
A Gravity Compensation Strategy for On-ground Validation of

Orbital Manipulators

Marco De Stefano1, Ria Vijayan1, Andreas Stemmer1, Ferdinand Elhardt1 and Christian Ott2

Abstract— The on-ground validation of orbital manipulators
is a challenging task because the robot is designed for a gravity-
free operational environment, but it is validated under the
effect of gravity. As a consequence, joint torque limits can be
easily reached in certain configurations when gravity is actively
compensated by the joints. Hence, the workspace for on-
ground testing is restricted. In this paper, an optimal strategy
is proposed for achieving gravity compensation of an orbital
manipulator arm on ground. The strategy minimizes the joint
torques acting on the manipulator by solving an optimization
problem and it computes the necessary forces to be tracked by
an external carrier. Hence, full gravity compensation is achieved
for the orbital manipulator. Experimental results validate the
effectiveness of the method on the DLR CAESAR space robot,
which uses a cable suspended system as external carrier to
track the desired gravity compensation force, resulting from
the proposed method.

I. INTRODUCTION

Orbital manipulators are a promising technology to per-

form servicing tasks such as assembly, maintenance, repair,

and debris removal in orbit. This was demonstrated in recent

mission studies, see e.g. the COMRADE project [1], the

e.Deorbit or DEOS mission [2], [3] and the survey on

robotic capture in space in [4]. A common characteristic

of the manipulators proposed in these mission studies is

that they are optimally designed to operate in zero-g (0-g)

environment. This factor influences the dimensioning of the

joint motors in terms of weight, power and corresponding

torque limits. Prior to the launch, an on-ground validation

of control algorithms for the orbital manipulator is required.

However, the manipulator on ground also experiences the

gravitational force, which needs to be actively compensated.

A direct compensation at motor level, can negatively affect

the workspace of the manipulator during the on-ground

testing. In particular, the manipulator can only reach con-

figurations where the torque demanded does not exceed its

limits defined for 0-g environment operations.

Several technologies can be adopted to recreate 0-g con-

ditions on ground to validate an orbital manipulator [5],

[6]. These can be classified into air bearing, 0-g parabolic

flights, neutral buoyancy, hardware-in-the-loop simulator and

cable suspended systems. Air bearing systems are floating

platforms on a flat floor (see [7], [8], [9]). Pressurised air

establishes a thin film between the flat floor and a platform.

Hence, the weight of the moving section, e.g. a link of the

robotic arm can be compensated. Such a system was used to
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Fig. 1: On-ground validation of a 7 dof orbital manipulator arm
(CAESAR in [12]) with an external carrier (cables suspended
system) used for gravity compensation.

test the control algorithms of the Japanese free-floating robot

[10], the Canadarm and the European Robotic Arm (ERA).

However, air bearing systems allow the simulation of 0-g

condition only in two dimensional space, which includes one

rotation and two translations [11]. In 0-g parabolic flights,

an aircraft flying on a parabolic trajectory is exploited to

achieve micro-gravity conditions. In [13], experiments were

performed in a 0-g parabolic flight for a four degree-of-

freedom robot achieving 0.02g for only 20 seconds, which

duration is not sufficient for a complete validation of complex

operations. Another technology for 0-g simulation exploits

a water pool to achieve neutral buoyancy, such that the

submerged body has a tendency to float as it would be in

orbit. The advantage is having six dimensional motion within

the fluid and without having time constraints [14], but the

drawback is the drag forces induced by the fluid, which

generate hydrodynamics effects that distort the dynamics

[15]. Hardware-in-the-loop technologies exploit a dynamic

model to reproduce a desired behaviour (e.g. floating dynam-

ics) on the hardware. Usually, admittance controlled robot(s)

equipped with force-torque sensors are employed [16], [17].

In cable suspended systems, the gravity force is compensated

by a system composed of cables, which generate the same

force amplitude but in opposite direction of the gravity force

vector [18]. This system is currently employed for the on-

ground demonstration of assembly tasks in orbit within an

ESA project [19]. A controller for modulating the tension in

the support cable of a robot to the counterweight is proposed

in [20], however, only in a purely vertical direction. A further

way to compensate the gravity force acting on a manipulator

is to compute it through its dynamics model and actively

command it to the joints [21].
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Recently, the CAESAR manipulator arm, was presented

as a robotic solution to perform servicing tasks in orbit

[12]. The CAESAR arm has 7 degrees-of-freedom (dof)

and its design has been optimized for space operation.

