the

differences in model variances between the different models. The median log intensities for

each model are shown on the diagonal. Models include combinations of smoothed past

seismicity (MS), strain rate (SR), fault distance (FD) and fault slip rates (NK). This Figure

is the same as Figure 3 of Bayliss et al. (2022).

3.5 Chapter Summary

In this chapter, I have described the INLA methodology to perform inference on the parame-

ters of a Latent Gaussian model. The methodology relies on Gaussianly approximating parts

of the posterior distribution while it does not alter the likelihood of the model. This means

that the approximation is less accurate for models for which the posterior of the parameters

departs significantly from normality (e.g. highly skewed distributions). However, the R-INLA

R-package is able to detect these cases and apply a correction to the posterior to reduce the

approximation bias.

I have shown how this methodology is extended in the inlabru R-package to support

LGCP models and the iterative method employed to handle models with non-linear predictors.

The ability of the algorithm to converge depends on the degree of non-linearity of the pre-

dictor and by possible numerical problems. However, it is usually fine for common functions

such as exponentials, logarithms, and power laws. I have shown how the LGCP approximation

method and the SPDE approach have been combined to produce time-independent models

of seismicity (Bayliss et al., 2020, 2022). The advantage of this approach is to provide a

Bayesian framework to study the effect of including different covariates combinations and

whether this produces improved forecasts with respect to other approaches. This approach

also supports time-dependent models if time-varying covariates are included, however, the

model does not account for the interaction between points and all events occur indepen-
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Figure 3.3: Pairwise comparison of models for declustered catalogue models. The top-right

side of the plot shows differences in log median intensity and the lower left section shows

the differences in model variances between the different models. The median log intensities

for each model are shown on the diagonal. Models include combinations of smoothed past

seismicity (MS), strain rate (SR), fault distance (FD) and fault slip rates (NK). This Figure

is the same as Figure 4 of Bayliss et al. (2022).

dently from each other. In other words, this approach does not allow to explicitly model the

clustering process and there is no distinction between background events and aftershocks.

This can only be done using a Hawkes process (or self-exciting model as the ETAS model.

The main contribution of this thesis is to build upon the approximation method presented

here for the LGCP model to approximate Hawkes process models. In Chapter 4 I generalize

the approximation method presented in Section 3.3.3 to support Hawkes process models.

The proposed method works for many different Hawkes process models and we use it, in

the context of seismicity, to approximate the ETAS model. The main advantage is that it

extends the inlabru approach to explicitly model the clustering of earthquakes in time and

space. I start focusing on time only and Chapter 4 describes the methodology in general

but applies it only to the temporal ETAS model. To make our approach accessible, I have

developed an R-package called ETAS.inlabru which provides a user-friendly implementation

of the proposed method. In Chapter 4 we compare the results obtained with our approach

with the ones obtained using the bayesianETAS R-package which is based on an MCMC

technique.

Chapter 5 makes use of the ETAS.inlabru R-package on simulated data to explore

potential biases in the parameters’ posterior distribution arising from choices regarding the

data used as input (e.g. catalogue length, inclusion/exclusion of quiescence periods, num-

ber of large earthquakes, and catalogue incompleteness). Chapter 6 extends the proposed

methodology to the spatio-temporal ETAS model and describes a way to include covariates in
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modelling the number of aftershocks relative to each event. This provides a general Bayesian

framework to study the effect of available covariates on the produced forecasts while explic-

itly describing the clustering process. The approach described in this thesis generalizes to

time-dependent models the approach described in this chapter for time-independent models.
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Chapter 4

Approximation of Hawkes process
models with application to temporal
ETAS model

4.1 Introduction

This chapter includes an article accepted for publication by the Environmetrics1 journal and

available in preprint (Serafini et al., 2022a). The authors of the paper are Francesco Serafini

(me), Mark Naylor, and Finn Lindgren. As the first author, I contributed by writing the

article, gathering comments from the other authors and reviewers, and leading the review

process until the final version was reached. I have also developed the methodology described

in this article and provided the code to implement it. The methodology presented here is

implemented in the ETAS.inlabru (Naylor and Serafini, 2023) R-package which was used to

produce the results. The ETAS.inlabru is available on Git-Hub and will be soon submitted

to CRAN.

Hawkes process models (or self-exciting processes Hawkes, 1971a,b) are a flexible class

of point process models particularly suited to describe phenomena having a self-exciting

behavior in which cascades of events are observed. Typical examples are infectious diseases,

crimes, wildfires, droughts, neuronal activity, viral social media contents, and earthquakes.

Indeed, the Epidemic Type Aftershock Sequence (ETAS) model belongs to this class. Despite

being widely used, Hawkes process models have characteristics that makes it challenging to

perform Bayesian inference on them. First of all, the likelihood is usually complex in non-

trivial cases, and consequently, there is no close-form analytical solution for the posterior

distribution. Second, the parameters are strongly correlated with each other, which poses

difficulties in applying standard Markov Chain Monte Carlo (MCMC) techniques to retrieve

the posterior. Moreover, these difficulties are exacerbated when considering more complex

formulations (e.g. anisotropic spatial kernel, non-stationary processes), and the inclusion of

covariates or structured random effects requires ad-hoc modifications of the procedure used

to perform inference on the parameters. This, in turn, complicates hypotheses testing and

makes it difficult to discriminate between behaviours that emerge from model formulation

versus differences emerging from the methodologies to perform inference.

Here, I develop a new methodology to perform approximate Bayesian inference on the

Hawkes process parameters. The technique is based on the Integrated Nested Laplace Ap-

proximation (INLA) and is implemented through the inlabru R-package. INLA is an alter-

1website: https://onlinelibrary.wiley.com/journal/1099095x
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native to MCMC, while inlabru provides user-friendly access to INLA extending the classic

methodology to point process models. In contrast to MCMC, INLA is based on a deter-

ministic approximation which makes it faster than MCMC competitors. Further, it yields

fully reproducible results. These advantages are particularly evident in models considering

large structured random effects. Although the proposed technique is general, potentially

applicable to any Hawkes process model, in this chapter we focus on the temporal ETAS

model. The novelty of the approach resides in a new log-likelihood approximation. We com-

pare our methodology with the MCMC technique proposed by Ross (2021) and implemented

through the bayesianETAS R-package using the 2016 Amatrice earthquake seismic sequence

(Michele et al., 2016).

4.2 The paper

4.2.1 Abstract

Hawkes process are very popular mathematical tools for modelling phenomena ex-

hibiting a self-exciting or self-correcting behaviour. Typical examples are earthquakes

occurrence, wild-fires, drought, capture-recapture, crime violence, trade exchange,

and social network activity. The widespread use of Hawkes process in different fields

calls for fast, reproducible, reliable, easy-to-code techniques to implement such mod-

els. We offer a technique to perform approximate Bayesian inference of Hawkes

process parameters based on the use of the R-package inlabru. The inlabru

R-package, in turn, relies on the INLA methodology to approximate the posterior

of the parameters. Our Hawkes process approximation is based on a decomposition

of the log-likelihood in three parts, which are linearly approximated separately. The

linear approximation is performed with respect to the mode of the parameters’ poste-

rior distribution, which is determined with an iterative gradient-based method. The

approximation of the posterior parameters is therefore deterministic, ensuring full re-

producibility of the results. The proposed technique only requires the user to provide

the functions to calculate the different parts of the decomposed likelihood, which are

internally linearly approximated by the R-package inlabru. We provide a compari-

son with the bayesianETAS R-package which is based on an MCMC method. The

two techniques provide similar results but our approach requires two to ten times

less computational time to converge, depending on the amount of data.

4.2.2 Introduction

Hawkes processes or self-exciting processes, first introduced by Hawkes (1971a,b), are count-

ing processes often used to model the ”arrivals” of some events over time, when each arrival

increases the probability of subsequent arrivals in its proximity. Typical applications can be

found in seismology (Ogata, 1988; Ogata and Zhuang, 2006; Ogata, 2011; Paik Schoen-

berg, 2022), capture-recapture (Altieri et al., 2022; Weller et al., 2018), invasive species

(Balderama et al., 2012), droughts (Li et al., 2021), crime (Mohler et al., 2011; Mohler,

2013; Mohler et al., 2018), finance (Azizpour et al., 2018; Filimonov and Sornette, 2012;

Hawkes, 2018), disease mapping (Chiang et al., 2022; Garetto et al., 2021), wildfires (Peng

et al., 2005), and social network analysis (Kobayashi and Lambiotte, 2016; Zhou et al.,

2013).

Hawkes process, and more in general point processes, are counting processes assuming

a value equal to the cumulative number of points recorded in a bounded spatio-temporal

region. The main characteristic of a Hawkes process is its ability to model the effect of
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a point on the probability of observing additional points in its surroundings. For example,

in seismology, it is often assumed that each earthquake has the ability to induce other

earthquakes, and therefore observing an earthquake at a space-time location increases the

probability of observing additional earthquakes in its proximity. Therefore, each observed

point can be classified as induced, if it was induced by another point in the history of the

process, or as background if it arose spontaneously. In this framework, a Hawkes process

can be seen as the superposition of a background process, describing the occurrence of

background events, and a sub-process for each observation in the history, describing the

occurrence of events induced by that observation. This implies that the rate at which points

occur at each space-time location is potentially influenced by the whole history of the process.

This makes Hawkes process models non-Markovian. More formal definitions of the Hawkes

process, its history, and its conditional intensity are given in Section 4.2.3.

The application of the Bayesian approach has become increasingly popular also in the

Hawkes process field (Rasmussen, 2013; Donnet et al., 2020; Holbrook et al., 2021). In

fact, Hawkes process models are often used in hazard or risk analyses, in which the ability

to quantify the uncertainty around quantities of interest (e.g. number of events, probabil-

ity of events of a certain class, inter-event time distribution) is of paramount importance

(Marzocchi et al., 2015; Smit et al., 2019). However, applying the Bayesian framework, in

these cases, is difficult, given the complex form of the posterior distribution and the high

degree of correlation between Hawkes process parameters, and researchers had to resort to

frequentist-like estimation techniques (Ebrahimian et al., 2014; Omi et al., 2015). Also, an

easy-to-use, extendible, Bayesian technique to handle Hawkes process models is still missing,

one of the few examples to the authors’ knowledge is represented by Ross (2021). Further-

more, the techniques habitually used in the literature are based on the Markov-Chain Monte

Carlo ((MCMC, Robert et al., 1999) method which limits the reproducibility of the results

and resent from the presence of highly correlated parameters.

In this paper, we propose a novel approximation technique for Hawkes process models

based on the use of the Integrated Nested Laplace Approximation (INLA, Rue et al., 2017)

method. The INLA method is a well-known alternative to MCMC methods to perform

Bayesian inference. It has been successfully applied in a variety of fields such as seismology

(Bayliss et al., 2020), air pollution (Forlani et al., 2020), disease mapping (Riebler et al.,

2016; Santermans et al., 2016; Schrödle and Held, 2011a,b), genetics (Opitz et al., 2016),

public health (Halonen et al., 2015), ecology (Roos et al., 2015; Teng et al., 2022), more

examples can be found in Bakka et al. (2018); Blangiardo et al. (2013); Gómez-Rubio (2020).

Our approach aims to bring the INLA’s advantages to the Hawkes process community and

is implemented through the R-package inlabru. Specifically, the novelty of our approach

resides in the likelihood approximation, indeed, the log-likelihood is decomposed in the sum

of many small pieces, and each piece is linearly approximated with respect to the posterior

mode. This means that the log-likelihood is exact at the posterior mode and the accuracy

of the approximation decreases as we move away from that point. Furthermore, the linear

approximation and the optimization routine to determine the posterior mode are internally

performed by the inlabru package. The user only has to provide the functions to be

approximated, the data, and the priors. The advantages of our approach are both in terms

of computational time and simplicity to be extended to include covariates and/or to introduce

structure in the parameters (e.g. considering one of them as temporally, or spatially, varying).

The article is structured as follows: Section 4.2.3 introduces the basic definition of a

counting process, a Hawkes process, and defines its history and conditional intensity; Section

4.2.4 describes how Hawkes processes are used in practice and provides some examples on

possible choices of the conditional intensity; Section 4.2.5 describes our novel approximation

method for the log-likelihood; Section 4.2.6 provides a real data example on the Amatrice
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seismic sequence and compares the results obtained with our approach with the ones from

the bayesianETAS R-package. For the Amatrice seismic sequence, we also provide a retro-

spective forecasting experiment in which we predict the daily number of earthquakes; Section

4.2.7 shows the results of a simulation experiment in which we simulate the data from a

known model and compare the inlabru and bayesianETAS implementations. This is done

to illustrate how the computational time scales increasing the amount of data. The three

appendices at the end of the article (4.4.1,4.4.2, 4.4.3) provide the posterior distributions of

the parameters for the two implementations considered and perform a sensitivity analysis of

the inlabru results with respect to the binning strategy and the prior choice.

4.2.3 Notation and definitions

In this section, we give the basic definitions of a counting process, its history, and conditional

intensity. Some definitions are only given with respect to time, but they can be easily extended

to include space and marking variables. We start with the definition of a counting process.

A counting process is a stochastic process assuming integer values changing over time. The

value of a counting process at time t ≥ 0 is equal to the number of observations with time
less or equal than t. More formally,

Definition 4.2.0.1. A counting process {N(t), t ≥ 0} is a stochastic process assuming
values in the set of non-negative integers N ∪ {0}, such that: i) N(0) = 0; ii) N(t) is a
right-continuous step function with unit increments; iii) N(T ) <∞ almost surely if T <∞.
Also, given a time interval [0, T ) with T < ∞, we define the complete set of observations
up to time T as HT = {th : th ∈ [0, T ) ∀h = 1, ...., N(T−)}. Given a random t ∈ [0, T )
we define the history of the process up to time t as the subset of elements of HT recorded
strictly before t and we call it Ht = {th ∈ HT : th < t}.

Definition 4.2.0.1 can be extended to the marked spatio-temporal case. In this case, a

generic observed point is x = (t, s, m) and is composed of a time t, a spatial location s,

and a marking variable m. The domain is given by X = [0, T ) × W × M, where T > 0,

W ⊂ R2 and M ⊆ R. The value of the counting process at time t is the number of
events recorded before t (included), with spatial location in W and marking variable in M.

Assuming that the spatial region of interest (W ) and the marking variable’s domain (M)

are constant over time, we can use the same notation for the complete set of observations

and the history of the process. In this case, the complete set of observations is HT =
{xh = (th, sh, mh) : xh ∈ X ∀h = 1, ..., N(T−)}, and the history of the process becomes
Ht = {xh = (th, sh, mh) ∈ HT : th < t}.
Any counting process can be defined by specifying its conditional intensity. The condi-

tional intensity of a counting process at time t is the expected infinitesimal rate at which

events occur around time t given the history of the process Ht . More formally,

Definition 4.2.0.2. For a counting process {N(t), t ≥ 0} with history Ht , the conditional
intensity function of the process N(t) is:

λ(t|Ht) = lim
∆t↓0

E[N(t + ∆t)− N(t−) | Ht ]
∆t

.

For ∆t , t ≥ 0. Assuming that the limit exists, the conditional intensity is left-continuous
and λ(t|Ht) ≥ 0, ∀t ≥ 0.

Definition 4.2.0.2 can also be extended to include a space location and a marking variable.

The conditional intensity λ(x|Ht) is the expected infinitesimal rate at which points occur in
(t, t + ∆t),∆t > 0, around space location s, with marking variable around m.
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The first characteristic for a Hawkes process as defined in Hawkes (1971b) Equation (4)

is that the probability of the number of events in (t, t + ∆t) being equal to n = 0, 1, ... is

given by:

Pr(N(t + ∆t)− N(t) = n|Ht) =


1− λ(t)∆t − o(∆t) i f n = 0

λ(t)∆t + o(∆t) i f n = 1

o(∆t) i f n > 1

. (4.1)

Equation 4.1 has two major implications. The first one is that the probability of having

more than one event in an infinitesimal interval around t goes to zero faster than the length

of the interval. This implies that the probability of observing two events at the same time is

zero and that the number of events in HT is equal to N(T ) with probability one. However,
recorded data does not have to obey that (due to time discretisation). The second is that the

probability of having an event in (t, t +∆t) conditional on the history Ht , for small ∆t > 0,
is completely specified by the conditional intensity.

Now, we can define a Hawkes process model through its conditional intensity:

Definition 4.2.0.3. A Hawkes process is a counting process with conditional intensity given

by:

λ(x|Ht) = µ(x) +
∑
xh∈Ht

g(x, xh), (4.2)

where µ : X → [0,∞), and g : X × X → [0,∞)

The conditional intensity is composed of a part µ(x) usually called the background rate,

which does not depend on the history; and a second part representing the contribution to

the intensity from the points in the history. The function g : X × X → R+ is known as
excitation or triggering function and measures the influence of observation xh on the point

x.

Definition 4.2.0.3 implies that the whole history of the process is important to determine

the current level of intensity. In this view, Hawkes processes can be seen as a non-Markovian

extension of inhomogeneous Poisson processes. Both the background rate and the triggering

function depends on a set of parameters θ ∈ Θ ⊂ Rm which determines the properties of
the Hawkes process under study (e.g. number of events per time interval, probability of a

certain type of events, average number of induced events, type of clustering). Our technique

provides a way to have a fully-Bayesian analysis of the parameters θ.

4.2.4 Hawkes process modelling

The Hawkes process intensity in Equation 4.2 is composed by two part, a background rate

µ(x) and an excitation or triggering function g(x, xh). The background rate and the triggering

function depend upon a number of parameters θ. Our objective is to provide a technique

to determine the posterior distribution of θ having observed points in X = [0, T ]×W ×M.
Equation 4.2 also shows that a Hawkes process can be thought of as the sum of n+1 Poisson

processes, where n = N(T ) is the number of observations in the history of the process up to

time T <∞. One Poisson process represents the background rate and has intensity µ(x), the
others n Poisson processes are each one generated by an observation xh and have intensity

g(x, xh). Many algorithms for fitting Hawkes process models are based on this decomposition

and make use of a latent variable assigning the points to one of those n+1 Poisson processes

(Ross, 2021; Veen and Schoenberg, 2008). Our approach is different because there is no

explicit or implicit classification of the points into background and induced events.
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Regarding marked spatio-temporal Hawkes process models, we only report the case where

the marking variable distribution is independent of space and time, we refer to this distribution

with π(m). For the case where this assumption does not hold, and we have π(x = (t, s, m)),

we just need to substitute µ(x), and g(x, xh) with µ(x)π(x), and g(x, xh)π(x) in all the

following expressions without loss of generality. This is valid for both discrete and continuous

distribution of the marking variable. Assuming an independent marking variable distribution

the Hawkes process conditional intensity is given by:

λ(x = (t, s, m)|Ht) =

µ(x) + ∑
xh∈Ht

g(x, xh)

π(m). (4.3)

Given the assumption of independence between the process representing the space-time

locations and the marking variable’s distribution, we only focus on the distribution of the

space-time locations. The parameters of the marking variable distribution will be estimated

independently and based on the observed marks solely. This is the usual situation in seismol-

ogy, where the marking variable is the magnitude of the event, and its distribution is usually

assumed to be independent of the space-time location of the events. If the assumption does

not hold, applying the substitution described above allows us to estimate the marking variable

distribution’s parameters along with the Hawkes process parameters.

In this paper, we consider a spatially varying background rate that remains constant over

time. This is done mainly to limit the number of modes in the likelihood and the correlation

between parameters. Furthermore, we are going to consider a background rate parameterized

as

µ(x) = µu(s), (4.4)

with µ ≥ 0 representing the number of expected background events in the area for a unit
time interval, and u(s) represents the spatial variation of the background rate and we assume

it is normalized to integrate to one over the spatial domain. Different techniques have been

employed to estimate u(s). For example, in seismology, it is common practice to estimate

it independently from the parameters of the triggering function smoothing a declustered set

of observations (Ogata, 2011).

The common approach to model the triggering function is to factorize it in different

components representing the effect of the observations xh on the evaluation point x on the

different dimensions (i.e. time, space, marking variable). More formally,

g(x, xh) = gm(mh)gt(t − th)gs(s− sh)I(t > th), (4.5)

where, I(t > th) is an indicator function assuming value one when the condition holds, and

zero otherwise. The function gm(mh) is the marking variable triggering function represent-

ing the effect of different values of the marking variable (e.g. if m is the magnitude of an

earthquake, large earthquakes have a stronger influence); gt(t − th) is the time triggering
function determining the time decay of the observed point’s effect, and it is usually a de-

creasing function of t − th; gs(s − sh) is the space triggering function which has the same
role of the time triggering function but in space and is usually a function of the distance

between points (different distances may be employed).

Following this decomposition, also the parameter vector θ can be decomposed in θ =

(θ(µ), θ(m), θ(t), θ(s)), where θ(µ) represents the parameters of the background rate, and θ(m),

θ(t), θ(s) represent, respectively, the parameters of the magnitude, time and space triggering

functions. We call Jµ, Jm, Jt , Js the set of indexes indicating, respectively, the position of the

background rate, marking variable triggering function, time triggering function, and space
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Table 4.1: Typical choices of time and space triggering functions

Time triggering

Name function parameters

Exponential βe−α(t−th) α, β ≥ 0

Power Law k
(
1 + t−thc

)−p
k ≥ 0, c > 0, p > 1

Space triggering

Gaussian det(2πΣ)−1/2e−
1
2
(s−sh)TΣ−1(s−sh) Σ positive semi-definite

Power Law (1 + d(s,sh)γ )−q γ > 0, q > 1

triggering function parameters inside θ, so we can write θµ = {θj ∈ θ : j ∈ Jµ}. This
notation will be particularly useful in Section 4.2.5.

Table 4.1 reports some of the typical choices for the space-time triggering function.

Many modifications of these functions are used in real-data applications. For example, we

can imagine a different time or space effect for different values of the marking variable.

In seismology, it is common to consider a magnitude-dependent space triggering function

representing the fact that earthquakes with large magnitudes affect wider areas. Another

modification usually found in applications is to consider the normalized version of the reported

functions to ensure they integrate to one over the (respective) domain.

As explained in Laub et al. (2021), the choice of the triggering function is crucial to the

reliability and stability of any estimation procedure for Hawkes process parameters. For ex-

ample, many techniques use triggering functions normalized to integrate to 1 over an infinite

domain. For the approximation illustrated in this paper, we recommend using functions as

close to linearity as possible with respect to the parameters. The approximation works for

the ones in Table 4.1 which are not linear but at least monotonic. For the author’s experi-

ence, the unnormalized version works best. The motivations behind this requirement will be

illustrated in the next section.

In the real data example provided in Section 4.2.6, we apply our technique to earthquake

data. The data is supposed to come from a spatio-temporal marked Hawkes process model,

where the marking variable is the magnitude, however, we will consider it as a temporal

marked point process, ignoring the information on the spatial location. The effect of that is

to replace the full space-time intensity with a spatially integrated intensity. Indeed, assuming

that the region of interest is constant over time, any temporal model, with intensity λ′ can

be seen as a spatio-temporal model (with intensity λ) integrated over space,

λ′(t,m|Ht) =
∫
W

λ(t, s, m|Ht)ds, (4.6)

where W ⊂ R2. For the spatio-temporal model, if the background rate is given by equation
4.4 and the triggering function by equation 4.5, the temporal background rate (µ′) and
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triggering function (g′t) are given by

µ′ = µ

∫
W

u(s)ds (4.7)

g′t(t − th) = gt(t − th)
∫
W

g(s− sh)ds. (4.8)

Regarding the background rate, if u(s) is normalized to integrate to 1 over the domain,

the background rate is the same as in the spatio-temporal. For the triggering function, if

there were no boundary effects, the integral would be independent of sh, so it would just

be a common amplitude scaling. This seems a reasonable simplification to be able to treat

space-time data as temporal only.

4.2.5 Hawkes process log-likelihood approximation

In this section, we illustrate our Hawkes process log-likelihood approximation technique. This

approximation technique is new and allows us to express the Hawkes process log-likelihood as

a sum of linear functions of the parameters θ. Suppose to have observed n events HT1,T2 =
{x1, ..., xn : xi ∈ X ∀i = 1, ..., n}, where X = [T1, T2] ×W ×M, with 0 ≤ T1 < T2 < ∞,
W ⊂ R2, and M ⊆ R. To ease the notation in the next steps we are using H = HT1,T2 to
indicate the complete set of observations. The general point process model log-likelihood

given the observations is:

L(θ|H) = −Λ(X|H) +
n∑
h=1

logλ(xh|Hth), (4.9)

where Hth is the subset of HT1,T2 of events recorded strictly before th and,

Λ(X|H) =
∫
X
λ(x|H)dx, (4.10)

is the integrated conditional intensity corresponding to the expected number of points in X .
The integrated conditional intensity can be decomposed using the branching structure of

Hawkes processes, indeed, we can think of the expected number of points in an area as the

expected number of background points plus the expected number of points induced by each

observation in the history. Formally, having observed n = |HT1,T2 | events,

Λ(X|H) = Λ0(X ) +
n∑
h=1

Λh(X ), (4.11)

where,

Λ0(X ) =
∫
X
µ(x)dx = (T2 − T1)µ (4.12)

is the integrated background rate, and is interpreted as the number of expected background

events. The last equation only holds if the background rate follows the definition in Equation

4.4. The other quantity is given by

Λh(X ) =
∫
X
g(x, xh)dx = gm(mh)

∫ T2
max(T1,th)

∫
W

gt(t − th)gs(s− sh)dtds, (4.13)
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and is interpreted as the number of expected points generated by the observation xh. The

last equation only holds if we use Equation 4.5 to define the triggering function.

The log-likelihood can be decomposed into three main components:

L(θ) = −Λ0(X )−
n∑
h=1

Λh(X ) + SL(H). (4.14)

The expected number of background events Λ0(X ), the expected number of induced events∑
h Λh(X ), and the sum of the log-intensities SL(H) =

∑
h logλ(xh|Hth).

Our technique is based on approximating these three components separately. The ap-

proximation is such that the value of the log-likelihood is exact at the posterior mode θ∗, and

the degree of accuracy decays as we move from there. The level of accuracy for values of

the parameters far from the posterior mode strongly depends on the choice of the triggering

functions. Specifically, we separately perform a linear approximation of log Λ0(X ), log Λh(X ),
and logλ(xh), for h = 1, ..., n, and therefore, these functions should be as close to being

linear as possible.

The next subsections illustrate the approximation of the different log-likelihood compo-

nents. The last subsection reports some details on the iterative algorithm used to determine

the mode of the posterior distribution around which the approximation is performed. For all

of them, we will make explicit the dependence of the log-likelihood components from θ and

omit dependence from the domain X , formally, Λ(X ) = Λ(X , θ) = Λ(θ). Also, if a quantity
is approximated we use the Tilde symbol, such that f̃ (x) is the approximation of f (x), while

over-lined quantities stand for linearised, such that f (x, x0) is the linear version of f (x) with

respect to x0.

Part I - Expected Number of background events

We approximate the integrated background rate using a linear approximation of its logarithm.

Namely,

Λ̃0(θ) = exp{log Λ0(θ, θ∗)}, (4.15)

where,

log Λ0(θ, θ
∗) = logΛ0(θ

∗) +
1

Λ0(θ
∗)

m∑
j=1

(θj − θ∗j )
∂

∂θj
Λ0(θ)

∣∣∣∣∣
θ=θ∗

. (4.16)

This approach is particularly convenient if the background rate has the form reported by

Equation 4.4. The only parameter to estimate using this approximation is µ ≥ 0. Changing
parameter to θµ = logµ, we have two huge advantages. First, θµ ∈ (−∞,∞) is a free-
constraint parameter, and second, the logarithm of the expected number of background

events is linear in θµ, which means that there will be no approximation at this step and this

component will be exact for any value of θµ.

Part II - Expected Number of triggered events

We start the approximation of the expected number of triggered events by considering the

expected number of events triggered by a single observation xh. This is given by Equation

4.13. Considering a partition of the space X , namely b1,h, ..., bBh,h such that
⋃
i bi ,h = X

and bj,h
⋂
bi ,h = ∅, ∀i ̸= j , we can write:

Λh(θ) =

Bh∑
i=1

∫
bi ,h

g(x, xh)dx =

Bh∑
i=1

Λh(bi ,h, θ). (4.17)
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We approximate the above quantity linearly approximating the logarithm of the elements

of the summation. This increase the computational time and memory required by the al-

gorithm but it provides a much better approximation than considering one bin only. More

formally,

Λ̃h(θ) =

Bh∑
i=1

exp{log Λh(bi ,h, θ, θ∗)}, (4.18)

where log Λh(bi ,h, θ, θ
∗) is the linear approximation with respect to the posterior mode of the

expected number of generated events by the observation xh in the area bi ,h and has the same

form of Equation 4.16.

Assuming that we are dealing with a spatio-temporal marked Hawkes process model with

triggering function given by Equation 4.5 and bins partitioning the time domain only, such

that bi ,h = [ti−1,h, ti ,h)×W for i = 1, ..., Bh and ti ,h < tj,h∀i < j and t0 = max(T1, th) and

tB = T2, we have that:

Λh(bi ,h, θ) = gm(xth , θ
(m))

(∫ ti ,h
ti−1,h

gt(t − th, θ(t))dt

)(∫
W

gs(s− sh, θ(s))ds
)

= gm(mh, θ
(m))It(bi ,h, θ

(t))Is(θ
(s)), (4.19)

where It(bi ,h, θ
(t)) and Is(θ

(s)) are, respectively, the integral of the time and space triggering

function. The derivative of the logarithm of Λh(bi ,h, θ) with respect to θj ∈ θ is given by

∂

∂θj
log Λh(bi ,h) =


∂
∂θj
log gm(mh), if j ∈ Jm

∂
∂θj
log It , if j ∈ Jt

∂
∂θj
log Is, if j ∈ Js

, (4.20)

where Jm, Jt , Js are defined in Section 4.2.4.

Therefore, the accuracy of the approximation depends on how close to be linear the func-

tions log gm(·), log It(·), log Is(·) are with respect the parameters θ. In the case of normalized
triggering functions, we have Λh(X ) = gm(mh). This means that, on one hand, we don’t

need to split the integral in different bins saving computational time and memory; on the

other hand, the information on the parameters θj ∈ θ(t)
⋃
θ(s) provided by this likelihood

component is lost. Also, normalized triggering functions tend to be farther from linearity

than the corresponding unnormalized versions and this is crucial for the approximation of the

sum of log-intensities.

We remark that the division in bins is essential for the accuracy of the approximation

and the ability to converge of the algorithm. Different binning strategies can be employed,

and their performance depends on the form of the triggering function. For example, in the

case in which the time triggering function represents the time-decay of the influence of an

observation on the intensity, we expect it to be a monotonic decreasing function of the

time difference and, therefore, a convenient strategy would be to consider a denser partition

around zero and larger bins far from it where the function flattens. In Appendix 4.4.2 we

illustrate the binning strategy used in the real data and simulation examples which has the

characteristics described above. In there, we perform a sensitivity analysis fitting the same

Hawkes process model using different binning strategies, and Table 4.6 compares the different

binning strategies in terms of computational time and ability to converge.
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Part III - Sum of log-intensities

For the sum of log-intensities calculated at the observed points, we simply consider the linear

approximation of the elements of the summation, namely

S̃L(H) =
n∑
h=1

logλ(xh, θ, θ
∗), (4.21)

where, omitting the dependence from xh,

logλ(xh, θ, θ
∗) = logλ(θ∗) +

1

λ(θ∗)

m∑
j=1

(θj − θ∗j )
∂

∂θj
λ(θ)

∣∣∣∣∣
θ=θ∗

, (4.22)

which is the same as Equation 4.16.

Assuming to be interested in a spatio-temporal marked Hawkes process model, with

background rate specified by Equation 4.4, considering u(s) known for any s ∈ W , and

triggering function specified by Equation 4.5, the conditional intensity is given by:

λ(xh|Hth) = µu(sh) +
∑

k:xk∈Hth

gm(mk)gt(th − tk)gs(sh − sk), (4.23)

with derivative with respect to θ equal to

∂

∂θj
λ(xh) =



u(sh), if θj = µ

∑
k gt(th − tk)gs(sh − sk)

∂
∂θj
gm(mk), if j ∈ Jm

∑
k gm(mk)gs(sh − sk)

∂
∂θj
gt(th − tk), if j ∈ Jt

∑
k gm(mk)gt(t − tk)

∂
∂θj
gs(sh − sk), if j ∈ Js

. (4.24)

The above expression indicates that the accuracy of the approximation depends on how

close to linearity the different triggering function components are.

Full approximation and inlabru implementation

Putting all together, the Hawkes process log-likelihood approximation used by our technique

is:

L̃(θ, θ∗) = −Λ̃0(θ, θ∗)−
n∑
h=1

Bh∑
i=1

Λ̃h(bi ,h, θ, θ
∗) + S̃L(H, θ, θ∗)

= − exp{log Λ0(θ, θ∗)} −
n∑
h=1

B,h∑
i=1

exp{log Λh(bi ,h, θ, θ∗)}+
n∑
h=1

logλ(xh, θ, θ
∗).

(4.25)

The approximation is performed with respect to the mode of the posterior distribution

θ∗, which is determined by an iterative algorithm. The algorithm starts from a linearisation

point θ∗0 (provided by the user), finds the mode of the linearised (with respect to θ
∗
0) posterior

using the INLA method, namely θ
∗
1, the value of the linearisation point is updated to θ

∗
1 =
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γθ∗0 + (1− γ)θ
∗
1, where the scaling γ ∈ R is determined by the line search method described

here https://inlabru-org.github.io/inlabru/articles/method.html. This process

is repeated until, for each parameter, the difference between two consecutive linearization

points is less than 1% of the marginal posterior standard deviation. The value 1% is the

default value used by the R-package inlabru and can be changed by the user. Regarding

θ∗0 provided by the user, we suggest setting the parameters to a value which do not lead to

extreme cases. In our experience, using θ∗0 such that all the parameters are equal to 1 is a

safe choice. Another option may be to set it equal to the maximum likelihood estimators. We

recommend avoiding cases where parameters are equal, or very close, to zero (e.g. < 10−10),

as well as far from it (e.g. > 1000), which may prevent the algorithm from converging.

The proposed method is implemented in inlabru combining three Poisson models on

different datasets. The reference to a Poisson model is merely artificial and used for com-

putational purposes, it does not have any specific meaning. Specifically, we leverage the

internal log-likelihood used for Poisson models by INLA (and inlabru) to obtain the approx-

imate Hawkes process log-likelihood. This is the only reason why we chose to implement our

Hawkes process approximation using different Poisson models.

