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ABSTRACT:

In big cities, the complexity of urban infrastructure is very high. In city centers, one construction can consist of several building
sections of different heights or roof geometries. Most of the existing approaches detect those buildings as a single construction
in the form of binary building segmentation maps or as one instance of object-oriented segmentation. However, reconstructing
complex buildings consisting of several parts requires a higher level of detail. In this work, we present a methodology for individual
building section instance segmentation on satellite imagery. We show that fully convolutional networks (FCNs) can tackle the
issue much better than the state-of-the-art Mask-RCNN. A ground truth raster image with pixel value 1 for building sections and
2 for their touching borders was generated to train models on predicting both classes as a semantic output. The semantic outputs
were then post-processed with the help of morphology and watershed labeling to generate segmentation on the instance level. The
combination of a deep learning-based approach and a classical image processing algorithm allowed us to fulfill the segmentation
task on the instance level and reach high-quality results with an mAP of up to 42 %.

1. INTRODUCTION

1.1 Problem Statement

Remote sensing and computer vision scientists find a big in-
terest in building segmentation. With the world’s population
rising drastically and urban areas becoming denser, such applic-
ations become helpful in fields like population counting, urban
planning, reconstruction, disaster monitoring and city model-
ing. However, building constructions are not always simple and
can be described with several polygons, which in turns can rep-
resent different roof types (see Figure 1). For modern applic-
ations, it is not enough anymore to extract a row of different
building roofs as one building footprint or instance. Therefore,
a precise identification of different sections within one building
object is a topic of interest.

In principle, the use of aerial or satellite intensity images for
automatic segmentation of buildings should be sufficient. How-
ever 2D information does not reflect the real form of build-
ing rooftops which is crucial for dividing one building object
on several parts in case of complex structure. To overcome
this problem, the image data has to be paired with other data
sources. This additional information source can be a digital sur-
face model (DSM) - an image which represents elevation data.
Height information together with intensity information provide
an opportunity to find touching borders between building sec-
tions since the transition area is then very clear.

In the literature, the task of building sections separation is usu-
ally viewed as a part of 3D building reconstruction problem.
Traditional methods are based on ridge lines detection from
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(a) Streetview (b) Topview

Figure 1. An example of typical houses in Berlin, Germany,
taken from Google Earth. Each color represents a different

building section, where all sections belong to the same building
structure.

satellite normalized digital surface models (nDSMs) and in-
tensity images (Arefi and Reinartz, 2013) or detection of the
step edges from canny points on the nDSMs of light detection
and ranging (LiDAR) data (Zheng et al., 2017). In this work,
we propose a machine learning approach that can automatic-
ally segment building parts and touching borders between those
parts. Furthermore, applying a watershed algorithm (Beucher
and Meyer, 2018) we aim to extract individual instances of each
building section. Thus, the decomposition of a row of differ-
ent rooftop structures belonged to one building object can be
viewed now as an independent task and can be utilized for vari-
ous geoinformation system (GIS) applications.

