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Abstract
The utilization of cropland and rooftops for solar photovoltaics (PVs) installation holds significant
potential for enhancing global renewable energy capacity with the advantage of dual land-use. This
study focuses on estimating the global area suitable for agrivoltaics (PV over crops) and rooftop
PVs by employing open-access data, existing literature and simple numerical methods in a high
spatial resolution of 10 km× 10 km. For agrivoltaics, the suitability is assessed with a systematic
literature review on crop-dependent feasibility and profitability, especially for 18 major crops of
the world. For rooftop PV, a non-linear curve-fitting method is developed, using the urban land
cover to calculate the PV-suitable built-up areas. This method is then verified by comparing the
results with open-access building footprints. The spatially resolved suitability assessment unveils
4.64 million km2 of global PV-usable cropland corresponding to a geographic potential of about
217 Terawatts (TW) in an optimistic scenario and 0.21 million km2 of rooftop-PV suitable area
accounting for about 30.5 TWmaximum installable power capacity. The estimated suitable area
offers a vast playground for energy system analysts to undertake techno-economic assessments,
and for technology modellers and policy makers to promote PV implementation globally with the
vision of net-zero emissions in the future.

1. Introduction

Solar photovoltaic (PV) is one of the major technolo-
gies pioneering the energy transition to alleviate cli-
mate change and achieve the Paris Climate Conven-
tion goals [1]. Due to its scalability and ease of decent-
ralization, the adoption potential of PV panels on a
local scale is immense. In recent years, global land
cover data [2, 3] shows an increasing trend in urb-
anization and cropland expansion. Installing PV on
agricultural land [4] and buildings [5] promotes dual
use of land while fueling the energy transition. It is
thereby important to investigate the suitable areas for
PV installation, especially on these land cover types.

PV systems with crops growing underneath the
panels are commonly termed ‘Agrivoltaics’, ‘Agro-PV’,
or ‘APV’ across the literature. Besides dual land use,
solar panels can offer protection against extreme heat,
hail, and wind. However, their shading effect may

also affect crop yield. Therefore, to estimate the geo-
graphic potential of agrivoltaics, it is important to
determine crop-specific suitability.

Different studies have explored the benefits of
agrivoltaics for various crops. For example, the
Fraunhofer Institute in Germany [4, 6–8] and other
institutions [9–17] investigated the general suitabil-
ity and benefits of agrivoltaics for various crops. Not-
able literature reviews from Weselek et al [13] and
Laub et al [18] highlight the discrepancies in the
suitability of different crops to shading. Such stud-
ies address a wide range of crops but are often insuf-
ficient when applied globally. To determine global
suitable areas for agrivoltaics, investigating individual
crops and incorporating up-to-date, comprehensive,
and diverse literature are necessary.

For rooftop PV, several studies [19–23] and
solar cadastral maps [24, 25] provide estimates of
its potential with in-depth analysis of roof-slopes
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and shading effects. These studies typically employ
high-resolution satellite data with computationally
intensive techniques. While they are suitable for
regional focuses, scaling to a global level is infeasible.
Meanwhile, other studies employ different techniques
e.g. using satellite-derived settlement maps [26, 27]
to calculate built-up fractions based on land cover
and socio-economic factors. Though settlementmaps
encompass large areas, they often carry large errors
despite recent improvements [28]. Methods specific
to calculating built-up and rooftop PV suitable areas
by [29–31] are tailored to typical climatic and cultural
assumptions and cannot be extended to a global scale.
To our knowledge, so far, there is no open and global
data for rooftop PV suitability, or even built-up areas.
Recently, Joshi et al [32] calculated built-up areas at
10 km × 10 km resolution using machine learning.
The analysis considers samples across the globe and
shows merit in its simplicity. Although it addresses
our focus, the reliability of the method is hampered
by several inconsistencies. For instance, the method
is based on Open Street Map (OSM) which is incom-
plete in many regions, and only a limited range of
building density is considered in their evaluation. We
build upon their ideas to estimate global suitable areas
for rooftop PV.

