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Abstract

Many aim point optimization techniques exist to control Solar Power Towers (SPTs). However, SPTs exhibit optical
losses that cannot be exactly modeled. Moreover, cloud passages cause transient incident flux distributions. Due to these
modeling errors and disturbances, aim point optimization may exceed the Allowable Flux Density (AFD); consequently,
these efficient aiming strategies are seldom applied at commercial plants. In this paper, an innovative closed-loop aim
point control technique, the Static Optimal Control, is proposed. Flux density measurements close the open control loop
of aim point optimization. Based on this feedback, the Static Optimal Control estimates weights that are embedded in
the cost function of the aim point optimization. This GPU-based optimizer finds good aim point configurations in a few
seconds even for large plants. Thus, the Static Optimal Control compensates for modeling errors and rejects disturbances
to observe the AFD while maximizing the intercept. The performance of the Static Optimal Controller is evaluated for
inaccurately modeled mirror errors and under a real cloud scenario. Aim of this control is not to exceed the AFD by
more than 5% i.e. the accuracy of the flux density measurements. The aim is achieved for static modeling errors while
improving the intercept by 1.7-8.6% compared to a heuristic control. In the cloud scenario, the Static Optimal Control
reaches its limits. Even mapping all-sky-imager-based nowcasts in a feed forward manner on the heliostat field does not
improve the control quality due to high prediction errors.

Keywords: Concentrating solar power, Solar power tower, Heliostat aiming, Aim point optimization, Optimal control,
Cloud disturbance

1. Introduction1

One of the first aiming strategies for Solar Power Tower2

(SPT) plants is the combination of static and dynamic aim3

point processing system. Vant-Hull et al. (1996a,b) devel-4

oped it for the molten salt central receiver in the Solar5

Two Project (Smith, 1992; Bradshaw et al., 2002). While6

the Static Aimpoint Processing System (SAPS) is an open-7

loop control that distributes the aim points for each he-8

liostat, the Dynamic Aimpoint Processing System (DAPS)9

is rather a closed-loop control that reduces the allocated10

heliostats at aim points with flux excess.11

The DAPS detects ”hot spots” exceeding the Allow-12

able Flux Density (AFD) (Vant-Hull, 2002) and eliminates13

them. The AFD is the minimum of the limit due to ther-14

mal stresses and the limit due to salt corrosion. It is15

determined based on local salt temperature and velocity.16

Moreover, only the heliostat field, but not the receiver is17

actively controlled. First, the system identifies the receiver18

bin with the highest exceedance of the AFD. Subsequently,19

the heliostat causing based on the simulation model the20

highest flux in this bin is defocused. This procedure re-21
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peats until the flux density complies with the AFD for22

each hot spot (Vant-Hull et al., 1996a).23

The SAPS spreads as heuristic method the aim points24

vertically from the receiver’s edges depending on the he-25

liostats’ beam radii (Vant-Hull et al., 1996a,b). In the26

recent years, the SAPS is continuously extended: Sánchez-27

González and Santana (2015); Sánchez-González et al.28

(2017, 2018) introduced the aiming factor k, Flesch et al.29

(2017) and Collado and Guallar (2019) segmented the field30

in radial sectors, Vant-Hull et al. (1996b) and Sánchez-31

González et al. (2017) in azimuthal sectors and Astolfi32

et al. (2017) and Garćıa et al. (2017) merged radial and33

azimuthal approach. Due to all these improvements, the34

maximal flux density reduces further and the efficiency in-35

creases slightly.36

Since the computational power rose in the past, more37

and more meta-heuristic approaches like TABU algorithms38

(Salomé et al., 2013; Yu et al., 2014; Grange and Fla-39

mant, 2021) or genetic algorithms (Besarati et al., 2014;40

Wang et al., 2017; Cruz et al., 2018, 2019; Zhu and Ni,41

2019) are applied to solve the combinatorial NP-complete42

knapsack problem (Kellerer et al., 2004) of assigning he-43

liostats to pre-defined aim points on the surface of the re-44

ceiver. Even, Binary Integer Linear Programming (BILP)45

(Ashley et al., 2017) and Mixed Integer Linear Program-46
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Nomenclature

J Objective function, [-]

Ki Integrator constant, [-]

N Number of reachable destinations from i

êscaled Shifted scaled error map, [-]

ŷ Simulated flux density distribution, [Wm=2]

escaled Scaled error map, [-]

e Error map, [-]

u Aim point configuration, [-]

w Weight map, [-]

ymax Allowable flux density distribution, [Wm=2]

yref Reference flux density distribution, [Wm=2]

y Flux density distribution, [Wm=2]

min Current objective function, [-]

b Improvement factor, [-]

d Dead band, [-]

i Bin index, [-]

k Control step index, [-]

k k-factor, [-]

n Number of, [-]

r Slant range, [m]

s Scale factor, [-]

t Time, [s]

ϵ ϵ-factor for slant range, [m=1]

ACO Ant-Colony Optimization

AFD Allowable Flux Density, [kWm−2]

AFD Allowable Flux Density

APS Aim Point Strategy

ASI All-Sky-Imager

BILP Binary Integer Linear Programming

DAPS Dynamic Aimpoint Processing System

DNI Direct Normal Irradiance, [Wm−2]

