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Abstract

Many aim point optimization techniques exist to control Solar Power Towers (SPTs). However, SPTs exhibit optical
losses that cannot be exactly modeled. Moreover, cloud passages cause transient incident flux distributions. Due to these
modeling errors and disturbances, aim point optimization may exceed the Allowable Flux Density (AFD); consequently,
these efficient aiming strategies are seldom applied at commercial plants. In this paper, an innovative closed-loop aim
point control technique, the Static Optimal Control, is proposed. Flux density measurements close the open control loop
of aim point optimization. Based on this feedback, the Static Optimal Control estimates weights that are embedded in
the cost function of the aim point optimization. This GPU-based optimizer finds good aim point configurations in a few
seconds even for large plants. Thus, the Static Optimal Control compensates for modeling errors and rejects disturbances
to observe the AFD while maximizing the intercept. The performance of the Static Optimal Controller is evaluated for
inaccurately modeled mirror errors and under a real cloud scenario. Aim of this control is not to exceed the AFD by
more than 5% i.e. the accuracy of the flux density measurements. The aim is achieved for static modeling errors while
improving the intercept by 1.7-8.6 % compared to a heuristic control. In the cloud scenario, the Static Optimal Control
reaches its limits. Even mapping all-sky-imager-based nowcasts in a feed forward manner on the heliostat field does not
improve the control quality due to high prediction errors.

Keywords: Concentrating solar power, Solar power tower, Heliostat aiming, Aim point optimization, Optimal control,
Cloud disturbance

1. Introduction 2 peats until the flux density complies with the AFD for
23 each hot spot (Vant-Hull et al., 1996a).

One of the first aiming strategies for Solar Power Tower ,, The SAPS spreads as heuristic method the aim points

(SPT) plants is the combination of static and dynamic aim ,, vertically from the receiver’s edges depending on the he-

point processing system. Vant-Hull et al. (1996a,b) devel- .. 1jpstats’ beam radii (Vant-Hull et al., 1996a,b). In the

oped it for the molten salt central receiver in the Solar
Two Project (Smith, 1992; Bradshaw et al., 2002). While
the Static Aimpoint Processing System (SAPS) is an open-
loop control that distributes the aim points for each he-
liostat, the Dynamic Aimpoint Processing System (DAPS)
is rather a closed-loop control that reduces the allocated .,
heliostats at aim points with flux excess. .

The DAPS detects "hot spots” exceeding the Allow- .,
able Fluz Density (AFD) (Vant-Hull, 2002) and eliminates
them. The AFD is the minimum of the limit due to ther-
mal stresses and the limit due to salt corrosion. It is
determined based on local salt temperature and velocity. .,
Moreover, only the heliostat field, but not the receiver is
actively controlled. First, the system identifies the receiver |
bin with the highest exceedance of the AFD. Subsequently, ,
the heliostat causing based on the simulation model the ,,

highest flux in this bin is defocused. This procedure re-
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recent years, the SAPS is continuously extended: Sanchez-
Gonzalez and Santana (2015); Sanchez-Gonzélez et al.
(2017, 2018) introduced the aiming factor k, Flesch et al.
(2017) and Collado and Guallar (2019) segmented the field
in radial sectors, Vant-Hull et al. (1996b) and Sanchez-
Gonzélez et al. (2017) in azimuthal sectors and Astolfi
et al. (2017) and Garcia et al. (2017) merged radial and
azimuthal approach. Due to all these improvements, the
maximal flux density reduces further and the efficiency in-
creases slightly.

Since the computational power rose in the past, more
and more meta-heuristic approaches like TABU algorithms
(Salomé et al., 2013; Yu et al., 2014; Grange and Fla-
mant, 2021) or genetic algorithms (Besarati et al., 2014;
Wang et al., 2017; Cruz et al., 2018, 2019; Zhu and Ni,
2019) are applied to solve the combinatorial NP-complete
knapsack problem (Kellerer et al., 2004) of assigning he-
liostats to pre-defined aim points on the surface of the re-
ceiver. Even, Binary Integer Linear Programming (BILP)
(Ashley et al., 2017) and Mized Integer Linear Program-
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Nomenclature

J Objective function, [-]

K; Integrator constant, [-]

N Number of reachable destinations from ¢
€scaled Shifted scaled error map, [-]

y Simulated flux density distribution, [W m™2]
€scaled Scaled error map, [-]

e Error map, [-]

u Aim point configuration, [-]

w Weight map, [-]

Ymax Allowable flux density distribution, [Wm™2]
Vref Reference flux density distribution, [W m~2]
y Flux density distribution, [W m—?]

min Current objective function, [-]

b Improvement factor, [-]

d Dead band, [-]

i Bin index, [-]

k Control step index, [-]

k k-factor, []

n Number of, [-]

r Slant range, [m]

s Scale factor, [-]

t Time, [s]

€ e-factor for slant range, [m—!]