1.2 Related Work

Classical methods to extract building footprint on aerial or
satellite imagery are based on the identification of edges and
other primitive shapes typical for buildings (Huertas and Neva-
tia, 1988). For almost a decade, learning-based approaches like
machine learning and deep learning have overtaken the state-
of-the-art methodologies for remote sensing problems. Convo-
lutional neural networks (CNNs) used for image segmentation
have been developed and improved constantly since then. For
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example, in 2015 researchers developed an architecture known
as ResNet (He et al., 2016), a deep residual network with sev-
eral options differing in depth and the number of convolution
layers. This architecture’s deepest version, ResNet152, reached
an error rate of only 3.57 % on the ImageNet classification chal-
lenge (Russakovsky et al., 2015), better than human error on the
same task (5 %) (Khan et al., 2020). In the same year, a team
of researchers released models called FCN (Long et al., 2015).
This pixel-wise prediction method was the first adaptation of
older networks to take input of any size and output classification
maps of the same size. With the skip connections in its archi-
tecture, this approach allowed for more detailed spatial inform-
ation recovery and has become the basis of most state-of-the-
art models. This development has also been followed up in the
field of building segmentation by several studies (Bittner et al.,
2018b, Schuegraf and Bittner, 2019, Khan et al., 2020). In the
following years, the focus in semantic segmentation lay heav-
ily on the backbone network architecture. Backbone networks
are the subset of convolutional layers which have been origin-
ally designed for image classification task but can be used for
different applications since fully connected layers are removed
to keep spatial dependencies. For example, the DenseNet ar-
chitecture was released in 2017 by (Huang et al., 2017) and
was utilized for semantic segmentation by (Jégou et al., 2016)
and in 2021, (Henry et al., 2021) proposed a novel architecture
for multi-class road network segmentation based on DenseNet
which includes the fusion of aerial imagery with open street
map (OSM). They fuse the image and the OSM at the bottleneck
of the U-shaped network and use a DenseNet121 as the encoder
and a decoder, where the blocks of the encoder are mirrored.
Their SkipFuse-U-DenseNet121 architecture leverages the se-
mantic information from the OSM better than other fusion tech-
niques and significantly outperforms the models without OSM.
Recent investigations have shown that also using a DSM can
have a significant impact on building detection and reconstruc-
tion tasks when using deep learning techniques (Bittner et al.,
2018a, Bittner et al., 2019). In 2018, a team of scientists pro-
posed a methodology and a model, called TernausNetV2 (Ig-
lovikov et al., 2018), to segment buildings on the instance level
by predicting not only binary building footprints, but also sep-
aration lines between buildings. With eleven multi-spectral in-
put channels, it reached an intersection over union (IoU) score
of up to 74 % on the SpaceNet dataset (Etten et al., 2019).
This method is different from the most common approach in
computer vision, which is a two-stage approach like in (He et
al., 2017)’s work, where first, a bounding box is extracted and
second, the image is segmented inside the rectangular bound-
ing box. This has been done successfully for remote sensing in-
stance segmentation by (Potlapally et al., 2019). An improved
version of the Mask-RCNN, called Hybrid Task Cascade, has
been applied to buildings by (Zhao et al., 2020). Hybrid Task
Cascade iterative recycles mask and bounding box precisions
in an interleaved execution procedure, together with a semantic
branch, to refine the mask predictions in comparison to Mask-
RCNN. (Zhao et al., 2020) additionally apply Douglas-Peucker
as a post-processing step. The Douglas-Peucker algorithm sim-
plifies the building polygons that can be obtained by edge de-
tection, to include only the most important corners. The Hy-
brid Task Cascade together with the Dogulas-Peucker algorithm
produces precise and geometrically sound results on a public
building segmentation dataset. However, it was not shown by
the authors that Hybrid Task Cascade combined with Douglas-
Peucker can also segment touching building sections.

In this paper, we show that the SkipFuse-U-DenseNet121 archi-

tecture (a) works out of the box with a DSM and (b) is capable
of segmenting buildings on high-resolution satellite images on
a sub-instance level. We show the benefits of using a semantic
segmentation network compared to a two-stage instance seg-
mentation network like Mask-RCNN (He et al., 2017). Since
the outputs of deep learning-based methods are not perfect, we
use the watershed algorithm and morphological operations to
post-process them, which reduces the incompleteness of the
building border predictions and helps closing the gap between
the building instances generated by the neural networks. We
adjust pre- and post-processing steps to make the methodology
less sensitive to the incompleteness of the raw predictions. The
most similar work to ours is the one of (Iglovikov et al., 2018),
but we focus on building sections instead of whole buildings.
Our method also has parallels with the work of (Luiz Ferreira de
Carvalho et al., 2021), where object borders together with a
classical method are also used to predict object instances. How-
ever, differently from this work, we predict only the touching
borders, not all borders, since this lays the focus on the most
important borders for building instance extraction. We also ap-
ply our method to building sections instead of vehicles, which
have much more homogeneous shapes than buildings.

2. METHODOLOGY

2.1 Models

In this work, the performance of several state-of-the-art neural
network architectures is investigated on predicting not only the
building footprint as one object, but automatically decomposing
it into several parts in case of complex structures consisting of
several roof types.