FLOPS Floating Point Operations Per Second

GPGPU General-Purpose computation on GPU

GPU Graphics Processing Unit

MILP Mixed Integer Linear Programming

MIMO Multi-Input Multi-Output

PI Proportional Integral

PID Proportional Integral Derivative

SAPS Static Aimpoint Processing System

SISO Single-Input Single-Output

SPT Solar Power Tower

ming (MILP) (Richter et al., 2019) algorithms coupled47

with a Gamma robustness approach to cover uncertainties48

(Kuhnke et al., 2020) are evaluated. By applying grouping49

and aim point reduction strategies, the run time can even50

be reduced down to 10 s for large heliostat fields by using51

twelve cores in parallel (Speetzen and Richter, 2021).52

Moreover, Belhomme et al. (2013) adapted the Ant-53

Colony Optimization (ACO) meta-heuristic to maximize54

the intercept. While it complies with the AFD for arbi-55

trary receiver types, this method improves the single fac-56

tor aiming by 2% for cylindrical receivers (Flesch et al.,57

2017). When this method is coupled with a local search al-58

gorithm, it reaches faster convergence (Maldonado et al.,59

2018). Oberkirsch et al. (2021) improved the computa-60

tional speed of the ACO algorithm by grouping the he-61

liostats based on k-means clustering and by porting it to62

the GPU.63

Clouds can shade even large heliostat fields in less than64

5min assuming mean cloud speeds in southern Spain of65

7.36m s=1 (Kuhn et al., 2018). Even under these transient66

conditions aim point optimization can determine near op-67

timal solutions as cloud predictions can be included in the68

system model. There, the optimization requires around69

30 s (Ashley et al., 2017; Oberkirsch et al., 2021) match-70

ing the temporal resolution of All-Sky-Imager (ASI)-based71

nowcasting systems (Nouri et al., 2018, 2019, 2020).72

However, these open-loop controllers cannot compen-73

sate for modeling errors due to inaccurately estimated74

tracking or mirror errors nor reject other disturbances like75

uncertainties in the cloud prediction. Hence, a real plant76

requires, next to an open-loop aim point control, a closed-77

loop aim point control. Similar to Vant-Hull et al. (1996a),78

who coupled SAPS with DAPS, Cruz et al. (2019, 2020)79

added a heuristic control downstream of the genetic algo-80

rithm. This heuristic activates and deactivates heliostats81

and shifts iteratively heliostats from spots, that exceed82

the AFD, to spots with a low flux density. Similarly,83

Garćıa-Mart́ın et al. (1999) shifts heliostats to control the84

receiver’s temperature at the PSA’s CESA-1 plant. There,85

not only the heliostats move from aim points in hot regions86

to aim points in cold regions, but also the aim points itself87

wander to balance the flux distribution within the vicinity88

of the aimpoint.89

A different approach is proposed by Garćıa et al.90

(2017), who decouple the Multi-Input Multi-Output91

(MIMO) system into 54 Single-Input Single-Output (SISO)92
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subsystems. Each subsystem describes a group of he-93