However, for on-ground validation its workspace is limited

by the influence of the gravitational force, that if directly

compensated at joints level could exceed its torque limits.

To this end, a carrier system (based on cables suspension)

is exploited to support the gravity force which CAESAR is

subjected to and the set-up is shown in Fig. 1.

Although cable suspended systems already exist in lit-

erature, they are usually employed in tasks where only a

rigid body is considered (see e.g. [22], [23], [20]). Usually,

the tasks of these systems is to position the rigid-body in

the workspace and/or to sustain its weight for free-floating

dynamics emulation. In contrast to the rigid body case, an

orbital manipulator is a multi-body system whose inertia

matrix changes as function of its configuration. Hence, also

the required gravitational force to be tracked by an external

carrier changes and a solution needs to be sought.

The contribution of this paper is twofold. First, a strategy

is proposed in order to achieve the gravity compensation and

therefore the on-ground validation of an orbital manipulator.

The strategy splits the gravity compensation between internal

torques of the manipulator and external forces, which can be

tracked by an external carrier. To this end, an optimization

problem is formulated in order to distribute the gravitational

torques between the manipulator and the carrier system.

The method is firstly presented for the general case of an

orbital arm with an external admittance-controlled carrier.

The existence of solution is also presented considering that

the carrier could not have a full actuation system to follow all

the external force-components. Secondly, for the on-ground

validation, a cable suspended system is exploited to track

the force resulting from the proposed method. Finally, the

gravity compensation of the CAESAR arm is achieved and

experimental results are presented.

The paper is structured as follows. Sec. II summarizes

the problem statement and Sec. III describes the proposed

method. Validation results are presented in Sec. IV with

experiment using the CAESAR arm in Sec. IV-B. Sec. V

concludes the paper.

II. PROBLEM STATEMENT

A limiting factor for the on-ground validation of space ma-

nipulators is that the joint motors are designed for operational

requirements in a 0-g environment. Therefore, they cannot

support the torque demands in a 1-g environment in the

complete workspace. This factor can occur at several robot

configurations in the workspace when the configuration-

dependent gravitational torques exceed any one of the in-

dividual joint torque limits. As a result, the workspace of

operation for on-ground testing is limited.

To clearly show the statement of the problem, let us

consider the CAESAR arm in a static position as shown in

Fig. 2. To actively compensate its weight, the robot has to

apply torques and the most loaded joints are J2 and J4 with
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Fig. 2: A 7 dof space manipulator arm. C is the coupling point
and Γc is the required force/torque wrench which a carrier needs
to track. Jn is the rotational axis of the n-joint.

corresponding values τ2 = 369 Nm and τ4 =−135 Nm. These

values clearly exceed the joint limits of the manipulator

(± 80 Nm) defined for space operation in [12].

The contribution of the paper is to define a general method

which can deliver a desired Cartesian wrench (ΓΓΓc in Fig. 2)

as input to an external carrier while minimizing the joint

torques of the orbital manipulator to respect its torque limits.

III. PROPOSED METHOD

In this section, we firstly introduce the modelling of the

system and how the gravity forces can be compensated

for a generic manipulator-carrier system. To this end, a

solution is proposed to provide an optimal distribution of

the gravitational torques between the manipulator and the

carrier system.

A. Modeling and objective:

Let us introduce the dynamics of a generic manipulator

system, as follows,

HHH(qqq)q̈qq+CCC(qqq,,, q̇qq)q̇qq+GGG(qqq) = τττ + JJJT
c (qqq)ΓΓΓc (1)

where qqq ∈ R
n are joint angle positions for a robot with n

joints, and q̇qq ∈ R
n are the joint rates. HHH(qqq) ∈ R

n×n and

CCC(qqq,,, q̇qq) ∈R
n×n are the robot’s inertia and Coriolis matrices,

and GGG(qqq)∈R
n is the gravitational torque acting on the robot

joints. The control torque input to the joints is τττ ∈ R
n. The

external wrench ΓΓΓc ∈ R
6 acting on the system at a contact

point C, produces a torque on the joints, transformed with

the Jacobian JJJc(qqq) ∈R
6×n at the contact point. The external

wrench is composed of ΓΓΓc =
[

FFFT
c TTT T

c

]T
where FFFc ∈ R

3

and TTT c ∈ R
3 are the external force and torque respectively.

