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Abstract: This paper proposes a trajectory optimization approach for multi-sensor multi-target search
and tracking using bearing-only sensors. Based on the framework of the joint integrated probabilistic
data association (JIPDA) filter, the intensity of potential unknown targets is updated according to
the trajectories of the UAVs. The performance indices for target search and tracking are constructed
based on, respectively, the intensity of unknown targets in the search area and the tracking error
covariance. A dimensionless criterion, evaluating the search and tracking performance, is formulated
and leveraged as the objective function of the UAV trajectory optimization problem. Simulations
were carried out in different search and tracking scenarios to demonstrate the effectiveness of the
proposed approach.

Keywords: search while tracking; UAVs; multi-target tracking; trajectory optimization

1. Introduction

Unmanned aerial vehicles (UAVs) have shown great potential in both civilian and
military applications, such as surveillance [1], search and rescue [2], reconnaissance [3]
and traffic management [4]. A key enabler of these applications is target tracking, i.e.,
extracting the target information from the sensor measurements. As target tracking is an
information gathering process, it can greatly benefit from multi-UAV systems, in terms
of accuracy, effectiveness and also reliability [5]. However, UAV swarms are typically
equipped with passive onboard sensors—e.g., optical and infrared cameras—due to their
low cost and energy efficiency. These image sensors can only provide bearing information
on the targets, and their fields of view (FOVs) are extremely limited, which makes it difficult
to employ them in multi-target tracking scenarios. In multi-target tracking, the number
of targets is usually both unknown and time-varying [6,7]: thus, the UAVs are required to
search the entire area for undiscovered targets. On the other hand, as the image sensors
cannot provide relative range information, target tracking using these sensors often suffers
from observability problems [8–10]. Therefore, trajectory optimization is required for the
UAVs, to improve the overall tracking performance in multi-sensor multi-target tracking
applications.

Trajectory optimization for jointly searching for undiscovered targets and for main-
taining the tracking accuracy of discovered targets is a challenging problem, as search
and tracking are competitive goals and sensor resources are limited. In recent years, the
problem of multi-target search and tracking based on sensor trajectory optimization has
attracted the interest of researchers. The authors in [11] estimated the appearing probability
of undetected targets, using the occupation grid filter. Based on the assumption that the
data association between the measurements and target is known a priori, they predicted
the mutual entropy between the future measurements and the grid occupation probability
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and also the target states. They took the weighted sum of these as the objective function,
and they constructed the planning problem for multi-target search and tracking with range
sensors. In [12], a Voronoi-based control method was combined with the distributed form
of the probability hypothesis density (PHD) filter, to develop a distributed sensor manage-
ment method of searching and tracking for an unknown number of targets. By utilizing
the Poisson multi-Bernoulli mixture (PMBM) filter, the intensity of undetected targets was
modeled and iterated according to the UAV trajectories, and a single-sensor management
approach was proposed, based on the Monte Carlo Tree Search (MCTS) method in [13]. The
algorithm was verified under the conditions of both static and mobile sensors. To avoid
the problem of high computational complexity caused by the increase of the number of
Gaussian components, the authors replaced the Gaussian-mixture target birth model in [13]
with uniform distribution at the edge of the monitoring region, and they approximated the
predicted target intensity using the Rao-Blackwellized point mass filter (RB-PMF) in [14].
In [15], mutual entropy in information theory was used to define the value function of target
tracking, and the search area was divided into grids. The probability of unknown targets in
each grid was modeled as a Bernoulli variable, and the change of Shannon entropy before
and after the update process was leveraged as the value function of the searching objective.
According to the global criterion method (GCM), a multi-objective optimization objective
function was constructed, and the planning problem for multi-target search and tracking
was solved by enumeration. However, the above works assumed that the target positions
could be directly obtained from the sensors or that the range between the UAV and the
target was accessible.

In this paper, a new trajectory optimization method for multi-sensor multi-target
search and tracking with passive onboard sensors is proposed. The contributions of this
paper are twofold. The original JIPDA filter is modified to facilitate the multi-target search
objective. To the best of the authors’ knowledge, the multi-target search and tracking
problem has rarely been studied utilizing the JPDA-based filter. On the other hand, the
dimensionless objective functions for search and tracking, respectively, are derived, and
their weighted sum is used as the overall objective function, which makes it convenient to
adjust the weights of the two goals.

On the basis of the JIPDA filter, the intensity of unknown targets is considered and
modeled, in the calculation of association probability. This is utilized as a metric to guide
the UAV towards areas with a high probability of potential targets, to achieve the target
searching goal. To facilitate the combination between the objective functions of searching
and tracking, dimensionless metrics for these two objectives, respectively, are formulated,
and their weighted sum is leveraged as the objective function for trajectory optimization.
Typical scenarios were simulated, to evaluate the proposed approach, and the results reveal
that the proposed method can well balance the search and tracking objectives and maintain
acceptable multi-target tracking accuracy.