More formally, INLA has the special feature of allowing the user to work with Poisson

counts models with exposures equal to zero (which should be improper). A generic Poisson

model for counts ci , i = 1, ..., n observed at locations xi , i = 1, ..., n with exposure E1, ..., En
with log-intensity logλP (x) = f (x, θ), in inlabru has log-likelihood given by:

LP (θ) ∝ −
n∑
i=1

exp{f (xi , θ, θ∗)} ∗ Ei +
n∑
i=1

f (xi , θ, θ
∗) ∗ ci . (4.26)

Each Hawkes process log-likelihood component is approximated using one surrogate Pois-

son model with log-likelihood given by Equation 4.26 and appropriate choice of counts and

exposures data. Table 4.2 reports the approximation for each log-likelihood component with

details on the surrogate Poisson model used to represent it. For example, the first part (inte-

grated background rate) is represented by a Poisson model with log-intensity log Λ0(X ), this
will be automatically linearised by inlabru. Given that, the integrated background rate is

just a scalar and not a summation, and therefore we only need one observation to represent it

assuming counts equal 0 and exposures equal 1. Table 4.2 shows that to represent a Hawkes

process model having observed n events, we need 1 +
∑
h(Bh) + n events with Bh number

of bins in the approximation of the expected number of induced events by observation h.

Furthermore, Table 4.2 lists the components that has to be provided by the user, namely

the surrogate Poisson models log-intensities. More specifically, the user only needs to create

the datasets with counts ci , exposures ei , and the information on the events xi representing

the different log-likelihood components; and, to provide the functions log Λ0(X ), log Λh(bi ,h),
and, logλ(x). The linearisation is automatically performed by inlabru as well as the retriev-

ing of the parameters’ posterior distribution. Regarding the functions representing integrals,

they do not need to be exact, a function performing numerical integration is also fine.

We provide a step-by-step tutorial on how to implement the approximation method de-

scribed above. The tutorial gives more details on which functions has to be provided by the

user, how to construct the binning strategy, how to set different priors for the parameters,

and how to pass everything to inlabru to retrieve the posterior distribution of the param-

eters. The tutorial can be found at https://github.com/Serra314/Hawkes˙process˙

tutorials/tree/main/how˙to˙build˙Hawkes.
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Name Objective Approximation Surrogate logλP Number of data points Counts and Exposures

Part I Λ0(X ) exp log Λ0(X ) log Λ0(X ) 1 ci = 0, ei = 1

Part II
∑n
h=1

∑Bh
i=1 Λh(bi ,h)

∑n
h=1

∑Bh
i=1 exp log Λh(bi ,h) log Λh(bi ,h)

∑
h Bh ci = 0, ei = 1

Part III
∑n
h=1 logλ(xh)

∑n
h=1 exp logλ(xh) logλ(x) n ci = 1, ei = 0

Table 4.2: Hawkes process log-likelihood components approximation

4.2.6 Real Data Example

We provide a practical example of a temporal marked Hawkes process to illustrate the capabil-

ities of our technique. We implement the temporal version of the Epidemic-Type-Aftershock-

Sequence model (ETAS, Ogata, 1988), the most popular model to describe the evolution

of seismicity in time, and we apply it to the 2016 Amatrice seismic sequence (Marzocchi

et al., 2017). Specifically, we have considered 1137 events with a magnitude greater or

equal to 3 from 24/08/2016 to 15/08/2017, with longitude in (42.45, 43.08) and latitude

in (12.93, 13.54). The temporal evolution of the number of events is illustrated in Fig-

ure (4.1). The data is taken from the Italian Seismological Instrumental and Parametric

Database (ISIDe, Group, 2007) downloaded from https://doi.org/10.13127/ISIDE.

The example consists of mainly two parts. In the first one, we compare the results

of our implementation with the results obtained with the bayesianETAS R-package (Ross,

2021), which provides an automatic MCMC implementation of the temporal ETAS model.

The implementations are compared in terms of goodness-of-fit, expected number of events,

and expected number of induced events. This is because we use different parameterizations

preventing us from directly comparing the posterior of the parameters. We do this to show

that our technique provides similar results to the MCMC implementations but in less time.

This is relevant because we are working with an approximation method, while the MCMC

implementation is exact, and the fact that both implementations provide similar results shows

the accuracy of our approximation method.

In the second part of this example, we provide a retrospective daily forecasting experiment

in which we compare daily forecasts of seismicity against observed seismicity in terms of

number of events per day, for 120 days starting from 24/08/2016, just after the first large

earthquake in the sequence. This is done using the inlabru implementation only given

the similarity of the results of the MCMC implementation. We use catalog-based forecasts

(Savran et al., 2020) for which the forecast for each day is composed of 10000 simulated

catalogs. Each simulated catalog is based on a different set of parameters extracted from

the posterior distribution.

ETAS model

The ETAS model is the most used Hawkes process to model the evolution of seismicity over

time and space (Ogata, 1988; Ogata and Zhuang, 2006; Ogata, 2011). We are going to

implement the first version of the model which is a temporal marked Hawkes process model

with the event’s magnitude as marking variable. The conditional intensity of the ETAS model

is given by:

λE(t,m|Ht) =

µ+K ∑
h:th<t

exp{α(mh −M0)}(t − th + c)−p
π(m), (4.27)
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Figure 4.1: Amatrice sequence comprising 1137 events from 24/08/2016 to 15/08/2017,

with longitude in (42.45, 43.08) and latitude in (12.93, 13.54). The first event in the cat-

alogue is the magnitude 6.01 which started the sequence. Red stars indicate events with

magnitude greater than 5. Panel (a): Histogram reporting the number of events per week;

Panel (b): Scatter plot of time versus magnitude; (c) Cumulative number of events as func-

tion of the number of days from the first event in the sequence, for events with magnitude

greater than 3 (solid black) and for events with magnitude greater than 5 (dashed red).

where, M0 ∈ R is the minimum recorded magnitude, and π(m) is the magnitude distribution
which is estimated independently from the Hawkes process parameters and assumed to follow

a form of Gutemberg-Richter (GR) law (Gutenberg and Richter, 1956). The temporal evo-

lution of the number of points is regulated by 5 parameters µ,K,α, c,≥ 0 and p ≥ 1. The
parameters µ,K, and α are productivity parameters regulating: the number of background

events (µ), the number of induced events or aftershocks (K), and how the aftershock pro-

ductivity scales with magnitude (α, the higher the magnitude the more events are generated).

The parameters c and p are the parameters of the Omori’s law (Omori, 1894) and regulate

the temporal decay of the aftershock activity. The quantity M0 is a cut-off magnitude such

that mh ≥ M0, ∀h.

The bayesianETAS package implements the ETAS model with a normalized time trig-
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gering function to integrate to 1 over (0,∞). The conditional intensity is given by:

λbE(t,m|Ht) =

µ+K ∑
h:th<t

exp{α(mh −M0)}cp−1(p − 1)(t − th + c)−p
π(m).

(4.28)

With our technique, it is best to work with a different parametrization than the one used

in the bayesianETAS package. Specifically, we choose the following conditional intensity

λbru(t,m|Ht) =

µb +Kb ∑
h:th<t

exp{αb(mh −M0)}
(
t − th
cb

+ 1

)−pbπ(m). (4.29)

The parameters of the inlabru implementation have the same constraints, and the

same interpretation, as in the bayesianETAS implementation. The two implementations are

equivalent considering

Kb =
K(p − 1)

c
, cb = c, pb = p. (4.30)

However, we are not going to use the above constraint in the example. The only con-

straints that we impose are µ,K,α, c ≥ 0 and p > 1.

Priors

Priors are an essential part of the Bayesian approach. The bayesianETAS package has fixed

priors that cannot be changed. Specifically, they consider,

µ ∼ Gamma(0.1, 0.1)
K,α, c ∼ Unif(0, 10) (4.31)

p ∼ Unif(1, 10).

This set of priors induces a prior on the parameter Kb, using Equation (4.30), with very

light tails, highlighting how informative uniform priors may be (Zhu and Lu, 2004). We use

the same set of priors except for Kb for which we choose a log-normal distribution matching

the 1 and 99% quantiles of the empirical distribution of Kb obtained simulating 1000000

independent samples of K, c, p from the priors in Equation (4.31). We chose a log-normal

distribution with mean and standard deviation of the logarithm equal to −1 and 2.03. Table
4.3 reports summary statistics of the bayesianETAS prior for Kb and the log-normal prior

we chose to replicate it. The full set of priors used to replicate the bayesianETAS priors are

µb ∼ Gamma(0.1, 0.1)
Kb ∼ LogN(−1, 2.03)

αb, cb ∼ Unif(0, 10) (4.32)

pb ∼ Unif(1, 10).

We use this replicate set of priors to minimize the differences between the implementations

which do not depend on the methodology used to find the posterior distribution of the

parameters. We refer to this case as inlabru replicate case.

We also consider a different set of priors that better reflects the scale of each parameter.

For example, for the inlabru implementation the parameters, µ and c are on a very different

scale than K,α, and p. To reflect this piece of information through the prior, we use
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Implementation Mean St.Dev 0.01q 0.25q Median 0.75q 0.99q

bayesianETAS 11.854 3583.873 0.004 0.111 0.262 0.758 41.914

inlabru 2.887 22.482 0.003 0.094 0.368 1.447 41.367

Table 4.3: Prior distribution summary statistics of parameters Kb in the bayesianETAS and

inlabru implementation. The distribution in the bayesianETAS case is obtained sampling

independently 1000000 times from K, c ∼ Unif(0, 10), p ∼ Unif(1, 10), and setting Kb =
K(p − 1)/c . The distribution in the inlabru case is a log-normal distribution with mean
and standard deviation of the logarithm equal to −1 and 2.03 in order to match the extreme
quantiles of the bayesianETAS case.

Name Mean St.Dev 0.01q 0.25q Median 0.75q 0.99q Implementation

µ 1 3.162 0.000 0.000 0.006 0.353 15.884 bayesianETAS

µ 0.1 0.316 0.000 0.000 0.001 0.035 1.588 inlabru - Gamma

Kb 11.854 3583.873 0.004 0.111 0.262 0.758 41.914 bayesianETAS

Kb 2 2 0.020 0.575 1.386 2.773 9.210 inlabru - Gamma

α 5 2.88 0.1 2.5 5 7.5 9.9 bayesianETAS

α 2 2 0.020 0.575 1.386 2.773 9.210 inlabru - Gamma

c 5 2.888 0.1 2.5 5 7.5 9.9 bayesianETAS

c 0.1 0.316 0.000 0.000 0.001 0.035 1.588 inlabru - Gamma

p 5.5 2.598 1.09 3.25 5.5 7.75 9.91 bayesianETAS

p 1.2 0.632 1.000 1.000 1.001 1.071 4.177 inlabru - Gamma

Table 4.4: Prior distribution summary statistics of ETAS parameters for the bayesianETAS

implementation and the inlabru gamma case which considers µ, c ∼ Gamma(0.1, 1),
K,α ∼ Gamma(1, 0.5), and p − 1 ∼ Gamma(0.1, 0.5).

gamma priors for all parameters with different parameters reflecting the different scales.

This information is usually available from previous studies of the same model. We use

µb ∼ Gamma(0.1, 1)
Kb ∼ Gamma(1, 0.5)
αb ∼ Gamma(1, 0.5) (4.33)

cb ∼ Gamma(0.1, 1)
pb − 1 ∼ Gamma(0.1, 0.5).

Table (4.4) reports a comparison between summary statistics of bayesianETAS priors

and the gamma priors.

In the remainder of the article, we refer to the inlabru implementation considering the

priors in Equation 4.32 as inlabru replicate and to the inlabru implementation with the

priors in Equation 4.33 as inlabru gamma. Appendix 4.4.1 compares the prior and the

posterior distributions for each model and shows the robustness of inlabru’s results under

change of priors. Furthermore, Appendix 4.4.3 provides a more complete prior sensitivity

analysis. In there, we consider all the parameters as having the same log-normal prior, with

the logarithmic mean equal 0 and different values of the logarithmic standard deviation.
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Copula transformation

The INLA method is designed for Latent Gaussian models and, therefore, all the parameters

should have a Normal distribution. This is not the case for the ETAS parameters and the

priors illustrated in the previous section. In order to overcome this problem we are going

to use a copula transformation. Using this method allows us to represent internally the

parameter as free-constraints and normally distributed. The constraints are implemented

through the transformation itself.

More formally, we use a transformation method based on the probability integral trans-

form. The probability integral transform can be stated as follows:

Theorem 4.2.1. Given a continuous random variable X with cumulative distribution function

(CDF) FX(·), then the variable

Y = FX(X)

has a Uniform distribution in (0,1).

The theorem implies also that given Y ∼ Unif(0, 1) then, X = F−1X (Y ).
We apply this theorem by considering each parameter as having a standard normal dis-

tribution and then, transforming it to have the target distribution. More formally, assume θ

has a starting distribution with CDF Fθ(·), and that we want to transform it in η(θ) having
a target CDF FY (·). Applying the transformation

η(θ) = F−1Y (Fθ(θ)) , (4.34)

the quantity η(θ) is distributed according to FY .

This allows us to consider a set of internal free-constraint parameters θµ, θK , θα, θc , θp,

representing (respectively) µ,K,α, c, p, with a standard normal prior distribution and then

transforming them to have the desired prior distribution. We can incorporate the constraint

on the parameter values using appropriate prior distributions. For example, using any distri-

bution with positive support ensures that the transformed parameter is greater or equal to

zero.

Goodness-of-fit

We compare the inlabru and the bayesianETAS implementation in terms of goodness-of-fit.

This is due to the use of different parametrizations. Indeed, different parametrizations and

different priors make a direct comparison of the posterior of the parameters elusive, because

it is hard to determine if the differences in the posterior distributions come from the different

parameterizations, the different priors, or the different methodologies. With this section,

we want to convince the reader that our approximation provides results similar in terms of

goodness-of-fit to MCMC implementations but in less time. This is relevant considering that

MCMC is an exact method, with the ability to sample from the true marginal posteriors

of the model, while our method is based on a series of approximations. Showing that the

inlabru implementation provides similar results shows the goodness of the approximation.

We compare the goodness-of-fit of the models using the Random Time Change Theorem

(Meyer, 1971). This is a standard technique to measure the goodness-of-fit for Hawkes

process models as described in Laub et al. (2021). Below we report the Random Time

Change Theorem as stated in Laub et al. (2021) (Theorem 9.1):

Theorem 4.2.2. Say H = {t1, ..., tk} is a realisation over time [0, T ] from a point process
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with conditional intensity λ(t|H). If λ(t|H) is positive over [0, T ] and Λ(T ) < ∞ almost
surely, then the transformed points {Λ(t1), ...,Λ(tk)} form a Poisson process with unit rate.

Where in our case,

Λ(ti |H) =
∫ ∞
M0

∫ ti
0

λ(t,m|H)dtdm. (4.35)

In other words, if we calculate the sequence of values Λ(t1), ...,Λ(tn), for observed

t1, ..., tn, using the respective expressions of Λ(ti) for the bayesianETAS and inlabru im-

plementation, we have to obtain a sequence of points uniformly distributed over the interval

[0, n], where n is the number of observed points. For the MCMC method, we consider esti-

mates based on 10000 posterior samples with a burn-in of 5000 samples. The bayesianETAS

package requires around 9 minutes to generate a total of 15000 posterior samples, while the

inlabru method only requires around 3 minutes to converge. Section 4.2.7 shows how

these times scales increasing the number of observations, while Appendix 4.4.2 illustrates

the variation of the inlabru computational time for different binning strategies.

Figure 4.2a-c compares the sequences ΛbE(t1), ...ΛbE(tn), and Λbru(t1), ...Λbru(tn) with

observed cumulative counts N(t1), ..., N(tn). Figure 4.2b-d shows the cumulative counts as

a function of Λ(th) and should look like a straight line if the values are uniformly distributed as

expected by the theorem. For both plots, we report 95% posterior intervals for the quantity

of interest based on 10000 samples from the posterior of the parameters.

There are small differences between the two inlabru implementations, which was ex-

pected from the similarity of the posterior distributions provided by the model and reported

in Figure 4.9. The differences in the results are greater if we compare the bayesianETAS

and the inlabru implementations. In fact, the inlabru implementation estimates a lower

background rate (around 1/4 of the MCMC one) and a greater capability of each event of

generating aftershocks, which allows the prediction to match the observations in the last part

of the sequence. In fact, in Figure 4.2 (d) the dashed line representing the theoretical uni-

form distribution is outside the bayesianETAS boundaries while it is inside the inlabru ones.

Apart from these small differences, the three implementations provide consistent results.

The main difference between the bayesianETAS and inlabru implementations is the

computational time. The bayesianETAS R-package requires around 4, 6, 9 minutes to gen-

erate, respectively, 1000, 5000, 10000 posterior samples considering 5000 burn-in samples.

Our inlabru implementations require around 3 minutes to converge for different binning

strategy. The minimum convergence time is 2.93 minutes obtained, while the maximum is

3.7. Table 4.6 reports the computational time and iterations needed for convergence for

different binning strategy parameters.

Expected number of events and branching ratio

We also compare the inlabru and bayesianETAS implementations in terms of the expected

number of events and branching ratio. This is done because these two quantities are usually

relevant in applications. Given a Hawkes process model with conditional intensity λ(t|Ht),
the expected number of events in a time interval (T1, T2), 0 ≤ T1 < T2 < ∞ given the
history of the process is given by the integral of the conditional intensity

Λ(T1, T2) =

∫ T2
T1

λ(t|Ht)dt. (4.36)

The number of points has a Poisson distribution with rate Λ(T1, T2).

Figure 4.3 (right) shows the posterior distributions of Λ(T1, T2) for the inlabru and

bayesianETAS implementations. We show only the inlabru replicate case given that the
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Figure 4.2: Application of the Random Time Change Theorem. Top row (a-b): Compares the

inlabru replicate and gamma (solid blue) implementations. Panel a-c: Observed cumulative

number of events as a function of time (black dots) with the prediction provided by the model;

Bottom row (c-d): Compares the bayesianETAS (solid green) and inlabru replicate (dotted

red) implementations; Panel a-c : Cumulative number of events as a function of time. Panel

b-c : Cumulative number of events as a function of Λ(th), the black dashed line represents

the uniform case. The shaded region represents the 95% predictive interval for each quantity

obtained by sampling 10000 times the posterior of the parameters.

inlabru gamma case provides the same results. For the two implementations, the posterior

distribution of Λ(T1, T2) is estimated by calculating the analytical expression of Λ(T1, T2) for

the two approaches using 10000 samples from the posterior distribution of the parameters.

The approaches provide coherent results between each other, although the mode of the

posterior distribution of Λ(T1, T2) is closer to the observed number of points (vertical dashed

line) in the inlabru case.

Another important quantity in analyzing Hawkes process models is the branching ratio

BR. The branching ratio is the expected total number of events induced by another event.

The branching ratio can be calculated as the integral of the excitation (triggering) function

for time differences going from 0 to ∞. In the ETAS case, we have an excitation function
that depends also on the magnitude, namely g : (0,∞)× (M0,∞) :→ (0,∞) such that

g(t − th, mh) = gt(t − th, mh)π(mh), (4.37)

where π(mh) is the magnitude distribution.
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Figure 4.3: Right Panel: Expected number of events Λ(T1, T2) posterior distribution com-

parison for the inlabru replicate implementation (blue dashed) and the bayesianETAS im-

plementation (red solid). The vertical dotted line represents the observed number of points.

Left Panel: Branching ratio BR posterior distribution comparison for the inlabru replicate

implementation (blue dashed) and the bayesianETAS implementation (red solid).

In this case, the branching ratio is given by

BR =

∫ ∞
M0

(∫ ∞
0

gt(s,m)ds

)
π(m)dm. (4.38)

Therefore, the branching ratio can be seen as the expected value under the magnitude

distribution of the expected number of events induced by another. Assuming to have a point

in 0, then the number of points induced by that event has a Poisson distribution with rate∑∞
i=1 BR

i . As explained by Laub et al. (2021) in Section 3 the branching ratio should be

between 0 and 1 for the process to be stationary and for asymptotic results to be valid

(Hawkes, 1971b). We did not set any constraints to ensure this property in the present

implementation.

To calculate the branching ratio for a given set of parameters, we calculate analytically

the inner integral 10000 times, using samples from the magnitude distribution and we take

the mean. This is repeated for 10000 times, using as ETAS parameters samples from the

parameters’ posterior distribution. In this way, we obtain 10000 samples from the posterior

distribution of the branching ratio which can be used to approximate the posterior distribution

empirically. Figure 4.3 (left) compares the posterior distributions of the branching ratio for

the inlabru and bayesianETAS implementations. Both posterior distributions only assign

a positive probability value between 0 and 1. The one obtained with inlabru has a slightly

smaller posterior variance and a larger mode. This is due to the smaller background rate
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estimated by the inlabru implementation which in turns imply a higher number of induced

events.

Retrospective Forecasting Experiment

We perform a retrospective daily forecasting experiment using the same data used to fit

the data on the Amatrice seismic sequence. We choose to do retrospective forecasts and

not pseudo-prospective or prospective because we want to check the ability of the model in

describing the data on which has been calibrated, which is, in my opinion, the first challenge

a model has to pass to be used operationally. Also, the model will be submitted to the next

Italy CSEP experiment to be started in 2023 in which the models will be tested prospectively.

For each forecasting period defined by (tj , tj+1), we simulate 10000 synthetic catalogs

assuming known all the events happened strictly before the forecasting period, namely Htj .
If, in the forecasting period (tj , tj+1) there is an earthquake with magnitude greater than

5.5 with recorded time tm : tj < tm < tj+1, then, we consider the forecast for the period

tj , tm and we start a new daily forecast from tm + dt, for dt > 0 (we use dt = 10
−6

days). This is done to resemble a true forecasting experiment, like the ones performed by

the Collaboratory for the Study of Earthquake Predictability (CSEP, Savran et al., 2020,

and reference therein), in which the forecasts are updated in presence of large earthquakes.

The results of the retrospective experiment are shown in Figure 4.4. The shaded region

represents the 95% forecasting interval of the number of events for each period. The ex-

tremes of each interval are the 2.5% and the 97.5% quantiles of the number of events of

the synthetic catalogs composing the forecast for each day. Around 90% of the number

of events are comprised in the forecasted intervals and the model shows a temporal decay

which agrees with the data. The fact that the forecast misses around 5% more days than

expected can be explained by the time at which the forecasts are issued. Indeed, we issue

a forecast at midnight except for the days with events above magnitude 5.5, for which the

forecast is updated to start 1 second after the event. We can observe that the days with the

greatest number of events are indeed forecasted correctly. Therefore, updating the forecast

more often will provide a better coverage.

4.2.7 Simulation Experiment

We performed a simulation example to compare the robustness of the inlabru and bayesianETAS

approach if applied to different catalogs coming from the same model, and to give an idea of

how the computational time scales increasing the amount of data. As data generating model,

we use the inlabru replicate implementation presented in Section 4.2.6. We generate 10000

synthetic catalogs for the period going from 24/08/2016 to 15/08/2017 (same period used

for the Amatrice sequence) using as parameters the posterior median. In simulating the

catalogs, we assume as known the 3 events with the greatest magnitude in the Amatrice

catalogue recorded, respectively, on the 24/08/2016, 26/10/2016, and 30/10/2016, with

magnitudes 5.7, 5.6, and 6.2. This is done to have a high probability of having, at least, 800

events per catalog. From the set of synthetic catalogs we select 5 catalogs corresponding to

900, 1500, 2000, 2500, 3500 number of events. We use these catalogs to fit 5 different mod-

els with the inlabru and bayesianETAS implementations. For the inlabru implementation,

we use the same priors and starting points as in the inlabru replicate case and binning strat-

egy parameters given in Appendix 4.4.2. For the bayesianETAS implementation, we consider

5000 posterior samples with 5000 burn-in samples.

Table 4.5 shows how the computational time scales increasing the number of events in

the data for the two implementations. The advantages of the inlabru approach are clear,
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Figure 4.4: Retrospective forecasting experiment results. Black dots represent the observed

number of events per forecasting period; the red solid line represents the median of the num-

ber of events of the synthetic catalogs per forecasting period; the shaded region represents

the 95% forecasting intervals for the number of events of the synthetic catalogs per fore-

casting period. Panel (a) shows the number of events in the natural scale. Panel (b) shows

the logarithm of the number of events, periods with zero events have been omitted.

especially for catalogs with more than 2500 events for which inlabru is 10 times faster

than bayesianETAS. Figure 4.5 (bayesianETAS) and 4.6 (inlabru) show the posterior of

the parameters for the different simulated catalogs. The differences between the posteriors

obtained by each approach on different catalogs are expected. For example, the case with

3500 (as well as 900) events can be considered an extreme case and, thus, the posterior

distribution would be different from more common catalogs. Indeed, the parameters µ,K,α,

regulating the number of events, are the ones with more differences in the posteriors for dif-

ferent catalogs, while the parameters p and c regulating the temporal decay of the induced

events are more similar. In this regard, the inlabru implementation is more stable than the

bayesianETAS implementation providing posteriors distributions more similar between each

other. This is particularly true for parameters µ, c, and p. In addition, the two implementa-

tions provide coherent results between each other, for example, analyzing parameter α, for

both approaches the parameter’s posterior distribution moves to the right as we increase the

N events bayesianETAS inlabru time ratio

900 3.90 (mins) 2.96 (mins) 1.31

1500 9.75 (mins) 1.56 (mins) 6.21

2002 16.80 (mins) 2.69 (mins) 6.24

2500 30.73 (mins) 2.75 (mins) 11.15

3500 56.09 (mins) 5.22 (mins) 10.72

Table 4.5: Comparison of computational times for the bayesianETAS and inlabru imple-

mentations in minutes. Last column report the ratio between the number of minutes needed

by bayesianETAS and inlabru.
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Figure 4.5: ETAS parameters’ posterior distribution using the bayesianETAS R-package on

5 synthetic earthquake catalogs. The color and the linetype represents the number of events

in each synthetic catalog. The synthetic catalogs are simulated using as parameters the

median of the posterior distribution of the inlabru replicate implementation obtained on

the Amatrice seismic sequence.

amount of data, and the opposite happens for parameter K.

The coherence of the results for the two implementations considered illustrates the re-

liability of our approximation, and, the gain in computational time shows the advantage

of our approach. Furthermore, the gain in computational time would be even greater if

more complex models are considered. For example, we foresee that the computational gain

will increase considering a spatio-temporal model, or, alternatively, considering one of the

parameters as temporally varying. This has not to be underrated, in fact, in seismology,

many researchers are discouraged to update their models (in an online fashion) or using large

catalogs (> 100000 events) by the price to pay in terms of computational time.

4.2.8 Discussion and conclusions

In this paper, we presented a technique to implement Bayesian Hawkes process models based

on the INLA algorithm and carried out with the R-package inlabru. The proposed technique

is new and differs substantially from other Hawkes process implementations. Specifically, we

rely on a new Hawkes process log-likelihood approximation technique which allows us to

apply the INLA method to Hawkes process models. Our technique provides similar results,

in terms of goodness-of-fit, expected number of events, and branching ratio, as an MCMC
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Figure 4.6: ETAS parameters’ posterior distribution using the inlabru R-package on three

synthetic earthquake catalogs. The color and the linetype represents the number of events

in each synthetic catalog. The synthetic catalogs are simulated using as parameters the

median of the posterior distribution of the inlabru replicate implementation obtained on

the Amatrice seismic sequence.

technique (Ross, 2021) implemented through the bayesianETAS package but requiring less

time. Using simulated data, I have shown that although the marginal posterior distributions

obtained with the inlabru approach from catalogues simulated using the same parameters

set do not overlap for parameter α, this happens also with the bayesianETAS R-package.

However, the posterior distributions obtained with inlabru are more stable than the ones

obtained with MCMC, which could be seen as an advantage of our approach. In applied

contexts, where the interest is on forecasting the probabilities of future events rather than

retrieving correctly the parameters value this may not be a problem, given the fact that

different parameters sets can yield the same probabilities due to the correlation between

parameters.

Regarding the time, the bayesianETAS approach requires around double the time required

by our technique for catalogs composed of circa 1000 events, and 10 times more for catalogs

with more than 2500 events. We believe that in more complex cases (e.g spatio-temporal

case, inclusion of covariates, parameters with structured variations) the gain in computational

time provided by the inlabru approach would be even larger. We have also shown that our

technique provides reasonable results in a retrospective forecasting experiment, correctly

predicting the number of events per day for most of the considered days. Furthermore, our
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algorithm is deterministic ensuring the same numerical results if the analysis is repeated on

different machines with the same specifics. Moreover, the user does not have to program

explicitly the algorithm itself, they only have to provide the functions to be approximated,

and the approximation is performed automatically by the inlabru R-package. Also, we do

not rely on any declustering algorithm assigning the observations to the background rate or

the triggered part of the intensity.

An important difference from other algorithms for Hawkes process models is that we

offer a general and extendable framework to perform Bayesian analyses of Hawkes process

parameters. Indeed, INLA was designed for models comprising covariates and random ef-

fects, and to compare them. This allows us to bring the advantages of the Latent Gaussian

model world into the Hawkes process world. For example, we can consider the parameters as

linear functions of available covariates. Another extension consists of considering the param-

eters as structured random effects: a parameter assumed to be a Gaussian Markov Random

Field (GMRF) varying over space, or time, or both. For example, considering a parameter

as an SPDE effect (Lindgren et al. (2011)) we can have spatially (or temporally) varying

parameters where the absolute value of the correlation between the parameter’s values at

different locations (times) is a decreasing function of the distance between locations (times).

Given the correlation between the parameter’s values and the correlation between different

parameters, these models would be difficult to implement using an MCMC technique, which,

in case, should be tailored to the specific problem. Hence, we take advantage of the fact

that INLA was designed specifically to handle large GMRF and correlated parameters in an

efficient manner. Using our method, all the models undergo the same optimization routine

making them homogeneous under these aspects. When comparing two models optimized

with different routines, it is hard to distinguish whether the differences come from the dif-

ferent models or the different algorithms. Using our technique, researchers may compare

models incorporating different hypotheses being sure of no differences, at least, on the op-

timization part, and thus, any difference in performance comes from the model formulation

itself. Comparing results obtained using the proposed technique with results obtained with

different ones remains cumbersome.

The limitations of our approach reside in the functional form of the triggering (or excita-

tion) function and the binning strategy. Specifically, we want the triggering function so that

the functions to be approximated are as close as possible to be linear. In our experience, the

unnormalized version of the triggering functions works best. Also, care has to be taken on

the numerical stability of the provided functions which may be eased by linearly approximat-

ing them for values of the argument above/below a certain threshold. The binning strategy

to further decompose Part II of the log-likelihood is essential to reach convergence. In our

experience, a number of bins greater than 3 per observation is required. Also, the width of

the bins is essential, considering too large bins prevents the algorithm to converge as shown

in Table 4.6. We suggest to regulates the width and number of bins based on the problem

at hand. For example, a triggering function decaying slowly with time would need larger bins

than a function with a faster decay. With the same rationale, the function decaying slower

needs fewer bins to be accurately approximated than one decaying faster.

Future developments will regard the inclusion of covariates and random effects in the

model. We think that providing researchers with the freedom of focusing on the hypotheses

incorporated in the model, and not on the optimization routine, is essential, especially in

applied contexts. To facilitate the use of our technique, we are working on a R-package to

automatically fit a Hawkes process model, retrieve information on the parameters’ posterior

distribution, and produce forecasts. We are planning to start with a R-package focused on

the ETAS model and extend it to include different Hawkes process models. Indeed, we have
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already provided these functions in a tutorial 2. Specifically, we provided the user with one-

line functions to fit the ETAS model used in the real data example on user-specified datasets,

retrieve the posterior distributions of the parameters and the number of points, and produce

forecasts for a user-specified number of periods and period’s length. We have also made

publicly available another tutorial3 illustrating in detail how to build the functions used in the

first tutorial. The second tutorial explains which functions have to be provided by the user,

how to construct the binning strategy, and how to make them interact with inlabru and

provides details on the possible difficulties that may be encountered in each step. This can

be used as a template to implement Hawkes process models different from the ETAS model.

To conclude, we have shown that the inlabru approach is a valuable alternative to

MCMC techniques for Hawkes process models, it provides comparable results in terms of

quality but in a fraction of the time needed by MCMC. This is particularly relevant in applied

contexts, such as seismology, where researchers are discouraged to use Hawkes process

models on large datasets (> 100000 observations) by long computational times. On the same

line, models used to produce daily forecasts are not updated daily, for the same reasons. The

inlabru approach softens this burden and allows researchers to fit models on larger datasets

in less time. Also, our approach can be extended to consider more complex models which

would have needed an ad-hoc implementation if an MCMC technique had to be used. We

believe that the inlabru approach could make Hawkes models more accessible for a greater

number of users, which would have the freedom to make inference on models incorporating

different hypotheses without the burden of adapting the methodology.

4.3 Chapter Summary

In this chapter, I have presented our novel approximation technique for Bayesian Hawkes

processes and applied it to the temporal ETAS model. The presented technique is the basis

on which the R-package ETAS.inlabru is built. Here, I have shown that our approach

provides results close (if not better) than the one provided by a MCMC alternative (the

bayesianETAS R-package) in terms of goodness of fit but that our methodology is more

efficient in terms of time and in how it scales increasing the number of events per catalogue.

This shows that our method can be competitive and has the potential of being used in place

of MCMC techniques. In the next chapter, ETAS.inlabru package is applied to simulated

data to study how characteristics of the data affect the posterior of the parameters and we

give some advice on how to avoid potential biases deriving from the quality of the data used

in input to estimate the parameters.

4.4 Supplementary material

4.4.1 Parameters posterior distribution

Here, we show the marginal posterior distribution of the ETAS parameters calibrated on the

Amatrice sequence comprising 1137 events from 24/08/2016 to 15/08/2017 with latitude in

(42.456, 43.084), and longitude in (12.936, 13.523). Below are reported the posterior distri-

bution of the ETAS parameters for the implementations considered in the article. Figure 4.7

shows the posterior distributions obtained using the MCMC implementation provided by the

2The tutorial is available at https://github.com/Serra314/Hawkes˙process˙tutorials/tree/main/

how˙to˙use˙Hawkes
3The tutorial is available at https://github.com/Serra314/Hawkes˙process˙tutorials/tree/main/

how˙to˙build˙Hawkes
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R-package bayesianETAS considering 10000 posterior samples and 5000 burn-in samples.

Figure 4.8 shows the posterior distribution of the ETAS parameters for the inlabru repli-

cate case, while Figure 4.9 compares the distribution of the inlabru replicate and gamma

implementations. For the latter, we chose to use a logarithmic scale for the comparison to

highlight the differences in the prior.
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Figure 4.7: Posterior and prior distributions of ETAS parameter using the bayesianETAS

package considering 1000 posterior samples and 5000 burn-in samples. The results are

based on the Amatrice seismic sequence.
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Figure 4.8: Posterior and prior distributions of ETAS parameter for inlabru replcate case.

The results are based on the Amatrice seismic sequence.

4.4.2 Sensitivity to binning strategy

In our three factors decomposition of the point process log-likelihood, to approximate the

second part (the expected number of triggered events Sec 4.2.5), we split the time domain

into bins and we approximate the integral in each bin separately. In this paper, we use a

different set of bins for each observed point. Specifically, for each arrival time th, the bins

are defined by the sequence:

th, th + ∆, th + ∆(1 + δ), th + ∆(1 + δ)
2, ...., th + ∆(1 + δ)

nh , T2,

where nh is such that th+∆(1+ δ)
nh < T2 or nh < nmax . This binning strategy is defined by

three parameters: ∆ regulating the length of the first bin, δ regulating the increase in length

of each subsequent bin, and nmax which regulates the maximum number of bins per observed

points (nmax + 2).