The goal of this paper is to evaluate agricultural
and urban areas suitable for PV on a global scale for
modeling and analysing future energy systems. In this
study, we offer:

1. Agrivoltaics:
(a) A systematic literature review of over 140

studies to explore the shading response of
major crops of the world

(b) Global agrivoltaics suitabilitymaps for three
acceptance scenarios in 10 km × 10 km
resolution [33].

2. Rooftop PV:
(a) A simple and verified method to derive

PV-suitable built-up area from urban land
cover.

(b) Global rooftop PV suitability maps in
10 km× 10 km resolution [33].

2. Methods

2.1. Agrivoltaics
Agrivoltaics are still in a nascent stage and require
further experimentation and policy incentives before
large-scale deployment. The current literature pool
majorly focuses on experimental, regional field stud-
ies with observations on specific crop yields and
economic trade-offs. Since the crop’s suitability to
shade is the driving factor in adopting agrivoltaics,
we also investigate relevant literature on general shad-
ing effects. The following data forms the basis of our
method.

The EarthStat database [34] openly provides
area shares of about 171 crops in the world at
10 km × 10 km resolution.A study by Leff et al [35]
estimated the global distribution of crops and con-
cluded that over 80% of global agricultural land is
used for 18 major crops as illustrated in table 1.
All other crops are classified following [34] into
‘fruits’, ‘other cereals’, ‘other roots’, ‘tree-nuts’, and
the remaining are put together into ‘others’ consist-
ing of vegetables, melons, oil-crops, fiber, forage, etc.
We undertake a systematic literature review for these
18 major crops and some minor crop categories. The
details of the literature review are available in the sup-
plementary material.

After a broad literature survey, we discovered that
the effect of shading on crop yield varies with crop
species, shading conditions, and climate. Hence, we
propose to classify the crop as ‘high (H)’ or ‘low(L)’
suitable and broaden the meaning of suitability from
yield to shade-response of plant’s growth, and the
potential for implementation. The following rules are
applied to determine the suitability category for each
crop:

(i) If most studies indicate positive or comparable
yield outcomes due to shading, it is categorized
as ‘H’.

(ii) Conversely, if most studies indicate negative
effects on crop quality, yield, or growth, it is cat-
egorized as ‘L’.

(iii) If there is no particular inclination to benefit or
loss:
(a) Higher importance should be given to the

studies that implement multiple exper-
imental conditions (e.g. shading extent,
regions, crop varieties) than single crop
experiments.

(b) If no relevant study is found, the decision
of the crop with a similar growing environ-
ment is transferred to that crop.

(c) If the decision is still unclear or when the
available literature is inadequate, the cat-
egory is by default ‘L’.

In table 1, we summarize the relevant findings and
indicate the categories allocated to the 18major crops.
The suitability of the minor crop groups is indicated
in table 2.

To identify potentials for future energy systems,
we consider three policy scenarios, namely ‘con-
servative’, ‘neutral’, and ‘optimistic’. These scenarios
indicate political and social acceptance and con-
sequently different degrees of technological advance-
ment of agrivoltaics. The optimistic scenario repres-
ents a highly favourable future for agrivoltaics, the
neutral scenario assumes the continuation of current
policies, and the conservative scenario represents a
strict policy. For each scenario, we assign a suitability
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Table 1. Overview of major global crops, their area shares, suitability categories, and supporting sources.

Crop Area [35] (1000 km2) Cropland share (%) Suitability Supporting literature and remarks

Wheat 4028 22 H • Reduction in yield [13, 36, 37] and
limited price performance [17]

• Enhanced plant growth and yield in
hot and dry climatic conditions [13,
36–38]

• Some varieties respond positively,
even adapt to shading conditions
[39–43]; possibility of limiting shade
with bi-facial PV panels [6]

• Commercial projects for winter
wheat [11]

Maize 2271 13 H • [44, 45] High yield with reduced soil
water evaporation[46]; commercial
projects [11]

• Reduced yield [13, 18, 47]

Rice 1956 11 L • Reduced yield [13, 45, 48–53]
• Limited applicability [12, 54, 55];
low yield reduction with shade-
tolerant varieties [56–61]