liostats and is controlled by a Proportional Integral Deriva-94

tive (PID) controller. The PID controller adjusts disper-95

sion and position of the group’s aim points for cylindrical96

receivers (Garćıa et al., 2018). Acosta et al. (2021) already97

applied the approach to the reference power plant used in98

this work (Flesch et al., 2017) and used a raytracer instead99

of the HFLCAL convolution method (Schwarzbözl et al.,100

2009) as radiation model. Garćıa et al. (2018) and Soo Too101

et al. (2019) replaced the PID controllers by a Model Pre-102

dictive Controller (MPC), called Dynamic Matrix Control103

(DMC) and exposed the plant to transient conditions. To104

overcome overshoots in the flux density, they added a Pro-105

portional Integral (PI) controller to successively readjust106

the setpoint flux after the cloud has passed. By including107

the slant range between heliostat and tower, this control108

strategy is simplified to one that requires only one manip-109

ulated variable per panel (Garćıa et al., 2020) and a tuning110

analysis is performed (Garćıa et al., 2022).111

Up to now, the flux density demand for closed-loop112

aim point controls is usually determined based on temper-113

ature measurements and a thermal model (Gross et al.,114

2020). The Aim Point Strategy (APS) of Gross et al.115

(2020) accomplishes to meet this demand with a devia-116

tion of less than 150 kWm=2 in either direction. In this117

work, we assume a directly measured incidence flux den-118

sity distribution on the receiver surface as feedback for the119

closed-loop control. Several techniques like moving bars or120

direct flux measurements using the receiver’s reflection can121

provide these solar flux density distribution even for large-122

scale receivers. However, moving bars are disadvantageous123

due to large moving parts and direct measurements may124

be less precise (Röger et al., 2014). Therefore, Offergeld125

et al. (2019) enhanced the direct flux density measure-126

ment system of Göhring et al. (2011) by developing the127

scan method. In this way, accuracies of 2-9% are achieved128

(Stadler et al., 2019).129

In this work, we present a closed-loop aim point con-130

trol strategy: the Static Optimal Control. Aim of the131

Static Optimal Control is to find solutions that exceed the132

AFD by less than the accuracy of the measurement system.133

Thus, 5% are selected as a mean accuracy between 2-9%134

(Stadler et al., 2019). To maximize the intercept while135

compensating for modeling errors and disturbances, the136

Static Optimal Control embeds the ACO meta-heuristic137

(Belhomme et al., 2013). This ACO algorithm was en-138

hanced by Oberkirsch et al. (2021) to achieve the required139

convergence rate for the application in the Static Optimal140

Control. Finally, the control quality of the Static Optimal141

Control is evaluated under different scenarios at a plant of142

commercial scale.143

2. Methods144

Since the aim point optimization is the heart of the145

Static Optimal Control it is introduced first in this sec-146

tion. Both, the basic ACO meta-heuristic as well as some147

improvements are described. Afterwards, the controller148

comprising error signal calculator, weight calculator, anti149

wind up, optimizer, objective function and objective value150

scaler is presented in detail.151

2.1. Aim point optimization152

Ant-colony optimization meta-heuristic: During153

foraging, ants communicate through emitting pheromones154

and build a swarm intelligence. This multi-agent method155

is adapted by Belhomme et al. (2013) to maximize the156

intercept of SPT plants. While each ant describes a cer-157

tain path in reality, each ant evaluates a certain aim point158

configuration in this analogy. An aim point configuration159

characterizes one specific allocation of all heliostats to pre-160

defined aim points.161

The path of an ant is determined by a probability and a162

random factor that is specified by a Monte-Carlo-Method.163

The probability is the product of pheromone concentra-164

tion and attractiveness of a path, In reality, the ants emit165

pheromones; in consequence, the pheromone concentration166

alters. Moreover, the pheromones evaporate with time.167

Here, the concentration is regularly updated based on an168

objective value. The objective value used in this work is169

introduced in Section 2.2. Thus, the paths with greater170

objective values are favored and the evaporation prevents171

the algorithm to converge into local optima. The attrac-172

tiveness of a path is the intercept of a heliostat assigned173

to an aim point. The intercept is the ratio of flux irradiat-174

ing onto the receiver to the flux reaching the plane of the175

receiver.176

Finally, all ants, each defining an aim point configura-177

tion, are evaluated and the best aim point configuration178

is selected. The corresponding best ant forms the next179

generation of ants.180

The following sections describe three enhancements181

yielding a faster convergence of this ACO meta-heuristic:182

1. Replacing raytracing by pre-calculated flux maps,183

2. Clustering the heliostats to groups and184

3. Porting the algorithm on the GPU.185

Pre-calculated flux maps: One flux map is the186

emerging flux density distribution on the receiver’s sur-187

face, when one heliostat points to one aim point. As188

the aim points are pre-defined on the surface of the re-189

ceiver, raytracing and optimization can be decoupled by190

pre-calculating flux maps in advance.191

The flux map varies both with the sun angle and the192

Direct Normal Irradiance (DNI). While the DNI scales the193

flux map only by a constant factor, the sun angle changes194

the shape of the flux map. Thus, the flux maps have to195

be pre-calculated for roughly 1830 sun angles in southern196

Spain to reach modeling errors below 1% as analyzed by197

Oberkirsch et al. (2021). In this work, the raytracing is198

performed by the raytracing software STRAL1.199

1The Solar Tower RAytracing Laboratory (STRAL) is developed
at the German Aerospace Center (Belhomme et al., 2009).
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During optimization, the algorithm only superposes200

