
15th International Symposium on Particle Image Velocimetry – ISPIV 2023
June 19–21, 2023, San Diego, California, USA

pyPTV - a complete framework to reconstruct physical
flow fields from camera images

R. Barta1,2,∗, C. Bauer1, C. Wagner1,2

1 Institute of Aerodynamics and Flow Technology, German Aerospace Center (DLR), Germany
2 Institute of Thermodynamics and Fluid Mechanics, Technical University of Ilmenau, Germany

∗ corresponding author: robin.barta@dlr.de

Abstract
We introduce a novel probability-based Particle Tracking Velocimetry (PTV) and Data Assimilation (DA)
framework called pyPTV. It is an open-source project under continuous development and is completely
written in the programming language Python. The framework provides a complete routine for processing
measurement data suitable for PTV. Starting from raw camera images, pyPTV includes image processing,
calibration, and a novel PTV algorithm to reconstruct individual seeding particle trajectories (tracks) in a
Lagrangian frame of view. In addition, post-processing algorithms are implemented to refine the tracks. The
framework includes interpolation and DA algorithms, that allow the user to generate physical flow fields
in an Eulerian frame of view. The velocity field of the particle tracks is corrected to be solenoidal, and
the pressure field is estimated. The implemented debugging scripts help fix problems with each subroutine
during processing. To verify the method, a synthetic test case of turbulent Rayleigh-Bénard (RB) convection
(Pr = 6.9, Ra = 1E10) in a cubic cell is generated by direct numerical simulation with massless tracer
particles. A reconstruction accuracy of over 65% with 95% correct tracks is achieved at tracer particle
densities of about 0.1 ppp.

1 pyPTV
The proposed framework includes the necessary tools to convert raw camera images (b16 or tif format)
into particle tracks and to assimilate physical flow fields from the tracks. Specifically, pyPTV includes the
following tools:

• image processing (section 1.1)
(raw camera images→ processed camera images),

• calibration (section 1.2)
(raw calibration target images→ Soloff calibration parameters (Soloff et al., 1997)),

• probability-based particle tracking velocimetry (section 1.3)
(processed camera images & Soloff calibration parameters→ tracks),

• post-processing (section 1.4)
(tracks→ refined tracks),

• interpolation (section 1.5)
(refined tracks→ Eulerian velocity fields),

• data assimilation (section 1.6)
(Eulerian velocity fields→ solenoidal Eulerian velocity fields and pressure fields).

The framework can be found on GitHub via the link provided in Barta et al. (2023). Its use is explained
in a video, also available there, based on a new synthetic test case of turbulent RB convection in a cubic cell
(see section 2). In the following subsections, we briefly discuss the main aspects of each algorithm. A full
explanation can be found in Barta et al. (2023).



1.1 Image processing

The first tool of the framework helps to identify tracer particles and their center coordinate~x(cq)(t) ∈ R2 on
camera images captured at time step t by camera cq with q ∈ [1, · · · ,Nc]. The value Nc is the total number of
cameras observing the flow. The images are processed by applying a mask generated by the tool itself. Next,
all parts of the remaining image that do not change over time must be removed. This can be done using
either a background subtraction method or a POD filter technique, as described in Mendez et al. (2017).
Both of these methods are implemented in pyPTV. Then, an intensity threshold is applied, and the image
is sharpened by first blurring it with a Gaussian kernel and then adding its weighted image. The remaining
image is processed using a subpixel localization algorithm provided by the ’skimage.feature.peaklocalmax()’
Python function. Finally, a 2D Gaussian fit is applied to the coordinates returned by the algorithm on the
raw image to estimate the center coordinate based on the intensity distribution of the particle projection.

1.2 Calibration
A camera model is needed to recover the 3D position ~X ∈ R3 of a tracer particle inside the measurement
domain from camera images. PyPTV uses the nonlinear Soloff function with a parameter vector ~a ∈ R19

defined by:

F~a : R3→ R,
F~a (~X) := a0 +X (X (a9 X +a11 Y +a14 Z +a4)+a13 Y Z +a6 Y +a7 Z +a1) (1)

+Y (Y (a12 X +a10 Y +a15 Z +a5)+a8 Z +a2)

+Z (Z (a17 X +a18 Y +a16)+a3)).