Barley 1580 9 H • Negative impact on yield due to
shading [42, 50]

• Effects vary with shading extents, cli-
matic conditions [18, 62]

• Overall suitability for commercial
applications [12]

Soybean 927 5 L • Negative effects on yield due to
shading [18, 45, 48, 50, 63–66]

• Slight shading is beneficial [67] or
may have insignificant yield effects
[68]

Pulses 794 4 L • Negative effects on yield for different
pulses’ varieties [18, 69–72]

• Under limited shading conditions,
selective crop varieties perform well
[12, 73–76]

Cotton 534 3 L • Negative effect on yield, from com-
mercial applications [13, 77]

• negligible effects on yield with some
varieties [78]; positive effect in
extreme hot weather conditions [16]
(table 2)

Potato 501 3 H • Increased yield under shading or cli-
matic conditions [13, 18, 37, 48,
79–83]

• ongoing projects [6, 16]
• High price-performance ratio [17,
84], but negative effects on plant
weight [85]

Sorghum 501 3 L • No specific supporting literature, but
considered similar to millet due to
similar harvest areas [86]

Millet 331 2 H • Negative effects on yield [6, 12,
87, 88]

• Some varieties can be as high as two
meters and are not considered suit-
able for agrivoltaics [15]

• Studies on improving shade tol-
erance, or breeding shade-tolerant
varieties [89, 90]

(Continued.)
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Table 1. (Continued.)

Crop Area [35] (1000 km2) Cropland share (%) Suitability Supporting literature and remarks

Sunflower 290 2 L • Reduced yield [6, 12, 13]
• Limited shading may be favourable
in drought-prone areas [91]

Rye 288 2 H • Effect of shading is not significant [6,
12, 45, 84], and may vary with extent
of shading [18, 92]

Rapeseed/canola 283 2 H • Insignificant effect on yield [6, 12,
43, 84, 93], high yield in varieties
with high light use efficiency [94]

• Plant growth in pre-flowering
stages impacted adversely due to
shading [95, 96], reduced oleic acid
compositions [97]

Sugarcane 265 1 H • Negligible effect on yield [16]
and possible advantages with less
evaporation [98, 99], especially in
early growth stages [100], but may
hinder growth later on [101]

Groundnut/peanut 247 1 L • Shading degrades plant growth,
quality, and yield [94, 102–105]

Cassava 235 1 L • Negative effects due to shade
[106–110]

• Acceptable yield [12]

Sugar beet 154 1 L • Limited Suitability [12]
• Negative effects of shading
[111–114]

Oil palm fruit 72 <1 L • Unsuitability due to tree height
• Shade suitability for seedlings [115,
116]; [13] indicated mixed shade
effects

Major 18 crops 15 256 85

factor, where 0 indicates no suitability of the area for
agrivoltaics and 1 indicates 100% suitability.

The suitability factors are presented in table 3. For
crop category L, the implementation of agrivoltaics
is expected to decrease crop yield, thus we consider
a suitability factor of 0 for both neutral and conser-
vative scenarios. However, in the optimistic scenario,
a value of 0.15 is assigned based on the regulation
proposed by the German Institute for Standardiza-
tion (DIN), which regulates that at least 85% of the
agricultural land should be reserved for conventional
agricultural purposes [150]. For crop category ‘H’, we
assign the suitability factor of 0.15 for the conservat-
ive scenario based on the same reason, while a value of
0.25 is assigned for the neutral scenario based on cur-
rent policy preparations in countries where incentives
are provided to farmers for agrivoltaic implement-
ation provided yields stay above a limit i.e. 66% in
Germany [150] and 80% in Japan [56]. Finally, the
optimistic scenario assigns a suitability factor of 0.5
for category ‘H’, taking into account the potential for
significant increases in the suitability of agrivoltaics
because of technological advancements and the devel-
opment of more shade-tolerant crop varieties.