The rest of this paper is organized as follows. In Section 2, some system models are
introduced, and the multi-sensor multi-target search and tracking problem is formulated.
Section 3 provides the necessary preliminaries of the multi-target tracking filter and track-
to-track fusion methods. The objective functions of multi-target search and tracking are
derived first, and the multi-UAV trajectory optimization problem is then constructed in
Section 4. The simulation results are presented in Section 5, and our conclusions are offered
in Section 6.

2. Problem Formulation

This section describes some necessary system models, to facilitate the analysis in the
following sections. Then, the problem of multi-sensor multi-target search and tracking
is formulated.
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2.1. System Models

In multi-target tracking, the target states at a certain timestamp can be modeled as a
random finite set (RFS). Let Xk =

{
x1

k , x2
k , . . . xNk

k

}
represent the set of multi-target states at

time k, where Nk denotes the number of targets at k, and where xi
k denotes the state vector

of the ith target at time k. The state vector is four-dimensional, containing the position and
speed of the target, and the state space model of the ith target is

xi
k = f i

k−1

(
xi

k−1

)
+ wi

k−1, (1)

where f i
k represents the state transition function and where wi

k is a Gaussian white noise
with covariance matrix Qi

k.
Suppose the number of measurements received by one UAV at time k is Mk, and

the sensor measurement set is denoted as Zk = {z0,k, z1,k, . . . zMk ,k}, where zj,k(j 6= 0)
represents the jth measurement, and where z0,k corresponds to the dummy measurement
standing for miss detection and clutters. If the jth measurement of the sensor is originated
from the ith target, the bearing-only measurement equation can be expressed as

zi
j,k = hi

k

(
xi

k

)
+ vk = arctan

yi
T,k − yU,k

xi
T,k − xU,k

+ vk, (2)

where
[

xi
T,k, yi

T,k

]
and [xU,k, yU,k] are the positions of the ith target and the UAV, respectively,

at time k, and where vk is a zero-mean Gaussian noise in angle measurements, with its
covariance matrix being Rk.

As the number of targets is usually unknown in multi-target search and tracking
scenarios, the track existence probability is also required to be estimated along with the
target motion states. Let χi

k refer to the event of the ith track existing at scan k; the
corresponding existence probability, i.e., p(χi

k | Zk), is denoted as ri
k, for brevity. The

existence probability is propagated using the Markov switching model as

ri
k|k−1 = PSri

k−1|k−1, (3)

where PS is the target surviving probability.
The probability of existence can be used as a measure for track management. A

target becomes confirmed when its existence probability reaches to a predefined track
confirmation threshold rc, and it will be removed from the target set when ri

k falls below a
termination bound rt. The other targets remain tentative until their existence probabilities
reach these two thresholds after being updated using the subsequent measurements.

The Poisson point process (PPP) model is adopted to describe the target birth process
and false alarm distribution in this work. It is assumed that the new targets appearing at
each scan follow a nonhomogeneous PPP with an intensity function λb(x), where x denotes
the position of a point in the region of interest. The clutters are modeled to be uniformly
distributed in the sensor volume, and the clutter intensity is given by λ f a = NFA/VS, where
NFA is the average number of false alarms in one observation, and where VS denotes the
sensor volume.

2.2. UAV Model

Assume that there are Ns UAVs in the search and tracking mission, and each one
carries an onboard bearing sensor. The UAVs are set to move at a constant altitude, and the
kinematic equation of the lth UAV is given by

ẋl
U = vl

U cos ψl
U

ẏl
U = vl

U sin ψl
U

ψ̇l
U = ωl

U

, (4)
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where vl
U and ψl

U denote, respectively, the speed and the heading angle of the lth UAV,
and where ωl

U is the turning rate constrained by a maximum value of ωmax, and it is the
designed control input of the UAV controller for target search and tracking.

The detection range of each UAV is defined by a circular area with radius ρU . If a
target is within the perception area of the onboard sensor, the probability that this target
generates a valid measurement, i.e., the sensor detection probability, is denoted by Pd. The
detection model of the UAVs can be expressed mathematically as

Pl
D

(
xi
)
=

{
Pd, d(i, l) 6 ρ

0, otherwise,
(5)

where d(i, l) is the distance between the ith target and the lth UAV.

2.3. Problem Statement

The problem studied in this work involves a team of UAVs with bearing-only sensors
cooperatively tracking and searching for an unknown number of targets in the region of
interest. As depicted in Figure 1, the union of sensor FOVs cannot cover the whole search
area: thus, the UAVs need to be guided, to search for undetected targets. On the other hand,
due to the poor observability of bearing-only sensors, we also need to design the observer
paths to guarantee the tracking accuracy of the targets that have been discovered already.
Based on the framework of multi-target tracking methods, this paper aims to construct an
optimization problem that combines the two objectives described above and to improve
the performance of multi-target search and tracking using passive sensors.

ρ

Region of Interest

Figure 1. Multi-UAV multi-target search and tracking scenario.