The Soloff camera model contains two Soloff functions, one for each dimension of the camera coordinate
system. Two parameter vectors ~a(cq)

x ,~a(cq)
y ∈ R19 for each camera cq are required to map a 3D position onto

a camera image. Herzog et al. (2021) and Barta et al. (2023) proposed an iterative method that inverts the
Soloff camera model to recover the 3D particle positions from 2D positions of multiple camera images.
The idea behind a camera calibration is to estimate the parameter vectors for each camera observing the
measurement domain. PyPTV provides a calibration in two steps. First, an initial calibration based on
images of a marker target which is moved through the measurement domain at known positions. Second,
a volume self calibration method designed for the Soloff camera function based on the idea of Wieneke
(2008).

1.3 Probability-based particle tracking velocimetry
The main routine of the framework is the PTV algorithm 1.

Algorithm 1 PTV
1: procedure
2: Input: processed images, Soloff parameters
3: for tn ∈ { tstart , . . . , tstart +Ninit−1} do
4: Triangulation: estimate 3D particle positions based on processed images at time step tn
5: Initialisation: build tracks from the first Ninit 3D particle positions
6: for tn ∈ { tstart +Ninit , . . . , tend } do
7: Predict: probability-based approximation of the next track position, velocity and acceleration
8: Tracking: if possible, extend all tracks with appropriate 3D particle positions
9: Delete: delete the extended particle positions from the processed images of time step tn

10: Triangulation: estimate 3D particle positions based on residual images at time step tn
11: Initialisation: build new tracks from the last unused Ninit 3D particle positions
12: Smoothing: correction of track positions, velocities and accelerations to their most probable

values
13: return tracks



The triangulation subroutine combines epipolar geometry and the reprojection of possible candidates
based on the Soloff camera model. The triangulation is estimated for each permutation of the camera
orientation to process each combination of possible candidates. Duplications are then excluded and removed
form the final list by defining a minimum distance between two 3D particles. The pruning vector idea
introduced by Tan et al. (2020) is used to filter the resulting particle list so that each image coordinate is
used only once in the triangulation process of 3D particle positions. Tracks are initialized via the histogram
linking approach in combination with a cost function minimization over all possible candidates, see Herzog
et al. (2021); Barta et al. (2023). The prediction, tracking and smoothing routine are all based on the novel
probabilistic approximation method introduced by Barta et al. (2023). Each component of the track position
~X(t) = [X(t),Y (t),Z(t)], velocity ~V (t) = [VX(t),VY (t),VZ(t)], and acceleration ~A(t) = [AX(t),AY (t),AZ(t)]
is approximated by a set of N Gaussian basis functions, e.g.:

X(t) =
N

∑
i=1

ωi exp
(
−(t−µi)

2

2σ2
i

)
. (2)

Each component has its own set of weights ω, means µ and standard deviations σ. A linear system is set
up to solve for each of these parameters for each component of a given track. The inputs are the positions
of a track and approximations of its velocity and acceleration. White noise with a standard deviation of
twice the maximum position amplitude is added to each position input. The velocity and acceleration inputs
are estimated from the noised position using the Savitzky-Golay filter, see Savitzky and Golay (1964). The
linear system is solved multiple times for each track for different white noises applied to the position input.
A probabilistic prediction of a track is made based on the ensemble average of the resulting weights, means,
and standard deviations. Therefore, system parameters such as search radius and maximum allowed velocity
and acceleration shifts are automatically determined for each track individually. A track is extended by the
most likely 3D position where particles have been imaged in the vicinity of its projection onto the cameras.
The efficiency of the probabilistic approximation method and its prediction of tracks is shown in figure 1.