ACO Ant-Colony Optimization

AFD Allowable Flux Density, [kW m~2]
AFD Allowable Flux Density

APS Aim Point Strategy

AST All-Sky-Imager

BILP Binary Integer Linear Programming
DAPS  Dynamic Aimpoint Processing System
DNI Direct Normal Irradiance, [W m~2]
FLOPS Floating Point Operations Per Second
GPGPU General-Purpose computation on GPU
GPU Graphics Processing Unit

MILP  Mixed Integer Linear Programming
MIMQO  Multi-Input Multi-Output

PI Proportional Integral

PID Proportional Integral Derivative
SAPS Static Aimpoint Processing System
S150 Single-Input Single-Output

SPT Solar Power Tower

ming (MILP) (Richter et al., 2019) algorithms coupled 7
with a Gamma robustness approach to cover uncertainties n
(Kuhnke et al., 2020) are evaluated. By applying grouping »
and aim point reduction strategies, the run time can even
be reduced down to 10s for large heliostat fields by using 7
twelve cores in parallel (Speetzen and Richter, 2021). 7

Moreover, Belhomme et al. (2013) adapted the Ant- s
Colony Optimization (ACO) meta-heuristic to maximize »
the intercept. While it complies with the AFD for arbi- s
trary receiver types, this method improves the single fac- 7
tor aiming by 2% for cylindrical receivers (Flesch et al., so
2017). When this method is coupled with a local search al- &
gorithm, it reaches faster convergence (Maldonado et al., s
2018). Oberkirsch et al. (2021) improved the computa- s
tional speed of the ACO algorithm by grouping the he- s
liostats based on k-means clustering and by porting it to ss
the GPU. 86

Clouds can shade even large heliostat fields in less than e
5min assuming mean cloud speeds in southern Spain of s
7.36 ms~ ! (Kuhn et al., 2018). Even under these transient s
conditions aim point optimization can determine near op- «
timal solutions as cloud predictions can be included in the o
system model. There, the optimization requires around o

2

30s (Ashley et al., 2017; Oberkirsch et al., 2021) match-
ing the temporal resolution of All-Sky-Imager (ASI)-based
nowcasting systems (Nouri et al., 2018, 2019, 2020).

However, these open-loop controllers cannot compen-
sate for modeling errors due to inaccurately estimated
tracking or mirror errors nor reject other disturbances like
uncertainties in the cloud prediction. Hence, a real plant
requires, next to an open-loop aim point control, a closed-
loop aim point control. Similar to Vant-Hull et al. (1996a),
who coupled SAPS with DAPS, Cruz et al. (2019, 2020)
added a heuristic control downstream of the genetic algo-
rithm. This heuristic activates and deactivates heliostats
and shifts iteratively heliostats from spots, that exceed
the AFD, to spots with a low flux density. Similarly,
Garcia-Martin et al. (1999) shifts heliostats to control the
receiver’s temperature at the PSA’s CESA-1 plant. There,
not only the heliostats move from aim points in hot regions
to aim points in cold regions, but also the aim points itself
wander to balance the flux distribution within the vicinity
of the aimpoint.

A different approach is proposed by Garcia et al.
(2017), who decouple the Multi-Input Multi-Output
(MIMO) system into 54 Single-Input Single- Output (SISO)
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subsystems. Each subsystem describes a group of he-us
liostats and is controlled by a Proportional Integral Deriva-ia
tive (PID) controller. The PID controller adjusts disper-iso
sion and position of the group’s aim points for cylindricalis:
receivers (Garcfa et al., 2018). Acosta et al. (2021) already
applied the approach to the reference power plant used inis2
this work (Flesch et al., 2017) and used a raytracer insteadiss
of the HFLCAL convolution method (Schwarzbdzl et al.,s
2009) as radiation model. Garcia et al. (2018) and Soo Toosss
et al. (2019) replaced the PID controllers by a Model Pre-iss
dictive Controller (MPC), called Dynamic Matriz Controls,
(DMC) and exposed the plant to transient conditions. Toiss
overcome overshoots in the flux density, they added a Pro-is
portional Integral (PI) controller to successively readjustiso
the setpoint flux after the cloud has passed. By includingie
the slant range between heliostat and tower, this controlie
strategy is simplified to one that requires only one manip-ies
ulated variable per panel (Garcia et al., 2020) and a tuningses
analysis is performed (Garcia et al., 2022). 165
Up to now, the flux density demand for closed-loopies
aim point controls is usually determined based on temper-1s
ature measurements and a thermal model (Gross et al.,ues
2020). The Aim Point Strategy (APS) of Gross et al.ig
(2020) accomplishes to meet this demand with a devia-in
tion of less than 150kW m ™2 in either direction. In thisix
work, we assume a directly measured incidence flux den-i7
sity distribution on the receiver surface as feedback for theirs
closed-loop control. Several techniques like moving bars oriz
direct flux measurements using the receiver’s reflection canizs
provide these solar flux density distribution even for large-iz
scale receivers. However, moving bars are disadvantageousir
due to large moving parts and direct measurements mayizs
be less precise (Roger et al., 2014). Therefore, Offergeldizs
et al. (2019) enhanced the direct flux density measure-is
ment system of Gohring et al. (2011) by developing theis
scan method. In this way, accuracies of 2-9 % are achieved.s
(Stadler et al., 2019). .
In this work, we present a closed-loop aim point con-
trol strategy: the Static Optimal Control. Aim of the
Static Optimal Control is to find solutions that exceed the'™
AFD by less than the accuracy of the measurement system.zss
Thus, 5% are selected as a mean accuracy between 2-9 %7
(Stadler et al., 2019). To maximize the intercept whiless
compensating for modeling errors and disturbances, theiso
Static Optimal Control embeds the ACO meta-heuristico
(Belhomme et al., 2013). This ACO algorithm was en-i
hanced by Oberkirsch et al. (2021) to achieve the requireduo:
convergence rate for the application in the Static Optimalzss
Control. Finally, the control quality of the Static Optimalies
Control is evaluated under different scenarios at a plant ofiss
commercial scale. 196

197

83

2. Methods e
199
Since the aim point optimization is the heart of the
Static Optimal Control it is introduced first in this sec-

tion. Both, the basic ACO meta-heuristic as well as some

improvements are described. Afterwards, the controller
comprising error signal calculator, weight calculator, anti
wind up, optimizer, objective function and objective value
scaler is presented in detail.

