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ABSTRACT

Urban land use structures impact local climate conditions of
metropolitan areas. To shed light on the mechanism of local
climate wrt. urban land use, we present a novel, data-driven
deep learning architecture and pipeline, DeepLCZChange, to
correlate airborne LiDAR data statistics with the Landsat 8
satellite’s surface temperature product. A proof-of-concept
numerical experiment utilizes corresponding remote sensing
data for the city of New York to verify the cooling effect of
urban forests.

Index Terms— urban planning, local climate zones, cli-
mate resilience, LiDAR, Landsat 8, deep neural network ar-
chitecture, explainable artificial intelligence

1. INTRODUCTION

Projections estimate about 2/3 of the global population is go-
ing to cluster in urban spaces by the end of 2030 [1]. Urban
land use structures (ULUS) have an impact on local climate
conditions [2], e.g. reduced airflow may slow down heat dis-
persion inducing negative consequences for local ecosystems
through surface urban heat islands [3]. Shedding light onto
the interaction of local climate zones (LCZ) [4] and corre-
sponding climate proxies is a key for urban planning towards
climate resilience.

Our data-driven approach detailed in Section 2 studies
correlations of ULUS and Local Surface Temperature (LST)
to explore how urban development impacts ambient temper-
atures, cf. Section 3. Technically, we utilize statistics of an
airborne LiDAR survey in New York City1 which bears se-
mantic signatures of, e.g., vegetation and buildings [5], cf.
Figure 4 for illustration. We co-register the LiDAR statistics
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Fig. 1: Data-driven correlation analysis of urban surface
temperature vs. vegetation cover from satellite-based ther-
mal measurements vs. airborne LiDAR point cloud statis-
tics. A linear fit (blue line) reveals a negative slope of
−6 · 10−4/K with R2 = .82 from data (red) generated by
the DeepLCZChange artificial neural network.

with the surface temperature product of the Landsat 8 satel-
lite [6]. Based on those data, we propose a novel deep neural
network architecture termed DeepLCZChange to model cor-
relations between vegetation and ambient temperature.

2. METHODOLOGY

DeepLCZChange introduces a three-stage deep learning pro-
cedure summarized by Figure 2. In a first step a variational
autoencoder (VAE), D ◦ E, compresses the LiDAR statistics
s into representations c = E(s), roughly speaking by min-
imizing the loss |s − D(E(s))|. s represents a stack of 13
georeferenced images of 0.3 meters in pixel resolution. The
images stem from regularly gridded rasters of local spatial
statistics over the irregular, three-dimensional LiDAR point
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Fig. 2: DeepLCZChange: Artificial neural network archi-
tecture and three-stage methodology: 1. unsupervised au-
toencoder training (on high resolution urban remote sensing
modality), blue; 2. supervised downstream task (on low reso-
lution satellite data as climate proxy), green; and 3. backprop-
agation as inference step for generative modelling (correlating
autoencoding of 1. with downstream tasking of 2.), red.

cloud. In stage two, the feature vector c = E(s) serves as
input to a regression deep neural network R to predict an
averaged ambient temperatures t = R(c) given by the co-
registered Landsat 8 surface temperature product t. Once
the deep neural networks E, D, and R are trained, we ap-
ply a novel inference procedure exploiting backpropagation.
The temperature variation ∆t gets backpropagated through R
(denoted by R−1) to vary the corresponding feature vector,
c → c + ∆c = c + R−1(t + ∆t). In turn, modified LiDAR
statistics follow according to:

s′ = D(c+∆c) = D
(
E(s) +R−1 [R(E(s)) + ∆t]

)
= s′(s,∆t) . (1)

We note that our approach is generic beyond the application
presented here. In the language of self-supervised learning
(SSL) [7] with recent successes in Earth observation [8], we
pretrain a model (D ◦ E) to generate a (compressed) fea-
ture representation c from a remote sensing modality s. Sub-
sequently, another co-registered modality t serves to train a
downstream model (R) correlating c to t. Thereafter, back-
propagation (R−1) on frozen models lets us explore the vari-
ation ∆c given variations in ∆t. The procedure allows us to
investigate the structure of the feature space modelled by E.
If there exists an inversion (E−1 ≈ D) to associate c with
the input remote sensing modality s, the impact of variation
∆t in the downstream modality on the input modality s helps
to explain Earth observation phenomena associated with both
modalities, s and t.

Given a variation in ambient temperature ∆t ∈ R, there
exists various choices of feature vector variations ∆c⃗ ∈ Rn

in n-dimensional feature space. R−1 is not the inverse of

Fig. 3: DeepLCZChange pipeline: Data flow color-coded ac-
cording to Figure 2. We color gray the AutoGeoLabel post-
processing that infers the fraction of vegetation in a scene, cf.
red data points in Figure 1.