Figure 1: The function X(t) = t sin(t) (dotted black line) with Nt = 20 data points is noised (dashed blue
line) and used as input for the probabilistic approximation. Here, N = 12 Gaussians are used to approximate
the function. The resulting most probable track positions, velocities and accelerations (dashed red line) are
shown with their corresponding error bands (gray tubes) at the top, middle and bottom respectively. The
different coloured dots at t = 7 represent the prediction of the track values, where the orange dot corresponds
to the prediction with a B-spline and the green dot with the Savitzky-Golay filter. The red dot shows the
prediction based on the probabilistic approximation.



For a test we use the function for the position we use X(t) = t · sin(t). The function is noised with a
small uniform noise of 20% of the maximum position amplitude. Especially for predicting the noised track,
the method outperforms standard spline extrapolation methods like B-splines or the Savitzky-Golay filter
(Schröder and Schanz, 2023). In addition, pyPTV provides a gap tracking method, that can extend a track
over multiple time steps if the extension condition is not satisfied in previous time steps. The gap tracking
method helps in reconstructing long and stable tracks.

1.4 Post processing
PyPTV offers two post processing methods to refine the tracks generated during the PTV processing. The
first is the backtracking method, which runs the PTV algorithm again on each track but backwards in time.
Due to the iterative nature of the PTV algorithm, new tracks are generated at each time step but since
the PTV algorithm only extends the tracks forward in time, many tracks are missing their beginning. The
backtracking algorithm helps to extend the length of the tracks. Second, the track repair algorithm can be
used to join two tracks when the track of the same particle broke apart during the processing, e.g. due to
missing image information or processing errors. These two methods help to refine the particle tracks and
increase their accuracy for reconstructing the observed flow.

1.5 Interpolation
The Eulerian velocity vector fields ~um are interpolated from the Lagrangian velocity fields defined by the
particle tracks using a radial basis function interpolation method, see Fasshauer (2007). This interpolation
method is analytically smooth and thus achieves the estimation of spatial derivatives of the velocity vector
field.

1.6 Data assimilation
Up to this point, the divergence-free correction of an interpolated velocity vector field~um and the assimilation
of a pressure field p are implemented. Both methods use the fractional step (Chorin, 1967, 1968) based on
the Navier-Stokes equation (Navier, 1838) without forcing:

d~u
d t

=
∂~u
∂ t

+(~u ·∇)~u =−∇ p+ν∆~u, (3)

∇ ·~u = 0, (4)

of an incompressible velocity vector field ~u, where ν is the kinematic viscosity of the fluid and du/dt
is the material derivative 1. Note that the above equations are not valid for an interpolated velocity vector
field ~um obtained from the PTV tracks since the latter carries noise induced by processing uncertainties
during track generation and interpolation. Consequently, the fractional step needs to be applied two times
at a certain time step tn. First, to make the velocity vector field ~um incompressible and second, to assimilate
the pressure field from the resulting incompressible velocity field. In detail, the fractional step algorithm is
performed by splitting the partial time derivative in equation (3) into an approximate velocity vector field~u∗
at time step t∗. Rearranging terms yields two equations:

~u∗−~un

t∗− tn
= ∆~un− (~un ·∇)~un, (5)

~un+1−~u∗

tn+1− t∗
=−∇ pn, (6)

1The material derivative is estimated directly from the acceleration ~A of the particle tracks. In general, there is no need to
estimate the partial time derivative of two successive flow fields and add the convection term to estimate the material derivative.
PTV estimates this term directly at each time step. This applies to the advancement of data assimilation techniques in modeling
physical flow fields governed by the Navier-Stokes equations based on PTV data, as there is no need to interpolate the flow fields
into an Eulerian frame of reference.



which sum up to the time-discrete Navier-Stokes equation. Here, index n indicates each property at time
step tn. Note that the incompressibility condition holds true:

∇ ·~un+1 = ∇ ·~un = 0.