In this section, we take the inlabru replicate implementation and we try different param-

eters of the binning strategy. Specifically, we consider δ = 1, 2, 3, 4, 5, 7, ∆ = 0.1, 0.2, 0.5

and nmax = 3, 10. The binning strategy affects mostly the ability to converge and the com-

putational time required to reach convergence. Table 4.6 reports the number of iterations

needed for convergence (n iter), the computational time (in minutes), and the convergence

state for each combination of binning strategy parameters. We set a maximum number of

iterations equal to 100 so that if the number of iterations for convergence is equal to 100
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Figure 4.9: Posterior and prior distributions of ETAS parameter for the two inlabru im-

plementations considered, namely gamma and replcate. The value of the density is on a

logarithmic (base 10) scale to highlight the differences in the prior.

it means that the algorithm has not converged. We checked that the models are not able

to converge looking at the posterior modes for each iteration of the algorithm, more detail

on how to retrieve these quantities are reported in the tutorial on how to implement Hawkes

process models with inlabru. The fact that different binning strategies converge in a similar

number of iterations highlights the robustness of our approach. The time needed for each

iteration changes with different binning strategies.

Examining Table 4.6, models with δ = 7, 10 tend to not converge. This is due to the

fact that these binning strategies induce too wide bins (especially close to the observations,

where we need a finer partition) which in turn provide an approximation that is not accurate

enough. Instead, strategies with δ = 2 behave well and are the fastest to converge. In this

paper, we use a binning strategy defined by δ = 2, ∆ = 0.1 and nmax = 3 because it is the

fastest to reach convergence.

The binning strategy only affects the distribution of the parameters K, c, and p: the

only parameters of the time triggering function, and therefore, we compare the posterior

distributions of these parameters only. We show the posteriors distributions for the case

δ = 2 which is the one with the lowest computational time. Figure 4.10 shows that there are

small differences between the models. Only the implementation with ∆ = 0.1 and nmax = 3

has lighter tails, this is due to having too small/not enough bins.
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δ nmax ∆ n iter time (mins) converged

2 3 0.2 63 2.93 TRUE

2 10 0.2 63 2.98 TRUE

2 10 0.1 63 2.99 TRUE

2 3 0.1 63 3.03 TRUE

2 10 0.5 63 3.03 TRUE

5 10 0.1 65 3.06 TRUE

2 3 0.5 63 3.06 TRUE

5 10 0.5 65 3.07 TRUE

3 10 0.1 65 3.08 TRUE

1 10 0.1 63 3.15 TRUE

1 10 0.2 63 3.17 TRUE

1 10 0.5 63 3.19 TRUE

1 3 0.5 63 3.23 TRUE

5 3 0.5 65 3.24 TRUE

1 3 0.2 63 3.26 TRUE

3 3 0.1 64 3.30 TRUE

3 10 0.2 65 3.36 TRUE

5 10 0.2 65 3.37 TRUE

3 3 0.2 65 3.40 TRUE

3 10 0.5 65 3.40 TRUE

1 3 0.1 63 3.41 TRUE

3 3 0.5 64 3.47 TRUE

5 3 0.2 71 3.70 TRUE

10 3 0.2 100 5.41 FALSE

10 10 0.2 100 5.47 FALSE

10 3 0.5 100 5.60 FALSE

5 3 0.1 100 5.72 FALSE

7 10 0.2 100 5.87 FALSE

10 10 0.5 100 5.88 FALSE

10 10 0.1 100 5.94 FALSE

7 3 0.2 100 6.00 FALSE

7 10 0.1 100 6.01 FALSE

10 3 0.1 100 6.20 FALSE

7 3 0.1 100 6.25 FALSE

7 10 0.5 100 6.26 FALSE

7 3 0.5 100 6.35 FALSE

Table 4.6: Number of iterations needed by inlabru to converge (n iter) considering 100

maximum possible iterations, computational time needed to reach convergence in minutes,

and a true/false column reporting if the model converged or not, for different values of

parameters of the binning strategy δ,∆, and nmax .
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Figure 4.10: Posterior distribution of ETAS parameters for the inlabru replicate imple-

mentation for different binning strategies. The binning strategies have the same parameter

δ = 2, while the others are varying ∆ = 0.1, 0.2, 0.5 (color), and nmax = 3, 10 (line type).

4.4.3 Sensitivity to prior choice

In this section, we explore the sensitivity of our methodology to change of priors mean and

standard deviation. For this task, we chose to use the same prior for all the parameters. We

use a Log Gaussian prior with logarithm mean equal to 0 and varying the logarithm standard

deviation σlog = 1, 1.5, 2, 2.5. Table 4.7 reports summary statistics of the Log Gaussian

distribution for the values of σlog considered in this analysis.

σlog mean sd q0.025 q0.5 q0.975

1.0 1.625 2.197 0.141 1 7.099

1.5 3.137 8.642 0.053 1 18.915

2.0 6.907 43.587 0.019 1 50.397

2.5 28.476 144.870 0.007 1 134.278

Table 4.7: Table reporting summary statistics of Log Gaussian distribution with logarithm

mean equal to 0 and logarithm standard deviation σlog = 1, 1.5, 2, 2.5.

Figure 4.11 shows that the posterior distributions are robust under the considered changes

in prior. Specifically, they appear to converge for increasing values of the prior variance which

is what we expect to happen.
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Figure 4.11: Posterior distribution of ETAS parameters changing the prior mean and standard

deviation regulated by the parameter σlog, the larger the parameter the higher the prior mean

and standard deviation. Specifically, we considered µ,K,α, c, p − 1 ∼ LogN(0, σlog).
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Chapter 5

Bayesian modelling of the temporal
evolution of seismicity using the
ETAS.inlabru R-package

5.1 Introduction

This chapter includes a paper submitted to the Frontiers of Earth Science journal freely

available in preprint (Naylor et al., 2022). The authors of the paper are ordered Mark Naylor,

Francesco Serafini (me), Finn Lindgren, and Ian Main. I have contributed to the article by

providing the code used to produce the results, and writing the most theoretical parts of it.

In this chapter, I explore the capabilities and robustness of the methodology presented in

Chapter 4 using synthetic catalogues. All the results are obtained using the ETAS.inlabru

R-package (Naylor and Serafini, 2023) which provides user-friendly implementation of the

proposed technique as well as Rmd notebooks to reproduce the figures. Here, I study the

parameter estimates provided by ETAS.inlabru on synthetic catalogues (for which we know

the value of the parameters that have generated the data) representing scenarios in which

ETAS inversion algorithms are known to struggle. I explore the performance of the inversion

as a function of the training catalogue length, the impact of large events that happen to

occur in the sequence, the consequence of short term incompleteness after large events as

well as various inlabru model choices.

The results are not new, meaning that is well-known that ETAS inversion algorithms

struggle in certain situations. However, they are valuable to us because i) the fact that

our algorithm provides similar results to the ones obtained by previous studies with different

algorithms shows the reliability of our approach, ii) quantifying the bias in parameters esti-

mates coming from data quality issues is helpful in defining good practices that should be

followed to avoid those biases. What is new is that the speed of our approach enables a

more exploratory approach to considering such issues. I believe that this can lead to a more

rigorous estimation of uncertainty, and will enable an improvement in the best practice appli-

cation of ETAS for seismicity modelling and operational earthquake forecasting, for example

by defining what is needed in a representative training data set for the paremeter estimation

to be reliable.
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5.2 The paper

5.2.1 Abstract

The Epidemic Type Aftershock Sequence (ETAS) model is widely used to model

seismic sequences and underpins Operational Earthquake Forecasting (OEF). How-

ever, it remains challenging to assess the reliability of inverted ETAS parameters for

a range of reasons. For example, the most common algorithms just return point es-

timates with little quantification of uncertainty. At the same time, Bayesian Markov

Chain Monte Carlo implementations remain slow to run, do not scale well and few

have been extended to include spatial structure. This makes it difficult to explore

the effects of stochastic uncertainty. Here we present a new approach to ETAS

modelling using an alternative Bayesian method, the Integrated Nested Laplace Ap-

proximation (INLA). We have implemented this model in a new R-Package called

ETAS.inlabru, which builds on the R packages R-INLA and inlabru. Our work has

included extending these packages, which provided tools for modelling log-Gaussian

Cox processes, to include the self-exciting Hawkes process that ETAS is a special

case of. Whilst we just present the temporal component here, the model scales to

a spatio-temporal model and may include a variety of spatial covariates. This is a

fast method which returns joint posteriors on the ETAS background and triggering

parameters. Using a series of synthetic case studies, we explore the robustness of

ETAS inversions using this method of inversion using some of the classic scenarios

that ETAS can struggle with. We also included runnable notebooks to reproduce

the figures in this paper as part of the package’s GitHub repository. We demon-

strate that reliable estimates of the model parameters require that the catalogue

data contains periods of relative quiescence as well as triggered sequences. We

explore the robustness under stochastic uncertainty in the training data and show

that the method is robust to a wide range of starting conditions. We show how

the inclusion of historic earthquakes prior to the modelled domain affects the quality

of the inversion. Finally, we show that rate dependent incompleteness after large

earthquakes has a significant and detrimental effect on the ETAS posteriors. We

believe that the speed of the inlabruinversion, which include a rigorous estimation

of uncertainty, will enable a deeper exploration of how to use ETAS robustly for

seismicity modelling and operational earthquake forecasting.

5.2.2 Introduction

The Epidemic Type Aftershock Sequence model (ETAS) ((Ogata, 1988; Ogata and Zhuang,

2006; Ogata, 2011)) is one of the cornerstones of seismicity modelling. It models evolving

seismic sequences in terms of background seismicity and seismicity triggered by previous

events. As such, it is a self-exciting point process model which is commonly termed a Hawkes

process (Hawkes, 1971b) in the statistical literature. ETAS achieves this by combining several

empirical relationships for seismicity. The ETAS model enables us to generate synthetic

earthquake sequences and to invert earthquake space-time-magnitude data for the underlying

ETAS parameters that characterise both the background and triggering rates. However, the

likelihood space for some parameters is notoriously flat and many factors can affect the

robustness of the results.

There are many different implementations of the ETAS model. The most common ap-

proach for determining ETAS parameters is the maximum likelihood method which returns a

point estimate on the ETAS parameters using an optimisation algorithm (e.g Jalilian, 2019).
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In some cases uncertainty is quoted using the Hessian matrix. Bayesian alternatives are avail-

able; for example the ”bayesianETASR̈-package (Ross, 2021) uses the Markov Chain Monte

Carlo (MCMC) method to return full posteriors. However MCMC methods are notoriously

slow as building the Markov Chain is an inherently linear algorithm requiring many successive

samples of the full posterior distribution. A major benefit of Bayesian methods is that they

better describe uncertainty. We have developed a new Bayesian ETAS package using the

Integrated Nested Laplace Approximation (INLA) instead of MCMC; this is implemented in

the R-Package ETAS.inlabru and will be made available through GitHub and the Compre-

hensive R Archive Network (CRAN) (Naylor and Serafini, 2023). The results presented in

this paper are reproducible using this package and a series of Rmd notebooks. Unlike the

MCMC implementation of the ETAS model, our method does not internally rely on a latent

variable to classify whether events are background or triggered.

The Integrated Nested Laplace Approximation (INLA, Rue et al., 2017) and inlabru

(Bachl et al., 2019) offer a fast approach for Bayesian modelling of spatial, temporal and

spatio-temporal point process data and have had over 10 years of development. The INLA

method is a well-known alternative to MCMC methods to perform Bayesian inference. It

has been successfully applied in a variety of fields such as seismic hazard (Bayliss et al.,

2020, 2022), air pollution (Forlani et al., 2020), disease mapping (Riebler et al., 2016;

Santermans et al., 2016; Schrödle and Held, 2011a,b), genetics (Opitz et al., 2016), public

health (Halonen et al., 2015), ecology (Roos et al., 2015; Teng et al., 2022), more examples

can be found in Bakka et al. (2018); Blangiardo et al. (2013); Gómez-Rubio (2020).

To date, the main limitation for the application of inlabru to seismicity was that it

only addressed log-Gaussian Cox Processes (Taylor and Diggle, 2014), which do not include

self-exciting clustering. Serafini et al. (2022a) addressed this specific limitation by show-

ing how the methodology used for log-Gaussian Cox processes could be extended to model

self-exciting Hawkes Processes (Hawkes, 1971a,b), using R-INLA and inlabru, when the

function form of the triggering function can be integrated. The novelty of our approach re-

sides in the likelihood approximation. We decompose the log-likelihood into the sum of many

small components, where each is linearly approximated with respect to the posterior mode

using a Taylor expansion. This means that the log-likelihood is exact at the posterior mode

and the accuracy of the approximation decreases as we move away from that point. Further-

more, the linear approximation and the optimization routine to determine the posterior mode

are internally performed by the inlabru package. In this work, the specific application to

the ETAS model was presented. The temporal model provides posteriors on the background

rate and all ETAS parameters.

ETAS.inlabru (Naylor and Serafini, 2023) provides the functions to be approximated

whilst the user provides the data and specifies the priors. The advantages of our approach are

both in terms of computational time and its scalability to include relevant covariates (Bayliss

et al., 2020) such as maps of faults, strain rates etc. in addition to earthquake catalogue

data, and/or to introduce alternative structures to the parameters (e.g. considering one of

them as temporally, or spatially, varying).

Here, we present a broad analysis of how the inlabru inversion performs on synthetic

earthquake catalogues where we know all of the controlling parameters. We explore the

performance of the inversion as a function of the training catalogue length, the impact of large

events that happen to occur in the sequence, the consequence of short term incompleteness

after large events as well as various inlabru model choices. These results build on a wealth

of literature that explores the challenges in fitting the ETAS model including (Ogata and

Zhuang, 2006; Ogata, 2006; Touati et al., 2014; Hainzl, 2016b,c; Touati et al., 2011). Our

results are generic and not specific to our implementation of the ETAS model - rather our

fast Bayesian model allows us to make a more rapid assessment of potential biases derived

91



92 5.2. THE PAPER

from the likelihood function itself. We want the reader to come away with an understanding

of when the ETAS model is likely to describe a sequence well, and to be able to identify

sources of potential bias, understand how synthetic modelling allows us to explore potential

data quality issues, and decide whether fitting an ETAS model is an appropriate way to

proceed. We conclude with a demonstration of how the results can be used to develop a

temporal Operational Earthquake Forecast.

5.2.3 Method

In this section, we introduce our inlabru implementation of the temporal ETAS model and

refer the reader to (Serafini et al., 2022a) for a complete description of the mathematical

formulation.

The temporal ETAS model

The temporal ETAS model is a marked Hawkes process model, where the marking variable is

the magnitude of the events. The ETAS model is composed of three parts: a background rate

term, a triggered events rate representing the rate of events induced by past seismicity, and

a magnitude distribution independent from space and time. Given the independence between

the magnitude distribution and the time distribution of the events, the ETAS conditional

intensity is usually the product between a Hawkes process model describing only the location

and a magnitude distribution π(m).

More formally, the ETAS conditional intensity function evaluated at a generic time point

t ∈ (T1, T2), T1, T2 ≥ 0, T1 < T2 having observed the events Ht = {(th, mh) : th < t,mh >

M0, ∀h = 1, ..., N(t−)}, where M0 is the minimum magnitude in the catalogue which needs
to be completely sampled, and N(t) is the counting process associated with the Hawkes

process representing the number of events recorded up to time t (included), is given by:

λETAS(t,m|Ht) = λHawkes(t|Ht)π(m) (5.1)

where λHawkes is the conditional intensity of a temporal Hawkes process describing the

occurrence times only. In our ETAS implementation this is given by:

λHawkes(t|Ht) = µ+
∑

(th,mh)∈Ht

Keα(mh−M0)
(
t − th
c
+ 1

)−p
(5.2)

The parameters of the model are µ,K,α, c ≥ 0 and p > 1. Different parametrisations
of the ETAS model exist; we focus on this one because it has proven to be the most suitable

parametrisation for our method.

In seismology, the magnitude distribution, π(m) is commonly assumed to be independent

of space and time for simplicity of analysis. In this work, we take this to be the Gutenberg-

Richter distribution with a b-value of 1. In this section, we focus on the Hawkes part of the

model assuming the parameters of the magnitude distribution are determined independently.

From now on, for ease of notation, where not specified differently we refer to λHawkes as

simply λ.

Hawkes Process Log-likelihood approximation for inlabru

The Hawkes process is implemented in inlabru by decomposing its log-likelihood function

(Eqn.5.3) into multiple parts, the sum of which returns the exact log-likelihood at the point we

expand it about. We linearly approximate the single components with respect to the posterior
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mode and apply the Integrated Nested Laplace Approximation (INLA) method to perform

inference on the parameters of the model. Both the linearisation and the optimization, to

find the posterior mode, are performed internally by inlabru. Our package, ETAS.inlabru

(Naylor and Serafini, 2023), provides inlabru with the ETAS-specific functions representing

the log-likelihood components to be approximated. We outline the decomposition below.

Having observed a catalogue of events H = {(ti , mi) : ti ∈ [T1, T2], mi ∈ (M0,∞)}, the
Hawkes process log-likelihood is given by:

L(θ|H) = −Λ(T1, T2) +
∑

(ti ,mi )∈H

logλ(ti |Hti ) (5.3)

Where θ is a vector of the model parameters, Hti = {(th, mh) ∈ H : th < ti} is the
history of events up to time ti , and

Λ(T1, T2) =

∫ T2
T1

λ(t|Ht)dt

= (T2 − T1)µ+
∑

(ti ,mi )∈H

∫ T2
T1

Keα(mi−M0)
(
t − ti
c
+ 1

)−p
I(t > ti)dt

= (T2 − T1)µ+
∑

(ti ,mi )∈H

Keα(mi−M0)
∫ T2
max(T1,ti )

(
t − ti
c
+ 1

)−p
dt

= (T2 − T1)µ+
∑

(ti ,mi )∈H

Keα(mi−M0)
c

p − 1

((
max(ti , T1)− ti

c
+ 1

)1−p
−
(
T2 − ti
c

+ 1

)1−p)

= Λ0(T1, T2) +
∑

(ti ,mi )∈H

Λi(T1, T2)

(5.4)

The above integral can be considered as the sum of two parts, the number of background

events Λ0(T1, T2) and the remaining summation which is referred as the sum of the number

of triggered events by each event ti , namely Λi(T1, T2). We approximate the integral by

linearising the functions Λ0(T1, T2) and Λi(T1, T2). Note that it is not enough to be able to

evaluate the exact integral; we need the linearised log-contributions to have the full degrees

of freedom with respect to the model parameters for the iterative update of the modal

parameters by inlabru to be stable, and this is why the integrals need to be split. Also,

having more bins and linearising them separately provides a more accurate approximation

than approximation over the whole domain. The resulting approximate integral is the sum

of |H|+ 1 linear functions of the parameters.
However, we observed that this approximation alone is not sufficiently accurate for the

algorithm to converge. To increase the accuracy of the approximation, for each integral

Λi(T1, T2), we further consider a partition of the integration interval [max(T1, ti), T2] in Bi
bins, t

(bi )
0 , ...., t

(bi )
Bi
such that t

(bi )
0 = max(T1, ti), t

(bi )
Bi
= T2 and t

(bi )
j < t

(bi )
k if j < k . By

doing this, the integral becomes,

Λ(T1, T2) = Λ0(T1, T2) +
∑

(ti ,mi )∈H

Bi−1∑
j=0

Λi(t
(bi )
j , t

(bi )
j+1) (5.5)

In this way, the integral is decomposed in
∑
i Bi + 1 > |H| + 1 terms providing a more

accurate approximation. We discuss the options for temporal binning in Section 5.2.3.

Substituting Eqn.5.5 into 5.3, the Hawkes process log-likelihood can be written,
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L(θ|H) = −Λ0(T1, T2)−
∑

(ti ,mi )∈H

Bi−1∑
j=0

Λi(t
(bi )
j , t

(bi )
j+1) +

∑
(ti ,mi )∈H

logλ(ti |Hti ). (5.6)

In our approximation we linearise the logarithm of each elements within summations with

respect to the posterior mode θ∗. Other choices led to a non-convergent model (Serafini

et al., 2022a). In this case, the approximate log-likelihood becomes,

L(θ|H) = − exp{log Λ0(T1, T2)}−
∑

(ti ,mi )∈H

Bi−1∑
j=0

exp{log Λi(t
(bi )
j , t

(bi )
j+1)}+

∑
(ti ,mi )∈H

logλ(ti |Hti )

(5.7)

where for a generic function f (θ) with argument θ ∈ Θ ⊂ Rm, the linearised version with
respect to a point θ∗ is given by a truncated Taylor expansion,

f (θ) = f (θ∗) +

m∑
k=1

(θk − θ∗k)
∂

∂θk
f (θ)

∣∣∣∣∣
θ=θ∗

(5.8)

The other key component is the functions for each of the three incremental components

in Eqn.5.6 that need to be linearised in this way. These are provided in ETAS.inlabru and

will be discussed in Section 5.2.3.

Temporal binning

For each event, time binning is used to in Eqn.5.5 to improve the accuracy of the integration

of the term describing the sum of the number of triggered events. The binning strategy

is fundamental because the number of bins determines, up to a certain limit, the accuracy

of this component of the approximation. Considering more bins enhances the accuracy of

the approximation but increases the computational time because it increases the number of

quantities to be approximated. Also, we cannot reduce the approximation error to zero, and

the numerical value of the integral in each bin goes to zero increasing the number of bins

which can be problematic in terms of numerical stability. We found that for the ETAS model

considered here, having around 10 bins for each observed point is usually enough, and that

is best considering higher resolution bins close to the triggering event. In fact, the function

gt(t − ti , mi) = Keα(mi−M0)
(
t − ti
c
+ 1

)−p
I(t > ti) (5.9)

varies the most for value of t close to ti and become almost constant moving away from ti .

This means that we need shorter bins close to ti , to capture the variation, and wider bins far

from ti where the rate changes more slowly.

We choose a binning strategy defined by three parameters ∆, δ > 0, and nmax ∈ N+.
The bins relative to the observed point ti are given by

ti , ti + ∆, ti + ∆(1 + δ), ti + ∆(1 + δ)
2, ...., ti + ∆(1 + δ)

ni , T2, (5.10)

where, ni ≤ nmax is the maximum n ∈ {0, 1, 2, 3, ...} such that ti + ∆(1 + δ)n < T2.

The parameter ∆ regulates the length of the first bin, δ regulates the length ratio between

consecutive bins, and the value nmax regulates the maximum number of bins.
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This strategy presents two advantages. The first is that we have shorter bins close to

the point ti and wider bins as we move away from that point. The second is that the first

(or second, or third, or any) bin has the same length for all points. This is useful because the

integral in a bin is a function of the bin length and not of the absolute position of the bin.

This means that we need to calculate the value of the integral in the first (second, third, or

any) bin once time and reuse the same result for all events. This significantly reduces the

computational burden.

Functions to be linearized

This section and the next one illustrate what we need to provide to inlabru to approximate

Hawkes process models. This one focuses on the functions to be provided while the next

one on how they are combined to obtain the desired approximation. Regarding the functions

to be provided, we remark that those are already present in the ETAS.inlabru package,

so the user does not have to provide anything apart from the data, the area of interest,

and the prior parameters. However, these sections are useful to understand what happens

under the curtains and if one wants to extend this approach to more complicated ETAS

implementations.

To build an ETAS model, we need to provide functions for each of the components

of the likelihood function (Eqn.5.6). The linearisation and the finding of the mode θ∗ are

managed automatically by the inlabru package. We only have to provide the functions

to be linearised. Specifically, we need to provide the logarithm of the functions needed to

approximate the integral and the logarithm of the conditional intensity. More formally, for our

approximation of the ETAS model (i.e. for each term in Eqn 5.6), ETAS.inlabru provides

the functions,

log Λ0(T1, T2) = log(T2 − T1) + log(µ), (5.11)

log Λi(t
(bi )
j , t

(bi )
j+1) = log(K) + α(mi −M0) + log

(
c

p − 1

)

+ log

(t(bi )j − ti
c

+ 1

)1−p
−

(
t
(bi )
j+1 − ti
c

+ 1

)1−p ,
and

logλ(t|Ht) = log

µ+ ∑
(th,mh)∈Ht

Keα(mh−M0)
(
t − th
c
+ 1

)−p . (5.12)

For full details see Serafini et al. (2022a).

Implementation Details: The Poisson Count model trick

Our implementation in inlabru works by combining three INLA Poisson models on different

datasets. The use of the INLA Poisson model here is related to computational efficiency pur-

poses; it does not have any specific statistical meaning. Specifically, we leverage the internal

log-likelihood used for Poisson models in R-INLA (and inlabru) to obtain the approximate

Hawkes process log-likelihood as part of a computational trick.

More formally, INLA has the special feature of allowing the user to work with Poisson

counts models with exposures equal to zero (which should be improper). A generic Poisson

model for counts ci , i = 1, ..., n observed at locations ti , i = 1, ..., n with exposure E1, ..., En
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Name Objective Approximation Surrogate logλP Number of data points Counts and Exposures

Part I Λ0(X ) exp log Λ0(X ) log Λ0(X ) 1 ci = 0, ei = 1

Part II
∑n
h=1

∑Bh
i=1 Λh(bi ,h)

∑n
h=1

∑Bh
i=1 exp log Λh(bi ,h) log Λh(bi ,h)

∑
h Bh ci = 0, ei = 1

Part III
∑n
h=1 logλ(xh)

∑n
h=1 exp logλ(xh) logλ(x) n ci = 1, ei = 0

Table 5.1: Hawkes process log-likelihood components approximation

with log-intensity logλP (t) = f (t, θ), in inlabru has log-likelihood given by:

LP (θ) ∝ −
n∑
i=1

exp{f (ti , θ, θ∗)} ∗ Ei +
n∑
i=1

f (ti , θ, θ
∗) ∗ ci . (5.13)

Each Hawkes process log-likelihood component (Eqn. 5.6) is approximated using one

surrogate Poisson model with log-likelihood given by Eqn. 5.13 and an appropriate choice of

counts and exposures data. Table 5.1 reports the approximation for each log-likelihood com-

ponent with details on the surrogate Poisson model used to represent it. For example, the

first part (integrated background rate) is represented by a Poisson model with log-intensity

log Λ0(X ), this will be automatically linearised by inlabru. Given that, the integrated back-
ground rate is just a scalar and not a summation, and therefore we only need one observation

to represent it assuming counts equal 0 and exposures equal 1. Table 5.1 shows that to rep-

resent a Hawkes process model having observed n events, we need 1 +
∑
h(Bh) + n events

with Bh number of bins in the approximation of the expected number of induced events by

observation h.

Furthermore, Table 5.1 lists the components needed to approximate the ETAS log-

likelihood which will be internally considered as surrogate Poisson log-intensities by inlabru.

More specifically, we only need to create the datasets with counts ci , exposures ei , and the

information on the events xi representing the different log-likelihood components; and, to

provide the functions log Λ0(X ), log Λh(bi ,h), and, logλ(t). The linearisation is automatically
performed by inlabru as well as the retrieving of the parameters’ posterior distribution.

More detail on how to build the functions in the ETAS.inlabru package can be found at

https://github.com/Serra314/Hawkes˙process˙tutorials/tree/main/how˙to˙build˙

Hawkes.

Prior specification

We have to set the priors for the parameters. The INLA method is designed for Latent

Gaussian models, which means that all the unobservable parameters have to be Gaussian.

This seems in contrast with the positivity constraint of the ETAS parameters µ,K,α, c, p,

but we have a solution.

Our idea is to use an internal scale where the parameters have a Gaussian distribution and

to transform them before using them in the log-likelihood components calculations. We refer

to the internal scale as INLA scale, and to the parameters in the INLA scale as θ. In practice,

all parameters have a standard Gaussian prior in the INLA scale and they are transformed to

be distributed according to a target distribution in the ETAS scale. Specifically, assuming

that θ has a standard Gaussian distribution with cumulative distribution function (CDF) Φ(θ),

and calling F−1Y the inverse of the CDF of the target distribution for the parameter, we can
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switch between the Gaussian and the target distributions using,

η(θ) = F−1Y (Φ(θ)), (5.14)

where η(θ) has a distribution with CDF FY (·).
The ETAS.inlabru R-package uses the following default priors in the ETAS scale,

µb ∼ Gamma(shape = 0.5, rate = 0.5)
Kb ∼ LogNormal(mean(log(K)) = −1, sd(log(K)) = 0.5)
αb ∼ Unif(αmin = 0, αmax = 10) (5.15)

cb ∼ Unif(cmin = 0, cmax = 1)
pb ∼ Unif(pmin = 1, pmax = 2),

however, they can be changed to different distributions that better describe the available

prior information.

The package inlabru provides a function to easily implement such transformation. The

function is called bru forward transformation and takes in input the quantile function of

the target distribution and its parameters. Below we report three examples of transformations

such that the parameters in the ETAS scale have a Gamma, Uniform, or Log-Gaussian

distribution. We show the empirical density obtained by transforming the same sample of

values from a standard Gaussian distribution.

The prior for µ is the one that will most commonly need to be modified as it changes

with the size of the domain being modelled. We choose Gamma(shape = aµ, rate = bµ))

prior for µ. The mean of the distribution is given by aµ/bµ = 1 event/day, the variance is

aµ/b
2
µ = 2 and the skewness 2/

√
α = 2.5. One strategy for setting these parameters is to

estimate an upper limit on the rate by dividing the duration of the catalogue total number

of events; this is likely an overestimate as it combines the triggered and background events.

One might choose to pick a mean rate that is half of this which defines the ratio of aµ and

bµ. There is then some trade-off in the variance and skewness parameters.

Samples drawn from the priors used in this paper are shown in Figure 5.1, including lines

showing the initial and true values that will be used through the majority of the results. The

sensitivity to the choice of initial values is the first part of the results section. Please note

how broad these priors are as this is helpful to see how much more informative the posteriors

we generate are from these initial distributions.

The ETAS parameters themselves are not easy to interpret given that it is their combi-

nation within the right hand term of Eqn.5.2 that is important.

The Omori decay anaylses the magnitude independent decay,

λOmor i = K

(
t − th
c
+ 1

)−p
. (5.16)

Whilst the full triggering function also includes a magnitude dependent productivity term,

λtr igger ing = Ke
α(mh−M0)

(
t − th
c
+ 1

)−p
. (5.17)

We draw 1000 samples from the priors to generate samples of the Omori decay, the

triggering function for an M4 event and the triggering function of an M6.7 event (Fig.5.2).

We see that these priors produce a wide range of behaviour, including unrealistically large

productivity compared to real earthquake process. This information is useful for comparison
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with the triggering functions derived from sampling posteriors later in the paper.
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Figure 5.1: Plot showing samples from the priors on the ETAS scale that we use throughout

this paper. They are intentionally broad. The red line shows the initial value used for the

majority of the analyses in this paper and the green line shows the true value.

Fitting the model

The function Temporal.ETAS.fit(list.input) performs the ETAS inversion. The list.input

object is a structured list containing the raw catalogue, the catalogue formatted for inlabru,

definition of the model domain, an initial set of trail parameters on the ETAS scale, the link

functions used to transform from the internal scale to the ETAS scale, parameters to set

each of the priors, parameters to generate the time binning, and a series of runtime parame-

ters that control the behaviour of inlabruṪhere is a complete description of the parameters

in Table 5.2 which cross-references to the section of the paper that describes their role.

In the results section, we vary the catalog, start times, and the initial set of trial param-

eters. To achieve this, we create a default list.input object and then modify these inputs

by hand - the notebooks provided demonstrate how to do this.

Once we call Temporal.ETAS.fit(list.input), the iterative fitting of the model pa-

rameters is handled automatically by inlabru until they converge or max iter iterations

have occurred. For a comprehensive discussion of the underlying mathematical framework,

we refer the reader to Serafini et al. (2022a).

The iterative process is illustrated in Figure 5.3 and outline each of the steps below.

Step 1: Initialise/update trial ETAS parameter set We start with a set of trial ETAS

parameters θ0 = (µ0, K0, α0, p0, c0) which will be used as the linearisation point for the

linear approximation. These initial values should lie within their respective priors. They could

be sampled from the priors, but it is possible that a very unrealistic parameter combination
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Parameter and Type Default Value Further information

Data Catalogue of event times and magnitudes

catalogue

[t,M(, ...)]

The input catalog as it is provided with at least a set of

times and magnitudes

catalogue.bru

list([ts, magnitude,

idx.p])

The input catalog in the format needed for inlabru. For

each event we have a [time, magnitude, id]

Domain Definition Time domain varied in Sections 5.2.4 and 5.2.4

time.int The provided start and end date in string format

T12 double [T1,

T2]

The start and end date as number of days from the pro-

vided starting date

lat.int double [-90,90] Min and max latitude bounds for filtering the catalogue

lon.int double [-180,180] Min and max longitude bounds for filtering the catalogue

M0 double 2.5 Minimum magnitude for the model domain

Initial trial paras Varied in Section 5.2.4

mu.init double 0.3 Initial guess for the background rate, µ

K.init double 0.1 Initial guess for the, K

alpha.init double 1 Initial guess for, α

c.init double 0.2 Initial guess for, c

p.init double 1.1 Initial guess for, p

Link functions A list of functions used to transform the parameters from

the internal scale to the ETAS scale

Priors See Section 5.2.3 for definition

a mu double 0.5 Gamma distribution shape parameter

b mu double 0.5 Gamma distribution rate parameter

a K double -1 log-Normal distribution mean

b K double 0.5 log-Normal distribution standard deviation

a alpha double 0 min of a uniform distribution

b alpha double 10 max of a uniform distribution

a c double 0 min of a uniform distribution

b c double 1 max of a uniform distribution

a p double 1 min of a uniform distribution

b p double 2 max of a uniform distribution

Time binning paras See Section 5.2.3

Nmax int 8 value of the parameter nmax in Eqn.5.10

coef.t double 1.0 value of the parameter δ in Eqn. 5.10

delta.t double 0.1 value of the parameter ∆ in Eqn. 5.10

bru.opt.list See bru documentation

bru.verbose int 3 type of visual output from inlabru

bru max iter int 100 maximum number of inlabru iterations

num.threads int 5 number of cores used in each inlabru iteration

inla.mode string ’experimental’ type of approximation used by INLA

bru.inital: th.mu,

th.K,

th.alpha, th.c, th.p list[double[5]] Initial trial parameters on the internal scale. These are

calulated using the inverse of the copula transformation

functions in ETAS.inlabru

Runtime paras

max iter int 100 maximum number of iterations for the inlabru algorithm.

The number of iterations will be less than this number if

the algorithm have converged

max step NULL this parameters refers to how far the parameter value can

jump from one iteration to another. The greater the value

the greater the potential jump. Setting a value different

from NULL prevents the inlabru algorithm to check for

convergence and the algorithm will run exactly the number

of iterations specified in max iter .

