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Abstract 

The pathogenesis of diabetic foot ulceration has been extensively studied with attention 
focused on the detection of risk factors for developing a plantar ulcer. The cause of 
plantar ulceration is multifactorial but the primary aetiology is believed to be excessive 
repeated pressure particularly under the insensitive foot. 

Limited joint mobility, as determined by limited passive range of motion at the ankle 
joint complex and I" metatarsophalangeal joint, has been strongly implicated in the 
generation of high plantar pressures, which have been linked with plantar ulceration 
seen in diabetics with neuropathy. Although limited joint mobility and high plantar 
pressures have been shown to co-exist in the presence of diabetic neuropathy, a direct 
causal link is speculative. This thesis investigated the association between joint 
mobility, high plantar pressure, and diabetic neuropathic ulceration in more detail. The 
novel aspect of the present study is that dynamic joint mobility has been assessed using 
a three-dimensional (3D) motion analysis technique. 

Development work was undertaken to establish the feasibility of whether a 
commercially available electromagnetic tracking system could be applied to study 3D 
joint movement at the ankle joint complex. Reliability and repeatability experiments 
were undertaken before the generation of a large database of normative values. 

Dynamic joint motion and Plantar pressure measurements (using an in-shoe device) 
were undertaken in a sample of convenience in 3 diabetic groups and a non-diabetic 
reference group. The study groups consisted of 

1) Diabetics with no history of foot ulceration and no clinical evidence of 
neuropathy 

2) Diabetics with no history of foot ulceration but with clinical evidence of 
neuropathy 

3) Diabetics with an active or previous history of plantar intrinsic ulceration 
4) A non-diabetic reference group matched for age, taken from the normative 

database. 
Diabetic patients were foll. Owed-up for 12 months and development of new ulceration 
was noted. 

No statistically significant differences were found between the study groups for 3D 
dynamic motion profiles at the ankle joint complex or the I st metatarsophalangeal joint 
between the study groups. Furthermore, no statistically significant relationship was 
found between joint movement data at the ankle joint complex and the peak pressure or 
pressure time integrals in any of the four study groups. No relationship was found 
between the passive and dynamic range of motion at the ankle joint complex or the ls' 
metatarsophalangeal joint. The findings of the present study do not support the current 
theory that people with a limited passive range of movement will have a limited 
dynamic range of motion. 

Since the present study did not find a relationship between dynamic joint mobility at the 
ankle joint complex and plantar foot pressures, it is unlikely that there is a cause and 
effect relationship between limited dynamic movement and the generation of high 
plantar pressures, with subsequent ulceration in the diabetic neuropathic foot. This 
suggests that other factors not examined in this study, for example plantar soft tissue 
properties or the effect of shear forces, may be more important in the pathogenesis of 
foot ulceration. 
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CHAPTERI 

INTRODUCTION 

The aim of this chapter is to provide a brief overview of the thesis and to highlight the 

importance and relevance of the subject matter. 

1.1 Relevance 

Lower limb amputation represents one of the most devastating end points of 

complications related to diabetes. Despite extensive work in the area of prevention of 

ulceration and amputation, diabetes remains to be the leading cause of non-traumatic 

amputation. Many aetiological pathways have been identified in the formation of 

diabetic foot ulceration and amputation. A major component in many ulcers is 

neuropathy. More recently the importance of biomechanics as a means to understand 

the development and treatment of ulcers has been highlighted. Changes in foot 

structure, function and gait style associated with diabetic neuropathy have been 

identified and offer an explanation as to why some patients ulcerate and others do not. 

Identification of the foot at risk is one of the main comer stones for the prevention of 
foot problems. The American Diabetes Association highlight peripheral neuropathy, 

altered biomechanics, peripheral vascular disease and a history of ulceration or 

amputation as the major foot related risk conditions (American Diabetes Association 

2000). Therefore screening for clinical evidence of neuropathy, circulatory 
impairment, biornechanical abnormality and the integrity of the skin should be 

included in screening pro forma. 

Assessment for peripheral neuropathy and vascular disease is widely incorporated into 

screening assessments. Standardised protocols and measurement techniques have 

been developed and the prognostic value of these measures for determining ulceration 

risk has been established. Assessment of foot structure is included in many screening 

programs, identification of digital deformities, bony prominences and Charcot 

deformities noted for increased ulceration risk. Limited mobility at the ankle, 

subtalar and first metatarsophalangeal joints has been found in patients with diabetes 
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and have been linked with high plantar foot pressures and ulceration. Measurements 

of joint mobility during screening are taken using goniometers, however, literature 

has shown that taking joint measurements in this way is subject to high errors. 

Assessment of foot biomechanics and gait is seldom included in screening programs. 
As a result there is little quantitative evidence to link the well-accepted biornechanical 

theory to common foot pathologies and ulceration in patients with diabetes. Subjective 

assessment of gait occurs in clinical practice, however, the reliability and value of 

subjective assessment remains unclear. Despite the importance of gait in the 

aetiology of ulceration, there are relatively few studies in the area, mainly due to 

arduous methods involved in performing motion analysis. 

In recent years the technology has developed vastly reducing the cost, time and 
technical expertise needed to undertake motion analysis. There is now the 

opportunity use this technology in the clinical setting as opposed to the research 

environment. This should increase our understanding as to the role that gait has on 
the development of ulceration in patients with diabetes with a view to identifying the 

risk factors which are linked to ulceration so that in future these could be incorporated 

into foot screening programs. 

1.2 Purpose 

There have been few studies examining the role that foot function has on the 

development of ulceration in patients with diabetic neuropathy. Plantar pressure 

measurement has been used extensively as an indirect measure of foot function; 

however, many of the assertions made from pressure measurement about foot function 

have yet to be validated. The purpose of this study is to investigate the differences in 

foot function between patients with diabetes compared to non-diabetic controls. 
Three-dimensional analysis of motion at the ankle joint complex will serve as a direct 

measure of foot function and will be combined with pressure measurement. Diabetic 

patients both with and without ulceration will be included in the study so that the 

relationship between foot function and ulceration can be investigated. The hypotheses 

generated for this study are presented in section 2.7, following the review of the 
literature material used in the generation of the hypotheses. The aims and objectives 

of the study will also be presented. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Diabetes and foot disease 

The aim of this section is to present literature on the prevalence, cost and 

ramifications of diabetes and its complications, with special emphasis on diabetes 

relatedfoot problems. 

2.1.1 What is diabetes? 

Diabetes mellitus is one of the most common endocrine diseases in all populations and 
in all age groups (Mandrup-Poulsen 1998). It is a syndrome which is characterised by 

high levels of blood glucose resulting from inadequate insulin secretion, impaired 

insulin action or both (National Institute of Diabetes and Digestive and Kidney Diseases 

1999). 

Diabetes is classified into two main types: type I and type 2. Between 5-10 percent of 

people diagnosed with diabetes have type 1, which most commonly occurs during 

childhood or the teenage years. Type 2 diabetes accounts for 90-95 percent of all 
diagnosed cases and usually occurs after age 40. Other less common types of diabetes 

can result from surgery, drugs, infections, specific genetic syndromes and other 
illnesses. These together account for 1-2 percent of all diagnosed cases. Diabetes can 

occur during pregnancy and-js known as gestational diabetes and develops in 2-5 
r 

percent of all pregnancies. ', The diabetes disappears when the pregnancy is over, I 
however, it is thought that there is a greater probability of developing type 2 diabetes in 

later life (National Institute of Diabetes and Digestive and Kidney Diseases 1999). 
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2.1.2 Prevalence of diabetes 

2.1.2.1 Worldwide prevalence ofdiabetes 

Diabetes is one of the most serious challenges to health care providers worldwide 
(Mandrup-Poulsen 1998). The worldwide prevalence of diabetes is expected to double 

between 1994 and the year 2010. It has been estimated that by the year 2010, diabetes 

will affect 239 million people worldwide (Mc Carty et al. 1994). The regional 

projections of the prevalence of diabetes in the year 2010, are shown in Figure 2-1. 

The geographical area highlighted in white represents Europe, which has a high 

estimated prevalence compared other areas for example North America and Canada, 

which represent a larger area in terms of square miles but has a lower estimated 

prevalence of diabetes. 

I 

20.2 

" 

I 
18. g 

Figure 2-1: Regional projections of the prevalence of diabetes in year 2010, 

expressed in millions. Taken from McCarty D. Zimmet A Diabetes 1994 to 2010: 

global estimates andprojections 1994. 

13.8 
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2.1.2.2 Prevalence ofdiabetes in the United Kingdom. 

It has been reported that the overall prevalence of diabetes in the UK is three percent 
(Fox et al. 1999). Diabetes has been reported to be three to five times more common 

among people of African Caribbean and Asian origin living in the UK (Mather et al. 
1985; Simmons et al. 1991). The number of people, who are diagnosed with diabetes 

each year in the UK, has been estimated to be over 100,000. This equates to one person 
being diagnosed with diabetes every five minutes (Gatling et al. 1998). A recent report 
by the Audit Commission says that diabeles now affects one in 30 people in England 

and Wales, including one in four Asian men over 60 years (Audit Commission 2000). 

The prevalence of diabetes increases with age and the current estimate of the prevalence 

of diabetes in persons aged over 65 years living in the UK is approximately ten percent 
(Audit Commission 2000). The Audit Commission predicts that the number of diabetic 

patients in the UK may double to three million by the year 2010. It is anticipated that 

there will be a dramatic rise in the prevalence of type 2 diabetes because of rising 
incidence of obesity, an aging population and recent changes in the diagnostic criteria 

which lowers the threshold for defining diabetes. 

It is estimated that over I million people are currently diagnosed with type 2 diabetes in 

the UK and that another I million may be undiagnosed (Forrest et al. 1986; Simmons et 

al. 1991). The significant morbidity and mortality associated with type 2 diabetes 

highlighted by a recent UK report, means that now more than ever, this type of diabetes 

is being recognised as a major public health concern in the UK (Diabetes UK et al. 
2000). 

2.1.3 Cost of Diabctes 

Diabetes is a disease, which has major long-term implications on both the individual 

and the nation as a whole. Adults with diabetes have an annual mortality of about 5.4% 

(double the rate for non-diabetic adults), and their life expectancy is decreased on 

average by 5-10 years (Donnelly et al. 2000). The treatment of diabetes and its 

complications has been estimated to take up 4-5% of the total health care expenditure in 

the UK (Leese 1992). The costs associated with diabetes can be very difficult to 

ascertain. The British Diabetic Association (BDA) categorise the costs into three 

groups: direct costs, indirect costs and intangible or psychological costs (British 
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Diabetic Association 1995). Direct costs include the costs associated with the detection 

and treatment of diabetes and its complications. Indirect costs relate to the loss of 

productive output caused by sickness absence, early retirement and premature mortality. 
The other costs are non-financial outcomes of the condition including anxiety, pain, 

suffering and loss in the quality of life. Few studies have been carried in the UK which 
have mainly concentrated on the direct costs associated with diabetes, as there are 
inherent difficulties associated with calculating the indirect costs. 

The T2 ARDIS survey attempted to examine the "big picture" associated with type 2 

diabetes. The objective of the survey was to estimate the total costs of all patient care 
and to ascertain the impact that the disease has on quality of life. 

The Big Picture 

Impaired quality of life (not reduced to monetary values) 

Lost cmployment / productivity 

Expenditure by patients and carers AL 
Direct + 

AL Indirect Other public sector cost Direct costs (social services, social security) costs 

Other health care costs 
L Public 

L sector 
Hospital services NHS costs 

costs 
Diabetes-specific 
treatment 

I 

Direct + 
Indirect + 
Intangible 

costs 

Figure 2-2: A diagrammatic representation of the main components of the costs 

assessed by theT2ARDIS survey. Taken from 72ARDIS - the survey ahstract, 
British Diabetic Association, Annual Professional Conference. 
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The financial cost associated with type 2 diabetes to the NHS is estimated to be two 

billion pounds and an additional 36 million pounds is spent on related social services 

and private health costs (Diabetes UK et al. 2000). The majority of diabetes care is 

provided in general practice (King's Fund 1996), however, it is estimated that 42% of 

the overall expenditure on diabetes is spent on inpatient care. The high cost is caused 
largely by the treatment of the complications associated with diabetes, which is 

dominated by in-patient care. The T2ARDIS report found that people with the type 2 

diabetes were two to three times more likely to be admitted to hospital than their 

demographic peers and would stay an average four times as long. Another report also 

states that people who had diabetes related complications were five times more likely to 

enter hospital than those people who had diabetes alone (Diabetes UK et al. 2000). 

2.1.4 Complications of diabetes 

Diabetes can affect nearly every organ system of the body and is the most common 

cause of blindness among working age adults, the leading cause of end stage renal 
failure and non-traumatic lower limb amputation. Diabetes was the 7h leading cause of 

mortality in the United States in 1996 (Centers for Disease Control and Prevention 

1999). Persons with diabetes have a reduced life expectancy than their non-diabetic 

peers and are at an increased risk of developing heart disease, peripheral vascular 
disease and having a stroke. 

2.1.4.1 Lower limb amputations 

Foot disease is considered to be the most common complication of diabetes leading to 

hospitalisation (Kozak et al. 1984) and in the UK more than half of the bed occupancy 

of diabetic patients are due to foot problems (Waugh 1988). People with diabetes have 

a 15 times higher risk of lower extremity amputation (LEA) than individuals without 
diabetes (Most et al. 1983). It is estimated that diabetes accounts for between 20 and 
45% of all amputations in the UK (Connor 1987). 

Diabetic amputation rates are reported to increase with advancing age (Humphrey 1989; 

Most et al. 1983). In one study, patients with diabetes aged 65 years or older accounted 
for 61% of all diabetes related LEAs (Miller 1985). The same study also reported that 

the extent of amputation increased with age, with a shift from toe amputations to below 

or above knee amputations 
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Several studies have shown that there is a higher risk for amputations among males 
(Reiber et al. 1995). The risk of an amputation is approximately two fold, and is 

reported to be more pronounced in younger male diabetic patients (Centers for Disease 

Control and Prevention 1991). 

Racial and ethnic differences in amputation rates have also been reported. It is 

generally accepted that there is a higher rate of diabetes related amputations in nonwhite 

races compared to white race. One study reported that black diabetic patients had an 

amputation rate 2.3 times greater than white diabetic patients (Most et al. 1983). The 

increased prevalence of LEA in these races may be due to socioeconomic and health 

care factors, which the population-based findings were not able to control (Reiber et al. 
1995). In the UK it has been shown that rates of LEA in individuals with diabetes of 
Asian ethnic origin, were lower than that for Caucasians, after adjusting for age and sex. 
The rates were 3.4/10 000 in diabetic patients of Asian ethnic origin compared to 

14.2/10 000 in Caucasian diabetic patients (GuJraI et al. 1993). It has also been noted 

that there is a lower rate of neuropathic and/or ischaernic ulceration in patients of Asian 

ethnic origin living in the UK. The lower rate of ulceration of may be due to 

differences in joint mobility and may be a consequence of cultural differences, leading 

to better self-care foot practices. A further explanation may be that many diabetic 

patients of Asian origin may die from ishaernic heart disease before ulceration and the 

need for amputation develops (Chaturvedi et al. 2002). 

2.1.4.2 Consequences ofan amputation 

Amputation represents the most devastating endpoint of all diabetic foot disorders. The 

long-term prognosis for the diabetic undergoing an amputation is poor. The mortality 

rate among diabetic individuals following an amputation, varies considerably between 

countries and is dependent on the amputation site (Reiber et al. 1995; Reiber 2001b). 

Many studies have examined the death rate after an amputation. Survival rates are 

approximately 50% for the following 3 years and about 40% during the 5 years after the 

amputation (Palumbo et al. 1985). 

It is very common for a patient to require successive amputations, after an initial LEA, 

of the same limb or of the contra-lateral limb. Levin stated that out of 485 patients 

studied, 42% required an amputation of the opposite leg in the first three years 
following the first amputation and 56% in 3 to 5 years (Levin et al. 1998). The overall 
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cost of an amputation is difficult to assess, many figures exclude the cost associated 

with rehabilitation, loss of future earning power and an increased reliance on social 

services (Mackey et al. 1986). Most of the work on the economic impact of diabetic 

foot problems has centred on the estimation of direct health care costs, the costs 
involved with the identification, treatment and care of the patients with these problems 
(Williams 1994). Cost of care estimates for lower limb amputations in the US in 1992 

ranged from $24,000 to $27,000 and from $14,500 to $21,500 for rehabilitation (Reiber 

et al. 1995). 

The emotional and social cost, both to the patient and their families, cannot be 

measured easily. The morbidity associated with a LEA is dependent on the site of 

amputation. With a major LEA there is a loss of independence due to functional 

impairment. This has an impact on both the quality of life of the patient and their 
family and increases the economic burden on the individual, the health care service 

providers and social services. 

2.1.4.3 Foot Ulceration 

It is estimated that 15% of all diabetic patients will develop an ulcer of the foot or ankle 

at some time during their lifetime (Palumbo et al. 1985). It has been estimated that 4- 

24% of people with diabetic foot ulcers will require a lower limb amputation (American 

Diabetes Association 1999). In the 'Lýnited States it has been reported that foot ulcers 

precede 85% of amputations in people with diabetes (Pecoraro et al. 1990). The 

estimated cost for chronic skin ulceration in the United States in 1986 was $150 million, 

this figure representsl. 3 percent of the total direct costs spent on diabetes as a whole in 

that year (Reiber 1992). 

In a population study of 1077 patients with diabetes, 7.4 percent had active or previous 
history of foot ulceration (Walters et al. 1992). Currie and associates studied the 

frequency and in-patient care costs for peripheral vascular disease, neuropathy, foot 

infection and foot ulceration in people with diabetes (Currie et al. 1998). The highest 

average length of stay was for chronic ulceration of the skin. More than 75% of the 

total bed days used for patients with diabetes were for chronic skin ulceration and other 

peripheral vascular disease. From this data Williams estimated that the annual number 

of admissions for foot ulceration in people with diabetes in the UK was around 115 000 

(Williams et al. 1999). 
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2.1.4.3.1 Consequences offoot ulceration 

The prognosis for diabetics with foot ulceration is poor, in a prospective study 725 

people with diabetes were followed for an average length of just under two years. The 

relative risk of death for those with an ulcer was 2.39 versus those vAthout an ulcer at 

the start of the study (Boyko et al. 1996). 

Foot ulceration has been shown to'have a major negative effect on the quality of lives of 
both the patients and their families (Carrington et al. 1996). Ulceration has been shown 

to have a negative impact on social activities and psychological well-being. Limitation 

of activity levels as a result of the ulceration lead to a reduction in productivity, lack of 

earnings and a negative impact on overall health. 

2.1.5. Summary 

Diabetic foot problems are a major source of morbidity, the figures related to 

amputation and ulceration rates and their associated direct and intangible costs highlight 

the need to develop strategies to try and prevent the complications. The St Vincent's 

Declaration in 1989 aimed to reduce the number of amputations from diabetic gangrene 
by fifty percent. Despite much effort directed towards prevention of amputation in the 

last decade the incidence of diabetes related lower extremity amputations have 

continued to rise (American Diabetes Association 1999). There is a need for the 

development of strategies aimed at the prevention of foot ulceration and to improve the 

level of care for patients who develop ulceration. A thorough understanding of the 

different mechanisms by which ulceration occurs is needed in order to achieve this aim. 
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2.2 Diabetic foot ulceration. 

This section provides an overview of the aetiological pathways and classification of 
foot ulceration. A description of risk factors associated with foot ulceration will be 

presented with more detailed discussion of the factors associated with plantar 
intrinsic ulceration 

2.2.1 Actiology of diabetic foot uIceration 

Foot ulcers are one of the most costly aspects of the treatment of diabetes, in the UK. 

Many patients with ulceration are treated in the community and, district nurses may 

need to visit to redress ulcers up to three times a week. The prognosis for diabetic 

patients with foot ulceration is poor, it has been estimated that between four and 

twenty-four percent will require an amputation (American Diabetes Association 

1999). Reoccurrence rates for diabetic foot ulcers are high, in one study 35-40% of 

patients reulcerated over three years and this increased to 70 percent over five years 
(Apelvist et al. 1993). Figures like these highlight that it is imperative that the causes 

of ulceration are identified and addressed by appropriate management strategies to 

prevent ulceration. 

As medical technology has improved the understanding of the causative pathways 
leading to ulceration have increased. The breakdown of the diabetic foot was 
traditionally thought to be a consequence of peripheral vascular disease, peripheral 

neuropathy and infection (Boulton 2000), however, now many other factors have been 

identified which have been shown to play an important role in the pathogenesis of 
foot ulceration. 

It is widely recognised that diabetic foot ulceration is the result of a combination of 

several risk factors. A model for causation leading to diabetic amputation and foot 

ulceration, has been described by Pecoraro and Reiber (Pecoraro et al. 1990; Reiber 

2001a). The model is based on the concept of component and sufficient cause. A 

component cause in isolation will not cause ulceration (the neuropathic foot will not 



spontaneously ulcerate). However, if component causes act together, they may result 
in sufficient cause for ulceration (trauma which is not detected due to neuropathy and 

results in ulceration). Alternatively, the pathway to ulceration and amputation has 

been described as an interaction of, predisposing, precipitating and aggravating 
factors (Faris 1991). Predisposing factors include neuropathy and vascular disease, 

precipitating factors include physical trauma and aggravating factors include 

infection, poor wound healing and poor compliance. 

Foot ulceration then, has a multifactorial aetiology and many different pathways to 

ulceration have been identified. Levin in a review article compiled a comprehensive 
diagram to highlight major pathways in the pathogenesis of ulceration, shown in 

Figure 2-3 (Levin 1995). This model is generally accepted by many podiatrists 

working in the area of management of the diabetic foot, however, it fails to include 

the importance of foot biornechanics in the formation of ulceration (this area will be 

covered in more detail in section 2.4 and 2.5). 

2.2.2. Classification of ulceration 

Foot ulceration can be classified in a number of different ways, by aetilogy, location, 

the extent of ulceration or by the presence/absence of infection. A widely used 

classification system divides ulceration into, purely neuropathic, purely ischaernic or 

neuro-ischaemic. 

Neuropathy is regarded as the most important and most common complication of 
diabetes leading to foot ulceration (Levin 1995). A large percentage of ulcers seen in 

diabetic clinics and/or in the community are neuropathic in origin. In one study 

neuropathy was present in 60% of all patients with foot ulcers and was cited to be the 

major contributory factor (Gavin et al. 1993). A similar percentage (62%) of 

neuropathic ulcers was reported by Edmonds, however, Boulton and associates found 

neuropathy to be the major aetiological factor in 87% of new foot ulcers (Boulton et 

al. 1986; Edmonds 1987). 
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Peripheral vascular disease has long been implicated in the formation of diabetic foot 

ulceration, and is regarded as a major contributory factor in the pathogenesis of 

ulceration and amputation (Pecoraro et al. 1990). The percentage of ulceration due to 

pure ischaernia has been reported to be between 7 and 20% (Thomson et al. 1991; 

Edmonds 1987). Although peripheral vascular disease has long been implicated in 

the formation of diabetic foot ulceration, neuropathy should be emphasized as the 

major component in the pathogenesis of ulceration and ischaernia considered a 

secondary factor (Cavanagh 1999). A combination of neuropathy and vascular 
disease can result in ulceration. This type of ulceration (neuroischaemic) is where 

both components are cited to be equally as important in the formation of the ulcer. 

Ulceration of mixed origin has been reported to be between 20 and 45% (Gavin 1993; 

Thomson et al 199 1). 

Ulceration can also be broadly defined as extrinsic or intrinsic ulceration. Extrinsic 

ulceration is the result of injury due to external pressures or trauma. This type of 

ulceration commonly results from wearing ill-fitting footwear or results from injuries 

sustained during barefoot walking (standing on a nail etc). Effective patient 

education and appropriate footwear should in theory be able to prevent extrinsic foot 

ulcers. Therefore the greater challenge for clinicians is the prevention of intrinsic 

ulceration. This type of ulceration occurs on the plantar surface of the foot and is the 

result of normal levels of pressure experienced under the foot during daily activities. 

This level of pressure would not normally cause ulceration, but due to loss of 

protective sensation, leads to excessive tissue damage and subsequent ulceration. 

Intrinsic plantar foot ulcers usually develop as the result of repeated moderate stress 

on the foot, which due to lack of protective sensation goes unnoticed by the patient, 

although there are no prospective studies to support this. At the sites of repetitive 

stress, areas of callus develop, which can increase the local pressure by around 30% 

(Masson et al. 1998). The ulcers normally occur at the site of maximum pressure and 

are often found over the metatarsal heads and on the plantar surface of the hallux. An 

interaction between altered sensation, biornechanical abnormalities and mechanical 

trauma is the most common pathway to developing intrinsic foot ulceration. 
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2.2.3 Risk factors associated with diabetic foot ulceration 

The early recognition and management of risk factors for ulcers and amputations can 

prevent or delay the onset of these adverse outcomes (American Diabetes Association 

2000). Risk identification is fundamental for effective preventative management and 
the best method is to identify and manage risk factors before foot ulceration occurs. 
There are a number of factors that have been implicated in the formation of diabetic 

foot ulceration which are listed in the Table 2-1. 

Table 2-1: List of potential and well accepted (bold type) risk factors for foot 

injury and amputation. Takenfrom Cavanagh and Ulbrecht 1991. Biomechanics 

of the diabetic foot: A quantitative approach to the assessment o neuropathy, !f 

deformity andplantar pressure. 

Peripheral vascular disease 
" Macrovascular 
" Microvascular 
Peripheral neuropathy 
" Sensory 
" Motor 
" Autonomic 
Foot deformity 
" Subsequently poorly fitting footwear 
" Subsequent increased plantar pressures 
Inadequate footwear 
Inadequate footcare 
Neuropathic (Charcot) fracture 
Abnormal foot function 
Impairment of vision 
High activity level 
Infection 
HypergIycacmia 
" Presumed cause of neuropathy 
" Presumed cause of macrovascular disease 
" Cause of connective tissue glycosylation 
" Possibly cause of impaired wound healing 
" Cause of hypercoagulability 
Race 
Gender 
Duration of diabetes 
Previous ulceration 
Previous amputation 



A full discussion of each risk factor in Table 2-1, is beyond the scope of this thesis 

and can be found elsewhere (Boulton 2000; Boulton 2001; Levin 1995; Levine 1993). 

Some of the most common pathways to diabetic foot ulceration are illustrated in 

Figure 2-4. This section will focus on the risk factors associated with the 
development of intrinsic foot ulceration from the literature; neuropathy, limited joint 

mobility, foot deformity, callus formation and a history of previous ulceration 

amputation. 

DIABETES 

Cheiroarthropathy 

Limitedjoint 
mobility 

Alcohol 

Neuropathy 

Somatic Autonomic 

Reduced pain, 
proprioception 

Small muscle 
wasting 

Altered foot 
pressure 

Smoking 
Hyperlipidaemia 

Peripheral vascular 
disease 

Altered Dry skin 
blood flow 

AV shunting 
Cracks, 
fissures Foot 

Ischaemia 

Intrinsic Extrinsic v 
foot ulcer foot ulcer 

Neuroischaernic Ischaernic ulcer 
ulcer 

Figure 2-4: Pathways to foot ulceration in diabetic patients. Takenfrom Boulton 

A. J. M. (1992). Peripheral neuropathy and the diabeticfoot. The Foot, 2: 67-72. 
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2.2.3.1 Diabetic neuropathy 

Diabetes is the most common cause of neuropathy in the western World. A number 

of different types of neuropathy occur in diabetes and they include manifestations in 

the somatic and/or autonomic parts of the peripheral nervous system (American 

Diabetes Association et al. 1988). Diabetic neuropathy is classified into discrete 

clinical syndromes, shown in Table 2-2. 

Table 2-2: Classification of the diabetic neuropathies. Taken and adaptedfrom 

neuropathy in the diabetic foot. - new concepts in etiology and treatment, Greene, 

DA, Feldman, E. L., Stevens, M. (1998). 

Syndromes of diabetic neuropathy 

1. Diffuse neuropathics (common, insidious onset, usually progressive) 

a) Distal symmetrical sensorimotor polyneuropathy 
I Acute sensory 
11 Chronic senorimotor 

b) Autonomic neuropathy 
2. Focal neuropathics (rare, sudden onset, usually transient) 

a) cranial neuropathy 
b) Radiculopathy 

C) Plexopathy 
d) Mononeuropathy / mononeuropathy multiplex 

I Entrapment neuropathy 
II Other mononeuropathies 

Distal symmetric sensorimotor polyneuropathy is the most commonly recognised 
form of diabetic neuropathy and both sensory and autonomic neuropathy, are 

associated with foot ulceration. Focal neuropathies are relatively uncommon and 

there is no evidence to suggest that mononeuropathies lead to foot ulceration (Boulton 

1994). 
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2.2.3.1.1 Sensory neuropathy 

Sensory neuropathy is the most common of all diabetic neuropathies. The prevalence 

of neuropathy varies widely in the literature. This is the result of differences in 

diagnostic criteria and different methods used in the assessment of neuropathy. The 

prevalence of neuropathy has been shown to increase with age and the disease 

duration. Pirart found that 10% of patients had neuropathy at the time of diagnosis of 
diabetes. The percentage of patients with neuropathy after having diabetes for 25 

years increased to 50% (Pirat 1978). The reported prevalence of chronic sensorimotor 

neuropathy in a UK study of 6500 patients attending diabetic clinics was 28.5% 

(Young et al. 1993a). In one study patients with peripheral sensory neuropathy were 

shown to have a sevenfold increased risk of developing foot ulcers in the following 

three years (Boulton et al. 1983). 

2.2.3.1.2. Autonomic neuropathy 

Autonomic neuropathy is considered to be an important risk factor for foot ulceration, 
because it results in a reduction in sweating causing dryness of the skin. Dry skin is 

thought to be less compliant and more likely to crack and fissure than moist skin. 
Once cracked there is the portal of entry for a bacterial infection. Skin 

conductivity/resistance measurements can be used as a valid measure to monitor the 

effect of systemic control on eccrine gland activity. Decreased sweating assessed by 

skin resistance and other methods has been shown to be strongly associated with foot 

ulceration (Boulton et al. 1983; Ryder et al. 1988). 

2.2.3.2. Limitedjoint mobility 

A number of studies have shown that diabetic patients have smaller ranges of 

movement atjoints in the upper and lower extremity. This limitation ofjoint mobility 
is a presumed by product of non-enzymatic glycosylation. Limitation of movement at 
the ankle joint, subtalar joint and the first metatarsophalangeal joint have been 

demonstrated in diabetic patients and have been associated with the development of 
foot ulceration (Delbridge et al. 1987; Fernando et al. 1991). Limited joint mobility 
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and its relationship to diabetic foot ulceration will be discussed in more detail in 

section 2.4. 

2.2.3.3 Foot deformity 

Minor foot deformities, especially clawing of the toes are common in people with 
diabetes (Borssen et al. 1990). The long-term effects of sensorimotor neuropathy are 

thought to lead to a characteristic posture of the foot, which may lead to an abnormal 
distribution of weight under the foot (Boulton et al. 1987b). Foot deformities due to 

neuropathy frequently lead to ulceration (Boyko et al. 1999; Levin 1995). The key 

element in the linkage between foot deformity and ulceration is elevated peak 

pressure (Cavanagh et al. 1994). A full description of the changes in foot structure 

associated with diabetes and the relationship to foot ulceration will be discussed in 

section 2.4. 

2.2.3.4 Callus 

A wide variety of dermatological conditions are recognised as occurring more 

commonly in people with diabetes. It has been suggested that neuropathy could 

predispose the patient to an excessive production of plantar hyperkeratoses (Sage 

1987). It has been suggested in the literature that it is more likely to be a consequence 

of changes in foot structure associated with diabetic neuropathy, which predispose the 

foot to elevated plantar foot pressures and subsequent callus formation (Cavanagh et 

al. 1993). 

The process of non-enzymatic glycosylation of connective tissue proteins in the skin 

occurs in diabetes and results in changes, which make the skin thick and less flexible. 

These changes directly affect collagen, making it stiffer and not able to deform as 

quickly in response to a given load. It is more susceptible to cracking and splitting in 

response to rapid deformation associated with high velocity foot impact (Landsman et 

al. 1995). These changes may make the skin more prone to tissue damage (Faris 

1991). 

Callus has been shown to be strongly predictive of subsequent ulceration, 

retrospective analysis by Murray and associates, found plantar ulceration was 77 
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times more likely to occur at a site of previous callus (Murray et al. 1996). Plaques of 
keratin are thought to develop in response to mechanical stresses and tissue 

breakdown may occur underneath the plaque. Inflexibility of collagen tissue as a 

result of glycosylation may potentiate tissue breakdown in areas exposed to high 

shearing forces and may facilitate the formation of cavities and ulcers (Delbridge et 

al. 1985). Reduction of plantar callus has been shown to significantly reduce the 

mean peak plantar pressures in the forefoot by an average 29 percent (Young et al. 
1992a). 

2.2.3.5 Previousfoot ulceration /amputation 

Previous ulceration and or amputation is a leading risk factor for future ulceration as 
the patient has a combination of risk factors that together produce ulceration. More 

recently it has been suggested that altered mechanics of the scar tissue may increase 

the risk for ulceration. Scar tissue is not strong and is thought to be more vulnerable 

to the shearing forces during walking (Levin 1995). It has been suggested that the 

scar tissue is less able to dissipate mechanical stress and transmits large concentrated 

loads to the underlying softer tissue (Cavanagh et al. 2001a). Previous amputation 

may result in changes in the pressure distribution under the foot, resulting in excessive 

pressure and subsequent tissue damage. 

20 



2.3 Screening Techniques to identify the "At Risk Foot". 

This section reviews the literature concerning screening techniques employed in the 

assessment of thefoot at risk ofdeveloping ulceration, focusing on methods to assess 

neurological and vascular status. A description ofscreening methods and rationale 

will be presented, together with a discussion ofscoring systems used in clinical 

practice. The literature reviewed in this section willform a basis to support the 

screening techniques employed in the methods section 

An international working group has produced practical guidelines for healthcare 

workers on the management and the prevention of the diabetic foot problems. 

Identification of the foot at risk is one of the main comer stones for the prevention of 
foot problems. Recognising important risk factors and making a comprehensive 

assessment of the diabetic limb requires a thorough and consistent diagnostic 

approach. A useful evaluation will involve identification of contributory problems 

and assignment of relative risk (Harkless et al. 1991). The first step is to take a 

patient history and, an examination of the foot is of paramount importance to assess 

the potential for future problems. The American Diabetic Association position 

statement for the clinical recommendations for preventative foot care highlight 

peripheral neuropathy, altered biomechanics, peripheral vascular disease and a history 

of ulceration or amputation as the major foot related risk conditions (American 

Diabetes Association 2000). Therefore screening and assessment for clinical evidence 

of neuropathy, circulatory impairment, biornechanical abnormality and skin disorders 

is important to determine who is at risk for ulceration and to initiate an appropriate 

preventative management strategy. A number of different screening methods are used 
in the assessment of the diabetic foot. Standardisation of methods has not been 

adopted. Many specialist centres use different scoring systems to ascertain risk status. 
The aim of this section will review the different methods used to screen for 

neuropathy, peripheral vascular disease, biornechanical abnormality and scoring 

systems used to ascertain risk status. 
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2.3.1 Assessment of neuropathy 

The reported prevalence of neuropathy has previously ranged from 5-80%, due to 
differences in diagnostic criteria and the type of population studied (Eastman 1995). 

Diffuse symmetrical sensorimotor neuropathy is the most common type of 

neurological dysfunction found in diabetics, the prevalence varies according to the 
diagnostic criteria used. In 1988 a joint conference of the American Diabetes 

Association and the American Association of Neurology adopted standardised 

nomenclature and criteria for diagnosis of neuropathy in diabetes. This classification 

recognises subclinical and clinical neuropathy. Subclinical neuropathy is defined by 

an abnormal electrodiagnostic test, quantitative sensory threshold or autonomic 
function test in the absence of clinical signs or symptoms. Clinical neuropathy is 

defined as signs or symptoms together, or as symptoms or signs alone plus an 

abnormal test results. The preferred criteria for diagnosis of distal symmetrical 

polyneuropathy are abnormalities in two of three areas: symptoms, signs, and 

quantitative sensory tests or electrodiagnostic studies (American Diabetes Association 

et al. 1988). 

2.3.1.1 Electrodiagnostic tests 

Electrophysiological techniques have the advantage of being the most objective, 

sensitive, specific and reproducible method to detect and localise neuropathic changes 
(Zeigler 1994). However, they have a relatively low specificity in detecting diabetic 

neuropathy and correlate poorly with clinical findings. Electrophysiological 

techniques measure function in the largest, fastest myelinated fibres and many small 

myelinated fibres and unmyelinated fibres are not assessed. The function of small 

unmyelinated fibres, which carry autonomic signals and awareness of pain are not 

reflected in any of the routine electrophysiological tests (Guy et al. 1985). 

Measurements from electrophysiological tests do not directly predict symptoms or 

signs of neuropathy (Cavanagh et al. 1991b). A detailed examination of neurological 
function using these methods is not always necessary or feasible and is not used for 

routine screening for diabetic neuropathy 
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2.3.1.2 Quantitative sensory testing 

The Peripheral Neuropathy Association recommend detection of thresholds of touch 

pressure, vibration, coolness, warmth, heat pain, cold pain and mechanical pain to 
determine cutaneous sensation (Peripheral Neuropathy Association 1993). The 

advantages of quantitative sensory testing are that the procedures are relatively 

simple, non-invasive and non-aversive and can be valuable in screening large 

numbers. Variables such as room and skin temperature and skin condition must be 

controlled and all devices used should be calibrated frequently to ensure consistency 
(Kahn 1992b). The instructions given to patients should be simple and clear and 

procedures of testing standardised. A major limitation associated with this type of 

testing is that the results are very much dependent on the cooperation and alertness of 

the patient which can result in high intra-individual variability. Adequate 

standardisation of testing (forced choice methods) may be time consuming and lead to 

decrease in concentration of patient and diagnostic error. 

2.3.1.2.1 Touch Pressure 

The Semmes-Weinstein filaments are used for evaluating touch-pressure sensation. 
The system consists of a series of graded, pressure sensitive nylon filaments of 
increasing calibre that buckle at a reproducible stress and can measure a patient's 

cutaneous pressure perception threshold. The filaments are pressed perpendicularly 

onto the skin until buckling occurs. The thicker the filament the greater the force 

required for buckling. 

The Semmes-Weinstein filaments are a simple, inexpensive and effective screening 

method for the detection of loss of protective sensation. The vibration perception 

threshold and Semmes-Weinstein filaments have been shown to be the most effective 

methods of measuring sensory deficits in the hand and foot (Perkins et al. 2001). 