Applying the divergence operator to equation (6) yields a Poisson equation for the pressure pn:

∇ ·
(
~un+1−~u∗

tn+1− t∗

)
= ∇ · (−∇ pn) ⇒ ∇ ·~u∗

tn+1− t∗
= ∆ pn. (7)

To make the interpolated velocity vector field ~um divergence free, two steps are required. First, Poisson
equation (7) is solved implicitly on a staggered grid (Piller and Stalio, 2004) with Neumann boundary
conditions by invoking ~u∗ → ~um and a pseudo-pressure field pn → p̃. We then compute the solenoidal
velocity vector field using the Helmholtz-Hodge decomposition (Bhatia et al., 2012):

~usol =~um− (tn+1− t∗)∇ p̃. (8)

Finally, by invoking~un→~usol in equation (5), a velocity vector field~u∗ is estimated. Solving the Poisson
equation (7) again but with ~u∗ the pressure field pn inside the Navier-Stokes equation at time step tn is
determined.

2 Synthetic test case
PyPTV comes with a new synthetic test case that is also available for free. It involves a direct numerical
simulation (DNS) of a turbulent RB convection in a cubic cell with Rayleigh number Ra =1E10 and Prandtl
number Pr = 6.9. The DNS is based on the experimental RB convection cell by Schiepel et al. (2013),
which has similar system parameters. The side length of the cubic cell is H = 500mm and the temperature
difference between heating and cooling plate is ∆T = 6K. Massless tracer particles are added to the flow
generated by the DNS in order to simulate tracer particles. The test case is useful for validating PTV and
DA algorithms because it provides correct physical informations about the position, velocity, acceleration,
pressure, and temperature values of each individual particle. Details of the DNS can be found in Barta
et al. (2023). The considered DNS solves the dimensionless transport equations for mass, momentum, and
temperature using the Boussinesq approximation assuming that the fluid is incompressible:

∂~u
∂t

+(~u ·∇)~u =−∇p+
√

Pr/Ra∆~u+T~e3, (9)

∂T
∂t

+~u ·∇T =
√

1/(PrRa)∆T, (10)

∇ ·~u = 0. (11)

Here,~u = (uX ,uY ,uZ) is the velocity vector field, p the pressure field, T the temperature field, and~e3 the
unit vector in vertical Z-direction. Equations (9)-(11) govern the problem of RB convection in a rectangular
box with a heated bottom plate (T = Tw), a cooled top plate (T = Tc) and adiabatic side walls depicted in
figure 2. Each velocity component in equations (9)-(11) has been made dimensionless with the free-fall
velocity ûref = (λg∆T H)1/2, the spatial coordinates with the cell height X̂ref = H, the time coordinate with
the corresponding reference time t̂re f = X̂ref/ûref and the pressure with the reference pressure p̂ref = ρû2

ref,
where ρ is the fluid density. The temperature is non-dimensionalized by T̂ref = ∆T with ∆T = Tw−Tc and
then shifted by T0 = (Tw−Tc)/(2∆T ) to values between -0.5 and 0.5. No-slip and impermeability boundary
conditions are applied to all walls. In addition, the top and bottom plate are modelled isothermally, while
the side walls are modeled adiabatically. Furthermore, the dimensionless equations (9)-(11) are discretized
spatially with a fourth-order accurate finite volume scheme detailed in Kaczorowski and Wagner (2009).



In time the equations are discretized with a second-order accurate Euler-leapfrog scheme. According to
Wagner et al. (1994), the temporal discretization of equation (9) for a Leapfrog time step yields

1
2∆t

(~un+1−~un−1)+(~un ·∇)~un =−∇pn +
√

Pr/Ra∆~un−1 +Tn~e3, (12)

where index n indicates the current discrete time step tn. ∆t denotes the time increment between two time
steps. To integrate equation (12) in time, the fractional step introduced by Chorin (1967, 1968) is applied.

Y

Z

X

H

H

H

T = Tc

T = Tw

∂T/∂n = 0

g

Z

Y
X

T

-0.06 0 0.06

0
1

opacity

Figure 2: Left: cubic RB convection cell with volume H3 and H being the cell height. All walls are no-slip
boundaries; top and bottom walls are iso-thermal and side walls are adiabatic. Right: particle tracks from
DNS coloured with the corresponding particle temperature. NDNS = 64000 particles.