3. Preliminaries

Multi-sensor multi-target tracking usually consists of two stages: local target tracking
and track-to-track fusion. In the local tracking stage, each sensor estimates the motion states
and existence probabilities of the targets inside its FOV. Then, the local states belonging to
the same origin from different sensors are fused in a processing center after track-to-track
association. The JIPDA filter is leveraged as the local estimator, while the GCI method is
used for track fusion in our work, and they are briefly reviewed in this section.

3.1. Joint Integrated Probabilistic Data Association Filter

Compared to the standard JPDA filter, the assumption that the number of targets
is known a priori is relaxed, and a track management module is contained in the JIPDA
algorithm, to estimate the cardinality of the targets. At each timestamp, the measurements
received are also likely to originate from the newborn targets: thus, the global association
event at time k can be represented as Ξk =

{
εi

k(j)
}

, i ∈ {1, 2, . . . , Nk|k−1 + Mk}, where
εi

k(j) refers to the event that the jth measurement belongs to the ith target, and Nk|k−1
denotes the predicted number of existing targets. For the previously detected targets
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i ∈ {1, 2, . . . , Nk|k−1}, the corresponding j ∈ {0, 1, . . . , Mk}, and j equals 0 in the case of
miss detection. The potential new targets commence on the measurements at current
scan: thus, j ∈ {1, 2, . . . , Mk} with i ∈ {Nk|k−1 + 1, . . . , Nk|k−1 + Mk}. As an extension
form of JPDA, JIPDA inherits the nature of soft association between the targets and sensor
measurements. Each of the measurements inside the validation gate of a target is considered
as a candidate of the target-originated observation, and the target states are updated using
a weighted sum of them:

x̂i
k|k = x̂i

k|k−1 + Ki
k

Mk

∑
j=1

βi
j

[
zi

j,k − hi
k

(
x̂i

k|k−1

)]
, (6)

where Ki
k is the Kalman gain of the ith target calculated by

Ki
k = Pi

k|k−1

(
Hi

k

)T(
Si

k

)−1
, (7)

with
Si

k = Hi
kPi

k|k−1

(
Hi

k

)T
+ Rk, (8)

where Hi
k is the Jacobian matrix of the measurement function h(x).

In Equation (6), βi
j = p(εi

k(j) | χi
k, Zk) defines the posterior marginal probability that

the jth measurement is associated with the ith target under the condition of track existence.
The calculation of βi

j is the key point in the application of the JPDA-based method.
Based on Bayes’ theorem, the association probability under existence conditions can be
expressed as

βi
j = p

(
εi

k(j)|χi
k, Zk

)
=

p
(
εi

k(j), χi
k|Zk

)
p
(
χi

k|Zk
) , (9)

where the joint probability of target existence and association event εi
k(j) for pre-existing

targets is computed by

p
(

εi
k(j), χi

k|Zk

)
=


(1−PD PG)ri

k|k−1

1−PD PGri
k|k−1

p
(
εi

k(j)
)
|Zk), i ∈ [1, Nk|k−1], j = 0

p
(
εi

k(j)
)
|Zk), i ∈ [1, Nk|k−1], j ∈ [1, Mk].

(10)

The event of target i existence is the union of events
{

εi
k(j), χi

k
}

with j ∈ [0, Mk]: thus,
the existence probability of the existing target i is obtained as

ri
k = p

(
χi

k|Zk

)
=

Mk

∑
j=0

p
(

εi
k(j), χi

k|Zk

)
, i ∈ [1, Nk|k−1]. (11)

By enumerating the feasible joint association events that contain the single hypothesis
εi

k(j), the marginal probability associating target i with measurement j is given by

p
(

εi
k(j)

)
|Zk) = ∑

εi
k(j)∈Ξk

p(Ξk|Zk). (12)

The probability of a feasible joint association event can be obtained by multiplying
probabilities of the mutually independent single hypotheses:

p(Ξk|Zk) = c−1
k ∏

i∈[1,Nk|k−1],j=0

(
1− PDPGri

k|k−1

)
∏

i∈[1,Nk|k−1],j>0


PDPGri

k|k−1 p
(

zj
k|x̂

i
k|k−1

)
λ f a +

〈
λu

k|k−1, p
(

zj
k|·
)

PDPG

〉
, (13)
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where ck is a normalization constant that guarantees that all the joint association events
form a complete set. The denominator in Equation (13) calculates the intensity of extraneous
sources, including the false alarms and the potential targets that have not yet been detected.
As the states of potential targets are unknown, another PPP model is utilized to describe
their distribution. The intensity of potential targets at time k is denoted by λu

k , and 〈λ, p〉
represents the inner product of λ(.) and p(.).