Table 5.2: Description of the model definition contained in list.input. This information will

be passed to ETAS.inlabru to start the inversion. Each analysis in the results section is

initialised by adjusting this list. 99
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Samples of the triggering function from the ETAS priors

Figure 5.2: Plot samples of the Omori decay (Eqn5.16)and the triggering functions (Eqn5.17)

drawn from the priors. The red lines show the 95% credibility intervals of the background

event rate samples and visually allow the user to assess whether the triggering function has

decayed below this.

might be chosen. These parameters will be updated each loop of the inlabru algorithm. In

general, extreme parametrisations (e.g. parameters smaller than 10−5 or greater than 20)

should be avoided. Usually, setting all the parameters to 1 (expect p which could be set to

1.1) is a safe choice. Another approach could be to use the maximum likelihood estimate.

Step 2. Integrated Nested Laplace Approximation ETAS.inlabru contains the ETAS

functions that will be internally linearised (see Section 5.2.3) about an arbitrary point and

then integrated. The nested integration is performed by R-INLA, but this is managed by

inlabru so we never need to call it directly. The R-INLA output returns a comprehensive

output, including the joint posteriors (LINK TO R-INLA output doc).

Step 3. Extract the ETAS posteriors and their modes From the R-INLA output, we

extract the modes of the approximated posteriors θ∗1. In early iterations, this point is usually

far away from the true mode posterior, this depends on the point θ0 used as starting point.

The approximate posterior mode tends to the true one as the iterations run.

Step 4. Line search to update modal parameters At this point we have the initial set

of trial ETAS parameters θ0 that were used as the linearisation point, and the posterior

modes derived from R-INLA θ∗1. The value of the linearisation point is updated to θ
∗ =

αθ0+(1−α)θ∗1, where the scaling α is determined by the line search method described here
https://inlabru-org.github.io/inlabru/articles/method.html.
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Figure 5.3: Schematic diagram showing the inlabru workflow which iteratively updates a

set of trial ETAS parameters.

Step 5. Evaluation of convergence Convergence is evaluated by comparing θ∗ and θ0.

By default, convergence is established when there is a difference between each parameter

pair is less than a 1% of the parameter standard deviation. The value 1% can be modified

by the user. If convergence has not been achieved and the maximum number of iterations

have not occurred, we set θ0 = θ
∗ and return to step 1 using the new linearisation point as

the set of trial parameters.

Generation of synthetic catalogues

The final component of this paper is the production of synthetic catalogues to be anal-

ysed. The synthetics are constructed leveraging the branching structure of the ETAS model.

Specifically, for temporal models, background events are selected randomly in the provided

time window with a rate equal to µ. Then, the offsprings of each background event are sam-

pled from an inhomogeneous Poisson process with intensity given by the triggering function.

This process is repeated until no offsprings are generated in the time frame chosen for the

simulation.

Using ETAS.inlabru, we generate catalogues with a duration of 1000 days with a back-

ground rate of µ = 0.1 events per day and ETAS triggering parameters of c = 0.11, p = 1.08,

α = 2.29 and K = 0.089. We take a b-value of 1 for the Gutenberg-Richter magnitude

distribution. The lower magnitude threshold M0 = 2.5 which is motivated by catalogues

such as those in the Appenines of Italy or for Ridgecrest in California. Since we choose to

study catalogues which start with quiet periods, we do not include a preparatory phase for

the synthetics; this will be required when developing full forecasts including uncertainty in
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the preparatory phase.

We also use two different scenarios, a seeded version of these catalogues where we impose

an extra M6.7 event on day 500, and an unseeded catalogue where the events are purely

generated by the ETAS model. This leads to catalogues which are relatively active in the

former case and relatively quiet in the latter case. Using these scenarios, we can generate

different stochastic samples of events to produce a range of catalogues consistent with these

parameterisations.

The R Markdown notebooks in the GitHub repository Naylor and Serafini (2023) allow the

reader to see how we have implemented these catalogues for the range of models investigated

in the results.

5.2.4 Results

We present the performance of the inlabru ETAS inversion across a range of synthetic

case studies motivated by various challenges of analysing real earthquake catalogues. We

are interested in the accuracy and precision of the inversion compared to the original ETAS

parameterisation, understanding sources of systematic bias derived from differences in the

catalogues being modelled, and the computational efficiency of the method.

All of the analyses start with one or more catalogues of 1000 days in length, gener-

ated using a constant background rate of µ = 0.1 events/day above a constant magnitude

threshold of M0 = 2.5, and true ETAS parameters listed on the top row of Table 5.3. We

choose to use this minimum magnitude as it is equivalent to the real case study examples of

California and L’Aquila, Abruzzo, Italy we will return to this in the discussion section.

A consequence of choosing the 1000 day window is that there will not be a fixed number

of events when comparing different samples, as some samples contain large events whilst

others are relatively quiet. We make this choice because we believe that it represents the

closest analogy to the data challenge faced by practitioners. However, we will be explicit in

exploring the implications of this choice.

Within the sequences, there are three different timescales or frequencies that inter-relate.

The duration of the synthetic catalogues, the background rate and the rate at which after-

shocks decay (e.g. Touati et al., 2009). A short catalogue would be one which only samples

several background events or perhaps a single mainshock aftershock sequence, or less. A long

catalogue would contain periods dominated by small background events and also separate

periods containing relatively isolated mainshock aftershock sequences. Clearly there is scope

for a whole range of behaviour in between. Given that the accuracy of the ETAS inversion

is conditional on the catalogue, we should therefore expect factors such as the catalogue

duration, rate of background events and the presence of large events to influence the ability

of the algorithms to find accurate solutions.

Impact of varying the initial trial ETAS parameter set, θ0

Where algorithms require an initial set of trial starting parameters, it is important to test

whether the results are robust irrespective of the choice of starting conditions. We explore

the influence of the initial conditions by generating two catalogue (See Fig.5.4) using the

ETAS model with the true parameters given on the top row of Table 5.3. They are both

1000 days long and the second catalogue has a M6.7 event seeded on day 500 to produce

a more active sequence (Fig.5.4(B)). We then invert each catalogue using the different sets

of trial ETAS parameters also given in Table 5.3; the third set of initial parameters includes

the true solution.
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Parameter set µ K α c p

True parameters 0.1 0.089 2.29 0.11 1.08

Trial parameter set 1 0.05 0.01 1. 0.05 1.01

Trial parameter set 2 5.0 1. 5. 0.3 1.5

Trial parameter set 3 0.1 0.089 2.29 0.11 1.08

Trial parameter set 4 0.3 0.1 1. 0.2 1.01

Table 5.3: Table showing the true ETAS parameters and the 4 sets of different initial condi-

tions used in analysing the catalogues in Figure 5.4 to produce the ETAS posteriors in Figure

5.5.

The first catalogue is relatively quiet and has only 217 events (Fig. 5.4(A)). All four

sets of initial trial parameters find the same posteriors (Fig.5.5(A)). inlabru provides a

good estimate of the background rate µ for this catalogue. The other posteriors are the

parameters that govern the rate of self-exciting triggering. These posteriors are all skew and

some of the posteriors are strongly influenced by the their priors, for example the posterior

for p spans the entire range of its prior (compare Fig.5.1 for the priors and Fig 4A for the

posteriors). The posteriors for the triggering parameters are relatively broad because the

data is not sufficient to produce a narrow likelihood function.

In the second catalogue we have seeded a M6.7 event on day 500 (Fig. 5.4(B)). This

catalogue has a well defined aftershock sequence and therefore contains significantly more

events; 2530 events in total. Again, all four sets of initial trial parameters find the same

posteriors (Fig.5.5(B)). The posterior for the background rate, µ, remains well resolved

and there is no reduction in its standard deviation; this indicates that both catalogues have

sufficient information to resolve the background rate, even though they are dominated by

aftershocks. All of the posteriors for the triggering parameters are significantly narrower than

for the first unseeded catalogue. This is down to two factors, firstly there are many more

events in the seeded catalogue, and secondly the well resolved aftershock sequence makes it

much easier to constrain the triggering parameters.

All of these models find similar posteriors irrespective of the initial trial ETAS parameters

set. It is important that the priors are set broad enough to allow the potential for the

posteriors to resolve the true value. This is particularly evident for the quieter model where

the posteriors on the triggering parameter’s rely on more information from the priors.

In Supplemental Material, we have included plots of samples from the joint posteriors

derived from these two catalogues. We observe similar trends to the posteriors from other

approaches, for example in the Supplemental Material of Shcherbakov (2021).

In real catalogues, the prior for the background rate needs to be set with care because,

when considering a purely temporal model, it will vary depending upon the spatial extent being

considered; i.e. the background rate of a temporal model when considering a global dataset

would be significantly higher than just California. Further, changing the lower magnitude

limit significantly changes the total number of background events.

It is difficult to interpret the ETAS posteriors directly, so we explore the triggering function

by sampling the parameter posteriors 100 times, calculating the triggering functions for these

posterior samples, and plotting the ensemble of triggering functions (Fig.5.6). The first

column shows the Omori function which is the temporal decay of the triggering function,

but without the magnitude dependent term - and is therefore also independent of the ETAS

α parameter. The larger uncertainty in the posteriors for the unseeded quieter catalogue

(Fig.5.4(A)) propagate through to much larger variability in the Omori decay (Fig.5.6(A))

than when the sequence is seeded with the large event in the sequence (Fig.5.6(B)). It is
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reassuring to see that the Omori decay from the sequence seeded with the M6.7 event lies

within the confidence intervals of that derived from the quieter unseeded sequence. This

implies that the prior is sufficiently broad to capture these extremes in catalogue type.

When incorporating the magnitude dependence, any bias or uncertainty in α becomes

important. The figures show the triggering functions for magnitude 4.0 and 6.7 events over

24 hours. Whilst the triggering functions for the M4 events are nested similar to the Omori

sequences, the triggering functions for the M6.7 event are systematically different. The

posteriors from the training catalogue seeded with an M6.7 event result an initial event rate

50% higher and the two distributions barely overlap.

We conclude that the choice of training data could have a significant effect on the

forecasts of seismicity rate after large events. In the next section we explore the robustness

of these results to stochastic uncertainty in the training catalogues.
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Figure 5.4: The two catalogues we use when varying the starting point for the ETAS pa-

rameters.

Impact of stochastic variability

We extend the analysis of the previous section to explore the impact of stochastic variability.

We produce 10 synthetic catalogues for both the unseeded and M6.7 seeded catalogues and

compare the parameters posterior distribution.

In the family of catalogues where we did not seed large event (Fig.5.7), we see posteriors

of the background rate, µ, that are distributed about the true background rate (Fig.5.9(A))

and capture it well. In contrast, we mostly see very large uncertainty in the posteriors for

the triggering parameters. However, the true values generally still lie within these posteriors.

The very broad posteriors correspond to catalogues that had very few triggered sequences in

them. Such broad posteriors illustrate how the Bayesian approach enables us to see where the

data did not have sufficient power to narrow the priors significantly; this is useful in evaluating
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Figure 5.5: The posteriors for the inversion of the catalogues in Fig.5.4 given 4 different

starting points. The vertical black line shows the true values used when generating the

synthetic catalogues. Note the very different scales on the x-axes.

the robustness of a fit. Moreover, the large posterior uncertainty on the parameters would

propagate through to large uncertainty in the triggering function if used within a forecast

with a rigorous quantification of uncertainty. Synthetic catalogues 3 and 6 (Fig.5.7) contain

the largest number of events (1842 and 930 events respectively) as a result of the events

triggered by a large random event; these cases have correspondingly tighter and more accurate

posteriors for the triggering parameters in (Fig.5.9(A)). Similarly, catalogues 1 and 9 have

the next highest number of events (265 and 245 events respectively), and these also have

the next most informative posteriors. Catalogues 2 and 5 have the fewest events (117 and

128 respectively) and produce posteriors that are significantly informed by the priors, as can

be seen the the range of values being explored.

Considering the 10 seeded catalogues (Fig.5.8), we see a complementary story in the pos-

teriors (Fig.5.9(B)). Again, the posteriors for the background rate are distributed about the

true value, and show a similar spread to the unseeded case. All of the triggering parameters

have much tighter posteriors. Even though some of the triggering parameter posteriors do

not contain the true value, the percentage error remains small. This is due to the stochastic

variability of these catalogues and this bias should decrease for longer catalogues.

There is always trade-off between α and K which is difficult to resolve. K describes

the magnitude independent productivity seen in the Omori law and α describes how the

full triggering function productivity varies with magnitude; consequently one requires many

sequences from parents of different magnitudes to resolve K and α well.

Studies which are seeking to assign a physical cause to spatial and/or temporal variability

of the background and triggering parameters should ensure that the variability cannot be

explained by the stochastic nature of finite earthquake catalogues. The methods presented

here provide one possible tool for doing this.
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Figure 5.6: Propagation of ETAS parameter uncertainty on the triggering functions. We

take 100 samples of the ETAS posteriors for the 1000 day quiescent baseline (top row) and

the 1000 day catalogue with an M6.7 on day 500 (bottom row) and use these samples to

explore variability in the Omori decay (Eqn.5.16), the time-triggering function (Eqn.5.17)

following an M4 event, and the time-triggering function following an M6.7 event. The red

lines show the 95% credibility intervals of the background event rate samples and visually

allow the user to assess whether the triggering function has decayed below this.

Each of the 20 stochastic catalogues generated for this section have a different number of

events. We timed the runtime for each analysis and have plotted it in Fig.5.10 as a function

of the number of events in the training catalogue. We find that not only is our inlabru

method 10 times faster than ”bayesianETAS̈for catalogues of more than 2500 events - but

also that it scales relatively linearly with the number of events. We inverted a catalogue with

15000 events in 70 minutes and it is likely this can be speeded up further using the the high

performance sparse matrix solver pardiso package.

The inversions of synthetic data presented here show that the stochastic variability in

the training catalogues produces understandable variability in the posteriors. More data

and sequences containing both triggered sequences and background allow us to resolve all

parameters well. Better resolution of α and K would require aftershock sequences from

parents of different sizes. We see that only having lower magnitude events leads to broad

posteriors on the triggering parameters. The following section explores the impact of reducing

the amount of background data on the resolution of µ for the seeded sequences.

Importance of a representative sample

The motivation for applying the ETAS model is sometimes the presence of an ’interesting’

feature, such as an evolving or complex aftershock sequence following a notable event. In this

section we explore whether it is important to have both quiet periods as well as the aftershock
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Figure 5.7: 10 synthetic catalogues based on the baseline model of 1000 days with back-

ground events but no seeded large event. All parameters are the same between the runs and

these just capture the stochastic uncertainty. These are all inverted using inlabru and the

family of posteriors is presented in Fig.5.12.

sequence itself for accurately recovering the true parameterisation. This motivates defining

what a representative sample looks like; evaluating this in practice is non-trivial, but we can

outline what is insufficient.

We start with the a 1000 day catalogue including a M6.7 event seeded on day 500. We

then generate catalogue subsets by eliminating the first 250, 400, 500 and 501 days of the

catalogue (Start dates of subcatalogues shown as vertical dashed lines in Fig.5.11(A)) and

rerun the inlabru ETAS inversion on these subsets. Since the initial period is relatively

quiet, we do not remove a large proportion of the events - however, we are removing events

from the period where the background events are relatively uncontaminated by triggered

events. In doing this, we explore what the necessary data requirements are for us to expect

that inlabru can reliably estimate both the background and triggering parameters. When

we remove 501 days, we are also removing the seeded mainshock from the subcatalogue.

First, we consider what happens to the posterior of the background rate, µ, as the

length of the sub-catalogues is shortened. With 500 days of background before the seeded

event, we resolve µ accurately. As the quiet background is progressively removed, the model

estimate of µ systematically rises. When there is between 250-100 days of background

data, the mode overestimates the data-generating parameter by around 30% but it still lies

within the posterior distributions (turquoise and brown curves for µ in Fig.5.11(B)). When

there is no background period, the overestimation of µ (blue curve for µ in Fig.5.11(B))

is on the order of a factor of 2.5. The estimate corresponds to the level of seismicity at

the end of the model domain which has not decayed back to the background rate. From an

operational perspective, it is much easier to extend the start date of training data back before

the sequence of interest started than to wait until the background rate has been recovered.
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Figure 5.8: 10 synthetic catalogues based on the baseline model of 1000 days with back-

ground events and a M6.7 event on day 500. All parameters are the same between the runs

and these just capture the stochastic uncertainty. These are all inverted using inlabru and

the family of posteriors is presented in Fig.5.12.

We should therefore expect an analysis looking for time varying background rate during the

sequences carries a risk of bias by this effect.

All of the models, apart from the one starting on day 501, contain the M6.7 event and

500 days of its aftershocks (Fig.5.11A). In these cases, the triggering parameters are well

described by the posteriors (Fig.5.11B). However, where the model domain starts on day 501

we lose the M6.7 event and its aftershocks on the first day. This results in significant bias in all

the triggering parameters as well as the background rate (Pink curve in Fig.5.11B). Modelling

of specific sequences needs particular care to be taken in the choice of model domain and

exclusion of the mainshock from the analysis can pose a major problem in conditioning the

ETAS parameters.

The results already presented in Fig.5.9 showed that the inversion scheme struggles

to recover the triggering parameters when there is no significant sequence in the dataset.

Combined with the results for having no background period in this section, we argue that a

representative sample should include periods of activity and inactivity if both the background

rate and triggering parameters are to be estimated reliably. We also suggest mainshocks

of different magnitudes would help for resolving α. By running synthetics such as the ones

presented here, one can gain insight into the data requirements in specific case studies.

The model where the mainshock was not part of the subcatalogue was particularly biased

(pink curve in Fig.5.11B). In the next section, we explore whether we can correct for this

by including the triggering effects of events that occurred prior to temporal domain being

evaluated.
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A. Impact of stochastic variability for 1000 day catalogue with no large events seeded
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B. Impact of stochastic variability for 1000 day catalogue with a M6.7 event seeded on day 500
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Figure 5.9: Posteriors that explore the impact of stochastic variability on the inverted ETAS

parameters using inlabru. These are based on the relatively quiet catalogues in Figs.5.7

and those with a large event seeded on day 500 in Fig.5.8. The catalogue numbers can be

cross-referenced between the figures.

Impact of historic run-in period

In the previous section, we explicitly cropped out subcatalogues and ran the analysis on that

subset of the data, effectively throwing the rest away. We demonstrated the consequences

removing the M6.7 mainshock from the sub-catalogue being analysed; the posteriors on

the triggering parameters and background became significantly biased (Fig.5.11(B)). This

example talks to the wider need for the intensity function to be conditioned on historic events

prior to the start of the model domain (Ogata, 2006). This is a common issue in modelling

regions that have experienced the largest earthquakes.

In ETAS.inlabru, we have another option when analysing catalogue subsets. Rather than

cropping out the data, we can provide an extended catalogue and specify a model domain

that is smaller than the whole dataset. This allows us to fit the ETAS model over data in the
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Figure 5.10: The 20x1000 day synthetic catalogues presented in Figs.5.7 and 5.8 all have

different numbers of events in them because of their stochastic nature. This figure plots the

time taken for inlabru to invert each of these catalogues as a function of the number of

events in the catalogues.

interval [T1, T2), whilst pre-condition on events, particularly large ones, that occured in an

earlier preparatory phase [T0, T1) where T0 < T1. Events later than T2 are discarded due to

causality. This defines two histories, H0 with events between T0 and T2, and H1 with events

between T1 and T2 such that H1 ⊂ H0. Including this pre-conditioning, the log-likelihood
evaluated over the interval [T1, T2) becomes,

L(θ|H1,H0) = −µ(T2−T1)−
∑

(ti ,mi )∈H0

∫ T2
max(T1,ti )

gt(t− ti , mi)dt+
∑

(ti ,mi )∈H1

logλ(ti |H0,t),

(5.18)

where gt(t − ti , mi) is given by equation 5.9 and H0,t = {(ti , mi) ∈ H0 : ti < t}. In this
way, the events between T0 and T1 contribute to the expected number of events in [T1, T2)

through the first summation, and also contribute to conditional intensity through the third

term. Notice that the second summation is only over the target events within T1 to T2. For

pre-conditioning periods containing large events, this leads to more robust estimates of the

parameters as shown in Figure 5.11(B-C) and reduces the effect the choice of the starting

date.

In practice, this complicates the implementation of the time binning because events

occurring prior to the start of the model domain only need to be evaluated from ‘T1‘ onward.

The breaking of similarity of the time bins has a penalty in the speed of the implementation.

The results of conditioning the inversion using the historic events can be seen in Fig.5.11(C)

and should be compared to the equivalent results for the cases where the subcatalogues did

not have this preconditioning (Fig.5.11(B)). As the start date increases, the inclusion of

small background events in the history has little effect on the results because their triggering

110



CHAPTER 5. BAYESIAN MODELLING OF THE TEMPORAL EVOLUTION OF

SEISMICITY USING THE ETAS.INLABRU R-PACKAGE 111

2

3

4

5

6

7

0 250 500 750 1000
Time [days]

M
ag

ni
tu

de

A. Variable start dates for inversion

α c K µ p

1.
5

2.
0

0.
1

0.
2

0.
3

0.
3

0.
6

0.
9

1.
2

0.
1

0.
2

0.
3

1.
1

1.
2

1.
3

1.
4

1.
5

0

10

20

0

10

20

30

0

10

20

30

0

10

20

0

5

10

15

20

25

ETAS Posteriors

y

B. Posteriors for a subset catalogue where the intensity is Not conditioned on the history
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C. Posteriors of catalogue which is conditioned on the history
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Figure 5.11: (A) Catalogue used to explore the concept of a representative sample and

history conditioning. The baseline case on the top row has 500 days of background and a

M6.7 event on day 500 with the sequence being recorded until day 1000. We vary the start

date for the analysis to remove the first 250 days, 400 days, 500 days and 501 days. In

the last 2 cases there is no background period remaining and the large event is also prior to

the catalogue subset for the final case. (B) Posteriors of the ETAS parameters for each of

the catalogue subsets when we crop the sub catalogue and do not use the preceding data

to condition the model. (C) Rather than cropping out sub-catalogues, we now retain the

events preceding the start of the model domain and use these when estimating the triggering

function. This produces a notably improved performance for the start date on day 501 when

the large event is no-longer within the model domain.

effect is small. However, a significant improvement in the estimated posteriors is seen when

the M6.7 mainshock is removed from the model domain (c.f pink lines for each parameter

in Fig.5.11(B) and (C)). The historic pre-conditioning improves the estimation of all the

triggering parameters when the mainshock is missing.

In the analysis of real catalogues, this effect will be particularly relevant when there have

been very large past earthquakes which are still influencing today’s rates.

Impact of short term incompleteness

Finally, we explore the effect of short term incompleteness after large mainshocks on the

inverted parameters (Zhuang et al., 2017; Hainzl, 2016b,c; Helmstetter et al., 2006b). This

rate dependent incompleteness occurs because is hard to resolve the waveforms of small

earthquakes when overprinted by many larger events, yet the effect is short lived.

We take a 1000 day catalogue with a M6.7 event seeded on day 500 and then introduce

a temporary increase in the completeness threshold after the M6.7 event using the functional
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form suggested by Helmstetter et al. (2006b),

Mc(t) = Mi − G −H log10(t − ti), (5.19)

where, Mi and ti are the magnitude and occurrence time of the event we are modelling the

incompleteness for, t is the time we wish to evaluate the new completeness threshold for and

G, H are parameters of the model. We do not address here how these parameters should

be determined in a real dataset and, informed by (van der Elst, 2021a), we set them to 3.8

and 1.0 respectively for our synthetic study. Further, in this exploratory analysis we do not

include incompleteness effects for other events in the sequence - so it should be considered

a relatively conservative analysis.

We perform the inversion on the original catalogue and the one where short term incom-

pleteness has removed a number of events (Fig.5.12) and compare the posteriors (Fig.5.13).

The complete catalogue contained 1832 events and the incomplete catalogue contains

1469 events (Fig.5.12). This is difficult to see on the event time plot as most of these event

are very close in time to the mainshock, so we have also plotted the magnitudes as a function

of event number; here we see that after the mainshock (red dashed line) there is a transient

in the completeness threshold.

All of the parameter estimates in the incomplete catalogue are now notably more biased

and their standard deviation has not increased to compensate for this so the true values

lie significantly outwith the posteriors (Fig.5.13), and are therefore biased. The incomplete

catalogue underestimates the background rate as there are fewer events in the same time

period. Propagating the triggering parameter posteriors through to compare the triggering

functions, we see extremely different triggering behaviour (Fig.5.14). The Omori decay

for the incomplete catalogue is longer lasting but the productivity, driven by α and K, is

systematically lower.

The bias in the predicted triggering functions arising from short term incompleteness

is significant and cannot be ignored within an OEF context. Solving this problem within

inlabru is beyond the scope of this paper, however it would be possible to handle it with

inlabru knowing the functional form of the rate at which the events are missing.

5.2.5 Discussion

Having analysed a range of synthetic datasets, we now emphasise the lessons learned we

should carry forward for the analysis of real sequences. In both examples below, the com-

pleteness is often assumed to be 2.5 and this compares well with our baseline synthetics.

Reliable inversions can only result from data that is representative of the processes the

model is trying to capture. This means that datasets need to contain both productive se-

quences and periods that resolve the background without being overprinted by triggered

events. The main difference between α and K is that the former describes how the pro-

ductivity varies with the magnitude of the triggering event whilst the latter is a magnitude

insensitive productivity. If we are to resolve these uniquely, the training data would need

relatively isolated sequences that are triggered by mainshocks of different sizes; this will be

challenging in many use cases.

Interpreting the results of an ETAS inversion is non-trivial. We advocate the routine

analysis of synthetic catalogues to understand what it is possible to resolve in principle. In

the simulation example, we have seen that the posterior of the parameters may vary widely

depending on the catalogue even though the catalogues comes from the same parameters

set. We have already observed this in Chapter 4 in Figure 4.5 and 4.6, and in this chapter

in Figure 5.9, where some of the posterior distributions do not overlap. I believe this is not
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Figure 5.12: Plots of the complete baseline catalogue and the catalogue with incompleteness

artificially introduced using the functional form suggested by (Helmstetter et al., 2006b). The

complete catalogue contains 1832 events and the incomplete has 1469 events. The time

magnitude plot does not present this incompleteness well because it occurs in the very short

term after the M6.7 event. The plot of magnitude as a function of event number clearly

highlights the temporally varying incompleteness just after the large event.
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Effect of short term incompleteness after large events on ETAS posteriors
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Figure 5.13: Plot comparing the posteriors of the complete and incomplete catalogues pre-

sented in Fig.5.12. The true parameters are shown with the black dashed lines.

a problem of our approximation because it happens also using MCMC which is exact. On

the contrary, in Chapter 4 the posterior distributions obtained with inlabru overlap more

than the ones obtained using MCMC which could be considered a further advantage of our

approach. I believe the problem stems from the multimodality of the likelihood which may

be dominated by different modes using different catalogues. Moreover, this may not be

problematic in applications where the focus is on estimating the probability of future events,

and, given that the same probability can be obtained with different parameters sets, this is

not crucial for the estimation of the probabilities of interest.

Preconditioning models using large historic events can be significant. By considering

samples of the triggering functions once can pre-determine the magnitude of events that

need to be included as a function of time.
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Figure 5.14: Propagation of ETAS parameter uncertainty on the triggering functions. We

take 100 samples of the ETAS posteriors for the complete 1000 day catalogue with an

M6.7 on day 500 (top row) and for the temporally incomplete version of this catalogue

as described in the text. We then use these samples to explore variability in the Omori

decay (Eqn.5.16), the time-triggering function (Eqn.5.17) following an M4 event, and the

time-triggering function following an M7.6 event.

.

The use of synthetic modelling should be particularly important if time varying background

rates are being inferred from the inversion of catalogue subsets in moving windows using the

ETAS model.

The impact of short term incompleteness following large events is very significant and

needs to be addressed either by raising the magnitude of completeness or formal modelling

of the incompleteness. Resolving this for ETAS.inlabru is beyond the scope of this paper.

These are some of the considerations we explored here, but different use cases will present

other modelling challenges that can be effectively explored through similar suits of synthetic

modelling.

5.2.6 Conclusions

ETAS.inlabru is a fast and reliable tool for approximate Bayesian inference of the temporal

ETAS model (Serafini et al., 2022a; Naylor and Serafini, 2023) . The advantage of INLA over

MCMC-based methods is that it is much faster. For large models, INLA finds a solution where

MCMC methods would take far too long. For smaller problems, the speed of computation

allows us to take a more exploratory and interactive approach to model construction and

testing (Wang et al., 2018).

The exploratory approach illustrated here can be used to identify and understand sources

of uncertainty and bias in the ETAS parameter posteriors that are derived from the structural

and stochastic nature of the training data. We identify the need for a representative sample
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to contain periods of relative quiescence as well as sequences with clear triggering behaviour

if all parameters are to be well resolved.

Where studies focus solely on active sequences, the background rate can be erroneously

estimated to be several times larger than the real background rate and the triggering param-

eters erroneously imply more rapidly decaying sequences than the true underlying parameteri-

sation would. This implies that caution is needed in studies that allow the parameters to vary

in time using windowing methods. Whilst one cannot conclusively rule out that background

rates and triggering behaviors may vary, we advocate that a stationary model with constant

parameters should be adopted unless there is compelling evidence independent of the ETAS

inversion, Colfiorito being a case in point (e.g. Touati et al., 2014).

Rate dependent incompleteness severely degrades the accuracy of the ETAS inversion

and needs to be addressed directly.

The use of synthetic modelling, as presented here, provides a basis for discriminating when

variations in the posteriors of ETAS parameters can be explained by deficiencies in the training

data and when there is likely a robust and potentially useful signal. Such exploration requires

a fast method for performing the inversion. The interpretation is easier when full posteriors

can be compared, as opposed to just having point estimates. inlabru is particularly well

suited to this task.

5.3 Chapter Summary

In this chapter, I have shown how the ETAS.inlabru R-package can be used to explore

potential biases in parameter estimates deriving from the quality of the data. This would

have required much more effort if done using an MCMC technique which is noticeably slower

than our method. In general, this type of analyses based on simulated data may have great

value in determining a set of good practices to be followed before fitting an ETAS model

and to interpret the posterior distribution of the ETAS model parameters being conscious of

potential problems coming from the data used for the inversion. The next chapter generalizes

the method applied in the ETAS.inlabru R-package to perform inference on the parameters

to the spatio-temporal case and shows how covariates can be accounted for when modelling

the expected number of aftershocks.

5.4 Supplementary Material

In this section, we show the marginals and pairwise joint posterior distributions of the temporal

ETAS model parameters obtained from 10000 samples from the full joint posterior distri-

bution of the parameters. The results are in line with the ones presented by Shcherbakov

(2014) with a different parametrization. Figure 5.15 shows the marginal and pairwise joint

distribution obtained fitting the model on the unseeded synthetic catalogue shown in Figure

5.4, while Figure 5.16 shows the same with the catalogue with the 6.7 magnitude event in

Figure 5.4
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Figure 5.15: Example of a pairs plot sampling from the full posterior distribution of the

unseeded model presented in Figure 5.4.

.
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Figure 5.16: Example of a pairs plot sampling from the full posterior distribution of the M6.7

seeded model presented in Figure 5.4.

.
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Chapter 6

Spatio-temporal application with
covariates

6.1 Introduction

This chapter generalizes the methodology presented in chapters 4 and 5 for the temporal

ETAS model to the spatio-temporal case which allows us to relax some of the assumptions

within the classical ETAS model.

First, I include a spatially varying background rate and show how spatial covariates, such

as fault maps or strain rate maps, can be used to develop more complex spatial models within

the Bayesian framework.

Further, in the classical ETAS model, the productivity of an event only depends on its

magnitude (Eq. 6.5). This means that events with the same magnitude generate after-

shock sequences governed by the same conditional intensity. We relax this assumption by

taking inspiration from other fields facing similar restrictions (Meyer et al., 2014; Reinhart

and Greenhouse, 2018) as has been implemented in Adelfio and Chiodi (2021) and Chiodi

et al. (2021). The solution is to introduce covariates in the model so that it resembles the

Generalized Linear Model (GLM) framework. This provides a method for varying aftershock

productivity, where the productivity may vary depending on additional characteristics of the

event (e.g, depth) or to external covariates (e.g. fault information, heatflow, strain rate).

In this chapter, I compare the performance of these generalised models using data from

two Italian seismic sequences that both occurred within the Apennines so they can be con-

sidered similar in style, namely the 2009 L’Aquila and 2016 Amatrice seismic sequences. The

chapter is structured as follows: Section 6.2 introduces the classic spatio-temporal ETAS

model and describes the spatially varying background rate and the extensions proposed Adelfio

and Chiodi (2021) to include covariates; Section 6.3 describes the data on the Italian seis-

mic sequences used to perform the comparison and the covariates; Section 6.4 illustrates

the results of the comparison, while Section 6.5 discusses the results and describes possible

extensions.

6.2 Models

In the spatio-temporal seismicity model, earthquake events are represented by points of the

form x = (t, s, m), where t ∈ [T1, T2], T1 < T2 is the time, s ∈ W ⊂ R2 is the 2D space
location of the epicenter, and m ∈ (M0,∞) is the magnitude. The domain is the product
of the domains on the different dimensions X = [T1, T2]×W × (M0,∞). Assuming that N
events have been observed within the domain X such that the history of the process can be
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described by H = {xh ∈ X , h = 1, ..., N}, and that Ht = {xh = (th, sh, mh) ∈ H : th < t} is
the history of the process up to time t, then the conditional intensity of the spatio-temporal

ETAS model for a generic point x ∈ X is given by,

λ(x = (t, s, m)|Ht) = µ+
∑

h:xh∈Hth

g(t − th, s− sh, mh), (6.1)

where g(t − th, s− sh, mh) is the triggering or excitation function.
Under this model, each point xh induces an aftershock sequence which is an inhomoge-

neous Poisson process with conditional intensity

λafter(x) = g(t − th, s− sh, mh)I(t > th), (6.2)

where I(t > th) is an indicator function assuming value 1 if t > th and 0 otherwise.

The form of the triggering function used in the classical ETAS model is equivalent to

g(t − th, s− sh, mh) = K exp{α(mh −M0)}gt(t − th)gs(s− sh), (6.3)

where the function gt(t − th) is the Omori’s law describing the temporal decay of aftershock
activity and is usually either in form

gt(t − th) = (t − th + c)−p or gt(t − th) =
(
t − th
c
+ 1

)
, (6.4)

while the function gs(·) is a function of the distance between s and sh, examples are given
in Chapter 4 Section 4.2.4. The spatial kernel gs(s− sh) describes the spatial distribution of
aftershocks induced by an event in sh. In this chapter, we consider an isotropic spatial kernel

given by Gaussian density with a correlation coefficient equal to zero and the same variance

on both axes. This assumption is clearly erroneous because the aftershocks of large events

does not distribute isotropically, however, isotropic kernels are used in many studies (Ogata,

2011; Ebrahimian et al., 2022; Chiodi et al., 2021; Molkenthin et al., 2022), and I believe it

is a nice starting point to generalize our approach to the spatio-temporal case.