One of the most famous networks for instance segmentation is
the Mask-RCNN architecture. It was introduced by (He et al.,
2017) and its derivatives are now state-of-the-art on common,
natural image instance segmentation benchmarks. It has a two-
stage design, where first, bounding boxes at the object level are
generated and second, a mask is generated for each bounding
box. The loss function of Mask-RCNN consists of three parts:

Lmrcnn = Lbbox + Lcls + Lmask (1)

where Lbbox is for bounding box regression realized by a
smooth L1 loss

LsmoothL1(x) =

{
0.5x2 if |x| < 0.5

|x| − 0.5 otherwise,
(2)

with x = p− y. The variable p is the predicted center coordin-
ate, height and width of a bounding box and y are the ground
truth bounding box parameters. Lcls is for the classification
task and realized via the log loss

Llog(p) = −
(
y ∗ log(p) + (1− y) ∗ log(1− p)

)
. (3)

Lmask is for binary mask segmentation and is implemented by
a per-pixel log loss as in Equation (3). By having a binary loss
for the mask generation and a multinomial loss for classes sep-
arately, the mask generation and classification are decoupled,
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which improves the performance (He et al., 2017). However,
this approach does not take into account a-priori knowledge of
building sections, which do not overlap and consist of polygons.
Hence, other models have to be taken into account, which per-
form semantic segmentation with one class being the separation
class.

The FCN proposed by (Long et al., 2015) transforms an arbit-
rary classification network into a backbone for semantic seg-
mentation. For example, due to the popularity of the ResNet50
model and its outstanding performance on classification tasks,
a fully convolutional version of this model was chosen as ad-
dition and comparison. The basic construction of this network
was inspired by the philosophy of the VGG net (Simonyan and
Zisserman, 2015). With the help of the residual blocks design,
spatial details can bypass a layer that would otherwise make
the network lose accuracy and the model can therefore retain
the shapes of features significantly better. The modularity of
Mask-RCNN allows us to implement it with a ResNet50 back-
bone network. Furthermore, we exploit an FCN-ResNet50 as a
baseline to show the effectiveness of the touching borders based
building section instance segmentation. We train the FCN-
ResNet50 and each other model in this section, other than the
Mask-RCNN, using likelihood maximization via the logloss in
Equation (3).

Since the FCN-ResNet50 is not designed to incorporate depth
information, several models with different architectures are
investigated for building segmentation. In (Schuegraf and
Bittner, 2019), two U-shaped networks, one for spectral images
and one for depth information are fused at the late stage, called
LateFusion-U-VGG16. The U-shape originates from the stage-
wise reconstruction of spatial details in the decoder, where each
stage of the decoder has the same spatial resolution as a corres-
ponding stage in the encoder. The feature maps of the encoder
are also passed to the decoder through a so-called skip con-
nection. No upsampling has to be done at the end of the U-
shaped network to transfer the predictions to the image resolu-
tion. Since ResNet has outperformed VGG net on many tasks,
we replace the VGG16 with a ResNet50, called LateFusion-U-
ResNet50 (Bittner et al., 2019). The authors have shown that
the fusion of the spectral and depth branches at the bottleneck
with a common decoder is beneficial for DSM refinement us-
ing a panchromatic satellite image as a second input. Hence,
the strength of this Coupled-U-ResNet50 lays in combining an
image with depth information. However, Coupled-U-ResNet50
is prone to overfitting, since it uses concatenations as the input
to the skip connections, which introduces a lot of additional
parameters to the model. Therefore we also test SkipFuse-
U-DenseNet121 that performs additions on the feature maps
which flow into the skip connections, leading to significantly
fewer parameters.

2.2 Pre- and Post-Processing

Outputs of deep learning based methods are never perfect,
which is why post-processing them with traditional image pro-
cessing methods can be a great addition to improve the results
noticeably. In this case, the most significant error the outputs
of all experiments can have in common is the imperfectly pre-
dicted touching borders class (see example in Figure 2) due to
their tiny structure and their under-representation in comparison
to building and background classes.

Since building sections do not overlap in the top-down view,
their segmentation depends on the separation of sections. First,

(a) Ground Truth

(b) FCN-ResNet50

Figure 2. One building example of (a) ground truth and (b) a raw
prediction output from FCN-ResNet50 with RGB input

we propose to dilate the predicted touching borders with a disk-
shaped kernel of 9 pixels radius to close possible holes in the
predicted touching borders. The radius of 9 pixels equates to
2.7m, which is reasonably thick to close even large gaps in
touching borders and thin enough to not merge too many close
touching borders. We identified 9 pixels as a good radius by
visual inspection. These improved borders are now subtrac-
ted from the building mask. The resulting blobs of pixels are
then detected by a watershed algorithm (Roerdink and Meijster,
2003). The watershed algorithm is a traditional segmentation
method, which does not include learning. It uses the smooth-
ness of intensities in an intensity image or gradient magnitudes
to separate objects by regarding the image as a topographic sur-
face, which is flooded by water. The separated basins are then
identified as objects. Usually, intensity images contain a huge
number of basins that are due to noise and variations in illumin-
ation or shadows. However, in this paper, the watershed can be
regarded as a very simple segmentation layer, which only takes
the already segmented and separated blobs and gives them in-
stance numbers.