2.1. Aim point optimization

Ant-colony optimization meta-heuristic: During
foraging, ants communicate through emitting pheromones
and build a swarm intelligence. This multi-agent method
is adapted by Belhomme et al. (2013) to maximize the
intercept of SPT plants. While each ant describes a cer-
tain path in reality, each ant evaluates a certain aim point
configuration in this analogy. An aim point configuration
characterizes one specific allocation of all heliostats to pre-
defined aim points.

The path of an ant is determined by a probability and a
random factor that is specified by a Monte-Carlo-Method.
The probability is the product of pheromone concentra-
tion and attractiveness of a path, In reality, the ants emit
pheromones; in consequence, the pheromone concentration
alters. Moreover, the pheromones evaporate with time.
Here, the concentration is regularly updated based on an
objective value. The objective value used in this work is
introduced in Section 2.2. Thus, the paths with greater
objective values are favored and the evaporation prevents
the algorithm to converge into local optima. The attrac-
tiveness of a path is the intercept of a heliostat assigned
to an aim point. The intercept is the ratio of flux irradiat-
ing onto the receiver to the flux reaching the plane of the
receiver.

Finally, all ants, each defining an aim point configura-
tion, are evaluated and the best aim point configuration
is selected. The corresponding best ant forms the next
generation of ants.

The following sections describe three enhancements
yielding a faster convergence of this ACO meta-heuristic:

1. Replacing raytracing by pre-calculated flux maps,
2. Clustering the heliostats to groups and
3. Porting the algorithm on the GPU.

Pre-calculated flux maps: One flux map is the
emerging flux density distribution on the receiver’s sur-
face, when one heliostat points to one aim point. As
the aim points are pre-defined on the surface of the re-
ceiver, raytracing and optimization can be decoupled by
pre-calculating flux maps in advance.

The flux map varies both with the sun angle and the
Direct Normal Irradiance (DNT). While the DNIT scales the
flux map only by a constant factor, the sun angle changes
the shape of the flux map. Thus, the flux maps have to
be pre-calculated for roughly 1830 sun angles in southern
Spain to reach modeling errors below 1% as analyzed by
Oberkirsch et al. (2021). In this work, the raytracing is
performed by the raytracing software STRAL'.

IThe Solar Tower RAytracing Laboratory (STRAL) is developed
at the German Aerospace Center (Belhomme et al., 2009).
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During optimization, the algorithm only superposeszss
these pre-calculated flux maps instead of raytracing eachass
aim point configuration. Thus, the computational time issr
reduced by factor 102 — 10* as stated by Belhomme et al.zss
(2013). The slight accuracy loss due to small errors in theaso
modeling of shading and blocking is negligible for largerzso
fields. 261

Grouping: In a next step, heliostats with similar focals
spots are clustered into groups by the k-means clusteringass
algorithm (Lloyd, 1982). As clustering parameters, thezs
radius and the 2-argument arctangent arctan2 are appliedass
for circular heliostat fields as explained by Oberkirsch et al.zss
(2021). 267

For each group, the flux maps of the contained he-s
liostats are superposed and an overall flux map is stored.zso
Thus, only the flux maps of all groups are superposed in-2no
stead of superposing the flux maps of all heliostats whenon
evaluating one aim point configuration. Moreover, the so-22
lution space S decreases clearly. In this way, the algorithmors
converges in less optimization steps and even less optimiza-27
tion time. 275

The effect of the group number is studied by Oberkirschars
et al. (2021). The study exhibits faster convergence for azr
small number of groups, while better results are reachedzrs
with more groups. In this work, 200 groups are evaluatedar
as the strong convergence in the first seconds is importantaso
for the closed-loop aim point control. 281

At the same time, the required memory reduces by fac-2.
tor 10— 100 dependent on the average number of heliostatsss
in a group. Only this memory reduction allows to shift allsss
flux maps of a single sun angle into the GPU memory tozss
achieve further optimization time reductions on the GPU.2ss

GPU implementation: For the application in assr
closed-loop aim point control, the ACO meta-heuristic hasass
to reach good solutions in short time. To achieve this, theass
algorithm is implemented in C for CUDA from NVIDIA2w
(NVIDIA Corporation, 2019) by Oberkirsch et al. (2021)2a
and runs on various CUDA-capable GPUs. The ACO:»
meta-heuristic is well suited for this application due toas
its high degree of parallelization. This can be achievedas
as the individual ants can be computed perfectly paral-as
lelized. Thus, the algorithm profits significantly of theass
higher throughput on the GPU. 207

On a NVIDIA Quadro P5000, 50 - 10° flux values arezs
evaluated per second including all overhead due to otheraw
operations during the optimization as Oberkirsch et al.soo
(2021) determined. There, 1000 ant generation runs, eachsu
with 16384 ants, require 98 s when the ACO meta-heuristicso
is applied to a reference power plant. This reference powersos
plant is also used in this work and later introduced inso
Section 3.1. 305

306

2.2. Static Optimal Control 307

The components of SPT plants contain several errors.3®
Some of these errors like mirror or tracking errors can be®
modeled. However, the exact quantification of these errors’?