The expected number of triggered earthquakes generated within the domain X = [T1, T2]×
W × (M0,∞) by an event xh = (th, sh, mh) is given by

Λafter(xh, T1, T2,W ) =

∫ T2
max(th,T1)

∫
W

K exp{α(mh −M0)}gt(t − th)gs(s− sh)dsdt

= K exp{α(mh −M0)}It(th, T1, T2)Is(sh,W ), (6.5)

where

It(th, T1, T2) =

∫ T2
max(th,T1)

gt(t − th)dt (6.6)

Is(sh,W ) =

∫
W

gs(s− sh)ds. (6.7)

The quantities It and Is are, respectively, the integral of the time and space components of

the triggering function.

Under this model, the expected number of aftershocks generated by xh is influenced only

by the time of the event th through It(th, T1, T2), the spatial location sh through Is(sh,W )

and by the magnitude mh through exp{α(mh − M0)}. Regarding the latter, the model
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assumes that the logarithm of the expected number of aftershock scales linearly with the

magnitude of the parent event.

6.2.1 Spatially varying background rate

The first modification we consider is to include a spatially varying background rate instead

of a constant one. Specifically, we consider a spatially varying background rate given by

µ(s) = µν(s), (6.8)

where µ ∈ (0,∞) has the same role as in the temporal model presented in Chapters 4 and
5, and ν(s) : R2 → (0,∞) represents the spatial variation of the background rate.
We further assume that ∫

W

ν(s)ds = 1, (6.9)

so that the expected number of background events in [T1, T2)×W is equal to

Λ0 =

∫ T2
T1

∫
W

µ(s)dsdr = (T2 − T1)µ. (6.10)

In our implementation, the quantities µ and ν(s) are estimated independently. Specifically,

µ is estimated along all the other ETAS parameters, while ν(s) is estimated separately. To

estimate ν(s) we fit a LGCP model (see Section 3.3.1) with intensity E(s) and set

ν(s) =
E(s)∫

W E(s)ds
, (6.11)

so that it integrates to 1 over the spatial domain W .

The advantage of this approach is that it is straightforward to include covariates in the

expression of the background rate. Following the approach of Bayliss et al. (2020, 2022),

and described in Section 3.4, to build time-independent models for seismicity, we can include

them by considering

log E(s) = β0 + βT z(s) + u(s), (6.12)

where β0 ∈ R is the intercept, z(s) is the vector of covariates with coefficients β ∈ Rd with d
being the number of available covariates. The quantity u(s) is a GMRF with zero mean and

Matérn covariance function estimated using the SPDE approach (see Section 3.3.2). The

inlabru R-package provides a function to fit an LGCP model of this type automatically.

The user can also choose to estimate the spatial variation of the background rate using the

whole catalogue or a declustered one.

All the models below consider a spatially varying background rate. For simplicity, we

consider the spatial variation of the background rate as composed by only the intercept and

the GMRF u(s) and we use the whole catalogue to estimate them. This produces a spatial

variation of the background rate which is essentially a spatial smoothing of the observations

in the provided catalogue. The difference with commonly used spatial smoothing is that with

this approach, the parameters of the smoothing (e.g. length scale) are determined from the

data and have a posterior distribution as the other parameters of the model, while in more

classical approaches they need to be imposed by the user or determined by cross-validation.
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6.2.2 Aftershock productivity as a function of covariates

We follow the approach proposed by Adelfio and Chiodi (2021) to include covariates in the

number of expected aftershocks generated by each earthquake. Following equation 6.5 the

logarithm of the expected number of aftershocks generated by an event xh = (th, sh, mh) in

the spatio-temporal region (T1, T2]×W is given by

log Λafter = logK + α(mh −M0) + log It(th, T1, T2) + log Is(sh,W ), (6.13)

Focusing on the magnitude-dependent productivity term, we can replace α(mh − M0)
with a linear predictor η(xh) such that

η(xh) = β
T zh, (6.14)

where β is a vector of coefficients, and zh is a vector of covariates relative to xh. If β = α

and zh = (mh −M0), we recover the classic ETAS formulation. The conditional intensity of
the modified ETAS model becomes

λ(x|Ht) = µ(s) +
∑
h:xh∈Ht

K exp{η(xh)}gt(t − th)gs(s− sh). (6.15)

The main advantage of this approach is to allow the modelling of the effect of covariates

on the expected number of aftershocks as in a Generalized Linear Model (GLM) framework

with similar interpretations of the coefficients. In practice, it allows consideration of the

expected number of aftershocks as an additive function of functions of the covariates. Here,

I consider a linear function of the covariates, and therefore, assume that the expected number

of aftershocks scales linearly with each covariate. This can be generalized to more complex

functions.

In this chapter, I consider two covariates: the depth and the mean strike associated

with the nearest fault. Specifically, four models are compared (see Table 6.1), the first one

considers the depth dh and the linear predictor η(xh) is given by

ηdepth(xh) = α(mh −M0) + βddh. (6.16)

I refer to this model as the depth model.

The second model is based on associating each event with a fault and considering the

mean strike associated with the fault. For each fault, the mean strike is obtained as the mean

of the minimum and maximum expected strike, and events are associated with the nearest

fault polygon, Section 6.3 describes the fault data. The linear predictor for this model is

ηstrike(xh) = α(mh −M0) + βmsmsh, (6.17)

where msh is the mean strike of the fault associated with the xh observations. I refer to this

model as the strike model.

I consider a third model which includes both covariates and has a linear predictor given

by

ηfull(xh) = α(mh −M0) + βmsmsh + βddh. (6.18)

I refer to this model as the full model.

Finally, I also consider a fourth model which does not include any covariate, and the linear

predictor is just α(mh −M0). I refer to this model as the basic model. In the next Sections,
I am going to compare the four models described here, which are the depth, the strike, the

full, and the basic model.
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For all models, we consider a spatially varying background rate as described in Section

6.2.1 and an isotropic spatial kernel given by a bivariate Gaussian density with zero correlation

and equal variances.

Name η(x) parameters

full α(m −M0) + βdd + βmsms µ,K,α, c, p, σ, βd , βms
depth α(m −M0) + βdd µ,K,α, c, p, σ, βd
strike α(m −M0) + βmsms µ,K,α, c, p, σ, βms
basic α(m −M0) µ,K,α, c, p, σ

Table 6.1: Models for the comparison. For each model, the name, the linear predictor η(x),

and the set of parameters to be estimated are reported.

6.2.3 Priors

For all the models, we consider the same set of priors. For the standard ETAS parameters

µ,K,α, c, p these are,

µ ∼ Gamma(0.3, 0.6)
K ∼ logN(−3, 1.5)
α ∼ logN(0.5, 1.5)
c ∼ logN(−1, 1.5)

p − 1 ∼ logN(−1, 1.5),

where logN(a, b) is a log normal distribution, such that if X ∼ logN implies that logX ∼
N(a, b2).

Regarding the spatial triggering function, being a bivariate Gaussian density centered at

the observations, it is determined by just one parameter (the variance) σ2 regulating the

scale of the kernel. Here, we consider an exponential prior for σ2,

σ2 ∼ Exp(0.5).

Regarding the coefficients of the linear predictor βd and βms both have a standard normal

prior

βd , βms ∼ N(0, 1).

All the priors are implemented using the transformation method illustrated in Section 4.2.6.

6.2.4 Spatial Grid for the log-likelihood approximation

Our technique to fit the spatio-temporal ETAS model builds on the log-likelihood approxi-

mation for the temporal model outlined in Chapters 4 and 5. The technique requires that

the spatio-temporal domain is discretised into non-overlapping bins in order to provide a

sufficiently accurate approximation of the integral, where for sufficiently accurate we intend

sufficiently for the algorithm converges. We have illustrated the binning on the time domain

in Appendix 4.4.2 and in Section 5.2.3, here I describe the binning strategy used to partition

the spatial domain.
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As with the temporal case, each point (earthquake event) has its own set of bins used

to approximate the spatial distribution of the expected number of aftershocks generated by

that point. We use a 2D spatial grid based on three parameters nl ,∆s , and, min∆. The

nl regulates the maximum number of layers minus 1, where each layer is composed of 4

polygons. The first layer is composed of 4 square bins with edge length equal to ∆s . The

second layer is composed of 4 rectangular with the shorter edge long ∆s and the longer 3∆s ,

the third layer is composed of four polygons with shorter edge long ∆s and longer 5∆s , in

general, the j-th layer is composed of 4 polygons with shorter edge always equal to ∆s and

longer (2j + 1)∆s . The last layer is composed of 4 different rectangles with minimum edge

length min∆. If the nl is such that the minimum edge of the last layer is smaller than min∆
we remove the last layer. So that the total number of bins for each point is min(nl , nmax)

where nmax is the maximum number of layers such that the minimum edge length of the

polygons in the last layer is greater or equal than min∆ given a value of ∆s . Figure 6.1 shows

an example of a spatial grid obtained with this method for a point in the center of the domain

considering nl = 5, ∆s = 20km and min∆ = 1km for a total of 24 spatial bins.

The advantage of using this grid is that similarly to the grid used for the time domain, the

integral in each bin belonging to the same layer is the same in the case of an isotropic kernel.

Furthermore, the integral on a bin of a layer is the same for all the points. This represents

a great computational advantage because for N points we only have to calculate maximum

4N + nl integrals instead of maximum 4N(nl + 1). In the case of an anisotropic spatial

kernel, there still could be some advantages given the symmetry of the Gaussian distribution.

The only limitation is that this grid works only for a rectangular domain, but this is not

very restrictive, in fact, any polygon can be embedded in a rectangle. The grid is only used

to estimate the parameters, while the calculations on the abundance or the generation of

synthetic catalogues can be done using domains with different shapes. In this chapter, for

all the models, we consider a grid defined by nl = 8,∆s = 0.1km, and min∆ = 0.1. We have

also tried different combinations with ∆s = 1, ∆s = 8, and nl = 15. The results are robust

for the setting considered and we chose the parameters requiring the smallest computational

time.

6.3 Data

For the model comparison, we use data from the new Italian Homogenized instrumental seis-

mic catalogue (HORUS, Lolli et al., 2020). The HORUS catalogue reports the events from

1960 to present and covers the whole Italy region. The magnitudes have been homogenized

to the moment magnitude scale, and the estimated magnitude of completeness is 4 for the

period 1960-1980, 3 for the period 1981-1989, 2.5 for the period 1990-2002, 2.1 for the

period 2002-2005, and 1.8 from 2005 to present. The uncertainty around the estimated

magnitude is around 0.07 magnitude units and decreases over the last decade. For each

event, the HORUS catalogue reports the occurrence time (year, month, day, hour, minute,

second), the longitude and latitude of the epicenter, the depth, and the moment magnitude.

We focus on two seismic sequences: the 2009 L’Aquila seismic sequence and the 2016

Amatrice seismic sequence. For both of them, we consider the same spatial region of interest

(orange square in figure 6.2). I have chosen to use the orange region as spatial domain

because Chapter 5 showed that considering an extended domain with quiet areas provides

more accurate estimates of the background rate. Regarding the L’Aquila sequence, we

consider events from 01-01-2009 to 01-01-2010 with a magnitude threshold of 2.5 for a

total of 1047 events. For the Amatrice sequence, we consider data from 01-01-2016 to

01-01-2018 and a magnitude threshold of 3 for a total of 1369. Figure 6.2 shows the spatial

124



CHAPTER 6. SPATIO-TEMPORAL APPLICATION WITH COVARIATES 125

41°N

42°N

43°N

44°N

45°N

11°E 12°E 13°E 14°E 15°E 16°E

Figure 6.1: Example of a spatial grid used to approximate the integral of the conditional

intensity in the log-likelihood approximation for a point located at the center of the domain

considering nl = 5,∆s = 20km and min∆ = 1km.

distribution of the events for the L’Aquila (panel a-c) and Amatrice (panel b-d) sequences.

Figure 6.3 shows the temporal evolution of the cumulative number of events and the scatter

plot of time versus magnitude. Both the spatial and temporal domain contains quiet periods

(and areas).

6.3.1 Covariates

The depth of each event is provided by the HORUS catalogue, Figure 6.4 shows a histogram

of the observed depth for the two sequences under study. The binwidth is equal to 0.1 km.

Given the resemblance with a Gaussian distribution, I do not suspect there are significant

artifacts in the depth distribution other than possibly the small local peak at 10km, likely to

be the starting depth for the depth estimation algorithm. The fact this residual artifact is

so small is a consequence of having a dense seismic network above the event to provide a

better triangulation for the depth estimation from several nearby stations
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Figure 6.2: Panel a-b: area of interest (square orange polygon) considered for both sequences

with respect to the Italian territory, panel (a) is for the L’Aquila sequence, and panel (b)

is for the Amatrice sequence. Panel c-d: Zoom of the spatial distribution of events (green

polygon) for the L’Aquila (c) and Amatrice (d) sequences. Red stars indicate events with

magnitude above 5. For the L’Aquila sequence, we considered all events between 01-01-2008

and 01-01-2009 with a magnitude above 2.5 (1047 events), while for Amatrice we consider

events between 01-01-2016 and 01-01-2018 with magnitude above 3 (1369 events).

Regarding the fault data, we used data from the Italian Database of Individual Seismo-

genic Sources (DISS 3.3.0, Basili et al., 2021). DISS provides a 2D representation of the

fault network in which each fault is represented by a polygon (Figure 6.5). The polygons

represent the projection on the surface of the faults and overlapping polygons indicate faults

at different depths. Figure 6.6 shows the vertical section of the faults in the area of the

L’Aquila and Amatrice sequences. The DISS provides also information about the 3D orien-

tation of each fault, indeed, for each fault, we have access to its minimum and maximum

depth, strike, dip, and rake.

In this chapter, we use only the mean strike to demonstrate the type of analysis that
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Figure 6.3: Panel a-b: temporal evolution of the cumulative number of events as a function

of the number of days from the 01-01-2008 and 01-01-2016 for the L’Aquila and Amatrice

sequences respectively. Black solid line represents the cumulative number of events of mag-

nitude above 2.5 (L’Aquila, panel a) and 3 (Amatrice, panel b), while the red dashed line

represents the cumulative number of events of magnitude above 5. Panel c-d: scatter plot

of time versus magnitude for the L’Aquila and Amatrice sequences respectively. Red stars

indicate events with magnitude above 5.

could be carried out with this approach. The value of the mean strike for each event is

the mean strike of the nearest fault. Figure 6.7 shows the L’Aquila (panel a) and Amatrice

(panel b) sequences and the active faults, where for active faults we intend faults with at

least one event associated with them (colored in figure 6.7).
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Figure 6.4: Histogram of observed depth for the 2009 L’Aquila (red) and the 2016 Amatrice

(blue) seismic sequences, the binwidth is equal to 0.1 km.
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Figure 6.5: Fault network as provided by the Italian Database of Individual Seismogenic

Sources DISS 3.3.0

6.4 Results

The two sequences considered in this chapter present different spatial and temporal distri-

butions as illustrated by figure 6.2 and 6.3. For example, the L’Aquila sequence is more

concentrated in time with all major events happening in a span of a few days, while the Am-

atrice sequence covers a longer period of time with three major identifiable clusters of large
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Figure 6.6: Vertical section of the fault network in the area of the 2009 L’Aquila (light blue

dots) and 2016 Amatrice (black dots) seismic sequences. The image is taken from Figure

9 of Buttinelli et al. (2021), the color represents lithographic units reported in Figure 3 and

Table 1 of the latter.

events. Consequently, we first compare the posteriors of the spatially varying background

field and parameters µ,K,α, c, p, σ for the two sequences. Then, within each sequence, we

compare the models based on different covariates combinations to verify which one is best.

For this task, we use the Akaike information criterion (AIC, Akaike, 1974) as it is usually

done to rank competing models in the GLM framework.

6.4.1 Background field posterior distribution

We start showing the estimates of the unnormalized spatial variation E(s) which determines
the spatial variation of the background rate ν(s) through equation 6.11. In our example, we

determine E(s) by fitting an LGCP model with intensity equal to E(s) where this is given by

log E(s) = β0 + u(s)
u(s) ∼ GMRF(0,Q−1(s))
β0 ∼ N(0, 1)

where Q−1(s) is the precision matrix such that the covariance between location i and j is

given by Qi j = r(si , sj) which is the Matérn covariance function as defined in by equation

3.18.

The R-package inlabru provides user-friendly functions to estimate the posterior distri-

bution of the unnormalized spatial variation E(s)|H given a catalogue H for all locations s
in the spatial domain W . Figure 6.8 shows the mean and standard deviation of the poste-

rior distribution of log E(s)|H for the L’Aquila (left) and Amatrice (right) sequences. The
estimated mean field is essentially a spatial smoothing of the observations which is due to
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Figure 6.7: Panel a: zoom of a map of the L’Aquila sequence and the fault network. Panel

b: zoom of a map of the Amatrice sequence and the fault network. The color of the points

and the polygons represents the mean strike.

the fact that we have not included (at this stage) any covariate in the model. The standard

deviation is higher in regions with a low number of observations and lower in regions with

more observations.

The estimates of the remaining ETAS parameters are conditional on an estimate of the

spatial variation of the background field ν(s). We consider the following estimator of the

spatial variation

ν̃(s) =
E[E(s)|H]∑M

j=1 E[E(s
(m)
j )|H]ωj

(6.19)

where E[E(s)|H] is the posterior mean of E given a catalogue H, and s(m)1 , ...., s
(m)
M is a set

of mesh nodes defining a triangulation of the space W with weights ωj . Defined in this way,

the numerator is a numerical approximation of the posterior expectation of the integral of∫
W E(s)ds over the domain ensuring that the integral of ν̃(s) over the domain is equal 1.
For both sequences, we have used the same mesh with 1397 nodes.

130



CHAPTER 6. SPATIO-TEMPORAL APPLICATION WITH COVARIATES 131

4500

4600

4700

4800

4900

5000

6900 7000 7100 7200 7300
Easting

N
or

th
in

g

−14 −10 −6 −2
mean

4500

4600

4700

4800

4900

5000

6900 7000 7100 7200 7300
Easting

N
or

th
in

g

−14 −10 −6 −2
mean

4500

4600

4700

4800

4900

5000

6900 7000 7100 7200 7300
Easting

N
or

th
in

g

1 2 3 4
sd

4500

4600

4700

4800

4900

5000

6900 7000 7100 7200 7300
Easting

N
or

th
in

g

1 2 3 4
sd

Figure 6.8: Posterior mean (left) and standard deviation (right) of the unnormalized spatial

variation of the background field estimated using the 2009 L’Aquila sequence (top) and the

2016 Amatrice sequence (bottom).

6.4.2 ETAS parameters marginal and pairwise joint posterior distributions

I start by comparing the marginal posterior distribution of the parameters µ,K,α, c, p, and

σ2 which are common to all the considered models. I refer to these as basic ETAS parameters

because they are the only parameters of the models without covariates. Figure 6.9 shows the

marginal posterior distributions of basic ETAS parameters when no covariates are considered

for the Amatrice (solid red) and the L’Aquila (dashed light blue) sequences. The differences

in the parameters’ marginal posterior distributions reflect the differences in the sequences

shown by figure 6.2 and 6.3. Indeed, the L’Aquila sequence is more concentrated in space

and time and therefore presents lower values of σ2 and higher values of p. Also, the Amatrice

sequence presents higher K and α which regulates the aftershock productivity and, in fact,

it presents a lower background rate.

We compare the marginal posterior distributions of the parameters for all four models

considered in this chapter (Table 6.1) using the L’Aquila (figure 6.10) and the Amatrice
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Figure 6.9: Marginal posterior distributions of ETAS parameters µ,K,α, c, p, σ2 for the basic

model with no covariates for the 2009 L’Aquila (dashed blue) and the 2016 Amatrice (solid

red) seismic sequences.

(figure 6.11). For both of them, the only parameters affected by including covariates are

the aftershock productivity parameters K,α, βd , and βms, while the parameters µ, c, p, and

σ2 regulating the number of background events, and the spatio-temporal distribution of

aftershocks are the same. For both sequences, the depth coefficient βd is significantly

negative, meaning that the 95% credibility interval does not include zero. This means that

the depth has an apparent negative effect on the number of aftershocks produced by an

event, the deeper the event the smaller the number of expected aftershocks. On the other

hand, the mean strike does not have a coefficient significantly different from zero except for

the case of the L’Aquila case when we do not include the depth, in which case is negative.

However, the βms posterior credibility interval includes zero when considering also the depth,

which may indicate that part of the variation explained by the mean strike may be just due

to the correlation with the depth and its effect is not significantly different from zero when

also the latter is included.

An advantage of the Bayesian approach is that it allows the study of the correlation

between parameters by analyzing samples from the joint posterior distribution using the R-

package inlabru, which provides functions to sample the joint posterior. The ability to

sample the joint posterior of the parameters is also essential to produce catalogue-based

forecasts incorporating the epistemic uncertainty around the values of the parameters, as

well as to estimate the posterior distribution of functions of the parameters in a Monte Carlo

fashion. Figure 6.12 and 6.13 show the pair plots of parameters K,α, βd , and βms obtained

from 10000 samples from the joint posterior distribution for the L’Aquila and Amatrice se-

quence, respectively. In both cases, K is negatively correlated with all the others, which

explains the differences in the K posterior distribution between different models. The corre-

lation coefficient between the other parameters is always below 0.2 and in some cases (for

example between α and βms) changes sign from one sequence to the other.

6.4.3 Models comparison - Akaike information criterion

A popular way to compare models is by comparing their likelihood. Basically, the likelihood

of a model measures how likely is to observe the data (that has been observed) under the

model. Therefore, the likelihood can be seen as a measure of the goodness-of-fit of a model

to the observed data. However, the likelihood per se does not account for model complexity,
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Figure 6.10: Marginal osterior distributions of the parameters µ,K,α, c, p, σ2, βd and βms
estimated using the 2009 L’Aquila sequence. Color and line type indicate the different models:

full, depth, strike, and basic.

computational cost, or overfitting and, indeed, it is common to add penalties to account for

these model characteristics. This gave rise to a multitude of model selection criteria based on

different penalties, among the most noticeable examples are the Akaike Information Criterion

(AIC, Akaike, 1974), the Bayesian Information Criterion (BIC, Schwarz, 1978) and the Widely

Applicable Information Criterion (WAIC, Watanabe, 2013). We focus on the AIC because

it penalizes the models according to the number of parameters which is the main difference

between the models we are considering here.

Given a model with likelihood L and parameters θ the AIC is defined as

AIC = 2|θ| − 2 logL (6.20)

where |θ| is the number of elements of the vector θ. The AIC is a decreasing function of the
likelihood, and therefore, the model with the lowest AIC should be selected. The AIC applies

a linear penalty on the number of parameters and, consequently, between two models with

the same likelihood, the one with fewer parameters has the lowest AIC. In this sense, the

AIC is based on a parsimony principle, for which we should select the model with the lowest

number of parameters (complexity) explaining the data with a certain level of likelihood.

As with any other function of the parameters, the AIC has a posterior distribution. The

R-package inlabru offers an easy way to calculate functions of the parameters and extract

summary statistics of the posterior distribution. Table 6.2 and 6.3 show some summary

statistics (mean, standard deviation, 2.5%, 50%, and 97.5% quantiles) of the AIC posterior

distribution for the different models for the L’Aquila and Amatrice sequences respectively.

The models considered are the full model which includes both the depth and the mean

strike, the depth and strike model which include only one of the covariates, and the basic

model which does not include any covariate. All the models uses the same spatially varying

background rate depending on the sequence used to fit the model.

For both sequences, the model with no covariates (basic) is the worst-performing one

according to AIC. Between the models having one covariates, the model including the depth

performs better than the model including the mean strike. Regarding the model with both
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Figure 6.11: Marginal posterior distributions of the parameters µ, K, α, c , p, σ2, βd and

βms estimated using the 2016 Amatrice sequence. Color and line type indicate the different

models: full, depth, strike, and basic.

Model Mean SD q0.025 q0.5 q0.975

full 2744.517 103.859 2918.409 2757.751 2562.445

depth 2751.358 109.135 2960.686 2755.869 2555.678

strike 2772.409 101.118 2961.416 2768.233 2586.899

basic 2783.697 99.737 2990.288 2785.814 2592.922

Table 6.2: Summary statistics of the posterior distribution of the Akaike Information Criterion

(AIC) estimated using the 2009 L’Aquila sequence. The rows indicate the different models:

full, depth, strike, and basic, while the columns show the mean, standard deviation, 2.5%

quantile, median, and 97.5% quantile of the AIC posterior distribution.

Model Mean SD q0.025 q0.5 q0.975

full 5114.495 110.975 5350.797 5105.715 4929.224

depth 5084.409 122.490 5315.215 5087.508 4890.211

strike 5112.818 118.416 5345.241 5112.157 4923.160

basic 5120.768 122.108 5385.752 5123.404 4896.675

Table 6.3: Summary statistics of the posterior distribution of the Akaike Information Criterion

(AIC) estimated using the 2016 Amatrice sequence. The rows indicate the different models:

full, depth, strike, and basic, while the columns show the mean, standard deviation, 2.5%

quantile, median, and 97.5% quantile of the AIC posterior distribution.

covariates (full), it is difficult to express a preference (or not). In the L’Aquila case, the full

model performs better than the strike model, but the posterior mean and median provide

different rankings with respect to the depth model. In the Amatrice case, ranking the models

using the posterior mean lead to expressing a preference for the strike model over the full
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Figure 6.12: Joint bivariate and marginal posterior distributions of parameters K, α, βd ,

and βms for the full model estimated on the 2009 L’Aquila sequence. The distributions are

estimated using 10000 samples from the full joint posterior distribution of the parameters

one, however, this is not the case looking at the median for which the full model is better

than the mean one and the depth one is better than the full. Further, the median provides

the same ranking (depth, full, strike, basic) for both sequences, while the ranking changes

from one sequence to another using the mean.

In general, we can express a preference for the depth model over the strike model, because

both the AIC posterior mean and median is lower for the depth model than for the strike

model in both cases. The depth model should be preferred to the full model because (a)

the median is more trustworthy than the mean, being less influenced by the tail of the

distribution, and (b) when the difference is not clear it is good practice to choose the simpler

model (parsimony principle).

6.4.4 Abundance

Here, we analyze the posterior distribution of the total number of events and how these

events are distributed in space. The analysis is retrospective so we expect a good fit between

the model and the data. The expected number of events (or abundance) in a space-time-

magnitude region is given by the integral of the conditional intensity over that region. Given

the form of the intensity, this can be divided into the number of background events and the

number of aftershocks. Under the ETAS model, the number of points in a region follows a

Poisson distribution with rate equal to the abundance, and the same is true for the number

of background events and aftershocks. The abundance is a function of the parameters,

and, given that in the Bayesian framework, the parameters are random variables equipped

with a posterior distribution, the abundance is also a random variable with its own posterior

distribution. The posterior distribution of the abundance describes the information that we

have on the expected number of earthquakes and allows us to better describe the uncertainty

around this quantity. The abundance is a random variable, so the number of points in

an area is a Poisson distribution with a rate parameter which is itself a random variable.

This induces a posterior distribution on the space of the possible Poisson distribution of the

number of events. Considering this extra layer of variability instead of looking at the posterior
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Figure 6.13: Joint bivariate and marginal posterior distributions of parameters K, α, βd ,

and βms for the full model estimated on the 2016 Amatrice sequence. The distributions are

estimated using 10000 samples from the full joint posterior distribution of the parameters

distribution of the abundance is crucial to represent fairly the uncertainty on the number of

events.

Figure 6.14 shows the posterior median of the distribution of distributions of the number

of events, number of background events, and number of aftershocks for the L’Aquila (left)

and Amatrice (right) sequences under all the models considered. The vertical lines represent

the observed number of events. For all models, the observed number of events lies close

to typical estimators such as the posterior mean, median, or mode. The background events

are only the around the 10% of the expected number of events despite the fact that we

estimated the spatial variation of the background field on the same data used to estimate

the other parameters which could have led to assigning all the events to the background.

Figure 6.15 and 6.16 show the spatial distribution of the number of events for the L’Aquila

and Amatrice sequences, respectively. The red stars on both figures indicate events with

magnitude greater than five while grey bins indicate that the logarithm of the number of

events is smaller than −10. More formally, it shows the logarithm of the posterior median of
the abundance calculated for each bin b of a regular grid covering the area W , namely

Λ(T1, T2, b) =

∫ T2
T1

∫
b

λ(x|H)dx. (6.21)

There is a good fit between the observed number of events (bottom right panel of Figure

6.15 and 6.16) and the expected one (bottom left panel of Figure 6.15 and 6.16). The model

represents the clustering behavior well and all the models we have considered provide very

similar maps for the same earthquake sequence. This is due to the fact that the background

rate and the parameter σ2 determining the spatial kernel are the same across different models.
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Figure 6.14: Posterior distribution of the expected number of events factorized as background

number of events (solid red) number of aftershocks (dotted green) and total number of events

(blue dashed); the vertical black lines represent the observed number of events. The rows

represent the different models: full, depth, strike, and basic, while the columns represent

the different sequences: the 2009 L’Aquila sequence (left) and the 2016 Amatrice sequence

(right).

6.4.5 Effect of covariates

Here, we analyze the effect of covariates on the expected number of aftershocks. For the

model considered, we will consider the quantity

g(t, η) = K exp{η}
(
t

c
+ 1

)−t
, (6.22)

where η is the linear predictor which depends on the model.

Equation 6.22 is the temporal intensity of the sub-process generated by an event with

linear predictor η and occurred at time 0. The space-triggering function has been omitted

because, in absence of boundary conditions, it integrates to one for the models considered

in this chapter. This allows us to study the effect of covariates on the temporal distribution

of aftershocks and produce Figures similar to Figures 5.14 and 5.6, and with the same

interpretation. Below, I describe separately the effect of the depth and the strike. The

posterior distribution of the parameters obtained with the full model which includes both

covariates is used.

Effect of depth

To study the effect of depth on the aftershock distribution we fix the magnitude m = 6 and

the mean strike to the mean value for each sequence which is around 147 for L’Aquila and

165 for Amatrice. In this way, η is a function of the depth and the coefficient βd only and

I study how g(t, η) defined in Equation 6.22 changes as the depth changes. The change

depends on the coefficient βd of the model which is negative for both sequences, therefore,

we expect that increasing the depth produces smaller values of g(t, η). Also, the L’Aquila

sequence presents higher values of p than the Amatrice sequence, which implies a shorter
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clustering in time. This is shows by Figure 6.17 in which the median of the posterior of the

time distribution of aftershocks is shown for different values of depth. The range of depth

values contains the 99% of observed depth.

For each value of the depth the temporal intensity of aftershocks g(t, η) is determined by

the coefficient βd . The coefficient is considered a random variable and therefore also g(t, η)

is a random variable. Figure 6.18 shows summary statistics of the posterior distribution of

g(t, η) for different levels of depth. I considered three values: 5 km, 10 km, and 15 km

which roughly correspond to the 5%, 50%, and 95% of the empirical distribution of depth.

The posterior summary statistics of the temporal intensity are obtained by calculating the

temporal intensity using 10000 samples from the joint distribution of the model parameters.

The figures show that by increasing the depth the aftershock intensity decreases, especially

close to zero which is where the event generating the aftershocks occurred. This in turn

implies that under this model, shallow earthquakes produce more earthquakes with a higher

degree of clustering in time than deep earthquakes. This is particularly visible in the Amatrice

case. The variance of the posterior distribution of g(t, η) is not affected by changes in the

depth.

The difference between the L’Aquila and Amatrice case is due to the difference in the

estimates of the parameters and how influent is the depth in determining the temporal

intensity of aftershocks. We can measure the importance of the depth with the quantity

γd(d) =
|βdd |

|α(m −m0)|+ |βdd |+ |βmsms|
. (6.23)

By definition the quantity γd(d) ∈ [0, 1] for any value of d . Values of γd(d) close to zero
indicate a scarce influence while values close 1 indicate a strong influence of the depth on

the temporal intensity of aftershocks. As expected, the two sequences present very different

values of γd(d). Specifically, the depth component accounts for more than the 50% of the

linear predictor in the Amatrice case while this is less than the 25% for the L’Aquila case

for values of the depth between 5 km and 15 km. As a consequence the temporal intensity

of aftershocks changes more in the Amatrice case than in the L’Aquila case as the depth

changes.

Effect of mean strike

I now replicate the analysis in the previous section but for the mean strike instead of the depth.

The magnitude is fixed at 6 and the depth at 10, the latter is close to the average observed

depth for both catalogues. Figure 6.20 shows the posterior median of the temporal intensity

of aftershocks for different values of mean strike between 100 and 300 which is the observed

range of values of the mean strike. In this case, the effect of the mean strike is stronger in

the L’Aquila sequence than in the Amatrice sequence. This can also be appreciated from

Figure 6.21 which shows summary statistics and 500 samples from the posterior distribution

of the temporal intensity of aftershocks.

I use the same technique used in the previous section to calculate the influence of the

mean strike on the linear predictor. Specifically, we define the quantity

γms(ms) =
|βmsms|

|α(m −m0)|+ |βdd |+ βmsms|
, (6.24)

which has the same interpretation of γd(d) defined in Equation 6.23. Figure 6.22 shows

that the mean strike is more influential in the L’Aquila case than in the Amatrice one in

accordance with previous Figures. Comparing γd and γms it is evident that for the Amatrice
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case the depth has a greater influence than the mean strike on the linear predictor. Regarding

the L’Aquila example, instead, the two covariates have similar levels of influence on the linear

predictor with the mean strike being slightly higher than the depth.

6.4.6 Example Application: Daily forecasts for real-time loss forecasting

I am involved in a joint project exploring the feasibility of real-time financial loss forecasting

(Nievas et al., 2023) using synthetic data. The idea is to provide an example of how the

information provided by building-specific sensors measuring ground shaking may be used to

improve preparedness during a seismic sequence. Our approach is employed to generate daily

forecasts of seismicity, which then propagate into estimates of ground shaking at individual

buildings. This information is used to calculate the expected loss for each building offering a

more detailed description of the expected loss in near real-time. The forecasts take the form

of 10000 synthetic catalogues, each one is simulated using as parameters a different sample

from the joint posterior distribution. This allows a better estimation of future earthquake

rates and their uncertainty at different magnitudes than simply forecasting the rate and its

uncertainty directly.

We used the basic spatio-temporal ETAS model with a Gaussian isotropic spatial kernel

for the time and spatial location of the events and the tapered GR law with a corner magnitude

equal to 7 for the frequency-magnitude distribution. This magnitude distribution is the same

as that described in Section 2.3.1, the choice of the corner magnitude is based on the

expected maximum magnitude for the central Italy region (Petricca et al., 2019). For each

forecast, we generate synthetic catalogues conditional on all the events that occurred before

the forecasting date. For the project, only events with magnitude above 4 are retained,

however, in this section, we show all the events with magnitude above a cutoff magnitude

m0 which is m0 = 2.5 for the L’Aquila sequence and m0 = 3 for the Amatrice sequence.