3. EXPERIMENTS

3.1 Dataset

The dataset consists of a pan-sharpened RGB image and an op-
tional DSM as the input, as well as a raster image building mask
as a ground truth (GT). The DSM was obtained by stereo match-
ing of multiple different views on the same scene. Example tiles
can be seen in Figure 3. The RGB image and the multi-view im-
ages which are input to the stereo matching originate from high-
resolution WorldView-4 imagery and shows the city of Berlin,
Germany. Its ground sampling distances (GSD) is 0.3 m. The
image contains three channels (red, green, blue) and has a size
of 33206×32229 pixels. The DSM was resampled to the same
size and GSD as the RGB image. A building instance is defined
by the coordinates of an addressed house, provided by the Ger-
man Federal Agency for Cartography and Geodesy. However,
adressed houses are not always visibly separated in the top-
down view, which leads to possible ambiguities in the evalu-
ation of a particular result. For visual inspection, we only take
the geometric and spectral differences of neighboring houses
into consideration and for quantitative evaluation, we accept in-
accuracies, since we visually inspected large parts of the test
area and found that it is a very rare case that different addresses
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(a)

(b)

(c)

Figure 3. A sample area of the dataset, consisting of (a) RGB,
(b) DSM and (c) the three-class ground truth.

are not visually distinguishable. The ground truth raster is con-
verted to the same resolution and size as the input figures. The
raster shows values 0 for background and a building raster mask
with rising pixel values for each individual building, thus every
pixel is linked to an individual building instance. Than, the
touching borders between buildings are initially calculated by
searching for neighbors for each instance. In a refinement step,
morphology is applied to make touching borders pixels mutu-
ally exclusive with building pixels. Afterwards these borders
are merged with a binary image of the building mask, so the
result is a raster image with three values: 0 for background, 1
for building mask and 2 for touching borders.

The image is split into three regions of interest (RoI) whilst
ensuring the diversity of building roofs of each RoI by visual
inspection: training (∼85 %), validation (∼12.5 %) and testing
(∼2.5 %). This results in 3442 patches for training, 538 for val-
idation and 102 patches for testing each with a size of 512x512
pixels. The final step of preparing the dataset is to normalize all
input data before training. Input values are rescaled to the range
[-1, 1], where the minimum value of each patch is mapped to -1
and the maximum to 1.

3.2 Training Settings

Each model is trained for a duration of 100 epochs, where one
epoch consists of iterations on the whole training set. After
the training process to avoid overfitting, the parameters after
the epoch at which the model has the lowest validation loss are
loaded into the model and the model with these parameters are
then used for evaluation. The learning rate was set to 0.0002

with a scheduled decrease of 10 percent of the updated learning
rate (exponential decay) after every epoch.

All ResNet50 and DenseNet121 backbones are initialized with
ImageNet (Deng et al., 2009) pre-trained weights. The net-
works’ parameters are then updated with the stochastic gradi-
ent descent by the use of an Adam optimizing method (Kingma
and Ba, 2015) with the first order momentum set to 0.9 and
the second order momentum set to 0.999. Since the touching
borders only take up 0.46 % of all pixels in the ground truth
raster, the relating class was weighted up with a factor of 2 in
the loss function. We found that a higher weight makes the
training process less stable and a lower weight leads to a very
low recall of the touching borders class. The loss for all models
but the Mask-RCNN-ResNet50 is calculated with the weighted
multi-class cross-entropy loss function

LCE(p̂, w) = − 1∑3
cl=1 wcl

3∑
cl=1

ŷclwcllog(p̂cl), (4)

where p̂cl is the softmax activated output of the network of
class cl, wcl is the respective class-weight and ŷcl is the bin-
ary ground truth of class cl.