Birke and Sims found the 4.17 filament represented the approximate lower limit of 

normal sensation. To characterise the insensate foot they recommended the use of the 
4.17,5.07 and 6.10 filaments, bending with 1,10, and 75g of force respectively 
(Birke et al. 1986). 
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Pressure perception has been shown to be strongly associated with foot ulceration. 
Sosenko and associates found a strong association between impaired pressure 
perception and foot ulceration in patients with diabetes (Sosenko et al. 1990). Boyko 

and Rith-Najarian identified increased ulcer risk in patients unable to detect the 5.07 
filament (Boyko et al. 1999; Rith-Najarian et al. 1992). Monofilament testing has 

been shown to be an important prospective predictor of foot wounds (Litzelman et al. 
1997). The filaments have been shown to be reliable in screening for patients at risk 

of foot ulceration, (100% sensitive and 77.7% specific) and found to be more 

sensitive in identifying patients with foot ulceration than biothesiometry (Kumar et al. 
1991). 

A standardised methodology for the use of monofilaments has not been widely 

adopted. The sensitivity and specificity of monofilament testing for the prediction of 

neuropathy is highly dependent on the methodology used (McGill et al. 1998). It must 

also be noted that not all commercially available lOg monofilaments are the same. 

Booth and Young found differences in the accuracy and durability of commercially 

available monofilaments (Booth et al. 2000). Continual use of a filament can lead to 

reduced ability to accurately detect peripheral neuropathy. The filament can become 

less rigid and buckling can occur at a decreased force therefore becoming potentially 
hypersensitive in the prediction of loss of protective sensation. This may have 

important ramifications on finite resources if Patients with normal sensation are 
incorrectly identified as having loss of sensation, limited resources may be used 
inappropriately (Booth et al. 2000; McGill et al. 1998; Yong et al. 2000). 

Despite the limitations outlined monofilaments are inexpensive and are simple to use. 

They have been reported to provide the quickest and best method of confirming and 

measuring loss of protective sensation. In the clinical setting sensory examination 

with a 5.07 monofilament remains to be the single most practical measure of risk 

assessment (McNeely et al. 1995). 

2.3.1.2.2 Vibration 

Measurement of vibration perception threshold is widely used as a sensitive and 

reproducible test for assessing peripheral large myelinated fibres. Deficit in this 
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function tends to correlate with, but often preceeds abnormality in tendon reflexes, 

light touch and position sense (American Diabetes Association et al. 1988). A 

number of instruments are commonly used for detection of vibration perception 

thresholds (VPTs), including the biothesiometer, neurothesiometer and vibraton. It 

has been shown that VPTs correlate significantly with peripheral nerve function, 

demonstrated by nerve conduction parameters from the sural nerve and clinical 

scoring systems of neuroPathy status (Franklin et al. 1990). Determination of the 

VPT with the neurothesiometer has been shown to be less variable than with the 

vibraton (Bril et al. 1997) and has been shown to compare favourably with the 

biothesiometer (Young et al. 1993b). 

Raised vibration perception thresholds are closely associated with the presence of foot 

ulceration (Boulton et al. 1983; Boulton et al. 1986; Guy et al. 1985). An 

investigation found that VPT was the most discriminative test for neuropathic changes 

in the lower extremity, and a VPT of greater than 35 volts (outside the normal limits 

of vibration perception for the study group) was significantly associated with the 

presence of neuropathic foot ulceration (Boulton et al. 1983). In a prospective study 

VPT was able to predict diabetic patients at increased risk of developing foot 

ulceration. A VPT of greater than 25 volts carried a sevenfold risk of foot ulceration 

compared with a VPT of less than 15 volts (Young et al. 1992b). It has been shown 

that VPT increases with age and there is a positive correlation between duration of 

diabetes and an increase in VPT (Young et al. 1993b). 

Wide variability in VPT at different sites in the same subject has been documented, 

which reduces the diagnostic value of this variable. Williams and associates found 

differences of up to 30% existed between contralateral and ipsilateral sites in diabetic 

subjects with a single observer (attempts had been made to standardise the technique) 

(Williams et al. 1988). Differences in the tissue characteristics locally and patchy 

asymmetric neuropathy were proposed as possible explanations for the wide 

variability in VPT among sites. The study concluded that readings at single or 

unilateral sites may be unrepresentative and highlighted the need for bilateral 

examination in conjunction with other neurological tests and clinical observation to 

determine if neuropathy is present. It has been shown that the assessment of vibration 

perception has limited value when screening for neuropathy in elderly people. Loss 

of vibration perception has been shown to be marked in the elderly (people over 70 
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years) and therefore makes the distinction between reduced perception as a result of 
the normal ageing process and neuropathy very problematic (Thomson et al 1993). 

On this basis measurement of vibration perception alone for the assessment of 
neuropathy is not recommended. 

2.3.1.2.3 Temperature 

Abnormalities in cold and/or warm thresholds may constitute the earliest evidence of 

neurological deficit (American Diabetes Association et al. 1988). Detection of 
thresholds for cold and warm sensations provides a quantitative assessment of small 

nerve fibre function. A variety of commercial instruments are available to evaluate 
thermal sensitivity. Some instruments consist of two thermal plates and others have 

only one thermal plate. In two plate systems, one plate acts as a reference and the 

temperature of the other plate is varied. The smallest temperature difference between 

the two plates correctly identified by the patient is the perception threshold. With one 

plate systems the absolute maximum temperature at which the patient can detect cold 

and the absolute minimum temperature at which the patient can detect warm are 

recorded. 

Impulses induced by cooling stimuli are conducted in different fibres from those 

concerned with the sensation of warmth (Le Quesne et al. 1991). Significant 

differences between hot and cold perception thresholds have been demonstrated. It 

has been stated that measurement of cooling thresholds will not detect minor 

variations in small nerve fibre function in diabetic subjects therefore assessment of 

warm threshold is preferred (Sosenko et al. 1987; Sosenko et al. 1988). 

Thermal sensitivity has been shown to be grossly abnormal in the feet of diabetic 

subjects with neuropathic ulceration and Charcot joints (Guy et al. 1985). 

Temperature sensation is often lost in tandem with pain sensation (both small fibres), 

this can occur without evidence of abnormality in vibration perception thresholds or 
touch pressure sensation (large fibres) (Brown et al. 1984). It has been suggested that 

the small fibres are more susceptible to damage than large fibres (Guy et al. 1985). 
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2.3.1.2.4 Pain 

Pain sensation is subserved by two groups of nerve fibres: the rapidly conducting, 
high-threshold mechanosensitive myelinated-A8 fibres responsible for sharp, G'first" 

pain and the polymodal nonmyelinated nociceptive C fibres responsible for dull, 

burning pain (Le Quesne et al. 1991). A variety of types of stimulation (thermal pain, 

cold pain, pinch and pressure pain) have been used to determine the threshold for pain 

appreciation. Although information on pain appreciation in normal subjects has been 

obtained using elaborate psychophysical techniques, there is little information on pain 

appreciation in the diabetic foot. Quantitative testing for pain appreciation in the 

high-risk foot is complex, the stimulus needs to be carefully controlled so that there is 

no risk of causing undue trauma which could lead to serious foot injury. Quantitative 

testing of this type is not used for routine screening. 

The pinch pain threshold has been measured in diabetic and control subjects, using a 

"pinchometer" on the dorsum of the foot. In some diabetic patients pain was not 

appreciated at one or more points, when the maximum force (2.8kg) was used. In 

other diabetic subjects the quality of pain was altered, patients reported they felt a dull 

ache rather than sharp pain appreciation. The authors interpreted the loss of sharp 

pain perception in some diabetic patients as being due to a loss of A5 fibres (Le 

Quesne et al. 1986). 

2.3.1.3 Autonomicfunction tests 

Diabetic autonomic neuropathy may manifest as dysfunction of several different 

organ systems. The diagnosis of autonomic neuropathy was first based on symptoms 

but now is dependent on various objective reflex tests. Autonomic function testing is 

used to document diabetic autonomic failure which can be divided into two 

categories; autonomic failure, in which there is a structural lesion of the peripheral 

autonomic neuron and functional autonomic failure in which no structural lesion 

occurs (Kahn 1992c). 
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A number of objective measurements have been developed to evaluate autonomic 
function. Typically testing is performed to detect cardiovascular abnormalities, motor 
disturbances of gastrointestinal tract, genitourinary tract disturbances, sudomotor 

sympathetic function and endocrine tests for functional autonomic failure. The tests 

measure end organ response to activation of the ne , ural reflex arcs and can be non- 
invasive or invasive. Some tests whilst useful for physiological studies are 
impractical for use in a diabetic clinic. Invasive tests are not suitable for routine 

screening or monitoring progression of neuropathy. Non-invasive tests have been 

shown to be reliable, reproducible and correlate with other tests of peripheral nerve 
function. Cardiovascular tests (for example measurement of change in blood pressure 

on standing) are generally accepted as the 'gold standard' for assessment of 

autonomic dysfunction in diabetics, however tests in other systems can be useful. 

Evidence regarding the relationship of autonomic neuropathy and foot ulceration has 

been conflicting. Corbin and associates found no clear association between autonomic 

neuropathy and the degree of abnormal blood flow in diabetic patients with and 

without symptoms of neuropathy and recurrent foot ulceration (Corbin et al. 1987). 

Young and associates found that peripheral somatic electrophysiological tests were 

significantly higher in patients with foot ulceration compared to diabetic patients 

without ulceration, whereas autonomic function tests were not (Young et al. 1986). 

McFadden and associates compared peripheral sensory nerve function and cardiac 

autonomic reflexes in diabetic patients with foot ulceration compared to diabetic 

controls, using discriminant analysis they concluded that an abnormal autonomic 

score was the best predictor of foot ulceration in diabetic patients (Mc Fadden et al. 
1991). It has been noted that the cardiovascular autonomic function tests assess only 

central autonomic function and do not necessarily correlate with autonomic 
denervation in the feet (Ryder et al. 1990). 

A test for peripheral autonomic denervation in the feet has been developed. The test 

measures the sweating response in the skin to intradermally injected acetylcholine. 
The sweating response needs an intact sympathetic nerve supply to the sweat glands. 
If there is denervation of the sweat glands there would not be a sweating response to 

the acetylcholine. Using this test Ryder and associates tested 19 patients with a 
history of foot ulceration, they found that all but one patient with a foot ulcer had 

peripheral autonomic denervation of the feet and suggested that autonomic 
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neuropathy was a major factor in diabetic neuropathic foot ulceration (Ryder et al. 
1990). The mechanism by which autonomic neuropathy can result in foot ulceration 
is that decreased sweating as a consequence of autonomic neuropathy can lead to 

cracking and fissuring of the skin, which can progress to ulceration. Although a high 

proportion of patients with foot ulceration have been shown to have autonomic 

neuropathy, this does not imply cause and effect. 

2.3.1.4 Clinical Measures ofneuropathy 

Clinical measures are defined as the medical and neurological history and a physical 

examination (Kahn 1992a). These measures are used to classify and grade clinical 

neuropathy and are used as a secondary outcome measure in clinical studies. Most 

practitioners in the absence of quantitative neurological testing equipment will use 

clinical measures as a first line screen to determine if further investigation is 

warranted. Directed scored histories and physical examination of the sensory, motor 

and autonomic systems are considered as clinical measures which show a strong 

correlation with physiological and morphological abnormalities (Kahn 1992a). 

Clinical measures are relatively subjective and are dependent on the aptitude of the 

examiner. Limited reliability and reproducibility of clinical measures and the lack of 

sensitivity to change restrict their use as primary outcome measures. They form an 

essential part of clinical studies but other more objective tests are required in addition 

to purely clinical measures. 

2.3.1.4.1 Assessing symptoms 

Several different symptom questionnaires have been developed, some are 

administered by health care professionals and others are patient administered. 

Reproducibility of questionnaires is generally enhanced if the symptoms are classified 

as present or absent, rather than attempts to grade severity of symptoms. 

The Neuropathy Symptom Score has items related to motor, sensory and autonomic 

neuropathy, and symptoms are scored in a binary fashion. The Neuropathy Symptom 

Profile is a true or false questionnaire with the questions grouped into sub-scales to 

reflect motor, sensory or autonomic dysfunction (Dyck et al. 1986). A diabetes 

symptom checklist has been developed for type 2 diabetes, this consists of 34 
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questions to measure the occurrence of physical and psychological symptoms related 

to type 2 diabetes and its complications (Grootenhuis et al. 1994). Patients are asked 
how often symptoms have occurred during the past month, the total score gives a 

value for neuropathic pain and sensory alteration. When performed by expert 

examiners, the reproducibility of the NeuroPathic Symptom Score and the 

Neuropathic Symptom Profile is reported to be acceptably high (Dyck et al 199 1). 

It must be noted that prediction of polyneuropathy from neuropathic symptoms alone 
is not advocated. The San Luis Valley study considered patients to have neuropathy if 

they had two of the following; bilateral symptoms, bilateral absent or decreased ankle 

reflexes and absent or altered cold perception (Franklin et al. 1990). Using the criteria 

they classified 27.8% of the sample as having definite neuropathy. The percentage of 

the sample with a history of neuropathic symptoms was 97%. In a study by Feldman 

and associates they found that equal numbers of patients with and without neuropathy 

answered up to six relevant questions about neuropathic symptoms positively and 

concluded that symptoms may not always indicate underlying neuropathy (Feldman et 

al. 1994). 

2.3.1.4.2 Physical Examination 

Neurological evaluations attempt to assess the distribution and severity of motor, 

sensory and autonomic deficits. Clinical neurological examination of the lower limb 

is a fundamental part of diabetic assessment. The examination includes assessment of 

the sensory, motor and autonomic systems. 

2.3.1.4.2.1 Sensory examination 

The traditional methods of sensory examination include evaluation of pain (pin prick), 

touch pressure (cotton wool, monofilaments), vibration (tuning fork), temperature, 

reflexes, two-point discrimination and proprioception Ooint position sense). The 

testing is perfonned at multiple defined sites on the lower limb, with reference testing 

on other sites of the body (trunk, face). Clinical practice recommendations for the 

standardisation of sensory examination states that the sites to be examined should 
include the distal toe and distal finger (Kahn 1992a). Results of sensory tests are 

more reproducible if classified as normal or abnormal, however, a limitation of 
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assessing deficits in this way is the lack of sensitivity to change once they have 

become abnormal. These tests are easily applied to the clinical outpatient setting for 

screening large numbers of patients. Pinprick, light touch sense, vibration sense and 

ankle reflex, are validated and shown to be adequate for use in daily practice (Valk et 

al. 1992; Valk et al. 1997; Valk et al. 2000). Descriptions on how to perform these 

tests are documented elsewhere and will not be discussed in this chapter (Cavanagh et 

al. 1991b; Tanenberg et al. 2001). The rationale and clinical evidence to support these 

methods will be briefly summarised. It must be noted that all psychophysical tests of 

sensory perception are dependent on patient cooperation and motivation and are open 

to interpretation by both the examiner and the patient and must be utilised in this 

context. 

2.3.1.4.2.1.1. Pain Assessment 

The sensation of superficial pain can be tested by pinprick using a sharp pin or 

neurotip (sharp and dull side). The sites to be examined should include the distal toe 

and distal, finger. Limitations associated with this type of test include difficulty in 

standardising the amount of force applied to the skin. The neuropen has been 

developed in attempt to allow the examiner to standardise the amount of force used 

when applying a neurotip to the skin. The superficial pain test has been shown to have 

comparable sensitivity and specificity with the 5.07 monofilarnent and vibration 

perception testing (Perkins et al. 2001). Valk and associates compared bedside 

clinical examination with neurophysiological examination and concluded that 

impairment of pin prick sense was an early indicator of neurological dysfunction and 

was an important parameter in the clinical diagnosis of diabetic polyneuropathy (Valk 

et al. 1992). The superficial pain test using the neurotip can be confidently used in the 

annual screening for diabetic neuropathy (Perkins et al. 2001). 

2.3.1.4.2.1.2 Touch pressure 

Light touch sense can be evaluated by using cotton wool and testing is performed by 

gently touching the skin surface of the foot with a cotton wool wisp. The clinical 

significance of light touch sense using cotton wool has been confirmed (Valk et al. 

1992). It has been demonstrated that light touch sense indicated changes associated 

with impaired or absent sural nerve function, which is considered to be an important 
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indicator of diabetic polyneuropathy. Diminished light touch sense indicated changes 
in sural nerve function better than vibration sense (Valk et al. 1992). 

2.3.1.4.2.1.3 Vibration 

The 128Hz tuning fork is commonly used to assess patient's ability to detect 

vibration. The inability to feel the tuning fork at the great toe carries the same 

significance as the inability to detect the 5.07 monofilament (Tanenberg et al. 2001). 

Vibration testing with the tuning fork using the on-off method involves the tuning 

fork being placed in contact with the patient's skin, the tuning fork may or may not be 

vibrating. The patient is asked to report when they feel vibration and when the 

vibration sensation ceases as a result of attenuated oscillation. This method is 

preferred over the timed method as it is much quicker to perform and the results are 

more valid in their interpretation. Vibration testing by the on-off method is 

recommended as an accurate method to predict the likelihood of neuropathy (Perkins 

et al. 2001). 

2.3.1.4.2.1.4 Temperature 

Commercial systems are available to test temperature perception, however, they are 

not usually available in most out-patient settings. Temperature perception is usually 

tested in the clinical situation by using test tubes filled with hot and or cold water. 
The patient has their eyes closed and is asked to identify the temperature as the test 

tubes are placed in contact with the skin in a random order. This method is not 

standardised and there is a lack of evidence to support this as a method to screen for 

the diagnosis of diabetic neuropathy. 

2.3.1.4.2.1.5 Reflexes 

The prevalence of absent ankle reflexes in the normal adult population is uncertain, 
however there is an increase in the absence of ankle reflexes after the age of 70 years 
(Bowditch et al. 1996). It has been reported that the frequency of decreased or absent 

ankle reflexes exceeds 5% in healthy subjects older than 50 years (Dyck et al. 1995). 

In screening of diabetic neuropathy the reflexes are usually classified as present, 

present with reinforcement or absent. The reflexes at the ankle and knee are usually 
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tested. The ankle reflex has been shown to be reproducible and has moderate 

agreement with the Semmes-Weinstein monofilament (Smieja et al. 1999). McNeely 

and associates found absence of the Achilles tendon reflexes to be a significant 
independent predictor for foot ulceration (McNeely et al. 1995). 

2.3.1.4.2.1.6 Two-point discrimination 

Two-point discrimination is used as an estimate of nerve fibre density, it is a complex 

process that involves not only the peripheral nervous system but also cerebral 

processing of information. A set of dividers with two dull points in which the 

distance between them can be altered are used for this type of test. The smallest 
distance of separation the patient can correctly identify is recorded at the index finger 

and great toe. Normal values for index finger and great toe are 2mm or less. A value 

of greater than 2mm is consistent with nerve fibre loss (Tanenberg et al. 2001). 

2.3.1.4.2.1.7 Jointposition 

Joint position sense is usually assessed first at the interphalangeal joint of the hallux. 

If the patient is unable to detect changes in joint position at this joint, more proximal 
joints are tested (the I" metatarsophalangeal joint and the ankle joint). There is no 

standardised procedure to test joint position sense. Most clinicians will demonstrate, 

moving the hallux up, down and a reference position (neither up or down). The 

patient is asked to close their eyes and report if they think the position of the hallux is 

up, down or in the reference position. It has been noted that joint position sense is 

preserved until late stages of neuropathy. Valk and associates found that joint 

position sense was normal in 96.4% of patients who had impaired sural nerve 
function. They found a significant difference in the number of normal findings in 

this patient group between joint position sense and light touch, pin prick and vibration 

perception (Valk et al. 1992). 

2.3.1.4.2.2 Motor assessment 

Symptoms of muscle weakness in the lower limb are difficult to evaluate, symptoms 

such as weakness, unsteadiness, falling could as easily be related to sensory loss or 
joint problems as to muscle weakness (Cavanagh et al. 1991b). There are usually no 
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symptoms associated with weakness of the intrinsic muscles of the foot. Motor 

assessment of the lower limb is assessed by manual muscle testing in the clinical 

situation. The examiner has to manually resist or break a particular voluntary 

movement. Although there are specific tests for almost every muscle, in the lower 
limb muscle strength is usually evaluated around a joint. A typical assessment 
involves evaluation at the hip, knee, ankle and metatarsophalangeal joints. In diabetic 

neuropathy muscle weakness appears late and usually involves the intrinsic muscles 

of the foot and the ankle dorsiflexors, more proximal muscles are only involved in 

severe cases (Kahn 1992a). 

A number of different grading systems have been developed to test and grade muscle 

power. In the UK one of the most commonly used grading system is the Medical 

Research Council scale. In this system muscle power is graded on an eight-point 

scale (values ranging from zero for no movement up to five for normal power). 

Manual muscle testing is useful for assessment of major deficits but has limited value 
for the assessment of minor decrements in motor function. The technique has poor 
inter and intra tester reliability. A number of mechanical devices have been 

developed to aid quantification of muscle strength and improve methods for manual 

muscle testing. The mechanical devices are still subject to large inter-tester variability 

attributed to differences in technique and placement of device (Soderberg 1997). 

Muscular weakness of the intrinsic muscles of the feet is postulated to lead to foot 

deformity and increased foot pressures and an increased risk of foot ulceration. 
Several studies have shown an association between impairment of motor nerve 

conduction velocities with foot injury and ulceration (Boulton et al. 1983). 

2.3.1.4.2.3 Autonomic assessment 

Autonomic neuropathy can cause dysfunction in many different organ systems. 
Symptoms of autonomic neuropathy include disturbances in sweating, urinary and 
faecal incontinence, urinary retention, constipation, diarrhoea, gastroparesis, 
impotence and postural hypotension. A set of questions designed to reveal autonomic 

symptoms have been developed and are included in the direct scored histories 

(Cavanagh et al. 199 1 b). 
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In the lower limb decreased sweating and increased blood flow through the foot are a 
frequent clinical finding with autonomic neuroPathy. Both can be easily detected by 

clinical observation (dry skin, warm foot with bounding pulses and venous distension) 

and graded as present or absent for a semi-quantitative assessment of autonomic 
function. 

2.3.1.4.3 Neurological scoring systems 

It has been recommended that assessment of clinical symptoms, clinical examination, 

electrodiagnostic studies, quantitative sensory tests and autonomic function tests 

should all be used to diagnose neuropathy (American Diabetes Association et al. 

1988). These recommendations are not applicable to routine clinical settings and mass 

screening requirements have lead to development of simpler screening techniques for 

diabetic neuropathy. 

Although clinical practice guidelines recommend annual screening for neuropathy, 

they are unable to recommend a specific screening modality (Perkins et al. 2001). 

The optimal method for the detection of neuropathy in patients with diabetes have 

been based on expert opinion rather than on clinical trial evidence (Perkins et al. 

2001). A number of neurological scoring systems have been developed, some for 

specific use in detection of diabetic neuropathy. Frequently used systems include the 

Neuropathic Disability Score and various modified versions, the Neuropathy Deficit 

Score, the Michigan Neuropathy Screening Instrument, the Michigan Diabetic 

Neuropathy Score, the Neuropathy Impairment Score in the Lower Limbs and the 

Clinical Examination Score of Valk. 

The Neuropathic Disability Score (NDS), was originally designed for neuropathy in 

general, it is a comprehensive scoring system but is difficult to perform in clinical 

practice on patients with diabetic foot problems (Dyck et al. 1980). A number of 

modified versions of the NDS have been developed to specifically assess for distal 

symmetrical polyneuropathy (Young et al. 1993a). The modified version of the NDS 

by Young has been used in a number of cross sectional and prospective studies 

(Abbott et al. 1998; Cabezas-Cerrato 1998; Calle-Pascual et al. 2001; Kumar et al. 

1994; Pharn et al. 2000) and is often used in conjunction with a simplified version of 
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the Neuropathic Symptom Score (NSS). The modified NDS is derived from the 

evaluation of ankle reflexes and vibration, pin-prick and temperature sensation at the 

great toe. Neurological symptoms are determined using the simplified NSS, a 

standardised questionnaire which considers the distribution and intensity of typical 

symptoms such as burning, numbness, paraesthesia, fatigue, cramping or aching. 

The modified neuropathy disability score has been shown to be associated with foot 

ulceration (Kumar et al. 1994). Recent studies have stated that NDS was the best 

predictor of foot ulceration (Calle-Pascual et al. 2001; Meijer et al. 2000). The 

modified NDS has not been validated and although it has been identified as a 

predictive measure of foot complications there is no information regarding its use as a 

screening instrument for diagnosis of neuropathy (Meijer et al. 2000). 

The Neuropathy Impairment Score in the Lower Limbs (NIS-LL) is another variation 

on the NDS, which has not been validated. The scoring system was developed for 

assessment of diabetic polyneuropathy, however, it focuses more on motor activity 

grading (Abbott et al. 1998; Bril 1999). The Michigan Neuropathy Screening 

Instrument (MNSI) has been developed as a simple screening technique for peripheral 
diabetic neuropathy (Feldman et al. 1994). It consists of inspection of the foot, 

examination of the Achilles reflex and determination of the vibration threshold. The 

maximum score for the MNSI is 8 and a score of 2.5 or more is considered as positive 
for peripheral neuropathy and further neurological examination is required. The 

MNSI does not recognize involvement of the autonomic nervous system or patient 

symptoms. It has been shown to be reproducible and reliable and has good 

correlation with the Michigan Diabetic Neuropathy Score (Lunetta et al. 1998). The 

Michigan Diabetic Neuropathy Score (MDNS) is based on an objective neurological 

examination (Lunetta et al. 1998). Vibratory sensitivity is determined with a tuning 
fork, pin-prick sensation is tested on the dorsurn of hallux and the 10g filament is 

tested on the back of foot. Muscle strength is evaluated in the upper and lower limb 

and reflexes tested in upper and lower limb. A total clinical score of more than 6 is 

considered abnormal. This scoring system does not take into account patient's 

neurological symptomology. 

The clinical examination score of Valk is a scoring system is based on tendon 

reflexes, muscle strength and sensory testing including pin prick, light touch, 
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vibration sense, and joint position sense. The scoring system includes an evaluation 

of the patient's history regarding neuropathic symptoms in the lower extremities 
(burning, aching or stabbing pain and paraesthesiae) (Valk et al. 1992). Scoring is 

dependent on the intensity and duration of symptoms and impact on daily activities. A 

good correlation between clinical examination and neurophysiological examination 
has been demonstrated (Valk et al. 1992). The scoring system has been validated and 

can easily be performed in clinical practice. 

2.3.2 Assessment ofvascular status 

Peripheral arterial disease is four times more prevalent in diabetics than in non 
diabetics (Kannel et al. 1979). There is a substantial predispostion to premature and 

accelerated macrovascular disease associated with diabetes (Levin 2001; Shaw 1996). 

The anatomical distribution of atherosclerosis is altered in diabetics compared to non 
diabetics. Arterial disease in a person without diabetes usually involves the more 

proximal vessels (femoral, iliac and aorta), whereas diabetic patients tend to have 

more disease in the tibial and peroneal arteries and less in the arteries of the foot. 

Kumar and associates found that the absence of two or more foot pulses or a history 

of previous peripheral revascularisation was a significant predictor of foot ulceration 
(Kumar et al. 1994). It has also been reported that absent dorsalis pedis pulse was 

associated with a 6.3 fold increased risk of foot ulceration (Walters et al. 1992). More 

recent literature suggests that vascular disease is a more important risk factor for 

delayed wound healing and subsequent amputation than the actual development of 

ulceration. 

The presence of vascular disease is evaluated by combination of clinical signs and 

symptoms plus abnormal results on noninvasive vascular tests. Signs and symptoms 

of vascular disease are cold feet, blue toes, intermittent claudication, rest pain, night 

cramps, poor healing, sparse hair growth on lower limb, skin atrophy, muscle wasting 

and thickened nails. Simple clinical evaluation of the lower limb provides useful 
information on the arterial circulation. Cold extremities, absent pulses, pallor on 

elevation and rubor on dependency are all indicative of significant peripheral vascular 
disease (Levin 2001). Abbott and associates in a prospective study found that the 

relative risk of developing new foot ulcers was 2.9 fold among patients who had loss 

of pedal pulses at baseline (Abbott et al. 1998). Palpation of pulses is susceptible to 
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variation between observers and the pulses may be masked by the presence of 

oedema. Non-invasive measurement of blood pressure in peripheral arteries using 

Doppler ultrasound provides an objective measurement of vascular status. The most 

commonly used measurements are the ankle pressure index and the toe pressure 
index. Absolute toe pressures of less than 30mmHg have been shown to be a risk 
factor for amputation (Apelqvist et al. 1992). 

Atherosclerosis in diabetes is characterized by early calcification, which results in 

hardening of the arterial walls. The relative incompressibility of the arteries in 

diabetes influences the interpretation of blood pressure recording in the foot. The 

difficulty in interpreting ankle pressure index due to calcification has produced some 

controversy regarding the validity of the measurement. Non-invasive tests have been 

faulted for underestimating severity of arterial insufficiency (Caputo et al. 1994) and 

Doppler pressures have been noted to correlate poorly with symptoms and 

angiographic findings (Mercer et al. 2000). The most reliable non-invasive 

investigations are toe pressures and analysis of the Doppler waveform (Mercer et al. 

2000). 

Elaborate vascular examination is in general not required for routine screening 

(Cavanagh 1999). The use of vascular testing equipment is not always readily 

available in the out-patient setting. Initial screening is based on palpation of pulses, 

appearance of limb and patients symptoms. If an abnormality in vascular status is 

suspected, further investigation is indicated. 

2.3.3 Assessment of the foot 

One of the most effective mechanisms for preventing diabetic foot complications is 

regular inspection (Armstrong et al. 1998a). Self reported preventative practices 
have been linked with decreased risk of lower extremity complications. The reason for 

this is that it may prompt early treatment intervention of foot problems. Examination 

of the foot remains to be the most neglected part of the diabetic assessment (Levin 

2001). Low rates of foot inspections have been reported during out-patient and in- 

patient consultations ( Cohen 1983; Wylie-Rosett et al. 1995; Bailey et al. 1985; 

Peters et al. 1996). In a recent study of health care providers in the USA it was 

reported that healthcare providers regarded foot examination in diabetic patients to be 
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a very important process and gave a high rating for their responsibility for conducting 
foot examination. Fourteen percent of respondents stated that examination of feet was 

time consuming and approximately one-quarter of the providers agreed that forgetting 

to examine feet was a practice pattern barrier to patient care (Chin et al. 2001). 

2.3.3.1 Examination ofSkin and nails 

Surface examination of the foot is performed to identify any callus, haemorrhage into 

callus, scarring from previous ulceration, breaks or cracks in the skin. Callus builds up 
in response to high vertical and horizontal pressures, it has been shown to be a 

predictor of ulceration, (Murray et al. 1995). Haemorrhage into callus is recognised as 

a precursor to foot ulceration. It implies that enough trauma has occurred to cause 

tissue damage (Cavanagh et al. 2001b). Scar tissue from previous ulceration may 
have altered mechanical properties, which increases the risk of further ulceration. 
Subjective assessment of the skin surface temperature is used as an indicator of 
inflammation due to tissue damage or charcot joints. Examination of the nails is 

performed to identify in-growing toenails, thickening of nails and subungual 
haematoma due to trauma or ill fitting footwear. 

2.3.3.2 Foot deformity 

Identification of significant foot deformity, which may affect foot function or which 

may make foot wear ill fitting is performed. Common foot deformities which have 

been identified as increasing the risk for ulceration are prominent metatarsal heads, 

claw / hammer toes, hallux valgus, hallux rigidus, prior amputation and Charcot foot 

deformity. Foot deformities are believed to be more common in diabetic patients due 

to wasting of the small muscles in the feet. An increased risk of ulceration has been 

shown to be associated with foot deformity (Rith-Najarian et al. 1992). Most diabetic 

foot ulcers are located over areas of bony prominence (Armstrong et al. 1998b). 

2,3.3.3.4ssessment ofjoints 

Assessment of joints can involve determination of range of movement or 
determination of joint stiffness. To measure joint stiffness the joint motion and the 
force required to cause the motion needs to be recorded simultaneously, so the 

39 



quantity of force needed for each unit of angular displacement can be calculated 

(Cavanagh et al. 1991b). Measurements of joint stiffness have been performed in 

research studies, but are not easily performed in routine clinical assessment clinics. 

During clinical examination many clinicians assess the quality, direction and 

symmetry of joint motion in a non-weight bearing position. They estimate the range 

of motion by moving the joint through its whole range and document joint movement 

as normal, restricted or severely restricted. This method is very subjective and is not 

conducive to either good assessment or good documentation (Cavanagh et al. 1991b). 

Range of movement at joints can be assessed using a goniometer to measure end point 

of the range of motion in both directions. The end range of motion at a joint can be 

achieved by either the clinician moving the joint to its end range or the patient 

voluntary moves the joint to its end range. Limited range of movement at the subtalar, 

ankle and 1 s' metatarsophalangeal joints have been associated with the development of 

foot ulceration (Delbridge et al. 1987; Fernando et al. 1991; Veves et al. 1995). 

2.3.4 Systems to ascertain risk status 

There is no risk classification system, which is universally accepted to predict future 

ulceration. An understanding of clinical risk factors for developing foot ulceration 

will help clinicians categorize patients by their risk status and may indicate 

appropriate intervention to prevent ulceration (Lavery et al. 1998). Guidelines for the 

assessment and treatment of diabetes related foot problems have been developed by a 

number of different professional bodies. The American Diabetes Association 

recommends screening for peripheral neuropathy, altered foot biomechanics, 

peripheral vascular disease and a history of ulceration or amputation when assessing 

for future risk of ulceration. The consensus on the Diabetic Foot suggest that the risk 

classification system should be based on the presence of sensory neuropathy, signs of 

peripheral vascular disease and foot deformities (International consensus on the 

Diabetic Foot 1999). 

Detection of patients at risk of foot ulceration remains problematic at the primary care 
level (Jirkovskdetal. 2001). Low rates of foot inspections have been reported during 

out-patient and in-patient consultations (Bailey et al. 1985; Cohen 1983; Wylie-Rosett 

et al. 1995; Peters et al. 1996). Edelson and associates reported that less than 15% of 
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patients admitted to a University teaching hospital with diabetes related foot 

pathology receive a minimally competent lower extremity examination (Edelson et al. 
1996). In a retrospective survey of diabetic patients receiving hospital care and 

undergoing a non-traumatic amputation only 50% had undergone a complete foot 

examination in the year preceding the initial ulceration or gangrene (Deerochanawong 

et al. 1992). Simple physical examination and clinical diagnosis of neuropathy and 

angiopathy based on the patient's medical history is not sufficient to identify those at 

risk of ulceration (Jirkovskd et al. 200 1). The use of simple standardised non-invasive 

testing methods to determine neurological and vascular status greatly improves the 

accuracy of identifying patients at risk of developing diabetes related foot problems at 

the community level (Jirkovskd et al. 2001). 

Lavery and associates evaluated risk factors for foot ulceration using a stepwise 
logistic regression model (Lavery et al. 1997). They identified neuropathy, foot 

deformity, high plantar pressures and a history of amputation as significantly 

associated with the presence of foot ulceration. They found that patients with 

neuropathy alone were at approximately 1.7 times greater risk of presenting with and 
developing foot ulceration than diabetic patients without neuropathy. This risk 
increased to 12.1 times when the patients presented with foot neuropathy and foot 

deformity. Patients with neuropathy, deformity and a history of previous ulcer or 

amputation were approximately at 36 times greater risk of developing another ulcer 
(Armstrong et al. 1998b; Lavery et al. 1997). Based on these findings a treatment 

based classification system for assessment and care of the diabetic foot has been 

proposed (Armstrong et al. 1996). The University of Texas Diabetic foot 

classification system, has four categories for risk of ulceration, illustrated in Table 2- 

3. The University of Texas Diabetic Foot classification System does not include risk 

classification for presence of peripheral vascular disease. A risk classification system, 

which addresses the significant risk associated with ischaernia has been proposed 
(Frykberg 1991). This classification recognises five categories outlined below in 

Table 2-4. This system places any person with diabetes at risk level of 1, as it 

recognises the presence of diabetes alone to be a potential risk factor. 

A similar risk classification scheme using the 5.07 monofilament has been used in the 

primary care sector in the USA. The risk for foot ulceration is determined by taking a 
brief history of previous foot problems and performing a simple foot examination. 
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A history of previous ulceration or amputation is noted and the foot is inspected for 

deformity and callus. The examination includes checking the foot pulses for evidence 

of ischaemia and assessing loss of protective pain sensation using the 5.07 

monofilament. The system recognises four categories of increasing risk. The first 

category zero, is assigned to a patient with a normal foot shape who has full detection 

of 5.07 monofilament. Category one is assigned to a patient who is insensitive to the 

5.07 monofilament but does not have any foot deformity. A patient who is insensitive 

to the 5.07 monofilament and has foot deformity will be in risk category two. 

A patient who has a history of previous ulceration or amputation is deemed to be at 
highest risk of developing foot ulceration and is category three. Kumar and associates 

used this risk classification system in a prospective study of 358 patients followed 

over 32 month period. They found that incidence rates of ulceration correlated 

positively with increasing risk category and all the amputations occurred in risk 

groups 2 and 3 (Kumar et al. 1991). 

Ideally assessment of the diabetic foot should be standardised and be a valid, specific 

and sensitive prognostic measure of foot ulceration. In reality a number of different 

assessment scoring systems have been developed, each system having inherent merits 

and limitations for use within the clinical environment. Many assessment systems 
have not been validated and the prognostic value for prediction of ulceration has not 
been established. Most systems fail to include an assessment of gait, despite the 

increasing awareness that the impact that biornechanical issues has on the 

development and treatment of foot ulceration. Financial and time constraints have 

inhibited the wide implementation of gait analysis tools in clinical screening 

programmes. A number of research groups have used gait analysis to increase 

knowledge about the aetiology of ulceration, however, adapting this knowledge to the 

outpatient screening environment remains problematic. 

42 



Table 2-3: The University of Texas Diabetic Foot classification System: 

Treatment based classification system for assessment and care of diabetic feet. 

Risk Category Clinical features Possible treatment interventions 

No Pathology Protective sensation intact Two to three visits per year to assess 
0 Ankle brachial Index > 0.80 and neurovascular status and foci of stress 

toe systolic pressure > 45mmHg Patient education 
Foot deformity may be present Possible shoe accommodation 
No history of ulceration 

Neuropathy Protective sensation absent Same as category 0 plus: 
No deformity Ankle brachial Index > 0.80 and Possible shoe gear accommodation 

toe systolic pressure > 45mmHg (orthotist consultation) 
No foot deformity Quarterly visits to asees shoe gear and 
No history of ulceration monitor for signs of irritation 
No history of Charcot's joints 

Neuropathy Protective sensation absent 

with deformity Ankle brachial Index > 0.80 and 

2 toe systolic pressure > 45mmHg 
Foot deformity present (focus of 
stress). 
No history of neuropathic 

ulceration 
No history of Charcot's joints 

History of Protective sensation absent 

Pathology Ankle brachial Index > 0.80 and 

3 toe systolic pressure > 45mmHg 

Foot deformity present (focus of 

stress) 

Same as category I plus: 
Orthotist consultation for molded insoles/ 

shoe accommodation 
Possible prophylatic surgery to alleviate 
focus of stress 

Same as category 2 plus: 
Orthotist consultation for custom molded 
insoles/ extra depth shoe accommodation 
Possible prophylatic surgery to alleviate 
focus of stress 

History of neuropathic ulceration More frequent visits may be indicated for 

History of Charcot's joints frequent monitoring 

43 



Table 2-4: Risk status classification proposed by Frykberg, taken from Diabetic 

foot Ulceration, in The High Risk Foot in Diabetes Mellitus 1991. 