The existence-conditioned marginal association probability can then be obtained
through Equations (9)–(13), and the existence probability for the new targets at k is up-
dated by

ri
k =

PDPGri
k|k−1 p

(
zj

k|x̂
i
k|k−1

)
λ f a + 〈λu

k|k−1, p
(

zj
k|·
)

PDPG〉

1−
Nk|k−1

∑
t=1

βt
jr

t
k

, i ∈ [Nk|k−1 + 1, Mk]. (14)

Remark 1. Note that in the original JIPDA algorithm [16], the influence of unknown targets is
neglected when calculating the probability of feasible joint association events, and only the intensity
of false alarms is considered in the denominator of Equation (13). The authors in [17,18] included
the constant birth intensity in this term, under the assumption that the sensor detection range is
unlimited. There are two reasons for considering the time-varying intensity of unknown targets
in this work. Firstly, including the term of potential target intensity in p(Ξk|Zk) increases the
association probability between the measurements and newborn targets in an area with pre-existing
tracks, thus benefiting the track initiation process. Secondly, the rationale of using a constant
intensity to represent the potential targets is that when the sensor detection range covers the whole
search area and the detection probability PD ≈ 1, the intensity of unknown targets is low enough to
be safely ignored [19]. However, in the search and tracking scenarios with limited sensor FOV, the
updating of unknown target intensity is necessary, both to guarantee the accuracy of data association
and to guide the UAVs towards areas with high potential target intensity.

3.2. Track-to-Track Fusion

In cooperative tracking systems, each sensor runs its own tracking filter, and the
confirmed tracks are reported to a processing center for data fusion. Before fusing the
tracks from different sensors, track-to-track association is required, to decide the tuples
of tracks with common origins. In this work, the modified DBSCAN algorithm [20] is
employed for track clustering. The Mahalanobis distance between two tracks, from sensors
l1 and l2, is used to describe their similarity, and it is defined by

D
(

x̂i,l1
k , x̂i,l2

k

)
=
(

x̂i,l1
k|k − x̂i,l2

k|k

)T
(

Pl1
k|k + Pl2

k|k − Pl1,l2
k|k −

(
Pl1,l2

k|k

)T
)−1(

x̂i,l1
k|k − x̂i,l2

k|k

)
, (15)

where Pl1
k|k and Pl2

k|k are the error covariance matrix of x̂i,l1
k and x̂i,l1

k , respectively, and Pl1,l2
k|k

denotes the cross-covariance accounts for the dependence between two tracks due to
common process noise [21].

Two tracks from different sensors are considered to have the same origin if the sta-
tistical distance between them is below a threshold γ f . Based on this hypothesis testing
process, tracks from different sensors are partitioned into several clusters, with each corre-
sponding to a common target origin. Suppose there are n f tracks in a cluster, track fusion
is performed using the GCI method, as in [22]:

P f
k|k =

n f

∑
l=1

πl
(

Pl
k|k

)−1
; (16)

x̂i, f
k|k = P f

k|k

n f

∑
l=1

πl
(

Pl
k|k

)−1
x̂i,l

k|k, (17)
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where πl denotes the weights satisfying

n f

∑
l=1

πl = 1. (18)

4. Trajectory Optimization for Searching and Tracking Multiple Targets

The simultaneous searching and tracking of multiple targets aims both to maintain
the existing targets and to explore the areas with potentially undetected ones; therefore, we
formulate a cost function combining these two objectives in this section. In the following
derivations, the intensities of newborn targets and undiscovered targets are assumed to be
Gaussian mixtures, as follows:

λb
k(x) =

Nb
k

∑
t=1

wb,t
k N

(
x; µb,t

k , Pb,t
k

)
; (19)

λu
k|k(x) =

Nu
k|k

∑
t=1

wu,t
k|kN

(
x; µu,t

k|k, Pu,t
k|k

)
, (20)

where Nb
k denotes the number of components in the distribution of newborn targets at

time k, while wb,t
k is the weight of the tth components. The tth possible state vector of the

newborn targets is represented by µb,t
k , and Pb,t

k is the corresponding covariance matrix. The
definitions of Nu

k , wu,t
k|k, µu,t

k|k and Pu,t
k|k are the same as those of the newborn targets, except

that they are recursively estimated according to the variation of the sensor FOVs. The
update of these variables is given in the following subsection, to facilitate the formulation
of the cost function for target searching.

4.1. Searching for Undiscovered Targets

To seek potential targets, the UAVs are expected to move towards areas with high
intensities of undiscovered targets. Therefore, reducing the posterior integral of λu

k|k(x)
over the region of interest creates the possibility of discovering more potential targets.

Under the assumption that the intensities of newborn and undetected targets are both
Gaussian mixtures, the one-step prediction of λu

k|k(x) is given by

λu
k+1|k(xk+1) =

Nu
k|k

∑
t=1

wu,t
k|kPSN

(
xk+1; µu,t

k+1|k, Pu,t
k+1|k

)
+

Nb
k+1

∑
t=1

wb,t
k+1N

(
xk+1; µb,t

k+1, Pb,t
k+1

)
. (21)

Then, the potential target intensity is updated by the lth sensor, as follows:

λu,l
k+1|k+1(xk+1) =

(
1− Pl

D(xk+1)
)

λu
k+1|k(xk+1). (22)

Thus, the posterior intensity of undiscovered targets about the state vector xk+1 is ob-
tained as