The control input τττ in (1) can be split into τττg for gravity

compensation and τττc to fulfill the desired control tasks, as:

τττ = τττg + τττc. (2)

On-ground robot control methods traditionally employ the

gravity-compensation technique to compensate the gravita-

tional torques acting on the joints i.e. by actively applying

τττg =GGG. Then a suitable feedback-control input τττc is designed

in joint or Cartesian space (e.g. PD+ control [24], [25])

to achieve the control task. However, the configuration-

dependent gravitational torques, can exceed the individual



joint torque limits. This means that active gravity com-

pensation cannot be achieved in these configurations by

the manipulator alone. The objective is to distribute the

gravitational load acting on the robot, GGG, between the internal

joint torques τττg and the components of external wrench ΓΓΓc,

which can be applied by an external carrier system. Then,

the following relation needs to be satisfied, which does not

disturb the control task,

GGG = τττg + JJJT
c ΓΓΓc. (3)

ΓΓΓc is the external wrench at the contact point (e.g. C in Fig. 2)

that a carrier needs to track. Depending on the design of the

external carrier and the dofs, it may be possible to apply

only certain components of force and/or torque at the contact

point. Therefore, let γγγc ∈R
m be the independent components

of the wrench that can be applied at the contact point C where

1 ≤ m ≤ 6. Further, let BBBT ∈R
6×m be the wrench basis, that

maps γγγc to the dimension of the full wrench space. Then the

resulting wrench ΓΓΓc in (3) is:

ΓΓΓc = BBBT γγγc. (4)

For example, if the carrier system can only apply a force in

the z-direction, then BBB =
[

0 0 1 0 0 0
]

and γγγccc ∈R
1.

Therefore, substituting (4) into (3) we have,

GGG = τττg + JJJT
c BBBT γγγc. (5)

B. Influence of External Wrench for Gravity Compensation

The contact point C between the robot and the external

carrier system can be located at different parts of the manipu-

lator and it determines which of the joint torques the external

wrench can influence. Consider that joint numbers 1,2, .., i,
where i ≤ n, lie between the fixed-base and contact point of

the robot chain. This implies that the Jacobian transformation

to the contact point will have the following structure,

JJJT
c =

[

JJJT
A

000n−i×6

]

(6)

where JJJA ∈ R
6×i is the Jacobian, which transforms the

wrench applied at point C to torques on the joints in the

set A = {x | x ∈ N, x ≤ i}. The zeros in the lower rows of

the Jacobian show that the applied wrench has no influence

on the joints in the set B = {x | x ∈ N, i < x ≤ n}. This is

because the joints in set B are between the contact point and

the free end-effector in the robot chain. This implies that we

can further simplify (5) using (6) and split the terms between

joints in set A and B as,

GGG =

[

GGGA

GGGB

]

=

[

τττgA

τττgB

]

+

[

JJJT
ABBBT γγγc

000n−i×1

]

(7)

where GGGA and GGGB are the gravitational torques of the joints

in set A and B. Similarly, τττgA and τττgB are the manipulator

gravity compensating torques for the joints in the set A and

B. As we see from (7), the external wrench applied cannot

influence joints in the set B, therefore these joints shall be

commanded with the gravitational torques computed from

the dynamics model as they are, i.e τττgB = GGGB. Then from a

practical perspective, the location of C should be chosen such

that GGGB does not exceed the torque limits for the workspace

of interest. This needs to be taken into account in the design

stage considering that the joints closer to the free end-effector

of the robot anyway experience less gravitational torques.

The remaining joint torques τττgA and the external wrench

components γγγccc can be designed to distribute the gravitational

load between the two quantities while satisfying some opti-

mality criteria such that the following relation from (7) holds,

GGGA = τττgA + JJJT
cAγγγc (8)

where the contact Jacobian JJJT
cA = JJJT

ABBBT . Note that in general

JJJT
cA is not square and therefore not invertible. Hence we

cannot solve for γγγc directly by, for example, setting the

torques τττgA = 000. Hence, an optimal solution is sought for

the distribution of external forces and joint motor torques.

C. Optimal Solution

In order to optimally distribute the gravity-compensation

torques between the joint motors and the external carrier,

we define the following optimization problem using (8) as a

constraint,

min
(τττgA,γγγccc)

1

2

[

τττT
gA γγγT

c

]

[

WWW τ 000

000 WWW γ

][

τττgA

γγγccc

]

(9)

s.t. GGGA = τττgA + JJJT
cAγγγc (10)

where WWW τ ∈R
i×i and WWW γ ∈R

m×m are the weighting matrices

for the joint torques and external wrench components. Note

here that the input from the robot τττgA, and the input from the

carrier system γγγc, are not coupled in the cost function in (9),

since the inputs come from two separate hardware systems.