Risk status Clinical features 

Normal sensation with no deformity 

2 Normal sensation with deformity (or high plantar pressure) 

3 Insensitivity without deformity 

4 Ischaernia without deformity 

Complicated 

5 
Combination insensitivity, ischaernia, and/or deformity 

Prior history of ulceration 
Charcot deformity 
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2.4 Alterations of foot structure and function in diabetes 

The following provides a description of the types ofchanges to foot structure associated 

with diabetes, including changes in the soft tissue characteristics, muscle and joint 

structure andfunction. The impact that these changes have on the development offoot 

ulceration will be discussed 

There are three mechanisms by which foot injury can occur in the diabetic foot with 

loss of protective sensation. The first mechanism for tissue injury is by direct 

mechanical disruption of the tissue caused by a high force concentrated over a small 

area, it takes an approximate pressure of lOOKg/crn 2 to penetrate normal intact tissue 

(Jenkin et al. 1991). This type of injury is usually sustained as the patient is walking 

barefoot and stands on a sharp object (pin, glass). Ideally this type of injury should be 

virtually eliminated if the patient takes appropriate measures to protect their feet. The 

second mechanism for injury occurs when a low pressure is sustained for a long 

period of time. Capillary blood flow is occluded leading to tissue ischaemia and 

ulceration occurs after several hours. This type of injury is usually related to tight 

fitting footwear, resulting in excessive pressure from circumferential tension (Jenkin 

et al. 1991). The majority of all wounds on insensate feet are caused by repeated 
intermittent moderate stress generated during normal walking (Brand 1988). 

Following multiple repetitions of moderate stress traumatic inflammation occurs and 

with loss of protective sensation, the subject proceeds to walk upon the injured area 

without altering gait and continues to traumatise the inflamed tissue which 

subsequently ulcerates (Jenkin et al. 199 1). 

Ulceration has been shown to occur at sites of high pressure most frequently located 

in the forefoot (Oyibo et al. 2002), with approximately equal distribution on the dorsal 

and plantar surfaces (Edmonds et al. 1986). Ulceration on dorsal areas of the foot 

often result from external pressure from ill-fitting footwear and in theory should 

easily be prevented with the use of appropriate footwear and patient education. 
Ulceration on the plantar surface is usually located at sites of high pressure resulting 
from mechanical problems that pre-exist within the intrinsic foot type (Schoenhaus et 

al. 1991). It is believed that diabetes may alter both musculoskeletal and soft tissue 
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mechanics in a manner that elevates plantar pressure and makes tissue damage more 
likely (Cavanagh et al. 2001b). Biornechanical factors thought to be responsible for 

the development of foot injury in the neuropathic diabetic foot can be attributed to 

changes in soft tissues, foot structure, function and gait style. 

2.4.1. Soft tissue changes 

Skin and soft tissue serve as a mechanical protective medium, shielding the body from 

external stresses (Thompson 1988). Soft tissue failure (ulceration) occurs as a result 

of an abnormal interaction between an environmental stress and the soft tissues over a 

given period of time. When sensation is intact environmental stress will be perceived 

as noxious and there will be a withdrawal response. The magnitude of stress that is 

perceived as noxious is lower than that which would produce soft tissue breakdown 

(Jenkin et al. 1991). With loss of protective sensation the stress is not perceived as 

noxious, withdrawal does not occur and tissue failure results. 

The soft tissue under the foot is very strong and extremely resilient to failure under 

stress, the viscoelastic nature of soft tissues allows the applied forces to be dispersed 

or dissipated efficiently. The viscous component of soft tissue will mould to applied 

stress, increasing the surface area of contact and decreasing the pressure. The elastic 

element of soft tissue will absorb energy and return it to the environment via elastic 

recoil (Jenkin et al. 1991). Viscoelasticity allows the soft tissues to adapt to stresses 

applied in both space and time. The ability to adapt in space is afforded by 

moldability of soft tissues and ability to adapt in time is afforded by thickness of soft 
tissue. Resilience to breakdown would be impaired if any deleterious changes were to 

occur in either of these characteristics (Jenkin et al. 1991). 

Non-enzymatic glycosylation (NEG) of many proteins in the body have been 

demonstrated in patients with diabetes. This process may contribute to significant 

alterations in physical and functional properties of the soft tissue (Hashmi 2000). 

Glycosylation of collagen results in a number of chemical reactions, the end result is 

the formation of advanced glycation end products (AGEPs). AGEPs are highly cross- 
linked and are thought to cause significant alterations in the physical properties of 

collagen-rich tissues. With NEG the soft tissue becomes less flexible and thus less 

able to distribute pressure through deformation (Hamlin et al. 1975). 

46 



The structure and thickness of soft tissue vary, dependent upon the mechanical 

demand at a given location (Thompson 1988). Areas that are subject to high 

mechanical forces, for example the heel have increased thickness of soft tissue 

compared to areas subjected to minimal orthostatic stress. Cavanagh and associates 

examined the relationship between bony structure of the foot and plantar pressure. 

They identified structural parameters associated with high pressure using stepwise 

multiple regression. The thickness of soft tissue between the sesamoids and the 

ground determined from standardised weight-bearing x-ray was found to be one of the 

strongest predictors of pressure under the first metatarsal heads (Cavanagh et al. 1997; 

Morag et al. 1999). 

In diabetes the amount of soft tissue between the skin and the bones may be decreased 

in many areas of the foot thus increasing the risk of soft tissue failure and subsequent 

ulceration. The decrease in soft tissue thickness has been attributed to atrophy or 

displacement of the sub metatarsal fat pad associated with foot deformity. Atrophy of 

the fat pad is associated with the normal ageing process but is also associated with 

chronic diabetes (Cavanagh et al. 1993). Plantar fat pad thickness determined by 

ultrasound was found to be thinner in patients with diabetes compared to non- 

diabetics. A decrease in soft tissue thickness has been linked with increased pressures 

under the foot (Morag et al. 1999). It has also been noted that the fat pads of diabetics 

with previous foot ulcers were thinner than in diabetics who had not ulcerated 

(Gooding et al. 1986). This observation was made on a cross sectional study and does 

not show a causal relationship between decreased soft tissue and the formation of 

ulceration. 

Previous ulceration is regarded as a leading risk factor for further ulceration, this has 

been confirmed in a prospective study by Murray and associates. They found 

the relative risk of developing a new ulceration in patients with a history of ulceration 

was 56.8, confirming that a previous history of ulceration is the most important risk 
factor for predicting subsequent ulceration (Murray et al. 1996). Reported rates for 

re-ulceration over a period of five years have been reported to be 70% (Apelvist et al. 
1993). The recurrence rate for ulceration after two years in patients wearing 
inappropriate footwear has been reported to be as high as 83% (Edmonds et al. 1986). 

The high risk linked to prior ulceration could be attributed to changes in mechanical 
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properties of scar tissue and decreased tissue thickness. The viscoelastic properties of 

repair tissue from previous ulceration is significantly inferior in terms of moldability 

and thickness making subsequent ulceration more likely (Jenkin et al. 1991). It has 

been theorised that scar tissue may act like callus, by transferring large concentrated 
loads to underlying softer tissues (Cavanagh et al. 200 1 b). 

One of the key events in the pathway to neuropathic ulceration is the development of 
hyperkeratosis (callus). A direct correlation has been demonstrated between the 

presence of plantar callus and ulcer formation (Murray et al. 1995). The relative risk 

of ulceration for a callused area was found to be 11.0. Under the influence of 
intermittent compressive stress the normal process of keratinisation, which maintains 

the stratum corneurn as a protective cover, becomes over-stimulated (Murray et al. 
1996). Large plaques of hyperkeratotic tissue form in areas of high mechanical stress. 
These plaques may further increase the pressure and concentrate the stress to 

underlying soft compliant tissue (Murray et al. 1996; Thompson 1988). 

Hyperkeratosis is generally attributed to abnormalities in load distribution resulting 
from disturbances to normal foot function associated with structural abnormalities in 

the lower limb (Bevans et al. 1999). Callus formation in diabetes may be due to 

NEG, altered mechanical exposure, autonomic dysfunction or a combination of these 
factors (Hashmi 2000). NEG of keratin the major protein component of the stratum 

corneurn has been demonstrated to occur in patients with diabetes (Delbridge et al. 
1985). This process is thought to contribute to the increased skin stiffness seen in 

patients with diabetes and may play a role in the formation of callus (11ashmi 2000). 

It has been noted that callus in people with diabetes may have different mechanical 

properties to callus in non diabetics. It has been reported that the callus in diabetics is 

stiffer and unusually hard (Buckingham et al. 1984; Delbridge et al. 1985). Using 

durometry (a device which applies an indentation load on soft tissues and can 
determine relative tissue hardness) Piagessi and associates evaluated skin hardness in 

people with diabetes compared to non-diabetic controls. They determined skin 
hardness in areas of the foot exposed to stress and areas not usually exposed to 

mechanical stress. A higher degree of skin hardness was found in neuropathic feet 

compared to non-neuropathic feet and non diabetic controls in both areas which were 

exposed to stress and those areas which are not usually exposed to stress (Piaggesi et 

48 



al. 1999). The increase in skin hardness in people with diabetes could be due to 

NEG, alterations in foot function associated with diabetes or decreased sweating 

associated with autonomic neuropathy. Autonomic neuropathy has also been 

implicated in the formation of ulceration, dry skin resulting from dyshidrosis is not as 

mouldable as hydrated skin therefore the ability to dissipate forces will be impaired 

and the resilience to trauma decreased (Jenkin et al. 199 1). 

2.4.2 Foot structure 

The alterations to foot structure related to diabetes are thought to be primarily the 

result of neuropathy (Faris 1991). The characteristic "intrinsic minus" foot associated 

with diabetes has claw toes, a high medial longitudinal arch and prominent metatarsal 
heads. Foot deformity in people with diabetes can be categorised as primary, 

secondary or iatrogenic (Frykberg 1995). Some deformities (primary) are independent 

to diabetes and are often present before the onset of the disease. Secondary 

deformities are directly linked to diabetes and associated with changes in 

neurological function, joints and soft tissue. latrogenic foot deformities are most 

commonly the result of previous amputation. 

In the presence of diabetic neuroPathy structural deformities are considered to be 

major risk factors for ulceration. Foot deformity has been shown to be associated 

with an increased risk of foot ulceration (Boyko et al. 1999; Rith-Najaran et al. 1992). 

The link between foot deformity and ulceration is increased pressure. Deformities 

and bony prominence tend to focus stress onto a smaller area of distribution, thereby 

increasing the pressure and the risk for tissue failure. Mueller and associates found a 

significant relationship between foot deformity and location of ulceration in diabetic 

patients with neuropathy (Mueller et al. 1990). 

Clawing of the toes is a common clinical finding, although it is seen in people without 
diabetes it is believed to occur more frequently in people with diabetes. However, the 

author could find no literature to support this statement. Clawing of the toes is 

believed to result from motor neuropathy, causing atrophy of the intrinsic muscles 

responsible for stabilising the digits. There is no evidence to support this theory and a 

causal relationship between motor neuropathy and clawed digits has not been 

validated. Furthermore, recently an alternative hypothesis for the development of 
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claw toes has been proposed. Rupture of the plantar fascia has been demonstrated in a 

small number of diabetic patients with clawing of the toes. No rupture was found in 

matched control diabetic patients without clawing of the digits (Taylor et al. 1998). 

Using quasi-static cadaver models Hamel and Sharkey, demonstrated the importance 

of the plantar fascia for the efficient transmission of force through the toes. They 

found that without the tethering effect of the plantar fascia on the proximal phalanges, 
the toes were pulled into a clawed position and lost their ability to effectively transmit 

plantar force (Hamel et al. 1999). The veracity of the finding of plantar fascia 

discontinuity by magnetic resonance imaging has been questioned when alternative 
imaging techniques are employed. Masson and Taylor investigated the integrity of 
the plantar fascia using ultrasound, in ten diabetic patients with claw toe deformity. 

The plantar fascia was found to be intact in eight patients with claw toe deformity 

(Personal communication, Masson and Taylor 2003). 

Regardless of its aetiology this type of deformity increases the risk of dorsal 

ulceration from footwear. It is also associated with anterior displacement of the 

plantar metatarsal fat pad that decreases the amount of soft tissue under the metatarsal 
heads, thus increasing pressure and the risk of ulceration at this site. Dorsal 

contracture of the digits at the metatarsophalangeal joints produces an increasing 

retrograde plantar-flexory force through the metatarsal heads, which increases the 

pressure under this area during propulsion (Schoenhaus et al. 199 1). 

Foot structure has been shown to play a large part in determining the plantar pressure 

exerted by the foot during walking (Cavanagh et al. 1997). Metatarsal inclination and 

a reduction in soft tissue thickness are directly related to increased plantar pressures 

under the first metatarsal head. Using finite element analysis, biomechanical models 
have been developed to evaluate the relationship between foot structure and plantar 

pressure (Cavanagh et al. 2001b). The detrimental changes in quality and quantity of 

soft tissue under the foot associated with diabetes were discussed earlier. The impact 

that these changes have on foot pressures has been described using the biomechanical 

model approach. The foot with adequate cushioning under the metartarsal head is 

predicted to show low pressure under the area. The model predicts the foot without 

adipose tissue will show pressures in the area of the metatarsal head that are over five 

times higher than those in the normal foot, thereby increasing the risk of ulceration 
(Cavanagh et al. 2001b). 
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2.4.3 Foot function 

The important changes in foot function associated with diabetes are related to muscle 

weakness attributed to motor neuropathy and changes in joint mobility. Muscle 

weakness and limited joint mobility can have major detrimental effects during the 

whole gait cycle, dependent on which muscle groups /joints are affected. 

2.4.3.1 Muscle weakness 

Andersen and associates examined muscle strength in a group of 56 insulin dependent 

diabetics with duration of diabetes greater than 20 years compared to age, weight and 
height matched non-diabetic controls. They found that the diabetic group had a 21% 

reduction of muscle strength of both the ankle dorsal and plantar flexors and a 16 

percent reduction in knee extensor strength compared to the control group. A 

correlation was found between neuropathy rank-sum score and the muscle strength of 

the ankle dorsal and plantar flexors and knee extensors and flexors (Andersen et al. 

1997). 

2.4.3.1.1 Effect ofmuscle weakness on the anklejoint complex 

When the heel contacts the ground a strong external plantarflexor moment is created 

at the ankle joint, resulting from the placement of the ground reaction force vector 
(directed in a superior posterior direction behind ankle joint axis). Eccentric 

contraction of the anterior muscle group creates an internal dorsiflexor moment that 

decelerates plantar flexion movement at the ankle and decreases the forces 

encountered in the forefoot upon reaching the supporting surface. If weakness is 

present in the anterior muscle group, the foot will plantarflex too quicklyand this will 

result in an increased force under the forefoot, which could contribute to ulcer 
formation. It has been suggested that the rate of tissue deformation may be a critical 
factor in the formation of diabetic ulceration. High rates of tissue deformation have 

been shown to result in endothelial cellular death or injury, while low rates are much 
less likely to produce lasting injury (Landsman et al. 1995). With anterior muscle 

group atrophy the forefoot will reach the ground with increased velocity resulting in a 
high strain rate of tissue deformation. High strain rate tissue deformation has been 

51 



proposed as an alternative explanation for the aetiology of foot ulceration in patients 

with anterior muscle group atrophy. This theoretical model has yet to be supported by 

any clinical investigations. 

Weakness in the anterior muscle group can allow the posterior group to gain a 

mechanical advantage, clinically seen as hypertrophy of the calf muscles. This causes 

an increased plantarflexion pull on the calcaneus and progressive limitation of ankle 
joint dorsiflexion can occur, which increases the forces under the forefoot. It has been 

suggested that limitation of dorsiflexion at the ankle joint will result in compensation 

at the subtalar joint. This compensation will produce excessive frontal plane motion 

of the rearfoot during the stance phase of gait, which will contribute to hyper-mobility 

within the forefoot during propulsion and increased shearing forces. The effect that 

limited ankle joint dorsiflexion has on rear foot frontal plane motion in non-diabetics 
during stance phase has been investigated by Cornwall and McPoil. They studied two 

groups, one group had a passive ankle dorsiflexion range of less than or equal to ten 

degrees the other group had a dorsiflexion range of more than fifteen degrees. Three- 

dimensional motion analysis at the ankle joint complex was performed during over 

ground walking. They concluded that slight to moderate limitation of ankle 

dorsiflexion did not alter the magnitude of frontal plane motion, but significantly 

altered the timings of heel lift and time to reinversion. The stance phase duration was 

not significantly different between the two groups but heel lift was significantly 

earlier in the group with limited ankle joint dorsiflexion (Cornwall et al. 1999a). It is 

reasonable to assume that an earlier heel lift would cause the forefoot to be loaded for 

a greater proportion of the stance phase, and that the pressures in the forefoot may be 

increased in the group with limited ankle dorsiflexion. The study did not examine 

plantar pressure, a combination of motion analysis with pressure measurement would 
have provided a greater insight into the impact that limited ankle joint movement had 

on foot function. 

At heel strike the subtalar joint is inverted and the ground reaction force vector is 

directed lateral to the joint axis. This produces an external eversion moment about the 

subtalarjoint axis. Internal inversion moments are created about the subtalarjoint axis 
by tendons of tibialis posterior, flexor digitorum longus, flexor hallucis longus and 
triceps surae which decelerates the subtalar joint eversion (Otis 2000). If myopathy is 

present the transfer of load from the lateral side of the foot to the medial side is much 
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faster. The subtalar joint is thought to reach its end range of motion abruptly causing 
jamming of the joint (Schoenhaus et al. 1991). The jamming of the joint is not 

recognised by the neuropathic diabetic patient due to decreased proprioception and 
loss of protective sensation. Osteoarthritic changes at the subtalar joint could occur 

which decreases the range of movement (Schoenhaus et al. 199 1). 

2.4.3.1.2 Intrinsic muscle atrophy 

Stability of the toes is essential during propulsion and is achieved by balance of 

muscle groups within the foot and the tethering effect of the plantar fascia. When the 
lumbricals and interossie muscle groups contract they create a flexion force on the 

metartarsophalangeal joints. The flexion force is antagonised by the muscles superior 

to the deep transverse metatarsal ligament, extensor digitorum brevis and extensor 
digitorum longus (Schoenhaus et al. 1991). The relationship between muscles is 

perfectly balanced so that the digits remain parallel to the supporting surface. Instead 

of causing movement, the muscle forces create compression and stability across the 
joints. 

In diabetics with neuropathy atrophy of all the intrinsic muscles of the foot is thought 

to be common but has not been validated. This is thought to cause disruption of the 

muscle balance and loss of stability in the forefoot during propulsion. The muscle 
forces now cause dorsiflexion of the proximal phalanx, which causes plantar flexion 

of the metatarsal head. Force is no longer efficiently transmitted through the toes 

and the force under the metatarsal heads increases. Due to loss of stability during 

propulsion the shearing forces are also thought to increase. 

2.4.3.2 Joint mobility 

A generalised limitation of joint mobility has been demonstrated in patients with 
diabetes. Limited joint mobility (LJM) accompanying diabetes has been described in 

the hands, elbow, shoulder, subtalar joint and I" metatarsophalangeal joint. (Campbell 

et al. 1985; Delbridge et al. 1987; Fernando et al. 1991; Schulte et al. 1993; Starkman 

et al. 1986). The exact pathogenesis of LJM in diabetes is unclear, increased 

collagen deposition in the periarticular connective tissues, increased cross-linking of 

collagen and non-enzymatic glycosylation (NEG) have been described in patients 
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with limited joint mobility. NEG causes significant alteration in the physical and 

mechanical properties of collagen rich tissues (Hashmi 2000). Tendons and ligaments 

have a high collagen content and therefore changes in their mechanical properties may 

affect the range of motion available at j oints (Cavanagh et al. 199 1 b). 

Limitation of joint movement in the foot has been shown to increase the risk of foot 

ulceration in the neuropathic foot (Delbridge et al. 1987). A significant decrease in 

the range of motion at the subtalar joint in patients with diabetes has been 

demonstrated and is widely recognised as a risk factor for the development diabetic 

foot ulceration (Delbridge et al. 1987; Fernando et al. 1991; Veves et al. 1995). 

Fernando and associates found a strong correlation between range of movement at the 

subtalar joint and plantar foot pressures (Fernando et al. 199 1). They found that peak 
foot pressures were significantly higher in patients with LJM compared to neuropathic 

patients without LJM. 

Ulceration on the plantar aspect of the hallux is common in neuropathic patients 

(Cavanagh et al. 2001b). It has been noted that diabetic patients with a history of 

ulceration at the hallux have limited dorsiflexion at the first metatarophalangeal joint 

(Birke 1988). The same group also identified that diabetic patients with a history of 

ulceration at the first metatarsal head had significantly lower first ray mobility and 

significantly higher pressure under the first metatarsal head (Birke et al. 1995). 

The ramifications of LJM at the subtalar joint are claimed to be lack of shock 

absorption during heel strike due to restricted subtalar joint pronation, and an 

alteration of the progression of the forces in the foot resulting in higher forefoot 

pressures and ulceration (Hiss 1949; Simmons et al. 1997; Root et al 1977). Yingling 

and associates examined the impact that restriction of subtalar joint pronation using a 

medial wedge had on impulse waves at the tibia during treadmill running. They 

found no significant difference in the impulse wave characteristics at the level of the 

tibia when motion at the subtalar joint was restricted by medial wedging during the 

initial 15% of stance phase (Yingling et al. 1992). This finding does not support the 

previous theories about the impact that LJM has on the diabetic foot function (Payne 

1998). 
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More recently it has been suggested that normal foot function is dependent on an 

adequate range of motion at the lst metatarsophalangeal joint during walking (the 

sagittal-plane facilitation of motion model) (Payne 1998). This model claims to offer 

an alternative explanation for correlation between LJM and increased plantar 

pressures in the diabetic foot. The model states that if a sufficient dynamic range of 

motion at the I st metatarsophalangeal joint is not available there will be an unloading 

of the medial side and an increase in weight bearing under the lateral forefoot. 

Although this pattern of pressure loading in patients with diabetes has been reported 

by a number of workers (Stokes et al. 1975), this theoretical model has not been 

supported by any clinical investigations. 

Clinical evidence suggests that Asian and African-Caribbean diabetic patients have a 

lower prevalence of foot ulceration (Clarke et al. 1998; GqJral et al. 1993). There are 

many potential explanations for the lower prevalence including differences in culture, 

in health belief systems, self-care foot practices and differences in joint mobility 

(Greenhalgh et al. 2001; van Schie et al. 2000). Veves and associates investigated 

differences in joint mobility and foot pressures using an in-shoe pressure 

measurement system in African-Caribbean and Caucasian diabetic patients. They 

found that Caucasian diabetic patients had significantly reduced subtalar joint 

mobility and significantly increased plantar peak pressures without shoes when 

compared to African-Caribbean diabetic patients. A significant difference in peak 

pressure was not found between these groups in-shoe (Veves et al. 1995). In this 

study patients wore their own footwear, hosiery and insoles, the differences in 

footwear would significantly alter the plantar foot pressures recorded, therefore 

changes in pressure cannot be directly related to changes in joint mobility. Another 

limitation of the study is that the pressure measuring insoles were taped to the foot to 

record pressure without shoes, the authors did not provide any information regarding 

reliability or repeatability of using the in-shoe system in this manner. Movement of 

the insole during the walking trial, bending and stretching of the insole could 

influence the pressures recorded. 

Most workers investigating LJM have found relationships between reduced joint 

mobility at the subtalar and metatarsophalangeal joint is associated with increased 

foot pressures and prevalence of ulceration. The measurement of joint mobility has 

been based on the static assessment of joints using goniometers. Many studies have 

55 



shown that taking joint measurements in this way is subject to large errors (Menz 

1995; Elveru et al. 1988a) and that there is poor correlation between static measures 

of the ankle joint complex and dynamic foot function. (Hamill et al. 1989; McPoil et 

al. 1994a; McPoil et al. 1996a). A recent study has evaluated dynamic ranges of 

motion at the ankle, subtalar and first metatarsophalangeal joints in a small number of 
European and diabetic patients of Asian origin (van Schie et al. 2000). They found 

an association between the rate of plantar flexion after heel strike and history of 

ulceration. This finding is in agreement with Landsmann's theoretical model that the 

rate of tissue deformation may be a critical factor in the formation diabetic ulceration 
(Landsman et al. 1995). 

A greater understanding of the impact that limited joint mobility at the ankle joint 

complex and first metatarsophalangeal joint is needed to establish its role in the 

aetiology of foot ulceration. Work in this area could be enhanced if LJM was 

predicted from dynamic motion (with comparison against normal parameters) rather 

than static joint assessment. The relationship between joint mobility during walking 

and static ranges of joint mobility needs to be investigated to determine if static 

ranges of movement should remain a valid part of diabetic foot assessment. 
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2.5 Gait changes in diabetes with reference to normal gait 

This section provides a detailed description of normal gait, with specific reference to 

the ankle foot complex. The changes in gait related to diabetes and neuropathy will 
be discussed together with the relationship to ulceration. 

In order to understand abnormal gait, it is necessary first to understand normal gait, 

since this provides the gold standard against which everyone else's gait can be judged 

(Whittle 1997). The history of gait analysis has shown a steady progression from 

early descriptive studies through to increasingly sophisticated methods of 

measurement. Until recently most gait analysis has been performed in a research 

environment rather than a clinical setting. The low utilisation in the clinical 

environment can be explained by the high equipment and labour costs combined with 

arduous data collection and analysis procedures which make gait analysis difficult to 

justify in the routine clinical setting. With the advent of new technologies providing 

automated motion analysis techniques and the increased availability of competitively 

priced commercial systems there has been an attempt to take gait analysis out of the 

research laboratory and into the clinical environment. 

The gait cycle is defined as the time interval between two successive occurrences of 

one of the repetitive events of walking. Although any event could be chosen for 

definition of the start of the gait cycle it is usually convenient to use the instant at 

which one foot contacts the ground (Whittle 1997). The gait cycle can be divided into 

two phases, the stance phase in which the limb is in contact with the supporting 

surface and the swing phase where the limb is not weight bearing. Both the stance 

phase and swing phase can then be further subdivided and the terminology used to 

describe these phases can vary considerably from one publication to another. For the 

purposes of this study seven phases of gait outlined by Whittle (1997) will be used to 

describe the gait cycle. The seven events of the gait cycle are shown in Figure 2-5, 

this diagram shows the position of the right limb during a single gait cycle. 

A comprehensive description of the gait cycle including timing of events, kinematic 

and kinetic activity at all the joints in the lower extremity is beyond the scope of this 

thesis and has been reported elsewhere (Inman et al. 1981; Root et al. 1977; Rodgers 
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1995). This section will focus on the ankle foot complex, which is the terminal 

section in the lower kinetic chain and is considered to be the most important joint 

complex during locomotion. 

Figure 2-5: Position of the legs during a single gait cycle by the right leg 

(shaded). Taken from "ittle (1997). Gait Analysis; an introduction. Second 

edition. Butterworth-Heinemann, Oxford. 

2.5.1. The ankle foot complex 

The ankle foot complex consists of 28 bones with more than 70 articulating surfaces 

and should be able to distribute and dissipate the compressive, tensile, shearing and 

rotatory forces encountered during the stance phase of gait (Donatelli 1990). 

Movement between the foot and leg is produced by a composite of motion occuring at 

two joints, the talocrural (ankle) and the talocalcaneal (subtalar) joints. The subtalar 

joint comprises of three articulations between the superior surface of the calcaneus 

and the inferior surface of the talus. The ankle joint consists of three articulations, the 

tibiotalar, fibulotalar and tibiofibular articulations. Movement at the subtalar joint 
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throughout the gait cycle has been extensively documented (Root et al. 1977; Whittle 

1996). The characterised movement of the subtalar joint described by Root and 

colleagues is well accepted and used as a basis to diagnose and prescribe for lower 

limb pathologies. Assessment of subtalar joint motion forms an essential part of a 

podiatric biomechanical examination. 

The range of frontal plane motion at the subtalar joint is thought to play an important 

role in the overall function of the lower limb during locomotion. It has been reported 

that the minimum total range of frontal plane motion at the subtalar joint for normal 

locomotion is 8-12 degrees (Root et al. 1977). The static range of motion at the 

subtalar joint varies considerably between subjects, the reported range of frontal plane 

motion in the literature varies between 10 and 53 degrees (Alexander et al. 1982; 

Manter 1941; Nigg et al 1992; Ball et al 1996; Inman 1976). The total frontal plane 

range of motion at the subtalar joint decreases by around twenty percent with age 

(Alexander et al. 1982; Ball et al. 1996; Nigg et al. 1992). The total range of motion at 

the subtalar joint during gait is much less than non-weight bearing range of motion. 

The rationale for taking lower limb static measures during a biornechanical evaluation 

is to see if an abnormality exists which could affect the dynamic function of the lower 

limb (McPoil et al. 1994b; McPoil et al. 1996b). It is an assumption that structure 

dictates function and numerous structural and functional characteristics have been 

identified as been related to alterations in foot function (Hamill et al. 1989; Hlavac 

1977). It is generally accepted that high arched feet are rigid and poor shock 

absorbers, whereas flat feet are hyper-mobile. Very few studies have attempted to 

evaluate the relationship between static foot type and dynamic lower extremity 
kinematics. Recent literature suggests that static lower limb measures are poor 

predictors of dynamic foot function (Hamill et al. 1989; Knutzen et al. 1994; McPoil 

et al. 1994a; McPoil et al. 1996a). 

When podiatric biornechanical assessment techniques are evaluated a significant 

inadequacy become apparent (Menz 1995). Recent literature has identified key 

problems associated with current techniques. 

1) Static foot measurements have been shown to be unreliable in clinical practice 

(Ball et al. 1993; Pierrynowski et al. 1996). 
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2) Static clinical measurements are poor predictors ot'dynamic function (I lamill et al. 

1989-, Knutzcji ct al. 1994, McPoil ct al. 1994a-, McPoil et al. 1996a). 

In light of recent literature, current techniques used in the podiatric biomcchanical 

evaluation appear to be unsatisfactory. The limitations associated with static lowelý 

extremity Joint evaluation suggests that dynamic motion analysis is the preferred 

method. 

2.5.2 Movement at the ankle and subtalar joints during gait 

The Joint movernent at the ankle and subtalar Joint dUl'Ing walking as described by 

Root in 1977 is depicted in F1,01-Ire 2-6. Tlie Root paradigin for I`Oot function is ", cil 

accepted, however, it must be noted that the descriptions o1joint movement are based 

on observation and clinical experience rather than qUantitativejoint movenicrit data. 

Dorsiflexion 
ANKLE 

Plantarflexion 

Supination 

SUBTALAR 
Ptonation 

41 

2 

t' L To 

H. S. - Heel strike, F. F. L. - Forefoot loading, Heel lit'(, 'Ij). - Toc Off 

Figure 2-6: Sagittal plane motion at the ankle joint and frontal plane motion at 

the subtalar joint. Takcnfiwn Rool 
. 
11.1- Orien W. P., 11'ecd-J-11' (19-ý 7). Normal 

and abnorinal Jimclion of 1he 
. 
10ol. Clinical BiomechalfiCS, ' I '0111111C /1, Clilfi('(11 

Biomechanics Corporalion, Los Angeles. 

Advances in biomechanical methods I'm dynamic alllivsis Ilavc 1"Ic. . L ilitated a more 

quantitative and precise description Of 1'()()t Function during gait (Rodgers 1988). The 
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primary movement of normal gait occurs in the sagittal plane and therefore the 

majority of kinematic data at the ankle foot complex is within the sagittal plane, joint 

movement in the other two planes is less commonly reported. Many earlier studies 

analysing rearfoot motion have utilised two-dimensional (2D) methods in both 

barefoot and in shod walking. The limitations associated with 2D systems have been 

cited by many workers (Areblad et al. 1990; Cornwall et al. 1995; Soutas-Little et al. 

1987) namely projection errors. Direct comparisons between 2D and three- 

dimensional (3D) video based systems for analysing rearfoot motion in walking and 

running indicate that 2D analysis is essentially the same for the initial 60% of the 

stance phase (Areblad et al. 1990; Soutas-Little et al. 1987; Cornwall et al. 1995). 

Therefore, 2D analysis has its uses in clinical practice but 3D studies are the preferred 

method to accurately analyse rearfoot motion throughout all of the stance phase. 

Study of joint motion at the ankle foot complex is complicated by the fact that no part 

of the talus is directly observable externally, as a consequence direct observation of 

kinematics at the ankle can only be made with invasive techniques (Lundberg 1997). 

In order to try and overcome this problem kinematic models of the foot have been 

created which model the foot into segments rather than individual joints. Many 

biornechanical models have assumed that the subtalar and ankle joints act together as 

one universal joint, the ankle joint complex. 

Motion at the ankle joint complex (AJC) has attracted a lot of research interest due to 

the association between abnormal motion at this site and a variety of musculoskeletal 

symptoms both proximally and distally (Clarke et al. 1983; Lafortune et al. 1994). 

Until recently there have been surprisingly few studies of normal kinematics at the 

ankle joint complex during free walking. With recent technological advances 

researchers have overcome the complex measurement issues associated with the 

measurement of frontal plane motion at the AJC and a number of studies have been 

published. Many studies have small sample sizes and different methods, data 

collection procedures, reference positions, sampling rates and filtering techniques, 

which make comparisons between data sets difficult (Allard et al. 1997). The gait 

patterns of the left and right limb are assumed to be symmetrical and in fact many gait 

analysis studies only collect data on one limb. The literature is divided in its support 

of gait symmetry. Numerous studies document gait symmetry in terms of temporal 

parameters and kinematics (Arsenault et al. 1986; Hamill et al. 1984; Hannah et al. 

61 



1984). Allard and associates (1996) collected temporal and 3D bilateral kinematic 

data on 19 male subjects, they found that both limbs had the same walking speed but 

they reported statistically different mechanical energies for the right and left limbs 

(Allard et al. 1996). Very few studies have performed simultaneous kinematic 

measurements at the AJC they have assumed that the gait is symmetrical and relied 

on unilateral data. 

A summary of kinematic data at key events in the stance phase from a number of 

referenced sources related to the AJC in normal healthy adults during walking is 

provided in Table 2-5. The average range of motion from the referenced sources in 

all three planes is similar, however, there is wide variability in the absolute angular 

rotation position of the AJC at the key events in the stance phase. This can be 

explained by the absence of a standardised reference zero / neutral position for the 

AJC . The zero positions used in the reference sources varies from seated to standing, 

weightbearing to non-weightbearing and relaxed calcaneal standing position to 

subtalar joint neutral position. Despite the differences in the angular rotation position 

between referenced sources there is a general agreement for the pattern of motion at 

the AJC. 

In the sagittal plane there is an initial period of plantarflexion as the forefoot comes 

into ground contact. During midstance the ankle joint dorsiflexes as the tibia moves 

forward over the stationary foot and reaches a peak just after heel rise. The ankle 

joint then starts to plantarflex again before initial contact of the contra-lateral limb, 

the plantarflexion continues for the rest of the stance phase. In the frontal plane most 

reference sources describe eversion from heel strike through to mid stance, during late 

midstance the motion changes to inversion and this reaches a peak at the end of the 

stance phase. This pattern of frontal plane motion is contrary to the concept of foot 

function proposed by Root et al 1977, which states that the subtalar joint is positioned 

in the neutral position at midstance. In the transverse plane there is a pattern of 

internal rotation from heel strike to midstance and for the remainder of the stance 

phase external rotation. 
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2.5.3. Spatio-temporal characteristics of gait 

Walking speed or velocity is a product of both stride length and cadence, 

consequently changes in walking speed may be achieved by altering either or both of 

these components. Many studies have reported the spatial and temporal aspects of 

gait, however, in many cases the sample sizes are small and the age ranges are 
limited. Differences in methodologies and instrumentation across studies make 

comparison between data sets difficult. Craik (1995) provides an excellent overview 

of spatial and temporal characterisitics of gait in which she summarises the findings 

of recent studies in tabular form (Craik et al. 1995). Table 2-6 taken and adapted from 

Craik (1995) provides a summary of data from a number of studies. In general 
females tend to walk slower with shorter step lengths and the natural cadence for 

females is around six to nine steps per minute higher than that of males and this is 

probably related to the difference in limb length (Chao et al. 1983). 

2.5.4. Age related changes in Gait 

It is generally accepted that the freely chosen speed of walking in elderly adults will 
be slower compared to that of young adults (Elble et al. 1991; Hageman et al. 1986; 

Himman et al 1988). Age related decreases in walking velocity are not always 

present, chosen walking velocities are influenced more by customary activities than 

by age (Imms et al. 1981). One has to make the distinction between chronological age 

and biological age (presence of co-morbidity), taking into account the effect of health 

and exercise (Grabiner 1997). Martin and associates found that the preferred walking 

speed of active older adults was similar to that of sedentary younger adults (1.43 and 
1.41 metres per second respectively) (Martin et al. 1992). The age related changes in 

gait are thought to be associated with gaining an increased sense of security during 

walking. The characteristic smooth, cyclic and reproducible normal gait patterns 

appear to be retained until at least the seventh decade (Donaghue et al. 1996). It is 

generally accepted that there is a general decrease in stride length and stride frequency 

with increasing age (Himman et al. 1988; Hirasaki et al. 1993; Kaneko et al. 1991). 

There is an increase in walking base and an increase in the cycle time, which leads to 

a reduction in the percentage time of the gait cycle spent in single limb support. 
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Table 2-6: Temporal and spatial characteristics of gait: a summary of findings. 

Taken and adapted ftom Craik & Dutterer 1995 in Craik & Oatis; Gait analysis 

theory and application; Mosby- Year Book, In, St Louis. 

No. of Walking cycle 
Author 

Sample subjects speed 
Cadence time Demographics (m/s) (steps/min) (sec) 

Blanke& M 20-33 1.31 
Hagemen (1989) M 60-74 1.38 - 

Cunningham et M 19-49 43 1.39 108 1.11 

al(1982) M 55-66 41 1.33 109 1.10 

M 19-39 1.37 108 
Himann et al F 19-39 1.26 114 
(1987) M 40-62 1.34 107 

F 40-62 1.27 - 
Murray et al M 20-55 32 1.52 111 1.03 
(1964) M 60-65 12 1.47 115 1.04 
(1969) M 60-87 32 1.26 111 1.13 

M 19-32 21 1.20 100 1.20 
Chao et al F 19-32 20 1.02 102 1.18 
(1983) M 32-85 32 1.27 104 1.15 

F 32-85 37 1.12 112 1.07 

Finley et al F 18-38 12 0.82 105 1.14 
(1964) F 64-84 23 0.70 109 1.10 

Gabell et al ? 21-47 32 1.37 108 1.10 
(1984) ? 66-84 32 1.19 112 1.08 

Hageman et al F 20-35 13 1.60 119 1.01 
(1986) F 60-80 13 1.32 120 1.00 

Jansen et al M, F 20-29 20 1.10 131 
(1982) M, F 60-69 20 1.10 135 

M 20-29 1.23 119 
M 30-39 1.32 120 
M 40-49 1.33 121 
M 50-59 1.25 118 
M 60-69 1.28 117 

Oberg et al M 70-79 1.18 115 
1993 F 20-29 1.24 125 

F 30-39 1.29 128 
F 40-49 1.25 130 
F 50-59 1.11 122 
F 60-69 1.16 124 
F 70-79 1.11 

1 122 
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A general decrease in static joint range of motion is associated with the ageing 

process and a decrease in joint motion during walking has also been documented. 