311

4

is complicated. Thus, there is always a deviation between
system model and reality. Moreover, the plant is exposed
to disturbances. Some disturbances such as clouds can be
predicted and included in the model. However, these dis-
turbances still come with uncertainties. Hence, a closed-
loop controller is necessary to compensate for modeling
errors and disturbances; thus, feedback like measured flux
maps is required.

The controlled optical system of an SPT plant has sev-
eral thousand heliostats, each with a two-directional move-
ment, as inputs and several thousand receiver bins as out-
puts. A receiver bin is a discrete element on the receiver
surface. Hence, the optical system is a large MIMO sys-
tem. Moreover, this optical system is non-linear and stable
in every operating point. While the thermal side of the
SPT plant exhibits long dynamics, the flux density dis-
tribution remains constant as soon as the heliostats have
reached their orientation. Thus, the optical system can
be considered static if the sample time is longer than the
movement time of the heliostat to a new aim point. That
means if the sample time covers all dynamics of the optical
system. For the Cesal plant, the heliostat field requires
less than 3 s for switching the aim point configuration when
an angular velocity of 2°s~! is assumed for the heliostats
(Belhomme et al., 2013). Some suppliers even state angu-
lar velocities up to 12°s7! (SENER, 2014).

Based on this system analysis, a closed-loop control is
developed. To benefit from the fact that the optical system
is considered static, the advantages of aim point optimiza-
tion and the enhancements of the ACO meta-heuristic, the
Static Optimal Control algorithm is proposed. The closed
control loop including the Static Optimal Control is illus-
trated in Figure 1. The controller itself comprises the error
signal calculator, the weight calculator and the optimizer.
The controller is modular; thus, its individual components
can be exchanged.

At the beginning of the control-loop, the error signal
calculator determines based on the deviation between de-
sired reference flux map y.of and measured flux map y an
error map e in each control step k. Based on this mea-
sured error, the weight calculator computes the weights of
an objective function. In this way, the algorithm yields a
solution with a reduced error.

To illustrate the workflow of the algorithm, Figure 2
presents the activity diagram of a single control step. In
addition, a small example with two heliostats and three
aim points demonstrates how the controller compensates
a possible tracking error.

Initially, both heliostats point to the middle aim point
2. However, heliostat 2 exhibits a tracking error. Hence, it
actually aims to aim point 3 leading to a shifted flux map.
First, the flux map is measured and an error signal is cal-
culated by subtracting the flux map from the reference
flux map. Based on the scaled error map, the algorithm
computes the weight map. As fluxes in bins with higher
weights are preferred to maximize the objective function,
the optimizer shifts the heliostats more to the left. Rea-



312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

Reference Flux Map
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Figure 1: Scheme of the closed control loop comprising the Static Optimal Controller and the controlled system. An example of each signal

is plotted above the loop.

sonable aim point configurations are heliostat 1 aiming to
aim point 2 and heliostat 2 aiming to aim point 1 as well
as heliostat 1 aiming to aim point 1 and heliostat 2 aiming
to aim point 2. The first solution is chosen in the ﬁgure334
leading to the desired reference flux map. The second so-""
lution is worse since the spillage increases. However, it™
also compensates for the exceedance of the flux density.
Error Signal Calculator: First, a scaled error
€scaled 1S calculated from the measured flux density distri-"*
bution y and the reference flux density distribution ymf340
according to Equation (1). As the error is scaled to the
maximum flux density of the reference signal, the magni-"
tude of the error is around one. Thus, the magnitude of ®
the weights is mostly determined by the weight calculator”

. 345
as desired.
346

Yref =Y (1 347
348

€scaled =
seae ”yrefHOO

In a second step, the scaled error is shifted by a dead band:Z
d pursuant to Equation (2) leading to a shifted scaled error

€scaled -
352

353

PN 0 ) if 0 S €scaled S d =
€scaled = (2)355
€scaled — d  else

356

By combining this shifted scaled error with an exponential™’
term, an exponential error e is computed as defined in™"
Equation (3). To adapt the impact of the exponential®
term, a scale factor s is included in this term. *

9

0

361

—5-@scaled (3)
If the scale factor is zero, the exponential term has no
impact. A scale factor below unity reduces the impact
of the exponential term, while a scale factor above one
enhances its effect. Figure 3 presents the exponential error
as a function of the scaled error for different scale factors
and dead bands.

While a negative scaled error describes an exceedance
of the flux density above the reference flux density, a pos-
itive scaled error represents a flux density below the ref-
erence flux density. Hence, the exponential error is more
negative if the flux density is exceeded and less positive
if the flux density is undercut. Thus, exceedances of the
flux density are penalized stronger, whereas flux densities
below the reference flux density are rather tolerated.

The effect of the dead band is similar since it shifts
the error to the right in Figure 3. Thus, negative values
become even more negative and positive values become
less positive. Positive errors within the range of the dead
band are totally accepted as the error is set to zero. These
adaptions to the scaled error reduce the risk for spots with
high flux density in the flux density distribution; thus,
they increase the safety of the plant. At the same time,
the performance loss due to accepted flux densities slightly
below the reference flux density is small.