This is done because these are the magnitude cutoffs chosen for the two sequences, which

influence the estimates of all the parameters.

For each sequence, we issue a forecast at midnight of each day containing at least

one event with a magnitude greater than 5, and a forecast one second after the event.

This resulted in generating 12 forecasts for the L’Aquila sequence and 13 for the Amatrice

sequence. The forecasting dates for the L’Aquila and Amatrice sequences are reported,

respectively, in the first column of Table 6.4 and 6.5. The parameters of the ETAS model

and the spatially varying background field are estimated on the same data we wish to forecast

which makes the forecasts retrospective.

Table 6.4 and 6.5 report the observed number of events in the 24 hours starting from

the reported dates in the first column along with the mean, the 2.5% quantile, the median,

and the 97.5% quantile of the number of events provided by the forecasts. There is a

noticeable difference between the mean and the median which implies that the distribution

of the number of simulated events per catalogue is highly skewed and therefore not Poisson.

As expected, the model fails to forecast large earthquakes underestimating the number of

events before a large earthquake occurs as shown by the forecasts issued at midnight. The

number of forecasted events is more similar to the observed one at the different date ranges

and times shown in Table 6.4 and 6.5, but, the model underpredicts the number of events in

most cases. This is expected because we selected only the days just after a large earthquakes

which are usually difficult to forecast given that the model has to reflect the occurrence of

earthquakes for longer periods of time and these selected days are quite different from the

average day in the catalogue.

Figures 6.23 and 6.24 show the logarithm of the observed number of events and the

logarithm of the mean, the 2.5% quantile, the median, and the 97.5% quantiles of the
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Date Obs Mean q0.025 Median q0.975

2009-04-06 00:00:00 315 4.5420 0 2 26.000

2009-04-06 01:32:41 321 26.2727 4 21 81.000

2009-04-06 02:37:05 278 83.2304 9 63 275.000

2009-04-06 23:15:37 67 122.1694 13 95 393.000

2009-04-07 00:00:00 56 125.4003 13 96 397.050

2009-04-07 09:26:29 44 110.2385 10 85 372.000

2009-04-07 17:47:38 35 107.2333 8 76 365.000

2009-04-09 00:00:00 56 80.6339 3 55 313.000

2009-04-09 00:53:00 57 87.8700 2 58 332.025

2009-04-09 19:38:17 31 59.3091 1 31 275.000

2009-04-13 00:00:00 16 20.2517 0 2 143.025

2009-04-13 21:14:25 30 26.0996 0 10 159.025

Table 6.4: Number of observed events in the 24 hours after the reported date (columns

one) along with the mean, the 2.5% quantile, the median, and the 97.5% quantile of the

forecasted number of events for the day for the 2009 L’Aquila seismic sequence.

Date Obs Mean q0.025 Median q0.975

2016-08-24 00:00:00 125 1.686 0 0 0.000

2016-08-24 01:36:33 124 24.390 1 14 105.000

2016-08-24 02:33:29 92 76.853 2 37 368.000

2016-10-26 00:00:00 47 1.044 0 0 0.000

2016-10-26 17:10:37 79 17.824 0 9 78.025

2016-10-26 19:18:08 73 46.166 1 27 198.000

2016-10-30 00:00:00 277 72.952 0 0 447.000

2016-10-30 06:40:18 309 92.957 3 29 463.000

2017-01-18 00:00:00 84 0.717 0 0 0.000

2017-01-18 09:25:41 86 12.128 0 5 51.000

2017-01-18 10:14:10 82 26.052 1 14 123.000

2017-01-18 10:25:24 73 56.325 3 34 238.000

2017-01-18 13:33:37 36 88.427 3 48 402.000

Table 6.5: Number of observed events in the 24 hours after the reported date (columns

one) along with the mean, the 2.5% quantile, the median, and the 97.5% quantile of the

forecasted number of events for the day for the 2016 Amatrice seismic sequence.
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forecasted number of events in the region highlighted in green in Figure 6.2. Red stars

indicate events with a magnitude above or equal 5 that occurred in the 24 hours before

the forecasting date. This is to show the influence of these events on the forecasts. The

Figures show the ability of the model in providing seismicity patterns evolving with time and

that these match the observed evolution of seismicity well (top-row). The time evolution

and the influence of past events are particularly noticeable when inspecting the mean of the

logarithm of the simulated number of events per pixel (second row). Furthermore, from a

visual inspection, the median provides seismicity patterns resembling the observed ones, and

the 97.5% quantiles usually cover the area where earthquakes occurred which is a sign that

the model is able to capture some of the aspects of the spatial distribution of aftershocks.

The code used to generate the forecasts described in this section is available at https://

github.com/edinburgh-seismicity-hub/spatio˙temporal˙ETAS˙for˙OEF. There, be-

yond the code relative to the L’Aquila and Amatrice seismic sequences, there is also an

example of the 1997 Colfiorito earthquake which also occurred in central Italy. This example

is relevant because in there I provide an animation 1 showing the temporal evolution of the

probability of activity (i.e. probability of observing at least one earthquake with magnitude

above 3) provided by the basic ETAS model used also for the forecasts reported here. I also

report the spatial variation of the probability of activity for 20 weeks covering the period of

the Colfiorito sequence. This is another nice example of the outputs that can be produced

using our approach to estimate ETAS model parameters.

6.5 Discussion and conclusions

In this chapter, I have extended our methodology for the ETAS model depicted in Chapters

4 and 5 to the spatio-temporal case with spatially varying background rate and the possibility

of introducing covariates. I compared the models only using the AIC because forecasts

produced with this approach will be evaluated prospectively in the next Italy CSEP experiment.

Furthermore, catalogue-based forecasts produced with the basic model will be used in a study

about real-time loss forecasting.

The approach proposed in this chapter expands the type of covariates analyses proposed

by Bayliss et al. (2020) and Bayliss et al. (2022), and briefly reported in Section 3.4, for

time-independent models to time-dependent models. With the proposed framework, the

covariates can be used in two ways: for the background rate and for the expected number

of aftershocks. In the first case, it is possible to build an LGCP model with covariates and

use it as spatial variation of the background rate once normalized to integrate to one. This

offers a flexible approach to model the background rate and to incorporate many different

sources of information. In principle, the output from other models can also be incorporated

as a covariate. This ability increases the number of possible models that can be produced

with this approach. For example, if the output of a time-dependent model as the Coulomb

state-and-rate (Mancini et al., 2020) model is used as covariate, then the background rate

would be spatio-temporally varying. In the same way, PSHA maps can be used as spatial

variation of the background rate providing a way to incorporate that information into OEF

models.

The proposed approach also allows the inclusion of covariates in modelling the expected

number of aftershocks through a linear predictor. This provides a bridge between Hawkes

process models and the Generalized Linear Models (GLMs) framework. Indeed, the coeffi-

cients associated with the covariates have the same interpretation as in GLMs and the same

1https://github.com/edinburgh-seismicity-hub/spatio˙temporal˙ETAS˙for˙OEF/blob/main/

Colfiorito˙Example/utilities/Fore˙activity.gif
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model selection techniques can be applied. With this approach, we find out that incorporat-

ing the depth of the events is beneficial in terms of AIC and that deeper earthquakes seem

to generate fewer aftershocks according to parameter estimates. This is in accordance with

the analysis of Chiodi et al. (2021) who also used the depth as a covariate. A limitation of

this approach is that it assumes the depth to be known for each event, or fully determined

by the location as the mean strike, as it is done in simple regression models. A better model

would consider the depth as a random variable, as it is done for the magnitude. However,

doing so brings a series of difficulties that are beyond the scope of this paper. For example,

which depth distribution should be used? Is the depth distribution independent of space,

time, and magnitude? These questions do not have a clear answer, however, the proposed

approach can be extended to consider also the depth as random. This in fact can be done by

considering a 1D grid on the depth domain as it is done with the time if the depth distribution

is assumed to be independent of time and space. If one considers a depth distribution that

depends on the location then the spatial grid described in Section 6.2.4 should be extended to

be three-dimensional, and the computations can be carried out in the same way as described

in this thesis.

I also used the mean strike of the nearest fault as a covariate which also provides better

AIC than the basic model, however, the sign of the coefficient is uncertain. The uncertainty

may be larger than what it should be due to the fact that we have associated each event with

the nearest fault and we use a 2D representation of the fault. Using a 3D model to assign

each event to one fault and maybe be beneficial. Also using a different estimator of the strike

or different characteristics of the fault may provide deeper insights into the use of the fault

information. Another interesting covariate is the material of the lithosphere where the event

happened as shown in figure 6.6. In the same way, the use of temporally varying covariates

such as displacement data can be incorporated. Furthermore, structured and unstructured

random effects in the form of GMRF may be included in the model given the high level of

efficiency shown by inlabru in dealing with such effects. The approach can be extended

further by considering also other ETAS parameters as linear predictors which would enable

studying the effect of covariates on other aspects of the earthquake-generation process and

not only on the expected number of aftershocks.

An assumption of the model shown in this chapter that may limit the effect of the

covariates is that we consider an isotropic kernel. Many studies have criticized this hypothesis

which is particularly weak for large earthquakes (Hainzl et al., 2013; Grimm et al., 2022a). In

fact, the aftershock region usually reflects the rupture area induced by an event, and using an

isotropic spatial kernel means assuming that the rupture area is always circular with the event

in the center. This assumption can be relaxed by considering a more flexible spatial kernel

that accounts for the characteristics of the specific event. For example, we can consider a

Gaussian kernel with a correlation coefficient equal to zero (isotropic) if an event is below a

certain magnitude and different otherwise. Many other options are possible in this framework

and we intend to further extend our approach to allow for anisotropic spatial kernels.

The basic ETAS model with Gaussian isotropic kernel and spatially varying background

rate is used to produce forecasts that will be used in a collaborative study investigating

the advantages of building-specific sensors when performing real-time loss forecasting. The

forecasts are described in Section 6.4.6 which shows that the model in general underestimates

the number of events for the forecasting periods considered in the experiment but is able to

capture the spatial evolution of the number of earthquakes. This is encouraging because the

model considered here is among the most simple spatio-temporal ETAS models we could

consider and we can expect that models considering the information provided by available

covariates or models including an anisotropic spatial kernel would improve the forecasts.

The basic ETAS model considered in this chapter as well as models making use of available
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covariates would be submitted to the next Italian CSEP experiments and will be evaluated

prospectively against future data.

In conclusion, we have developed a bayesian framework to study the effect of covariates

on the number of aftershocks generated by an event in the spatio-temporal ETAS framework.

The approach can be used to build more complex models of seismicity and to include in the

model different sources of information. I plan to extend the approach to include models with

random effects in the form of GMRF and to include anisotropic spatial kernels. I am working

on including the spatio-temporal case in our ETAS.inlabru R-package, for the time being,

the code used is available at https://github.com/edinburgh-seismicity-hub/spatio˙

temporal˙ETAS˙for˙OEF.

This chapter concludes the part on modelling of seismicity with inlabru. The next

chapter is dedicated to the study of a fundamental statistical property that scoring functions

used to rank competing forecasts must have to provide trustworthy results. Being able to

express a preference toward a model (or hypothesis) is fundamental to enhancing our ability

to forecast future earthquakes. In fact, not only do we need methodologies facilitating

the process of including different hypotheses in a model such as the one proposed in this

chapter, but also reliable methods to validate these hypotheses against observed data and

select the ones providing better forecasts. We will see in the next chapter that models can

be ranked using scoring rules, and that different scoring rules apply different penalties and

provide different rankings. Nevertheless, any scoring rule used for this task has to have some

statistical properties to ensure that the validation is fair and the results trustworthy. One

of the most fundamental of these properties is for a score to be proper and I focus on this

property in the next chapter providing analytical and visual techniques to check if a score is

proper or not.
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Figure 6.15: Map reporting for each pixel the posterior median of the logarithm of the

expected number of background events (top-left), the expected number of aftershocks (top-

right), the expected total number of events (bottom-right), and the observed total number

of events (bottom-left) for the 2009 L’Aquila sequence obtained using the depth model.

Grey pixels indicate values below −10, while red stars indicate the locations of events with
magnitude above 5.
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Figure 6.16: Map reporting for each pixel the posterior median of the logarithm of the

expected number of background events (top-left), the expected number of aftershocks (top-

right), the expected total number of events (bottom-right), and the observed total number

of events (bottom-left) for the 2016 Amatrice sequence obtained using the depth model.

Grey pixels indicate values below −10, while red stars indicate the locations of events with
magnitude above 5.
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Figure 6.17: Median of the temporal intensity of aftershocks induced by an event of mag-

nitude 6 for different levels of depth for the 2009 L’Aquila sequence (left) and the 2016

Amatrice sequence (right).
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Figure 6.18: Temporal intensity of aftershocks induced by an event of magnitude 6 for the

2009 L’Aquila sequence (top-row) and the 2016 Amatrice seismic sequence (bottom-row).

The red line represents the median of the posterior distribution of the temporal distribution

of aftershocks, while the black lines represent. the 2.5% and the 97.5% quantiles of the

posterior distribution. The grey lines represent a sample of 500 elements from the posterior.

The plot show the posterior distribution for three levels of depth: 5 km (first column), 10

km (second column) and 15 km (third column).
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Figure 6.19: Influence of the depth on the linear predictor as a function of the depth, namely

γd(d), for the 2009 L’Aquila sequence (solid red) and the 2016 Amatrice sequence (dashed

blue).
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Figure 6.20: Median of the temporal intensity of aftershocks induced by an event of magni-

tude 6 for different levels of mean strike for the 2009 L’Aquila sequence (left) and the 2016

Amatrice sequence (right).
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Figure 6.21: Temporal intensity of aftershocks induced by an event of magnitude 6 for the

2009 L’Aquila sequence (top-row) and the 2016 Amatrice seismic sequence (bottom-row).

The red line represents the median of the posterior distribution of the temporal distribution

of aftershocks, while the black lines represent. the 2.5% and the 97.5% quantiles of the

posterior distribution. The grey lines represent a sample of 500 elements from the posterior.

The plot show the posterior distribution for three levels of mean strike: 120 (first column),

140 (second column) and 300 (third column).
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Figure 6.22: Influence of the mean strike on the linear predictor as a function of the mean

strike, namely γms(ms), for the 2009 L’Aquila sequence (solid red) and the 2016 Amatrice

sequence (dashed blue).

148



CHAPTER 6. SPATIO-TEMPORAL APPLICATION WITH COVARIATES 149

2009−04−06 2009−04−06 01:32:41 2009−04−06 02:37:05 2009−04−06 23:15:37 2009−04−07 2009−04−07 09:26:29 2009−04−07 17:47:38 2009−04−09 2009−04−09 00:53:00 2009−04−09 19:38:17 2009−04−13 2009−04−13 21:14:25

ob
se

rv
ed

m
ea

n
q0

.0
25

m
ed

ia
n

q0
.9

75

7070 7090 7110 7130 7070 7090 7110 7130 7070 7090 7110 7130 7070 7090 7110 7130 7070 7090 7110 7130 7070 7090 7110 7130 7070 7090 7110 7130 7070 7090 7110 7130 7070 7090 7110 7130 7070 7090 7110 7130 7070 7090 7110 7130 7070 7090 7110 7130

4650

4700

4750

4650

4700

4750

4650

4700

4750

4650

4700

4750

4650

4700

4750

Easting

N
or

th
in

g

−9

−6

−3

0

3

log(N)

Figure 6.23: Spatial distribution of the logarithm of the observed number of events (top-

row), and the logarithm of the mean, the 2.5% quantile, the median, and the 97.5% quantile

of the forecasted number of events for the 2009 L’Aquila seismic sequence. The reported

numbers are relative to the 24 hours after the dates reported in Table 6.4 and above each

column. The red stars indicate events with a magnitude above 5 in the 24 hours before the

forecasting date.
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Figure 6.24: Spatial distribution of the logarithm of the observed number of events (top-

row), and the logarithm of the mean, the 2.5% quantile, the median, and the 97.5% quantile

of the forecasted number of events for the 2016 Amatrice seismic sequence. The reported

numbers are relative to the 24 hours after the dates reported in Table 6.5 and above each

column. The red stars indicate events with a magnitude above 5 in the 24 hours before the

forecasting date.
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Chapter 7

Ranking earthquake forecasts using
proper scoring rules: Binary events in
a low probability environment

7.1 Introduction

This chapter includes a paper published on the Geophysical Journal International (Serafini

et al., 2022b) made in collaboration with the University of Bristol. The authors of the paper

are Francesco Serafini, Finn Lindgren, Mark Naylor, Maximilian Werner, and Ian Main. As

the first author, my contribution was to write the paper and the computer code needed for

the analysis and lead the review process until the final stage of the publication process.

The only way to increase our knowledge of the earthquake generation process is to

build models incorporating different hypotheses and test them against each observed data

and against each other. In principle, if a model incorporating a hypothesis does not work

better than its simpler version, we can reject the hypothesis. This can be done by running

forecasting experiments as the ones organized by CSEP (see Section 2.5). Each competing

model produces a forecast for a certain spatio-temporal region, then the models are ranked

based on observed data. The ranks are usually obtained via positively (or negatively) oriented

scores, where a score is simply a function of the forecast and the data. The higher (lower)

the score the better the model that produced the forecast. Different scores provide different

rankings based on different properties of the forecast. There can be scores accounting

only for the spatial, or temporal variability of earthquake occurrences, on the magnitude

distribution, or all of them together. Independently on the properties accounted by a score,

for the ranking to be trustworthy, the score needs to have some statistical properties. One of

the most important properties that a score needs to have is to be proper, where being proper

means that, on average, the model closer to the data-generating model receives the higher

(lower) score. Different scores employ different meanings of closer, which in turn determines

the ability of a score to distinguish between forecasts. Improper scores may favour models

far from the data-generating one, and we can not trust their rankings.

In this paper, the authors explore the notion of properness and the consequences of

using an improper score. We take as an example the parimutuel gambling score and we

prove that it is proper only when two forecasts are compared against each other, and it

is improper in all other situations. We prove that analytically and visually using simulated

data and comparing the rankings obtained with the parimutuel gambling score with two

proper alternatives: the Brier and Logarithmic scores. Using simulated data also allows

the retrieval of crucial information on the score performances and the ability to distinguish
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between models. We also show how to take into account uncertainty around the observed

score value and design a three-options (preference for the first model, preference for the

second model, not a preference) decision rule based on the confidence interval of the score

difference. This allows us, with simulated data, to calculate the probability of expressing a

preference for any given score, which can be seen as the power of a statistical test based on the

score under analysis. I believe that the study of these probabilities is crucial to understand

the capabilities of a score and can provide useful information on the experimental design

(e.g. amount of data needed to have a probability of expressing a preference above a certain

threshold, the number of bins to be considered if the space-time region is discretized, how the

score behaves in a low probability environment). We illustrate this for probabilistic forecasts

of binary events (e.g. probability of having more than one event with certain properties for

each spatio-temporal bin), but the simulation technique can be easily generalized to other

cases. This paper provides a further step in defining sanity checks for scoring rules, such

that, if a score is not reliable in simulated simple settings, it is not safe to use it on real data.

7.2 The paper

7.2.1 Abstract

Operational earthquake forecasting for risk management and communication during

seismic sequences depends on our ability to select an optimal forecasting model. To

do this, we need to compare the performance of competing models in prospective

experiments, and to rank their performance according to the outcome using a fair,

reproducible, and reliable method, usually in a low-probability environment. The

Collaboratory for the Study of Earthquake Predictability (CSEP) conducts prospec-

tive earthquake forecasting experiments around the globe. In this framework, it

is crucial that the metrics employed to rank the competing forecasts are ’proper’,

meaning that, on average, they prefer the data generating model. We prove that

the Parimutuel Gambling score, proposed, and in some cases applied, as a metric for

comparing probabilistic seismicity forecasts, is in general ‘improper’. In the special

case where it is proper, we show it can still be used improperly. We demonstrate

the conclusions both analytically and graphically providing a set of simulation based

techniques that can be used to assess if a score is proper or not. They only require

a data generating model and, at least two forecasts to be compared. We com-

pare the Parimutuel Gambling score’s performance with two commonly-used proper

scores (the Brier and logarithmic scores) using confidence intervals to account for

the uncertainty around the observed score difference. We suggest that using con-

fidence intervals enables a rigorous approach to distinguish between the predictive

skills of candidate forecasts, in addition to their rankings. Our analysis shows that

the Parimutuel Gambling score is biased, and the direction of the bias depends on

the forecasts taking part in the experiment. Our findings suggest the Parimutuel

Gambling score should not be used to distinguishing between multiple competing

forecasts, and for care to be taken in the case where only two are being compared.

7.2.2 Introduction

Probabilistic earthquake forecasts are used to estimate the spatial and/or temporal evolution

of seismicity and have potential utility during earthquake sequences, including those following

notable earthquakes. For example, they have been applied to forecast (pseudoprospectively)

the seismicity that followed the Darfield earthquake and in turn led to the 2011 Christchurch
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earthquake (Rhoades et al., 2016), and to monitor induced seismicity at Groningen (Bourne

et al., 2018). In Italy, earthquake probabilistic forecasts and ground-motion hazard forecasts

are produced on a regular basis by the Instituto Nazionale di Geofisica e Vulcanologia (INGV)

to inform the Italian government on the risk associated with natural hazard (Marzocchi et al.,

2014). INGV is working to use probabilistic forecasts as a basis for modelling important

quantities for operational loss forecasting such as the number of evacuated residents, the

number of damaged infrastructure, the number of fatalities (Iervolino et al., 2015). A wider

uptake requires further demonstrations of the operational utility of the forecasts, and in

presence of multiple alternative models, a fair and rigorous method to express a preference for

a specific approach is needed. The Collaboratory for the Study of Earthquake Predictability

(CSEP, see Jordan 2006; Zechar et al. 2010b; Schorlemmer et al. 2018) is a global community

initiative that seeks to make earthquake research more rigorous and open-science. This

is done by comparing forecasts against future data in competition with those from other

models through prospective testing in pre-defined testing regions. In this paper, we focus on

comparing different forecasts that can be made from such competing models in the light of

observed data.

In statistics, a common approach to compare probabilistic forecasts is the use of scoring

rules (Gneiting and Raftery, 2007). Scoring rules have been widely applied in many fields

of science to measure the quality of a forecasting model and to rank competing models

based on their consistency with the observed data and the degree of uncertainty around the

forecast itself. Much of the underlying methodology and concepts (such as what it means

to be a ”good” forecast) have been developed for weather forecasts (Murphy, 1993; Jolliffe

and Stephenson, 2003). A positively oriented scoring rule, to be effective, has to be proper,

which simply means that the highest score is achieved, on average, by the forecasting model

”closer” to the distribution that has generated the observations. Various meaning of ”closer”

can be used depending on the context and the use that will be made of the forecasting model

under evaluation, thus, a variety of proper scoring rules exists. Proper scoring rules are

mathematically appealing for a range of different tasks: they can be used as utility function

tailored to the problem at hand, they can be used as loss functions in parametric estimation

problems and they can be used to rank competing models based on different aspects of the

phenomenon under analysis (Rosen, 1996; Hyvärinen and Dayan, 2005; Hernández-Orallo

et al., 2012).

CSEP aims to compare the predictive performance of diverse earthquake forecasts in

a rigorous and reproducible fashion. The forecasts themselves are generated by underlying

physical, stochastic or hybrid models using a variety of input data such as past seismicity,

deformation rates, fault maps, etc (Field et al., 2014; Steacy et al., 2014; Bayliss et al.,

2020). The two most widely used types are alarm-based forecasts and probabilistic forecasts.

The first class of forecasts is usually expressed as a binary statement (”alarm” or ”not alarm”)

based on the value of a precursory alarm function. In contrast, probabilistic forecasts, as

intended in past CSEP experiments (Schorlemmer and Gerstenberger, 2007a), provide a

distribution for the number of earthquakes. They can be expressed as grid-based forecasts

(providing the expected number of events in each space-time-magnitude bin) or as catalogue-

based (providing a number of simulated catalogues, Savran et al. 2020). The forecasts are

variously compared using a suite of community-endorsed tests. Depending upon the forecasts

at hand, three common challenges are the need for a reference model, how to handle bins

(or regions) for which the forecaster didn’t provide a forecast and, the need to specify a

likelihood. The latter has been partially solved by the possibility of considering a pseudo-

likelihood (Savran et al., 2020).

Molchan diagrams (Zechar and Jordan, 2008) and the area-skill score (Zechar and Jordan,

2010) do not need a likelihood and can be used to compare both alarm-based and probabilistic
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forecasts together. However, they need a reference model for assessing the significance

of the results. This can be problematic because specifying a credible reference model is a

difficult task (Stark, 1997; Luen et al., 2008; Marzocchi and Zechar, 2011). Likelihood-based

tests (Schorlemmer et al., 2007a; Zechar et al., 2010a; Rhoades et al., 2011; Schneider

et al., 2014) allow for pairwise comparison without the need of a reference model, but

can only be applied to probabilistic forecasts. Further, methods for grid-based forecasts

rely on the Poisson assumption, which has been observed to be not realistic (Werner and

Sornette, 2008). Moreover, pairwise comparison may lead to paradoxical results like model

A is preferred to model B which is preferred to model C which is preferred to model A

(Zechar et al., 2013). Bayesian methods have been proposed (Marzocchi et al., 2012) but

they also rely on the Poisson assumption. Catalogue-based forecasts, can be evaluated

using a pseudo-likelihood approach (Savran et al., 2020) which does not rely on the Poisson

assumption and enable information gains and likelihood ratios to be used. However, the

latter are unbounded and sensitive to low-probability events, meaning that they can be unduly

influenced by a few observations (Holliday et al., 2005; Zechar and Zhuang, 2014). Lastly, in

past experiments such as the Regional Earthquake Likelihood Models (RELM) (Field, 2007),

forecasters did not provide a forecast for all bins, some of them were left as missing value; for

the methods outlined above, making a comparison is complex, given that considering only the

overlapping space-time-magnitude volume may be too restrictive and introduce unfairness in

the evaluation.

Zhuang (2010) and Zechar and Zhuang (2014) tried to overcome the difficulties outlined

above by introducing the parimutuel gambling score, which provides a framework to evaluate

different types of forecasts, with no need to explicitly specify a reference model or a likelihood,

and with the ability to handle missing values in an intuitive way. This approach is based on the

idea that alarm-based forecasts could be imagined as gamblers engaged in a game called the

seismic roulette, where Nature controls the wheel (Main, 1997; Kossobokov, 2004, 2006).

In this framework, the forecasters are the gamblers, a forecast consists of a collection of

probabilities for observable events (bets) like observing at least one earthquake in a specified

space-time-magnitude bin. Each bin represents a bet and the probability assigned by the

forecaster represents the amount of money wagered. The observations consist of binary

variables taking value 1 if the event occurs and zero otherwise. The forecaster gets a reward

depending on the forecasted probability and the actual observation of an event or not. The

forecasts are ranked based on their rewards. In this sense, the parimutuel gambling score is

a positively oriented score (the higher, the better) for binary probabilistic forecasts. In this

paper, we prove analytically and graphically that the parimutuel gambling score is not proper

in general but only in a specific situation and we compare its performance with two proper

alternatives: the Brier (Brier, 1950) and the logarithmic (Good, 1952) score.

The parimutuel gambling score has not been used systematically in CSEP, but it has been

used to evaluate global forecasts (Taroni et al., 2016) and forecasts for Italy (Taroni et al.,

2014, 2018) in situations where the score is improper. In the context of Italy, it has also been

used in combination with two other scores to weight different source and ground motion

models in the new Italian seismic hazard ensemble model (MPS19, Meletti et al. 2021).

Furthermore, the parimutuel gambling score was mentioned by Schorlemmer et al. (2018) as

a new method for evaluating earthquake forecasts without any warning about possible biases.

We use the parimutuel gambling score to illustrate different techniques to assess if a score

is proper, both analytically and graphically. We find that the parimutuel gambling score is

proper only in a specific situation, and event then, it can be used improperly. This finding is

emblematic of how much care should be taken in checking if (and when) a metric is proper.

To fairly compare the performance of the scores in a realistic framework, we use simu-

lated data from a known model and we compare it with alternative models. In doing that, it
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is crucial to account for the uncertainty in the observed score difference. In fact, properness

ensures that, at least on average, the scoring rule provides the correct ranking. However,

the score calculated from any finite set of observations could be far from its average and,

therefore, we need to account for uncertainty. In this paper, we show how to express a pref-

erence towards a model using confidence intervals for the expected score difference. This

method introduces the possibility of not expressing a preference. Considering this outcome is

potentially useful because it indicates that, for a scoring rule, the forecasts have similar per-

formances, or the data are not enough to distinguish between models, or the bins’ dimension

is offset (too large or too small).

In summary, the main goal of this article is to present the notion of proper scoring rules

for probabilistic forecasts of binary events: why is it crucial for a scoring rule to be proper?

How can we verify if a score is proper or not? And, how do different scores penalize the same

forecast differently? In Section 7.2.3 we define a proper and a strictly proper scoring rule,

introduce the Brier and log scores as examples, and give a brief proof of their propriety. We

also show how differently forecasts close to zero are penalized by the two scores. In Section

3, we introduce the parimutuel gambling score and analytically explore its improperness in

the context of a forecast for a single bin. If a score is proper for single bins, then, the average

score of different bins is also a proper score (Gneiting and Raftery, 2007). In Section 7.2.5,

we generalise to the case where we have multiple bins but with the same probability, Multiple

Bins Single Probability. This case is equivalent to considering the activity rate in each bin

as independent and identically distributed. This is a significant assumption but allows us to

calculate analytically the confidence intervals and the probability of expressing a preference

for a given model. We generalise further to the case in which we have multiple bins but

with a different probability for each bin, Multiple Bins Multiple Probabilities. In this case, we

do not have analytical results and we are required to use approximate confidence intervals

and simulations to calculate the probability of expressing a preference. These simulations

are now close to a real forecast scenario. We illustrate this case using simulations from the

time-independent 5 year adaptively-smoothed forecast for Italy (Werner et al., 2010). We

choose this model because the adaptively-smoothed approach performed well across multiple

metrics in the RELM experiment (Zechar et al., 2013) and, as a result, was incorporated

into the California seismic hazard map produced by the third Uniform California Earthquake

Rupture Forecast model (UCERF3, Field et al. 2014).

7.2.3 Proper Scores

Scoring rules quantify the quality of probabilistic forecasts, allowing them to be ranked. The

quality depends on both the predictive distribution, produced by the model in true prospective

mode, and on the subsequent observations. A scoring rule is a function of the forecast and the

data measuring two factors: the consistency between predictions and observations and the

sharpness of the prediction. Consistency assesses the calibration of the model, how well the

forecast and the data agree, and is a joint property of the forecast and the data. Sharpness is

a measure of the forecast uncertainty and is a property of the forecast only. Different scoring

rules measure the consistency and the sharpness of a forecast differently. As in (Gneiting and

Raftery, 2007), we call S(P |x) the score for forecast P given the observation x . In general,
we use capital letters for random variables, lowercase letters for scalar quantities such as

realizations of a random variable (everything that is not random) and bold letters represents

vectors. The only exception is N which represents the number of bins.

Thus, a scoring rule, given a forecast P , is a function of the observation only S(P |·) :
X → [−∞,∞] where X is the set of all possible values of x . For consistency, we will use a
positively orientated convention, where a larger score indicates a better forecast. Assuming
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that the observations are samples from a random variable X ∈ X with true distribution Q,
the score S(P |X) is a random variable itself, since it is a function of the random variable X.
We define SE(P |Q) as the expected value of the scoring rule under the true distribution Q:

SE(P |Q) = EQ[S(P |X)]. (7.1)

A positively oriented scoring rule S is said to be proper if, for any forecast P and any true

distribution Q, SE(Q|Q) ≥ SE(P |Q) holds. It is said to be strictly proper if SE(Q|Q) =
SE(P |Q) if and only if P = Q. Propriety is essential, as it incentivises the assessor to be

objective and to use the forecast P ”closer” to the true distribution Q. Different scoring

rules rely on different meanings of closer. Also, proper scores can be used as loss functions

in parameter estimation; in fact, since the likelihood assigned by a model to the observations

can be seen as a proper scoring rule, the maximum likelihood estimator can be viewed as

optimizing a score function (Huber, 1992). Investigating the ability of a score of distinguishing

between different instances of the same model (with different parameters values) may bring

insight regarding parameters identifiability.

Here, we are interested in scoring rules for binary variables, in which the variable X can

be only 0 or 1, namely X ∈ {0, 1}. Grid-based earthquake forecasts divide the region of
interest into regular space-time-magnitude bins (e.g. the spatial region is divided in bins of

0.1 × 0.1 degrees, the magnitude by 0.1 magnitude units, and the time is one 5-year bin),
and the forecasters estimate the expected number of earthquakes per bin. In this case, for

example, the binary variable might be 0 for empty bins and 1 if at least one event occurs.

The forecasts may be ranked based on the average score across different bins (Zechar et al.,

2013).

Considering a single bin, for grid-based binary forecasts, where both the forecast P and

the true distribution Q are specified by just one number: the probability of X being 1. We

call p the probability assigned to the event X = 1 by the forecaster, and p∗ denotes the true

probability. Thus, the expectation is given by

SE(P |Q) = SE(p|p∗) = p∗S(p|1) + (1− p∗)S(p|0). (7.2)

A scoring rule of this type is proper if, for any p ∈ [0, 1] and any p ∈ [0, 1], we have

SE(Q|Q) ≥ SE(P |Q).

The properness of a score ensures that given two models p1, p2, the model with the

greatest expected score SE(pi |Q) is the closest to the true p∗. This notion can be generalized
to rank a set of k forecasts p1, ..., pk according to their expected scores.

Two of the most widely used strictly proper scoring rules, for binary data, are the Brier

(or quadratic) score (Brier, 1950) and the logarithmic score (Good, 1952). These are good

candidates for evaluating this class of earthquake forecasts. Here we give the definitions of

these two scores, including brief proofs of their propriety.

Brier Score

The positively oriented Brier score (Brier, 1950) for a categorical variable X (the binary case

is obtained considering only two possible outcomes) can be defined by:

SB(P |x) = −
∑
z∈X
[p(z)− I(z = x)]2, (7.3)
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where X is the set of possible outcomes, p(z) is the forecasted probability of the event
X = z , and I(z = x) is an indicator function assuming value 1 if z = x and 0 otherwise.

This definition differs from the original only in the sign, since the original Brier score is

negatively oriented.

The ordinary Brier score for binary events is the special case X = {0, 1}, with p = p(1)
and 1− p = p(0):

SB(p|x) = −[(1− p)− (1− x)]2 − (p − x)2 = −2(p − x)2 =

{
−2(p − 1)2, x = 1,

−2p2, x = 0,

which has expectation

SEB(p|p∗) = −2p∗(p − 1)2 − 2(1− p∗)p2 (7.4)

under the true event probability p∗. Taking the derivative with respect to p and imposing it

equal zero, we find that the value p = p∗ uniquely maximizes the function SEB(p|p∗) which
proves that the Brier score is strictly proper.