Additionally, since the PV module density for
agrivoltaics is lower than a standard open-field PV

module, we propose a reduction factor of 0.8 to
account for the decrease in installable power capacity
per unit area. The harvested area share of every major
crop and minor crop group are used as weights in
every 10 km× 10 km pixel to calculate an overall suit-
ability factor in each pixel. The factors are thenmulti-
plied with cropland cover data [3] to obtain Agrivol-
taic area potential maps for all scenarios.

2.2. Rooftop PV
For rooftop PV, we use urban areas from land cover
data to distinguish available built-up areas for PV
installation. It is necessary to exclude areas such as
roads, railways, and buildings with special uses, for
example, buildings of religious or historic signific-
ance like monuments. Since only a fraction of the
remaining areas is suitable for PV installation, assign-
ing rooftop PV suitability solely as urban land cover
data is not sufficient.

To estimate the available rooftop areas for PV
installation, we propose that the available rooftop
area for PV installation is equivalent to the built-up
area which is correlated with the urban density in a
given region. Then, we develop a numerical model
to investigate the relationship between built-up areas
and urban density in various geographical regions

4



Environ. Res. Lett. 18 (2023) 054027 M Yeligeti et al

Table 2. Description of minor crop groups, their suitability categories, and supporting sources.

Crop group Crops included Suitability Supporting Literature and remarks

Fruits apple, apricot, avocado, banana,
blueberry, carob, cashew apple, cherry,
cranberry, currant, date, fig,
gooseberry, grape, grapefruit, kiwi,
lemonlime, mango, orange, papaya,
peach, pear, persimmon, pineapple,
plantain, plum, quince, raspberry,
sour cherry, strawberry, tangerine,
mandarine, clementine, and other
fruits

H • Positive effects of shading on mango
[13, 117], strawberry [18, 118], black
currants [18, 119], dwarf banana
[120], grapes [18, 121, 122], apple
[18, 123, 124], kiwi [13], black berry
[13, 18], blue berry [18], lemon [18],
orange [18]

• Effects of shading vary depend-
ing on the specific type of crop
but still have high yield outcomes
(strawberry [18], blueberry [13],
lime [125]

other cereals buckwheat, canary seed, fonio, mixed
grain, oats, quinoa, triticale

L • Negative effect on yield
[18, 92, 126–128]

• Positive effect of shading on grain
weight [129] and seedlings [130]

other roots taro, yam, yautia, other tubers H • Positive or insignificant effects on
plant growth and yield seen for taro
[81, 87, 88, 109, 131, 132], cocoyam
[133], yam [131, 134, 135]

• Negative effects on tannia [109], yam
[109], some crop yield loss according
to [18]

tree-nuts almond, brazilnut, cashew, chestnut,
hazelnut, pistachio, walnut

L Average plant height is too high for
agrivoltaics, but may work with
seedlings as in oil palm in table 1

others abaca, agave, alfalfa, anise, areca,
artichoke, asparagus, beet, cabbage,
carrot, castor, cauliflower, chilli,
cinnamon, clove, clover, cocoa,
coconut, coffee, cucumber, eggplant,
flax, garlic, ginger, bean and corn
greens, green pea, green onion, hemp,
hop, jute, kapok, karite, kolanut,
lettuce, linseed, mate, melons,
mixedgrass, mushroom, mustard,
nutmeg, oilseed, okra, olive, onion,
pepper, peppermint, pimento, poppy,
pumpkin, pyrethrum, ramie, rubber,
safflower, sesame, sisal, spinach,
stringbean, tea, tobacco, tomato, tung,
turnip, vanilla, watermelon etc

L • Negative effects on crop yield,
growth or quality for leafy vegetables
(lettuce, spinach, basil, alfalfa) [18],
sweet potato [106, 109, 136–138],
chilli [139], tomato [140], eggplant
[87]

• Effects of shading are positive or
not significant for lettuce [141],
cucumber [141], spinach [84], salad
[84], tomato [13, 142, 143], coffee
[13, 144], sweet pepper [13, 18],
squash [18], bell pepper [18, 145],
olive [146], chilli pepper [81, 87,
143], cacao [147], vanilla [148],
eggplant [81], cowpea [149]

• Existing projects [13] for tomato,
watermelon, eggplant, cabbage,
cucumber, celery

Table 3.Weighting factors for scenarios and corresponding scores.