To solve the optimization problem, the Lagrange multi-

plier methods is considered and the objective function is

augmented by the constraint equations through a set of non-

negative multiplicative Lagrange multipliers, λλλ ≥ 0 as,

L=
1

2

[

τττT
gA γγγT

ccc

]

[

WWW τ 000

000 WWW γ

][

τττgA

γγγc

]

+λλλ TTT (GGGA−τττgA−JJJT
cAγγγc).

(11)

The minimum of the modified function L satisfying the

constraint, is computed as

∇L(xxx,λλλ ) = 0, with xxx = (τττgA,γγγc) (12)

which leads to,

∂L

∂τττgA

=WWW τ τττgA −λλλ = 0 (13)

∂L

∂γγγc

=WWW γγγγc − JJJcAλλλ = 0 (14)

∂L

∂λλλ
= GGGA − τττgA − JJJT

cAγγγc = 0 (15)

From (13) and (15), the Lagrangian multiplier results as

λλλ =WWW τ (GGGA − JJJT
cAγγγc) (16)

and substituting (16) in (14), the optimal wrench compo-

nents, γγγ∗c , result in

γγγ∗c =(WWW γ + JJJcAWWW τ JJJTTT
cA)

−1JJJcAWWW τ GGGA. (17)



TABLE I

Case Weight
Dimensionality Singularity-

i > m i = m i < m independent

(i) WWW τ > 0, WWW γ = 0
γγγ∗c = (JJJcAWWW τ JJJTTT

cA)
−1JJJcAWWW τ GGGA

γγγ∗c = JJJ−T
cA GGGA and τττ∗gA = 000 ill-posed

τττ∗gA =
(

III −JJJTTT
cA(JJJcAWWW τ JJJTTT

cA)
−1JJJcAWWW τ

)

GGGA

(ii) WWW τ = 0, WWW γ > 0 γγγ∗c = 000 and τττ∗gA = GGGAAA

(iii) WWW τ > 0, WWW γ > 0 γγγ∗c as in (17) and τττ∗gA as in (18)

Optimal solutions of problem in (9) and (10) summarized for various cases of weighting matrices, dimensionality and singularity.
i: dimension of the gravity-compensated joints, m: dimension of the external wrench components (carrier).

The optimized joint torques, τττ∗gA, can be obtained by substi-

tuting (17) in (10), which results as follows,

τττ∗
gA =

(

III− JJJTTT
cA(WWW γ + JJJcAWWW τ JJJTTT

cA)
−1JJJcAWWW τ

)

GGGA. (18)

The solutions in (17) and (18) optimally distribute the

gravitational torques GGGA between γγγc and τττgA. In particular,

(17) is the desired force to be tracked by the external carrier

and (18) is the joint torque input to the manipulator for the

joints in the set A. The existence of solutions (17)-(18) is

summarized in Table I and discussed as follows, where AAA> 000

denotes that the generic matrix AAA is positive definite.

Case (i): WWW τ > 000 and WWW γ = 000. The existence of the so-

lution depends on the dimensionality of the external wrench

of the robot-carrier and the rank of the Jacobian:

- When i > m the dimension of the joints i, that can be

gravity-compensated, is greater than the dimension of the

external wrench components m. The solution exists only

in singularity-free robot configurations. In this case, the

joint torques resulting from the optimized external wrench

components, JJJT
cAγγγ∗ccc, projects GGGA onto the range space (image)

of JJJT
cA, and τττ∗gA in (18) projects GGGA onto the nullspace

(kernel) of JJJT
cA. In other words, the joint torques that cannot

be generated by the external wrench carrier are actively

compensated by the manipulator joint torques.

- When i = m the dimension of the joints i is equal to the

dimension of the external wrench components m. In this case,

JJJT
cA is square and in singularity-free robot configurations,

γγγ∗c is obtained using the inverse of the transposed-Jacobian.

In other words, the carrier system can fully compensate the

gravity torques and no joint torques need to be applied.