Logarithmic Score

The logarithmic (log) score for binary event forecasts is defined as

SL(P |x) = ln pP (x). (7.5)

For X = {0, 1}, the expectation is

SEL (p|p∗) = p∗ ln(p) + (1− p∗) ln(1− p), (7.6)

which, once differentiated with respect to p and set equal zero to identify the maximum,

proves that also the log score is strictly proper.

Score Comparison

Given an observation x , to express a preference between two forecasts p1 and p2, an important

quantity is the score difference ∆.

∆(p1, p2, x) = S(p1|x)− S(p2|x) =

{
S(p1|0)− S(p2|0) with prob 1− p∗,
S(p1|1)− S(p2|1) with prob p∗.

For example, in the case of the Brier score we have

∆B(p1, p2, x)

{
−2(p21 − p22) when x = 0,

−2[(1− p1)2 − (1− p2)2] when x = 1,
(7.7)

while in the case of the log score

∆L(p1, p2, x)

{
log(1−p11−p2 ) when x = 0,

log(p1p2 ) when x = 1.
(7.8)

In principle, if the expected value of ∆ is positive we tend to prefer the first forecast, vice

versa if it is negative. Considering the observation as a Bernoulli random variable X ∼
Ber(p∗), the difference ∆(p1, p2, X) is also a binary random variable, assuming the values
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∆0 = ∆(p1, p2, 0), ∆1 = ∆(p1, p2, 1) with probabilities 1 − p∗ and p∗. The distribution of
∆(p1, p2, X) is therefore completely determined by the distribution of X:

∆(p1, p2, X) = X∆1 + (1−X)∆0 = ∆0 +X(∆1 − ∆0). (7.9)

It follows that the expected value and variance of ∆(p1, p2, X) are determined by the prop-

erties of X:

E[∆(p1, p2, X)] = ∆0 + E[X](∆1 − ∆0) = ∆0 + p∗(∆1 − ∆0) (7.10)

V[∆(p1, p2, X)] = V[X](∆1 − ∆0)2 = p∗(1− p∗)(∆1 − ∆0)2 (7.11)

We can give an alternative definition of the properness based on the random variable

∆(p1, p2, X). In fact, a scoring rule S is said to be proper if EX [∆(p, p∗, X)] ≤ 0 when
p ̸= p∗, no forecast have an expected score higher than the data generating model p∗.

However, they can achieve the same score. S is strictly proper if EX [∆] = 0 if and only if
p = p∗, the highest score, on average, is achieved only by the data generating model. The

definition implies, also, that proper scoring rules are invariant under linear transformations,

in the sense that, a linear transformation of a proper score yields another proper score and

the operation does not change the ranking.

Figure 7.1 reports the expected score difference between a candidate forecast p and the

true value p∗ = 0.001 using the Brier and the log score. The value p∗ = 0.001 was chosen

to be comparable to the estimated probability of having an event with magnitude greater

than 5.5 calculated the days before the L’Aquila earthquake in the neighbourhood of where

it struck (Fig. 4 in Marzocchi and Lombardi 2009). To enable a visual comparison, the

expected Brier score values have been normalized to match the curvature of the log score

when p = p∗. This is done by multiplying the expected Brier score values by the ratio of the

second derivatives of the two expected scores calculated at p = p∗. The proper score scale

invariance ensures that the ranking obtained using the original and normalized version of the

Brier score is unchanged.

Both expected score differences are uniquely maximized at p = p∗ which means that the

forecast matching the true probability has the highest expected score. This is an easy way to

assess if a scoring rule for binary outcomes is proper or not. Furthermore, Figure 7.1 offers

an example of how different scores penalize differently the same forecasts. The log score is

asymmetric and takes into account the relative differences between the forecasts (equation

7.8), and if p∗ ̸= 0 the expected score for p = {0, 1} is −∞. The log score is analogous to
a likelihood score, and brings the same properties: a model which is correct in all the bins

but one for which it provides zero probability will have the worst possible score. The Brier

score, instead, considers the absolute difference between forecasts (equation 7.7) resulting in

a symmetric distribution For example, using the Brier score, a forecast p = 0 will be preferred

to any forecast in (2p∗, 1), for any p∗ < 1/2.

The choice of score, and consequently the style of penalty, should reflect the task at

hand. Predicting p = 0, 1 means that we are absolutely certain about the outcome of

X. If the forecasts under evaluation are planned to be used in an alarm based system, for

which an alarm is broadcasted if the probability is above or below a certain threshold, being

overconfident may put lives at risk and perhaps the log score would be the right choice in

this situation. On the other hand, the Brier score may be suitable when such a strict penalty

is not desirable (e.g., to calculate the weights of an ensemble model as done by Taroni et al.

2018 and Meletti et al. 2021). This example illustrates the flexibility of proper scores and

how important it is to choose the right one depending on the purposes of the forecast under

evaluation.
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Figure 7.1: Differences in the scores expected value for a generic value of the forecast p and

the optimal forecast p = p∗, namely E[∆] = SE(p|p∗)− SE(p∗|p∗), in the case p∗ = 0.001.
Panel (a) p ∈ (0, 0.006], Panel (b) p ∈ (0, 1). The expected Brier score have been normalised
to match the curvature of the log score when p = p∗.

7.2.4 Improper scores

Scores which are not proper are called improper. Being improper means that a model may

exist with expected score greater than the data generating model. In the specific case

of probabilistic forecasts for binary events, a score is improper if it is biased towards models

which systematically under/overestimate the true probability p∗. In the context of earthquake

forecasting experiments we do not know the true value of p∗. Therefore, it is crucial to use

proper scoring rules for which we are sure that, at least on average, they will prefer the closest

model to the data generating one. Improper scoring rules do not have this property, which

implies that the smallest or the largest (or any other) forecast, on average, could achieve the

highest score. This is in clear contrast with the aim of any forecasting experiment. Below,

we demonstrate that the parimutuel gambling score (Zhuang, 2010; Zechar and Zhuang,

2014) is an example of a scoring rule which is proper only in a specific situation and not in

general.

Definition of the parimutuel gambling score

The parimutuel gambling score was designed to rank forecasting models for binary events and

was applied to rank earthquake forecasting models in CSEP experiments (Taroni et al., 2018;

Zechar and Zhuang, 2010). Initially, it was used to compare models against a reference model

(Zhuang, 2010), which is improper. Later, it was generalized to compare models against

each other simultaneously (Zechar and Zhuang, 2014), the case with only two players is the

special case for which the score is proper, all the others are not. The score is based on a

gambling scheme in which the forecasting models play the role of the gamblers and, for each

observation, they obtain a reward proportional to the probability assigned by the gambler to

the event occurring. In particular, it is a zero-sum game, in the sense that bids and rewards

in each bin sum to zero, which makes the parimutuel gambling score relative to one forecast

dependent on the other forecasts.

159



160 7.2. THE PAPER

In contract to the Brier and log scores, it is not possible to define the parimutuel gambling

score using the form S(p|x) because it needs at least two forecasts to be evaluated and is a
function of them all. Given a set of k forecasts p = (p1, ..., pk), we define SG(p|x) as the
vector such that the i-th component, SG,i(p|x), is given by the parimutuel gambling score
of the i-th forecast, given x has been observed. In the case of the Brier and log score the

components of the vector S(p|x) are defined independently, in the case of the parimutuel
gambling score they have to be defined jointly. Let p̄ be the average probability involved in

the gambling scheme, namely p̄ =
∑k
i=1 pi/k . The parimutuel gambling score relative to the

i-th forecast is defined as

SG,i(p|x) =

{
pi
p − 1, x = 1,
1−pi
1−p − 1, x = 0.

The above expression is a zero-sum game, meaning that
∑
i SG,i(p|x) = 0, therefore the

rewards may be positive or negative. Each gambler obtains a positive reward if and only if

they assign a greater probability to the observed event than the average gambler involved in

the game. Vice versa, the reward is negative if the probability is smaller.

The expected value with respect the true probability p∗ is given by

SEG,i(p|p∗) = p∗
(
pi
p̄
− 1
)
+ (1− p∗)

(
1− pi
1− p̄ − 1

)
,

=
p∗pi
p̄
+
(1− p∗)(1− pi)

1− p̄ − 1,

=
(pi − p̄) (p∗ − p̄)

p̄(1− p̄) . (7.12)

Equation (7.12) is the same as equation (5) in (Zechar and Zhuang, 2014). The denom-

inator involves all the probabilities in the game which demonstrates the interdependence with

all other forecasts and complicates the study of the derivatives. However, it is still possible

to prove that the gambling score is strictly proper when k = 2. In this case, p = (p1, p2),

and

4p̄(1− p̄)SEG,1(p|p∗) = 4
(
p1 −

p1 + p2
2

)(
p∗ −

p1 + p2
2

)
,

= (p1 − p2) (2p∗ − p1 − p2) ,
= − [(p1 − p∗)− (p2 − p∗)] [(p1 − p∗) + (p2 − p∗)] ,
= (p2 − p∗)2 − (p1 − p∗)2.

The expected reward of the first modeler is non-negative when |p1−p∗| ≤ |p2−p∗|, implying
that p1 is favoured over p2 if it is closer to the true probability p

∗. In fact, if p2 = p∗

then, SEG,1(p|p∗) ≤ 0, with the equality verified only for p1 = p∗. Furthermore, the expected
gambling score in this case is proportional to the expectation of the corresponding Brier score

differences ∆B = S
E
B(p1|p∗)−SEB(p2|p∗), thus, they produce, on average, the same rankings.

Improper use of proper score

When comparing forecasting models, ensuring that the score is proper may not be sufficient.

It also has to be used properly. The gambling score with k = 2 offers a nice example of this

situation. We have demonstrated that the parimutuel gambling score is proper when k = 2,

however, the dependence of the score value on all the forecasts involved in the comparison is

a source of bias. In fact, SEG,1(p|p∗) ≥ SEG,2(p|p∗) when p1 is closer to p∗ than p2, however,
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Figure 7.2: Expected value of the parimutuel gambling score (k = 2), SEG,1(p|p∗), varying
p1 ∈ (0, 0.004), p2 = {p∗, 2p∗, 4p∗} (a) and p2 = {p∗, p∗/2, p∗/4}(b). The solid vertical
line represents the true probability p∗ = 0.001. The expected scores have been normalized

so that their minimum is equal to -1.

p1 = p∗ does not maximize SEG,i(p|p∗) as shown in Figure 7.2. This means that the score
becomes biased when we rank forecasts based on the score difference against a reference

model.

Formally, we are considering pairwise vectors p1 = (p1, p0), p2 = (p2, p0), etc., where p0
is the reference model. For each of these we can estimate pairwise comparison score vectors

SG(p1|x), SG(p2|x), and so on. The first component of each vector, namely SG,1(p1|x),
SG,1(p2|x), etc, represents the score of p1 and, respectively, p2 against the reference model
p0. At this point, one would be tempted to rank the models based on SG,1(p1|x) and
SG,1(p2|x), and this is the approach taken in Taroni et al. (2014) in which the official
national time-independent model (Gruppo di Lavoro, 2004b) is used as reference model.

If the parimutuel gambling score is used to rank forecasts based on the score difference

relative to a reference model, it will not reliably favour the model closest to the true one,

and the size of the bias will depend on the choice of the reference model. For example, in

Figure 7.2a, for p2 = 0.004, the gambling score is maximized at p1 = 0. This means that if

the reference model is p0 = 0.004, the overconfident forecast p1 = 0 would be favoured by

the ranking even if another forecast is perfect, e.g. p3 = p
∗. This problem can be particularly

relevant in operational seismology where it is common for candidate forecasts to be compared

against a reference model which is known to be based on simplistic assumptions (for example

a homogeneous Poisson process).

Hereon, the term pairwise gambling score refers to the comparison against a reference

model as described in this section, while the term full gambling score will refer to the case

where the forecasts compete directly against each other as we describe in the next section.

Using this terminology, the full gambling score with k = 2 is the only proper score.
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Figure 7.3: Expected gambling score differences (k = 3) between p1 and p2, S
E
G,1(p|p∗) −

SEG,2(p|p∗), as a function of p1 ∈ (0, 0.004), p2 = p∗ = 0.001 (vertical line), and p3 ∈
{p∗, p∗/2, p∗/3} (a) and p3 ∈ {p∗, 2p∗, 3p∗} (b) .

Improperness of the multi-forecast gambling score for k ≥ 3

The generalized version of the full parimutuel gambling score, as presented in Zechar and

Zhuang (2014), for k ≥ 3 is improper. For example, when k = 3 and p2 = p∗, following

equation 7.12 the difference between the expected score for p1 and p2 is given by

3p̄(1− p̄)[SEG,1(p1, p∗, p3|p∗)− SEG,2(p1, p∗, p3|p∗)] = 3(p1 − p∗)(p∗ − p̄)
= (p1 − p∗)(2p∗ − p1 − p3),

with both sides scaled by the common factor 3p̄(1−p̄). This means that when 2p∗−p3 ≥ p1,
the forecast p1 will have a positive score for any p1 ≥ p∗. Any value of p1 ∈ [p∗, 2p∗ − p3]
will be preferred to p2 that is equal to p

∗. When 2p∗ − p3 ≤ p1, with the same reasoning,
p1 is preferred over p2 = p

∗ in the interval [2p∗ − p3, p∗].
In Figure 7.3 we consider k = 3, p∗ = p2 = 0.001 and report the difference between

the expected scores of p1 and p2, namely S
E
G,1(p|p∗)−SEG,2(p|p∗), for different values of p3.

The expected score difference is not maximize at p1 = p∗, which means that the score is

biased, and the ”direction” of the bias depends on p3 being greater than or equal to p
∗.

Consider k > 3 gamblers who propose probabilities p = {p1, ..., pk}. It is helpful to
consider the vector of probabilities that excludes the first component; we name this p−1 =

p/{p1} and its mean p̄−1. Assuming p2 = p∗, thus p = (p1, p∗, ..., pk), we have that

kp̄(1− p̄)[SEG,1(p|p∗)− SEG,2(p|p∗)] = k(p1 − p∗)(p∗ − p̄),
= (p1 − p∗)[kp∗ − p1 − (k − 1)p̄−1],

from which we conclude that the expected score difference is positive when p1 ∈ [kp∗ −
(k − 1)p̄−1, p∗] or p1 ∈ [p∗, kp∗ − (k − 1)p̄−1], depending on if p∗ ≷ p̄−1. Specifically, when
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Figure 7.4: Expected gambling score differences (k ∈ {3, 5, 10, 20}) between p1 and p2 as
a function of p1 considering p2 = p∗ = 0.001 (vertical line). The averageof the forecast

probabilities (excluding the first forecast) is the constant p̄−1 = p
∗/2 (a) and p̄−1 = 2p

∗ (b).

p∗ > p̄−1 (Figure 7.3a) the first gambler is encouraged to bet on a p1 > p∗ and vice versa

when p∗ < p̄−1 (Figure 7.3b). Furthermore, p
∗ is always an extreme of the interval where

the expected score difference is positive. Considering p̄−1 as fixed, the length of the interval

is an increasing function of the number of gamblers k (Figure 7.4) which means that the size

of the set of forecasts capable of obtaining a score value higher than the data generating

model is an increasing function of the number of forecasts involved in the comparison. It

is clear that the multi-forecast parimutuel gambling score favours models that are contrary

to the average of the other forecasts. This could be particularly dangerous when evaluating

the performance of earthquake forecasting models. For example, the trigger for an alarm

being broadcast (or not) is often defined when the probability of having an earthquake above

a certain magnitude exceeds a specified threshold. Using a model chosen looking at the

full parimutuel gambling score could therefore lead to broadcasting alarms when they are

not needed (p ≫ p∗, ’crying wolf’, Figure 7.4a) or not broadcasting an alarm when needed

(p ≪ p∗, providing ’false reassurance’, Figure 7.4b).

The root of the problems with this score is that the score, relative to a candidate forecast,

explicitly depends on the other forecasts. This design brings two problems: (i) the score,

even in the special case when it is proper, can be used improperly and (ii) the score is never

proper when considering more than two models. The Brier and log scores do not suffer

from the same problem since the score of a forecast depends only on the forecast and the

observation. Furthermore, the improperness demonstrated here can be expressed in terms

that show that the gambling metaphor is part of the problem: If the outcome x = 0 is

likely (e.g. p∗ = 0.001) and the majority of the forecasts have too large probabilities, then

the expected gain is higher for an overconfident forecast, p ≪ p∗, since that will give the

forecaster a larger share of the total payout.
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7.2.5 Forecasting across multiple bins

Until now, we have analysed the expected score for a single bin, here we analyse the ability to

express a preference between two forecasts using the average score across multiple bins. We

assume to have access only to one observation xi ∈ {0, 1} per bin . We analyse extensively
the case in which the probability of observing xi = 1, is the same for each bin, p

∗
i = p∗

for any i = 1, ..., N. We refer to this as the Multiple Bins Single Probability case; the only

quantity of interest is p∗ and a forecast is represented by a single value p. Even though,

the Multiple Bins Single Probability case is clearly unrealistic in practice, it builds the basic

concepts we will then use to explore the Multiple Bins Multiple Probabilities case where the

probability of observing xi = 1 is potentially different for each bin.

Considering multiple bins, we observe a realization of the random variable Xi ∼ Ber(p∗i )
for i = 1, ..., N. A forecast is given by the vector p = (p1, ..., pN) specifying the probability of

Xi = 1 for each bin. Following the terminology in the literature regarding Bernoulli random

variables, the event Xi = 1 is referred to as a success. The quantity XS =
∑
i Xi is therefore

referred as the sum of the observations or the number of successes or the number of active

bins.

Given an arbitrary scoring rule S(p|X), the average score associated with the forecast p
is given by:

S(p|X) =
1

N

N∑
i=1

S(pi |Xi).

The quantity S(p|X) is a random variable itself, because it is a function of random variables
X. To compare two forecasts p1 and p2, we study their score difference:

∆(p1,p2,X) =
1

N

(
N∑
i=1

S(p1i |Xi)−
N∑
i=1

S(p2i |Xi)

)
,

=
1

N

N∑
i=1

∆(p1i , p2i , Xi).

The quantity ∆(p1,p2,X) is also a random variable as it too depends on the vector of

random variables X. If S(p|X) is a proper scoring rule, and if the expected value of the score
difference is positive, namely E[∆(p1,p2,X)] > 0, the forecast p1 is ”closer” to the true
p∗ than the alternative forecast p2. The expected value should be considered with respect

the distribution of the observations X. However, we do not observe the full distribution -

we only observe a sample (i.e. we observe the quantity ∆(p1,p2, x) which is a realization of

the random variable ∆(p1,p2,X)). Even if the expected score difference E[∆(p1,p2,X)] is
positive, which means that we should express a preference for the first forecast, the observed

score difference ∆(p1,p2, x) may be negative and lead to the opposite conclusion. To avoid

this problem we need to account for the uncertainty around the observed ∆(p1,p2, x) which

is the point estimate of the expected score difference E[∆(p1,p2,X)].

The distribution of score differences - Multiple Bins Single Probability

For the Multiple Bins Single Probability case, the observation in each bin is a binary random

variable Xi ∼ Ber(p∗), i = 1, ..., N. Given an arbitrary scoring rule S(p|X) and two candidate
forecasts p1 and p2, the score difference for the i-th bin is a discrete random variable with
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distribution:

∆(p1, p2, Xi) =

{
∆0 = S(p1|0)− S(p2|0) with probability 1− p∗,
∆1 = S(p1|1)− S(p2|1) with probability p∗.

The forecasts are ranked based on the average score difference across all bins:

∆(p1,p2,X) =
1

N

N∑
i=1

∆(p1, p2, Xi),

=
1

N

N∑
i=1

(∆0 +Xi(∆1 − ∆0)) ,

= ∆0 +
XS
N
(∆1 − ∆0),

where, XS =
∑
i Xi is the sum of all observations or, equivalently, the total number of

successes. By definition, XS is the sum of N (assumed to be) independent and identically

distributed Bernoulli trials Xi . Therefore, XS has a Binomial distribution with size parameter

N, the number of bins, and probability parameter p∗. When we observe a sample x1, ..., xN ,

the observed score difference is given by:

∆(p1,p2, x) = ∆0 +
xS
N
(∆1 − ∆0),

where xS is a realization of the random variable XS. The observed score difference depends

on the observations only through the quantity xS/N. Thus, it is enough to study the quantity

xS/N to make inference about the expected value of the score difference. The quantity xS/N

it is said to be sufficient (Fisher, 1922) with respect to the expected score difference because

it contains all the information provided by the observations x1, ..., xN on the parameter of

interest (in this case, the expected score difference E[∆(p1, p2, X)]). For an introduction to
statistical inference and the theory behind we refer to Schervish (2012); Hastie et al. (2009).

Confidence Intervals for the Expected Score Difference

A way to account for the uncertainty around the observed score difference is to consider an

interval estimate of the expected value of the score difference. Once a sample x = x1, ..., xN
has been observed and the confidence interval calculated, if the entire interval lies above zero

we express a preference towards p1, alternatively if it lies below zero we express a preference

towards p2. If the interval contains the value zero we conclude that the observed sample

does not contain enough information to express a preference. It is important to consider

the latter case as a possible outcome because it is an indication that we need to collect

more data or that the forecasts perform similarly (as measured by the score) and provide an

additional information than the pure rankings.

We are considering the confidence interval for the expected value of the score difference:

E[∆(p1, p2,X)] = ∆0 +
E[XS]
N
(∆1 − ∆0),

= ∆0 + p
∗(∆1 − ∆0). (7.13)

Having an observation x = x1, ..., xN per bin, the point estimate of E[∆(p1, p2, X)] is the
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observed score difference:

∆(p1, p2, x) = ∆0 + p̂(∆1 − ∆0), (7.14)

where p̂ = xS/N is the observed probability of success. Comparing the equations 7.13 and

7.14, the point estimate of the score difference is retrieved plugging in the point estimate of

the probability of success p̂ in place of p∗. In the same way, to retrieve an interval estimate

of the expected score difference is sufficient to retrieve an interval estimate of the probability

of success p∗.

Therefore, we need the confidence interval of level α for the true probability p∗ given

observations x1, ..., xN from a Ber(p
∗), namely CIp∗(α) = (p̂L, p̂U), and plug those values

into expression 7.14 to obtain a confidence interval for E[∆(p1, p2, X)], namely CI∆(α) =
(∆L,∆U). Various methods have been found to estimate p̂L and p̂U , most of them relying on

a Gaussian approximation. However, this approximation is not reliable for small sample sizes

(number of bins N) and for values of p∗ close to zero or one, as in our case (Wallis, 2013).

Hereafter, we use the Clopper-Pearson confidence interval (Clopper and Pearson, 1934).

This method is referred to as exact because it relies on cumulative binomial probabilities

rather than an approximation and is therefore more efficient and accurate than simulation

based methods. The confidence interval with level α for p̂ is given by:

pL(α) = BetaQ(
α

2
; xS, N − xS + 1),

pU(α) = BetaQ(1−
α

2
; xS + 1, N − xS),

where the function BetaQ(q; a, b) is the q-th quantile of a Beta distribution with parameters

a and b. We can construct confidence intervals for E[∆(p1, p2,X)] as follows:

∆L = ∆0 + p̂L(∆1 − ∆0),
∆U = ∆0 + p̂U(∆1 − ∆0).

The obtained confidence interval for p∗ depends on the data only through the sum of

the observations xS, which is a sufficient statistic for the problem. Similarly, the confidence

interval for E[∆(p1, p2,X)] depends on the data through the value of the sufficient statistic,
xS.

Figure 7.5 shows the confidence interval for the score difference as a function of the sum

of observations xS considering two competing forecasts p1 = 0.001, p2 = p1/3, a reference

model for the pairwise gambling score p0 = 5p1 and N = 10, 000 bins. Here, we do not need

to choose a value for p∗. Indeed, the confidence interval is determined solely by the forecast

and observation. The Brier, log and full gambling score(Figure 7.5a, 7.5c, 7.5d) all express a

preference for p1 if we observe xS > 12, while they express a preference for p2 when xS < 2.

This result is expected because p1 > p2, which means that xS > 12 is much more probable

under p1 than p2. In fact, the average number of successes using p1 is Np1 = 10 while

Np2 = 3.34. The same reasoning applies when we express a preference for p2 (xS < 2).

The pairwise gambling score (Figure 7.5 (b)), instead, requires xS > 24 to express a

preference for p1 and xS < 9 to express a preference for p2. It is heavily biased toward the

forecast closer to zero. In fact, when p1 is the true probability, the probability of observing

xS > 24 is less than 0.0001 and the probability of observing xS < 9 is 0.33. Therefore, we

are more likely to express a preference for p2 than for p1, even when p1 = p
∗. This reinforces

the problems with employ improper scores introduced in Section 7.2.4.
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Figure 7.5: Confidence interval (shaded area) and point estimate (black solid line) for E[∆]
as a function of the number of observed successes xS considering p1 = 0.001, p2 = p1/3,

p0 = 5p1 and N = 10000. In each plot shows a different score: (a) Brier score; (b) pairwise

gambling score; (c) logarithmic score; (d) full gambling score. Black solid line represents

the observed score difference while the orange area represents the confidence interval. The

black vertical dashed lines represent the interval of values of xS for which we do not express

a preference
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Table 7.1: Multiple Bins Single Probability case: table reporting the values xmin and xmax
for the Brier, log, pairwise gambling (PG) and full gambling (FG) score. The reported values

refers to the case where N = 10, 000, p1 = 0.001, p2 = p1/3 , and do not depend on p
∗.

Score xmin xmax

Brier 2 12

Log 2 11

PG 9 24

FG 2 12

Preference Probabilities

The confidence interval for the expected score difference, CI∆(α), is a function of the com-

peting forecasts, the scoring rule and depends on the data only through the sum of the

observations xS =
∑
i xi . In particular, there are a range of values (between the dashed lines

in Figure 7.5) of xS for which we are not able to express a preference. We refer to this

interval as (xmin, xmax). With respect to the sum of the observations xS there are only three

possible outcomes:

xS < xmin −→ preference for p2,
xmax ≤ xS ≤ xmax −→ no preference,

xS > xmax −→ preference for p1.

The values xmin and xmax are determined solely by p1, p2, the number of bins N and the

scoring rule. Table 7.1 reports the values of xmin and xmax for the scoring rules depicted in

Figure 7.5. These values can be used to compute the preference probabilities once a value

for p∗ is assumed. Indeed, in the Multiple Bins Single Probability case, the distribution of

XS is a Binomial distribution, XS ∼ Bin(N, p∗). Table 7.2 reports the probabilities of i)
no preference; ii) Preference for p1; iii) Preference for p2. The probabilities are calculated

considering alternatively p∗ equal to p1 (first half of the table) or p2 (second half of the

table).

The similarity among the values xmin and xmax for the proper scores lead to similar

preference probabilities. The proper scores always assign the greatest probability to the case

in which we are not able to express a preference, however, when p∗ = p1 it is unlikely to

express a preference for p2. Vice versa when p
∗ = p2. There is a slightly difference between

the Brier and the log score coming from the different penalty applied to forecasts close

to zero. The log score penalises more heavily forecasts close to zero and, in fact, when

p1 = p
∗ chances to express a preference for p1 are higher than using the Brier score. The

full gambling score for p1 against p2 is proportional to the Brier score difference between p1
and p2 (see Section 7.3.2) and thus, their preference probabilities coincide. Considering the

pairwise gambling score the probability of expressing a preference for p1 is always very close

to zero, even when p∗ = p1. This shows again that it is possible to find a combination of

p1, p2 and p0 such that the model providing the smallest forecast obtains the highest reward

with probability over 0.9, even when the other forecast is equal to the true p∗.

Figure 7.6 shows the preference probabilities as a function of p∗ ∈ (10−6, 10−2) which
is the range of values of the 5-year adaptively-smoothed forecast for Italy (aggregating over

the magnitude bins) used later to illustrate the Multiple Bins Multiple Probabilities case. The

Brier score behaves as expected. The probability of expressing a preference for p2 increases

as p∗ goes to zero, which is what we expect given p2 < p1. On the other hand, the probability
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Table 7.2: Multiple Bins Single Probability case: table reporting for each score (row) the

probabilities of expressing (or not) a preference using either the Brier, log-, pairwise gambling

(PG) or full gambling (FG) score. The probabilities are calculated considering N = 10, 000,

p1 = 0.001, p2 = p1/3 and considering two cases: p
∗ = p1 and p

∗ = p2.

Score No pref Pref p1 Pref p2

p∗ = p1

Brier 0.7912 0.2083 0.0005

Log 0.6963 0.3032 0.0005

PG 0.6672 0.0000 0.3327

FG 0.7912 0.2083 0.0005

p∗ = p2

Brier 0.8454 0.0000 0.1545

Log 0.8453 0.0000 0.1545

PG 0.0073 0.2083 0.9927

FG 0.8454 0.0000 0.1545

of preferring p1 increases when p
∗ increases, because p1 > p2. Finally, the probability of not

being able to express a preference is higher when p2 < p∗ < p1 (Figure 7.6a). The pairwise

gambling score, instead, does not behave as expected. The probability of preferring p1 is

almost zero in the range of values of p∗ considered in the example. The two most probable

outcomes are: expressing a preference for p2 or not expressing a preference at all.

Probability of expressing a preference

It is interesting to study how the probability for each case changes as a function of p∗ for

different numbers of bins N and different ratios between p1 and p2. To do that it is useful to

focus only on two possible outcomes: expressing a preference and not expressing a preference.

The probability of expressing a preference is given by the probability of observing a sample

such that the sum of the observations xS is greater than xmax or smaller than xmin. We refer

to this probability as β which is given by

β = 1− Pr[xmin ≤ XS ≤ xmax ].

This probability depends on the scoring rule, the forecasts p1 and p2,the number of bins

N and the true probability p∗. We study β as a function of p∗ for different numbers of bins.

In this artificial case, to increase the number of bins we are considering additional bins with

the same probability, we are explicitly not splitting any bin; this is analogous to increase the

data at hand applying the model to a larger spatio-temporal region.

Figure 7.7a considers only the Brier score. The region of p∗ presenting low values for

β shrinks when the number of bins increase which simply means that the more data we

have, the more chances of expressing a preference. Moreover, β is at the minimum when

p∗ ∈ (p2, p1), which is reasonable because if the distances |p∗ − p1| and |p∗ − p2| are similar
the probability of no preference should be high. The N = 2000 can be explained considering

p1 = p
∗. In this case, the expected sum of observations is Np1 = 2 and it is more probable

to observe XS < 2 than XS > 2. Given that Np2 < Np1, the probability of not expressing a

preference is high.

Figure 7.7 presents the probability β as function of p∗ for different scores with a fixed
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Figure 7.6: Multiple Bins Single Probability case: each plot shows the probability of each

possible outcome (solid lines no preference, dotted lines preference for p1, dashed lines

preference for p2) as a function of p
∗ using the Brier score (a) and the pairwise gambling

score (b) considering p1 = 0.001 and p2 = p1/3 (vertical lines), p0 = 5p1 and N = 10, 000.

The true probability p∗ varies in (10−6, 2 · 10−2) which is a realistic range of values in Italy.

number of bins N = 5000 (b) and N = 20000 (c). For N = 5000, the proper scores (Brier,

log and full gambling score) present the same values of β for any value of p∗. For N = 20000,

the proper scores start to behave differently. The Brier and full gambling score still coincide,

while the log score is slightly different. Specifically, the log score presents higher β values

when p∗ = p1, and lower when p
∗ = p2. This depends on the different penalties applied to

forecasts close to zero. The log score presents greater chances of expressing a preference for

p1 when p
∗ = p1 because the other forecast p2 is smaller than p1 and, therefore, penalized.

On the other hand, when p∗ = p2 the log score presents smaller β values than the Brier

score.

In contrast to the proper scores, the pairwise gambling score reaches its minimum β

value for p∗ > p1. Here, the pairwise gambling score tends to express a preference for the

smaller forecast even when the other one is closer to p∗. This leads to higher values of β

when p∗ ∈ (p2, p1) because the pairwise gambling score will likely express a preference for
p2. Only when p

∗ > p1 the probability of no preference grows and the value of β decreases

accordingly.

Given that p1 and p2 are scalars, we can consider β as a function of the ratio between p1
and p2, ω = p2/p1, for a fixed p

∗. In principle, we expect that β is an increasing function of

ω. We assume that the first forecast and the true probability are identical p1 = p
∗ = 0.001.

The reference model for the pairwise gambling score is p0 = 5p1 and we consider different

numbers of bins N ∈ {2000, 5000, 10000, 20000}. The ratio ω = p2/p1 varies in the interval
(0.1, 4). We expect low β values when ω is around one (similar forecast) and high β values

otherwise.

Figure 7.8a shows that, as expected, for N > 2000, β has its minimum when ω = 1.

Considering ω as fixed, β is an increasing function of the number of bins. Figure 7.8b-c
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Figure 7.7: Multiple Bins Single Probability case: (a) Brier score preference probability

as a function of p∗ for different numbers of bins N ∈ {2000, 5000, 10000, 20000}. (b-c)
Probability of expressing a preference as a function of p∗. Colors represent the different

scores: Brier, log , pairwise gambling (PG), and full gambling (FG) score. The Brier and FG

scores coincide. The number of bins is fixed to N = 5000 (b) and N = 20000 (c). We set

p1 = 0.001, p2 = p1/3 (vertical lines), p0 = 5p1, and p
∗ ∈ (10−6, 2−3) which is a realistic

range of values in Italy.
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Figure 7.8: Multiple Bins Single Probability case: (a) Probability of expressing a preference

using the Brier score as a function of ω = p2/p1 ∈ (0.1, 4) for different numbers of bins
N ∈ {2000, 5000, 10000, 20000}. We set p1 = p∗ = 0.001, and the reference model is

p0 = 5p1. (Bottom) Probability of expressing a preference as a function of ω. Colors

represent the different scores: Brier, log, pairwise gambling (PG), and full gambling (FG)

score. The number of bins is fixed to N = 5000 (b) and N = 20000 (c).

compares the β values relative to different scores for a fixed number of bins, N = 5000 (b)

and N = 20000 (c). The Brier and full gambling score coincide, whilst the log score presents

slightly different β values. As before, this is due to the different penalties applied to forecasts

close to zero.

The pairwise gambling score is not consistent with the trends in the proper scores. Using

this score and considering N = 20000 (Figure 7.8c), the probability β is consistently greater

than 0.5 for the considered values of ω. Considering that p1 = p∗, the quantity ω is also

the ratio between p2 and p
∗. This implies that regardless of ω, we will erroneously express a

preference for p2 with a probability above 0.5.

Importantly, these sanity checks of a proposed scoring procedure can be done before

looking at the observations. It is possible to check if forecasts can, in principle, be distin-

guished in light of the amount of expected data. We recommend the use of such exploitative

figures when introducing a new scoring rule whose performance have not been tested. If the

proposed scoring rule does not behave acceptably in this simple scenario, it is unlikely that it

would behave acceptably in a real application.