Weight Calculator: The weight calculator used in
this work is an integrator. It has the advantage to permit
permanent control deviation, but it reacts rather slow. In
each step, the current weight increases by the current error

€ = €scaled ' €
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Figure 2: On the left hand side, the activity diagram executed in387
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Figure 3: Exponential error in comparison to the scaled error. The*®

exponential error is plotted for different scale factors s and deadasor
bands d.
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6

multiplied with the factor K; as Equation (4) shows.

(4)

To prevent divergent weights, the weight calculator is
extended by an anti wind up limit.

Anti wind up: Clouds may shade parts of the he-
liostat field for longer periods. In consequence, the mea-
sured flux density remains below the reference flux den-
sity for longer periods of time during the operation of an
SPT plant. In addition, aiming to the receiver center is
more efficient than aiming close to the edges. Hence, re-
ceiver bins close to the receiver edges are often exposed to
lower flux densities than the reference flux density distri-
bution allows. This results in positive errors; consequently,
the weights increase due to the integrating nature of the
weight calculator. As a result, the weights diverge in the
depicted scenarios. If the conditions at the SPT plant al-
ter, a receiver bin with a diverged weight can suddenly be
exposed to a high flux density. Then, many control steps
are required until the weight reaches again a reasonable
range. This would clearly impair the control capability of
the Static Optimal Control. Hence, an anti wind up limit
is included in this work.

Optimizer The included optimizer solves the opti-
mization problem presented in Equation (5).

J(§,w)

subject to  ¥< ymax

Wrt1 = Wi + K - e,

maximize
u

(5)

The underlying objective function J is maximized with
respect to the simulated flux density distribution ¥ and the
weights w by varying the aim point configuration u. Here,
the flux density distribution is simulated by the system
model in STRAL. At the same time, the flux density is
restricted by the AFD yax. The length of u is the number
of heliostats or rather groups ngroups and the length of all
other vectors is the number of bins npiys.

Objective Function: Here, the ant-colony optimiza-
tion meta-heuristic (Belhomme et al., 2013) is applied as
optimization algorithm maximizing the objective function.
In this work, Equation (6) is applied as objective function.

J = ||y||1 _pzmax (gl _wiyi,maxao) (6)
K3
Besides the flux density distribution ¥, the AFD y.x and
the weights w other variables like the aim point shift could
be included to restrict the heliostat movement. p is the
penalty factor penalizing flux density exceedances as a soft
constraint.

The objective value rises if the intercepted simulated
flux density increases. This is achieved by shifting he-
liostats to aim points with less spillage. Moreover, the
AFD is scaled by an individual weight for each receiver
bin. Since bins with too less flux have higher weights and
bins with too much flux have lower weights, the weights
allow higher irradiation if the reference flux density is not
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reached. Thus, they compensate for modeling errors in thess:
simulation. Furthermore, weights above unity give the op-,,
timizer with the opportunity to exceed the AFD with the,,
simulated flux density without penalization. Especially in,
clouded scenarios, this favors higher concentrations. w61

Objective Value Scaler: The ACO meta-heuristic,,,
is designed for objective values between zero and unity.,,
Since the objective function can yield negative values if,,
the penalty term becomes large, the objective value has to,
be scaled. Here, Equation (7) scales each objective value,
towards the objective value calculated with the simulated,,

flux from the current aim point configuration Jyin. 465

J _ Jmin 469
—_ 7
|Jmin| - b ( )

Aslong as the solution of one ant is better than the current
aim point configuration, the best object value is greater
than zero. b denotes the improvement factor and is fitted,
so that the objective value does not exceed unity. Here,
5% are chosen.

Jscaled =

470

3. Results a1

472
This section introduces first the reference power plant,,,

used for the validation of the Static Optimal Control. Sub-,,,
sequently, the plant is exposed to modified tracking errors.,,,
Under these conditions, the performance of the Static Op-,,,
timal Control is compared the one of the DAPS. Finally,,,,
the plant is exposed to a real cloud scenario to assess if,,
the Static Optimal Control should be used under these,,
conditions. a0
481

3.1. Reference power plant @
Since the enhancements of the ACO meta-heuristic aresss
already studied by Oberkirsch et al. (2021) at the virtualss
reference power plant described by Flesch et al. (2017), thesss
same plant is used for the evaluation of the Static Optimalsss
Control. The plant is equipped with a cylindrical receiverasss
and designed for a thermal power of 450 MW. 6482 he-ss
liostats, each with 121 m? mirror surface, concentrate thisss
power. The initial DNI onto the cloudless heliostat fieldsso
is 1000 Wm~—2 and the evaluation is conducted on 21" ofax
March at noon. The fixed aim point grid required for these
optimization has 36 aim point in circumferential direction,ss
13 aim points in vertical direction and two off-receiver aimass
points. Thus, it has 470 aim points in total. 495
Flesch et al. (2017) already verified that the ACOQOus
meta-heuristic converges in combination with a thermalss
model of a molten salt receiver and can handle non-ss
uniform AFDs. Hence, only the optical side of the SPTas
plant is considered and no thermal model is included insoo
this work. Therefore, a constant AFD is provided to limitso
the flux density on the receiver’s surface and the generalityso
of the control regarding the receiver type is preserved. s
504

505

7

3.2. Modeling errors at plant of commercial scale

This section evaluates the performance of the Static
Optimal Control when compensating for static errors in
the simulation model. For this reason, two SPT plant con-
figurations are created: One models the controlled system
and another one represents the system model embedded in
the controller as illustrated in Figure 1. The system model
assumes a mirror error of 2 mrad, while the controlled sys-
tem exhibits a mirror error of 2.5mrad in the first test
case. The Static Optimal Control is applied for 20 control
steps with the controller parameters presented in Table 1.
The 50 runs of the ACO meta-heuristic require with 16384
ants per run less than five seconds in each control step.