these pre-calculated flux maps instead of raytracing each201

aim point configuration. Thus, the computational time is202

reduced by factor 102 − 104 as stated by Belhomme et al.203

(2013). The slight accuracy loss due to small errors in the204

modeling of shading and blocking is negligible for larger205

fields.206

Grouping: In a next step, heliostats with similar focal207

spots are clustered into groups by the k-means clustering208

algorithm (Lloyd, 1982). As clustering parameters, the209

radius and the 2-argument arctangent arctan2 are applied210

for circular heliostat fields as explained by Oberkirsch et al.211

(2021).212

For each group, the flux maps of the contained he-213

liostats are superposed and an overall flux map is stored.214

Thus, only the flux maps of all groups are superposed in-215

stead of superposing the flux maps of all heliostats when216

evaluating one aim point configuration. Moreover, the so-217

lution space S decreases clearly. In this way, the algorithm218

converges in less optimization steps and even less optimiza-219

tion time.220

The effect of the group number is studied by Oberkirsch221

et al. (2021). The study exhibits faster convergence for a222

small number of groups, while better results are reached223

with more groups. In this work, 200 groups are evaluated224

as the strong convergence in the first seconds is important225

for the closed-loop aim point control.226

At the same time, the required memory reduces by fac-227

tor 10−100 dependent on the average number of heliostats228

in a group. Only this memory reduction allows to shift all229

flux maps of a single sun angle into the GPU memory to230

achieve further optimization time reductions on the GPU.231

GPU implementation: For the application in a232

closed-loop aim point control, the ACO meta-heuristic has233

to reach good solutions in short time. To achieve this, the234

algorithm is implemented in C for CUDA from NVIDIA235

(NVIDIA Corporation, 2019) by Oberkirsch et al. (2021)236

and runs on various CUDA-capable GPUs. The ACO237

meta-heuristic is well suited for this application due to238

its high degree of parallelization. This can be achieved239

as the individual ants can be computed perfectly paral-240

lelized. Thus, the algorithm profits significantly of the241

higher throughput on the GPU.242

On a NVIDIA Quadro P5000, 50 · 109 flux values are243

evaluated per second including all overhead due to other244

operations during the optimization as Oberkirsch et al.245

(2021) determined. There, 1000 ant generation runs, each246

with 16384 ants, require 98 s when the ACO meta-heuristic247

is applied to a reference power plant. This reference power248

plant is also used in this work and later introduced in249

Section 3.1.250

2.2. Static Optimal Control251

The components of SPT plants contain several errors.252

Some of these errors like mirror or tracking errors can be253

modeled. However, the exact quantification of these errors254

is complicated. Thus, there is always a deviation between255

system model and reality. Moreover, the plant is exposed256

to disturbances. Some disturbances such as clouds can be257

predicted and included in the model. However, these dis-258

turbances still come with uncertainties. Hence, a closed-259

loop controller is necessary to compensate for modeling260

errors and disturbances; thus, feedback like measured flux261

maps is required.262

The controlled optical system of an SPT plant has sev-263

eral thousand heliostats, each with a two-directional move-264

ment, as inputs and several thousand receiver bins as out-265

puts. A receiver bin is a discrete element on the receiver266

surface. Hence, the optical system is a large MIMO sys-267

tem. Moreover, this optical system is non-linear and stable268

in every operating point. While the thermal side of the269

SPT plant exhibits long dynamics, the flux density dis-270

tribution remains constant as soon as the heliostats have271

reached their orientation. Thus, the optical system can272

be considered static if the sample time is longer than the273

movement time of the heliostat to a new aim point. That274

means if the sample time covers all dynamics of the optical275

system. For the Cesa1 plant, the heliostat field requires276

less than 3 s for switching the aim point configuration when277

an angular velocity of 2 ° s=1 is assumed for the heliostats278

(Belhomme et al., 2013). Some suppliers even state angu-279

lar velocities up to 12 ° s=1 (SENER, 2014).280

Based on this system analysis, a closed-loop control is281

developed. To benefit from the fact that the optical system282

is considered static, the advantages of aim point optimiza-283

tion and the enhancements of the ACO meta-heuristic, the284

Static Optimal Control algorithm is proposed. The closed285

control loop including the Static Optimal Control is illus-286

trated in Figure 1. The controller itself comprises the error287

signal calculator, the weight calculator and the optimizer.288

The controller is modular; thus, its individual components289

can be exchanged.290

At the beginning of the control-loop, the error signal291

calculator determines based on the deviation between de-292

sired reference flux map yref and measured flux map y an293

error map e in each control step k. Based on this mea-294

sured error, the weight calculator computes the weights of295

an objective function. In this way, the algorithm yields a296

solution with a reduced error.297

To illustrate the workflow of the algorithm, Figure 2298

presents the activity diagram of a single control step. In299

addition, a small example with two heliostats and three300

aim points demonstrates how the controller compensates301

a possible tracking error.302

Initially, both heliostats point to the middle aim point303

2. However, heliostat 2 exhibits a tracking error. Hence, it304

actually aims to aim point 3 leading to a shifted flux map.305

First, the flux map is measured and an error signal is cal-306

culated by subtracting the flux map from the reference307

flux map. Based on the scaled error map, the algorithm308

computes the weight map. As fluxes in bins with higher309

weights are preferred to maximize the objective function,310

the optimizer shifts the heliostats more to the left. Rea-311
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Reference Flux Map

2 2 2

2 4 2

2 2 2

Scaled Error Map

1
4 0 0

1
4

1
4

−1
4

1
4 0 0

Weight Map

1 0 0

1 1 -1

1 0 0

Heliostat Aim Point Configuration

heliostat1 → aimpoint2
heliostat2 → aimpoint1

Measured Flux Map

1 2 2

1 3 3

1 2 2

Controller

Error Signal
Calculator ek

Weight
Calculator

Optimizer

wk

Optimization
Problem

max
u

J(ŷ,w)

s.t.ŷ≤ ymax

System Model
(STRAL)

ŷ = ĥ(u)

H

Controlled System

uopt

Heliostat Field

y = h(u,d)

d

y

yk

yref

Figure 1: Scheme of the closed control loop comprising the Static Optimal Controller and the controlled system. An example of each signal
is plotted above the loop.

sonable aim point configurations are heliostat 1 aiming to312

aim point 2 and heliostat 2 aiming to aim point 1 as well313

as heliostat 1 aiming to aim point 1 and heliostat 2 aiming314

to aim point 2. The first solution is chosen in the figure315

leading to the desired reference flux map. The second so-316

lution is worse since the spillage increases. However, it317

also compensates for the exceedance of the flux density.318

Error Signal Calculator: First, a scaled error319

escaled is calculated from the measured flux density distri-320

bution y and the reference flux density distribution yref321

according to Equation (1). As the error is scaled to the322

maximum flux density of the reference signal, the magni-323

tude of the error is around one. Thus, the magnitude of324

the weights is mostly determined by the weight calculator325

as desired.326

escaled =
yref − y

∥yref∥∞
(1)

In a second step, the scaled error is shifted by a dead band327

d pursuant to Equation (2) leading to a shifted scaled error328

êscaled.329

êscaled =

{
0 , if 0 ≤ escaled ≤ d

escaled − d else
(2)

By combining this shifted scaled error with an exponential330

term, an exponential error e is computed as defined in331

Equation (3). To adapt the impact of the exponential332

term, a scale factor s is included in this term.333

e = êscaled · e−s·êscaled (3)

If the scale factor is zero, the exponential term has no334

impact. A scale factor below unity reduces the impact335

of the exponential term, while a scale factor above one336

enhances its effect. Figure 3 presents the exponential error337

as a function of the scaled error for different scale factors338

and dead bands.339

While a negative scaled error describes an exceedance340

of the flux density above the reference flux density, a pos-341

itive scaled error represents a flux density below the ref-342

erence flux density. Hence, the exponential error is more343

negative if the flux density is exceeded and less positive344

if the flux density is undercut. Thus, exceedances of the345

flux density are penalized stronger, whereas flux densities346

below the reference flux density are rather tolerated.347

The effect of the dead band is similar since it shifts348

the error to the right in Figure 3. Thus, negative values349

become even more negative and positive values become350

less positive. Positive errors within the range of the dead351

band are totally accepted as the error is set to zero. These352

adaptions to the scaled error reduce the risk for spots with353

high flux density in the flux density distribution; thus,354

they increase the safety of the plant. At the same time,355

the performance loss due to accepted flux densities slightly356

below the reference flux density is small.357

Weight Calculator: The weight calculator used in358

this work is an integrator. It has the advantage to permit359

permanent control deviation, but it reacts rather slow. In360

each step, the current weight increases by the current error361
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Aim point
coordinates

1 2 3

Flux map of he-
liostat 1 pointing
to aim point 2

1 1 1

1 2 1

1 1 1

Flux map of he-
liostat 2 pointing
to aim point 2

0 1 1

0 1 2

0 1 1

Measured Flux Map

1 2 2

1 3 3

1 2 2

Reference Flux Map

2 2 2

2 4 2

2 2 2

Scaled Error Map

1
4 0 0

1
4

1
4

−1
4

1
4 0 0

Weight Map

1 0 0

1 1 -1

1 0 0

Optimizer shifts heliostats more
to the left due to higher weights

heliostat 1 to aim point 2
heliostat 2 to aim point 1

New Flux Map

2 2 2

2 4 2

2 2 2

Measure flux map

Calculate error
signal

Calculate weights

Optimize objective
function

Set new aim point
configuration

Figure 2: On the left hand side, the activity diagram executed in
each control step of the Static Optimal Controller is presented. On
the right hand side, a small example clarifying the workflow is shown.