R! Guided by a gradient principle, we label our approach in
Equation (3) “most effectively” such that we pose the ques-
tion: How to most efficiently vary a geospatial scene’s am-
bient temperature by modifying its urban land use structures
represented by LiDAR statistics?

We assume a gradient vector g⃗ = ∇R ∈ Rn of down-
stream model R with components gi = ∂R/∂ci according to
feature vector c⃗ components ci such that g⃗ · g⃗ = g2 =

∑
j g

2
j .

We define the feature vector variation ∆c⃗ = ζg⃗/g parallel to
the gradient g⃗ scaling it by ζ ∈ R to match a given tempera-
ture variation ∆t ∈ R:

∆t = ∆c⃗ · g⃗ = ζg⃗ · g⃗/g = ζg . (2)

Correspondingly, we obtain the model R-specific feature vec-
tor variations for given temperature variation ∆t:

∆c⃗(R,∆t) =
∆t

g2
g⃗ , in components: ∆ci = ∆t

gi∑
j g

2
j

.

(3)
Indeed: ∆c⃗ · g⃗ = g⃗ · g⃗ ∆t/g2 = ∆t. The variation ∆c⃗ parallel
to g⃗ guarantees by nature of the gradient ∇R that local, small
variations ∆c =

√
∆c⃗ ·∆c⃗ ≪ 1 most strongly, i.e. “most

effectively”, modify t → t+∆t.
Figure 3 depicts the full DeepLCZChange processing

pipeline—basis to generate our central result, Figure 1 as fur-
ther detailed in Section 3. We compute the modified LiDAR
statistics s′ according to Equation (1) depending on tempera-
ture variation ∆t and input LiDAR statistics s. It allows us to
study deviations ∆s = |s − s′| depending on ∆t. In partic-
ular, by utilizing AutoGeoLabel post-processing [9] (gray in
Figure 3), we are able to correlate the fraction of vegetation
in a scene with ambient temperature variations.



Fig. 4: Visualization of urban scene: Top-down view derived from three-dimensional LiDAR point cloud as sensed by laser
reflectance (left) and laser pulse time-of-flight, i.e. elevation map (center). The semantic segmentation (right) is based on the
AutoGeoLabel procedure, cf. post-processing in Section 3, with yellow buildings, green vegetation, and dark purple background.

3. EXPERIMENTS

Data and area of study. We employ the 2017 LiDAR sur-
vey of New York City [10] with focus on the Queens borough
to generate raster layers based on LiDAR laser pulse charac-
teristics. We include elevation information (laser light’s time-
of-flight measurements), the laser pulse return count, and the
reflected laser light’s intensity in order to generate gridded,
spatial statistics [9]. As demonstrated in the literature [5],
such statistics bear signature of human infrastructure such as
buildings, vegetation, and traffic networks.

We co-register the post-processed LiDAR statistics and
Landsat 8 infrared temperature rasters [11] (pixel resolution
approx. 100 meters) to conduct our experiments. Specifically,
we employ a mid-June snapshot of Landsat 8, band 10, Ther-
mal Infrared Sensor (TIRS 1). We did curate a dataset with
100k samples (s, t) where s ∈ R128 ×R128 ×R13 and t ∈ R
covering areas of about 20×20 square meters. The training/
testing split for our deep learning experiments reads 80k/20k.

Stage 1: feature vector c generation. We train a VAE
D ◦E [12] to compress2 the input LiDAR statistics c, cf. Sec-
tion 2. The model was optimized over 100 epochs at learning
rate 10−3. Unlike ordinary RGB images with highly corre-
lated color channels, our input data stacks 13 layers of LiDAR
statistics encoding information on elevation and laser pulse
reflectance characteristics. Besides the reconstruction loss,
a VAE is optimized to bring the distribution of feature vec-
tor components ci close to a Gaussian with mean 0 and stan-
dard deviation 1 by virtue of the Kullback-Leibler divergence
(KLD). We dynamically adjust the weight λ of the KLD rel-
ative to the reconstruction loss. λ linearly ramps up from 0 to
10−5 for the first 50 epochs to stay constant thereafter.

Stage 2: regression network R. We utilize the com-
pressed feature vector c ∈ R1024 encoding characteristics of
400m2-sized urban scenes to predict its mean surface tem-

2A 13 · (26)2 ≈ 53k raw pixels from a 13 channels 128 × 128 square
image get reduced to a 210 ≈ 1k–dimensional feature vector.

perature t ∈ R as sensed by Landsat 8. In contrast to directly
modelling t = t(s), the VAE encoding guarantees smooth
variation of the regenerated scene s′ = D(c) on variation of
c. The three-layer, fully connected regression network R we
train by a standard L1-norm loss |R(E(s))−t|. We randomly
sample 100 tuples (t, s) from the training set. The errors of
the trained model vary in (−0.8K,+2.1K)—an acceptable
maximum uncertainty of ∼ 10% relative to the full range of
20K in temperature variation.