Reduced sagittal plane motion at the hips, knees and ankles have been documented in 

groups studied over 65 years of age (Murray et al. 1964). Previous studies have 

highlighted that older women demonstrate significantly smaller maximum range of 

ankle joint motion than their younger counterparts during walking (Hageman et al. 

1986; Kaneko et al. 1991). Winter and associates reported a decrease in the 

plantarflexor work in late stance in older adults (Winter et al. 1990). These changes 

may be related to a shorter stride length and a slower walking velocity. 

Bendall and associates reported that plantar flexor strength was significantly related to 

walking velocity in older men and women (Bendall et al. 1989). It is debatable as to 

whether a reduction in plantarflexor work is a causative factor in the reduction of step 

length in the elderly or is merely a reflection of the mechanical requirement of a 

reduced step length (Grabiner 1997). Martin and associates examined the effects of a 

16-week program to strengthen plantar flexion strength on the preferred walking 

speed in younger and older adults. They found that the training program significantly 

increased the plantar flexion strength in the groups, however, they did not find any 

change in the preferred walking velocity from pre to post training (Martin et al. 1992). 

2.5.5. Gait characteristics associated with Diabetes 

It is widely acknowledged that the majority of ulcers on the plantar surface of the foot 

in diabetics are sustained from repetitive loading of tissues during walking (Katoulis 

et al. 1997a; Cavanagh et al. 1991b). Losses of protective sensation combined with 

changes in gait characteristics associated with diabetes are thought to be responsible 

for the increased level of tissue damage, failure and subsequent ulceration. Despite 

the importance of gait in the pathogenesis of foot injury there have been relatively few 

studies on the gait characteristics of patients with diabetes. Changes in postural 

stability, spatial and temporal parameters, joint movement and joint momentshave 

been associated with diabetes and diabetic neuropathy. 
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2.5.5.1 Postural stability 

Diabetic neuropathy is thought to result in poor postural control and instability during 

gait, which is related to an increased risk of injury during walking. In a retrospective 

study Cavanagh and associates reported increased levels of injury in patients with 

neuropathy compared to non-neuropathic controls. They found that the neuropathic 

group had an odds ratio of 15 for injuries during gait compared to the non-neuropathic 

group (Cavanagh et al. 1992a). Many studies have reported increases in body sway 

associated with increased neurological deficit (Boucher et al. 1995; Courtemanche et 

al. 1996; Uccioli et al. 1995). The increase in body sway in patients with neuropathy 
has been attributed to changes in prorioception and instability of foot posture related 

to muscle weakness. Instrumentation for the accurate assessment of joint movement 

and position perception is not widely available, therefore many studies utilise body 

sway / balance tests as an indirect measure of joint movement position sense. Balance 

tests are assumed to provide a good assessment of proprioceptive function, however, 

these tests are influenced by other factors such as muscle strength and reaction time 

(Simoneau et al. 1996). 

Simmoneau and associates developed apparatus to measure ankle joint movement 

perception in the sagittal plane in a weight-bearing position. They measured the joint 

movement perception threshold in diabetic patients with and without cutaneous 

sensory deficit as determined by monofilamant testing and they found that diabetic 

patients with neuropathy demonstrated a significant loss of ankle joint movement 

perception (Simoneau et al. 1996). The study showed that patients with sensory 
deficit had significant postural instability compared to the controls and they reported a 

shift in the usage from a predominantly ankle based method of compensation in 

balance to a hip correction strategy as the difficulty in maintaining balance increased. 

They found that the joint movement perception threshold was a good predictor of 
instability during stance (Simmoneau et al 1994). A decrease in the joint movement 

perception for subtalarjoint eversion and inversion in diabetic patients with peripheral 

neuropathy has also been reported (Van den Bosch et al 1995). 

Significant differences in body sway in the frontal plane have been reported between 

patients with neuropathy and foot ulceration compared to diabetics with neuropathy 
(Katoulis et al. 1997a). The authors attributed the significant increase in body sway in 
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this group to detrimental changes in proprioception and instability of foot posture 

related to weakness of the intrinsic muscles of the foot. A possible explanation is 

that the treatments for ulceration (limited weight bearing and prolonged disuse of 
lower limb) might cause muscle weakness, changes in joint mobility and increase the 

instability within the foot. The role of proprioception in the pathogenesis of ulceration 

needs to be confirmed in a prospective study. 

2.5.5.2 Spatio-temporal characteristics ofgait in diabetes 

Patients with diabetic neuropathy show a more conservative gait pattern than their 

non-neuropathic counterparts. Their gait is charcterised by a marked decrease in 

walking velocity, a shorter stride length, a longer cycle duration and a slower cadence 
(Katoulis et al. 1997b; Mueller et al. 1994a; Courtemanche et al 1996; Shaw et al. 

1998). Mueller and associates reported that the mean walking velocity for a group of 
diabetic patients with neuropathy with a mean age of 57.7 years was 1.06 metres per 

second. The walking velocity in the non-diabetic age matched control group was 1.26 

metres per second. A smaller percentage of the gait cycle is spent in single limb 

support and a greater proportion of time is spent in double limb support (Mueller et al. 

1994a). This gait pattern is thought to be a compensatory mechanism for the 

increased postural stability associated with neuropathy. It has been reported that 

diabetic neuropathic patients have a low level of perceived safety when walking, they 

lack confidence and have a fear of falling during gait (Cavanagh et al. 1992a). 

2.5.5.3 Kinematics 

2.5.5.3.1. Motion at the AJC 

There have been surprisingly few studies on dynamic joint motion at the AJC during 

walking in patients with diabetes. A small number of studies have reported limited 

ankle joint dorsiflexion and plantar flexion during gait in patients with diabetes 

compared to age matched diabetic controls (Mueller et al. 1994a; Mueller et, al. 
1994b). The mean total range of ankle joint motion during gait was 30.6 (SD 4.1) 

degrees and 22.1 (SD5.4) degrees for the non-diabetic and diabetic groups 

respectively. It has been suggested that the reduction in ankle joint motion during gait 

can result in a shorter step length and reduced ankle moments during gait (Mueller et 
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al. 1995). Limited movement at the ankle joint has also been offered as an 

explanation as to why some diabetic patients with neuropathy use the hip correction 

strategy for the maintenance of balance. Restriction in ankle joint flexibility reduces 

the limits of sway available and this compounds the postural instability problems, 

therefore, maintaining balance using the hip strategy is preferred. 

Limited dorsiflexion at the ankle joint has been associated with foot ulceration. 
Holewski and associates found that patients with a history of foot ulceration or 

amputation had a significantly higher prevalence of limited dorsiflexion at the ankle 

joint when compared to diabetic patients without a history of ulceration (Holewski et 

al. 1989). Limited dorsiflexion at the ankle joint has also been reported to result in 

abnormal subtalar joint pronation, which causes hypermobility in the forefoot during 

the propulsive phase of gait. The abnormal subtalar joint pronation is thought to 

increase both the vertical and shearing forces under the foot. Limited joint mobility 
determined from static joint assessment has been demonstrated at the ankle and 

subtalar joints in patients with diabetes (Delbridge et al. 1987). Limited joint mobility 

at these sites has been associated with increased plantar foot pressures and ulceration 

(Fernando et al. 1991; Mueller et al. 1989). Only one study to date has examined 
dynamic ranges of motion at the AJC and its impact on plantar foot pressures and 

ulceration (van Schie et al. 2000). The total range and timings of joint motion in all 

three planes at the AJC is not reported. The authors found an association between the 

rate of plantar flexion after heel strike and a history of ulceration. 

2.5.5.3.2. Motion at the Pt metatarsophalangealjoint 

Sagittal plane motion at the I" metatarsophalangeal joint (MPJ) is very important for 

normal walking. The minimum range of dorsiflexion necessary for normal 
locomotion is reported to be approximately 65-75 degrees (Root et al. 1977). More 

recently it has been suggested that normal foot function is dependent on an adequate 
dynamic of range of motion at the I't MPJ (Payne 1998). Restriction of dorsiflexion 

at the I" MPJ is associated with high pressures under the hallux and subsequent 

ulceration in the presence of diabetic neuropathy (Birke 1988). Severe restriction of 

sagittal plane motion at the I" MPJ determined by static joint measurements have 

been reported in patients with diabetes (Larsen & Hostein 1987; Birke 1988; 

Delbridge et al. 1987; Fernando et al. 1991; Duffin et al 1999). Very few studies have 
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attempted to evaluate the range of motion at the I" MPJ during walking using gait 

analysis techniques. Cavanagh and associates presented joint motion at the I't MPJ in 

one subject with diabetes and limited joint mobility. The maximum dorsiflexion at 

the joint was 33 degrees, approximately 90 percent of the range determined by static 
joint assessment (Cavanagh et al. 2001b). The sagittal plane facilitation model 

suggests that dynamic range of motion at the I" MPJ is independent to the range of 

motion determined during clinical examination. The relationship between static joint 

range of motion and dynamic range of motion needs to be investigated in a larger 

sample size. 

2.5.5.4. Kinetics 

A joint moment is a measure of the net effect of all the muscle activity which causes 

rotation about a given joint and is used as an indicator of overall muscle performance 

(Mueller et al. 1995). Joint moments at the ankle during the stance phase of walking 

typically include a small dorsiflexor moment followed by a large plantar-flexor 

moment, the power generated by the plantar flexors at the end of the stance phase is 

typically the largest muscle power burst recorded during gait. The moment pattern at 

the hip usually shows an extensor moment followed by a flexor moment. Ankle 

moments and power are known to be limited during walking in patients with diabetes 

and peripheral neuropathy (Andersen et al. 1997; Mueller et al. 1994a; Mueller et al. 
1994b). Limited joint mobility at the AJC and loss of muscle function associated 

with motor neuropathy are linked with the decrease in joint moment at the ankle. 
Mueller and associates compared the gait characteristics of patients with diabetes and 

a history of neuropathic ulceration to age matched non-diabetic controls. They found 

that the diabetic patients had less ankle joint motion in the sagittal plane, a slower 

walking velocity, a shorter stride length, lower peak ankle moments and lower peak 

ankle power (Mueller et al. 1994a). They concluded that the decreased plantar flexion 

strength reduced the amount of push off at the end of the stance phase, this resulted in 

shorter steps and a decrease in the walking velocity in the diabetic group compared to 

the controls. The diabetic group had greater hip moments and power than the ankle 

moments and power during terminal stance. The diabetic group appeared to use the 

hip flexor muscles to pull the limb forward (hip strategy) rather than the pushing the 

limb into swing with the ankle plantar flexor muscles (ankle strategy). The study 
found that ankle plantar flexion strength and mobility rather than walking velocity, 
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sensory loss or other complications of diabetes were the primary factors contributing 

to the changes in gait style in the diabetic group. The authors suggested that the hip 

strategy might place lower pressures under the forefoot, due to the generation of lower 

shear forces and minimal push off. A further study by the same group was performed 
to examine the effect of hip and ankle strategies on peak pressures under the feet in 

diabetic patients with a history of ulceration (Mueller et al. 1994b). The results 

showed that the adoption of the hip strategy resulted in a 27% reduction of peak 

pressures in the forefoot. 

Motion analysis has facilitated a greater understanding of the mechanics of gait in 

patients with diabetes and its relationship to the pathogenesis of ulceration. A major 
limitation of previous work is that sample sizes were very small and usually only 

motion in the sagittal plane has been studied. Abnormal frontal plane motion at the 

AJC has been related to a number of musculoskeletal problems including high plantar 

pressures and ulceration in the neuropathic foot. The dynamic range and pattern of 

motion at the AJC and Is' MPJ in all three planes is needed in order to gain an insight 

into the pathogenesis of ulceration. 
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2.6 Pressure Measurement in the diabetic foot 

This section aims to briefly summarise the relevant literature on plantar pressure 

measurement and its relationship to the development of foot ulceration. The 

prevalence and distribution of high foot pressures and the mechanisms by which 

pressures become elevated in the diabetic foot will be explored before a discussion of 

the limitations associated with pressure measurement. 

In recent years pressure measurement has become widely available and has been used 
in both a research and clinical environment. The increased use of pressure 

measurement techniques has facilitated a greater understanding as to why people with 
diabetes tend to have high pressures under their feet and the causative role high 

pressure has on the formation of foot ulceration. Many commercial systems are 

available for the measurement of barefoot and in-shoe plantar pressures. Both in-shoe 

and barefoot pressure measurement systems have inherent advantages and 
disadvantages, which have been discussed elsewhere in the literature (Cavanagh et al. 
2001b). The technological and methodological issues associated with plantar pressure 

measurement have been extensively reviewed elsewhere (Cavanagh et al. 1991b; 

Cavanagh et al. 1992b; Lord 198 1; Lord et al. 1986; Cavanagh et al. 2001 b). Pressure 

measurement as an indicator of overall foot function in the diabetic foot has been 

studied extensively and has been used as both a diagnostic and an outcome 

measurement tool. A detailed critical review of all the literature in this area is beyond 

the scope of this thesis. This section will provide a brief overview of the key findings 

of pressure measurement in the diabetic foot and the limitations associated with 

pressure measurement. 

2.6.1. Prevalence of high pressures and its relationship to foot ulceration 

Abnormally high plantar foot pressures are commonly found in patients with diabetes, 

especially in the presence of neuropathy (Boulton et al. 1987a; Veves et al. 1992a). 

The prevalence of high foot pressures in patients with diabetes and in non diabetic 

control has been reported (Boulton et al. 1983). In this study Boulton and associates 
found 51% of neuropathic feet studied had abnormally high pressures underneath the 

metatarsal heads compared with 7% in the non-diabetic control subjects. Veves and 
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associates using the same pressure measurement system reported high pressures under 
30% of all diabetic feet. The prevalence of high foot pressures in the diabetic group 

without neuropathy was similar to the non diabetic control group, 15% and 14% 

respectively (Veves et al 1988). 

It is widely recognised that high plantar foot pressures have a contributory role in the 

ulcerative process. Frykberg and associates performed a cross sectional study to 

ascertain the risk of ulceration with high foot pressures and neuropathy in a large 

group of patients with diabetes. They found that patients with high foot pressures 

(greater than 6Kg/CM2) were twice as likely to have ulcerated than those without high 

foot pressures (Frykberg et al. 1998). The role of high pressures in the development of 
foot ulceration has been confirmed in a prospective study (Veves et al. 1992a). In this 

study 86 diabetic patients were followed for a mean period of 30 months. At the 

baseline measurements, 50% of diabetic patients had abnormally high foot pressures 

and 67% of patients had established peripheral neuropathy associated with their 

diabetes. The mean peak foot pressure in diabetic patients was higher at the follow up 

visit when compared to the baseline measure, no such difference was identified in the 

non diabetic control group. During the study 17% of diabetic patients developed 

ulceration, all of these patients had abnormally high foot pressures at the baseline 

measurement. Murray and colleagues investigated the relationship between callus 
formation, high pressures and foot ulceration in diabetic patients with neuropathy 
(Murray et al. 1996). They found that presence of callus at the onset of the study was 

predictive of ulceration. The relative risk for ulceration in a callused area was 11.0, 

compared to a relative risk of 4.8 for a high pressure area. Callus is known to form at 

areas of high mechanical stress and has been shown to increase plantar pressures 
(Young et al. 1992a). 

Foot ulceration tends to occur at sites of maximum force and pressure (Ctercteko et al. 
198 1; Stokes et al. 1975; Boulton et al. 1983). High pressures have also been reported 

at the sites of previous ulceration (Boulton et al. 1987a). Although high pressures 
have been identified as a major aetiological factor in the formation of foot ulceration 
it must be noted that high pressures in the absence of established neuropathy do not 
lead to ulceration (Masson et al. 1998). 
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2.6.2. Why are pressures elevated in the diabetic foot? 

In early literature, obesity has been cited as an explanation for increased foot 

pressures in diabetes. Previously it has been noted that many diabetic patients are 
heavier than their age and height matched non-diabetic counterparts and this may 
increase foot pressures. More recently it has been suggested that foot structure is the 

dominant factor in determining plantar pressure and that body mass is a poor predictor 

of plantar peak foot pressures (Cavanagh et al. 1991 a). In a later book chapter the 

same author concluded that a gain in body mass may or may not increase plantar 

pressure, depending on whether there is deposition of adipose tissue in the plantar 

tissues of the foot (Cavanagh et al. 2000). 

Diabetic neuropathy has been postulated to be one of the main factors, which 

contributes to the development of high foot pressures (Boulton et al. 1983). It has 

been reported that early changes in the distribution of pressure under the feet may 

precede the development of clinical neuropathy (Boulton et al. 1987a). A mixture of 

sensorimotor and autonomic nerve dysfunction in the foot are probably responsible 

for changes in both foot structure and function which disrupts the normal gait cycle 

and increases plantar foot pressures. The intrinsic minus foot shape (retracted toes, 

prominent metatarsal heads and a high medial longitudinal arch) is associated with 
diabetic neuropathy. In this foot type there is a decrease in the weight-bearing area of 
foot thus less area to spread force and the pressure increases. It must be noted that foot 

structure (not related to neurological dysfunction) and joint mobility plays a large part 
in determining the plantar pressure exerted by the foot during walking (Cavanagh et 

al. 1997; Morag et al. 1999). 

Limited joint mobility at the ankle, subtalar and Is' MPJ has been associated with high 

plantar foot pressures and subsequent ulceration in the diabetic foot. Racial 

differences in joint mobility have been reported (Frykberg et al. 1998). Caucasian 

people with diabetes have been shown to have significantly reduced mobility at the 

ankle, subtalar and first metatarsalphalangeal joint, significantly higher foot pressures 

and an increased prevalence of foot ulceration compared to Asian, Hispanic, and 
Afro-Caribbean patients (Clarke et al. 1998). The presence of foot deformity is 

associated with increased plantar foot pressures and a greater risk of developing foot 

ulceration. Prominent metatarsal heads are associated with higher foot pressures 
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under the metatarsals. Hallux valgus and hallux limitus foot deformities have been 

shown to be associated with higher pressures under the hallux but lower pressures 
under the metatarsal heads (Frykberg et al. 1998). 

Cavanagh and associates have examined the relationship between foot structure and 
function and high plantar pressures during barefoot walking in fifty non-diabetic 
healthy subjects (Cavanagh et al. 1997). In the study, standardised weight-bearing 

radiographs were taken and 27 radiographic measurements were taken in order to 

characterise foot structure. Plantar pressure measurements were recorded using the 

optical pedobarograph and peak pressure at the heel and first metatarsal head was 
determined. Stepwise multiple regression was used to identify the structural factors 

associated with high plantar foot pressures. The compressed soft tissue thickness 

(determined by calcaneal or sesamoid height) and the height of the medial 
longitudinal arch were identified as the strongest predictors of plantar pressure both 

under the heel and the first metatarsal head (Cavanagh et al. 1997). 

Cavanagh and associates found that using only structural characteristics in the 

regression allowed them to predict only 31% and 38% of the variance in peak plantar 

pressure at the heel and the first metatarsal head respectively. In a further study many 

other functional variables related to gait style were included in the regression model 
(Morag et al. 1999). With the addition of the functional characteristics (for example 

range of motion at the ankle joint) in the regression, they found that 50% of the 

variation in plantar pressure could be predicted. In the rearfoot both structural and 
functional variables were important in prediction of peak pressure. Under the first 

metatarsal head structural variables were most important at predicting peak pressure at 
this site. 

The work by Cavanagh's group highlights the importance of combining pressure 

measurement with gait analysis techniques in order to fully understand why pressures 

are elevated in some individuals and not others (Cavanagh et al. 1997; Morag et al 
1999). The findings from their study may help clinicians to predict areas of high 

pressure under the feet during walking. A similar study in a diabetic population is 

needed to gain a greater insight into what causes high pressures under the diabetic 

foot and to identify any additional possible mechanisms by which plantar pressures 

can be reduced. 
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2.6.3. Plantar pressure distribution in the diabetic foot 

The pattern of pressure distribution under the normal foot during walking has been 

extensively documented. There is a lack of agreement as to the pattern of loading in 

the forefoot. Peak pressures have been reported to be under the second metatarsal 
(Betts et al. 1980; Rodgers et al. 1989) under the third metatarsal (Soames 1985) and 

under the first metatarsal (Stokes et al. 1975; Stott et al. 1973). There is wide 

variability in the magnitude and location of peak pressure in the normal population. 

Regional pressure parameters taken from a number of papers are presented in Table 2- 

7. Although the same measurement equipment is used in the majority of papers 

presented wide variability can be seen in the magnitude of peak pressures in 

anatomical areas. The wide variability is most probably due to different 

methodologies used and wide inter-subject variability in the normal population. 

The literature regarding the distribution of pressure under the diabetic foot is 

conflicting. Stokes and colleagues studied the plantar pressure distribution in diabetic 

patients with and without ulceration and in non diabetic controls (Stokes et al. 1975). 

They found that patients with diabetes who had ulcers had significantly greater loads 

under the foot than both patients without ulcers and non-diabetic controls. They 

reported a significant decreased load bearing on the toes and more lateral distribution 

of pressure in diabetic patients when compared with the control group. Ctercteko and 

associates studied diabetic patients with and without ulceration and non-diabetic 

controls. They reported a medial shift of the load under the forefoot and less pressure 

under the toes in patients with diabetes (Ctercteko et al. 198 1). More recently Veves 

and colleagues reported that they did not find a transfer of pressures either medially or 
laterally under the diabetic foot (Veves et al. 1992b). A general consensus in the 

literature has noted several changes in the distribution of pressures under the diabetic 

foot. The changes include a rise in pressures under the forefoot and a transfer of 

pressures from the heel to the metatarsal heads. Lesser toe retraction or clawing, 

results in a shift of pressure from the toes to the metatarsal heads. 
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Table 2-7: A summary of the pressure distribution under the plantar surface of the foot 

Authors Bryant et al Hayafune et al Cavanagh et al Bennet et al 
2000 1999 1991 1993 

Sample N= 30 N= 42 N= 27 N=86 
Demographics M-12, F -18 M 19, F 23 M= 27 M= 30, F=44 

Aged 23 68 Aged 20-59 Middle aged Aged 18-30 
Equipment EMED-SF EMED-SF EMED-SF Musgrave 

Platform Platform Platform Footprint 01 
Method Second step Mid gait First step Midgait 

3 Trials analysed I trial analysed - Trials Cadence controlled 
Free walking 3 Trials analysed 

Heel PP 350 (7.8) PP - PP 341 (98) PP 441.3 (49.0) 
MP 167 (2.4) Mp- Mp- MP - 
PTI 80 (2.1) PTI- PTI- PTI- 

Midfoot PP 73 (3.1) PP_ PP 64 (18) PP - 
MP 39 (2.5) MP- MP - Mp- 
PTI 21 (1.2) PTI- PTI- PTI- 

First Metatarsal PP 290 (110.6) PP 372.8 (171.9) PP 319 (10 1) PP 294.2 
MP 122 (33) Mp- Mp- Mp- 
PTI 91 (35) PTI- PTI- PTI- 

Second PP 420(147) PP 435 (162.6) PP 533 (222) PP - 
Metatarsal MP 188 (41) NIP - Mp- Mp- 

PTI 126 (40) PTI - PTI- PTI- 

Third Metatarsal PP 366(114) PP 340.7 (100.3) PP- PP - 
MP 154 (32) MP - Mp- Mp- 
PTI 119 (38) PTI - PTI- PTI- 

Fourth PP 251(103) PP 213.5 (79.3) PP - PP - 
Metatarsal MP 114 (39) Mp- Mp- Mp- 

PTI 88 (3.8) PTI PTI- PTI- 

Fifth Metatarsal PP 249(207) PP 128.5 (78.5) PP- PP 225.6 (98.1) 
MP 89 (4.3) Mp- Mp- Mp- 
PTI 7.5 (5.5) PTI - PTI- PTI- 

Lateral PP- PP_ PP 446 (183) PP- 
metatarsals Mp- MP- Mp- Mp- 

PTI- PTI- PTI- PTI- 

Hallux PP 442 (197) PP 462.4 (200.9) PP 511 (185) PP 343.2 (107.9) 
MP 139 (38) Mp- Mp- Mp- 
PTI I 10 (63) PTI- PTI- PTI- 

Second Toe PP 223(93) PP 214.9 (99.5) PP 238 (128) PP- 
MP 78 (2.5) Mp- Mp- MP- 
PTI 50 (26) PTI- PTI- PTI- 

Lateral Toes PP 159(78) PP 139.6 (85.1) PP 206 (116) PP- 
MP 50 (18) Mp- Mp- Mp- 
PTI 38(20) PTI - PTI- PTI- 

PP= Peak pressure in kPa, MP= Mean Pressure in kPa, PTI= Pressure Time Integral in kPa. sec, 
Standard deviation in parenthesis. 
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2.6.4. Pressure threshold for Ulceration 

Despite extensive work in the area of pressure measurement a universal threshold 

level at which ulceration will occur in the diabetic foot has not been identified. 

Boulton and associates have defined the upper limit of normal pressure (mean 

pressure plus 1 standard deviation) as 1,207kPa and have suggested a danger 

threshold for ulceration to be 10800a using the optical pedobaragraph (Boulton et al. 

1983). Cavanagh and associates have reported ulceration at much lower pressure 

values using the Emed SF Pressure Platform. They regard peak pressures under the 

metatarsals and hallux greater than 500kPa as possible danger of ulceration (Hsi et al. 

1993). 

Several factors identified in the literature complicate the development normal pressure 

values and a threshold value for diabetic foot ulceration and are summarised below; 

9 Different foot regions may have different thresholds for ulceration. The heel for 

example is specially adapted to withstand high pressures during walking and will 

have a high pressure threshold, whereas an area in the mid-foot that does not 

normally bear weight may not be able to withstand high pressures and is more 

likely to ulcerate. 

* Different pressure measurement systems and methodologies will yield different 

results. Comparison between pressure data recorded on different systems is not 

valid. 

* There is wide variability of peak plantar pressures in the normal population. 

Ulceration has been show to occur at pressure levels that can be seen in normal 
healthy subjects. 

e Many other factors in addition to plantar pressures have been identified as 
important in the pathogenesis of ulceration. 

A number of different pressure parameters can be determined from most pressure 

measurement systems, however, most literature focuses on the peak plantar pressure 

value. There is no standardised method on how to collect pressure data or how to 

analyse and present pressure data. More recently it has been recognised that both the 

magnitude and the duration of pressure is important in determining tissue damage. 

The development of ulcers is dependent on the duration of exposion, rather than the 

magnitude of pressure alone (Cavanagh et al. 1991a). Pressure time integrals are a 
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measure of both the magnitude and duration pressure and can be calculated for 

specific regions of the foot. Until recently, very few authors have quoted the pressure 

time integral in research articles, the value of this variable as a screening measure to 

predict for ulceration in the diabetic foot has yet to be fully investigated. 

2.6.5. Limitations of Plantar Pressure Measurement in the study of diabetes 

related foot disease 

A major limitation associated with both barefoot and in-shoe pressure measurement is 

the large range of values encountered in normal healthy subjects, which results in a 
high standard deviation. For other data sets, normal values are defined as the mean 

plus or minus two standard deviations. When examining pressure data sets the upper 

value of normal using the normal criterion would result in pressure values previously 

shown to be associated with ulceration being defined as normal. Many authors have 

attempted to define normal pressure values under specific regions of the foot 

(summarised in Table 2-7). In all of the studies, wide variation in plantar pressures 
between individuals was reported. In one study by Cavanagh and associates they 
found that one area of the foot (the medial midfoot region) had a coefficient of 

variation of 118% and the range between the upper and lower limits of pressure in 

some areas was more than 800kPa (Cavanagh et al. 1987). 

It has been shown that plantar pressure measurement is sensitive but not specific for 

predicting foot ulceration. Armstrong and colleagues found pressure measurement 

was 100% sensitive at predicting ulceration in patients with neuropathy but had a low 

specificity (45%) (Armstrong et al. 1998c; Stacpoole-Shea et al. 1999). In contrast to 

the previous study, Pharn and associates found that plantar foot pressures offered the 

best specificity for a single factor in a more recent prospective study of 248 patients 
followed for a mean period of 30 months. They found that combining foot pressures 

with the Neuropathy Disability Score offered the best combination for specificity and 

sensitivity (Pharn et al. 2000). 

Plantar pressure measurement has been shown to be useful in the assessment of the 
diabetic foot; however, the wide variability encountered in the normal healthy 

population hampers its use in clinical practice. It has been shown that both the 

structure of the foot and aspects related to gait style are important factors when 
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attempting to predict high foot pressures and ulceration. A combination of pressure 

measurement with gait analysis techniques would facilitate a greater understanding of 

the mechanisms that lead to diabetic foot ulceration. 
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2.7 Literature summary 

This section provides a brief summary of the relevant literature and justification to 

the aims and scope of the study. The hypotheses to be tested during this study are 

presented. 

The prevalence of diabetes is rising rapidly and it is estimated that in the year 2010 

diabetes will affect 239 million people worldwide. The management of diabetes and 

its complications is costly both in economic and human terms. Diabetic foot 

ulceration has been shown to have a negative impact on the quality of life of patients 

and their families. The prognosis for patients with foot ulceration is poor, many will 

ulcerate again and some may require an amputation. 

Foot ulceration has traditionally been considered to be the result of vascular disease, 

peripheral neuropathy and infection. More recently advances in technology have 

provided a mechanism by which to increase our understanding of the role that 

abnormal foot function and structure has on the pathogenesis of ulceration. 

Abnormally high plantar foot pressures are commonly found in patients with diabetes 

and ulceration has been linked to high plantar pressures in both retrospective and 

prospective studies. Although plantar pressure measurement has facilitated a much 

greater understanding as to why many diabetic patients with neuropathy ulcerate there 

are several limitations inherent with using pressure studies alone. The main limitation 

is that in a normal healthy population there is a wide variability in pressure values 

making definition of normal and abnormal pressures difficult, as many diabetic 

patients ulcerate at pressures that would be defined as within normal limits. For this 

reason it has not been possible to define a pressure threshold which if exceeded would 

result in ulceration in patients with diabetic neuropathy. 

The measurement of pressure between the terminal part of the foot and its interface 

with the supporting surface reflects a mix of joint movement, muscle activity and 

lower limb structure all intricately coordinated by the central nervous system. All 

these factors will have an influence on the magnitude and pattern of pressure seen 

under foot. In an attempt to try and explain the wide variability of pressure found in 
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normal healthy population a number of workers have studied aspects of foot structure 

and gait style and its influence on plantar pressures. They found that both structural 

and functional variables were important in prediction of peak plantar pressure. Gait 

parameters have been shown to be important in predicting pressures under foot and 

can explain help to explain why pressures are elevated in some individuals and not 

others. 

Many characteristic gait patterns have been identified in people with diabetes 

especially in those with diabetic neuropathy and ulceration. Postural stability, spatial 

and temporal parameters, joint movement and joint moments can all be altered in the 

presence of diabetic neuropathy. Gait style has been offered as a reason as to why 

some patients ulcerate and others do not and it has been proposed that training 

patients to alter their walking pattern may help to prevent ulceration. 

A generalised limitation of joint mobility has been demonstrated in patients with 
diabetes. Most workers investigating joint mobility have found relationships between 

reduced joint mobility at the subtalar and metatarsophalangeal joints and increased 

foot pressures and prevalence of ulceration. The assessment of joint mobility has 

been based on the static assessment of joints using goniometers. Many studies have 

shown that taking joint measurements in this way is subject to large errors and that 

there is poor correlation between static measures of the foot and dynamic foot 

function. Work in this area could be enhanced if the range of joint motion at joints in 

the feet were determined during gait. 

Assessment of gait in screening programs remains to be a neglected area. In clinical 

practice subjective assessments of gait if any invariably occur. Objective assessment 

of gait is beset by financial and time constraints. Recent advances in technology 

have reduced the cost and time needed to perform gait assessment and has provided 

the opportunity to accurately and objectively assess gait within the confines of a 

clinical environment. 
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2.7.1. Aims and scope of the present study 

This study aims, for the first time to describe motion at the AJC in all three planes of 

motion during the stance phase of gait in a diabetic population. This study will 
investigate the differences in the joint motion at the AJC and the I't 

metatarsophalangeal joint during gait in the following groups; diabetic patients who 
have neuropathic foot ulceration, patients with diabetic neuropathy but no history of 

ulceration and patients with diabetes without neuropathy or a history of ulceration. 
Differences in dynamic joint motion highlighted between the groups may help to 

explain why some patients develop ulceration. 

It is generally assumed that if there is a limited passive range of motion at the AJC 

and I"MPJ, the range of motion during gait will also be limited and this explains the 

mechanism by which limited passive joint motion is associated with high plantar 

pressures and ulceration. The aim of the present study is to examine the relationship 
between the passive ranges of motion at the AJC and I" MPJ and the ranges of 

motion during gait. 

Very few papers have combined plantar pressure measurement with gait analysis 

techniques. As there are few data regarding dynamic function at the AJC and plantar 

pressure, this study aims to explore the inter-relationships between the variables in 

more detail. 

Finally, patients will be followed for 12 months following gait assessment and their 

ulceration status will be monitored. The relationship between motion at the AJC and 
I" MPJ and subsequent ulceration will be investigated. 

2.7.2. Hypotheses 

The following hypotheses are proposed to be tested during this program of work. 

9 There is a statistically significant difference in the 3D motion time curves at the 

AJC during stance phase between the following groups; 
A) Diabetics with active or previous history of ulceration, 

B) Diabetics with established peripheral neuropathy, 
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Q Diabetic controls (not neuropathic or history of ulceration) 

D) Age matched, non-diabetic controls. 

Patients with a history of ulceration will have a significantly lower range of 

motion at the AJC and Ist MPJ during walking, than the neuropathic and diabetic 

control groups. 

There is a correlation between the dynamic range of motion at the AJC, in all 

three planes of motion and the location and magnitude of peak pressures in the 

forefoot. 

* There is a correlation between the range of motion at I" Mpi and the location of 

peak pressures in the forefoot. 

e Reduced dynamic motion at the AJC and the I" MPJ will be a positive predictor 

of ulceration. 

In order to test the above hypotheses the present investigation has identified four core 

elements to the program of work; 

To develop a method by which a commercially available motion analysis 

system can be successfully applied to study motion at the AJC in a diabetic 

population. 

2) To determine motion time curves and plantar pressure for a normal healthy 

control group. 

3) To employ a method of screening by which to identify diabetic patients with 

neuropathy. 

4) To determine and analyse the motion time curves and plantar pressure in 

diabetic groups. 
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A sample of convenience gained from three clinical sites will be used. Using 

neurological screening and an assessment of the foot, diabetic patients will be 

assigned to the control, neuropathic or ulcerated group. No formal method of 

stratification will be used, however, attempts will be made to balance the groups for 

age, height, gender and disease duration. The non-diabetic reference group will be 

taken from the normative database matched for gender and age within decade. 

Electromagnetic tracking will be used to determine the passive range of motion at the 

AJC and 1"MPJ. The range of motion during gait at both sites will be measured. In 

shoe plantar pressure measurements will be recorded. Patients in the diabetic groups 

will be followed for 12 months and their ulceration status monitored. 
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CHAPTER 3 

METHODS AND THEIR DEVELOPMENT 

3.1 Development of kinematic technique for measuring three- 

dimensional movement at the AJC 

The aim of this section is to introduce the technology behind 'electromagnetic tracking' 

and to highlight the potential benefits and limitations of using this technique to study 

three-dimensional lower extremity kinematics. Electromagnetic tracking has been 

successfully applied to the AJC using two contrasting methods, however, a review of the 

literature showed that some key methodological areas needed to be addressed before 

the technique was deemed suitable for the purposes of the present study. This section 

will provide a briefdescription of the electromagnetic tracking system used in this study 

and how the system was tested and applied to monitor 3D motion at the AJC in the 

clinical environment. 

3.1.1 Background information 

The application of gait analysis techniques has contributed to a better understanding 

of foot biornechanics. Many different techniques exist to measure kinematics at the 

AJC, of which video-based systems predominate. Motion analysis systems have been 

critiqued for under-fulfilling initial potential in the clinical setting, with most criticism 
levelled at high costs coupled with demanding technical and time consuming features 

inherent with most systems. Recently, electromagnetic tracking (EMT) has been 

adaptedto measure kinematics in the lower limb during gait. This technique is very 

convenient to use and overcomes many of the technical problems associated with 

camera based systems. Motion analysis using camera-based systems is costly with 

respect to time, (due to lengthy equipment set up), calibration procedures, and post 
data collection tracking of lost marker points. Motion analysis using EMT requires no 
digitisation of markers, and the kinematic variables can be calculated within minutes 

of the data collection; for this reason it has the potential to become a valuable clinical 
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and research tool. There are several limitations associated with EMT including 

restricted measurement area, electromagnetic interference from metallic objects in or 

near to the operational field, relatively slow sample rate when using a number of 

sensors and cumbersome trailing cables. 

EMT motion analysis systems consist of three major components: a source 
(transmitter), a sensor and a systems electronic unit. The source emits a low 

frequency electromagnetic field and the sensors detect this field. Both the source and 

the sensors are connected to the systems electronic unit. All the information from the 

source and the sensor is processed in the systems electronic unit and calculations are 

performed using dedicated in-built software to work out the position and orientation 

of the sensor. The use of EMT is well established for measuring spinal, knee and in 

vitro foot kinematics. However, two contrasting techniques have been described for 

measuring lower limb kinematics during gait. In most studies the subject walks past a 
fixed transmitter, (Cornwall et al. 1999b; Kobayashi et al. 1997; Mannon et al. 1997) 

whereas in one study both the transmitter and sensor have been attached to the lower 

limb (Abboud et al. 2000). Both techniques have been reported as accurate and 

repeatable. 

The 6D RESEARCH system (Skills Technologies Inc, Phoenix, AZ, USA) is a 

commercially available electromagnetic tracking motion analysis system using 
FASTRAK sensors (Polhemus Inc., Colchester, VT, USA). The system consists of 

three main components; a motion capture unit (systems electronic unit), a transmitter 

unit and four Polhemus sensors (Figure 3-1). The transmitter unit emits a low 

frequency magnetic field (in the region of 1-4000 x 10-9 Tesla). The system detects 

changes in position and orientation of the sensor by updating the previous values by 

the difference in the magnetic fields detected by the sensor (An et al. 1988). The 

motion capture unit communicates with custom software on a host PC via a RS-232 

COM port. The 6D RESEARCH software uses predefined kinematic models to 

calculate motion atone or more joints. To define a joint, a sensor must be placed both 

proximally and distal to the joint; each sensor will be represented by a coloured triad 

or animated skeletal icon as defined by the user. Data collection is triggered by 

activation of the capture icon within the software. During data collection gross 

movement of the sensors can be viewed in real-time. A number of different 
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parameters including Euler, projected and joint co-ordinate system angles can then be 

calculated according to the user specifications within the model. 