λu
k+1|k+1(xk+1) =

Ns

∏
l=1

(
1− Pl

D(xk+1)
)

λu
k+1|k(xk+1). (23)

According to Equations (5) and (23), because the detection range of the onboard sensor
is limited, the posterior intensity of undetected targets is related to the positions of the
UAVs. As shown in Figure 2, the intensity of unknown targets in the sensor field of view
decreases significantly after the update, while the intensity maintains the prior value in
the uncovered area. Therefore, the cost function for UAV trajectory planning for searching
can be constructed based on the overall intensity of potential targets in the search area.
Segmented by the sensor FOVs, the distribution of the updated intensity is irregular. Thus,
we discretize the region of interest into grids, to quantify the intensity of undiscovered
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targets. The entire search area G can be represented by G = g(1) ∪ g(2) ∪ · · · g(ng), where
g(i), i ∈ {1, 2, . . . , ng} denotes the ith position grid, and where ng is the number of grids.
Then, the number of unknown targets in grid g(i) at time k + 1 can be approximated by

Λu
k+1|k+1(gi) =

∫
λu

k+1|k+1

(
xgi

c

)
· s(gi)dudv, (24)

where xgi
c denotes a set of state vectors whose position components locate at the central point

of grid g(i), u and v are the velocity components in the state vector, and s(gi) represents the
area of the grid g(i).

Figure 2. The intensity of unknown targets.

To facilitate the combination of multiple objective functions, the performance index of
the target searching is expected to be dimensionless. According to Equations (21) and (23),
the prior number of unknown targets in grid g(i) at time k + 1 is calculated as

Λu
k+1|k(gi) =

∫
λu

k+1|k

(
xgi

c

)
· s(gi)dudv. (25)

To reduce the number of undiscovered targets, the ratio between the predicted pos-
terior and the prior number of unknown targets is leveraged as the cost function for
multi-target searching, i.e.,

Js
k =

∑
ng
i=1 Λu

k+1|k+1

∑
ng
i=1 Λu

k+1|k
. (26)

Remark 2. Note that utilizing Equation (23) in the update of λu
k|k yields a non-Gaussian dis-

tribution of the posterior undiscovered target intensity, which cannot be used in the recursion of
JPDA-based multi-target tracking filters. This problem can be tackled by the mean-based partition
method in [23,24]. In this approach, the prior intensity distribution of undetected targets is split
into multiple Gaussian components, and the components with their means inside the sensor FOV
are deleted in the posterior intensity, while the others are preserved. Therefore, in our algorithm,
Equation (23) is applied only in the calculation of cost function for target searching, and the Gaus-
sian splitting method is employed in the update of λu

k|k, to guarantee the implementation of the
JIPDA filter.

Remark 3. Although the system state vector is four-dimensional, we discretize the search area in
only the position space. This is reasonable, because the update of undetected targets is based on the
sensor detection probability, which is a function of the target position.
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4.2. Tracking Existing Targets

For the discovered and confirmed targets in the search area, the UAVs are expected to
keep track of them and improve the tracking accuracy. Therefore, the future measurements
of the UAVs need to be predicted, to select the most informative UAV trajectories. However,
due to the existence of false alarms and imperfect detection probability, it is difficult
to simulate the sensor measurements, considering the environmental parameters. The
predicted ideal measurement set (PIMS) is a set of measurements predicted into the next
timestamp, based on the estimated multi-object states and the observation model without
considering the clutter, miss detection and sensor noise. Thus, the PIMS is employed
to generate the future measurements in this subsection. In the measurement prediction
process, only the confirmed targets still covered by the sensor FOV at the next timestamp
are counted in the PIMS generation. If we assume that the current timestamp is time k, then
the PIMS of the lth sensor at k + 1 can be expressed as

Z̃l
k+1

(
ωl

U,k

)
=

⋃
xi∈X̂C

k+1|k ,xi∈FOVl
(

ωl
U,k

) hi
k+1

(
xi
)

, (27)

where X̂C
k+1|k =

{
xC,1

k+1|k, xC,2
k+1|k, · · · , x

C,NC
k+1|k

k+1|k

}
is the set of confirmed targets at k + 1 pre-

dicted according to the target estimation results at time k, and NC
k+1|k

is the predicted

number of confirmed targets. FOVl
(

ωl
U,k

)
denotes the sensor FOV after the lth UAV

moves according to the turning rate ωl
U,k.

Remark 4. As the target birth and termination at time k + 1 cannot be predicted before the actual
sensor measurements are obtained, the prediction ideal measurement set is generated, assuming that
the number of confirmed objects at k + 1 remains the same as time k, i.e., NC

k+1|k = NC
k .