Conservative Neutral Optimistic

L 0 0 0.15
H 0.15 0.25 0.5

based on the building footprints derived from OSM.
For this purpose, we choose administrative areas
derived from the Database of Global Administrative
Areas (GADM) [151], an open-source database that
provides administrative area maps for all countries.

To ensure the quality of data derived from the
crowd-sourcedOSM, we cross-check themwith satel-
lite data in selected study areas. In total, we analyse
202 administrative regions of varying sizes with

acceptable OSM data quality spanning 46 countries
across all continents except Antarctica as figure 1
shows. To calculate the built-up area in each admin-
istrative region, we utilize OSMnx, a python package
for analysing geo-spatial geometries fromOSM[152].
In the calculation, we also exclude certain building
types that are deemed unsuitable for PV installations,
including terrace, cathedral, church, chapel, monas-
tery, mosque, religious, shrine, synagogue, temple,
stadium, and ruins.

In addition, we also calculate the total area and
urban density in each administrative region. Urban
density is determined as the average urban fraction
within an administrative area and is calculated from
Copernicus Land Cover Data [3]. As depicted in

5
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Figure 1. Distribution of administrative region samples.

Figure 2. Scatter plot for urban density and the proportion of built-up areas.

figure 2, we can observe a clear exponential correl-
ation between urban density and the proportion of
built-up area. To establish this non-linear relation-
ship, we apply curve-fitting using scipy python pack-
age which utilizes ‘least square’ to minimize the sum
of squares of nonlinear functions [153]. To evalu-
ate the performance of the curve-fitting equations,
three statistical metrics are considered: root mean
square error (RMSE), Pearson correlation of coeffi-
cient (PCC) [154] and R2 score.

3. Results and discussion

Here, we present and discuss the resulting suitabil-
ity for agrivoltaics and rooftop PV using Coperni-
cus Land cover data from 2018 [3]. Since land use
changes develop slowly, we can safely make our scen-
ario assumptions by considering present topography.
For rooftop PV, the following section entails also a
segment on validation. Afterwards, we address the
limitations and scope for improvement.

6
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Figure 3. Suitability factors for Agrivoltaics in Germany and administrative NUTS-2 region (10 km× 10 km).

3.1. Suitability factors for agrivoltaics
The aggregated suitability factor for agrivoltaics in
different scenarios is illustrated in figure 3 for Ger-
many and the administrative NUTS-2 region of Stut-
tgart in southern Germany. Since the harvested area
of every crop per pixel is accounted for, the effects of

crop rotation, inter-cropping and regional distribu-
tion of crops are inherently considered in the estima-
tion of suitability.

Considering about 17 million km2 of cropland
in the world [35, 155], this makes about 4.64 mil-
lion km2 cropland suitable for agrivoltaics in the

7
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Figure 4. curve-fitting results.

optimistic scenario, about 1.69 million km2 in the
neutral and 1.02million km2 in the conservative scen-
arios. A simple conversion from the available area
from the map to power capacity [156] (equations (8),
(9)) indicates a global maximum installable capacity
of about 217 Terrawatts (TW) in the optimistic scen-
ario, 79 TW in neutral and 48 TW in the conservative
scenario.

3.2. Suitability factors for rooftop PV
To ensure the robustness and accuracy of our model
in determining the correlation between urban density
and the proportion of built-up area, we split our data
into 70% training and 30% testing data. Leveraging
the observed exponential curve, we select the curve-
fitting function to be a combination of the exponen-
tial and linear functions. Following the least square
optimization process, the respective coefficients for
this function are presented in equation (1). Our stat-
istical evaluations indicate an RMSE of 3.578, a PCC
of 0.920, and an R2 score of 0.838. The resulting
curve-fitting function is further illustrated with data
points in figure 4. Based on our calculation, the estim-
ated total built-up area (excluding special buildings)
across the globe is 0.43 million km2.