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
escaled / -

0.6

0.4

0.2

0.0

0.2

e 
/ -

Scaled error
Exponential error, d = 0.0, s = 2
Exponential error, d = 0.0, s = 4

Exponential error, d = 0.05, s = 2
Exponential error, d = 0.05, s = 4

Figure 3: Exponential error in comparison to the scaled error. The
exponential error is plotted for different scale factors s and dead
bands d.

multiplied with the factor Ki as Equation (4) shows.362

wk+1 = wk +Ki · ek (4)

To prevent divergent weights, the weight calculator is363

extended by an anti wind up limit.364

Anti wind up: Clouds may shade parts of the he-365

liostat field for longer periods. In consequence, the mea-366

sured flux density remains below the reference flux den-367

sity for longer periods of time during the operation of an368

SPT plant. In addition, aiming to the receiver center is369

more efficient than aiming close to the edges. Hence, re-370

ceiver bins close to the receiver edges are often exposed to371

lower flux densities than the reference flux density distri-372

bution allows. This results in positive errors; consequently,373

the weights increase due to the integrating nature of the374

weight calculator. As a result, the weights diverge in the375

depicted scenarios. If the conditions at the SPT plant al-376

ter, a receiver bin with a diverged weight can suddenly be377

exposed to a high flux density. Then, many control steps378

are required until the weight reaches again a reasonable379

range. This would clearly impair the control capability of380

the Static Optimal Control. Hence, an anti wind up limit381

is included in this work.382

Optimizer The included optimizer solves the opti-383

mization problem presented in Equation (5).384

maximize
u

J(ŷ,w)

subject to ŷ≤ ymax

(5)

The underlying objective function J is maximized with385

respect to the simulated flux density distribution ŷ and the386

weights w by varying the aim point configuration u. Here,387

the flux density distribution is simulated by the system388

model in STRAL. At the same time, the flux density is389

restricted by the AFD ymax. The length of u is the number390

of heliostats or rather groups ngroups and the length of all391

other vectors is the number of bins nbins.392

Objective Function: Here, the ant-colony optimiza-393

tion meta-heuristic (Belhomme et al., 2013) is applied as394

optimization algorithm maximizing the objective function.395

In this work, Equation (6) is applied as objective function.396

J = ∥ŷ∥1 − p
∑
i

max (ŷi − wiyi,max, 0) (6)

Besides the flux density distribution ŷ, the AFD ymax and397

the weights w other variables like the aim point shift could398

be included to restrict the heliostat movement. p is the399

penalty factor penalizing flux density exceedances as a soft400

constraint.401

The objective value rises if the intercepted simulated402

flux density increases. This is achieved by shifting he-403

liostats to aim points with less spillage. Moreover, the404

AFD is scaled by an individual weight for each receiver405

bin. Since bins with too less flux have higher weights and406

bins with too much flux have lower weights, the weights407

allow higher irradiation if the reference flux density is not408
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reached. Thus, they compensate for modeling errors in the409

simulation. Furthermore, weights above unity give the op-410

timizer with the opportunity to exceed the AFD with the411

simulated flux density without penalization. Especially in412

clouded scenarios, this favors higher concentrations.413

Objective Value Scaler: The ACO meta-heuristic414

is designed for objective values between zero and unity.415

Since the objective function can yield negative values if416

the penalty term becomes large, the objective value has to417

be scaled. Here, Equation (7) scales each objective value418

towards the objective value calculated with the simulated419

flux from the current aim point configuration Jmin.420

Jscaled =
J − Jmin

|Jmin| · b
(7)

As long as the solution of one ant is better than the current421

aim point configuration, the best object value is greater422

than zero. b denotes the improvement factor and is fitted,423

so that the objective value does not exceed unity. Here,424

5% are chosen.425

3. Results426

This section introduces first the reference power plant427

used for the validation of the Static Optimal Control. Sub-428

sequently, the plant is exposed to modified tracking errors.429

Under these conditions, the performance of the Static Op-430

timal Control is compared the one of the DAPS. Finally,431

the plant is exposed to a real cloud scenario to assess if432

the Static Optimal Control should be used under these433

conditions.434

3.1. Reference power plant435

Since the enhancements of the ACO meta-heuristic are436

already studied by Oberkirsch et al. (2021) at the virtual437

reference power plant described by Flesch et al. (2017), the438

same plant is used for the evaluation of the Static Optimal439

Control. The plant is equipped with a cylindrical receiver440

and designed for a thermal power of 450MW. 6482 he-441

liostats, each with 121m2 mirror surface, concentrate this442

power. The initial DNI onto the cloudless heliostat field443

is 1000Wm=2 and the evaluation is conducted on 21th of444

March at noon. The fixed aim point grid required for the445

optimization has 36 aim point in circumferential direction,446

13 aim points in vertical direction and two off-receiver aim447

points. Thus, it has 470 aim points in total.448

Flesch et al. (2017) already verified that the ACO449

meta-heuristic converges in combination with a thermal450

model of a molten salt receiver and can handle non-451

uniform AFDs. Hence, only the optical side of the SPT452

plant is considered and no thermal model is included in453

this work. Therefore, a constant AFD is provided to limit454

the flux density on the receiver’s surface and the generality455

of the control regarding the receiver type is preserved.456

3.2. Modeling errors at plant of commercial scale457

This section evaluates the performance of the Static458

Optimal Control when compensating for static errors in459

the simulation model. For this reason, two SPT plant con-460

figurations are created: One models the controlled system461

and another one represents the system model embedded in462

the controller as illustrated in Figure 1. The system model463

assumes a mirror error of 2mrad, while the controlled sys-464

tem exhibits a mirror error of 2.5mrad in the first test465

case. The Static Optimal Control is applied for 20 control466

steps with the controller parameters presented in Table 1.467

The 50 runs of the ACO meta-heuristic require with 16384468

ants per run less than five seconds in each control step.469

Table 1: Parameters of the Static Optimal Control and the embedded
ACO meta-heuristic.