After predicting the measurements at k + 1, using Equation (27), the states and error
covariance matrices of the confirmed targets at time k + 1 can be updated by the standard
JPDA filter and the multi-sensor fusion method given in Section 3.2. As the error covariance
matrix reflects the uncertainty of state estimation, the determinant of the covariance matrix
is employed as the tracking accuracy index. Thus, the dimensionless cost function for
tracking is defined as

Jt
k =

∑
NC

k+1|k
i=1 Pi

k+1|k+1

∑
NC

k+1|k
i=1 Pi

k+1|k

. (28)

Remark 5. As PIMS does not consider target birth, it is rational to update the multi-target state,
using the standard joint probabilistic data association filter, which assumes the number of targets
is known.

4.3. Optimization Problem Formulation

The trajectory optimization problem in the multi-target search and tracking scenario
involves optimizing the cost functions JS and Jt simultaneously; therefore, it is a multi-
objective optimization problem. As it is difficult to find the optimal solution that minimizes
the sub-objective functions of multi-objective optimization problems at the same time, the
linear combination of Js and Jt is used as the objective function of the search and tracking
problem, i.e.,

Jk = Js
k + η Jt

k, (29)

where η is a parameter that adjusts the weights of search and tracking objective functions.
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The optimization variables at time k are the turning rates of all the UAVs, i.e.,

Ωk =
[
ω1

U,k, ω2
U,k, · · · , ω

NU
U,k

]T
. (30)

Then, the trajectory optimization problem for multi-UAV multi-target tracking can be
described as

Ω∗k= arg min
Ωk
{Jk}, (31)

s.t., ∣∣∣ωl
U,k

∣∣∣ ≤ ωmax, l ∈ {1, 2, · · · , NU}. (32)

Remark 6. Note that we select the turning rates of UAVs as the optimization variables of the
trajectory optimization problem according to the UAV model in Equation (4). For different UAV
kinematic models, the corresponding control input of the UAV can be determined as the optimization
variable. Thus, the proposed trajectory optimization algorithm can be easily applied to different
types of UAVs.

The trajectory optimization algorithm for multi-target search and tracking is summa-
rized in Algorithm 1.

Algorithm 1 Trajectory optimization for multi-target search and tracking at time instant k.

Input: Current multi-target state estimation (x̂i, f
k|k, P f

k|k), current intensity of unknown

targets λu
k|k

(
xgi

c

)
, previous heading angles ψl

U and maximum permissible turning rate
ωmax.
Output: Optimal UAV turning rates Ω∗k .

1: Predict unknown target intensity, using Equations (21) and (25)
2: Update unknown target intensity, using Equations (22)–(24)
3: Calculate the searching objective function, using Equation (26)
4: for l = 1 : Ns do
5: Z̃l

k+1 ← ∅ . Initialize the pseudo-measurement set
6: for i = 1 : NC

k+1|k do

7: if xi ∈ FOVl
(

ωl
U,k

)
then

8: Z̃l
k+1 ← Z̃l

k+1 ∪ hi
k+1

(
xi) . Select targets inside the FOV, to generate PIMS

9: end if
10: end for
11: Update target states with Z̃l

k+1, using Equations (6)–(14)
12: end for
13: Fuse target states from multiple sensors, using Equations (15)–(18)
14: Calculate the tracking objective function, using Equation (28)
15: Ω∗k= arg min

Ωk
{Jk}

16: return Ω∗k

5. Simulation

For this section, the proposed multi-UAV multi-target search and tracking trajectory
optimization algorithm was verified by numerical simulation. Firstly, the performance
evaluation indexes commonly used in multi-target tracking were introduced, and the
accuracy of cardinal number estimation and position estimation was comprehensively
evaluated. Then, the effectiveness of the proposed algorithm was tested in several target
search and tracking scenarios. All the simulations were conducted in MATLAB R2020a,
and the genetic algorithm (GA) toolbox was leveraged, to solve the optimization problem.
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5.1. Performance Evaluation

The widely used optimal subpattern assignment metric (OSPA) [25] describes the
distance between two multi-target sets, and was employed here to evaluate the tracking
performance. We let X =

{
x1, x2, . . . , xm} and X̂ =

{
x̂1, x̂2, . . . , x̂n} denote the ground

truth set and the estimated target set, respectively; the OSPA distance between them was
defined by

dc
p(X, X̂) =


[

1
n

(
min
π∈Πn

∑m
i=1 dc(xi, x̂π(i))

p + cp(n−m)

)]1/p
, m ≤ n

dc
p(X̂, X), m > n,

(33)

where Πn was the set of permutations of 1, 2, . . . , n, and where π(i) denoted the index
of element in set X̂ that was assigned to the ith element in set X. The cutoff distance
between vectors xi and x̂π(i) was dc(xi, x̂π(i)) = min(c, d(xi, x̂π(i))), with (.xi, x̂π(i)) being
the Euclidean norm. The order parameter p determined the sensitivity of the OSPA on the
wrong estimates, while the cutoff parameter c determined the relative weighting of the
cardinality estimation error against the localization error.