Table 1: Parameters of the Static Optimal Control and the embedded
ACO meta-heuristic.

plwo| Kils|
100 | 1]051]2]0.05] 16384 |

d ‘ Nants ‘ TNruns

50

The initial aim point configuration is already optimized
by the ACO meta-heuristic so that enhancements of the
intercept can be completely attributed to the Static Opti-
mal Control. For this, the system model exhibiting a mir-
ror error of 2mrad is used and the AFD is 800 kW m 2.
The flux density distribution belonging to the found aim
point configuration in combination with the model of the
controlled system exhibiting a mirror error of 2.5 mrad is
presented in Figure 4a. Due to the increased mirror error,
the flux density is clearly reduced; thus, the AFD is not
reached any longer causing more spillage than necessary.

In each control step, the flux density distribution is
computed with the model of the controlled system and the
found aim point configuration. This flux density distribu-
tion is the feedback for the next control step of the Static
Optimal Control. Based on this feedback, the controller
computes the error, updates the weights and the optimizer
determines a new aim point configuration based on the
embedded objective function. Figure 4b shows the final
weight map after 20 control steps and Figure 4c presents
the final flux density distribution.

The courses of the total incident flux on the receiver
and the maximum possible total incident flux are illus-
trated in Figure 5a. This maximum possible total flux is
identified by optimizing the aim point configuration with
the model of the controlled system exhibiting the mirror
error of 2.5 mrad. During the control, the total incident
flux increases from initially 98.2 % to 99.9 % of the achiev-
able maximum.

Figure 5b illustrates the total exceeded flux as well as
the maximum exceeded flux density. In three control steps,
flux density exceedances above the AFD of 800 kW m 2
arise. In the second control step, the highest exceedance
occurs. The total exceeded flux is 11.4kW and the max-
imum exceeded flux density amounts to 10.5kWm™2.
While the total exceeded flux corresponds to 2.4 x 1073 %
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Figure 4: The heliostat field of the SPT plant exhibits a mirror error
of 2.5 mrad while a mirror error of 2.0 mrad is incorrectly assumed
in the system model of the controller. By applying aim point opti-
mization to the system model with with a mirror error of 2.0 mrad,
the initial flux map is determined. Final weight map and final flux
map illustrate the final results of the Static Optimal Control after
20 control steps.
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Figure 5: The heliostat field of the SPT plant exhibits a mirror error”>*
of 2.5 mrad while a mirror error of 2.0 mrad is incorrectly assumed in525
the system model of the controller. The courses of the total incidentszs
flux that is maximized by the Static Optimal Control and the max-,,
imum possible incident flux are presented in subfigure Figure 5a. In

subfigure Figure 5b, the emerging total exceeded flux and the maxi->>
mum exceeded flux density are shown. 529
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Figure 6: The heliostat field of the SPT plant exhibits a mirror error
of 1.5 mrad while a mirror error of 2.0 mrad is incorrectly assumed
in the system model of the controller. By applying aim point opti-
mization to the system model with with a mirror error of 2.0 mrad,
the initial flux map is determined. Final weight map and final flux
map illustrate the final results of the Static Optimal Control after
20 control steps.

of the total flux, the maximum exceeded flux density is
1.3% of the AFD.

In the second test case, the mirror error of the model
representing the controlled system reduces to 1.5 mrad,
while the system model within the optimizer remains the
same with a mirror error of 2mrad. Once again, the con-
trol starts from the aim point configuration optimized by
the ACO meta-heuristic based on the system model. Due
to the lower mirror error in the controlled system, this aim
point configuration causes flux density exceedances in this
case. In the receiver bins around the equatorial line of the
receiver, a maximum flux density of 910 kW m~2 occurs as
Figure 6a illustrates. Hence, the AFD of 800 kW m™2 is
clearly exceeded. In consequence, the weights are adapted
based on the flux density feedback resulting after 20 con-
trol steps in the weight map pictured in Figure 6b. Com-
pared to Figure 6a, the final flux density distribution
achieved by the Static Optimal Control is clearly widened
as Figure 6¢ illustrates. The corresponding maximum flux
density amounts to 814kW m™2 and is thus considerably
closer to the AFD.

The courses of the total incident flux and the achievable
maximum total incident flux are shown for the 20 control
steps in Figure 7a. The maximum possible total incident



530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

552

553

554

555

556

557

558

559

560

—— Total flux Max total flux

= s0s0] |
z 505.0
P
3 5025
]
¥ 500.0
0 5 10 15 20
Control step / -
a) Total flux.
£
= —— Total exceeded flux Max exceeded flux density E
1 =
= 10 1 L 100 2
x ‘@
=] =
< 3
S ley 3
210 50 =
Q ]
8 3
© Q
3 . . : : —0 g
0 5 10 15 20 M
Control step / - g

b) Exceeded flux.