Stage 3: backpropagate temperature variation ∆t.
Once the networks E, D, and R got trained, their weights
w are frozen for the backpropagation of temperature varia-
tions ∆t to the input feature vector c, cf. Equation (1). In
analogy to the update of weights w → w + η∂L/∂w gov-
erned by the loss L, we update the feature vector components
according to the regression model R, i.e. c → c + ζ∂R/∂c
with the sign of ζ (as with η) defining gradient ascent (+) or
gradient descent (−), respectively. 30 randomly picked loca-
tions dominantly sampled from the Queens borough serve as
basis to generate about 15k tuples (s, s′) over 8 temperature
variations ∆t/K ∈ {±1,±3,±5,±10}. These data cover a
total area of about 3/4 of a square kilometer. They serve as
basis for the statistical analysis summarized in Figure 1.

Post-Processing: Rule-based vegetation identification
through AutoGeoLabeling. After Stage 3 varied c = E(s)
by R−1 given ∆t, cf. Equation (1), we obtain the modified
LiDAR statistics s′. Applying AutoGeoLabel to s′ allows us
to determine the fraction of vegetation per unit area v ∈ [0, 1].
AutoGeoLabel is a near real-time, rule-based labeling frame-
work applicable to high-quality remote sensing information
such as LiDAR [9]. Though noisy, these easy-to-generate
segmentation maps, cf. Figure 4 (right), are sufficient to re-
veal ground surface changes such as urban forest degradation
[5] on variation of ∆t. We average tuples (∆t, v′) down to
8+13 measurements (∆t, v̄′).

3 s′ = D(E(s)) ≈ s for ∆t = 0 where v′ ≈ v



4. RESULTS

Our experimental setup serves as an initial proof-of-concept.
The data collection is limited to a single US metropolitan area
correlating a single Landsat 8 surface temperature snapshot in
summer. Moreover, the noisy nature of the VAE reconstruc-
tion and application of AutoGeoLabel adds uncertainty. Thus,
trends of change in vegetation as observed by our methodol-
ogy are noisy for individual scenes at the 20 meter scale. We
adopt a statistical approach summarizing the overall trend of
surface temperature vs. vegetation coverage to account for the
low signal-to-noise ratio.

Figure 1 plots the 9 tuples (∆t, v̄′) as red data points. We
observe: While cooling (∆t < 0) correlates with an increase
in vegetation, warming (∆t > 0) lets drop vegetation with in-
creasing ∆t. In order to quantify the relationship, we assume
the null hypothesis H0: An increased fraction of vegetation in
the scene does not correlates with a decrease in ambient sur-
face temperature. We apply a simple Ordinary Least Squares
model for linear regression v̄′(∆t) = a∆t+ b yielding fitting
parameters a = −6 · 10−4/K and b = .153. The blue-shaded
area in Figure 1 indicates the confidence interval for the re-
gression coefficients at 95% confidence level. The coefficient
of determination equates to R2 = .817. The p-value of a
reads .1%, i.e. for a standard confidence level of α = .05, v̄′

and ∆t are significantly correlated to reject H0.

5. CONCLUSION

When combined with principles of AutoGeoLabel, the gen-
eral concept of DeepLCZChange presents a novel deep learn-
ing methodology and data pipeline for Earth observation an-
alytics based on remotely sensed data with little need for hu-
man interaction. Our initial findings in studying the inter-
play of urban forests and local ambient surface temperatures
in New York City motivate related questions within the scope
of urban climate resilience, such as: How does the interplay
of buildings and vegetation affect meteorological quantities
such as humidity and temperature? And based on the previ-
ous work [13]: Do correlations of those parameters with ur-
ban planning exhibit distinct qualitative trends given the def-
inition of Local Climate Zones? Insights related will provide
guidance to plan urban spaces accounting for climate-resilient
solutions.

The novel aspect of the methodology summarized in Fig-
ures 2 and 3 stems from the unsupervised correlation of co-
registered geospatial data with the aid of deep learning to un-
cover the interaction of, e.g., vegetation and surface temper-
atures. Based on statistical analysis (of historical data) we
demonstrate how to qualitatively approach questions related
to climate resilience. In the face of climate change, our work
hopes to inspire the development of strategies to mitigate is-
sues such as urban heat islands.
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