3.3 Experimental Design

FCN-ResNet50: A ResNet50 is leveraged as the backbone
combined with a simple decoder, consisting of a convolutional
layer and upsampling of the feature maps of the backbone. The
input is an RGB image. To show the value of auxiliary depth
information, a DSM is concatenated as the fourth channel of
the input for another experiment. However, concatenating the
DSM is naive and therefore, two different fusion strategies are
followed for comparison. Both the models with and without
the DSM are trained with batch size 4 for 10 epochs without
the DSM and 25 with the DSM.

Late-U-ResNet50 & Coupled-U-ResNet50: The first one is
the Late fusion, where two U-shaped branches produce 30 fea-
ture maps each, both of the same size as their input, which are
then concatenated and passed through three convolutional lay-
ers to produce the output. The second one utilizes the Coupled
fusion, where the feature maps from two backbones are concat-
enated before the bottleneck and a common decoder network
generates the output. Although the fusion before the bottleneck
is very promising, concatenation at this semantic depth intro-
duces millions of additional parameters. These two models are
trained with batch size 2, due to their large memory consump-
tion. The Late-U-ResNet50 is trained for 25 epochs and the
Coupled-U-ResNet50 for 80 epochs.

SkipFuse-U-DenseNet121: Hence, an architecture, which
fuses at the same depth, but uses summation of the feature maps
instead of concatenation is evaluated. However, this network
also uses a DenseNet121 instead of a ResNet50. The SkipFuse-
U-DenseNet121 is trained with batch size two for 30 epochs.

U-DenseNet121 & U-ResNet50: In the following experiments,
a U-DenseNet121 and a U-ResNet50 are trained on solely
RGB, to see which of the encoders works better for the task at
hand. The U-ResNet50 is trained with batch size 4, whereas the
U-DenseNet121 is trained with batch size 2. After 10 epochs,
the U-DenseNet121 peaked in validation loss. The U-ResNet50
reaches its lowest validation loss after 45 epochs.
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(a) RGB (b) Ground Truth (c) SkipFuse-U-DenseNet121

Figure 4. Whole test set, with (a) RGB, (b) GT and (c) output from SkipFuse-U-DenseNet121. Best viewed zoomed-in on a computer
screen.

Mask-RCNN-ResNet50: Finally, a Mask-RCNN with a Res-
Net50 backbone is trained on RGB, since it represents a mile-
stone in deep learning based instance segmentation. It is trained
using stochastic gradient descent (SGD) with an initial learning
rate of 0.01 and a scheduled decay of 5 percent of the initial
learning rate. The Mask-RCNN-ResNet50 is trained with batch
size 4 for 18 epochs and its loss consists of multiple losses for
different tasks like bounding box detection and mask predic-
tion.

4. RESULTS AND DISCUSSION

Outputs from the inference phase on the test data set come in
patches with a size of 1024×1024 pixels and stitched together
afterwards to enable the comparison between the semantic out-
put and the ground truth mask (see Figure 4). The stitching is
done by using an overlap of 40 pixels and removing a border of
20 pixels of each patch in the overlapping regions. This gives a
good first overview of the performance.

The post-processing of the outputs and application of the water-
shed algorithm to the masks creates an image of buildings seg-
mented on the instance level. For example in Figure 4b, each
colour represents individual parts of a building, while black rep-
resents the background (0).

To evaluate the performance of experiments, several metrics are
calculated for each class separately. For each class, a binary
mask is computed for the ground truth and class predictions and
the corresponding number of True Positives (TP), True Negat-
ives (TN), False Positives (FP) and False Negatives (FN) are
calculated.

The precision

Prec =
TP

TP + FP
(5)

is a measure for how good the segmentation method does not
predict the negatives as positives for a particular class, the recall

Recc =
TP

TP + FN
(6)

gives insight into how complete the pixels of a certain class are
segmented, the F1

F1c = 2 ∗ Precision ∗Recall

Precision+Recall
(7)

is a metric which combines precision and recall, such that the
F1 is drawn stronger towards the lower of the two and the IoU

IoUc =
TP

TP + FP + FN
(8)

is the ratio of overlapping pixels of the prediction and ground
truth over their union.