After an initial transient, when the simulation reaches a statistically stationary state (t = t0) NDNS =
64000, massless tracer particles are homogeneously seeded and tracked in physical time for about 20 con-
vective free fall times t̂ref. About 2/3 turnovers of the large-scale circulation (LSC) can be observed Sakievich
et al. (2016). The LSC corresponds to a metastable dynamics typical for RB convections in closed domains,
see Brown and Ahlers (2006). Figure 2 shows all particle trajectories extracted from the DNS. A rapid mix-
ing of the initially homogeneous particle distribution is observed due to the intense turbulent fluctuations
that develop for this high Rayleigh number. The trajectories are coloured with the corresponding particle
temperature. The LSC is clearly visible as a warm upward motion in the left corner and a cold downward
motion in the right corner of the cell shown in figure 2.

2.1 Image generation
Camera images are used as input for the pyPTV framework. They capture the motion of the tracer particles
from the DNS (section 2) at discrete time steps. The synthetic test case used to generate the results uses
Nc = 4 cameras. These cameras observe the flow from one of the four sidewalls of the cubic measurement
domain, see figure 2. The resulting domain from the DNS is scaled by a factor of H = 500mm to reproduce
scales similar to the experiment mentioned in 2. Each camera image has a resolution of 800×800 pixels and a
16-bit grayscale channel. Np particles with 3D positions ~X are mapped to image coordinates~x=(xc,yc) using
the Soloff camera model. Each particle is initialized with an intensity value I randomly chosen between
I1 = 1500 and I2 = 2500. The intensity distribution of the projected particle is estimated via a normalized
Gaussian distribution with standard deviation of 1 pixel and the intensity I as amplitude. The imaged particle
covers a 3×3 pixel wide area around the projection center (xc,yc). About 68% of the total intensity are
located on the images. Camera noise is added to each pixel and it is uniformly randomized between 0 and
the current pixel intensity divided by 20, resulting in a signal-to-noise ratio of 20 : 1. The synthetic images
are generated at a given recording frequency f , measured in Hz. The physical time scales of the DNS are
recovered before the images are generated. The intensity fluctuations from one time step to another are
mimicked by multiplying a uniform distribution, which allows an intensity shift of maximum 20%. If the
intensity distributions of several projected particles overlap at a pixel, the value of the brightest intensity
is assigned. The recording frequency f and the number of particles can be adjusted to generate test cases



of increasing levels of difficulty. The studied cases range from 0.02 ppp for the lowest number of particles
(Np = 16000) up to a particle density of about 0.1 ppp for the highest number of particles (Np = 64000). At
8Hz recording frequency the particles move about 6 pixels between each time step on the camera images.
For 4Hz this shift is doubled.

2.2 Validation
Figure 3 shows the results of processing different test cases with pyPTV without post processing for 50 time
steps. For details on the parameters see Barta et al. (2023). Each reconstructed track is compared to the
ground truth information of the particles seeded in the DNS. If both the particle location and its connection
to the next particle are correct compared to the ground truth particles, the track is considered as correct.
Figure 3 left visualizes the mean percentage of reconstructed particles that match with the ground truth are
visualised for each test case with Np ∈ {16000,32000,48000,64000} particles and f ∈ {4,8} Hz recording
frequency. Figure 3 right shows the corresponding percentage of correct tracks.

Figure 3: Left: the percentage of track points that match the ground truth information. Right: the percentage
of all tracks that are considered correct because their assigned identification number persists over time. The
data for two different recording frequencies: f = 8Hz (red) and f = 4Hz (green), is presented.