F= 2.728 · 10−19 × e46.728·x + 22.300 · x− 0.746
(1)

However, the suitable rooftop area for PV is a
fraction of the built-up area. Different studies have

different values for this fraction, ranging from 0.40
to 0.66 [32, 156–163]. In this paper, we consider a
reduction factor of 0.5 to account for roof inclina-
tions, chimneys, windows, and maintenance space.
The suitable area for rooftop PV therefore is about
0.21 km2, theoretically translating [156] to 30.5 TW
maximum installable power capacity.

The final rooftop PV suitability map is gener-
ated on a 10 km × 10 km grid using the urban area
land cover [3]. As an illustration, the suitability map
for rooftop PV for Germany and the administrative
NUTS-2 region of Stuttgart are presented in figure 5.

3.2.1. Validation
To validate our curve-fitting model, we compare our
model results to the Microsoft AI building foot-
prints, which provide open building footprint data
[164]. Despite its large coverage, comparedwith satel-
lite images, we still find incompleteness for certain
regions in some countries.Hence, we filter the admin-
istrative areas with high-quality Microsoft AI data
by comparing them manually with satellite images.
The bias of the built-up area between Microsoft AI
and our prediction is calculated and presented in
figure 6.

From this bias plot, we can observe that for
most administrative areas, biases between our curve-
fitting results and the Microsoft AI building foot-
print acceptably range from −2.5 to 2.5 km2. From
the negative bias, we can tell that our method tends

8
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Figure 5. Suitability factors for Rooftop PV in Germany and administrative NUTS-2 region (10 km× 10 km).

Figure 6. Bias between built-up area calculated by curve-fitting and Microsoft AI building footprints.

to underestimate the built-up area. This is because
we exclude varieties of building types in OSM built-
up area calculations. Meanwhile, some samples have
large negative biases and are clearly underestimating
the built-up area. To further investigate this problem,

we examine the relationship between RMSE, urban
density, and total area as shown in figure 7. We dis-
cover that most samples with a large RMSE (marked
as excluded in figure 7) between our curve-fitting and
the Microsoft AI building footprint have either very

9
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Figure 7. Scatter plot between RMSE and urban density and total area.

low urban densities or very large total areas. There-
fore, we exclude samples with urban density smal-
ler than 0.06 and total area bigger than 300 km2.
By excluding these samples, the RMSE between our
curve-fitting results and the Microsoft AI building
footprint decreases from 3.804 to 0.782, the PCC
increases from 0.892 to 0.979, and the R2 score from
0.707 to 0.952.

3.3. Limitations and future work
As our focus lies on estimating the geographic poten-
tial through the generalized area suitability factors,
our analysis does not incorporate techno-economic,
political, or social effects, such as land use changes,
economic value of land, or local shading effect. For
agrivoltaics, the scenarios and suitability take limited
consideration of the farmers’ needs. Here, we assume
only the best case that the farmers will always respond
well to the government’s incentives and cooperate
when there is a positive effect on crops. Therefore,
the resulting data does not represent realisable poten-
tial for agrivoltaics or rooftop PV, but the theoret-
ical potential derived from the available and suitable
areas.

The suitability factors are assumptions based on
current trends in policy, previous experience, and
judgment, and we suppose these assumptions are
acceptable in the research domain of future energy.
There are considerable uncertainties in our estima-
tions for the future, with evolving technological and
socio-political dynamics. Addressing these underly-
ing uncertainties is still an open point, and is beyond
the scope of the study.

For agrivoltaics, we conduct a systematic literat-
ure review that covered various crops. However, this
review process is performed for only major crops and
a few minor crops with significant harvest areas in
the world. We acknowledge that certain categories,
such as ‘fruit’ and ‘others’, contain a vast number of
crops, which challenges our review process. The liter-
ature review is not comprehensive for every cultivable
crop, but still sufficient enough to conclude agrivol-
taic suitability.

In rooftopPVanalysis, we examined a range of cli-
matic, social, and economic factors, including mean
annual and seasonal temperatures, Human Develop-
ment Index, population density, etc. to identify their
correlations to built-up areas. However, due to the
limited and non-homogeneous set of samples and
available data, no firm correlation was established.
Hence, a clear and simplistic approach to the observed
correlation is applied. The method can be extended
when better data becomes available.