3.1.1.1 Joint Co-ordinate Systemfor the ankle joint complex 

The position of a point in space can be determined with any three fixed axes. Relative 

motion of two adjacent segments of a joint can be described using six independent 

variables (degrees of freedom) three for translation and three for rotation. There are 

several methods for determining the orientation between two body segments in three- 
dimensional space, each with inherent advantages and limitations which have been 

discussed in the literature (Nigg et al. 1999). One approach that is widely employed in 

the field of biomechanics to quantify relative segmental motion is the Joint 

Coordinate System (JCS). Grood and Suntay in 1983 originally described this method 

with specific application to the knee (Grood & Suntay 1983). Two segment-fixed 

axes and a floating axis are used to describe segmental motion. The first axis is 

embedded in the proximal segment and the second axis is embedded in the distal 

segment, the third axis is floating and is orthogonal to the first and second axis. More 

recently the JCS has been used as a method to describe three-dimensional movement 

at the ankle joint complex. The International Society for Biomechanics 

Standardisation and Terminology Committee has defined the terminology for 

describing the JCS for the AJC (Allard et al. 1995) (Figure 3-2), and this will be used 
for the purposes of this study. 
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S 

c A- Two motion capture units each connected with four sensors and one transmitter, four channel events 

unit on top of the motion capture units B- Transmitter units on height adjustable stand 
C- A Polhemus motion sensor close up 

Figure 3-1: Hardware components of the electromagnetic tracking system. 
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T= Tibia/fibular (proximal segment), C= Calcaneus (distal segment), XYZ (in white)= body 
fixed anatomical frame of the calcaneus, XYZ (in black)= body fixed anatomical frame for 
the tibia/fibula, EI axis = axis fixed to the proximal segment and coincides with the X-axis of 
the tibia/fibula frame, E3 axis axis fixed to the distal segment and coincides with the Z-axis 
of the calcaneal frame, E2 axis floating axis which is perpendicular to EI and E3 axis. 

Figure 3-2: Joint Coordinate System for the AJC (Taken and adaptedftom Allard 

et al 1995). 
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3.1.2. Application of electromagnetic tracking to study kinematics at the ankle 

joint complex. 

Sensor attachment andplacement 

In order to study motion at the AJC, two sensors are needed. A number of different 

methods and sites of sensor attachment can be chosen. Preliminary work was 

undertaken to establish a protocol for sensor attachment. The sites selected for sensor 

attachment were (1) proximal to the joint complex on the anterio-medial aspect of the 

tibia (at the midpoint between the tibial tubersosity and the medial malleolus) and (2) 

distal to the joint complex on the posterior aspect of the calcaneus (the central third) 

(Figure 3-3). These sites were chosen because of minimal sub-cutaneous tissue thus 

reducing errors associated with skin movement artefact during walking. The most 

convenient method of attachment was found to be using double-sided adhesive tape 

between the skin and the sensor with additional tape over the sensor to further 

minimise movement at the site. Elastic bandage placed around the thigh was used to 

retain cables, which were passed into a waistband Preliminary data collected using 

this method had good face validity compared with the findings of other workers using 

similar motion analysis systems (Comwall et al. 1999a; Cornwall et al. 1999b; 

Kobayashi et al. 1997). 

In order to be able to identify the temporal parameters of gait, foot switches were 
interfaced into a four-channel events detection unit, to place a mark in the collected 
data when loaded. Small thin flexible switches (Interlink Electronics, Santa Barbara, 

USA) were placed under the plantar heel and under the I st MPJ to allow identification 

of heel-strike, foot flat, heel lift and toe-off (Figure 3-4). As many diabetic patients 
have toes that are not weight bearing during stance phase the I" MPJ was chosen for 

identification of toe-off (Ctercteko et al. 198 1; Stokes et al. 1975). 
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Figure 3-3: Sensor placement for data collection. 

Figure 3-4: Location of footswitches 

A- Interlink pressure switch B- Location of footswitches, placed over heel and I" 

MPJ . 
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3.1.2.2. Description of in-shoe measurement 

The pressure measurement system used in this study was in-shoe; therefore, it was 

necessary to be able to measure kinematics at the AJC in shod condition for 

comparison. Previous studies have positioned sensors/markers from motion analysis 

systems on to the heel counter of footwear to determine motion at the rearfoot in shod 

conditions (Eng et al. 1994; Nawoczenski et al. 1995). Recent studies have compared 

external markers on shoes to bone markers, for measuring rearfoot motion 
(Reinschmidt et al. 1997b; Reinschmidt et al. 1997a) and conclude that markers on 

shoes are not a satisfactory method to estimate rearfoot motion. It has been suggested 

that markers tracked through windows cut into the shoe might provide a better 

representation of rearfoot motion (Lundberg 1996). Preliminary work was undertaken 

to try and develop a shoe, which would allow in-shoe motion analysis via a window in 

the heel counter without unduly affecting the heel counter stability. The final design 

comprised a standard shoe, which had a window cut out of the heel counter but with a 

Velcro fastening at the top, which could be tightened to maintain the stability of the 

shoe (Figure 3-5). Sets of standard shoes (male and female UK sizes from 3-12) were 

modified to allow in-shoe measurement. The Velcro fastening also allowed the shoe 

to be put on and removed without disturbing the EMT sensors or altering the alignment 

position. 

Figure 3-5: Footwear modification to allow in-shoe motion analysis 
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3.1.2.3. Description of experimental procedure 

The system used consisted of two transmitter units and two motion capture units each 
having four motion sensors, to allow measurements to be taken from both limbs 

simultaneously. A walkway (dimensions, width 2000mm, length 8000mm, ) was 

constructed at a height of 650mm to decrease the influence of metal pipes in the floor of 

the gait laboratory. The transmitter units were mounted on a stand made of Perspex, the 

height of the lower unit was 300mm above the walkway with a vertical separation 
distance of 248mm between the 2 transmitter units. The transmitter stand was placed 3 

metres from the start of the walkway, to allow subjects to initiate walking and reach 

normal walking speed before entering the electromagnetic field. Discrete markings on 

the walkway were used to allow the operator to restrict data capture to within the 

accurate operational field of the EMT system (±7500mm from the transmitter units) in 

accordance with the manufacturers recommendations and the literature. A schematic 

representation of the arrangement of the electromagnetic tracking system can be seen in 

Figure 3-6. 

3.1.2.4. Data acquisition and analysis 

The 6D RESEARCH software uses predefined kinematic models to calculate motion 

atone or more joints. To define a joint, a sensor must be placed both proximally and 
distally to the joint. A coloured triad or animated skeletal icon represents each senor 

as defined by the operator. A person has sensors applied and positioned at the sites 

previously described; prior to data collection the subject stands next to the transmitter 

unit in a pre-determined standardized position and the sensors are aligned to a zero 

position. Activation of the "bore-sight" (alignment) icon within the data collection 

screen aligns the sensors to zero. Data collection is triggered by activation of the 

64capture" icon within the data collection screen. During data collection, gross 

movement of the sensors can be viewed in real-time (Figure 3-7). A number of 
different parameters including Euler, projected, and joint co-ordinate system angles 

can then be calculated after data collection according to the user specifications within 

the model. The system uses a4 th order Butterworth filter with a low pass cut off 
frequency of 6Hz. 
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Figure 3-7a: Screen shot of 6D Research software during data collection. 

Example shows motion sensors on the tibia, calcaneus and navicular on both limbs. 

Figure 3-7 b: Screen shot from 6D Research software showing graphical display 

of joint motion post data collection. This example shows motion at the ankle joint 

complex in all 3 planes for the right limb, along with footswitch data. 
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3.1.3 Suitability of 6D RESEARCH system to study ankle joint complex motion 

Preliminary data collected using the method described in section 3.2.1 had good face 

validity compared with the findings of other workers using similar motion analysis 

systems (Kepple et al. 1990; Mosely et al. 1996; Reinschmidt et al. 1997a). However 

a number of key areas concerning the clinical application of EMT to study the AJC 

required further investigation. A number of studies were proposed with the aim to 

determine: 

" The effect that electromagnetic tracking has on gait characteristics 

" The optimum sampling rate 

" The optimum "bore-sight" (Alignment) procedure 

" The repeatability of electromagnetic tracking in a normal population 

3.1.3.1 The effect that electromagnetic tracking has on gait 

One potential disadvantage of EMT is that the subject is tethered to the motion 

capture unit via a series of cables from each sensor. It is possible that the presence of 

the electromagnetic sensors and associated devices necessary for data collection could 

affect the way that people walk. This issue had not been addressed in the literature. 

The measurement of temporal parameters of gait are outcome measures of overall gait 

performance that reflect the net result of all dynamic activity occurring during 

locomotion (Winchester et al. 1996). Perry (1991) stated that a subject's customary 

temporal distance factors arise from a mix of joint mobility, muscle strength, neural 

control and energy (Perry 1991). Assuming reliable testing equipment, changes in 

temporal distance factors can be reasonably attributed to changes in walking pattern. 

if a test subject is free from pathology it is justifiable to use temporal distance factors 

to indicate the effect that body attached instrumentation has on their characteristic 

walking pattern. 

In order to investigate if the presence of electromagnetic sensors and associated 

cabling had any influence on temporal and spatial parameters of gait a small study 

was performed on ten subjects who met the following inclusion / exclusion criteria: 
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pain free motion at the AJC, no past history of traurna to the lower limb and no past or 

current history oforganic disease likely to aft'ect loot posture or gait. 

The study used a telemetry footswitch system to record temporal distance measures of 

gait (MIX MIE, Medical Research Ltd, Leeds. West Yorkshire, UK). The foot 

switches were placed Linder the heel and I" MR1 of both feet, and connected via a data 

cable into a pack on a waistband. Speed information was collected using a passive 

infrared measurement (11110 system. an established method for measuring walking 

speed. The system used for this study was a modified version of that described by 

Hendry and associates (Ilendry et al. 1990). Two thermal infrared detectors (used in 

security alarm systems) were placed on an 8000rnm walkway at a height of 1000111111. 

Opaque masking tape was applied to the front window of each alarm terminal, to 

narrow the beam of the thermal infi-a-red detectors to lem. The distance between the 

two detectors was 6000nim. Both detectors were connected to an electronic 

stopwatch via the alarm terminals. The stopwatch was triggered when the first 

detector was activated and stopped \flicn the second detector was activated. A 

diagram of the experimental set LIP can be seen in Figure 3-8. Data collection was 

performed during a one-week period "Ith restricted access to the calibrated area so as 

to ensure the detectors were not moved. flowever, prior to any data collection tile 

infrared detectors were checked to ensure that the point at which they triggered was 
6000nim apart. 

PIR I STOPWATCH PIR 
2 

6000inin 

Figure 3-8: Passive infra-red detector placement used during data collection. 
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In an attempt to reduce the effect that fatigue would have on the measurements the 

subjects were divided into two groups. In the first group there was a progressive build 

up of switches and cabling. The subjects in the first group were asked to walk at their 

normal walking speed down the 8000mm. walkway, three times barefoot and three 

times in a standard pair of shoes. Recordings were taken from the stopwatch for each 

pass. The footswitches were then applied and three trials were recorded barefoot and 

shod. When the first infrared detector was triggered, data were collected from the 

foot switches for five seconds at a sampling rate of 6011z (enough time to allow the 

subject to pass between the two PIR sensors). The time taken to pass between the PIR 

was recorded, this would then be used when analysing the foot switch data. Sensors 

from the 6D-Research system were then applied to both limbs, in accordance with the 

protocol outlined previously; however, data recorded from the sensors were not 

analysed. Three trials were recorded barefoot and shod as outlined in the previous 

trial. In the second group all the switches and cables were applied initially and the 

subjects were instructed to walk at their normal walking speed down the walkway. 

The switches and cables were then systematically removed during the subsequent 

trials and the timing data were recorded. Data from the foot switches were 

downloaded into Myo-dat software (MIE, Medical Research Ltd, Leeds) on a host 

PC. Timings for walking speed (metres per second), double limb and single limb 

support times were calculated for each trial (% of stance phase). 

Results and discussion 

The mean age, height and body mass for the 10 subjects were 30.7 years (SD 7.92), 

166.9cm (SD 6.18), 67.4 Kg (SD 11.24) respectively. A number of temporal factors 

were calculated from the data collected, including walking speed, double and single 

limb support times. No significant difference in any of these measurements were 

found when compared using a balanced ANOVA between the experimental states. 

Footswitch data were lost for one subject and it was not possible to repeat the testing 

session. All data are presented; where data were lost data for only 9 subjects are 

presented. Table 3-1 and Table 3-2 show the mean walking speed and percentage 

spent in double limb support respectively. 
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Table 3-1: Mean walking speed (m see-') for 3 trials in ten subjects, together 

with mean and standard deviation for the group. 

Barefoot Shod 

Subject FS + FS+ 
None FS None FS 

Cables Cables 

1 1.25 1.19 1.15 1.41 1.33 1.26 

2 1.56 1.51 1.44 1.43 1.57 1.51 

3 1.21 1.30 1.23 1.37 1.34 1.42 

4 1.35 1.26 1.15 1.36 1.37 1.26 

5 1.10 1.27 1.29 1.30 1.37 1.36 

6 1.12 1.18 1.20 1.32 1.27 1.18 

7 1.41 1.49 1.39 1.51 1.40 1.40 

8 1.29 1.35 1.35 1.433 1.74 1.67 

9 1.26 1.39 1.48 1.37 1.53 1.39 

10 1.42 1.35 1.30 1.42 1.44 1.35 

MEAN 1.30 1.35 1.32 1.39 1.44 1.38 

SD 0.14 0.10 0.11 0.06 0.14 0.14 

Table 3-2: Mean percentage of time ('YO of stance phase) spent in double linib 

support for 9 subjects, together with mean and standard deviation for the group. 

Barefoot Shod 
Subject 

FS FS + Cables FS FS + Cables 

1 17.3 16.3 2 2.22 2- 1.7 
2 2 1.6 20.8 23.8 22.1 
3 10.6 23.1 21.1 24.9 
4 17.8 18.6 27.7 26.3 

5 14.0 20.8 25.5 27.7 

6 11.4 23.2 21.6 22.5 

7 20.7 17.9 29.8 22.4 
8 231.1 21.8 25.8 24.7 

9 17.4 16.8 21.5 21.4 

MEAN 19.3 19.9 24.3 2-1.1 

SD 2.13 3.07 2.61 -1.09 
None- no foot switches. FS- foot switches attached. FS 4 cab- foot switches ý111(1 lll()tio,, scllsoI-s froll, 

the 6D RE, SEARCI I system attached. 
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The application of electromagnetic sensors did not significantly alter the gait pattern 

of normal adults. The temporal distance measures found in this study are similar to 

those reported in studies of larger populations (Winchester et al 1996). 

3.1.3.2 The optimum sampling rate 

Winter and Wells (1978) have stated that a sampling rate of 25Hz is adequate when 

performing motion analysis at normal walking speed (Winter et al. 1978). However, 

previous studies for the AJC, have sampled at rates between 50-10OHz, depending on 

which system has been used. Despite an extensive literature search in this area no 

material was found to substantiate a specific sampling rate for the AM The 6D 

Research motion analysis system has four sampling rate outputs of, 30,40,60 and 
120Hz, depending on how many sensors are being used. The sampling rate is 120Hz 

when using one sensor, 60Hz when using two sensors, 40Hz for three sensors and 
30Hz when all four sensors are been used. A study was designed with the aim of 
determining the lowest accurate sampling rate for the ankle joint complex with the 

6D-Research system. A lower sampling rate would allow more sensors to be used 

thus more joints to be evaluated. 

In this study the 6D Research motion analysis system was set up so it would record 

positional data from the AJC, at the three different sampling rates 30,40 and 6011z. 

Sensors from the 6D-research system were placed on the tibia and the calcaneus of the 

right limb in accordance with the protocol previously outlined (section 3.2.1). The 

zero alignment position was taken in the relaxed calcaneal stance position. Flexible 

foot switches were placed under the heel and the I stMPJ. These were connected to an 

events channel, which was connected to the PC. Whenever the foot switches were 

activated during data collection, a mark was placed in the 6D-Research data. This 

enabled accurate identification of the key events of stance, heel strike, foot flat, heel 

lift and toe off. Fifteen subjects were included in the study meeting the inclusion / 

exclusion detailed previously (section 3.1.3.1). Each subject was given a period of 

acclimatization whilst connected to the system, prior to data collection. 

Five walking trials were recorded at each of the sampling rates; the data were digitally 

filtered with a 4th Order Butterworth filter with a low pass cut off frequency of 6Hz to 
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eliminate noise. Joint coordinate system calculations were performed for motion at 

the AJC. Three-dimensional positional data were recorded at heel strike, foot flat, 

heel lift and toe off, for each sampling rate. The data were exported in an ASCII 

(American Standard Code for Information Interchange) format and imported into 

Excel and then Mintab for statistical analysis. 

Tables 3-3,3-4 and 3-5 show the absolute angular position of the AJC at heel strike, 
foot-flat, heel lift and toe off in the sagittal, frontal and transverse planes respectively. 
A balanced analysis of variance (ANOVA) showed there was no significant difference 

between the 3 different sampling rates at each event of stance in all three planes of 

motion, with the exception of heel strike in the sagittal plane. Due to equipment 
limitations it was not possible to perform simultaneous measurements at the AJC in 

all three sampling rate options. As a consequence differences in bore-sight positions 
between trials and natural variation of walking pattern would influence the absolute 

angular positions at key events during the stance phase. The motion time curves 

generated from each of the three sampling rate outputs appeared similar. No 

significant difference in the total range of movement in all three planes of motion was 
found between the three sampling rates. In conclusion the results of this study show 

that motion at the AJC can be accurately measured at the lower sampling rate of 
30Hz, which means that the additional sensors can be used in order to study motion at 

other joint complexes (for example the Ist MPJ) and gain more information about 

overall dynamic foot biomechanics. 
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3.1.3.3. The optimum "bore-sight " (Alignment) procedure 

For any 3D-motion analysis system the markers or sensors must be placed at pre- 
determined sites and a zero reference position determined prior to data capture. The 

zero starting position needs to be standardised for each sub ect and be reproducible. 
Many studies claim to position the AJC in a "subtalar joint neutral position" (as 

defined by Root et al 197 1), despite a wealth of literature to show poor inter and intra- 

tester reliability of determining this position (Elveru et al. 1988b; Freeman 1990; 

Menz; 1995; Sell et al. 1994). 

Firstly the principle of using the subtalar joint neutral position was explored and a 

study to investigate the reliability of determining the subtalar joint neutral position 
(STJNP) using palpation of the talar head was undertaken. In order to try and 
improve the reliability of determining the STJNP an alignment jig was developed to 

try and ensure a standardised starting position in the sagittal and transverse plane. 

The jig method for determining STJNP would be compared to the traditional method 

using talar head palpation. 

The alignment jig was constructed out of Perspex, comprising of two rotating 
footplates connected to two vertical lower leg splints (Figure 3-9). Each footplate had 

a protractor dial on the front to allow alignment in the frontal plane. A central line 

was etched onto the footplate, running from the front edge into a heel cup situated at 

the back of the plate. This would enable aligm-nent of the midline of the foot, in the 

transverse plane. Each splint had Velcro fastenings in order to secure the lower leg 

into the splint, this would ensure the lower leg was vertical and the ankle joint at 90'. 

Three examiners and 5 subjects were used in the study in order to establish the 

reliability within and between examiners, using both methods. In this study each 

subject had a sensor placed on the tibia and calcaneus of the right limb and data were 

recorded at 60Hz. The zero-position reference point was determined once per 

measurement session, when the subject was in a relaxed calcaneal stance position 
(standing in a relaxed position, normal base of gait). Any measurement taken was 

relative to this position and it remained the same for each examiner. Each examiner 

placed the right limb in to the STJNP and data were collected for 5 seconds, this 

procedure was repeated 5 times for each examiner. 
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The subject was then positioned in the jig device, each examiner positioned and 

secured the foot into the jig and the footplate then was maximally inverted. The 

examiner then positioned the foot into the STJNP and data were recorded for 5 

seconds. The subject's foot was then removed from the jig and the procedure was 

repeated until each examiner had taken 5 measurements for each subject. The 

protractor dial on the front of the jig was blanked out during the study and the order in 

which subjects were measured was randomized. A subsequent testing session was 

performed one week later. 

Figure 3-9: The alignment jig device 

The mean position of the AJC during the five seconds was calculated, in all three- 
body planes for each test situation. The standard deviations were studied as a measure 

of internal consistency for determining the neutral position. (See Table 3-6). 1)- A 

balanced ANOVA showed there was a significant difference between the two 

different methods. 2)- The results showed that the standard deviation decreased for 

the second testing session with both methods, suggesting that experience decreases 

variability. Wide inter and intra tester variability was found in this study with both 

methods. The maximum range of measurements in the sagittal plane was 11.91 ' and 

this was using the free-standing method. The maximum range of measures in the 

frontal plane was 15.05' using the jig method (in view of the fact that the reported 
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average range of movement at the AJC in the frontal plane is approximately 30* this 

margin of error is unacceptable) (Root et al. 1977). In the transverse plane the range 

was 23.1 P using the free-standing method. This study has shown that despite 

attempting to improve the reliability of determining the STJNP with the jig, it is 

susceptible to such a large margin of error (in some cases the range equated to 50% of 
the average total range of motion at the joint) it would not be acceptable to be used as 
the alignment reference position. 

In light of the above findings an alternative method for alignment had to be 

established. The jig device offered the ideal opportunity to position the foot in a 

standardized position in all three planes of motion. A study was undertaken, to find 

the intra tester reliability of determining a pre-set position using the jig. A protocol 

was developed for positioning of the lower limb in the jig. The zero position was 

taken with the ankle at 90' in the sagittal plane, the mid-line of the 2"d toe aligned 

against the central line on the footplate and the rotating footplate set to zero degrees. 

One examiner positioned the foot in the starting position using the jig and recorded 
five repeated measurements on three subjects. The procedure was then repeated on 

one other occasion at least one day apart 

The results are shown in Table 3-7, the total range of measures in each plane is lower 

than either of the two previously described methods. The method was quick and easy 
to perform and was deemed the most suitable method to be used in the study. 
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3.1.3.4 The Repeatability of electromagnetic tracking at the ankle joint complex in a 

normal population 

Quantitative methods for analysing gait, for example computer aided motion analysis 

and dynamic electromyography, are recognised to be valuable diagnostic and outcome 

measurement tools, but are not widely used in clinical practice. It has been stated that 

one reason for low utilisation is that the reliability of these measurements in terms of 

repeatability has not sufficiently been established (Vaughan et al. 1996). There is a 

wealth of normative data on various gait parameters, based on data taken from one 

testing session. It is not Possible to say if the results from a single measurement session 

are representative of normal gait and if the data are consistent trial to trial and day to 

day. There have been very few published studies on the repeatability of kinematic 

variables, all of which have used camera-based systems. There has not been a 

repeatability study for kinematic data, gained from electromagnetic tracking for the 

AJC. 

A study was performed to establish the repeatability of AJC motion parameters 
derived from the 6D-Research motion analysis system. In order to establish intra and 
inter examiner repeatability within and between days, two examiners were used and 

measurements taken over two sessions. Both examiners were experienced with the 

6D-Research motion analysis system and the protocol for use. Five subjects and two 

examiners were included in the study. The first examiner placed sensors on the tibia 

and calcaneum, and foot switches were placed under the heel and I't MPJ on the right 
limb in accordance with the protocol discussed in detail previously (Section 3.2.1). 

The zero reference point was taken, in the relaxed calcaneal stance position, three 

walking trials were recorded and all the cabling was removed. The examiner then 

applied the 6D-Research sensors and foot switches again, in accordance with the 

protocol and the zero point was re-established. Three walking trials were recorded 

and all the cabling removed. This procedure was repeated, until five sets of walking 

trials had been recorded. The second examiner performed the whole procedure. A 

subsequent testing session was performed one week later. 

Joint co-ordinate system angles were calculated for the right AJC and motion time 

curves were generated using the 6D-RESEARCH software. The motion time curves 
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were normalised to 100 % of the stance phase using Datapac software (RUN 

Technologies, CA, USA). Statistical measures of similarity of waveform. were 

quantified for repeatability within and between test days for each examiner. The 

similarity between waveforms was determined using the adjusted coefficient of 

multiple correlation, a technique previously described by Kadaba et al 1989 

(Appendix 1). If the waveforms are similar the Ra tends to 1, if the waveforms are 

dissimilar the Ra tends to zero 

The adjusted coefficient of multiple correlation (CMC) data in each plane of 

movement for each subject and examiner is presented in Tables 3-8 to 3-11. The 

author is presented as examiner one. Data from subject 5 examiner 2 on the second 

measurement session was lost and it was not possible to repeat the testing session. All 

the data are presented, where data was lost, the CMC values will only be presented for 

four subjects. 

Table 3-8: Coefficient of multiple correlation for both examiners repeated over 

two measurement session in the sagittal, frontal and transverse plane. 

Examiner I Examiner 2 

Subject 
Sagittal Frontal Transverse Sagittal Frontal Transverse 

Day 
Day2 

Day 
Day2 

Day 
Day2 

I Day 
Day2 

Day 
Day2 

Day 
Day2 

111111 

1 

2 

3 

4 

5 

0.976 0.984 0.972 0.957 0.488 0.764 

0.946 0.913 0.898 0.697 0.97 0.858 

0.956 0.955 0.895 0.935 0.882 0.809 

0.821 0.903 0.916 0.873 0.896 0.867 

0.933 0.953 0.896 0.883 0.874 0.883 

0.838 0.937 0.416 0.709 0.508 0.728 

0.975 0.973 0.77 0.957 0.692 0.908 

0.952 0.967 0.952 0.941 0.665 0.786 

0.816 0.944 0.742 0.891 0.604 0.91 

0.928 0.939 0.879 

Mean 0.926 0.942 0.915 0.869 0.822 0.836 0.902 0.955 0.764 0.875 0.670 0.833 

SD 0.061 0.033 0.033 0.102 0.191 0.049 0.071 0.017 0.217 0.114 0.137 0.091 
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Table 3-9: Inter-examiner coefficient of multiple correlation over two 

measurement sessions in the sagittal, frontal and transverse plane. 

Day 1 Day 2 
Subject 

Sagittal Frontal Transverse Sagittal Frontal Transverse 

1 0.907 0.59 0.374 0.945 0.84 0.8 

2 0.939 0.733 0.797 0.933 0.816 0.9 

3 0.952 0.919 0.79 0.951 0.941 0.798 

4 0.836 0.809 0.707 0.918 0.89 0.916 

5 0.928 0.914 0.883 - - - 

Mean 0.912 0.793 0.710 0.937 0.872 0.854 

SD 0.046 0.137 0.198 0.015 0.056 0.063 

Table 3-10: Intra-examiner coefficient of multiple correlation repeated over two 

measurement sessions in the sagittal, frontal and transverse plane. 

Examiner I Examiner 2 
Subject 

Sagittal Frontal Transverse Sagittal Frontal Transverse 

1 0.872 0.831 0.342 0.904 0.61 0.465 

2 0.926 0.767 0.911 0.97 0.82 0.78 

3 0.956 0.876 0.742 0.958 0.929 0.702 

4 0.86 0.891 0.838 0.864 0.811 0.779 

5 0.93 0.886 0.872 

Mean 0.909 0.850 0.741 0.924 0.7925 0.6815 

SD 0.041 0.052 0.232 0.049 0.133 0.149 
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Table 3-11: The between day inter-examiner coefficient of multiple correlation 
in the sagittal, frontal and transverse plane. 

Subject Sagittal Frontal Transverse 

1 0.858 - - 

2 0.864 0.566 0.692 

3 0.894 0.807 0.399 

4 0.721 0.679 0.596 

Mean 0.834 0.684 0.562 

SD 0.077 0.121 0.149 

Due to timing constraints the bore-sight (alignment) position used in the repeatability 

study was the relaxed calcaneal stance position. It was noted that differences in the 

bore-sight position would introduce a constant offset to the joint motion time curves. In 

other words the motion time curves are shifted up or down by a constant amount while 

the shape of the curve remains unchanged (similar changes have been noted with the 

reapplication of markers (Kadaba et al. 1989). In an attempt to eliminate the effect of a 

constant offset introduced by the measuring technique, Kadaba and associates 

calculated a relative CMC by removing the mean value of the waveforms for the 

particular day from each motion time curve. For this study the relative CMC were 

calculated by normalizing the initial contact position in all three planes to zero for all 

motion time curves. The relative CMC data are presented in Table 3-12 to 3-1 S. 
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Table 3-12: Relative Intra-examiner coefficient of multiple correlation repeated 

over two measurement sessions in the sagittal, frontal and transverse plane. 

Subject Sagittal 

Day Day 

12 

Examiner 1 

Frontal 

Day Day 

12 

Transverse 

Day Day 

12 

Sagittal 

Day Day 

12 

Examiner 2 

Frontal 

Day Day 

12 

Transverse 

Day Day 

12 

1 0.98 0.99 0.98 0.97 0.71 0.91 0.98 0.99 0.96 0.97 0.81 0.90 

2 0.94 0.97 0.91 0.70 0.98 0.93 0.98 0.98 0.94 0.96 0.95 0.93 

3 0.99 0.96 0.83 0.89 0.83 0.71 0.98 0.97 0.95 0.95 0.24 0.83 

4 0.97 0.96 0.96 0.82 0.85 0.87 0.95 0.99 0.88 0.98 0.71 0.95 

5 0.94 0.97 0.91 0.89 0.77 0.91 0.96 0.97 0.96 

Mean 0.96 0.97 0.92 0.86 0.83 0.87 0.97 0.98 0.94 0.97 0.73 0.90 

SD 0.02 0.01 0.06 0.10 0.10 0.09 0.02 0.01 0.04 0.01 0.30 0.05 

Table 3-13: Relative Inter-examiner coefficient of multiple correlation repeated 

over two measurement sessions in the sagittal, frontal and transverse plane. 

Subject 
Sagittal 

Day 1 

Frontal Transverse Sagittal 

Day 2 

Frontal Transverse 

1 0.968 0.966 0.768 0.984 0.971 0.47 

2 0.924 0.79 0.936 0.953 0.827 0.87 

3 0.979 0.901 0.846 0.948 0.911 0.809 

4 0.957 0.883 0.789 0.968 0.804 0.892 

5 0.947 0.904 0.863 

Mean 0.955 0.889 0.840 0.963 0.878 0.760 

SD 0.021 0.064 0.066 0.016 0.077 0.197 
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Table 3-14: Relative Intra-examiner coefficient of multiple correlation between 

two measurement sessions in the sagittal, frontal and transverse plane. 

Subject 
Sagittal 

Examiner 1 

Frontal Transverse Sagittal 

Examiner 2 

Frontal Transverse 

1 0.98 0.966 0.766 0.981 0.97 0.824 

2 0.938 0.789 0.937 0.976 0.945 0.924 

3 0.972 0.872 0.776 0.971 0.934 0.534 

4 0.958 0.79 0.873 0.972 0.88 0.843 

5 0.938 0.87 0.841 

Mean 0.957 0.857 0.839 0.975 0.93225 0.78125 

SD 0.019 0.073 0.071 0.005 0.038 0.170 

Table 3-15: Relative Inter- examiner coefficient of multiple correlation repeated 

over two measurement sessions in the sagittal, frontal and transverse plane. 

Subject Sagittal Frontal Transverse 

1 0.951 0.952 0.665 

2 0.869 0.705 0.867 

3 0.919 0.825 

4 0.92 0.655 0.744 

Mean 0.915 0.784 0.759 

SD 0.034 0.133 0.102 
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Findings from Winter and Kadaba suggest that repeatability was better within the 

same test day than between test days (Winter 1984), (Kadaba et al. 1989). The 

current study confirmed this finding; the CMC for examiner I within day was (0.926, 

0.915 and 0.822) and between days had decreased to (0.909,0.850 and 0.741) in the 

sagittal, frontal and transverse planes respectively. The intra-examiner repeatability 
(examiner 1) was better than the inter-examiner repeatability as demonstrated by 

higher CMC values in all three planes for day I (Intra - 0.926,0.915,0.822 and inter - 
0.912,0.793,0.710 in the sagittal, frontal and transverse planes respectively). In this 

study sagittal plane motion exhibited the highest repeatability, followed by the frontal 

and then the transverse plane. This finding is in agreement with Kadaba et al 1989 

and Cornwall & McPoil (Cornwall et al. 1999b). Within day, Kadaba reported CMC 

value of 0.975 in the sagittal plane and 0.933 in the frontal plane. Between days 

CMC were 0.968 and 0.881 in the sagittal and frontal planes respectively. The within 
day CMC values reported by Kadaba were slightly higher than in the present study, 
however, in the present study within day includes the effect of the re-application of 

markers and a new bore-sight position (the sensors were re-applied and aligned on 
five occasions) where as in the study by Kadaba, only one set of measurements were 
taken within day so the markers were not re-applied. The reported between day CMC 

values by Kadaba were also slightly higher, this may be due to an increased number 

of repeated trials in the present study. Cornwall & McPoil reported CMC based on 5 

repeated trials on 153 subjects, within day with one examiner using electromagnetic 
tracking. The CMC values were 0.946,0.846 and 0.846 in the sagittal, frontal and 
transverse plane respectively, which are comparable to the findings for each examiner 

within day in the present study. 

The intra-subject repeatability of joint angle motion is influenced by the inherent 

physiological variability as well as those introduced by the measurement technique 
(Kadaba et al. 1989). In this study care was taken to minimise changes in the position 

of the sensors, however, the alignment position was taken in the relaxed calcaneal 

position, which could be subject to variation. In order to minimise the effect that the 
bore-sight position, a relative CMC was calculated and in most cases this resulted in 

an improvement of the CMC value. The improvement in CMC value demonstrates 
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that the motion time curves are strongly influenced by bore-sight position and all 

attempts should be made to standardise this position. 

It was anticipated that most differences in joint motion repeatability data would be 

due to the technique and for this reason it was appropriate to test non-diabetics only. 
The development of methods work was performed on a distant site with no ready 

access to diabetic patients and the experimental procedure (60 barefoot walking 

trials) was deemed to not be suitable for diabetic patients who had feet at high risk of 
developing ulceration. Repeatability work (using the same technique) in other patient 

groups (those with rheumatoid arthritis) showed no significant differences in CMC 

data to an age matched control group (Woodburn 2000) and there was no formal 

hypotheis to suggest that diabetic patients would be any different. The CMC data for 

the first ten diabetic patients recruited into each group in the main study was 

calculated. These data, are not reported in the main body of the thesis as it was not a 

pre-determined part of the experimental procedure but can be found in Appendix 2. 

The CMC calculates the level of agreement between waveforms; however, it does not 

allow comparison of discrete time points. It could also be valid to look at the 

coefficient of variation for discrete time points during the stance phase. The main 

study would compare groups of diabetics against non-diabetic controls. The CMC 

does not provide any information about minimally detectable differences between 

groups. For the first ten patients recruited into each study group the mean range and 

standard deviation across the whole stance phase was calculated for each plane of 

motion (Appendix 3). These data would inform the decision as to what would be 

determined as a minimally detectable difference. 
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3.2 Plantar pressure measurement 

This section describes the in-shoe pressure measurement system. The measurement of 

plantar pressure within shoe is a well-established technique. A brief review of the 
literature will be presented alongside methodsfor calibration and data collection 

3.2.1 Background and rationale 

Over the past two decades developments in technology have facilitated the growth of 

commercially available plantar pressure systems, which are able to measure pressure 

within the confines of the shoe. In-shoe plantar pressure measurement has relevance 
for both the clinician and the researcher and is of particular relevance to the patient 

with diabetes, were barefoot walking should be kept to a minimum. It can be used as 

a diagnostic tool and has the potential to evaluate therapeutic aspects of patient care 
(Schaff 1993). 

Earlier systems used to measure pressure within the shoe were classified as discrete 

devices. Individual sensors were placed at various key predefined anatomical 
locations. One major limitation is migration of the sensors during measurement due 

to shear forces between the foot / shoe interface. It has also been noted that placement 

of sensors under the foot may be unreliable (Laing 1999) and may act as a foreign 

body and alter the pressures (Cavanagh et al. 1992b). 

More recently pressure mat systems have been developed which allow the 

measurement of pressure over the entire plantar surface of the foot. These systems are 

often referred to as matrix devices and consist of a large number of pressure sensing 

elements arranged in a grid. The PEDAR in-shoe system (PEDAR, Novel GmbII, 

Munich, Germany) utilises a sensor matrix in the form of a thin flexible insole. Each 

insole is approximately 2.7mm thick and consists of a matrix of 99 capacitive sensors 
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with an average sensor size of 25mm2. Each insole is connected to an A/D conversion 

electronics unit, which is fixed to the subject's waist via a belt. The electronics unit is 

connected to a personal computer via an 8-metre cable. 

The type of force sensor in the PEDAR system is based on the capacitance 

measurement principle. This principle is based on measurement of a change in 

capacitance that occurs when the distance between two conducting wires that are 

separated by an insulating wire is varied (Finch 1999). Increased pressure will 
decrease the amount of separation between the two conducting wires, which increases 

the capacitance. The electrical resistance is directly recorded and transformed into 

measurements of force and pressure. 

Although the PEDAR system has advantages over discrete pressure sensors there are 

some inherent disadvantages. The PEDAR insole may alter the coefficient of friction 

at the shoe / foot interface due to the covering surface of the insole (Cavanagh et al. 
1992b). The weight of the data collection pack and the thickness of the insole could 

potentially alter the subject's gait. Also the sensors within the insole are more 

susceptible to damage due to excessive repetitive loading in the same region and 
bending and stretching as they are placed in and taken out of the shoe or placed over 

an insole. The reliability of the sensors can be affected by changes in temperature and 
humidity associated with the in-shoe environment. 

The reliability and validity of the PEDAR system under static and dynamic loading 

conditions has been reported (McPoiI et al. 1995). For dynamic testing the intraclass 

correlation coefficients were found to exceed 0.95 with the exception of between 

session reliability, which was 0.84. The average error reported during application of a 

series of pressures was 16% and 0.8% at 50 and 50OKPa respectively. Performance 

of the insole under continual pressure loading of 150Kpa was found to be 3.4% or less 

and the pattern of creep was linear. The authors concluded that the PEDAR insole 

had a linear response to applied loads with minimum error especially at high pressures 
(McPoiI et al. 1995). 

3.2.2 Calibration of Pedar system 
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Calibration of the PEDAR insoles was performed in the calibration unit supplied by the 

manufacturer prior to initial data collection and at 3 month intervals during the study. 
Calibration was performed as per the manufacturer's recommendations; this procedure 
involves inserting each pair of insoles into the calibration chamber and loading to 
discrete pressure levels from 0-600kPa. A calibration curve is generated and stored for 

each insole. 