Figure 4 shows all tracks reconstructed while processing the case with Np = 16000 particles and 4 Hz
recording frequency. The color coding with the vertical velocity component Vz shows the LSC along a cell
diagonal (LSC diagonal). The tracks are processed with the DA routine. Figure 5 compares the resulting
solenoidal Euler velocity vector field and the assimilated pressure field along the LSC diagonal and its off-
diagonal with the corresponding fields from the DNS at a given time step. The corrected velocity vector
fields are similar to the DNS fields in their values, shape and reconstructed structures. Differences can
barley spotted with naked eye. The assimilated pressure field is undetermined by a constant but its shape is
similar to the pressure field extracted from the DNS. However, both pressure fields have the same minima
within a vortex of the velocity vector field and higher values at the corners of the cell. Along the LSC
off-diagonal the pressure field is more similar to the DNS field than along the LSC diagonal. The main
difference comes from neglecting the force term in the fractional step, see section 1.6, which is T ~e3 in the
case of RB convection.



Figure 4: All tracks generated with pyPTV while processing the synthetic test case with parameters Np =
16000 and f = 4Hz. The tracks are coloured according to their vertical velocity component Vz.

Figure 5: Assimilated solenoidal velocity and pressure fields based on the tracks generated from the syn-
thetic test case with parameters Np = 16000 and f = 4Hz. The fields are visualized along the LSC diagonal
and its off-diagonal with a resultion of 32×32 data points. All velocity vector fields are coloured according
to their vertical velocity component Vz. The assimilated pressure field is undetermined by a constant. There-
fore, the pressure is coloured by its normalized value for each plot.



3 Conclusion
An overview of the pyPTV framework is given. Its performance in reconstructing particle trajectories via
PTV and assimilating physical flow fields from the tracks is validated using a synthetic turbulent RB con-
vection case generated using DNS.

In figure 3 the tracks generated by pyPTV are compared with the ground truth information from the DNS
for multiple test of generated synthetic images by varying the recoding frequency and the number of tracer
particles. As the number of particles is increaded, the number of reconstructed particles varies from nearly
100% for 16000 particles (0.02 ppp) to 65% for 64000 particles (0.1 ppp) for a recording frequency of 4 Hz.
The results are similar for the recording frequency of 8 Hz. The percentage of correct tracks based on the
reconstructed particles varies from nearly 100% for 16000 particles (0.02 ppp) to 95% for 64000 particles
(0.1 ppp) for a recording frequency of 4 Hz. Again similar values are obtained at a recording frequency of 8
Hz.

The tracks are used to test the data assimilation routine. A solenoidal velocity vector field is estimated
from the interpolated velocity vector field and used to assimilate a pressure field based on the approach
discussed in 1.6. Figure 5 compares the results of the assimilation with the velocity and pressure fields ex-
tracted from the DNS at the same spatial resolution. Both fields are compared along the LSC diagonal and
off-diagonal. The assimilated fields are similar to the DNS fields. The data assimilation routine of pyPTV
is a first setup for future work. It can be seen as a playground to start DA research based on mesh-free or
mesh-based assimilation methods, see Bauer et al. (2022).

Future work will test pyPTV and its features on various test cases such as experimental data. PyPTV
is developed with the goal of making PTV more accessible and easier to use for individual purposes. The
novel framework includes all tools needed to process raw camera images up to the assimilation of physical
flow field. Further improvement and collaboration within the PTV community is of our interest to advance
this area of research.

References
Barta R, Bauer C, Herzog S, Schiepel D, and Wagner C (2023) pyPTV: A comprehensive framework for

probability-based particle tracking velocimetry and data assimilation. Journal of Computational Physics
(under review)

Bauer C, Schiepel D, and Wagner C (2022) Assimilation and extension of particle image velocimetry data of
turbulent Rayleigh–Bénard convection using direct numerical simulations. Experiments in Fluids 63:1–
17. DOI https://doi.org/10.1007/s00348-021-03369-3

Bhatia H, Norgard G, Pascucci V, and Bremer PT (2012) The helmholtz-hodge decomposi-
tion: A survey. IEEE Transactions on Visualization and Computer Graphics 19:1386–1404. DOI
https://doi.org/10.1109/TVCG.2012.316