p w0 Ki s d nants nruns

100 1 0.5-1 2 0.05 16384 50

The initial aim point configuration is already optimized470

by the ACO meta-heuristic so that enhancements of the471

intercept can be completely attributed to the Static Opti-472

mal Control. For this, the system model exhibiting a mir-473

ror error of 2mrad is used and the AFD is 800 kWm=2.474

The flux density distribution belonging to the found aim475

point configuration in combination with the model of the476

controlled system exhibiting a mirror error of 2.5mrad is477

presented in Figure 4a. Due to the increased mirror error,478

the flux density is clearly reduced; thus, the AFD is not479

reached any longer causing more spillage than necessary.480

In each control step, the flux density distribution is481

computed with the model of the controlled system and the482

found aim point configuration. This flux density distribu-483

tion is the feedback for the next control step of the Static484

Optimal Control. Based on this feedback, the controller485

computes the error, updates the weights and the optimizer486

determines a new aim point configuration based on the487

embedded objective function. Figure 4b shows the final488

weight map after 20 control steps and Figure 4c presents489

the final flux density distribution.490

The courses of the total incident flux on the receiver491

and the maximum possible total incident flux are illus-492

trated in Figure 5a. This maximum possible total flux is493

identified by optimizing the aim point configuration with494

the model of the controlled system exhibiting the mirror495

error of 2.5mrad. During the control, the total incident496

flux increases from initially 98.2% to 99.9% of the achiev-497

able maximum.498

Figure 5b illustrates the total exceeded flux as well as499

the maximum exceeded flux density. In three control steps,500

flux density exceedances above the AFD of 800 kWm=2
501

arise. In the second control step, the highest exceedance502

occurs. The total exceeded flux is 11.4 kW and the max-503

imum exceeded flux density amounts to 10.5 kWm=2.504

While the total exceeded flux corresponds to 2.4Ö 10=3 %505
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a) Initial flux map.
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b) Final weight map.
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c) Final flux map.

Figure 4: The heliostat field of the SPT plant exhibits a mirror error
of 2.5mrad while a mirror error of 2.0mrad is incorrectly assumed
in the system model of the controller. By applying aim point opti-
mization to the system model with with a mirror error of 2.0mrad,
the initial flux map is determined. Final weight map and final flux
map illustrate the final results of the Static Optimal Control after
20 control steps.
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b) Exceeded flux.

Figure 5: The heliostat field of the SPT plant exhibits a mirror error
of 2.5mrad while a mirror error of 2.0mrad is incorrectly assumed in
the system model of the controller. The courses of the total incident
flux that is maximized by the Static Optimal Control and the max-
imum possible incident flux are presented in subfigure Figure 5a. In
subfigure Figure 5b, the emerging total exceeded flux and the maxi-
mum exceeded flux density are shown.
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a) Initial flux map.
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b) Final weight map.
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c) Final flux map.

Figure 6: The heliostat field of the SPT plant exhibits a mirror error
of 1.5mrad while a mirror error of 2.0mrad is incorrectly assumed
in the system model of the controller. By applying aim point opti-
mization to the system model with with a mirror error of 2.0mrad,
the initial flux map is determined. Final weight map and final flux
map illustrate the final results of the Static Optimal Control after
20 control steps.

of the total flux, the maximum exceeded flux density is506

1.3% of the AFD.507

In the second test case, the mirror error of the model508

representing the controlled system reduces to 1.5mrad,509

while the system model within the optimizer remains the510

same with a mirror error of 2mrad. Once again, the con-511

trol starts from the aim point configuration optimized by512

the ACO meta-heuristic based on the system model. Due513

to the lower mirror error in the controlled system, this aim514

point configuration causes flux density exceedances in this515

case. In the receiver bins around the equatorial line of the516

receiver, a maximum flux density of 910 kWm=2 occurs as517

Figure 6a illustrates. Hence, the AFD of 800 kWm=2 is518

clearly exceeded. In consequence, the weights are adapted519

based on the flux density feedback resulting after 20 con-520

trol steps in the weight map pictured in Figure 6b. Com-521

pared to Figure 6a, the final flux density distribution522

achieved by the Static Optimal Control is clearly widened523

as Figure 6c illustrates. The corresponding maximum flux524

density amounts to 814 kWm=2 and is thus considerably525

closer to the AFD.526

The courses of the total incident flux and the achievable527

maximum total incident flux are shown for the 20 control528

steps in Figure 7a. The maximum possible total incident529

8



0 5 10 15 20
Control step / -

500.0

502.5

505.0

To
ta

l f
lu

x 
/ M

W

Total flux Max total flux

a) Total flux.

0 5 10 15 20
Control step / -

10
1

10
1

To
ta

l e
xc

ee
de

d 
flu

x 
/ M

W

Total exceeded flux Max exceeded flux density

0

50

100

M
ax

 e
xc

ee
de

d 
flu

x 
de

ns
ity

 / 
kW

/m
²
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Figure 7: The heliostat field of the SPT plant exhibits a mirror error
of 1.5mrad while a mirror error of 2.0mrad is incorrectly assumed in
the system model of the controller. The courses of the total incident
flux that is maximized by the Static Optimal Control and the max-
imum possible incident flux are presented in subfigure Figure 7a. In
subfigure Figure 7b, the emerging total exceeded flux and the maxi-
mum exceeded flux density are shown.

flux is once again determined by the ACO meta-heuristic530

and the model of the controlled system. The system model531

exhibits a mirror error of 1.5mrad in this case. The total532

incident flux even exceeds the achievable maximum. How-533

ever, the flux density exceeds opposed to the solution with534

the maximum possible incident flux also the AFD.535

The course of the exceeded flux as it is compensated536

for by the Static Optimal Control is illustrated in Fig-537

ure 7b. To accomplish the reduction of the total exceeded538

flux by 93% in the first control step, the total flux drops539

as well. However, while the total exceeded flux reduces540

by over 9MW, the total flux only declines by less than541

8MW. In control steps two and three, the Static Optimal542

Control increases the total flux by 0.7% while the remain-543

ing total exceeded flux halves once again. After 20 control544

steps, the total incident flux reaches 99.6% of the achiev-545

able maximum. In this control step, the total exceeded546

flux amounts to 0.08% of the total incident flux and the547

AFD is exceeded by maximally 14.4 kWm=2 correspond-548

ing to 1.8% of the AFD.549

After the performance of the Static Optimal Control is550

assessed individually, it is compared to the DAPS (Vant-551

Hull et al., 1996a) in the following. For this first test case, a552

comparison is not totally possible since the DAPS can only553

compensate for flux density exceedances but cannot en-554

hance the total incident flux. Hence, the controller would555

not react and the total incident flux would remain at the556

initial 98.2% of the achievable maximum. However, the557

comparison between Static Optimal Control and DAPS is558

possible for the second test case and the results are shown559

in Figure 8.560
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b) Final flux map DAPS.