5.2. Simulation Setup

We considered a scenario of four UAVs searching and tracking multiple targets with
bearing-only sensors in a region of interest. The size of the region was 800 m× 800 m,
and the number of divided grids, when calculating the density of the unknown targets,
was ng = 50× 50. The FOV of each UAV was a circular area with radius ρU = 150 m.
The detection probability of the onboard sensor for the targets in its FOV was set to be
Pd = 0.95. The standard deviation of bearing measurement noise was σα = 1◦, and the
expected number of false alarms in the sensor measurements per frame was NFA = 3. The
target survival probability was PS = 0.99. The maximum permissible turning rate of the
UAV was set to be ωmax= 40◦/s, and its speed was 15 m/s.

Remark 7. The parameters of the UAV kinematic model were set to simulate small-scale quadrotors,
and the value of the maximum turn rate and speed were determined by referring to [8,13]. The
target survival probability, intensity of clutter and the detection probability of the onboard sensors
were set as the typical values in multi-target tracking scenarios [26].

The constant velocity (CV) model was utilized to describe the kinematics of the targets,
and the state transition process of the CV was determined by

xi
k = Fi

k−1

(
xi

k−1

)
+ wi

k−1, (34)

with

Fk =

[
I2 Ts I2
02 I2

]
, (35)

where Ts = 1 s denoted the sampling time. The covariance matrix of the process noise wi
k

was given as

Qk = δ2
v

[
T4

s
4 I2

T3
s

2 I2
T3

s
2 I2 T2

s I2

]
, (36)

where δv = 0.08 m/s2 was the standard deviation of the process noise, and In denoted the
n× n identity matrix.

As the prior information of the target position could not be obtained in general,
it was assumed that the possible birth positions of the targets were evenly distributed
throughout the whole search area. As shown in Figure 3a, the Poisson birth inten-

sity was described by a Gaussian mixture λb
k(x) = ∑

Nb
k

t=1 wb,t
k N

(
x; µb,t

k , Pb,t
k

)
, with Nb

k =
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81. We assumed that a new target appeared every five frames; therefore, the weights
of the Gaussian components were determined by wb,t

k = 0.2/Nb
k = 3.1 × 10−3, t ∈[

1, Nb
k

]
. The mean of the Gaussian components was µb,t

k =
[

pi
x, 0, pi

y, 0
]T

, where pi ∈
{0 m, 100 m, . . . , 800 m} × {0 m, 100 m, . . . , 800 m}. The covariance matrix of the birth
intensity was Pb,t

k = diag([200, 5, 200, 5])2. The initial value of the unknown target intensity
was set to be the same as λb

k(x). The weight in the objective function was set to be η = 2.

(a) (b)

Figure 3. Distribution of the intensity of new targets in the search region. (a) Without prior birth
information. (b) With prior birth information.

To verify the performance of the proposed UAV trajectory optimization algorithm in
target search and tracking applications, three simulation scenarios were set, as shown in
Figure 4. In the figures, the black diamonds were the initial positions of the four UAVs, and
the green circular area represented the FOVs of the sensors. The black solid lines were the
trajectories of the targets without considering the process noise. The hollow circles stood
for the starting position of the tracks, while the hollow triangles stood for the termination
positions. The time labels in the figures demonstrated the appearing and disappearing time
instants of the corresponding target in the search area. The three simulation scenarios are
described in detail as follows:

Scenario 1: Opposite-moving. As shown in Figure 4a, the initial position of the UAVs
is (350 m, 650 m), and there are two groups of targets moving in opposite directions from
the initial moment, one of which is within the FOVs of the sensors. The setting of this
scenario aimed to investigate whether the proposed trajectory optimization method can
explore and find potential targets successfully, while maintaining the tracking accuracy of
the discovered targets.

Scenario 2: Prior-information. This scenario considers special scenarios with prior
information about the target birth, such as a scenario where ground vehicles cannot cross
obstacles and where the range of entrance is limited. As shown in Figure 3b, assuming
that the targets can only enter the area through the left edge of the area, the parameters in

the birth intensity model λb
k(x) = ∑

Nb
k

t=1 wb,t
k N

(
x; µb,t

k , Pb,t
k

)
are given by Nb

k = 11, and the
Gaussian components distribute evenly on the left edge. The mean value of the position
components is pi ∈ 0 m× {0 m, 100 m, . . . , 800 m}. The scenario is shown in Figure 4b. Six
targets enter the search area from the left edge at the initial instant, and the initial position
of the UAVs is (300 m, 400 m). The setting of this scenario aims to examine whether the
proposed trajectory optimization algorithm can keep track of the discovered target while
searching a region with high unknown target density.

Scenario 3: Random-appearing. As shown in Figure 4c, there are four UAVs searching
and tracking for 10 targets, with no prior information of target birth. The 10 targets appear
in the search area randomly, and the initial position of the UAVs is (400 m, 400 m). The
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setting of this scenario is intended to comprehensively test the ability of the trajectory
optimization algorithm to search and track multiple targets.

(a) (b) (c)

Figure 4. Multi-target search and tracking scenarios. (a) Scenario 1. (b) Scenario 2. (c) Scenario 3.