Meanwhile, our validation process reveals that the
curve-fitting function does not provide reliable res-
ults when the study area has an urban density smaller
than 0.06 or a total area bigger than 300 km2. Con-
sequently, the final suitability is calculated globally in
10 km × 10 km grids. Additionally, since our focus is
to calculate the built-up area suitable for rooftop-PV,
the estimated area from curve-fitting excludes cer-
tain building types and should not be mistaken as the
overall built-up area.

4. Conclusion

In this study, we investigate two growing land cover
categories, cropland and urban areas to identify
global suitable areas for installing agrivoltaics and
rooftop PV while promoting dual land use.

Since the feasibility and profitability of agrivolta-
ics vary with crop types, with a systematic literature
review we assign a suitability type to everymajor crop
category at a 10 km × 10 km resolution. We propose
suitability factors for three future scenarios repres-
enting technological development and acceptance. In
an optimistic scenario, this accounts for a global 4.64
million km2 suitable area for agrivoltaics equivalent
to a maximum installable power capacity of 217 TW.

For rooftop PV, we observe that the built-up frac-
tion within administrative areas is highly correlated
to the urban area. Therefore, we develop a non-linear
curve-fitting model with OSM samples across the
world.Using thismodel, we estimate 0.21million km2

of rooftop PV-suitable area globally, accounting for
30.5 TW geographic potential.
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These global geographical estimates indicate the
vast theoretical potential of solar PV on just two land
cover types. By incorporating land-use dynamics,
socio-economics, policy and meteorological factors,
a more accurate, realisable potential can be estim-
ated on local and regional scales. The examination of
geographic potential itself can be enhanced with bet-
ter quality of data and by exploring social and tech-
nological uncertainties. This study and the resulting
open-access data provide a strong basis to promote
corresponding energy research even in countries with
limited data provisions.
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Fraga Pajehú L, Lopes P S N and Pimenta M A S 2020
Ontogenesis and responses to shading of Attalea vitrivir
(arecaceae) eophyll Flora 272 151693

[116] REES A R 1963 An Analysis of Growth of Oil Palm
Seedlings in Full Daylight and in Shade Ann. Bot. 27 325–37

[117] Scuderi D, Gugliuzza G, Di Salvo G, Priola F, Passafiume R
and Farina V 2022 Shading net and partial covering plastic
film do not affect phenology, photosynthetic activity or
fruit quality traits of Kensington pride mango Plants
11 3510

[118] Alexander Cordoba-Novoa H, Pérez-Trujillo MM,
Cruz Rincón B E, Flórez-Velasco N, Magnitskiy S and

Patricia Moreno Fonseca L 2022 Shading reduces water
deficits in strawberry (fragaria x ananassa) plants during
vegetative growth Int. J. Fruit Sci. 22 725–40

[119] Wolske E, Chatham L, Juvik J and Branham B 2021 Berry
quality and anthocyanin content of ‘consort’ black currants
grown under artificial shade Plants 10 766

[120] Muhidin A Nurmas G R S, Leomo S and Yusuf D N 2021
The growth performance of dwarf banana cavendish from
se sulawesi under natural shading IOP Conf. Ser.: Earth
Environ. Sci. 807 042038

[121] Yueyan W, Qiu T, Shen Z, Yanyan W, Dan L and Jingwen H
2018 Effects of shading on leaf physiology and morphology
in the ‘yinhong’ grape plants Rev. Bras. Frutic. 40 5

[122] Cho J and Sung Min Park A R P 2020 On Chan Lee,
Geemoon Nam and In-Ho Ra. Application of photovoltaic
systems for agriculture: a study on the relationship between
power generation and farming for the improvement of
photovoltaic applications in agriculture Energies
13 4815

[123] Lopez G, Boini A, Manfrini L, Torres-Ruiz J M, Pierpaoli E,
Zibordi M, Losciale P, Morandi B and
Corelli-Grappadelli L 2018 Effect of shading and water
stress on light interception, physiology and yield of apple
trees Agric. Water Manage. 210 140–8
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