Figure 8: Controlling an SPT plant with a mirror error of 1.5mrad
while assuming incorrectly a mirror error of 2.0mrad in the simula-
tion model of the controller. The control starts from the optimized
aim point configuration using a simulation model with a mirror error
of 2.0mrad. Both, the DAPS and the static optimal control reduce
the exceeded flux as presented in Figure 8a. At the same time, the
static optimal control maximizes the total intercept power on the
receiver. Additionally, the final flux map achieved by the DAPS is
shown in Figure 8b.

As Figure 8a demonstrates, the DAPS compensates561

within two control steps for the flux density exceedances.562

For this, the DAPS determines all heliostats that cause563

based on the system model with a mirror error of 2.0mrad564

flux density exceedances and removes these heliostats from565

tracking. As the system model deviates from the model of566

the controlled system with a mirror error of 1.5mrad, the567

concentration is slightly higher than expected. Therefore,568

the DAPS requires a second control step.569

In this way, the DAPS eliminates all exceedances of570

the flux density, whereas flux density exceedances remain571

when applying the Static Optimal Control. However, the572

DAPS causes a performance loss of roughly 9% compared573

to the maximum achievable total flux, while the perfor-574

mance loss coming along with the Static Optimal Control575

is only 0.4%.576

The flux density distribution belonging to the solution577

found by the DAPS after two control steps is presented in578

Figure 8b. The DAPS does not reallocate the heliostats on579

the receiver like the Static Optimal Control. Instead, it re-580

moves the heliostats completely from tracking the receiver.581

Hence, the flux density distribution is not widened. The582

power of these heliostats is lost instead of being received583

by sections closer to the receiver edges. This is in con-584

trast to the solution found by the Static Optimal Control585

illustrated in Figure 6c.586
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Figure 9: A real cloud scenario is presented. For this, real DNI
predictions made by the ASI-based nowcasting system described by
Nouri et al. (2020) are mapped onto the heliostat field of the reference
power plant introduced in Section 3.1. The predictions made one
minute ahead are presented on the upper half of the figure and the
measurements are illustrated on the lower half of the figure. The
time of prediction and measurement is indicated above each column.

3.3. Disturbances at plant of commercial scale587

On the one hand, deviations between system model and588

the controlled system exist in the control of SPT plants.589

On the other hand, these plants are exposed to distur-590

bances caused by clouds. Hence, the Static Optimal Con-591

trol should not only compensate for modeling errors, but592

also reject these dynamic disturbances. Hence, the refer-593

ence power plant presented in Section 3.1 is exposed to a594

clouded scenario in the following to assess the performance595

of the Static Optimal Control.596

For this reason, a real clouded scenario recorded by597

an ASI-based nowcasting system (Nouri et al., 2018, 2019,598

2020) is superimposed on the heliostat field of the refer-599

ence power plant. Therefore, the power of each heliostat is600

scaled by the DNI measured at its position. The clouded601

scenario has a total duration of five minutes. It starts602

at 13:29:00 and finishes at 13:34:00. In this clouded sce-603

nario, clear sky conditions prevail at the beginning, before604

a small cloud passes the heliostat field. Figure 9 illustrates605

the measurements for 13:32:00 and 13:33:00. Furthermore,606

two predictions of the ASI-based nowcasting system are607

presented in this figure. As the lead time of these now-608

casts is one minute, they are predicted at 13:31:00 and609

13:32:00 for one minute ahead.610

According to Oberkirsch et al. (2021), the optimization611

duration for 50 ants is roughly 5 s at the reference power612

plant. Moreover, the temporal resolution of the nowcast-613

ing system is 30 s. In this study, four control steps should614

be applied until the DNI situation is varied based on a615

new measurement. This gives the heliostats according to616

Equation (8) 2.5 s to move.617
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Figure 10: Controlling an SPT plant with a mirror error of 2.0mrad
exposed to cloud disturbances. A real cloud measurement is applied
and the cloud moves every fourth control step.

tmove =
tstep
steps

− toptimization =
30 s

4
− 5 s = 2.5 s (8)

Figure 10 presents the courses of the total incident flux618

and the total exceeded flux on the receiver. For compar-619

ison, Figure 10a shows the total incident flux on the one620

hand using the Static Optimal Control and on the other621

hand without any control. In the case without any con-622

trol, the optimized aim point configuration for the clear623

sky scenario is applied and not varied during the entire624

test period. Hence, the heliostats are not reallocated as625

soon as the DNI above the heliostat field drops due to the626

clouds.627

In contrast, the Static Optimal Control adapts the aim628

point configuration in control step 35 for the first time to629

reduce spillage. This indicates Figure 10a. Prior to control630

step 35, the weights did not adjust sufficiently strong to631

justify changing the aim point configuration. The weights632

adjust slowly as the cloud is little; thus, it causes only a633

small error between reference and measured flux density634

distribution. By the end of the clouded scenario, the Static635

Optimal Control increases the total incident flux by 0.6%.636

However, the Static Optimal Control leads at the same637

time to a total exceeded flux of 3MW in control step 39.638

This corresponds to 0.6% of the total incident flux as Fig-639

ure 10b illustrates. The maximum exceeded flux density640

arises with 119 kWm=2 also in control step 39.641

Besides measuring the current DNI, the ASI-based642

nowcasting system predicts also the emerging DNI for the643

future. Hence, these predicted DNI information is super-644

imposed to the system model used in the controller. Here,645

the minimum available lead time of one minute is applied.646
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b) Exceeded flux.

Figure 11: Controlling an SPT plant with a mirror error of 2.0mrad
exposed to cloud disturbances. A real cloud measurement is applied
and the cloud moves every fourth control step. Additionally, the
controller receives the prediction of the DNI with a lead time of one
minute in a feed forward manner.