- When i < m the dimension of the joints i, that can be

gravity-compensated, is less than the dimension of the exter-

nal wrench components m. In this case, setting WWW γ = 000 makes

the problem ill-posed. This does not represent a limitation in

the physical capability of the carrier system, but only in the

problem definition because there is no metric with respect to

which an optimal solution is to be solved. Note that the least

cost in (9) would be obtained for τττ∗gA = 000. In this case, being

JJJT
cA a i×m matrix, with i < m, the problem is still under-

constrained, as seen from (10). This leads having several

solutions for γγγc, but since WWW γ = 000, none of the solutions can

be chosen, hence, the problem is ill-posed. Then, to have

an optimal solution when i < m it is convenient to set the

weight WWW γ to a non-zero value.

Case (ii)1: When WWW τ = 000 and WWW γ > 000, there is no

limitation on internal joint motor torques, then γγγ∗c = 000,

τττ∗gA = GGGA and the solution is singularity-independent.

Case (iii): When WWW τ > 000 and WWW γ > 000, an optimal solution

always exists. This is independent of the rank of the Jacobian

or the dimensionality of the external wrench components,

since the invertibility of the weighted terms in (17) and (18)

is determined by the positive-definiteness of WWW γ . Therefore,

a solution exists even for singular-configurations of the robot.

The proposed strategy is summarized with a schematic in

Fig. 3. From the measured joint positions, qqq, the dynamics

and kinematics (Dyn./Kinem.) of the manipulator arm is

computed. The corresponding Jacobian at the coupling point,

JJJc and the vector GGGA are the input to the optimizer, whose

outputs are sent to the external carrier and the orbital

manipulator. Note that the final gravity torque input for the

manipulator is τττ∗g = [τττ∗gA;τττgB]. This includes the optimized

torque, τττ∗gA and the gravity torque for the joints in set B

(between the contact point and the free end-effector of the

robot chain). From Fig. 3, it can be seen that the proposed

strategy will not interfere with the validation of a controller,

i.e. the independent torque input τττc.
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Fig. 3: Schematic of the proposed method to achieve gravity
compensation on-ground.

Note that from a practical perspective, the external carrier

could have hardware limits in applying, e.g., a minimum

force γγγc. This could be taken into account in the solution

while adding additional inequality constrains for the opti-

mization problem in (9), (10). In this case, numerical solvers

could be also employed, see e.g. qpOASES in [26], which

is used also for robotic implementation in real-time [27].

1This case is reported for completeness, but it assumes that the manipu-
lator can already apply sufficient torques on ground to sustain its weight.



IV. VALIDATION AND EXPERIMENTAL RESULTS

In this section we show simulation and experimental

results obtained with the proposed method. The considered

orbital manipulator is the CAESAR arm, which is a torque

controlled robot composed of 7 dof with a length of about

2.4 m in stretched configuration. Its weight is about 60 kg and

the maximum joint torque allowable is ± 80 Nm, see [12].

The weighting matrices are defined as WWW τ = diag(1/τ2
i,max)

where τi,max is the maximum torque of the i-th joint and

WWW γ = diag(1/γ2
i,max), where γi,max, is the maximum of the

external component of wrench. To show the flexibility of

the method, the validation in simulation and experiment

considers different points C of application of the force and

different carriers, which can track different components of

the external wrench.

A. Simulation Results

To show the flexibility of the method, let us assume that

the contact point C is located e.g. at J4 (see Fig. 2) and

the external carrier can provide tracking of force in x-y-

z and torque only in x and y. This means that the set A,

which lies between the fixed-base and contact point C, is

A = {1,2,3,4}, B = {5,6,7} and the wrench basis of the

carrier will be BBB = [III5×5 0005×1]. The weight τi,max = 80 Nm

is chosen for WWW τ and γi,max = 500 N,Nm is chosen for WWW γ .

From the initial configuration shown in Fig. 2 a relative

position in Cartesian frame of [−0.3 0.1 − 0.15] m and a

relative orientation of [40 5 12] deg is commanded to the tool

of the CAESAR arm using an impedance Cartesian controller

(PD+, see [28, eq. (7)]). The position and orientation error

of the controller during the motion is shown in Fig. 4.

The benefit of the proposed method is shown in Fig. 5. If

the proposed method is not applied, the gravitational torques

required by the arm will exceed the limit of ± 80Nm (see

Fig. 5 (left) with values reaching 370 Nm and −130 Nm).
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Fig. 4: Error in position and orientation during the motion.