5.3. Simulation Results

The simulation results of Scenario 1 are shown in Figure 5. Figure 5a presents the
trajectories optimization results of the four UAVs, where the purple scattering points are the
target positions estimated by the multi-sensor multi-target tracking algorithm. Figure 5b
presents the OSPA error of the multi-target positions. It can be seen from the figure that
although initially there was one group of targets covered by the sensor FOV, two UAVs,
with trajectories in red and green, moved towards the bottom right of the search area, to
balance the search and tracking objectives. Then, the UAV with the red trajectory discovered
the second group of targets, from t = 15 s to t = 25 s, and kept track of them. The UAV with
the green trajectory continued to search for the potential targets in the unexplored area,
and the second group of targets never appeared in its FOV. When t = 30 s, the three targets
in the upper-left corner disappeared, and the UAVs with the blue and yellow trajectories
started to explore other regions. From the simulation results of Scenario 1, it can be seen
that the proposed trajectory optimization algorithm can well balance the two purposes of
target search and tracking.

100 200 300 400 500 600 700

200

300

400

500

600

700
t=1s to t= 30s

t=1s to t= 30s

t=1s to t= 30s

t=1s to t= 50s

t=1s to t= 50s

t=1s to t= 50s

UAV1

UAV2

UAV3

UAV4

(a)
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0

20
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(b)

Figure 5. Simulation results of Scenario 1. (a) Trajectory optimization results. (b) OSPA error of
position estimation.

Figure 6 shows the simulation results of Scenario 2. As there was no target in the
sensor FOV of the four UAVs, they moved towards the left, where the intensity of unknown
targets was high for searching purposes. From Figure 6b, it can be seen that the six targets
from the left edge were confirmed by the UAVs successively between t = 15 s and t = 30 s,
and that the OSPA error remained below 20 m. When t = 50 s, the three targets in the
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lower half of the region disappeared. As the termination of targets needed to be confirmed,
based on a series of subsequent measurements, the OSPA error corresponding to this time
increased. When t = 60 s, in order to reduce the intensity of unknown targets in the
longitudinal range of 600 m to 700 m, the UAV with the green trajectory began to move
downwards, which resulted in the loss of the uppermost target. Five seconds later, the
FOV of the UAV with the yellow trajectory covered this area, and the green one returned
to the top area and kept track of the two targets. The results revealed that the trajectory
optimization algorithm can track the discovered targets while monitoring the regions with
high unknown target intensity by coordinating the UAV team, ensuring that the overall
tracking error is within an acceptable range.

(a)

0 20 40 60 80 100

0

20

40

60

80

100

(b)

Figure 6. Simulation results of Scenario 2. (a) Trajectory optimization results. (b) OSPA error of
position estimation.

The simulation results of Scenario 3 are presented in Figure 7. It can be seen from
Figure 7a that the target at (500 m, 500 m) was located within the detection range of the
four UAVs. To balance the performance of search and tracking, the two UAVs with the red
and green trajectories moved towards this target, to reduce the tracking error. The other
two UAVs flew towards the rest part of the field, to search for more potential targets. The
UAV with the trajectory in red detected the target at (300 m, 600 m) while tracking the
first target discovered, and it moved to the newly discovered one, while the second UAV
kept track of the first target. The UAV with the yellow trajectory successively initiated
the two targets at (200 m, 300 m), and it maintained high tracking accuracy. Note that the
UAV with the blue trajectory failed to initiate the target appearing at 30s, as it was close to
another target terminating at (500 m, 200 m), which is an inherent flaw of the JPDA-based
multi-target tracking approaches. Figure 7b shows the OSPA error of the multi-target
positions. It can be seen that the OSPA error converged well and that the sharp increases
corresponded to the time of target birth or termination. This is because the initiation of new
targets and the confirmation target disappearance need to be determined by multi-frame
sensor measurements.
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Figure 7. Simulation results of Scenario 3. (a) Trajectory optimization results. (b) OSPA error of
position estimation.

6. Conclusions

A trajectory optimization algorithm for multi-target search and tracking with airborne
bearing sensors is proposed in this paper. The intensity of unknown targets is modeled
and updated according to the UAV trajectory, guiding the UAVs towards the area with
high unknown target intensity. The intensity of unknown targets is also considered in
the calculation of external density in the JIPDA algorithm, which facilitates the initiation
of potential targets. According to the predicted posterior unknown target intensity and
the posterior tracking error covariance of the existing targets, an integrated dimensionless
evaluation criterion is created. By leveraging the criterion as the objective function, the UAV
trajectory optimization problem is constructed. Numerical simulations in different tracking
scenarios were performed, to validate the proposed approach. The simulation results
showed that in opposite-moving and prior-information scenarios the UAVs discovered all
the targets in the region of interest and that the OSPA error converged to less than 3 m.
In the random-appearing scenario, the steady value of the OSPA error was maintained at
around 20 m, due to the close-spacing targets. The results demonstrate that the proposed
trajectory optimization method balances the search and tracking objectives well and that it
maintains acceptable multi-target tracking accuracy.
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