Brown E and Ahlers G (2006) Rotations and cessations of the large-scale circulation in
turbulent Rayleigh-Bénard convection. Journal of Fluid Mechanics 568:351–386. DOI
https://doi.org/10.1017/S0022112006002540

Chorin AJ (1967) A numerical method for solving incompressible viscous flow problems. Journal of Com-
putational Physics 2:12–26. DOI https://doi.org/10.1016/0021-9991(67)90037-X

Chorin AJ (1968) Numerical solution of the Navier-Stokes equations. Mathematics of Computation 22:745–
762. DOI https://doi.org/10.2307/2004575

Fasshauer GE (2007) Meshfree approximation methods with MATLAB. volume 6. World Scientific

Herzog S, Schiepel D, Guido I, Barta R, and Wagner C (2021) A probabilistic particle tracking framework
for guided and brownian motion systems with high particle densities. SN Computer Science 2:1–20. DOI
https://doi.org/10.1007/s42979-021-00879-z



Kaczorowski M and Wagner C (2009) Analysis of the thermal plumes in turbulent Rayleigh–Bénard con-
vection based on well-resolved numerical simulations. Journal of Fluid Mechanics 618:89–112. DOI
https://doi.org/10.1017/S0022112008003947

Mendez M, Raiola M, Masullo A, Discetti S, Ianiro A, Theunissen R, and Buchlin JM (2017) POD-based
background removal for particle image velocimetry. Experimental Thermal and Fluid Science 80:181–
192. DOI https://doi.org/10.1016/j.expthermflusci.2016.08.021

Navier CL (1838) Navier Stokes equation. Chez Carilian-Goeury (Paris)

Piller M and Stalio E (2004) Finite-volume compact schemes on staggered grids. Journal of Computational
Physics 197:299–340. DOI https://doi.org/10.1016/j.jcp.2003.10.037

Sakievich P, Peet Y, and Adrian R (2016) Large-scale thermal motions of turbulent Rayleigh-Bénard convec-
tion in a wide aspect-ratio cylindrical domain. International Journal of Heat and Fluid Flow 61:183–196.
DOI https://doi.org/10.1016/j.ijheatfluidflow.2016.04.011

Savitzky A and Golay MJE (1964) Smoothing and differentiation of data by simplified least squares proce-
dures. Analytical Chemistry 36:1627–1639. DOI https://doi.org/10.1021/ac60214a047

Schiepel D, Bosbach J, and Wagner C (2013) Tomographic particle image velocimetry of turbulent Rayleigh-
Bénard convection in a cubic sample. Journal of Flow Visualization and Image Processing 20. DOI
https://doi.org/10.1615/JFlowVisImageProc.2014010441

Schröder A and Schanz D (2023) 3d Lagrangian particle tracking in fluid mechanics. Annual Review of
Fluid Mechanics 55. DOI https://doi.org/10.1146/annurev-fluid-031822-041721

Soloff SM, Adrian RJ, and Liu ZC (1997) Distortion compensation for generalized stereoscopic par-
ticle image velocimetry. Measurement Science and Technology 8. DOI https://doi.org/10.1088/0957-
0233/8/12/008

Tan S, Salibindla A, Masuk AUM, and Ni R (2020) Introducing openlpt: new method of removing
ghost particles and high-concentration particle shadow tracking. Experiments in Fluids 61:1–16. DOI
https://doi.org/10.1007/s00348-019-2875-2

Wagner C, Friedrich R, and Narayanan R (1994) Comments on the numerical investigation of Rayleigh
and Marangoni convection in a vertical circular cylinder. Physics of Fluids 6:1425–1433. DOI
https://doi.org/10.1063/1.868257

Wieneke B (2008) Volume self-calibration for 3d particle image velocimetry. Experiments in Fluids 45:549–
556. DOI https://doi.org/10.1007/s00348-008-0521-5


	pyPTV
	Image processing
	Calibration
	Probability-based particle tracking velocimetry
	Post processing
	Interpolation
	Data assimilation

	Synthetic test case
	Image generation
	Validation

	Conclusion