3.2.3 Description of in-shoe pressure accquisiation system 

Standard test shoes previously described were used for each patient. The Velcro 

opening at the rear of the shoe allowed the insoles to be fitted into the shoe with 

minimal bending of the insole. Cables from the insoles were secured around the ankle 

and mid-thigh with Velcro straps, the systems electronic unit was placed on the back of 

a securely fitted waist belt (Figure 3-10). Patients were allowed to acclimatise to 

wearing the PEDAR system for a short period prior to data collection. 

3.2.4 Data acquisition and analysis 

During data collection subjects were instructed to walk at their normal walking speed 

across the walkway (previously described in section 3.2.3). Normal walking velocity 

was reached before any data were collected, a minimum of 5 left and right steps were 

recorded for each subject. Each walking trial was coded and saved for further analysis. 

The pressure data were analysed using the PEDAR, NOVEL-WIN and NOVEL- 

ORTHO software. Five consecutive left and right steps from the middle section of the 

walking trial were selected and transformed into individual step files using Emed link 

software. Each step file was then used to create a single averaged left and right step for 

each subject. Ten areas were identified for specific analysis defined as medial and 
lateral heel, medial and lateral mid-foot, I" metatarsal head, 2"d metatarsal head, lateral 

forefoot (3-5 metatarsal heads), hallux, 2 nd toc, lateral toes (3-5 toes) , (Figure 3-11). 

A number of pressure parameters were calculated for each mask area, including peak 

pressure, mean pressure, and pressure time integral. Data were saved in an ASCII 

format for transfer into Microsoft Excel Tm and SPSS software. 
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Figure 3-10: A- Person set up with Pedar in-shoe pressure measurement system. 

B- Range of sizes of Pedar insoles. 
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Figure 3-11: Automasks used to identify regions of the foot for further analysis. 
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3.3 Generation of normative database 

In order to be able to answer the research questions outlined in section 2.7.1., a 

database of normative data had to be generated This section outlines the methods used 

to generate the normative database, including recruitment, screening, and data 

collection procedures and data management. 

The findings of the sampling rate study (showing that data could accurately be recorded 

at a sampling rate of 30Hz) allowed an additional two sensors to be used to study 

motion at another joint complex. As previously highlighted in the literature review, 

reduced motion at the ls' MPJ has been implicated with pathology and formation of 

ulceration. The database would include motion at the I't MPJ. 

The protocols for kinematic and plantar pressure measurement described above were 

used to establish a normative database for males and females aged 20-70, (n=100), in 

ten year age category groupings, based on the age groupings used by Oberg et al 
(1993), for the generation of reference data on a normal population. 

3.3.1 Procedures for data collection 

3.3.1.1 Inclusion / exclusion criteria 

The following inclusion criterion was established for the normative study group, (1) the 

ability to comply with all the requirements of data collection (able to walk barefoot and 

unaided). The following exclusions were applied to volunteers in the study (1) a 

confirmed diagnosis of diabetes or suspected diabetes currently under investigation (2) 

a current or history of musculoskeletal disease or any condition likely to affect lower 

limb structure and function as determined by the podiatrist, (3) a history of lower limb 

injury resulting in fracture, dislocation or any soft tissue injury at any time, (4) a history 

of lower limb surgery (5) known alcoholism, (6) blindness / significant visual 
impairment, (7) neurological deficit, (8) a history of vascular disease, vascular surgery, 
(9) cognitive impairment of the patient apparent by history or during explanation of 

consent procedure. 
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3.3.1.2 Recruitment 

Full ethical approval for the study was gained at the three clinical sites. Posters and 

email notification of the study were distributed through the University of Huddersfield 

and surrounding areas. Any interested participants were screened for exclusion criteria 

via telephone interview. Any participants who were deemed suitable for inclusion in 

the study were sent a study information sheet (see Appendix 4) and were invited to the 

University at a convenient time for data collection. 

Each participant was asked to sign a consent form prior to collection of any data (see 

Appendix 5). The following demographic data were recorded, age (years), height (cm. ) 

and body weight (kg), Sex (male/female), race (white, Afro-Caribbean, Asian etc). 
Each participant underwent a thorough foot examination and the presence and location 

of any abnormalities were recorded (foot deformity, callus, corns, verrucae, nail 

pathology etc). 

3.3.1.3 Screeningprocedures 

3.3.1.3.1 Clinical examination ofthefoot 

Patients underwent a screening process to establish vascular status; any subject with 

established peripheral vascular disease or a history of vascular surgery was excluded 
from the study. The diagnosis of peripheral vascular disease was based on the 

absence of foot pulses and / or symptoms of claudication or a history of vascular 

surgery. To be included in the study patients had to have palpable pulses, absence of 

rest pain, absence of intermittent claudication, no history of vascular disease or 

surgery, and not awaiting any vascular investigations. 

3.3.1.3.2 Monofilament testing 

In order to assess pressure perception, and exclude patients with neuropathy, three 

different sized monofilaments were used in this study, the 4.17,5.07 and 6.10 filaments 

that bend at 1,10 and 75 g of force respectively. The areas tested were the first, third 

and fifth plantar metatarsal heads and toes, the plantar aspect of the medial and lateral 

midfoot and heel. Testing was also performed on the dorsum of the foot between the 
first and second toes, the base of the third digit and the base of fifth metatarsal. The 

examiner demonstrated the monofilament sensation on one of the subject's arms. Areas 
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of callus, ulceration or scarring were avoided and when present the closest area to the 

lesion was tested. The subject was then instructed to close their eyes and to say yes each 

time they felt the application of the monofilament. The monofilaments, were applied 

perpendicular to the skin's surface, with sufficient force to cause the filament to buckle, 

and held for approximately I second. Care was taken to ensure that the filament did 

not slide across the skin or make repetitive contact. Five trials were taken at each site 

starting with the Ig monofilament, if the subject could not perceive this monofilament 

the lOg and then the 75g monofilament were used. The order in which the test areas 

were tested and the time between application of the monofilaments were varied in order 

to try and reduce the element of guess work by the subject. As an additional test the 

subject was occasionally asked where they had felt the last application of the 

monofilament. The lowest monofilament that the subject could perceive at each test 

area was recorded. Five sets of monofilaments were used in the study and care was 

taken to ensure each monofilament was rested between testing. For the normative 

group any person unable to detect the I Og monofilament was excluded. 

3.3.1.3.3 Vibration perception threshold 

Vibration sensation was tested using the Neurothesiometer (Horwell, Nottingham UK). 

The Neurothesiometer was sent to the manufacturers to be calibrated prior to data 

collection for the study. The examiner demonstrated the sensation of vibration on the 

subject's u1nar process. The unit displays the applied voltage, which ranges from 0-50 

volts. The Neurothesiometer was held with the tractor balanced vertically on the pulp 

of the great toe, the voltage was increased on the base unit until the patient could 

perceive the vibration. Three readings for each foot were recorded; the speed at which 

the voltage was altered was varied for each trial. 

3.3.1.3.4 Assessment ofjoint movement at the AJC and Is'MPJ. 

To be able to include measurement at the 1" MPJ, an expanded kinematic model was 

established to include 2 additional motion sensors. For this model motion sensors were 

placed on the tibia, calcaneus, first metatarsal and proximal phalanx of the hallux. The 

positions of the tibial and calcaneal sensor have previously been described (section 

3.2.1). The hallux. sensor was placed on the mediodorsal apect of the proximal phalanx, 

medial to the extensor hallucis longus tendon. The metatarsal sensor was placed on the 

mediodorsal aspect of the diaphysis avoiding the tendon of extensor hallucis longus and 
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abductor hallucis. Umberger and associates have described these sites for sensor 

placement for the measurement of sagittal plane motion at the first metatarsal 

phalangeal joint (Umberger et al 1999). In a study of reliability of skin placed 

electromagnetic tracking sensors they reported the reliability and validity to be high and 

stated that electromagnetic tracking could be confidently used for measurement of first 

metatarsal phalangeal joint kinematics. 

The kinematic set-up procedure and method of data acquisition previously described in 

sections 3.2.1 and 3.2.2 were performed and an outline of the overall procedure is 

shown (Figure 3-12). 'flie bore-sight position was taken using the jig method and the 

subject was placed into the pre-determined position previously described (section 

3.1.3.2). They were then carefully guided onto a low wooden examination couch 

positioned in front of the transmitter units. 

Passive ranges of motion at the subtalar joint and the I" MPJ were determined with the 

subject in a supine position with lower part of the leg overhanging the edge of the 

examination couch so as not to disturb the position of the calcaneus sensor. The subject 

was instructed to relax and to not try and help or resist as the examiner moved the 

joints. The examiner moved the AJC to the end ranges of frontal plane motion three 

times and maximally dorsiflexed the hallux three times for each limb. The subject was 

then carefully guided off the examination couch making sure the position of the sensors 
did not alter. Five walking trials were then collected for each limb; the hallux and 

metatarsal sensors were then removed and secured into the waistband to allow the foot 

to be placed in the shoe. Five shod walking trials were then recorded for each limb. 

The electromagnetic tracking sensors and foot switches were removed and the in-shoe 

pressure data was then recorded using the method previously described in section 3.2.4. 

3.3.2 Data management 

Each subject was coded and all the demographic, and clinical data were recorded and 

stored in a Microsoft Excel spread sheet. Calculations were perfonned within the 6D 

Research software on the static and dynamic walking trials to determine the motion at 

the AJC and 0 MPJ. For static range of motion the total frontal plane range of motion 
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Figure 3-12. Outline of procedure for data collection on non-diabetic control 

group 
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at the AJC and the maximum dorsiflexion at the I't MPJ were recorded. The total range 

of frontal plane motion at the AJC and maximum dorsiflexion at the I" MPJ were 

calculated during stance phase for each walking trial (data presented for each decade 

can be found in Appendix 6). Each walking trial was normalised to 100% of stance 

phase using Datapac software and an average motion time curve for left and right limbs 

was generated for each subject and for each age / sex grouping. The mean motion time 

curve for each patient was exported into Excel spreadsheet and SPSS for Windows TM 

for further analysis. 

For the pressure data, the middle five steps were analysed for each subject; these were 

averaged using specially designed software. Masks were created to examine pressure 

parameters in relation to the underlying anatomical structures. The mask areas selected 
for analysis were the same as used by Cavanagh and Ulbrecht (1994), (anatomical 

regional areas of interest, developed for the diabetic foot). The automask software 

program was used to ensure standardised positioning of the regional masks for each 

subject. Calculations were performed to determine the mean peak pressure, pressure 
time integral and contact area in each mask area for every individual and across the 

whole group. The data for each subject was exported into SPSS for Windows TM for 

further analysis. A table of mean pressure variables for the whole normative group can 
be found in Appendix 7. 

3.3.3 Statistical analyses 

The demographic details were prepared as mean (SD) for each of the four groups. For 

statistical analysis of differences between subject groups, a one-way Anova Tukey's 

HSD test for post-hoc multiple comparisons using a significance level of 0.05 was used. 
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3.4 Methods required for diabetic assessment 

In order to be able generate a diabetic study group, a screening procedure had to be 

developed to be able to assign participants in the study to control, neuropathic or 

ulcerated group. This section outlines the methods used to recruit participant into the 

study, outlines the neurological screening assessments and the criteria used to assign 

participants into the appropriate study group. 

3.4.1 Subject recruitment and inclusion / exclusion criteria 

Participants for the study were recruited through the diabetes centre at United Leeds 

Teaching Hospitals Trust, Huddersfield NHS Community Trust and the Department of 
Podiatry at the University of Huddersfield. Ethical approval for the study was gained at 

all three clinical sites. 

The following inclusion were established, (1) a confirmed diagnosis of diabetes, (2) the 

ability to comply with all the requirements of data collection (able to walk barefoot and 

unaided). The following exclusions were applied to participants in the study (1) a 

current or history of musculoskeletal disease or any condition likely to affect lower limb 

structure and ftinction as determined by the podiatrist, (2) a history of lower limb injury 

resulting in fracture, dislocation or any soft tissue injury, (3) any known cause other 

than diabetes which may cause neuropathy, (4) known alcoholism, (5) blindness / 

significant visual impairment, (6) a history of vascular disease, vascular surgery, (7) 

cognitive impairment of the patient apparent by history or during explanation of consent 

procedure. 

Those patients who satisfied the criteria and expressed a willingness to participate in the 

study were given a patient information sheet (see Appendix 4) and their contact details 

were recorded. The volunteers were later contacted to establish if they were willing to 
be included in the study and to arrange a mutually convenient appointment time for data 

collection. A consent form was then completed (Appendix 5), 
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3.4.2 Assessment of vascular status 

Patients underwent a screening process to establish vascular status; any person with 

established peripheral vascular disease or a history of vascular surgery was excluded 

from the study, because this specifically has been shown to influence the mechanism 

of plantar ulcer formation (Edmonds 1996). The diagnosis of peripheral vascular 
disease was based on the absence of foot pulses and / or symptoms of claudication or 

a history of vascular surgery. To be included in the study participants had to have 

palpable pulses, absence of rest pain, intermittent claudication, no history of vascular 

disease or surgery and not awaiting any investigations related to vascular disease. 

3.4.3 Demographic Data 

For all patients, age (years), sex (male / female), ethnic origin, duration of diabetes 

(years) and type of diabetic control (diet / tablets / insulin), smoking history and 

alcohol consumption were recorded. The patient's height (cm) and bodyweight (kg) 

were recorded. 

3.4.4 Screening procedure and assignment of clinical group 

An optimal screening test has been defined as simple and quick to perform and yields 

the same results when carried out by different observers and accurately measures or 

predicts a clinically important condition (high validity against an independent and 

clinically meaningful criterion reference standard) (Smieja et al. 1999). When 

screening patients with diabetes for risk of foot ulceration no testing procedure has yet 

been demonstrated to fulfill all of these criteria, therefore, a number of different testing 

procedures must be undertaken. 

3.4.4.1 . 4ssessment ofneurological status 

Neuropathic symptoms score were assessed using a modified version of the neuropathy 

symptom score (NSS) (Boulton 1998). Patients were questioned about the presence or 

absence of muscular cramps, numbness, tingling sensations, burning pain, aching pain, 

abnormal hot or cold sensations and irritation from bedclothes in the feet and lower 

legs. If the patient did not have a given symptom, then a score of zero was assigned, if 
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the patient reported a symptom then a score of I was given, and if the patient described 

nocturnal exacerbation a score of 2 was assigned. 

A modified version of the neuropathy disability score (NDS) was used to quantify 

severity of neuropathy obtained from a physical examination. The score comprises of 

measurement of clinical signs, including assessment of tendon reflexes, temperature, 

pain and vibration sensation. Pin-prick sensation using a sterile neurotip and vibration 

using a 128MHz tuning fork were tested at the apex of the left and right hallux. 

Temperature sensation was tested on the dorsurn of the foot using hot and cold metal 

rods. A score of I was given if the patient could not perceive the stimulus. Achilles 

tendon reflexes were examined with the patient seated, a score of 0 was given if the 

reflex was normal, a score of 1 assigned if the reflex was present with reinforcement, a 

score of 2 was given if the reflex was absent. The categorization of the presence of 

neuropathy using the NSS and NDS are summarized in Table 3-16. 

In addition to using the modified NSS and NDS to assess neurological status vibration 

perception and monofilament testing was also performed. Vibration perception was 
determined using the Neurothesiometer using the method described previously (section 

3.3.1.3.3). A description of the method and sites tested with the monofilament can be 

found in section 3.3.1.3.2. All the screening assessments were undertaken by the lead 

researcher in order to eliminate inter-tester variability. 

3.4.4.2 Examination ofthefoot 

A systematic examination of feet was performed by only one examiner to minimize the 

possibility of missing a specific defect. Only one foot was examined at a time (right 

foot first) whilst the patient was non-weight-bearing. The dorsum of the foot was 

examined first, examining the nails, dorsum and apices of toes and finally the inter- 

digital area. The plantar area of the foot was examined starting with the toes then the 

plantar metatarsal area and finally the heel and around the borders. The presence of any 
foot deformity was recorded using a six-point foot deformity score (Abbott et al. 2002). 

The presence of small muscle wasting (wasting of the small muscle in the foot 

sufficient to cause "troughing" between the tendons), hammer or claw toes, bony 

prominences, prominent metatarsal heads, charcot arthropathy and a positive prayer 

sign was noted. Each deformity scored I when present or 0 when absent on either foot. 
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Table 3-16 - Categorisation of the presence of neuropathy in patients using the 

modified versions of the neuropathic disability score and the neuropathic 

symptom score. Takenfrom (Young et aL 1993a). 

NSS (symptoms) 

Total maximum score of 9 

Score of less than 3 

Score of 3-4 

Score of 5-6 

Score of 7-9 

NDS (signs) 

Total maximum score of 10 

Non neuropathic 

Mild symptoms of neuropathy 

Moderate symptoms of neuropathy 

Severe symptoms of neuropathy 

Score of less than 3 Non- neuropathic 

Score of 3-5 - Evidence of mild neuropathy 

Score of 6-8 - Evidence of moderate neuropathy 

Score of 9 or 10 - Severe signs of neuropathy 

The minimal acceptable criteria for a diagnosis of peripheral neuropathy 

(1) Moderate signs with or without symptoms 

(2) Mild signs with moderate symptoms 
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A score of 3 or more was defined as indicative of significant foot deformities (Abbott et 

al. 2002). Only established skin lesions were recorded, no attempt was made to classify 

severity of lesions but differentiation between lesion types was made. Callus was 

defined as any diffuse areas of relatively thickened skin easily recognized by clinical 

examination. 

3.4.4.2.1 Active 1previous ulceration 

Patient's feet were examined and the presence of any active ulcer was noted. Patients 

were asked if they had any foot ulcer history and this was verified and documented 

from their medical records. An ulcer was defined as a full thickness skin defect that 

required more than 14 days to heal (Boyko, et al. 1999). 

3.4.5. Assessment of passive range of joint movement, dynamic joint movement 

and plantar foot pressures 

The measurement protocols outlined in sections 3.1.2.1 and 3.2.4 for recording joint 

movement data and plantar pressure measurement were used. Any active ulcers were 
debrided prior to data collection and Opsite Flexigrid (Smith and Nephew Ltd, Hull, 

UK) was applied over the ulcer (a thin flexible dressing, which would have minimal 

effect on plantar pressure). Care was taken to ensure wounds were completely covered 

and not discharging through the Opsite Flexigrid dressing. After data collection was 

completed, the ulcer was cleansed with warm sterile saline and re-dressed with an 

appropriate dressing and the Pedar insoles were thoroughly cleaned between patients. 
Any patients with plantar calluses had their callus debrided prior to data collection. 

3.4.6 Data management and statistical analysis 

Each patient was coded and all the demographic, and clinical data were recorded and 

stored in an Microsoft Excel spreadsheet. Calculations were performed within the 6D 

Research software on the passive range of motion and dynamic walking trials to 
determine the motion at the AJC and I" MPJ. For passive range of motion the total 
frontal plane range of motion at the AJC and the maximum dorsiflexion at the I't MPJ 

were recorded. The total range of frontal plane motion at the AJC and maximum 
dorsiflexion at the Ist MPJ were calculated during stance phase for each walking trial. 
Each walking trial was normalised to 100% of stance phase using Datapac software 
(RUN Technologies, CA, USA) and an average motion time curve left and right limb 
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was generated for each subject and for each clinical grouping. The demographic details 

were prepared as mean (SD) for each of the four groups. For statistical analysis of 
differences between subject groups, a one-way Anova Tukey's HSD test for post-hoc 

multiple comparisons using a significance level of 0.05 was used. 
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CHAPTER 4 

RESULTS 

The results relating to demographic details are presented as means (standard deviation) 

for each group. The data are outlined descriptively highlighting overall trends and 

clinically meaningful differences. Joint motion, gait data and plantar pressure data are 

presented separately and then the relationship between them examined. Inferential 

statistics are presented; in all cases data are presented with statistical significance at the 

5% level unless otherwise stated. 

4.1 Descriptive summary of clinical data 

4.1.1 Patient recruitment, assignment and participation flow 

A sample of convenience was recruited. A total of 110 diabetic patients attending clinics at 
Leeds General Infirmary, The Department of Podiatry at the University of Huddersfield 

and the Princess Royal Clinic Huddersfield, were identified as potential subjects for the 

study. One hundred and four patients were screened for inclusion in the study, of these a 

total of twenty-one patients were excluded from the study due to poor vascular status, or 
inability to walk barefoot (Figure 4-1). 

4.1.2 Patient demographics 

A total of 83 diabetic patients were recruited into the following groups, control (n=30), 

neuropathic (n--28) and ulcerated (n--25). The mean age for the three groups were similar, 
59.1(SDI2.7) years, 62.7(SD9.3) years and 58.1(SDIO. 8) years in the control, neuropathic 

and ulcerated groups respectively. A non diabetic reference group was selected from the 

non-native groups generated in the previous chapter, matched for age within decade. The 

mean age of the non diabetic reference group was 58.4 (SD9.2). 
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The disease duration was greater in the ulcerated and neuropathic groups compared to the 

diabetic control group, but the difference did not reach a level of statistical significance. 
One patient in the neuropathic group was Afro Caribbean origin, and one patient in the 

control group was Asian origin. The number of smokers in each group were similar, 8,6 

and 8 patients were smokers in the control, neuropathic and ulcerated groups respectively. 
The key patient demographics are presented in Table 4-1. The key difference between the 

groups is the higher proportion of males in the ulcerated group in comparison to the other 

groups. Attempts were made to try and balance the number of males and females within 

each group, however, during the data collection period the number of females attending the 

foot ulcer clinics were greatly reduced in comparison to the males. A statistically 

significant difference was found between body mass in the ulcerated group compared to all 

the other groups, the higher proportion of males in the ulcerated group could partly explain 

this. 
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Patient Recruitment Exclusion 1 
n=110 0 

6 
Unwilling to participate 

Patient Assessment 
1 

n=104 0 
13 Unable to mobilise barefoot 

Unable to mobilise unaided 
Co-morbidity 

Vascular Assessment 
1 

n=91 
0 

8 
History of vascular surgery 
Non-palpable pulses 
Intermittent Claudication 

Neurological AssessMent 
n=83 

No Neuropathy present Neuropathy present 
n=34 n=49 

\4 
Active / Previous 

Ulceration 

No Yes 
n=3,, 

^ 
n=4 

X/ 
Active / Previous 

Ulceration 

e No 
n- 2 

n=28 

Control Group Ulceration Group Neuropathic Group 
n=30 n=25 n=28 

Passive range ofjoint 
motion 

Gait analysis and plantar 
pressure measurement 

12 month follow up 
ulceration status 

Figure 4-1. Recruitment details and participant flow 
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Table 4-1: Demographic and clinical details for the non diabetic reference, diabetic 
control, neuropathic and ulcerated groups. Values are mean (SD) unless stated. 

Variable Non diabetic Control Neuropathic Ulcerated 

Reference (n=30) (n=28) (n=25) 

(n--25) 

Sex (F: M) 11: 14 11: 19 13: 15 5: 20 

Age (Years) 58.4(9.2) 59.1(12.7) 62.7(9.3) 58.1(10.8) 

Height (cm) 172.5(9.3) 169.0 (10.2) 171.4(11) 175.7(10) 

Weight (kg) 79.5(15.9) 77.7(14.3) 80.7(16.6) 91.7(14.4) 

Disease Duration (years) - 10.6(12.3) 12.7(13.6) 16(11.6) 

Method of control 
- 3: 19: 8 2: 14: 12 1: 9: 15 

(D: T: I) 

NSS - 2.47(2.76) 5.1(2.8) 4.6(2.7) 

INDS - 1.1(1.6) 5.6(2.2) 6.7(2.7) 

Neurothesiometer (Volts) 8.5(6.0) 10.2(6.9) 27.5(13.4) 35.4(14.3) 

% Unable to detect 10g 
MF (correct 0 0 71.4 84 
identification > 80%) 

Positive Prayer sign (n) - 22 24 21 

FDS 1.9(1) 1.3(0.9) 2.4(l. 1) 

(D: T: I), Diet: Tablets: Insulin, NSS, Neuropathic symptom score, NDS, Neuropathic 
disability score, MF, monofilament, FDS: Foot deformity score. 
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4.1.3 Location of ulceration 

In the ulcerated group, 13 patients had active ulceration and the remaining 12 had a 

previous history of plantar ulceration. Three of the patients had ulceration present on the 
dorsal toe areas. Previous ulcerations were reported by patients and were then verified by 

the patients medical records. The distribution of plantar ulcers in this group are presented 
in Table 4-2. 

Table 4-2: Number and location of plantar foot ulcers (active / previous) in the 

ulcerated group. 

Anatomical Site Active Ulceration Previous Ulceration 

ill mpi 

2 nd Mpj 1 

3-5 MPJ 2 4 

Plantar hallux 2 

Apex 2 nd Toe 

Apex 3-5 toes 

Lateral midfoot 

MPJ- metatarsophalangeal joint. 
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4.1.4 Location of callus 

In the control, neuropathic and ulcerated groups, 11,9 and 19 patients presented with callus 
formation. The most prevalent callus patterns are presented in Table 4-3. 

Table 4-3: Callus patterns in the control, neuropathic and ulcerated groups 

Site 
Control 
(n=30) 

Neuropathic 
(n=28) 

Ulcerated 
(n=25) 

1st MPJ 5 7 7 
2nd MPJ 1 
3rd MPJ 2 
4th MPJ 
5th MPJ 2 2 3 
1-2 MPJ 
2-3 MPJ 1 1 
3-4 MPJ 
4-5 MPJ 
2-4 MPJ 4 
1-3 MPJ 1 
1-5 MPJ 2 2 12 
1st IPJ 1 3 3 
Apex 2nd 2 1 
Apex 3rd 2 1 
5th Pltoe I 
Lateral midfoot I 
Medial heel 2 
Total 26 18 26 

MPJ, metatarsophalangeal joint, IPJ, interphalangeal joint. 
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Figure 4-2: Location of active and previous ulceration. 

Active or previous ulceration were recorded at ten different anatomical sites, however, 

three areas (the plantar hallux, plantar area of the I" MPJ, and lateral forefoot area) 

predominated. These three areas represented 75% of the ulceration sites recorded during 

the study. 
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4.1.5 Foot deformity score 

The mean foot deformity score was 1.87 (SD 0.8), 1.3 (SD 0.9) and 2.4 (SD 1.1) in the 

control, neuropathic and ulcerated groups respectively. A statistically significant difference 

was found between the ulcerated group and the neuropathic group P<0.05. 

4.1.6 Neurological data 

The mean neurological disability score (NDS) in the control group was 1.1 (SD 1.6) 

compared to 5.6 (SD 2.2) in the neuropathic group and 6.7 (SD 2.7) in the ulcerated group. 
The mean neuropathic symptom score (NSS) was 2.5 (SD 2.8), 5.1 (SD 3), and 4.6 (SD 

2.7) in the control, neuropathic and ulcerated groups respectively. The mean 
Neurothesiometer reading in the control group was 10.2 (SD 6.9), in the neuropathic group 

27.5 (SD 13.4), and 35.4 (SD 14.3) in the ulcerated group. The number of patients who 

exceeded a value of 25 volts in the neuropathic group was 16 and 17 in the ulcerated group. 

All the patients in the control group could detect the I Og monofilament (based on patients 

giving the correct response 80% of the time). In the neuropathic group 8 patients could 
detect the lOg monofilarnent and 4 patients could detect the lOg monofilament in the 

ulcerated group at all sites tested. 

In the identification of the 25 foot ulcer patients, the neurological screening used in this 

study was highly sensitive (88%) but less specific (52%) than the vibration perception 

threshold (sensitivity 68%, specificity 72%) and the monofilaments (84% sensitivity, 67% 

specificity, based on an 80% correct identification and 84% sensitivity and 60 % 

specificity, based on patients giving the correct response 100% of the time). When the 

neurological screening used in this study was combined with vibration perception or 

monofilament testing in order to identify the number of patients with ulceration the 

sensitivity increased (92% when combined with vibration perception and 100% when 

combined with monofilaments) but the specificity remained at 52%. Combining the 

monofilament testing with vibration perception in order to identify the ulcerated patients 

resulted in a sensitivity of 100% and specificity of 60%. 
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In the identification of patients at risk of ulceration the neurological screening used in this 

study agreed with the vibration perception threshold in 60% of cases and with the 

monofilaments in 84% of cases. 

4.2 Joint Motion 

4.2.1 Motion at the V MPJ 

4.21.1 Passive range of dorsiflexion 

The magnitude of the passive range of dorsiflexion at the I" MPJ was comparable in the 

non diabetic reference, control and neuropathic groups but was reduced in the ulcerated 

group (Table 4-4). A statistically significant difference was found between the non diabetic 

reference and control groups compared to the ulcerated group. Differences were noted 
between the left and right limb, in all groups the left limb had increased range of 
dorsiflexion, however, this did not reach statistical significance. In the ulcerated group, the 
joint motion in the ulcerated limb was compared to the joint motion in the contra-lateral 
limb (Figure 4-3). The passive range of dorsiflexion at the 1" MPJ was 31.2'(SDI2.1) and 
30.5* (SDIO. 6) in the ulcerated and contra-lateral limbs respectively. The range of 
dorsiflexion during the stance phase of gait was slightly increased in the ulcerated limbs 

26.7* (SD6.8) compared to the contralateral non-ulcerated limb 24.3 ' (SD6.4) but did not 

reach a statistically significant difference. However, when the amount of dorsiflexion 

during the stance phase of gait, expressed as a percent of the passive range of dorsiflexion 

was compared between limbs, the mean percentage used in the ulcerated limb was 

significantly greater in the ulcerated limb compared to the contra-lateral limb (116.2% SD 

106, vs 87.7 SD 41). 

4.2.1.2 Dorsiflexion at the P MPJ during the stance phase ofgait. 

The mean values for range of dorsiflexion at the Is' MPJ during gait were comparable in 

all the diabetic groups, but were statistically significantly higher in the non diabetic 

reference when compared to all the diabetic groups. The ulcerated group used the highest 

percentage of their passive range of dorsiflexion during gait. 
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Table 4-4: Mean (SD) passive ranges of dorsiflexion at the 1" MPJ and dorsiflexion 
during the stance phase of gait (in degrees). 

Non diabetic 
Reference Control Neuropathic Ulcerated 

Right Left Right Left Right Left Right Left 

Passive 
Range of 37.4 45.3 36.9 43.3 37.6 40.7 30.4 32.9 

dorsiflexion (14.1) (13.4) (13.9) (13.5) (17.2) (16) (12.2) (12.5) 
(Degrees) 

Dynamic Range 35 8 29.5 25.2 24.7 27.4 25.5 22.4 26.3 
of dorsiflexion . (10) (7.1) (7.2) (7.2) (7.4) (6.3) (7.7) (6.5) (Degrees) 

% of passive 
range of 69.6 64 68.3 57 72.9 62.7 73.7 80 dorsiflexion 

used during gait 

60.0 

50.0 

40.0 

30.0 

20.0 

w 09 
10.0 

0.0 
No ulcer 

Limb 
Ulcer 

Each line represents an individual patient who had a unilateral ulceration 

Figure 4-3: Mean passive range of motion at the 1" MPJ (in degrees) in the ulcerated 
and contra-lateral limb of patients in the ulcerated group. 
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4.2.2 Movement at the AJC 

4.2.2.1 Frontalplane movement at the AJC 

The overall trend was a reduction in the passive frontal plane range of movement at the 

AJC from the non diabetic reference group through to the ulcerated group (Table 4-5). The 

passive range of movement and movement during the stance phase of gait was similar 

across the diabetic groups, but significantly reduced when compared to the non diabetic 

reference group. When the percentage of passive range of motion used during the stance 

phase of gait was compared between the groups significant differences were found between 

the non diabetic reference group and the neuropathic and ulcerated groups (P<0.05). The 

ulcerated group used the highest percentage of the passive range during the stance phase of 

gait. 

Table 4-5: Mean (SD) range of frontal plane motion at the AJC measured during 
passive joint assessment and recorded during the stance phase of gait. 

Non diabetic Control Neuropathic Ulcerated 
reference 

Right Left Right Left Right Left Right Left 

Passive range 23.9 24.1 18.1 16.9 16.2 15.8 15.6 14.3 
of movement (5.6) (5.7) (6.9) (4.9) (5.5) (9.7) (4.8) (5.3) 

Dynamic range 7.5 6.9 6.4 5.6 7.5 6.1 6.5 6.2 
of movement (2.5) (2.3) (2.2) (3.7) (4.8) (2.7) (2.6) (2) 

% of passive 
range used 33.2 28.5 35.4 33.1 46.3 38.6 41.7 43.4 
during gait 
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In the ulcerated group the passive range of frontal plane motion at the AJC in the limb with 

active / previous history of ulceration was compared to the contra-lateral non ulcerated limb 

(Figure 4-4). No statistical significant difference between the limbs was found. There 

appeared to be equal numbers of patients with an increased or decreased range of motion in 

the ulcerated limb compared to the contra-lateral limb. 

25 

20 

"0 15 

lo 

5 

0 
2 

Limb 
No ulcer Ulcer 

Each line represents a patient who had a unilateral ulceration 

Figure 4-4: Passive range of frontal plane motion at the AJC (in degrees) in the 
ulcerated and contra-lateral limb in the ulcerated group. 
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In the ulcerated group only the patients with ulceration at the I" MPJ, lateral forefoot area 

and plantar hallux were analysed in more detail (Table 4-6). These sites were chosen as 

they represented the most common sites for ulceration within the study group. 

Table 4-6: Mean (SD) Joint range of motion (in degrees) in patients with ulceration at 

the hallux, lateral forefoot or under the l't metatarsal head. 

Ulcer site 
AJC Dorsiflexion AJC Inversion MPJ Dorsiflexion 

plantarflexion eversion 

BF Shod PROM BF Shod PROM BF 

is, mpi 
12 14.7 12.5 7.0 8.3 29.8 25.4 

(3.6) (5) (4.4) (2.7) (2.7) (13.7) (8.7) 
11.2 16.4 16.4 6 6.6 31.7 19.8 MPJ 2-5 (2) (3.9) (3.9) (4.1) (2.6) (11.1) (8.4) 
14.5 16.7 16.6 7.5 6.9 34.3 24 

Hallux (2) (7) (7) 1.9) (2.4) (15) (8.5) 

AJC- ankle joint complex, BF- barefoot, PROM- passive range of motion, MPJ- 

metatarsophalangeal joint. 

Patients with ulceration under the hallux had the highest amount of ankle joint range of 

motion during barefoot and shod gait. Patients with ulceration under the Is' metatarsal head 

had the lowest passive range of motion at the Is' MPJ, however, used a higher percentage 

of the passive range during gait compared to the other 2 groups. Patients with ulceration 

under the I't metatarsal head also had the least amount of passive range of motion at the 

AJC in the frontal plane, however, more movement was apparent in this group during 

barefoot walking compared to patients with lateral forefoot ulcers and to patients with 

ulcers under the hallux during shod gait. 
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4.2.2.2 Kinematics at the AJC during barefoot and shod walking 

4.2.2.2.1 Stance phase duration 

Although walking speed is known to influence joint movement and plantar pressures 

attempts were not made to standardise the walking speeds between the groups. Rather, the 

stance phase duration time was to serve as a proxy measure of walking speed to see if 

differences were apparent between the groups. If the stance phase duration times are 
increased this would represent a decrease in walking speed. The stance phase duration 

times recorded during the 3 barefoot walking trials were taken and a mean stance phase 
duration time calculated for each subject. The group mean stance phase durations are 

presented in Table 4-7. There was a general trend for an increase in stance phase duration 

in the neuropathic and ulcerated groups compared to the control and non diabetic reference 

groups. A statistically significant difference was found between the stance phase duration 

in the neuropathic group and the non-diabetic reference and diabetic control groups. 

Table 4-7: Mean (SD) stance phase duration (msec) taken from barefoot walking 
trials. 

Group Non diabetic Control Neuropathic Ulcerated 
reference 

LRLRLRLR 

Mean stance phase 866 867 856 842 1120 1045 947 912 duration (msec) 

Standard deviation 157 185 234 159 335 237 188 165 
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4.2.2.2.2 Range ofmotion at the AJC during stance phase ofgait 

The greatest range of motion was found in the sagittal plane and the lowest in the 

transverse plane (Table 4-8). The range of sagittal plane motion during barefoot walking 

was comparable across the groups with a general trend for reduced motion in the 

neuropathic and ulcerated groups. When sagittal plane motion in the control, neuropathic 

and ulcerated groups is expressed as a percentage of the motion in the non diabetic 

reference group the percentages are 95.4%, 90.5% and 87.7% respectively averaged for the 

right and left limbs. Frontal plane motion in all groups was similar with no consistent 

pattern of increased or decreased motion in the groups. The range of motion in the 

transverse plane was the lowest range for all the groups, with a trend for reduced motion in 

the neuropathic and ulcerated groups in comparison to the control and reference groups. 

The overall trend during shod gait was an increase in the range of motion in all planes of 

motion in all groups. In the sagittal plane motion increased by 31.5%, 26.8%, 38% and 
32% in the non-diabetic reference, control, neuropathic and ulcerated groups respectively 
(averaged for left and right limbs). The increased range of motion in the frontal plane was 

more notable in the control group (30.6%) in comparison to the neuropathic (17.6%) and 

ulcerated groups (15.6%). The range of motion in the transverse plane was greatly 
increased in the neuropathic group (72.3%) and in the other groups the magnitude of 
increase was similar to that seen in the sagittal plane. 

The pattern of motion at the AJC in all three planes during barefoot and shod walking is 

shown in all four groups (Figure 4-5 to 4-8). The angular positional data and timings 

expressed as percentage of stance phase duration are summarized in Appendix 6. All 4 

study groups demonstrated 3 distinct phases of sagittal plane movement. In all groups the 
heel strike angle was plantarflexed relative to the bore-sight position, however the 

magnitude of plantarflexion increased in all groups during shod gait. In the frontal plane 

there was an initial phase of eversion followed by an inversion phase. The point of 

maximum eversion was reached slightly earlier in the non diabetic reference group 

compared to the diabetic groups. In all cases the angular position at heel strike was less 

everted and the maximum eversion position was reached earlier in the stance phase during 

shod gait. In the transverse plane the position of the AJC remained internally rotated 
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relative to the bore-sight position. There were 2 distinct phases of motion, internal rotation 
reaching a maximum at approximately 25-30% of the stance phase in all groups, then 

gradual eversion for the remainder of stance phase. A table of angular positional data and 
timings of the ankle joint complex during the stance phase of barefoot and shod gait can be 
found in Appendix 8. 