Figure 7: The heliostat field of the SPT plant exhibits a mirror error
of 1.5 mrad while a mirror error of 2.0 mrad is incorrectly assumed in
the system model of the controller. The courses of the total incident
flux that is maximized by the Static Optimal Control and the max-
imum possible incident flux are presented in subfigure Figure 7a. In
subfigure Figure 7b, the emerging total exceeded flux and the maxi-
mum exceeded flux density are shown.

flux is once again determined by the ACO meta-heuristic
and the model of the controlled system. The system model
exhibits a mirror error of 1.5 mrad in this case. The total
incident flux even exceeds the achievable maximum. How-**'
ever, the flux density exceeds opposed to the solution with**
the maximum possible incident flux also the AFD. 563

The course of the exceeded flux as it is compensated®™
for by the Static Optimal Control is illustrated in Fig-*%
ure 7b. To accomplish the reduction of the total exceeded®®
flux by 93 % in the first control step, the total flux drops®”
as well. However, while the total exceeded flux reduces®®®
by over 9 MW, the total flux only declines by less than®®
8 MW. In control steps two and three, the Static Optimal®™
Control increases the total flux by 0.7 % while the remain-*"
ing total exceeded flux halves once again. After 20 control®”
steps, the total incident flux reaches 99.6 % of the achiev-°"
able maximum. In this control step, the total exceeded®™
flux amounts to 0.08 % of the total incident flux and the®®
AFD is exceeded by maximally 14.4kW m—2 correspond-*"°
ing to 1.8 % of the AFD. 577

After the performance of the Static Optimal Control is*™®
assessed individually, it is compared to the DAPS (Vant-*"
Hull et al., 1996a) in the following. For this first test case, a*®
comparison is not totally possible since the DAPS can only**
compensate for flux density exceedances but cannot en-
hance the total incident flux. Hence, the controller would®*
not react and the total incident flux would remain at the®**
initial 98.2% of the achievable maximum. However, the
comparison between Static Optimal Control and DAPS is**®
possible for the second test case and the results are shown
in Figure 8.
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Figure 8: Controlling an SPT plant with a mirror error of 1.5 mrad
while assuming incorrectly a mirror error of 2.0 mrad in the simula-
tion model of the controller. The control starts from the optimized
aim point configuration using a simulation model with a mirror error
of 2.0mrad. Both, the DAPS and the static optimal control reduce
the exceeded flux as presented in Figure 8a. At the same time, the
static optimal control maximizes the total intercept power on the
receiver. Additionally, the final flux map achieved by the DAPS is
shown in Figure 8b.

As Figure 8a demonstrates, the DAPS compensates
within two control steps for the flux density exceedances.
For this, the DAPS determines all heliostats that cause
based on the system model with a mirror error of 2.0 mrad
flux density exceedances and removes these heliostats from
tracking. As the system model deviates from the model of
the controlled system with a mirror error of 1.5 mrad, the
concentration is slightly higher than expected. Therefore,
the DAPS requires a second control step.

In this way, the DAPS eliminates all exceedances of
the flux density, whereas flux density exceedances remain
when applying the Static Optimal Control. However, the
DAPS causes a performance loss of roughly 9% compared
to the maximum achievable total flux, while the perfor-
mance loss coming along with the Static Optimal Control
is only 0.4 %.

The flux density distribution belonging to the solution
found by the DAPS after two control steps is presented in
Figure 8b. The DAPS does not reallocate the heliostats on
the receiver like the Static Optimal Control. Instead, it re-
moves the heliostats completely from tracking the receiver.
Hence, the flux density distribution is not widened. The
power of these heliostats is lost instead of being received
by sections closer to the receiver edges. This is in con-
trast to the solution found by the Static Optimal Control
illustrated in Figure 6c¢.
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Figure 9: A real cloud scenario is presented. For this, real DNI
predictions made by the ASI-based nowcasting system described by
Nouri et al. (2020) are mapped onto the heliostat field of the reference
power plant introduced in Section 3.1. The predictions made one
minute ahead are presented on the upper half of the figure and the
measurements are illustrated on the lower half of the figure. The
time of prediction and measurement is indicated above each column.

3.8. Disturbances at plant of commercial scale

On the one hand, deviations between system model and
the controlled system exist in the control of SPT plants.
On the other hand, these plants are exposed to distur-
bances caused by clouds. Hence, the Static Optimal Con-s1s
trol should not only compensate for modeling errors, butsio
also reject these dynamic disturbances. Hence, the refer-s
ence power plant presented in Section 3.1 is exposed to as
clouded scenario in the following to assess the performances2
of the Static Optimal Control. 623

For this reason, a real clouded scenario recorded bys
an ASI-based nowcasting system (Nouri et al., 2018, 2019625
2020) is superimposed on the heliostat field of the refer-czs
ence power plant. Therefore, the power of each heliostat iss2z
scaled by the DNI measured at its position. The cloudeds2s
scenario has a total duration of five minutes. It startssz
at 13:29:00 and finishes at 13:34:00. In this clouded sce-s3
nario, clear sky conditions prevail at the beginning, beforess
a small cloud passes the heliostat field. Figure 9 illustratesss
the measurements for 13:32:00 and 13:33:00. Furthermore,ss
two predictions of the ASI-based nowcasting system aress
presented in this figure. As the lead time of these now-6ss
casts is one minute, they are predicted at 13:31:00 andsss
13:32:00 for one minute ahead. 637

According to Oberkirsch et al. (2021), the optimizationsss
duration for 50 ants is roughly 5s at the reference powersss
plant. Moreover, the temporal resolution of the nowcast-s4
ing system is 30s. In this study, four control steps shoulds«
be applied until the DNI situation is varied based on as+
new measurement. This gives the heliostats according tosss
Equation (8) 2.5s to move. 644
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Figure 10: Controlling an SPT plant with a mirror error of 2.0 mrad
exposed to cloud disturbances. A real cloud measurement is applied
and the cloud moves every fourth control step.
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tmove - steps

(8)

Figure 10 presents the courses of the total incident flux
and the total exceeded flux on the receiver. For compar-
ison, Figure 10a shows the total incident flux on the one
hand using the Static Optimal Control and on the other
hand without any control. In the case without any con-
trol, the optimized aim point configuration for the clear
sky scenario is applied and not varied during the entire
test period. Hence, the heliostats are not reallocated as
soon as the DNI above the heliostat field drops due to the
clouds.