Fig. 5 (right) shows the gravity torque in the set A resulting

from the proposed method. As can be seen, the maximum

torque now is less than 3 Nm. To fully achieve compensation

of the gravity force, the carrier needs to track a required

wrench, which is the output of the proposed method and

this can be found in Fig. 6 (left). For validation purposes,

Fig. 6 (right) shows the same force, but transformed in the

joint space of the manipulator. From Fig. 5 and Fig. 6 (right),

it can be see that full gravity compensation of GGGA is achieved

and the constraint in (10) is satisfied.
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Fig. 5: Left: gravity torques required by the arm without the
proposed strategy. Right: torques with the proposed method.
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Fig. 6: Left: wrench for the carrier resulting from the optimal
solution. Right: corresponding wrench transformed in the joint
space of manipulator.

B. Experiments with the CAESAR Robot-Carrier system

A cable-driven system is used as external carrier [29] and

it is connected to the CAESAR arm through a coupling

mechanism at the point C, as shown in Fig. 7. The control

of the carrier runs at 4 kHz and it is able to follow a desired

Cartesian force using an admittance control [30]. As such,

the desired force is the input to a dynamic model where

acceleration is computed and discretely integrated. Thus, a

new set-point is provided to the cable-driven system through

the inverse kinematic [31], [32]. The considered carrier

in Fig. 7 has four motors and it can apply and track only

translational forces along the components x− y− z at the

contact point C, but no torques. This implies that the wrench

basis is, BBB= [III3×3 0003×3]. Further, the location of the coupling
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Fig. 7: A 7 dof space manipulator coupled with a cable suspended
unit as carrier. C is the coupling point between the systems.



Fig. 8: Motion of CAESAR with the external carrier during the
experiment between its initial pose (left) to the final one (right).
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Fig. 9: Joint position during the experiment: commanded (dashed
line) and measured (solid line).
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Fig. 10: Optimal joint torques applied to CAESAR.

point C was chosen after J5 such that GGGB does not exceed the

torque limits for the expected workspace of interest. Hence,

the set A results in A = {1,2,3,4,5} and the set between

the contact point and the free end-effector B = {6,7}. As

explained in Sec. III with (7), τττgB =GGGB, i.e. the force applied

at point C cannot influence the joint in set B. The weights

are chosen as τi,max = 80 Nm and γi,max = 750 N.

The experiment considers the motion of CAESAR from its

initial pose shown in Fig. 8 (left) to a final one (right) using a

joint impedance controller [21] at 1 kHz. The joints position

trajectory commanded to the robot is shown in Fig. 9 and

compared with the measured data. The optimal gravitational

torques given by the proposed method are shown in Fig. 10

and commanded to the CAESAR arm. As it can be seen,

they are below the considered torque limits of 80 Nm.

The optimal forces generated for the carrier are shown in

Fig. 11 and compared with the measured values by the

carrier system. The error in force tracking ∆γγγ∗c is below 4 N

and approaches close to zero in static pose (see after 100s).

For validation purposes, the required gravity torque during

the motion, GGGA, is compared with the total forces (internal

joint torques and external forces of the carrier) acting on

the manipulator. This is computed from the measurement as,

τ̄ττA = τττmsr,A − τττc,A + JJJT
CAγγγ∗cmsr

, where (msr,A) indicates the

corresponding measured value in the set A. The comparison
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Fig. 11: Optimal force of the external carrier in x-y (Top), z
(middle). Bottom: Error between commanded (dashed line) and
measured (solid line) force of the carrier.
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Fig. 12: Comparison between the required gravity torque GGGA and
the overall gravity torque acting on the manipulator joint space, τ̄ττA,
(computed from the measured data).

is shown in Fig. 12, where the major error is recorded

on joint 1, which is caused by the admittance-controlled

carrier during tracking. However, in static pose the error

goes to zero (see after 100s). This experiment shows that

the proposed strategy is suitable for the on-ground testing of

orbital manipulator. Further experiments can be seen in the

video accompanying the paper.

V. CONCLUSION AND FUTURE WORKS

In this paper, a strategy has been proposed in order to

compensate the gravity of a space manipulator for on-ground

testing. The approach resolves an optimal problem, which

minimizes the joints torque and provides as output a desired

force to be tracked by an external carrier. Experimental

results with the CAESAR arm show the effectiveness of the

method where a cable suspended system was used as a carrier

to track the desired compensation force. The proposed

method is general enough that it can be applied also to any

other manipulator with different coupling point or external

carriers, e.g. industrial robot. Future works aim at increasing

the robustness under noise and dynamics uncertainties.
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