Table 4-8: Mean range of motion at the ankle joint complex (in degrees) during 
barefoot and shod gait 

Condition Plane Limb Non 

diabetic 

reference 

Control Neuropathic Ulcerated 

Barefoot Sagittal Right 14.6(4.3) 13.8(4.7) 13.5(5) 12.6(4.2) 

Left 13.9(3.6) 13.3(3.2) 12.2(4.4) 12.3(3.3) 

Frontal Right 7.5(2.5) 5.6(3.7) 6.1(2.7) 6.2(2) 

Left 6.9(2.3) 6.4(2.2) 7.5(4.8) 6.5(2.6) 

Transverse Right 5.3(1.9) 5.2(2.2) 4.6(2) 4.4(1.5) 

Left 5.1(1.7) 5.2(1.9) 4.7(1.7) 4.9(2.8) 

Shod Sagittal Right 19.4(4.4) 16.5(6.6) 17.8(6.2) 16.4(4.1) 

Left 18.2(3.5) 18(4.2) 17.8(5.3) 16.1(5.4) 

Frontal Right 9.7(3) 7.4(2.7) 8(3.4) 7.2(2.3) 

Left 9(3) 8(3.2) 7.9(3) 7.6(2.7) 

Transverse Right 7.6(3.3) 6.8(2.6) 7.5(3) 4.7(5.5) 

Left 7.7(3.1) 6.7(2.8) 8.6(3.2) 7.1(3.3) 
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Figure 4-5: Angular rotation at the AJC during the stance phase in non-diabetic 
reference group during A Barefoot and B shod walking. 

During barefoot walking the mean heel strike angle in the sagittal plane was -0.5' (SD4.2) 
dorsiflexed and the total range of movement was 14.3' (SD3.9). In the frontal plane the 
mean heel strike position was 1.3' inverted, reaching a maximum mean everted position of 
3.6' at 71% of the stance phase. The pattern and mean angular positional data in the 
sagittal plane were similar between barefoot and shod walking. The mean angular position 
in the frontal plane during shod walking was more inverted at both heel strike and toe off 
and the range of motion was slightly increased when compared to barefoot gait (9.40 
(SD2.9) vs 7.2' (SD2.4). The pattern and positional data of the AJC in the transverse plane 
was similar in both the barefoot and shod conditions, remaining in an internally rotated 
position relative to the bore-sight position throughout the stance phase. 
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Figure 4-6: Angular rotation at the AJC during the stance phase in diabetic control 
group during A Barefoot and B shod walking. 

The mean heel strike angle in the sagittal plane during barefoot walking was 1.5' (SD3.3) 
plantarflexed, the angle of plantarflexion at heel strike increasing to 6.7' during shod gait. 
The mean increase in total range of sagittal plane movement during shod gait was 3.3'. In 
the frontal plane the mean heel strike position was slightly inverted (0.7') during barefoot 
stance and the position more inverted (2.9') during shod gait. Maximum eversion was 
reached at 76% and 60% of the stance phase during barefoot and shod gait respectively. 
At heel strike the angular positional data in the transverse plane was 2.7'and 1.6' internally 
rotated in the barefoot and shod conditions respectively, the position of the AJC remained 
in an internally rotated position throughout the stance phase in both conditions. 
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Figure 4-7: Angular rotation at the AJC during the stance phase in diabetic 
neuropathic group during A Barefoot and B shod walking. 

In both barefoot and shod gait the heel strike position was plantarflexed and the mean range 
of motion was 11.9' and 16.5' during barefoot and shod gait respectively. During barefoot 
gait the heel strike position was slightly inverted, reaching a maximum eversion of 3.7' at 
77% of the stance phase. During shod gait the heel strike position was more inverted than 
the barefoot position and the maximum eversion position reached earlier in the stance 
phase. In the transverse plane the angular positional data remained in an internally rotated 
in both barefoot and shod gait. The maximum internally rotated position was reached at 
22% and 26% of the stance phase in the barefoot and shod condition respectively. 
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Figure 4-8: Angular rotation at the AJC during the stance phase in diabetic ulcer 

group during A Barefoot and B shod walking. 

In the ulcerated group, the heel strike position was plantarflexed during both barefoot and 
shod gait. The maximum plantarflexion angle reached at 15% and 13% of the stance phase 
during barefoot and shod gait respectively. In the frontal plane the heel strike angle was 
both inverted and intemally rotated. Maximum eversion was reached at 74% of the stance 
phase during barefoot gait and noticeably earlier (52%) during shod gait. Transverse plane 
motion was characterised by an initial phase of internal rotation reaching a maximum at 
30% of the stance phase then a continual gradual external rotation, however, the ankle joint 
complex remained in an internally rotated position throughout the stance phase in both 
barefoot and shod gait. 
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4.2.2.2.3 Relationship ofmotion at the AJC and I" MPJ. 

There was a positive correlation between passive range of motion at the Ist MPJ and 
frontal plane range of passive motion at the AJC. The correlations were 0.495 and 0.283 

for the right and left limb respectively. The correlations were significant at the 0.001 and 
0.05 levels respectively. There were no correlations found between dynamic range of 

motion at the Is' MPJ and dynamic motion in any of the three planes of movement at the 

AM A correlation was found between dynamic range of motion at the I't MPJ and 

passive frontal plane motion at the AM 

There was no correlation between the range of passive frontal plane motion at the AJC and 

range of motion during gait. Subjects with a larger range of passive motion did not have a 

greater range of motion during gait compared with those who had a smaller passive range 

of motion. Statistically significant correlations were found between passive frontal plane 

motion at the AJC and sagittal plane motion at the AJC during barefoot and shod gait. 

There was a statistically significant correlation in the motion at the AJC between barefoot 

and shod gait in all three planes. The data were examined to see if there was any 

relationship between joint motion and gender, no statistically significant differences were 
found. 
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4.3 Plantar Pressure data 

The normative database of pressure data (n--100) generated as part of the development of 

methods section are presented in Appendix 7 for reference. A summary of the key pressure 

variables in all 4 study groups can also be found in the Appendix 9. Although specific 
hypotheses had not been generated to compare the pressure variables between the groups, 

comparisons were made between the groups to allow comparison with other workers. For 

the purposes of highlighting the key pressure parameters in the diabetic groups clearly, data 

from the non-diabetic reference group has been omitted from Figures 4-9 to 4-11. 

The magnitudes of peak pressures were similar across groups in most of the mask areas. 

Under the heel the peak pressure in the neuropathic and ulcerated group were lower than 

the control group. The peak pressure under the I" metatarsal head was elevated (296kPa) 

in the ulcerated group in comparison with the neuropathic (254kPa) and control (253kPa) 

groups. The ulcerated group had slightly higher midfoot and forefoot pressures and slightly 

lower heel and toe pressures in comparison to the diabetic control group (Figure 4-9). The 

only statistically significant difference in peak pressure between the diabetic groups was 

found between the ulcerated and neuropathic groups in the medial heel and medial midfoot 

mask areas. Statistically significant differences were found between the peak pressure in 

the non diabetic reference group and the ulcerated group in 7 of the mask areas. 

Generally the pressure: time integrals were increased in the neuropathic, and ulcerated 

groups compared to the control group, as shown in Figure 4.9. The pressure: time integrals 

were statistically significant different between the non diabetic reference group and all the 

diabetic groups in the heel, lateral midfoot and hallux mask regions. A statistically 

significant difference in the pressure: time integral was found between the non diabetic 

reference group and the neuropathic and ulcerated groups in the forefoot region. A 

statistical significant difference in the pressure time integral was found between the control 

group and the ulcerated and neuropathic groups under the I" metatarsal head mask region. 

The ulcerated group had increased integrals in all mask areas compared to the diabetic 

control group. The highest pressure: time integral was located under the I" metatarsal 

head in the ulcerated and neuropathic group whereas the highest integral in the diabetic 

control group was under the heel. 
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There were no notable differences in the contact area in the mask areas between the 
diabetic groups, however, contact time within every mask area was increased in the 

neuropathic and ulcerated groups compared to the diabetic control group (Figure 4-10). 

Maximum force in the mask areas were analogous in each group, with a tendency for 

increased force under the heel and the I" metatarsal head in the ulcerated group compared 

to the other two groups (Figure 4-11). 

4.3.1 Location of peak pressure 

The location of the peak pressure was recorded under both feet for each patient vAthin the 

diabetic control, neuropathic and ulcerated groups (Figure 4-12). In the diabetic control 

group 3 areas predominated; 30% of patients in this group had their highest pressure under 

the heel, 30% of patients had their peak pressure under the I" metatarsal head and 35% of 

patients had the peak pressure under the 2 nd metatarsal head. In the neuropathic group the 

majority of patients had the peak pressure under their Ist or 2 nd metatarsal head (37.5% of 

patients having the peak pressure located in each area). The most common site for peak 

pressure in the ulcerated group was under the 2 nd metatarsal head; 44% of patients in this 

group had the peak pressure located at this site, with 22% of patients having peak pressure 

located under the I" metatarsal head. 

4.3.2 Location on maximum pressure time integral 

The majority of patients in the control and neuropathic groups had the highest pressure time 

integral located under the heel (Figure 4-12). In the ulcerated group there were almost 

equal number of patients with maximum pressure time integral under the heel and under 

the I't metatarsal head. 
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Figure 4-10: Mean (Sl))- Contact area and contact 
time in 10 mask regions in the diabetic control, 
neuropathic and ulcerated groups. 
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Figure 4-11: Mean (SD) Maximum force in 10 mask regions in the diahclic control, 
neuropathic and ulcerated groups. 
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4.3.3 Pressure and location of ulceration 

The location of peak pressure corresponded with the site of active / previous ulceration 

30% of the time. The location of maximum pressure time integral corresponded with the 

site of ulceration 21% of the time. A high percentage (71%) of the patients who had their 

pressure time integral located at the ulcer site also had the maximum peak pressure located 

at this site. 
In the ulcerated group the maximum force was located in the heel for every patient with the 

exception of two patients where the maximum force was recorded in the lateral forefoot 

region. When defining a "high pressure" in the literature the majority of papers use data 

derived from a large cohort of non diabetic control using the same pressure measuring 

system and the same method of data collection. Plantar pressure data has been shown to be 

highly variable (in some cases the standard deviation approaching an order of magnitude 
higher than the mean values derived) for this reason it is usual to define high pressure as the 

mean value plus only one standard deviation above the mean and not two standard 
deviations as is usual for most variables in medicine. For the purposes of this study high 

pressure is defined as the mean value derived from the normative database (n--100, non 
diabetic controls, Appendix 6) plus I standard deviation for each masked region. Using 

this criterion the number of patients in the ulcerated group with high pressures at the three 

commonest sites for ulceration were calculated and the numbers are surprisingly low 

(Table 4-9). 

Table 4-9: Number of patients with a peak pressure or pressure time integral higher 

than the mean plus 1 standard deviation of a non-diabetic normative group. 

Mask region Peak pressure Pressure Time integral 

I" metatarsal head 9 11 

2 nd metatarsal head 8 12 
3-5 metatarsal heads 

12 

Hallux 3 
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In the ulcerated group patients were studied who had either an active or previous history of 

ulceration at the I't metatarsal head, lateral forefoot area (metatarsal heads 2-5) or under the 

hallux (Table 4-9). Only data from the ulcerated limb was used for analysis. Patients with 

ulceration under the 1" metatarsal head had the highest maximum force at this site 

compared to the other 2 ulceration sites. The force under the Is' metatarsal head was 

approximately 60% greater when the patient has an ulcer at the site compared to an ulcer 

under the lateral forefoot area. The contact area under the Ist metatarsal head was 
increased when a patient had an ulcer at the site compared to ulceration under the lateral 

metatarsal heads or hallux. When the ulcer location category of the Is' metatarsal head was 

compared to the ulcer location category of the lateral metatarsal heads, the peak pressure 

under the Is' metatarsal head in the lateral forefoot ulcer group was approximately two- 

thirds of the magnitude of the pressure found in the I't metatarsal head group. When a 

patient had an ulcer in the lateral metatarsal head region, the peak pressure at this site was 
higher than the peak pressures found in patients with ulceration at the other locations. In 

each group when a patient had an ulcer in a specific region, the pressure time integral was 
increased in this region compared to the other two sites. The highest contact time under the 

hallux, Is' metatarsal head and lateral metatarsals were found in the group which had ulcer 
located under the lateral metatarsal heads. 

In all mask regions the peak pressure was higher in the ulcerated limb compared to the non. 

ulcerated limb, with the exception of the pressure under the I" metatarsal head, hallux and 
lesser toes. No statistically significant differences were noted between the ulcerated and 

contra-lateral limb for peak pressure. In all mask regions, with the exception of the I" 

metatarsal head and the hallux, the pressure time integral was increased under the ulcerated 
limb compared to the non-ulcerated contra-lateral limb. 
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Table4-11: Mean (SD) Peak pressure and pressure time integrals in the ulcerated 
group. Mean values are displayed for both limbs, the ulcerated limb only and non- 
ulcerated contra-lateral limb. 

Mask 
area 

Peak Pressure (kPa) Pressure time integral (kPa. s) 
Both Ulcerated Non Both Ulcerated Non 
limbs limb ulcerated limbs limb ulcerated 

Med 188 253 250 109 109 109 
heel (79) (60.9) (49.2) (33) (35.7) (34.9) 

Lat heel 243 238 236 105 106 104 
(57) (62.8) (41.3) (29) (30.4) (30.6) 

Med 70 76 67 32 34 30 
midfoot (55) (61.5) (64.4) (31) (34.5) (36.4) 

Lat 102 123 90 49 55 44 
midfoot (68) (82.3) (58.6) (31) (29.7) (33.2) 
is, Mpi 296 264 337 113 97 123 

(134) (137.6) (138) (60) (59.9) (56.3) 
2nd Mpj 242 258 256 91 97 92 

(101) (105.7) (115.4) (47) (51.3) (46.6) 
3-5 205 228 198 84 91 81 

MPJ (77) (72.7) (75.6) (39) (40) (42.7) 
Hallux 155 144 148 46 39 43 

(102) (101.5) (91.5) (34) (32) (34.1) 
2nd toe 92 93 88 29 28 27 

(43) (49.9) (40) (16) (16.9) (15.3) 
3-5 toes 72 67 71 29 28 27 

(46) (49.5) (40.3) (23) (24.9) (17.7) 

Med-medial, Lat- lateral, MPJ- metatarsophalangeal joint 

0 
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4.4 Relationship between motion and pressure 

4.4.1 Motion at the ankle joint complex 

No correlation was found between passive range of motion at the Ist MPJ, frontal plane 

passive range of motion at the AJC and peak plantar pressures in the mask areas. A 

correlation was found between passive frontal plane motion at the AJC and the pressure 

time integrals in the heel, midfoot and forefoot areas. No correlation was found between 

any of the ranges of motion at the AJC or the I" MPJ during gait and peak pressures or 

pressure time integrals under the foot. Because Mueller et al (1990), indicated that patients 

with less than 30* frontal plane motion at the ankle joint complex have higher plantar 

pressures and that a range of motion less than 30" should be considered a risk factor for 

ulceration, passive frontal plane range of motion data for the ankle joint data were 

classified into limited or normal based on whether the value was less than or greater than 

300. Peak pressure and pressure time integral were calculated for the total foot and peak 

pressures were calculated for the forefoot area for each group. The number of feet with 

range of motion greater than 30" was only 20, compared to 196 with range of motion less 

than 30'. The pressure data for each group is presented in Table 4-12. 

Table 4-12: Mean (SD) Peak pressure and pressure time integral in patients with 

limited or normal frontal plane motion at the AJC. 

pp pp pp pp Pti Pti Pti Pti 

Tot MHI MH2 MH3-5 Tot MHI MH2 M113-5 

316 260 236 197 166 91 84 75 
AJC<30" 

(91) (110) (86) (71) (57) (55) (43) (36) 

282 208 218 196 146 71 79 76 
AJC>30' 

(97) (116) (108) (84) (57) (51) (56) (52) 

PPTot- Peak pressure in total foot, PPMH I -Peak pressure in metatarsal head I mask, PPM112- Peak pressure 

in metatarsal head 2 mask, PPMH3-5- Peak pressure in metatarsal heads 3-5 mask, PtiTotal- Peak pressure in 

total foot, PtiMH I- Pressure time integral in metatarsal head I mask, PtiM112- Pressure time integral in 

metatarsal head 2 mask, PtiMH3-5- Peak pressure in metatarsal heads 3-5 mask. 
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4.4.2. Motion at the l't MPJ 

Because it has been stated in the literature that greater than 601 passive range of motion of 
dorsiflexion is needed for efficient gait and that the approximate range of dorsiflexion 

during gait is approximately 50', these values were chosen to classify patients into limited 

or normal movement categories (Root et al 1977, Buell et al 1999). The number of patients 
in this study with a passive range of dorsiflexion greater than 60* was six. 

If a patient had less than 50* dorsiflexion during gait one would expect higher plantar 

pressures in certain mask areas dependent on how the patient compensates for the limited 

movement at the I st MPJ. Four loading patterns have been suggested to occur more 
frequently when compensating for limited movement at the I st MPJ. The loading patterns 

are increased pressure under the Ist metatarsal head compared to other forefoot regions, 
increased pressure distally compared to other forefoot regions (under the hallux), increased 

pressure laterally compared to other forefoot regions (over metatarsal heads 2-5), or a 

combination of increased load laterally and distally. The data were categorised into those 

with limited or normal movement at the 0 MPJ based on 50" dorsiflexion during gait. A 

total of 43 feet were identified as having equal to or greater than 50' dorsiflexion and 173 

feet had less than 500 dorsiflexion. Table 4-13 summarises the percentage from each group 

with the different patterns of loading. When expressed as a percentage of the total group 
the values for each loading pattern are similar in both groups, suggesting specific loading 

patterns are not associated with range of dorsiflexion at the Is' MPJ during gait. 
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Table 4-13: Strategy used for compensating for limited dorsiflexion at the I't MPJ 

during gait. 

Loading Pattern 

MHI 

Hallux 

Lateral Mets 

Combination 

4.5 Follow up data 

Limited MPJ dorsiflexion 

Number of feet using 

strategy as percentage of 
limited group 

54(31%) 

27(16%) 

43(25%) 

70(40%) 

Normal MPJ dorsiflexion 

Number of feet using 

strategy as percentage of 

normal group 

14(33%) 

4(9%) 

15(35%) 

19(44%) 

No patients in the diabetic control group ulcerated, one patient had an in-growing toenail 

that was surgically removed and total healing occurred within 6 weeks. Two patients from 

the neuropathic group developed an ulcer during the 12 month follow up period. 

In the ulcerated group one patient was lost to follow up, one patient died of complications 

not related to their foot problems. There were three amputations over the 12 month follow 

up period, two below knee and one hallux amputation. 12 months after the measurements 

were taken six of the patients in the ulcer group had active ulceration. 
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4.6 General summary of results with reference to the hypotheses 

One of the hypotheses proposed to be tested during the course of this study was that there 

would be a statistically significant difference between the motion time curves of diabetic 

groups. The overall results of this cross-sectional study indicate that there were no 

statistically significant differences between the mean motion time curves in the diabetic and 

non diabetic groups in this study. The hypothesis that there would be a difference between 

the motion time curves of diabetic groups was not supported. 

There was a statistically significant difference between the mean passive amount of 

dorsiflexion at the I" MPJ in the non diabetic control group compared to each of the three 

diabetic groups, but the difference between the diabetic groups did not reach a level of 

statistical significance. The mean range of dorsiflexion at the I" MPJ during gait were 

comparable across the diabetic groups, but they were all significantly lower than the non 

diabetic reference group. When the ulcerated group was studied in more detail a 

statistically significant difference was found in the amount of the passive range at the Is' 

MPJ used during the stance phase between the ulcerated limb and the contra-lateral non 

ulcerated limb. The passive range of movement at the AJC and the range of movement 

during the stance phase were statistically significantly different between the non-diabetic 

control group and all three of the diabetic groups. When the range of motion at the AJC 

during gait was expressed as a percentage of passive range of motion, there was a statistical 

significant difference between the non-diabetic reference group and the ulcerated and 

neuropathic groups. 

No statistically significant differences in the mean range of motion at the AJC or I't MPJ 

during gait were found between the diabetic groups. The hypothesis that patients with an 

active or previous history of ulceration would have a lower range of motion at these joints 

during gait was not supported. 

When the relationship between joint motion during the stance phase of gait and plantar 

pressure variables were examined no statistically significant correlations were found in any 

of the study groups. A statistically significant correlation was found between frontal 

passive range of motion and pressure time integrals in the forefoot area. A relationship 
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between joint motion at the AJC or the I" MPJ and the location or magnitude peak 

pressures in the forefoot was not established. 

No difference in the mean range of motion during the stance phase of gait was found in the 

diabetic groups; those patients with an active or previous history of ulceration did not have 

a significant reduction in the mean motion at the AJC or I" MPJ. The hypothesis that 

patients with ulceration would have lower range of motion during gait and that this would 
be associated with ulceration was not supported. 

172 



CHAPTER 5 

DISCUSSION 

This chapter discusses the key findings of the study with reference made to related 

published literature. The implications of the findings are considered andplaced within 

the context of clinical practice. The limitations of the study are considered along with 

discussion as to how they may impact on the results of the study. Finally suggestions 

forfuture research are made. 

The pathogenesis of ulceration has been extensively studied with particular attention 

directed to the detection of factors that make a patient "at risk7 of developing an ulcer. 

The causes of plantar ulceration are clearly multi-factorial but the primary aetiology is 

believed to be excessive repeated pressure on the insensitive foot (Mueller et al. 1994b). 

When neuropathy is present, more prolonged pressure needs to be exerted on the foot 

before the protective warning (pain) is perceived (Katoulis et al. 1996), thus making the 

tissue more liable to damage from otherwise normal stresses under the foot. Repeated 

loading of tissue (as would occur during gait) results in reactive hyperaernia and 

stronger cohesion of the skin cells. This decreases the rate of desquamation and 

subsequent callus formation occurs (Adams et al. 1989). The presence of callus and 

high pressures have been shown to be associated with an increased risk of ulceration in 

a prospective study (Murray et al. 1996). 

Limited joint mobility, as determined by limited passive range of motion at the AJC and 

I" MPJ, has been substantially implicated in the pathogenesis of high plantar pressure 

and ulceration seen in diabetics. Although high plantar pressures are generated during 

walking and are therefore dependent on dynamic joint motion, passive ranges of joint 

motion are more convenient to measure in clinical practice. The mechanism by which 

limited joint mobility causes high pressure has not been substantiated. A reasonable 

assumption is that a limited passive range of motion results in a limited dynamic range 

of motion and, by using biomechanical theory, can explain the generation of higher 

plantar pressures. Although limited joint mobility and high plantar pressures have been 

shown to co-exist in the presence of neuropathy, a direct causal link is speculative. 
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This study aimed to investigate the association between joint mobility, high plantar 

pressure and foot ulceration in more detail. The novel aspect of the present study is that 

dynamic joint mobility has been determined using three-dimensional motion analysis. 
It was anticipated that patients with ulceration would have a lower dynamic range of 

motion at the ankle joint complex in all three planes during the stance phase of gait 
(Fernando et al. 1991; Mueller et al. 1989; Mueller et al. 1994a). Using biornechanical 

models it was expected that there would be a relationship between dynamic movement 

at the AJC and I" MPJ and the magnitude and location of plantar pressures (Bevans et 

al. 1999; Root et al. 1977). Patients in the present study were followed-up for a 12- 

month period following gait assessment, so that ulceration status could be monitored. It 

was intended to predict those patients most likely to ulcerate by using objective 

assessment of gait. 

The discussion will examine the key findings of the study, firstly describing the 

recruitment procedure and study group demographics. The key results of the study will 
be discussed in relation to how this may impact on clinical assessment of the diabetic 

foot. 

5.1 Recruitment 

Although a recruitment strategy through local GP practices or local Diabetes UK groups 

may have resulted in a more pragmatic study sample, in this case this method was not 

used. In the present study a sample of convenience was recruited from three clinical 

podiatry sites. Two recruitment sites were hospital clinics (one in Leeds and one in 

Huddersfield) and one recruitment site was a university podiatry department clinic in 

Huddersfield. Recruitment from podiatry services was considered to be the best 

method of recruitment to facilitate the prospective element of the study and allow the 

patients' ulceration status to be followed up over 12 months. 

It could be argued that the fact that all patients were recruited through podiatry services 

may have resulted in a biased sample, with a tendency for all patients to have some type 

of foot problem. However, many patients attending the service were referred solely for 
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a screening assessment and appropriate foot health advice, and did not have a current 

specific foot problem. 

5.2 Sample demographics 

Attempts were made to try and balance the demographic and clinical characteristics of 

the three diabetic study groups. However, no stratification was used. The major 
difference between the three diabetic groups was the higher proportion of males in the 

ulcerated group. During data collection it became apparent that more males were 

entering the ulcerated group, so an attempt was made to try and recruit more female 

patients into the ulcerated group. However, during the recruitment period there were a 
lower number of females attending the foot ulcer clinics. Also, many females presented 

with dorsal toe ulceration and not plantar ulceration and therefore could not be included 

in the study. Previous studies have reported consistently higher ulceration rates in 

males than in females (Reiber et al. 1995) and a higher amputation rate (Most et al. 
1983). In a 12 month prospective study of hospital admissions related to diabetic foot 

disease a higher proportion of males (62%) than females were admitted in a UK city 
hospital (Krentz et al. 1997). Thus in the light of previous findings it was not 

surprising that a higher proportion of males attended the foot clinic during data 

collection, and it is reasonable to assume the study sample in the present study simply 

reflects the situation throughout the UK. 

The disease duration was greater in the neuropathic and ulcerated groups than in the 

diabetic control group. This result was expected because there is an increase in the 

number of diabetes related complications, for example neuropathy and ulceration with 
increased disease duration (Reiber 2001b). Body mass was statistically significantly 
different in the ulcerated group in comparison to all the other groups. This finding is 

consistent with the findings of other workers (Boyko et al. 1999; Ctercteko et al. 1981) 

and may be partly explained by the higher proportion of males in the ulcerated group. 

There was no intention to exclude ethnic minorities from the study. The lack of ethnic 
minorities in the podiatry clinics throughout the data collection period (approximately 6 

months) was unexpected. However, there is evidence to suggest a lower prevalence of 

ulceration and amputation in certain ethnic groups (Clarke et al. 1998; Gujral et al. 
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1993) and it has been suggested that many patients of certain ethnic origin may die 

earlier of other complications related to diabetes, for example coronary heart disease, 

before developing foot ulcers (Chaturvedi et al. 2002). It is also widely acknowledged 

that there may be some cultural differences in behaviour, and barriers to seeking 

medical care in ethnic groups. The low number of ethnic minority patients in the 

present study is not a consequence of the geographic area as both Leeds and 
Huddersfield have a higher proportion of ethnic population than the UK average. Leeds 

is the second largest health authority in England in which South Asians comprised 5% 

of the local population in the 1991 census (Feltbower et al. 2003). As a consequence of 

the low numbers of patients of ethnic origin in the present study the results may only be 

applicable to the North European population. 

5.3 Clinical data 

In the present study neurological screening procedures were used to classify the patients 
into the study groups. Although electrophysiological techniques are regarded to be the 

gold standard for neurological assessment, these methods are never used routinely for 

diabetic foot screening. The methods chosen were the modified Neuropathic Disability 

Score and the Neuropathic Symptom Score, as previously described by Young and 

associates (Young et al. 1993a). Although this scoring method has not been properly 

validated, the modified neuropathy disability score has been shown to be associated 

with foot ulceration (Kumar et al. 1994), and recent studies have stated that Neuropathic 

Disability Score was the best predictor of foot ulceration (Calle-Pascual et al. 2001; 

Meijer et al. 2000). In the present study monofilament testing and vibration perception 

were also recorded for each patient to allow comparison with other papers. 

Patients in the ulcerated group had a higher Neuropathic Disability Score but not a 
higher Neuropathic Symptom Score when compared to the neuropathic group (Table 4- 

1). This finding is not surprising as prediction of polyneuropathy from neuropathic 

symptoms alone is not advocated and, it has previously been reported symptoms may 

not always indicate underlying neuropathy (Feldman et al. 1994). It is interesting to 

note that the neurological screening used in this study did not identify two patients in 

the ulcerated group. These two patients were also not identified by the vibration 

perception threshold or the monofilament testing procedures. In these two cases it is 
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likely that neuropathy was not a major factor in the aetiology of their ulceration and that 

altered foot function played a greater role. 

As part of the diabetic screening procedure a full assessment of the foot was undertaken 

and presence and location of foot pathologies were recorded for each patient. In the 

present study a foot deformity score, as described by Murray, was recorded for each 

patient (Murray et al. 1996) and the mean for each of the three diabetic groups 

calculated. The mean foot deformity score for the control group was higher than the 

mean for the neuropathic group. This result was unexpected because the literature 

suggests neuropathy is associated with a higher prevalence of certain foot deformities, 

for example lesser toe retraction. However, it must be noted that the reported higher 

prevalence of lesser toe deformity in diabetics is based on anecdotal clinical evidence 

and has not been substantiated. 

In the present study the mean foot deformity score (Table 4-1) was statistically 

significantly higher in the ulcerated group compared to the non-ulcerated group. This 

finding is consistent with the finding of Murray (1996), who reported a significant 
difference in the presence of foot deformity in an ulcerated group compared to a 

neuropathic patient group and found that 95% of the ulcerated group were found to 

have some degree of foot deformity (Murray et al. 1996). In the present study, 100% 

of the ulcerated group had some degree of foot deformity determined as a foot 

deformity score greater or equal to one. Several papers have shown an association 
between presence of certain foot deformities and ulceration. A significant 

relationship between the presence of hammer and claw toe deformities and foot 

ulceration has been reported (Holewski et al. 1989; Lavery et al. 1998). It is therefore 

not surprising that the prevalence of foot deformity in ulcerated group in the present 

study was so high. 

In the present study the impact that specific foot deformities had on dynamic joint 

mobility and plantar pressure was not investigated. If gait analysis was carried out, 

subdividing patients on the basis of the presence or absence of lesser toe deformity and 
hallux valgus this may show that patients with certain deformities have similar 
compensation strategies and may enable different gait styles to be identified for each 
goup. 
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It has also been reported that foot deformities are associated with formation of callus 

(Mueller et al. 1990). In the present study the ulcerated group who had a higher mean 

foot deformity score also had a higher prevalence of callus than the other two diabetic 

groups. Overall 39.8% of the diabetic group had callus with a higher proportion of 

patients in the ulcerated group (56%) presenting with plantar callus compared to the 

non-ulcerated groups (33%). This finding is in agreement with Murray who found the 

overall incidence of callus for the ulcerated and non ulcerated group increased 

approximately two fold (Murray et al. 1996). The higher prevalence of callus in the 

ulcerated group is not surprising because it has been shown previously in a prospective 

study that callus is associated with a higher risk of ulceration (Murray et al. 1996). 

The most common sites for plantar ulceration identified in the present study are 

consistent with the findings of other workers (Stacpoole-Shea et al. 1999; Murray et al. 

1996). In contrast to previous work, the present study did not find that the location of 

peak pressure, maximum vertical force or maximum pressure time integral 

corresponded well to the site of ulceration (Ctercteko et al. 1981). These pressure 

parameters do not fully represent the trauma that soft tissues in the foot experience. The 

findings from the present study show that high peak pressure may not be the most 

important factor in the pathogenesis of ulceration. It would be logical to assume that 

other factors not investigated in the present study for example high shear forces and soft 

tissue function may be more important. Previous work has suggested that ulceration 

also occurs at sites of maximum shear (Cavanagh et al. 1991b), however, this has not 

been fully investigated due to technical limitations associated with measuring shear at 

discrete parts of the foot. Recent literature suggests that decreased thickness of soft 

tissue under the forefoot may be an important risk factor for ulceration (Morag et al. 

1999). 

Although the sample of patients in the present study was a sample of convenience, the 

general demographic trends in the present study sample, (higher proportion of males, 

increased disease duration and higher prevalence of foot deformity and callus in the 

ulcerated group) are consistent with the general trends highlighted in the literature. 

It is therefore reasonable to assume that the recruitment procedure used in the present 

study resulted in a sample that reflects the diabetic population attending clinics at the 

three recruitment sites. The screening procedure used to classify the neurological 

status of patients in this study had a good level of agreement with both vibration 
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perception and monofilament testing, as demonstrated by similar levels of sensitivity 

and specificity at identifying the ulcerated group of patients. This provides confidence 

that the screening methods used were appropriate for the purposes of the study. 

5.4 Joint mobility 

A normal range of motion at the AJC and I" MPJ is thought to be crucial to the normal 
biornechanics of the foot. However, most biornechanical theory is not based on 

research evidence. Work in the general field of biomechanics has shown that some 

fundamental principles of biornechanical foot function are not valid (Hamill et al. 1989; 

McPoil et al. 1994a; McPoil et al. 1996b). Greater mobility at the AJC has been 

considered to be beneficial as it enables better shock absorption at initial contact, 

thereby decreasing plantar pressures. It has been stated that approximately 65' 

dorsiflexion is needed at the I" MPJ for efficient propulsion during gait (Root et al. 

1977). The application of gait analysis to validate these inferences has not been 

undertaken. 

In the present study all passive ranges of motion at the AJC and I" MPJ were reduced 

in the diabetic groups in comparison to the non-diabetic reference group. The present 

study found a lower range of motion at both the ankle joint complex and I't MPJ in all 

three diabetic groups when compared to the ranges reported by other workers 

(Delbridge et al. 1987; Fernando et al. 1991). In the present study the mean disease 

duration was higher in the ulcerated and neuropathic group compared to results of other 

workers. Because there is an increase in the prevalence of diabetic complications, such 

as limited joint mobility, with increased disease duration, this could account for some of 

the difference. A more likely explanation for the difference in passive range of motion 
in the present study is the difference in technique used to measure joint movement. In 

previous studies passive range of motion was measured with handheld goniometers, the 

reliability of which has recently been questioned (Menz 1995). When measuring 

passive range of motion at the AJC with hand held goniometers there are several areas 

where errors can occur. The technique is dependent on the drawing of a bisection line, 

which is not standardised and can be very subjective. Inaccuracy can then occur when 

the gonimeter is placed over the bisection line and a reading taken. 
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When taking passive joint measurements with the electromagnetic tracking system 

many of the problems associated with traditional goniometry are overcome. With this 

method there is no reliance on bisection lines and the data are directly transferred into 

computer software so there is no opportunity for subjective interpretation of the results. 
The person taking the results is effectively blinded to the results until after the 

measurements have been taken and processed so there is no opportunity to manipulate 

subsequent readings. 

A review of the methods sections of previous papers that have used goniometry to 

measure passive range of motion showed that only two papers reported intraclass 

correlation coefficients for the examiners on the study sample being investigated 

(Mueller et al. 1989; Mueller et al. 1994a). Most papers outlined their methods and 

referred to the method originally described by Delbridge and associates (Fernando et al. 
1991; Veves et al. 1995). In the paper by Delbridge, the coefficient of variation 

presented was based on data from a preliminary study with one examiner on a non- 
diabetic control patient in a single session (Delbridge et al. 1987). Although in most 

papers, only one examiner performed all the passive range of motion joint 

measurements, it cannot be assumed that different examiners would have the same level 

of reliability in taking these measurements. Literature elsewhere states goniometric 

reliability is very much dependent on the examiner's experience, and reports poor 
intertester reliability of passive range of motion for the ankle joint complex (Elveru et 

al. 1988a). Because the previous papers have not reported any reliability data for 

passive range of motion it is difficult to ascertain how reliable the measurements are. 

In essence, based on the assumption that there is less opportunity for error to occur 

when using the electromagnetic tracking system this method should be considered to be 

superior to standard goniometry. However, the only way to substantiate this 

assumption would be to make direct comparison between the two methods. Due to the 

constraints incurred by using the electromagnetic tracking system, (sensors placed on 

the posterior calcanues, proximal phalanx of the hallux and I't metatarsal) direct 

comparison of the passive range of motion measurements taken simultaneously using 
both methods could not be performed. Time constraints during the data collection 

period of the study (limited time access to equipment and rooming) meant that it was 

not possible to make passive range of motion measurements using both techniques to 

allow comparison. Further work exploring the relationship between measurements 
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taken with both techniques may explain the lower passive range of motion found in the 

present study. 

In the present study the passive range of motion at the I't MPJ was measured with the 

patient in a non-weight-bearing position. Other measurements can be taken for 

example measurement of weight-bearing range or the range during a heel-rise 

(Nawoczenski et al. 1999). Although the range of motion determined during a heel rise 

or weight-bearing has been shown to be more closely associated with the range of 

motion during gait (Nawoczenski et al. 1999), the non-weightbearing method was 

chosen for the present study. This was because most podiatrists will assess motion at 

the I't MPJ with the patients in a non weight-bearing position and many podiatry 

textbooks describe the non weight-bearing method for assessment of the joint. The 

non-weightbearing method to assess motion at the I" MPJ was chosen by the present 

study as it was thought to be more reflective of method used during routine podiatric 

screening. 

In the present study the passive range of dorsiflexion at the I" MPJ was found to be was 

reduced in the ulcerated group compared to all the other groups. The passive range of 
frontal plane motion at the AJC was also reduced in the ulcerated group in comparison 

to the other groups. These finding are consistent with previous findings (Delbridge et 

al. 1987). Delbridge and associates (1987) also found significant differences in the 

range of motion at the subtalar joint in the ulcerated limb compared to the non-ulcerated 

contra-lateral limb. This finding was not supported by the present study. Although no 
differences in the passive range of dorsiflexion were found in the ulcerated group, when 

comparing the ulcerated limb to the contra-lateral limb. However, when the dynamic 

range of dorsiflexion was expressed, as a percentage of the passive range, the mean 

percentage used in the ulcerated limb was significantly greater compared to the contra- 
lateral limb. 

In some patients the dynamic range of motion at the I" MPJ actually exceeded their 

passive range. 'Mis suggests the passive range of motion recorded in the present study 
did not represent their actual true end range of motion. It is possible that in the 

ulcerated group, where joint stiffness may be more prevalent, more torque would be 

needed to move the joint to its end of range. In future studies attempts should be made 

to standardise torque. A general trend in higher percentage of passive range been used 
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during gait occurred from the diabetic control group to the ulcerated group at both the 

AJC and the I" MPJ. As the degree of neuropathy increases, it appears so does the 

percentage of passive range being used during gait. Measurements of proprioception 

were not taken in the present study. Simoneau and associates found that diabetic 

subjects with cutaneous sensory neuropathy demonstrated a significant loss of ankle 
joint movement perception (Simoneau et al. 1996). It can be speculated that patients 

with neuropathy may use a greater range of their passive range than those without 

neuropathy due to loss in ankle joint movement perception. However, this speculation 

would need to be validated. 

A poor correlation between passive range of motion and range of motion during gait has 

been reported previously in patients with diabetes (Van Schie 2000) and in other 

clinical groups (Hamill et al. 1989). This finding was confirmed in the present study. 
In the literature the reported normal ranges of motion at the AJC and I't MPJ vary 

considerably which hampers the clinical usefulness of this measure. It has been 

suggested that people with diabetes who have less than 30' frontal plane passive range 

of motion at the AJC are at risk of developing ulceration (Mueller et al. 1990). In the 

present study only a small number of patients had more than 30' and these patients did 

not have a higher range of motion during gait or lower plantar pressures when 

compared to those individuals with less than 30' motion. In the present study no 

relationship was found between the passive range of dorsiflexion at the I" MPJ or 
frontal plane motion at the AJC and the dynamic range of motion. Patients with a larger 

passive range of motion will not necessarily exhibit a larger range of motion during 

gait. The poor relationship between passive and dynamic range of motion does 

question the usefulness of these measurement and the continuation of these 

measurements in clinical practice. It may be preferable to classify if patients have 

limited joint mobility in the lower limb based on their dynamic range of motion. 