Next to the background, there are the classes building mask
(BM) and touching borders (TB). All the previous metrics are
listed for the class c ∈ {BM,TB}. Since in this work we focus
on instance segmentation, the common instance metrics mean
average precision (mAP) and mean average recall (mAR) are
used to evaluate the models on an instance level. Both these
metrics rely on computing the IoU of predicted instance masks
and ground truth masks, where the mAP tends to punish pre-
dicted masks, which cannot reach a certain threshold and the
mAR has a reciprocal relation with the number of ground truth
instances that are not matched by any of the predicted instances
in terms of a threshold. To get a balanced metric, the F1IS is
computed similar as in Equation 8, but with the mAP and mAR
instead of precision and recall. Selected metrics presented in
Equations (5) to (8) are summarized in Table 1 for each model.

First, the Mask-RCNN-ResNet50 achieves the F1IS of 0.34,
which is among the lowest of all models. The detect-then-
segment approach of the Mask-RCNN was first introduced to
well-separated, large objects in natural images. However, the
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MODEL INPUT PreBM RecBM F1BM IoUBM PrecTB RecTB F1TB IoUTB F1IS mAP mAR
Mask-RCNN-ResNet50 RGB 0.33 0.27 0.43
U-DenseNet121 RGB 0.91 0.73 0.81 0.68 0.12 0.85 0.21 0.12 0.36 0.33 0.41
FCN-ResNet50 RGB 0.90 0.74 0.81 0.69 0.12 0.84 0.22 0.12 0.33 0.29 0.39
FCN-ResNet50 RGB+DSM 0.92 0.72 0.81 0.68 0.12 0.88 0.21 0.12 0.44 0.4 0.49
Late-U-ResNet50 RGB+DSM 0.91 0.71 0.8 0.67 0.12 0.84 0.2 0.11 0.35 0.3 0.41
Coupled-U-ResNet50 RGB+DSM 0.92 0.71 0.8 0.67 0.12 0.87 0.2 0.11 0.36 0.31 0.43
SkipFuse-U-DenseNet121 RGB+DSM 0.93 0.71 0.8 0.67 0.11 0.92 0.19 0.11 0.47 0.42 0.54
U-ResNet50 RGB 0.91 0.71 0.8 0.66 0.11 0.87 0.2 0.11 0.38 0.33 0.44

Table 1. Performance comparison of different models and input data for the building mask and touching borders classes.

MODEL INPUT F1IS mAP mAR
Mask-RCNN-ResNet50 RGB 0.33 0.27 0.43
U-DenseNet121 RGB 0.09 0.06 0.15
FCN-ResNet50 RGB 0.1 0.07 0.19
FCN-ResNet50 RGB+DSM 0.17 0.13 0.25
Late-U-ResNet50 RGB+DSM 0.08 0.05 0.17
Coupled-U-ResNet50 RGB+DSM 0.12 0.08 0.25
SkipFuse-U-DenseNet121 RGB+DSM 0.34 0.26 0.5
U-ResNet50 RGB 0.11 0.07 0.23

Table 2. Quantitative results without post-processing.

touching borders method uses a-priori knowledge of building
sections. For example in Figure 5, the building sections have
little separations and the results of the Mask-RCNN-ResNet50
are separated in many places, whereas in the sub-instances gen-
erated by the SkipFuse-U-DenseNet121 architecture, there is
no space between the sections. Hence, the Mask-RCNN is not
as tailored to the task of building section instance segmentation
as the touching borders method.

Next, the FCN-ResNet50 reaches a F1IS of 0.33 if trained on
RGB and 0.4398 if trained on RGB concatenated with DSM.
This shows that additional depth information, even when intro-
duced in a naive fashion, is valuable for building segmentation.

More sophisticated fusion strategies, as the Late and Coupled
fusion, do not necessarily represent an upgrade to the concaten-
ation. The Late-U-ResNet50 and Coupled-U-ResNet50 reach
an F1IS of 0.35 and 0.36, respectively, which is lower than the
0.44 of the FCN-ResNet50 trained on RGB+DSM. The Late
fusion implies that there are two completely separate networks
and the fusion is done at image resolution with concatenation
and convolutional layers. This results in 279 million trainable
parameters, which is much more than the 33 million trainable
parameters of the FCN-ResNet50, both with and without the
DSM. In deep learning, it is known that the number of para-
meters must be carefully adapted to a dataset’s size, since large
models overfit on small datasets. The Coupled-U-ResNet50 has
174 million trainable parameters, which is why we compare the
Late-U-ResNet50 and the Coupled-U-ResNet50 with a model
which has fewer parameters.