By using the nowcasting data, the Static Optimal Con-647

trol receives information about occurring clouds directly648

in a feed forward way. This is in contrast to the previous649

simulations, where the Static Optimal Control only re-650

ceived indirect information about the clouds through the651

flux density feedback. Figure 11 presents the results of the652

Static Optimal Control under these conditions.653

Compared to the results without any control, the total654

incident flux fluctuates strongly as Figure 11a illustrates.655

Figure 11b indicates that the flux density exceeds the AFD656

already in control step 22. The maximum exceeded flux657

density is 122 kWm=2 and the total exceeded flux amounts658

to 3.6MW.659

4. Discussion660

The Static Optimal Control demonstrated in Sec-661

tion 3.2 that it is able to compensate for static modeling662

errors at a plant of commercial scale. The first test case663

analyzed a scenario with an increased mirror error in the664

controlled system. There, the control improved the inter-665

cept by 1.7% in comparison to the DAPS or aim point666

optimization. At the same time, the flux density exceeds667

the AFD by maximally 1.3%. Thus, the defined aim of668

5% is reached and the exceedances are clearly below the669

accuracy of the flux density measurement system.670

In a second scenario, the mirror error is reduced by671

0.5mrad in the controlled system. There, the Static Op-672

timal Control reduces already in the first control step the673

total exceeded flux by 93%. After the second control step,674

the maximally emerging flux density exceedance declined675

to around 50 kWm=2 (6.25%). In the eighth control step,676

the maximum flux density exceedances drops below the de-677

fined target level of 5%. The final maximum exceedance of678

the AFD is 1.8% after 20 control steps. Hence, the Static679

Optimal Control fulfills the aim of a maximum exceedance680

of 5% above the AFD when compensating for static mod-681

eling errors. In contrast, the exceedances above the AFD682

remain using an open-loop control. The DAPS, in turn,683

completely eliminates the flux density exceedances. How-684

ever, the DAPS looses 9% of the maximum achievable685

intercept reasoned in the defocusing of the heliostats. In686

comparison, the Static Optimal Control forfeits only 0.4%687

of this maximum.688

In Section 3.3, the performance of the Static Optimal689

Control is studied at a plant of commercial scale under dis-690

turbances due to a small cloud. The variations in the DNI691

cause oscillations in the weight map and, in turn, clear ex-692

ceedances above the AFD. Even though the 150 kWm=2-693

tolerance range stated by Gross et al. (2020) is observed,694

the defined aim of 5% above the AFD could not be met as695

the maximum exceedance is 122 kWm=2 (15.25%). Thus,696

the Static Optimal Control is with the currently selected697

controller settings not suited to reject dynamic distur-698

bances. For more extensive tests, other objective functions699

should be tested as they have already proven in simplified700

tests that they eliminate flux exceedances better.701

In a subsequent step, the Static Optimal Control is ex-702

tended by a feed forward control. For this, DNI predictions703

with a lead time of 1min have been applied. However, even704

this feed forward control did not prevent the oscillating705

spots in the flux density distribution since the predicted706

clouds were bigger than the ones that actually occurred as707

Figure 9 illustrates. In consequence of too large predicted708

clouds, the Static Optimal Control shifted the heliostats to709

the receiver equator for spillage reduction. At these equa-710

torial regions, the ultimately higher DNI results in flux711

density exceedances. This amplifies the oscillating spots712

in the flux density distribution further instead of damping713

them.714

Hence, the accuracy of the ASI-based nowcasting sys-715

tem is not suited to improve the Static Optimal Control716

under these dynamic conditions. In the future, the accu-717

racy of the nowcasting system has to be improved. Al-718

ternatively, Nouri et al. (2019) determine additional DNI719

maps that only reduce the DNI at positions that have a720

significantly higher chance to be shaded. Using these un-721

certainty maps, reduces clearly the probability of concen-722

trating too much onto the receiver center. In combination723

with the adapted controller settings, this could be a way724

to handle the emerging oscillating spots in the flux density725

distribution under transient DNI conditions.726

5. Conclusion727

In this paper, the Static Optimal Control is proposed728

as a closed-loop aim point control technique for solar power729

tower plants. The Static Optimal Control assumes a static730
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system; thus, the sample time of the control has to be731

selected longer than the maximum heliostat movement732

within one control step. The heart of the Static Opti-733

mal Control is the embedded optimizer. This optimizer734

finds optimal solutions regarding an objective function and735

makes the control stand off among other existing closed-736

loop aim point control techniques.737

The flux density feedback is recorded directly by a flux738

density measurement system. An error signal calculator739

compares this feedback with the reference flux density and740

a weight calculator estimates weights based on the error741

signal. These weights are included in the objective func-742

tion of the optimizer. In this way, the Static Optimal743

Control compensates for static modeling errors in the sys-744

tem model. In two investigated test cases, it enhances745

the performance of a plant of commercial scale by 1.7-746

8.6% in comparison to the Dynamic Aimpoint Processing747

System (DAPS) (Vant-Hull et al., 1996a) as reference ap-748

proach. Under a real cloud scenario, the Static Optimal749

Control reaches its limits as the flux density exceeds the750

AFD by maximally 15.25%. Here, more conservative ob-751

jective functions have to be studied. Scaling the power752

of the heliostats by the predicted DNI of a nowcasting753

system in a feed forward manner, does not enhance the754

control quality since the accuracy of the nowcasts is not755

sufficient.756

In the future, nowcasting maps that only reduce the757

DNI in regions that have a high probability to be shaded758

will be applied for the feed forward control and more con-759

servative controller settings will be investigated for the760

Static Optimal Control. In this way, the oscillating flux761

density spots under transient conditions should be pre-762

vented. Furthermore, this closed-loop control will be em-763

bedded in an aim point management system. This overall764

system detects scenarios, where the control can be applied765

safely. In the remaining transient scenarios, more conser-766

vative control approaches are used. Finally, this system767

including the Static Optimal Control will be validated at768

the Jülich solar tower.769
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N. Cruz, J. Álvarez, J. Redondo, M. Berenguel, P. Or-866

tigosa, A two-layered solution for automatic heliostat867

aiming, Engineering Applications of Artificial Intelligence868

72 (2018) 253–266. URL: https://www.sciencedirect.869

com/science/article/pii/S0952197618300939. doi:https:870

//doi.org/10.1016/j.engappai.2018.04.014.871
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