Score difference distribution - Multiple Bins Multiple Probabilities

The Multiple Bins Multiple Probabilities case generalizes the Multiple Bins Single Probability

case, and is much more similar to a real earthquake forecasting experiment. For example,

the forecasts involved in the first CSEP experiments (Field, 2007; Schorlemmer and Ger-

stenberger, 2007b; Zechar et al., 2013; Michael and Werner, 2018) were mostly grid-based

forecasts providing for each space-time-magnitude bin, the expected number of earthquakes.
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Then, the number of events in each bin is modelled using a Poisson distribution with intensity

equal to the number of events provided by the forecasts and the probability of observing at

least one event is calculated accordingly. In this scenario, we do not have analytical results

for the score difference distribution and we need to recur to simulations.

We now want to specify a true model which has more realistic probabilities. Since we

do not actually know these in reality, we choose to work with one of the CSEP models that

was submitted to the 2010 Italy experiment (Taroni et al., 2018). We choose to simulate

synthetic data from the 5-year adaptively-smoothed forecast for Italy (Werner et al., 2010)

and explore the ability of the scoring rules to discriminate between linearly scaled versions

of this true model. This means that we are considering only one time bin of size 5 years,

while the space-magnitude domain is divided in multiple regular bins. The spatial domain is

represented by the coloured area in Figure 7.9 and it is divided in 0.1×0.1 longitude-latitude
bins. The magnitude domain ranges from 4.95 to 9.05 magnitude units and is divided in bins

of length 0.1. The forecast is relative to the period from January 1, 2010, to December 31,

2014.

The adaptively-smoothed forecast provides the expected number of earthquakes in each

space-magnitude bin. For each bin, to calculate the probability of observing at least one

earthquake, in accordance with the methodology in the 2010 Italy CSEP forecast experi-

ment, we consider a Poisson distribution for the number of events with intensity given by the

predicted number of events. Assuming independence in the magnitude bins, we can aggre-

gate the probabilities over magnitude bins and, for each space bin, obtain the probability of

observing at least an earthquake in the period of interest with magnitude greater, or equal,

to 4.95. Figure 7.9 shows the forecasted log-probability for each spatial bin used as data

generating model.

The Italian adaptively-smoothed forecast reported in Figure 7.9 is the vector of true

probabilities p∗ = p∗1, ..., p
∗
N , where N = 8993. As in the previous sections, we compare two

forecasts p1 = p
∗ and p2 = ωp

∗. We will be ignoring the spatial configuration. The average

bin score difference is given by

∆(p1,p2,X) =
1

N

N∑
i=1

(∆0,i +Xi(∆1,i − ∆0,i)),

= ∆̄0 +
1

N

N∑
i=1

Xi(∆1,i − ∆0,i),

where, ∆0,i = ∆(p1i , p2i , 0) and ∆1,i = ∆(p1i , p2i , 1) are, respectively, the score difference in

the i-th bin in case we observe Xi = 0 (no earthquake at or above magnitude 4.95 during

the 5 years) or Xi = 1 (at least one earthquake above magnitude 4.95 during the 5 years).

The quantity ∆̄0 is the average ∆0,i . The observations Xi ∼ Ber(p∗i ) follow a Bernoulli
distribution, each bin has a potentially different parameter p∗i ̸= p∗j for any i ̸= j . The

expected value of the score difference is given by

E[∆(p1,p2,X)] = ∆̄0 +
1

N

N∑
i=1

p∗i (∆1,i − ∆0,i).

Given that we are considering p1 = p
∗ and p2 = ωp∗, the expected score difference is

non-negative if a proper scoring rule is used while it could be negative if the scoring rule is

improper. Specifically, we show that it is possible to find a reference model p0 such that, if

used in combination with the parimutuel gambling score to rank the forecasts, the expected

score difference is negative. As before, the Brier, log and full gambling score are used for
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Figure 7.9: 5-year adaptively-smoothed forecast for Italy (Werner et al (2010)). The figure

shows for each spatial bin the natural logarithm of the probability of observing at least one

earthquake at or above magnitude 4.95 in the period from January 1, 2010, to December

31, 2014.
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Table 7.3: Expected score difference considering p∗ equal to the 5 year Italy adaptively-

smoothed forecast, p1 = p
∗, p2 = ωp

∗ and reference model for the pairwise gambling score

p0 = 5p
∗. The scores considered are: the Brier score, the log score, the pairwise gambling

(PG) score and the full gambling (FG) score.

Score E[∆]

Brier 0.0000026

Log 0.0003137

PG -0.0000900

FG 0.0002422

−0.8

−0.4
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0 1 2 3 4

 ω

E
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]

score
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Figure 7.10: Expected score difference between p1 and p2 as a function of ω = p1/p2 for

ω ∈ (10−3, 4). We set p∗ equal to the 5-year adaptively-smoothed Italy forecast, p1 = p∗,
p2 = ωp

∗, and reference model for the pairwise gambling score p0 = 5p
∗.

comparison. In Table 7.3 we report the expected score differences considering different

scores. As expected, they are all positive except for the pairwise gambling score.

In Figure 7.10 is showed the expected score difference as a function of the forecasts

ratio ω ∈ [10−3, 4]. The results are similar to the ones reported in Figure 7.1 and 7.2. The
Brier, log and full gambling scores behave suitably, while the pairwise gambling score does

not. The Brier and full gambling score are bounded and they prefer a forecast p = 10−3p∗

to p′ = 4p∗. Indeed, in Figure 7.10 the left hand side is greater than the right hand side.

That is because the penalty is based on the absolute difference between a forecast and the

data generating model, therefore, a forecast p = 10−3p∗ is preferred to p′ = 4p∗, because

∥10−3p∗ − p∗∥ ≤ ∥4p∗ − p∗∥. On the other hand, the log score is unbounded and is based
on the relative difference. With the log score, a forecast p′ = 4p∗ is preferred to p = 10−3p∗

because ∥p∗/10−3p∗∥ > ∥p∗/4p∗∥. The pairwise gambling score, instead, is heavily biased
towards zero.

We can extend the comparison by considering k = 3 forecasts. In this case, we consider
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Figure 7.11: Expected score difference between p2 and p1 (blue dashed) and p2 and p0 (red

solid) as a function of ω = p1/p2 for ω ∈ (10−3, 7). We set p∗ equal to 5-year adaptively-
smoothed Italy forecast, p1 = p

∗, p2 = ωp
∗ and p0 = 5p

∗. Vertical lines represent ω = 1

and ω = 5. We consider the Brier (a), pairwise gambling (b), log (c), and full gambling (d)

scores.

the reference model p0 = 5p
∗ as third competitor. Figure 7.11, for each scoring rule,

shows the expected score differences E[∆(p2,p1,X)] (dashed blue) and E[∆(p2,p0,X)] (solid
red), representing the expected score difference between p2 and p1, and the expected score

difference between p2 and p0. Given that p1 is equal to the true probabilities, the score

differences have to be negative for any value of ω ̸= 1 in order for the scoring rule to be
effective. Indeed, this is the case for the Brier and log score (Figure 7.11 (a), (c)). On the

other hand, both the pairwise and full gambling score (Figure 7.11 (b), (d)) are improper

and prefer p2 over p1 when ω ∈ (0, 1). Moreover, all the scores prefer p0 to p2 when ω > 5.
However, the log score prefers p0 to p2 also when ω approaches zero. This shows, again,

how different scoring rules apply different penalties to the forecasts.

We note that the pairwise and full gambling score present almost the same expected score

difference between p2 and p1. This is because both scoring procedures implicitly assume a

reference model given by the average forecast. If the average forecast in a bin is greater

than p∗i , a forecaster will obtain a positive reward each time they submit a value smaller than

p∗i and Xi = 0 occurs. Therefore, given that we are in a low probability environment for

which Pr[Xi = 0] > 0.99, the smallest forecast is likely to be preferred. The bias depends

on the relationship between the reference model and the true probabilities. In the gambling

metaphore, the reference model plays the role of the house (or banker) which determines

the returns, and against which all forecasts are competing. Considering equation 7.12, if

p∗ < p0, the player has a positive reward forecasting p < p0. If the number of forecasts is

large enough that changing a forecast does not affect significantly the average, then, the

smaller the forecast the higher the reward, and the forecaster is encouraged by the score to

provide p = 0. The same reasoning applies if p∗ > p0.
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Confidence Interval and preference probabilities - Multiple Bins Multiple Probabilities

Also in the Multiple Bins Multiple Probabilities case it is crucial to account for the uncertainty

around the observed score difference. The binomial formulation used before to retrieve con-

fidence intervals no longer holds, and we need an alternative methodology. One approach to

calculate confidence intervals for the expected score difference relies on a Gaussian approx-

imation of the score difference distribution (Rhoades et al., 2011). The score difference in

each bin, ∆(p1i , p2i , Xi) for i = 1, ..., N, are assumed to be independent draws from a Gaus-

sian distribution with expected value E[∆(p1,p2, X)] and variance σ2. When we observe a
sample x = x1, ..., xN , the point estimate of the expected score difference is the observed

score difference ∆(p1,p2, x) and the (1− α)% confidence interval is given by:

∆(p1,p2, x)± t1−α/2,N−1
s√
N
,

where s2 is an estimate of the variance σ2 and t1−α/2,N−1 is the 1− α/2 percentile of a t-
student distribution with N−1 degrees of freedom. The reliability of such interval estimates
is determined by the accuracy of the Gaussian approximation, which, in turns, depends on the

amount of data (the more the better) and on the correlation between the score difference in

each bin (the more the worst). We analyse the reliability of this approximation in Appendix

A: Reliability of the gaussian confidence intervals and conclude that it can be used with the

log, pairwise gambling and full gambling score but not with the Brier score.

Figure 7.12 shows the evolution of the preference probabilities varying the forecasts ratio,

ω = p2/p1. It is quite similar to Figure 7.6 and the same problems with the pairwise gambling

score are evident; i.e. it favours forecast smaller than the true probability when the average

forecast is greater than the latter. On the other hand, the log score probability of preferring

p1 increases rapidly when ω → 0, while the full gambling score is not able to distinguish
between p1 and p2 for ω < 2.5. The latter remark suggests a potential problem with the use

of the full gambling score given that, in real forecasting experiments, the competing forecasts

tends to be quite similar, in which case there is an high probability of no preference.

This concludes our analysis on the use of proper scoring rules to rank earthquake fore-

casting models.

7.2.6 Discussion

The parimutuel gambling score was introduced as a general scoring rule to compare, within

a unified framework, earthquake forecasts of different kinds (e.g. alarm-based forecast and

probabilistic forecast). It overcomes two limitations common to other forecast comparison

techniques: i) the need to define a reference model, and ii) to allow forecasts defined on

different space-time-magnitude regions to be compared. We showed that the parimutuel

gambling score is proper only when two forecasts are compared directly against each other.

In the other cases (multi-forecast comparison and comparison against a reference model),

the parimutuel gambling score is improper. Consequently, we discourage its use in multi-

model comparisons such as CSEP and encourage researchers and practitioners to re-consider

rankings obtained using this score.

Specifically, the parimutuel gambling score tries to avoid the need to pre-define a reference

model by using the average forecast. Therefore, for each bin, a positive reward means that

the model is better than the average forecast, vice versa if the reward is negative. This

allows to produce a map of the parimutuel gambling rewards from which to infer the bins

where the forecast is better than the average forecast, and the bins where it is not. Since

the parimutuel gambling score is proper only when k = 2, any map obtained by computing
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Figure 7.12: Multiple Bins Multiple Probabilities case: each plot shows the probability of

each possible outcome (solid no preference, dotted preference for p1 , dashed preference for

p2 ) as a function of ω = p1/p2 for ω ∈ (10−3, 7). The log (a), the pairwise gambling
(b) and the full gambling (c) scores are considered. We set p∗ equal to 5-year adaptively-

smoothed Italy forecast, p1 = p
∗, p2 = ωp

∗, and reference model for the pairwise gambling

score p0 = 5p
∗.
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the comparisons for k > 2 may be biased. This difficulties may be circumvented by using

any proper scoring rule that allows for multi-forecast comparison. In fact, maps of this kind

may be produced by reporting the score difference between a forecast and the average one.

Furthermore, given that proper scores are scale invariant, we can re-scale the score values

to be between −1 and 1. In this way, we can visualize which bins has a positive or negative
contribution to the average score difference.

The need to compare forecasts defined on different set of bins comes from the design

of the forecasting experiment. In the RELM experiment (Zechar et al., 2013) modelers

were allowed to choose a subset of bins to include in their forecast, referred to as masking.

Modellers involved in the RELM experiment provided forecasts with very different masks;

some issued forecasts for the entire California region (Bird and Liu, 2007; Helmstetter et al.,

2007; Holliday et al., 2007), some for only Southern California (Ward, 2007; Shen et al.,

2007; Kagan et al., 2007), while others used irregular masks (Ebel et al., 2007). The

parimutuel gambling score addressed these differences using the gambling metaphor. Each

forecaster is a gambler which plays a certain number of rounds (bets) corresponding to the

bins. A forecaster does not have to make a forecast for every bin - they can just sit out this

round. The forecasters are ranked by their total reward (i.e. the sum of the rewards for each

bin). We argue that this solution is still problematic. First, the parimutuel gambling score

needs at least two forecasts for each bin to be computed. If only one forecaster plays in a

bin we can not calculate the parimutuel gambling score for that bin. Second, consider two

bins for which different sets of forecasters provided a forecast; in this situation the models

are rewarded with respect to different odds. This becomes problematic when we attempt to

interpret the observed result because in each bin the reference model is given by a potentially

different combination of models.

The Brier score can also be used to assess masked forecasts. The maximum Brier score

value obtainable by a forecast is zero and it is achieved by the perfect forecast which assumes

p = 1 when x = 1 and p = 0 when x = 0. Any other forecast obtains a negative Brier score.

Therefore, the Brier score of a forecast can be seen as the Brier score difference between

the perfect forecast and the forecast under evaluation. Given two models, the one with the

highest average Brier score is the one closest (on average) to the perfect forecast. If the

models provide forecasts on two different sets of bins, B1 and B2, we can still compare the

forecasts in terms of their average Brier score. Suppose the first model achieves an higher

average Brier score, we can conclude that, on average, the first model in B1 is closer to

the perfect forecast than the second model in B2. We can make the above comparison also

when B1 and B2 have zero bins in common because the Brier score requires only a forecast

and the observation to be calculated.

In this paper, we have used confidence intervals to asses the statistical significance of

observed score differences. Analytically determining these confidence intervals may be too

complex and a basic approximative Gaussian approach may fail, as highlighted by the Brier

score example. Problems of this type come from the fact that the score differences per bin

are treated as independent and identically distributed. This assumption is false, especially

when considering space-time bins which depend on each other both in time and space due

to clustering of earthquakes. A possible solution to relax the independence assumption is to

consider a Diebold-Mariano test (Diebold and Mariano, 2002) on the score differences which

takes into account the correlation structure of the score differences sequence.

7.2.7 Conclusions

The parimutuel gambling score, commonly applied to compare earthquake forecasts, is im-

proper when the number of forecasts being tested is greater than two. In the special case
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of two competing forecasts, the score is proper, and can return results similar to alternate

proper scoring methods, but even then it can be used improperly. In the common testing

scenario of multiple forecasts being compared simultaneously, or when multiple forecasts

are compared against a reference model, the parimutuel gambling score provides a biased

assessment of the skill of a forecast when it is tested against a given outcome. This is

fundamentally a problem of the gambling analogy itself; the betting strategy of maximizing

the expected reward (score) does not have to be consistent with the data generating model

(in the case where this is known) and, therefore, gamblers (modellers) are not encouraged

to provide forecasts resembling the data generating model. This is because the score for a

given forecast is dependent on all the forecasts taking part in the competition, not just on the

observed data; one can therefore change the ranking of two models by changing one of the

other models in the pool. This introduces the undesirable property that one can potentially

game the system to prefer a specific model. Further, if we only have access to the forecasts

and the data, it is impossible to know if the parimutuel gambling score results will be biased

or not. Moreover, the only case in which they are correct is when one of the competing fore-

casts is the data generating model, which is highly unlikely. These findings are sufficiently

clear for us to discourage the use of the parimutuel gambling score in distinguishing between

multiple competing forecasts, and for care to be taken even in the case where only two are

being compared.

We recommend that alternative scores that do not suffer from these shortcomings should

be used instead to assess the skill of prospective earthquake forecasts in a formal testing en-

vironment. The Brier and log scores are both proper, and require no new information beyond

what was used to calculate the parimutuel gambling score, so switching existing analyses to

a proper score should be simple to implement. We recommend testing for properness when

introducing new scoring rules, either analytically or via simulations using a known model to

generate testing data.

7.3 Conclusion

This paper shows that scores that may sound appealing may be biased and that a fair

comparison of the performance of a score should always be made before using it to rank

earthquake forecasts. I have shown that this can be done with simulated data for which the

data-generation model is known and we know the right answer that the score should provide

when the data-generating model is compared to alternative models. This method can also be

used to calculate the power of the test or to estimate relevant quantities for the experimental

design such as the number of events or the number of bins used for the validation stage. I

believe it would be helpful for the community to establish sanity checks that a score has to

pass before being used in CSEP experiments and that also the metrics already employed in

CSEP should be tested in this sense. The next chapter discusses this matter more in detail.
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Chapter 8

Discussion and Conclusion

8.1 Discussion

In this thesis, I have proposed a novel technique to perform Bayesian inference on the param-

eters of the ETAS model. The proposed technique is general and can be applied to Hawkes

process models different than ETAS. I build on the work done in Bayliss et al. (2020) and

Bayliss et al. (2022) which used LGCP models for time-independent models of seismicity with

tha ability to incorporate the information from a vast set of available covariates, and that

has proven to be competitive with best-performing time-independent models such as (Helm-

stetter et al., 2007). This approach can be used effectively to produce long-term maps of

seismicity as the ones used in PSHA, but it lacks the ability to describe the evolution of a

sequence in real-time crucial for any short-term OEF strategy. Indeed, one of the limitations

mentioned by the authors, and common at most time-independent models, is the impossi-

bility of explicitly model the clustering process of earthquakes and therefore the inability to

accurately describe the time evolution of the sequences. Here, I have shown that the method

used in inlabru for LGCP models and effective to produce long-term models of seismicity

described in Chapter 3 can be adapted to autoregressive processes such as Hawkes process

models and therefore, the ETAS model. This is an advance in terms of methodology extend-

ing the number of classes supported by the inlabru approach and implementable through

INLA, and in terms of application extending the number of seismicity analyses implementable

through inlabru. To make our implementation openly available I have made an R-package

called ETAS.inlabru to perform analyses of seismicity with our approach. The approach has

been used to provide daily forecasts of seismicity for a real-time loss forecasting experiment

which are described in Chapter 6. Furthermore, I will submit the model for the next Italian

CSEP forecasting experiment starting in 2023.

The proposed method is different from the MCMC methods (Rasmussen, 2013; Ross,

2021) commonly used to perform Bayesian inference on the ETAS parameters. MCMC

methods are based on sampling the posterior distribution many times and reconstructing the

distribution from the sample; the INLA method, instead, on which this work relies on, is

based on a deterministic approximation of the posterior distribution. This makes the INLA

method sensibly faster than MCMC methods and enables more complex analyses, with more

data in less time. The advantages are particularly evident with models with a large number of

parameters presenting a strong correlation structure, a situation that indeed makes MCMC

methodology usually inefficient. In Chapter 4, I have compared results obtained with the

ETAS.inlabru package with the bayesianETAS package and shown that ETAS.inlabru is

up to 10 faster on simulated catalogues with more than 2000 events providing similar results

in terms of the number of events, the temporal evolution of the number of events, and a
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measure of goodness-of-fit. Chapter 5 shows the performance of our approach on various

synthetic examples exploring potential biases in parameter estimates due to using sequences

that do not represent well the process under study. We have explored the effect of the

length of the temporal window considered, the number of large earthquakes in the sequence,

the effect of considering a pre-conditioning period, and the effect of data incompleteness.

The efficiency of our methodology enables users to fit synthetic models on many different

datasets representing difficult situations in order to investigate which estimation problems

may be resolved and provide guidance on good practices to be followed to reduce the bias in

parameter estimates.

Chapter 6 extends the approach used for the temporal ETAS model to the spatio-temporal

case with spatially varying background rate, and shows that the method supports also the

approach used by Adelfio and Chiodi (2021) and Chiodi et al. (2021) to introduce covariates

in modelling the expected number of aftershocks. The authors relies on a frequentist method

to estimate the parameters (Chiodi and Adelfio, 2011), and the method I described in this

thesis is the first Bayesian implementation of the ETAS model supporting covariates. Using

the definition of spatially varying background rate provided in Chapter 6, the proposed method

can be used to study the effect of covariates in two ways: in modelling the spatial variation

of the background rate and in modelling the expected number of aftershocks. The former in

fact is obtained from an LGCP model as the ones used in (Bayliss et al., 2020) and (Bayliss

et al., 2022). More formally, the only constraint for the spatial variation of the background

rate is to integrate to one. This means that any time-independent or time-dependent map

of seismicity can be used and offers a way to introduce the information provided by long-

term PSHA maps into short-term models useful for OEF. Similarly, the expected number of

aftershocks is modelled as a log-linear function of the covariates and the coefficients can be

studied as it is done in a Generalized Linear Model framework, which is commonly employed

to study the effect of available covariates on phenomena of interest in many different fields.

This allows us to apply to seismic data techniques and ideas borrowed from different fields

where hypothesis testing based on observed data is routinely done. This gives the possibility

to build more complex models leveraging the additional information provided by covariates

and investigate if their use leads to more skillful models in a rigorous Bayesian statistical

framework offering a more accurate description of the uncertainty around the results.

The proposed method can be used both for operational tasks or for more explorative

analyses. Regarding the former, the approach can be used to construct models to produce

forecasts of future seismicity for any OEF or PSHA task. In fact, the spatially-varying

background rate can be used as long-term PSHA model, and the full model can be used to

decluster a catalogue as it is done in Zhuang et al. (2002). The full model with aftershock

can also be used as short-term OEF model. In this situation, the Bayesian framework is

not only useful to describe the uncertainty around the parameters but its way to update

the information on the parameters can be exploited from an operational point of view. For

example, suppose a large earthquake strikes tomorrow, and suppose to already have chosen a

model, which parameters should be used? I have shown in Chapter 6 that different sequences

occurring in the same area (like the 2009 L’Aquila sequence and the 2016 Amatrice sequence)

are best described by a different set of parameters. Which one is better to describe the new

sequence? The Bayesian approach offers a way to answer the question. The past data along

with expert judgments can be used to construct the prior distribution, and as new data arrives

we can fit the model and update our knowledge. Then, we can construct new priors using

the information provided by the posterior. Using the posterior as prior as it is may lead to

underestimate the uncertainty because the updated posterior variance will likely be smaller

than the prior variance, so repeating this process many times will force the posterior variance

to shrink toward zero. However, we can set a prior with mean equal to the posterior mean and
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inflated variance and start the iterative method from the last iteration used to determine the

posterior. In this way, the variance will not shrink, it may indeed increase, and the parameters

will move from the value provided only if the data suggests so. In order to do this, we need

a Bayesian framework allowing a certain freedom in specifying the prior and fast enough to

be used effectively in near real-time. The approach I propose in this thesis has both. The

copula transformation method described in Chapter 3 grants freedom in choosing the prior,

it only requires a quantile function to be specified but this is easily obtainable. Furthermore,

the method is faster than alternative MCMC methods, scales better increasing the amount

of data, and can be parallelised so that is faster on more powerful machines.

On the explorative side, the proposed approach can be used to explore many different

covariates in a variety of formats. We have only shown how to use event-specific information

like the depth and information regarding the fault network, however, there are many more

possibilities that we have not explored yet. For example, more complex fault representa-

tions can be used to better associate each event with the corresponding fault and different

fault characteristics may be used. In the same way, other spatially varying covariates may

be used such as strain rate maps, heat-flow maps, or maps representing historical seismic-

ity. Also, time-varying covariates such as GPS displacement data or maps obtained with

Coulomb rate-and-state models may be used and their value as a precursory signal may be

tested. Furthermore, each parameter can be considered as spatially or temporally (or both)

varying without the use of covariates, but assuming it is described by a Gaussian Markov

Random Field. For example, GMRF with Matérn covariance function implemented through

the SPDE approach may be used to consider parameters continuously varying in time or

in space; Conditional autoregressive models (CAR, Besag, 1974) or the Besag-York-Mollier

model (BYM, Besag et al., 1991) can be used in situations where the space is partitioned

in sub-regions, the parameter is assumed to be constant in each region and the value of the

parameter in adjacent sub-regions are correlated. These models can be used in combination

with maps partitioning the space in seismic zones to have discretely varying parameters with

similar values in adjacent regions without recurring to data partitioning. All of these different

structured random effects are already available in inlabru which provides functions to use

them efficiently.

Our approach sparked interest from other research groups and we are involved in different

parallel projects. We are involved in a study about real-time loss forecasting in a Rapid

Loss Assessment framework. The study has the aim of providing a proof of concept on

the utility of using data from sensors installed in each building to monitor the evolution of

their structural health and therefore of the risk of collapsing, during a seismic sequence. In

this study, our isotropic space-time ETAS model with no additional covariates is used to

produce catalogue-based forecasts, composed of 10000 synthetic catalogues, of seismicity

for the L’Aquila and Amatrice sequences. Our forecasts are then used to estimate the level

of ground shaking perceived by each building and are used to predict structural response

within the first seconds of ground shaking. Each synthetic catalogue is produced using a

different set of parameters sampled from the joint posterior distribution of the parameters

which ensures a fair representation of the epistemic uncertainty around the value of the

parameter. Additionally, models produced with the proposed apporach will be submitted

to the next Italian CSEP forecasting experiment and will be validated prospectively against

future seismicity.

Another essential aspect of earthquake forecasting is forecast validation. On one hand

we need to be able to build increasingly complex models of seismicity, and I have shown that

this can be done with the proposed methodology, and, on the other hand, we need validation

metrics with the ability to distinguish between increasingly complex models. This can be

done using scoring rules which assign a quantity measuring the ability (if positively oriented)
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of a model to describe the given data, model can then be ranked accordingly. From the

theory around scoring rules, it is known that a score needs to be proper in order to provide

a fair ranking of the competing models based on observed data and Chapter 7 illustrates

the consequences of using improper scoring rules to rank earthquake forecasts and proves

that the Parimutuel Gambling score is proper only in a specific situation (when two forecasts

are compared against each other) and not in general. The work is relevant because the

Parimutuel Gambling score was used improperly to rank earthquake forecasts in previous

studies and because it shows how the performance of different scores can be evaluated using

synthetic data. The approach of simulating data from a known model and studying the ability

of a score in distinguishing between forecasts generated by the data-generating model and

alternatives model is a simple way of investigating potential biases in the validation process.

It also offers a way to understand which models are distinguishable with a score and to define

which score should be used for each situation. The design of the experiment can be decided

depending on the competing models. In fact, using simulated data from the model is possible

to estimate the amount of data or the binning required to distinguish between the competing

models with a given probability level. Scores can also be used to construct new tests using

the same idea of CSEP consistency tests employing the score as test statistic. In general,

simulation from known models can be used to design sanity-checks for validation techniques

before introducing them in the next CSEP experiments and proper scores can be used to

define new metrics for consistency and comparison tests.

8.2 Future work

The approach I have presented in this thesis has the potential of enabling a deeper and

more accessible way to formalize and test scientific hypotheses on the earthquake-generation

process as in other fields of science like medicine or psychology where hypotheses testing

is done routinely including blind (and double-blind) testing protocols. To make the pre-

sented approach available to a large number of potential users we have already made the

ETAS.inlabru (Naylor and Serafini, 2023). For the time being, the ETAS.inlabru package

only supports the temporal ETAS model, and therefore a natural first step is to include also

the spatio-temporal ETAS model. We plan to start by including the basic version of the

model illustrated in Chapter 6 which includes a spatially varying background field, isotropic

spatial kernel, and the linear predictor is based on the magnitude only.

The second step would be to include the possibility to account for temporally varying

incompleteness in the catalogue. In doing this, I plan to incorporate temporal incompleteness

coming from two sources: the quality of the seismometers network and the censoring induced

by large earthquakes. The first one can be accounted having a temporally varying cutoff

magnitude. With our approach, in principle, any observation can be associated to a specific

cutoff magnitude reflecting the quality of the seismometers network at the time of the

observation. This will allow to use catalogues dating further back in time and account for

historical seismicity in periods where we have only high magnitude (M5+) observations. The

second should reflect the inability of detecting earthquakes in periods of time just after a large

earthquake. This can be done assuming to be known the temporal evolution of the rate at

which events are missing. An example is the function used in Helmstetter et al. (2006b) and

used in Chapter 5 to artificially introduce incompleteness in synthetic catalogues. Knowing

the rate at which events are missing it is possible to retrieve the probability of detecting an

event. The approach proposed in this thesis can then be modified to work with a modified

intensity which is a product of the classical ETAS intensity and the detection probability. I

am already doing synthetic experiments to implement this with encouraging results.
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A further step would be to include the possibility for the user to introduce covariates.

This can be done in two ways with our approach. The covariates can be included in the

formulation of the spatial variation of the background field and in the linear predictor present

in the expression of the logarithm of the number of aftershocks. We plan to give the user the

possibility of using an alternative catalogue to fit the LGCP model determining the spatial

variation of the background field so that the redundancy of using the same data for the

background and the other ETAS parameters is removed. This will also allow the user to

account for historic seismicity in the background, or to use a declustered catalogue for this

and a non-declustered one for the other ETAS parameters. This will allow using the output

of models such as the one presented in (Bayliss et al., 2020) and (Bayliss et al., 2022) to

determine the spatial variation of the background field. Furthermore, including time-varying

covariates in the spatial variation of the background rate yields a spatio-temporally varying

background rate which is rarely part of earthquake models. This can also be done considering

a spatio-temporal GMRF as a structured random effect which is already supported by INLA

and inlabru as described in Chapter 7 of Blangiardo and Cameletti (2015).

The second way in which covariates can be introduced is using the approach described

in Chapter 6 and proposed by Adelfio and Chiodi (2021) and Chiodi et al. (2021). In this

context, there are different ways in which this approach can be extended. The first and

most natural one is to consider more and different covariates. In doing this, we can consider

spatially varying covariates like strain rates maps, heatflow maps, fault characteristics, and

GPS measurements quantifying the earth displacement rate, or alternatively, we can use

the output from other models, such as spatio-temporally varying Coulomb maps and test

in a statistically rigorous way if they provide additional information and increase our ability

to forecast future seismicity. There is also the possibility to use maps dividing the area in

different seismic zones such as the ZS9 map for Italy (Stucchi et al., 2004). In this regard,

using random effects varying discretely over space such as the CAR Besag (1974) of the BYM

Besag et al. (1991) model it would be possible to include in the linear predictor a spatially

varying coefficient constant in each zone and with correlated values in adjacent zones. This

can be done also using fault maps in order to have fault-specific parameters with similar values

for adjacents faults. In the same way, products such as Peak Ground Acceleration (PGA)

maps which are routinely produced for seismic hazard analyses can be incorporated into the

linear predictor. A further option would be to consider non-linear functions of the covariates

which also are supported by inlabru. For example, we can estimate a non-linear function of

a covariate using the SPDE approach described in Chapter 3 including in the linear predictor

a one-dimensional GMRF with Matérn covariance function on the covariate domain. This

will produce a smooth function of the covariate because the correlation between values of

the GMRF for different values of the covariate is a function of the distance on the covariate

dimension so that similar values of the covariate have similar values of the effect.

Another important aspect on which the approach proposed in this thesis can be gener-

alized is to allow for an anisotropic spatial kernel. Ideally, our plan is to use an approach

similar to the one illustrated in Grimm et al. (2022a) in which they consider an isotropic

spatial kernel for events below a certain magnitude and an anisotropic one for events above a

certain magnitude. This is can be seen as generalizing the approach used to introduce covari-

ates in the modelling of the expected number of aftershocks. Essentially, we are substituting

parameters with functions of covariates (e.g. the magnitude). But this idea, in principle,

can be used also for other parameters. For example, it can be assumed that the material

of the lithosphere at the depth at which an event occurs will influence the characteristics

of its aftershocks. Therefore, it would interesting to study the effect of this covariate not

only on the number of aftershocks but also on their spatio-temporal distribution. Our plan

is to extend the approach used to introduce covariates in modelling the expected number of
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aftershocks also to other ETAS parameters. This will give the possibility to use our approach

to study non-isotropic, non-stationary processes and if they add values in forecasting future

earthquakes.

Regarding the CSEP testing procedures, we plan to write an article revising the M-test

and comparing its performances with alternative methods. I explain the issue on the GitHub

page of the pyCSEP python library which can be found at https://github.com/SCECcode/

pycsep/issues/196. Basically, the issue is that the M-test as presented in Savran et al.

(2020) is biased when a forecast overpredicts the total number of events. I have proposed a

solution and also designed a modified multinomial likelihood score test that does not suffer

from this problem and is more powerful than the M-test. We plan to write an article assessing

the performance of the M-test similarly to what is done in Khawaja et al. (2023) for the S-

test.

8.3 Conclusion

In this thesis, I have presented a new approximation method to perform inference on Bayesian

Hawkes process models with applications to seismicity and the ETAS model. The method is

general and has the potential to be applied to different Hawkes processes than the ETAS one

although we have only considered this case here. I have shown that the proposed methodology

produces similar results to alternative Bayesian methods (MCMC) but is faster and scales

more efficiently increasing the number of events per catalogue. I have also shown how the

proposed technique can be generalized to include covariates in modelling the expected number

of aftershocks.

The proposed methodology has the potential of greatly simplifying the process of incor-

porating hypotheses on the earthquake process in a model and then, testing them against

observed data. This is fundamental to building more flexible models of seismicity and in-

creasing our level of knowledge on the earthquake generation process. I envision continuing

to work on extending this approach and making it available to the wider public as a freely

available R-package could be relevant for many applied researchers in this field. The final goal

is to provide researchers with a playground in which they can easily formulate, implement and

test hypotheses on the earthquake-generation process without the burden of coding ad-hoc

algorithms and limiting the number of subjective choices that they need to make. This will

increase the reliability and reproducibility of the results.

To do that, another fundamental part is the testing metrics. I believe that much work is

still needed to improve the existing ones and propose new ones accounting for other aspects

of the process but we are on the right path. The efforts made by CSEP in the next several

years should be the basis to deepen the discussion around testing metrics for earthquake

forecasts and to design new prospective experiments.
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Anne Strader, Maximilian Werner, José Bayona, Philip Maechling, Fabio Silva, Maria Liukis,

and Danijel Schorlemmer. Prospective evaluation of global earthquake forecast models:

2 yrs of observations provide preliminary support for merging smoothed seismicity with

geodetic strain rates. Seismological Research Letters, 89(4):1262–1271, 2018.

M Stucchi, C Meletti, V Montaldo, A Akinci, E Faccioli, P Gasperini, L Malagnini, and
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