For example, the SkipFuse fusion technique has much fewer
parameters, since it uses summation instead of concatenation
at the skip connections. The SkipFuse-U-DenseNet121 has
only 25 million parameters, reaches an F1IS of 0.47 and is
the best performing model in our analysis in terms of instance
segmentation. It does not outperform all other models on most
of the metrics in Table 1, but it has the highest RecTB , which
means its touching borders are the most complete and the wa-
tershed transform needs well separated regions, which is why
the SkipFuse-U-DenseNet121 wins over all other models in the
three instance metrics. The high RecTB can be visually under-
stood by looking at Figure 7, where the touching borders are
very complete. Furthermore, we can see in Figure 6 that an

FCN-ResNet50 trained on RGB+DSM produces touching bor-
ders with a snake pattern, which the SkipFuse-U-DenseNet121
does not. Since the FCN architecture does not incorporate high-
resolution geometric information from the early feature maps
via skip connections, it does not perform well on small struc-
tures like touching borders. The numbers in Table 2 indic-
ate that without the dilation, the SkipFuse-U-DenseNet121 is
still the best model in the study and the FCN-ResNet50 trained
on RGB and DSM is much further away from the SkipFuse-
U-DenseNet121 as with post-processing. Even though the
SkipFuse-U-DenseNet121 is only slightly better than the Mask-
RCNN-ResNet50 if no post-processing is done, it shows that
the SkipFuse-U-DenseNet121 relies less on post-processing
than the other touching borders networks.

In the last experiment, the U-DenseNet121 has an F1IS of
0.36 and the U-ResNet50 achieves 0.38 on the same metric.
The SkipFuse-U-DenseNet121 is different to the Coupled-U-
ResNet50 in two major ways. It has 1), a slightly different
fusion strategy, which reduces the number of parameters and
2) a DenseNet121 backbone instead of a ResNet50 backbone.
Since the U-ResNet50 outperforms the U-DenseNet121, it is
shown that the change of encoder cannot be the reason why the
SkipFuse-U-DenseNet121 is so far ahead of competition and
we corroborate that the fusion of RGB and DSM before the
backbone, combined with summation instead of concatenation
at the skip connections is suitable for building segmentation.

Since the mAP and mAR metrics are alone not enough to un-
derstand the connection between the semantic output of our
model with the final instances from a quantitative point of
view, we compared the result of the semantic segmentation
metrics with those of the instance segmentation metrics. In
Table 1 we observe a positive connection between the semantic
segmentation metric PrecTB and the instance segmentation
metric F1IS . SkipFuse-U-DenseNet121 and FCN-ResNet50
RGB+DSM are those experiments with the highest F1IS-
scores and also the highest PrecTB-scores. This shows that to
obtain a good separation between building sections, it is most
important to have complete touching borders, even if they do
not have the highest F1TB-scores.

5. CONCLUSION

Most approaches to building instance segmentation and in-
stance segmentation in general use complex network archi-
tectures. Developed frameworks mostly present building seg-
mentation on a semantic level only, which can be problematic
when the exact number and boundaries of individual buildings
are needed. We proposed a method for segmenting individual
building sections on the instance level through the combination
of classical and deep learning methods. The features come from
RGB and DSM data. The segmentation is done through the suc-
cessful detection of two classes: building mask and their touch-
ing borders. Pixel-wise predicted outputs are post-processed
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(a) RGB

(b) GT

(c) Mask-RCNN-ResNet50

(d) SkipFuse-U-DenseNet121

Figure 5. Comparison of the building section results of the (c)
Mask-RCNN-ResNet50 trained on RGB and DSM and (d) the
SkipFuse-U-DenseNet121 with the (a) RGB and (b) the ground

truth. Each color represents a different building section.

with classical image processing methods (morphological op-
erations and watershed labeling) to extract instances with the
help of detected borders. Our experiments were done on high-
resolution satellite imagery of city of Berlin, Germany. We
show that the combination of deep learning and classical im-
age processing methods can result in a good quality instance
segmentation framework that reaches results considerably bet-
ter than state-of-the-art methods. Multiple different neural net-
works based on the FCN and U-Net architecture proved effect-
ive on the task at hand. Our best model is the SkipFuse-U-
DenseNet121, which fuses the RGB and DSM streams at the
bottleneck and reduces the number of parameters by using sum-
mation instead of concatenation at the skip-connections and is
reaching an mAP of 42 % and an F1IS of 47 %.
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