Both neuropathy and limited passive joint mobility have been shown to be associated 

with increased plantar pressures. It has been suggested that when protective sensation is 

intact, patients are able to compensate and that the plantar pressures may not necessarily 
be elevated in the presence of limited joint mobility at the AJC (Fernando et al. 199 1). 

In this study both the neuropathic and ulcerated group had established neuropathy and 

used a higher percentage of their passive range of motion during gait in comparison to 

the non diabetic and diabetic control groups, yet this only reached statistical 
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significance between the ulcerated group compared to the non diabetic control group. 
Expressing the percentage of passive range of motion used during gait could be an 

alternative method to examine the impact that joint mobility has on overall foot function 

and aetiology of ulceration. If during gait some patients, due to neuropathy, are 

consistently approaching their end range of movement at the AJC and Is' MPJ, this may 
be detrimental and, it could be speculated that this may lead to joint damage and 

arthritic changes. However, there are no current epidemiological data to support this 

speculation. 

This study has shown there is a poor relationship between the passive and dynamic 

range of motion at the AJC and Is'MPJ. The ultimate would be to assessjoint mobility 
based on dynamic measurements in all patients, however, this aim is unachievable due 

to financial and time constraints in diabetic screening programs. Therefore, further 

work to improve the reliability of taking passive joint ranges of movement and to 

understand why there is a poor relationship between passive measures and dynamic 

function is warranted. 

Different walking patterns associated with diabetes have been identified in the literature 

and have been attributed to changes in walking speed (Mueller et al. 1994a). It is widely 

accepted that patients with neuropathy tend walk slower. In the present study the stance 

phase duration was longer in the neuropathic and ulcerated groups compared to the 

control groups, suggesting a slower walking speed. A review of the literature has 

shown that there are very few papers that have described the joint movement patterns in 

patients with diabetes and many have concentrated on the larger proximal joints 

reporting data only in the sagittal plane. No published data describing three- 
dimensional motion at the AJC during stance phase or reported values for dorsiflexion 

at the Ist MPJ during gait could be found. By performing gait analysis this study 

generated the mean motion time curve for the AJC in all three planes for each of the 
four study groups. Based on the existing literature it was hypothesised that patients 

with ulceration would show different joint movement profile at the AJC in all three 

planes of motion compared to the non-ulcerated groups. This hypothesis was not 

supported by the present study. 

The overall patterns of motion at theAJC, in each study group during the stance phase 

of gait followed the motion patterns described previously by other workers on non 
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diabetic patients using the same and different measurement technique (Cornwall et al. 
1999b; Mannon et al. 1997; Mosely et al. 1996). The greatest range of motion was 
found in the sagittal plane, followed by the frontal plane then the transverse plane. This 

corresponds with literature for other clinical groups (Woodburn et al. 2002). Mueller 

and associates have reported reduced sagittal plane motion in diabetic patients with 

neuropathy during gait compared to non-diabetic controls. (Mueller et al. 1994a). This 

finding was supported by the present study. 

On the basis of the high accuracy of the EMT system (more than 10 papers reported less 

than P error in angular rotation within the accurate field) and the high CMC data for the 

diabetic groups (Appendix 2) a minimal between groups detectable difference of 4" was 

needed. The differences between the diabetic groups were not greater than the 

minimally detectable difference. Kautolis and associates studied the gait style in 

patients with history of ulceration, non neuropathic diabetic patients and non diabetic 

controls (Katoulis et al. 1997b). They found that whilst no statistical differences were 

apparent between the groups, subtle changes in gait style were present. However, many 

of these differences could be related to the differences in walking speed found between 

the groups. 

Holewski and associates (1989) found that patients with a history of ulceration had a 
higher prevalence of limited dorsiflexion at the ankle joint. In the present study 

measurement of passive ankle joint dorsiflexion was not undertaken since the 

measurement is dependent on determining the subtalar joint neutral position which has 

been reported in the literature (Freeman 1990; Pierrynowski et al. 1996), and confirmed 
in the development of methods section in the present study to be unreliable. As a 

replacement for passive ankle joint dorsiflexion, measurement of dorsiflexion during 

gait was taken. Contrary to the findings of Holewski and associates, a statistical 
difference in the amount of dorsiflexion between patients in the ulcerated group 

compared to the non-ulcerated groups was not found in the present study. To enable 
the measurement of motion at the AJC in the shod state standardised shoes were used. 
Looking at the kinematics at the ankle joint complex during gait in the barefoot and 

shod state, differences were noted in all the study groups. Thc magnitude of the 
increase in joint range of motion at the AJC in the shod state was notable in all three 

planes. This may have been partly due to changes in walking speed; many of the 
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diabetic patients were not used to walking barefoot (advice typically given to diabetic 

patients is not to walk around without shoes) and tended to walk a little faster in shoes. 

Changes in angular position between the shod and barefoot state were noted; in the 

sagittal plane the heel strike position was more plantarflexed with shoes. It is possible 

that when the shoe made initial contact with the ground the AJC started to plantar flex 

and there could be a slight delay before the heel switch inside the shoe was activated. 
This delay in the activation of the heel switch would mean that the AJC would appear to 

be more plantar flexed in shoes compared to the barefoot state, where as in fact actual 

position at ground contact could be the similar. Locating foot switches within a shoe is 

problematic. The only way to accurately identify ground contact when a subject is 

wearing shoes is to link the motion analysis system with a force platform and use the 

force platform to trigger motion capture. Unfortunately a force platform was not 

available to be used in the present study. 

In the present study during shod gait the position of the AJC was more inverted at both 

heel strike and at the end of the stance phase compared to barefoot walking in all of the 

four study groups. The mean maximum eversion position was reached earlier in the 

stance phase, which resulted in an increased time for the AJC to invert in preparation 
for propulsion. Using widely adopted biornechanical theory (Root et al. 1977), the foot 

appears to be functioning more efficiently during shod gait. It is widely accepted that 
footwear helps to protect the neuropathic foot from ulcerating by reducing plantar 

pressures, but the differences in kinematics demonstrated in this study could also be a 

major factor, which warrants ftu-ther consideration. 

5.5 Pressure data 

Many papers have shown a statistically significant difference in the magnitude and 
location of peak pressures between diabetic patients who have ulceration and those who 
have not (Boulton et al. 1983; Fernando et al. 1991). In the present study statistically 

significant differences were not found between the three diabetic study groups. It is not 

valid to compare absolute pressure values collected using different pressure 

measurement systems, due to the effect that the sensor size will have on the magnitude 

185 



of pressure recorded. Generally the apparent pressure measured using a system with a 

smaller sensor size would be larger than the same pressure recorded with a system that 

had a larger sensor size. Most previous work which has documented peak pressure in 

diabetics have used platform systems with a much higher spatial resolution than the 

Pedar system used in the present study. It was therefore, expected that lower peak 

pressures would be recorded in the present study compared to previous work. 

It is also not valid to compare absolute values of peak pressure between in-shoe and 

platform systems. It is generally widely acknowledged that in-shoe pressures are lower 

than barefoot pressures. The standard shoes in the present study had a thick sole, which 

would undoubtedly reduce plantar pressures. Therefore, it was expected that the 

pressures reported in the diabetic groups in the present study would be lower than 

previous reports. 

Although it is not valid to extrapolate peak pressure values from one study to another 

when different pressure measurement systems have been used, the general trends in 

distribution of peak pressure should be the same irrespective of the absolute values 

recorded. In the present study in the diabetic control group three areas predominated, 

with approximately one third of patients having their highest pressure under the heel, 

under the I" metatarsal head or under the 2 nd metatarsal head. In the neuropathic and 

ulcerated group the majority of patients had the peak pressure under their I" or 2" 

metatarsal head. The transfer of peak pressure from the heel to the to the metatarsal 
head with increased neuropathy is well documented (Boulton et al. 1987a; Ctercteko et 

al. 1981; Veves et al. 1991) and it is not surprising that differences in location of peak 

pressures were seen between the groups. Veves and associates found that the peak 

pressure was located under the heel more frequently in the healthy non-diabetic control 

group compared to the diabetics. The present study supported this finding (Veves et al. 
1991). 

The peak pressure under the Ist metatarsal head was elevated in the ulcerated group in 

comparison with the other diabetic groups. This corresponds with the findings of 
Ctercteko who reported a medial shift of force in patients with neuropathic ulceration 
(Ctercteko et al. 1981). The ulcerated group had slightly higher forefoot pressures in 

comparison to the diabetic control group, although this did not reach statistical 

significance. The peak pressure and contact area under the hallux and toes was greater 
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in the non-diabetic reference group compared to the ulcerated and neuropathic group. 
A decrease in toe function and subsequent loading is a common reported finding with 
diabetes as there is a transfer of load from toes to metatarsal heads (Ctercteko et al. 
1981). 

In all areas with the exception of the hallux and toe masks, the pressure: time integral in 

the diabetic groups was higher in comparison to the non-diabetics control group, the 
difference being more notable in the neuropathic groups. The contact time within every 

mask area was increased in the neuropathic and ulcerated groups compared to the 
diabetic control group. The increased mean stance phase duration in the neuropathic 

and ulcerated group will partly explain the increase in pressure time integral and contact 
time within the mask areas. 

Differences in the mean peak pressures between diabetic patients with foot ulceration 

and those without, have been documented elsewhere. However, no statistically 

significant differences were found in the present study. Generally the mean peak 

pressure in most of the foot regions was increased in the ulcerated group, compared to 

the other groups but did not reach statistical significance. In the present study there was 

either no difference in mean peak pressure between the groups or the Pedar system was 

unable to detect any difference due to a lower spatial resolution. It is possible that no 
differences were present between the diabetic groups in the present study due to a high 

prevalence of foot deformity in all the groups. 

In the diabetic control group, 90% of the sample had the presence of foot defon-nity (as 

determined by a foot deformity score greater than equal to one). There was also a high 

prevalence of foot deformity in the neuropathic and ulcerated groups. In a recent paper 
imaging techniques were used to quantify structural aspects of the foot and were 

combined with pressure measurements. The presence of a harnmertoe deformity (as 

determined from measuring the metatarsal phalangeal joint angle) was found to be the 

most important variable for the prediction of peak pressure in the forefoot in patients 

with diabetes (Mueller et al. 2003). In the diabetic control group, a high proportion of 
the sample had either lesser toe retraction or prominent metatarsal heads, which has 

been associated with increased pressures under the metatarsal heads. The prevalence of 
foot deformity has not been cited in many of the previous papers, where greater 
differences between neuropathic and ulcerated groups have been reported. It is not 
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possible to ascertain whether differences between the groups were not found due to the 

lower spatial resolution of the Pedar system or whether no differences were actually 

present. 

Performing measurement of pressure within shoe provides the opportunity to record 
data from multiple bilateral steps, thus minimising the risk of developing an ulcer from 

prolonged barefoot walking in the high risk / ulcerated foot. Because data can be taken 

during normal gait, it also provides the confidence that patients have not altered their 

walking pattern to target a platform (a common problem when taking pressure 

measurements using platform systems). A limitation associated with the Pedar system 
is the size of the pressure sensors. Each Pedar insole contains 99 sensors, whereas the 

FSCAN system (a commercially available in-shoe pressure measuring system) has 

insoles, which contain 999 sensors. The FSCAN system has been extensively used in 

the study of the diabetic foot. It has a much higher spatial resolution than the Pedar, 

which may be beneficial. However, the reliability of the FSCAN has been questioned 
(McPoil et al. 1995). The Pedar system has been shown to have a high level of validity 

and reliability in both bench and dynamic testing (McPoil et al. 1995) and has been 

shown to have a low level of error, particularly at high pressures. The limitation 

associated with a lower spatial resolution will not jeopardise the primary results or 

conclusions of the study. However, unreliable data from a system with a higher spatial 

resolution would. 

5.6 Motion and pressure data 

The essence of this project was to use motion analysis in conjunction with pressure 

measurement. In the present study the only correlation found between joint motion and 

pressure parameters was between passive frontal plane motion at the AJC and the 

pressure time integrals in the heel, midfoot and forefoot areas. No correlation was 
found between passive frontal plane range or any of the ranges of motion at the AJC 

during gait and peak plantar pressures in the any of the mask areas. Tbis finding was 

unexpected as previous literature and podiatric biornechanical theory suggests that 

relationships would be present (Bevans 1992; Root et al. 1977). From previous 
literature, one would assume that patients with a lower passive range of motion would 
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have a lower range of motion during gait and this would result in a higher peak pressure 

and increased chance of developing ulceration. 

In a much smaller study that investigated the impact that ethnic origin had on joint 

mobility, Van Schie also found no relationship between passive range of motion and 

plantar pressures. Van Schie (2002) found that the Asian patients had an increased 

passive range of movement and lower plantar pressures. However, no difference was 
found in the range of movement during gait between the groups and no association was 

reported between any of the foot joint movement data and peak pressure. The present 

study also found no logical association between any dynamic foot joint movement data 

and plantar pressure. The findings of the present study do not support current theories 

about the impact that joint mobility has on plantar foot pressures. 

Although the present study did not find any relationship between joint mobility in the 

foot and high plantar pressures, previous work has found an association. Furthermore, 

limited movement has been associated with the formation of plantar forefoot ulceration. 
Lengthening of the Achilles tendon as a mechanism to increase movement at the ankle 
has been performed in patients with recurrent forefoot ulceration. Indeed this procedure 
has been shown to be successful for facilitating healing of plantar forefoot ulceration. 

The mechanism as to why this procedure is successful may be different than suspected. 
It is possible that limited passive joint movement in the feet is acting as a proxy 

measure for something else that is more important, for example the quality and quantity 

of the soft tissue under the forefoot area. 

In support of this speculation, Morag and associates (Morag et al. 1999), only found 

four gait related parameters entered statistical models for prediction of pressure under 

the Is' metatarsal head and hallux (major sites of ulceration in patients with diabetes). 

Structural aspects including the amount of soft tissue under the metatarsal head were 
found to be more important for the prediction of pressure in the forefoot. Despite 

previous research indicating a relationship between limited passive ankle joint 

dorsiflexion and ulceration, a recent paper by the same group failed to find any 

consistent relationship between passive range of ankle joint dorsiflexion peak pressures 
in diabetic patients (Mueller et al. 2003). Furthermore, the measurement of soft tissue 

thickness under the metatarsal head was found to make a significant contribution in 

explaining the variance of plantar pressure. 
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The patients in the present study were followed for 12 months following gait 

assessment and their ulceration status was monitored. It was hoped that from the 

motion analysis data it might be possible to predict those patients who went on to 
develop ulceration. Although the percentage of patients who went on to develop 

ulceration in the 12 month follow up period was consistent with the literature, because 

the overall sample size of the study was small, the number of patients ulcerating in the 

12 month follow up period within the groups would not allow for any inferences to be 

made. In the present study the percentage of the neuropathic group that ulcerated 
during the 12-month follow up period was 7 %. This level of ulceration is consistent 

with the findings from a much larger study, where 7% of patients ulcerated in a2 year 

postal follow up (Abbott et al. 1998). Murray and associates documented a slightly 
higher ulceration rate; they found 10% of patients developed ulceration in a mean 
follow up period of 15 months. To be able to substantiate any inferences about who 

may ulcerate based on their gait profile a much larger sample size would be needed. 

In the present study no association was found between foot joint movement data and 

plantar pressure. This suggests that other factors for example structural aspects of the 

foot may be more important factors in the generation of high plantar foot pressures in 

diabetes. The findings of the present study fail to support many of the current theories 

about the impact that joint mobility has on the formation of plantar ulceration. After 

review of the current literature it was hypothesised that patients with ulceration would 
have limited movement at the AJC and l't MPJ during gait and would have a different 

motion time curves at the ankle joint complex. No significant differences in joint 

motion time curves were found between the study groups. No relationship was found 

between the passive range of motion at either the AJC or I" MPJ and the range of 

motion during gait. No relationship was found between foot joint movement data and 

plantar pressures. 

5.7 Limitations of the present study 

In the present study the pressure measurements were taken in a standard shoe, as 

opposed to the patient's own shoes. Literature has shown that different types footwear 

can have a major influence on plantar pressures and it was felt that controlling for 
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differences in footwear was valid (Kastenbauer et al. 1998; Lavery et al. 1997). 

However, when studying patients with plantar intrinsic foot ulceration it is useful to 

have a measure of cumulative load throughout an average day (combination of 

magnitude and duration of pressure), as it is likely that these pressures have caused the 

ulceration. Overall the plantar pressure values recorded in the present study may not be 

representative of the actual absolute pressure found under the patient's foot in their own 
footwear. This study failed to take into account the activity levels of patient 
(cumulative loading). This factor may be very important, when determining risk for 

ulceration. Asking patients to document activity levels can be very unreliable, however, 

technical advances can now overcome many of these issues. Armstrong and associates 

are currently using Global Positioning Sytems (GPS) integrated with pedometers to 

document patient activity levels. This method could be used with telemetry in-shoe 

pressure measurement systems to gain an accurate measure of cumulative pressures and 

examine the effect on plantar ulceration. 

The Pedar system used in this study has a relatively low spatial resolution when 

compared to other methods, for example the optical pedobaragraph. As a result 

between group differences in the magnitude of peak pressures may have been lost. If a 

pressure system with a higher spatial resolution had been used, some differences in 

pressure parameters may have been identified between groups, however, based on the 

fact that no correlation was found between joint motion and pressure, the main 

conclusions of the study would remain. Furthermore, the EMT system used to measure 
joint movement has been shown to be highly accurate (less than 10 error in angular 

rotation) and repeatable and we can be confident that there were no differences in joint 

motion between the diabetic groups. 

Although, the present study did not find clinically meaningful differences in gait 

parameters between the diabetic groups, working on an individual basis, gait analysis 

can be used as a mechanism by which to increase our understanding of the 

pathoaetiology of foot ulceration. This is highlighted by examining two cases in the 

study (Patient A and B, full clinical details in Appendix 10). Based on clinical data and 

screening for risk of ulceration, patient A would be classified as having low risk of 
developing ulceration, whereas patient B would be classified as having high risk for 

ulceration. Contrary to the screening predictions, patient A presented with an ulcer to 

the right Ist metatarsal head and hallux yet patient B had never developed an ulcer. By 
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examining the gait related parameters of each patient it becomes apparent why patient B 

may have been protected against developing ulceration. Patient B has a very slow 

walking speed and has very little ankle joint movement (perhaps through use of the 

"hip strategy" as described by Mueller and associates) (Mueller et al 1994a). Patient A 

has a normal walking speed and is probably continuing to use the "ankle strategy" 
during gait, with accompanying severe restriction at the right I't MPJ has resulted in 

increased focal stresses under the I" metatarsal head and hallux (ulceration site). 

One potential limitation with the electromagnetic tracking system used in this study is 

the cabling associated system; it is possible that patients may feel constrained by the 

wires and may not walk naturally. In the development of methods section walking 

speed and double limb support times were used as a measure of overall lower limb 

function. If patients felt constrained by the wires it was assumed that they would 

walk slower and spend a greater proportion of the gait cycle in double limb support. 
Differences in walking speed or double limb support times were found not to alter 

with the addition of the motion analysis equipment. However, it must be noted that 

this applied to a normal population. It is possible that patients with diabetes and 

neuropathy may have reacted differently to the addition of the motion analysis system. 
The electromagnetic tracking system can now be purchased in a telemetry form, 

overcoming the problems associated with the tethering from the sensors to the motion 

capture units, this system would be preferable for use in future studies. 

The pressure measurement system used in this study was an in-shoe system. It was not 

possible to take measurements of the motion at. the Is' MPJ within the shoe. This 

resulted in barefoot joint movement data being compared to pressure data that was 
taken in-shoe. The range of dorsiflexion during barefoot gait may not be representative 

of the range of dorsiflexion in shoe because factors such as rigidity of the sole and 

upper of the shoe may have influenced the amount of dorsiflexion at the I" MPJ. An 

improvement to the study design would be to use a pressure measuring platform system, 

which would enable simultaneous measurements to be taken barefoot of joint motion 
data at the Is' MPJ and plantar pressure data. 
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5.8 Further work 

Despite the rapid expansion of motion analysis technology and its incorporation in to 
other clinical areas, such as assessment and management of patients with cerebral palsy, 
at present there are very few studies describing the gait characteristics in patients with 
diabetes. This study has shown that motion analysis can be performed within the 

confines of clinical practice and has the potential to support much larger scale studies. 

Changes in loading patterns of pressure have been shown to occur in relatively short 

periods of time (Veves et al. 1992a), suggesting that changes in gait may also occur in a 

relatively short time period. This study did not find major differences in movement at 
the AJC between the diabetic and the non-diabetic reference group after long disease 

duration. 

However, it must be noted that the present study did not investigate motion patterns at 
the more proximal joints and did not take into account joint moments. It would be 

valuable to take repeated gait measurements (including proximal joint) in patients who 
have diabetes, to see if changes do occur and to document the magnitude of these 

changes. As there is currently no data on how gait changes with the progression of 
diabetes, a large prospective study collecting both clinical and gait related data is 

needed. If diabetic patients were followed from initial diagnosis (within weeks / 

months) and had annual gait assessment for the next ten years, this would provide 

objective data about how gait changes during the disease process. It may also allow 

prognostic indicators of subsequent diabetes related foot disease, for example 
development of foot deformity and ulceration to be identified. 

The changes in kinematics at the AJC whilst wearing standardised shoes reported in this 

study warrant fin-ther investigation. Many papers have described the effects of specific 
interventions / modification to footwear or orthoses in terms of changes in plantar 

pressures. However, how these interventions alter foot function, in terms of joint 

kinematics remains unanswered. 

Limited passive range of motion at the I" MPJ has been linked with the generation of 
high plantar foot pressures and the formation of ulceration in the diabetic neuropathic 
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foot. The findings of this study show that there is no relationship between the passive 

range of motion and the range of motion during gait. Motion patterns at the I't MPJ 

need to be investigated in a much larger sample size taking into account the structural 

and functional aspects of soft tissues to establish the precise mechanism by which 
ulceration occurs. Development of motion analysis techniques to allow accurate 
measurement of the I" MPJ within the confines of a shoe may further enhance 

understanding why certain treatment modalities are successful in preventing / healing 

ulceration and others are not. 

Developments in pressure measuring hardware and software have been made in recent 

years, making data collection and analysis easier and quicker to perform. Many 

pressure systems now allow for a wide range of pressure variables to be studied, 
including measures of foot geometry and the velocity of the centre of pressure. The 

value of these parameters has not been fully investigated and the value that these 

parameters may have if any, in the prediction of ulceration warrants a prospective study. 

5.9 Overall synthesis 

This study has for the first time documented three-dimensional motion at the AJC 

during gait and dynamic dorsiflexion at the I" MPJ. The data showed no relationship 
between any joint movement data at the AJC and peak pressure or pressure time 
integrals in any of the four study groups. From a review of the literature it was 

expected to find a difference in the motion time curves for the AJC between diabetic 

patients with and without previous foot ulcer, yet differences in the motion time curves 

at the ankle joint complex were not found between any of the study groups. 

The findings of the present study show that there is no basis for the current theory that 

people with a limited passive range of movement will have a limited range of motion 
during gait. The results of this study suggest that there is not a causal relationship 
between limited joint mobility and high pressures. Previous cross sectional reports have 

shown that limited joint mobility is associated with diabetic foot ulceration, however, 

the present study did not support this. Limited joint mobility has been cited as a risk 
factor for ulceration; however, it is possible that limitation in joint movement occurred 

after ulceration (following prolonged periods of non-weight bearing). 
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Diabetic foot ulceration is clearly multi-factorial and gait related parameters (plantar 

pressures and joint movement) represent only a small number of factors, which may be 

important in the formation of plantar ulceration. Although between group differences in 

gait parameters were not found in this study, assessment of gait may be useful on an 
individual basis to increase our understanding why some patients develop ulceration. 
Further technological advances that allow cumulative pressure, shear measurements and 
joint function to be taken alongside imaging techniques to measure the behaviour of soft 
tissue during gait may facilitate a much greater understanding in the pathogenesis of 
diabetic foot ulceration. 
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Appendix 1: 

The formula for calculating the adjusted coefficient of multiple 
correlation 

The adjusted coefficient of multiple determination for evaluating repeatability of waveforms is 

given by 

where R, 2, is given by, 

MNT2 (Yol - Yt) 

T(MN-I) 
R, 2 =1 (Y MNT Y)2 

ut 

j-, t-I (AINT - 1) 

(1) 
where Yt is the average at time point t over NMgait cycles, 

i Xf Af 
Y, = -ZEYYI 

MN #. I j., 
(2) 

and Y is the grand mean over time and is given by, 

mNr 
Y=-zl: l: yy, 

MNT i=l 
(3) 

The coefficient of multiple determination is used for evaluating the repeatability of waveforms. 
In the expression the numerator in expression (1) represents variance about the mean at time 

point t over all test days. The denominator of the ratio represents the total variability about the 

grand mean of all test days 
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Appendix 2: 

CMC data for the first ten diabetic patients recruited into each group. 

Group Subject Sagittal Frontal Transverse 

1 0.948 0.958 0.908 
2 0.878 0.77 - 
3 0.975 0.922 0.77 
4 0.982 0.917 0.533 

5 0.982 0.915 0.887 

Control 6 0.995 0.829 0.781 

7 0.990 0.803 0.720 

8 0.991 0.957 0.855 
9 0.991 0.784 0.920 
10 0.992 0.983 0.835 

Mean 0.972 0.884 0.801 
SD 0.036 0.079 0.121 
1 0.994 0.980 0.859 

2 0.971 0.810 0.942 

3 0.978 0.952 0.869 

4 0.994 0.880 0.962 

5 0.987 0.904 - 
Neuropathic 6 0.989 0.924 0.924 

7 0.978 0.949 0.830 
8 0.964 0.898 0.564 

9 0.966 0.824 0.546 
10 0.960 0.864 0.688 

Mean 0.978 0.889 0.798 
SD 0.013 0.055 0.160 
1 0.960 0.902 0.692 

2 0.977 0.975 0.840 

3 0.988 0.992 0.938 

4 0.986 0.876 0.748 

5 0.994 0.920 0.688 

Ulcerated 6 0.960 0.902 0.692 

7 0.939 0.679 0.898 

8 0.962 0.958 0.887 
9 0.958 0.790 0.412 
10 0.997 0.896 0.742 

Mean 0.972 0.889 0.754 
SD 0.019 0.093 0.152 
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Appendix 3: 

Range and standard deviation of angular positional data for the ankle joint complex in all 
three planes of motion, for the first ten diabetic patients recruited into each group. 

GROUP SUBJECT MEAN SD MEAN SD MEAN SD RANGES RANGEF RANGET 
1 0.68 0.54 0.61 0.40 0.36 0.31 
2 1.06 0.59 0.69 0.25 2.02 1.55 
3 4.26 1.97 3.27 2.87 8.08 5.21 
4 0.98 0.61 1.13 0.97 1.36 1.10 

CONTROL 5 2.47 0.89 1.91 0.71 5.54 2.18 
6 1.85 0.47 2.21 1.60 4.30 3.42 
7 1.37 0.46 1.58 0.70 1.26 0.49 
8 1.49 0.53 0.83 0.54 0.90 0.35 
9 1.03 0.49 1.00 0.41 2.15 0.83 
10 1.88 0.94 2.44 0.71 1.26 1.00 

Mean 1.71 0.75 1.57 0.92 2.72 1.64 
SD 1.04 0.46 0.88 0.78 2.47 1.58 

1 2.19 1.26 1.75 0.40 3.42 0.85 
2 2.18 0.72 2.34 1.19 2.32 1.04 
3 1.85 1.36 1.54 0.80 1.57 0.76 
4 2.24 0.73 2.73 0.91 2.55 0.68 

NEUROPATHIC 5 0.98 0.33 1.74 0.78 2.48 0.81 
6 4.83 2.83 3.27 1.01 2.62 0.75 
7 0.92 0.51 0.76 0.26 1.94 1.43 
8 1.89 0.96 2.18 0.58 1.97 0.97 
9 2.50 0.96 2.10 0.73 4.27 2.14 
10 1.45 0.84 0.62 0.36 2.79 1.40 

Mean 2.10 1.05 1.90 0.70 2.59 1.08 
SD 1.10 0.70 0.81 0.30 0.78 0.46 

1 1.65 0.66 2.28 0.87 5.10 1.48 
2 0.64 0.58 0.85 0.56 2.20 1.68 
3 1.22 0.75 0.31 0.31 0.69 0.39 
4 1.77 1.24 4.66 2.53 4.83 2.31 

ULCERATED 5 0.99 0.64 1.05 0.39 0.95 0.41 
6 1.65 0.66 2.28 0.87 5.10 1.48 
7 1.25 0.42 1.32 0.61 1.25 0.44 
8 2.47 1.11 1.34 0.48 1.38 0.49 
9 1.27 0.58 1.88 0.53 2.24 0.89 
10 0.70 0.35 0.87 0.50 2.19 1.12 

Mean 1.36 0.70 1.68 0.76 2.59 1.07 
SD 0.55 0.28 1.22 0.65 1.75 0.66_ 
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Appendix 4: 

PATIENT INFORMATION SHEET 

Study Title: A study of motion and foot pressures during walking in a diabetic and non-diabetic 
population 
Name of Researchers: Miss D Turner, Dr P Helliwell, Dr B Bodansky, Mrs C Widdows 
You are invited to take part in this research study. As a volunteer you will not benefit directly from 
taking part in the study. However, the findings will lead to a greater understanding of how the foot 
functions in patients with diabetes and hopefully will lead to an improvement of care for patients 
with diabetes related foot problems. 
Back2round information: Diabetes can cause many problems in the foot including loss of feeling, 
loss of movement at joints and foot deformity which results in high pressures underfoot and 
possible symptoms. It is felt that a good range of movement at joints is needed for the foot to 
function properly. There is little information which tells us how the foot works and especially in 
those individuals who have established diabetes related foot problems. 
Study aims: This study aims to determine the ranges of motion at the ankle joint and pressure 
distribution underfoot in a sample of non diabetic volunteers aged 18-80. These findings will then 
be compared to a sample of volunteers with diabetes, so any differences can be highlighted. As a 
volunteer you will not benefit directly from taking part in the study. However, the findings will lead 
to a greater understanding of how the foot functions in patients with diabetes and hopefully will lead 
to an improvement of care for patients with diabetes related foot problems. 
What the study will entail for you: We will measure the way you walk (motion analysis and foot 

pressure measurement). This will involve sensors been taped to the lower leg and heel with 
hypoallergenic tape and wearing pressure measuring insoles in your shoes The measurements will 
take about 30 minutes. You will need to change into a pair of shorts, which will be provided, or you 
could bring a pair of your own. Changing facilities are available. 
If you have diabetes, you will need to be assessed prior to the measurements been taken. This will 
involve testing your ability to determine vibration using a tuning fork and your ability to 
differentiate between hot and cold temperatures and sharp and blunt objects. An assessment will be 

made to determine if you have any joint changes, which are related to your diabetes. You will also 
be asked some questions about any symptoms you have related to your diabetes. Any information 

you give will remain strictly confidential. If you decide to volunteer, you can withdraw at any time 
without having to give a reason and this will not affect your future care. 
ouestions: 
if you are unsure about any part of this study please ask the researcher now. 
IMPORTANT 
If you have a pacemaker please tell the researcher now 
Consent: if you are happy to take part in this study please read and complete the attached consent 
form. 
Contact: Should you require any further advice please contact Miss D. Turner (PhD student) at The 
Spinal Research Unit, University of Huddersfield, Queensgate, Huddersfield, HD I 3DH, Telephone 
(01484) 472657, in office hours. 
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Appendix 5: 

University of Huddersfield 

FA I ILN I CONNLN UFURM 

.k study of motion and foot pressures during walking in a diabetic and non-diabetic 
population 

Name of'Researclier: Dr/Mr/Mrs/Miss/Ms 

The patient shoul(I complete the whole of this sheet Please circle as 
hhnse6flherseLf necessary 

I lave you read the patient information sheet? YES NO 

I laveyou been given a copy to keep? YES NO 

I lave you had the opportunity to ask questions and discuss this YES NO 
study? 

I lave you received satisfactory answers to all of your questions? YES NO 

I lave you received enough information about the study? YES NO 

ýVhoni have you spoken to? .................................................... ............. 

Do you miderstand that vou are free to withdraw from the studV: 

- At any time 

- Without having to give a reason for withdrawing 
- Without affecting your future care 

YES / NO 

Do you agree to take part in the study? YES / NO 

Signed: ............................................................................. 
Date: ............... 

Name (block capital) ........................................................... ........................ 

Signature of person talking consent ......................................... . Date: ............... 

Name (block capitals) ................................................................................... 

0 3, JQ0 \, ý, r'ioll 91 W 
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Appendix- 8: Angular positional data and timings of the ankle joint complex 
during the stance phase of barefoot and shod gait. 

Non 
Motion diabetic Dia betic Neuropathic Ulce rated con trol 

reference 
AP %SP AP %SP AP %SP AP %SP 

HS -0.5 0% -1.5 0% -1.3 0% -1.5 0% 

Max PF -5.2 15% -5.9 15% -5 15% 4.4 13 
Sagittal 

Max DF 8.4 85% 7.3 87 6.9 85% 7 85% 

TOff 4.2 100% 4.1 100% 3.1 100% 3.1 100% 

HS 1.3 0% 0.7 0% -0.1 0% 1.2 0% 
Barefoot Max Frontal -3.6 71% -3.7 76% -3.7 77% -3 4 74% Eve . 

TOff 1.9 100% 0.1 100% 0.3 100% 1.1 100% 

HS 5.86 0% 2.7 0% 2.8 0% 0.7 0% 

Transverse Max Int 8.1 27% 5.1 25% 5.2 22% 2.4 30% 

TOff 4.2 100% 1.7 100% 1.6 100% 0 100% 

HS -0.5 0% -6.7 0% -6.9 0% -4.5 0% 

Max PF -5.2 16% -12.2 14% -12.5 13% -10.5 15% 
Sagittal 

Max DF 8.4 85% 4.3 84% 4.7 82% 5.5 85% 

TOff 4.2 100% -1.8 100% -2.4 100% -1.4 100% 

HS 3.1 0% 2.9 0% 3.2 0% 1.8 0% 
Shod Max Frontal -2.1 65% -1.3 60% -2.3 62% -1.5 52% Eve 

TOff 5.6 100% 3.9 100% 4.2 100% 2.9 100% 

HS 5.8 0% 1.6 0% 2.8 0% 0.9 0% 

Transverse Max Int 8.1 29% 5.1 25% 7.1 26% 3.6 30% 

TOff 4.2 100% 0.6 100% 1.1 100% 0.26 100% 

AP- Angular position, %SP- % of stance phase, HS - Heel strike, Max PF- maximum 
plantarflexion, Max DF-maximurn dorsiflexion, T Off- Toe off angle. 
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Appendix -9: Mean (SD) pressure data in the 10 mask areas in the non-diabetic 
reference, diabetic control, neuropathic and ulcerated groups. 

Non diabetic Control Neuropathic Ulcerated 
reference 

Peak Medial heel 212(54) 234(35) 254(63) 254(56) 
Pressure Lateral heel 214(57) 212(69) 213(66) 243(57) 
(Kpa) Medial midfoot 40(34) 62(43) 46(30) 70(55) 

Lateral midfoot 69(31) 91(42) 73(30) 102(68) 
I' Metatarsal head 226(86) 253(104) 254(98) 296(134) 
2 nd Metatarsal head 210(74) 243(89) 239(72) 242(101) 
3-5 Metatarsal heads 184(63) 199(71) 200(71) 205(77) 
Hallux 225(112) 154(108) 125(92) 155(102) 
2 nd Toe 123(55) 100(72) 77(46) 92(43) 
3-5 Toes 100(52) 77(51) 67(35) 72(46) 

Pressure Medial heel 72(19) 86(35) 105(34) 109(33) 
Time Integral Lateral heel 74(20) 79(29) 100(36) 105(29) 
(Kpa. sec) Medial midfoot 14(13) 26(21) 22(18) 32(31) 

Lateral midfoot 29(17) 40(23) 39(19) 49(31) 
I' Metatarsal head 72(31) 74(42) 110(66) 113(60) 
2"d Metatarsal head 67(27) 77(42) 104(50) 91(47) 
3-5 Metatarsal heads 64(27) 69(32) 88(42) 84(39) 
Hallux 66(40) 40(33) 39(28) 46(34) 
2 nd Toe 33(15) 28(23) 27(15) 29(16) 
3-5 Toes 35(20) 27(21) 31(18) 29(23) 

Contact Area Medial heel 27(5) 26(5) 28(8) 28(5) 
(CM-2 Lateral heel 27(5) 25(5) 27(6) 28(6) 

Medial midfoot 6(5) 9(7) 7(6) 8(5) 
Lateral midfoot 14(5) 15(8) 8(5) 15(4) 
I' Metatarsal head 14(6) 15(7) 8(6) 16(6) 
2 nd Metatarsal head 14(4) 14(4) 15(4) 14(3) 
3-5 Metatarsal heads 25(6) 21(7) 25(6) 25(8) 
Hallux 10(6) 7(4) 7(4) 7(3) 
2 nd Toe 8(2) 7(3) 7(3) 7(3) 
3-5 Toes 12(6) 10(6) 11(5) 10(5) 

Contact Time Medial heel 692(178) 687(221) 852(270) 763(171) 
(rns) Lateral heel 711(177) 702(202) 877(274) 794(158) 

Medial midfoot 474(274) 577(244) 647(309) 637(165) 
Lateral midfoot 615(225) 661(220) 801(282) 723(167) 
I" Metatarsal head 680(235) 654(286) 902(348) 756(263) 
2 nd Metatarsal head 706(217) 724(249) 931(337) 794(234) 
3-5 Metatarsal heads 734(210) 728(256) 963(294) 810(228) 
Hallux 650(251) 521(296) 627(327) 655(264) 
2 nd Toe 607(225) 507(310) 756(360) 629(281) 
3-5 Toes 652(207) 575(309) 756(360) 666(248) 

Maximum Medial heel 267(82) 278(86) 260(89) 313(75) 
force Lateral heel 259(102) 242(84) 256(79) 296(91) 
(N) Medial midfoot 13(14) 27(29) 15(15) 22(24) 

Lateral midfoot 51(33) 67(45) 53(26) 74(52) 
I' Metatarsal head 157(89) 160(79) 148(70) 179(88) 
2 nd Metatarsal head 144(58) 168(87) 159(64) 164(64) 
3-5 Metatarsal heads 182(85) 167(87) 168(64) 188(79) 
Hallux 86(52) 47(39) 44(40) 45(33) 
2 nd Toe 46(27) 33(27) 28(18) 30(14) 
3-5 Toes 55(43) 34(30) 34(21) 29(20) 
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