In contrast, the Static Optimal Control adapts the aim
point configuration in control step 35 for the first time to
reduce spillage. This indicates Figure 10a. Prior to control
step 35, the weights did not adjust sufficiently strong to
justify changing the aim point configuration. The weights
adjust slowly as the cloud is little; thus, it causes only a
small error between reference and measured flux density
distribution. By the end of the clouded scenario, the Static
Optimal Control increases the total incident flux by 0.6 %.

However, the Static Optimal Control leads at the same
time to a total exceeded flux of 3MW in control step 39.
This corresponds to 0.6 % of the total incident flux as Fig-
ure 10b illustrates. The maximum exceeded flux density
arises with 119kW m~2 also in control step 39.

Besides measuring the current DNI, the ASI-based
nowcasting system predicts also the emerging DNI for the
future. Hence, these predicted DNI information is super-
imposed to the system model used in the controller. Here,
the minimum available lead time of one minute is applied.
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695
Figure 11: Controlling an SPT plant with a mirror error of 2.0 mradggg
exposed to cloud disturbances. A real cloud measurement is aLpplied6
and the cloud moves every fourth control step. Additionally, the
controller receives the prediction of the DNI with a lead time of one%%

minute in a feed forward manner.
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699
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By using the nowcasting data, the Static Optimal Con-,,
trol receives information about occurring clouds directly,,
in a feed forward way. This is in contrast to the previous,,
simulations, where the Static Optimal Control only re-,
ceived indirect information about the clouds through the,,
flux density feedback. Figure 11 presents the results of the,,
Static Optimal Control under these conditions. 108

Compared to the results without any control, the total,
incident flux fluctuates strongly as Figure 11a illustrates.,
Figure 11D indicates that the flux density exceeds the AFD,
already in control step 22. The maximum exceeded flux,,
density is 122kW m™2 and the total exceeded flux amounts, ,
to 3.6 MW.

714
715
4. Discussion e
717

The Static Optimal Control demonstrated in Sec-ns
tion 3.2 that it is able to compensate for static modelingns
errors at a plant of commercial scale. The first test casero
analyzed a scenario with an increased mirror error in therm
controlled system. There, the control improved the inter-72
cept by 1.7% in comparison to the DAPS or aim pointrs
optimization. At the same time, the flux density exceedsr
the AFD by maximally 1.3%. Thus, the defined aim ofrs
5% is reached and the exceedances are clearly below thens
accuracy of the flux density measurement system.

In a second scenario, the mirror error is reduced by72
0.5 mrad in the controlled system. There, the Static Op-
timal Control reduces already in the first control step thers
total exceeded flux by 93 %. After the second control step,s
the maximally emerging flux density exceedance declinedrs

11

to around 50kWm~2 (6.25 %). In the eighth control step,
the maximum flux density exceedances drops below the de-
fined target level of 5 %. The final maximum exceedance of
the AFD is 1.8 % after 20 control steps. Hence, the Static
Optimal Control fulfills the aim of a maximum exceedance
of 5% above the AFD when compensating for static mod-
eling errors. In contrast, the exceedances above the AFD
remain using an open-loop control. The DAPS, in turn,
completely eliminates the flux density exceedances. How-
ever, the DAPS looses 9% of the maximum achievable
intercept reasoned in the defocusing of the heliostats. In
comparison, the Static Optimal Control forfeits only 0.4 %
of this maximum.

In Section 3.3, the performance of the Static Optimal
Control is studied at a plant of commercial scale under dis-
turbances due to a small cloud. The variations in the DNI
cause oscillations in the weight map and, in turn, clear ex-
ceedances above the AFD. Even though the 150 kW m—2-
tolerance range stated by Gross et al. (2020) is observed,
the defined aim of 5 % above the AFD could not be met as
the maximum exceedance is 122kW m~2 (15.25%). Thus,
the Static Optimal Control is with the currently selected
controller settings not suited to reject dynamic distur-
bances. For more extensive tests, other objective functions
should be tested as they have already proven in simplified
tests that they eliminate flux exceedances better.

In a subsequent step, the Static Optimal Control is ex-
tended by a feed forward control. For this, DNI predictions
with a lead time of 1 min have been applied. However, even
this feed forward control did not prevent the oscillating
spots in the flux density distribution since the predicted
clouds were bigger than the ones that actually occurred as
Figure 9 illustrates. In consequence of too large predicted
clouds, the Static Optimal Control shifted the heliostats to
the receiver equator for spillage reduction. At these equa-
torial regions, the ultimately higher DNI results in flux
density exceedances. This amplifies the oscillating spots
in the flux density distribution further instead of damping
them.

Hence, the accuracy of the ASI-based nowcasting sys-
tem is not suited to improve the Static Optimal Control
under these dynamic conditions. In the future, the accu-
racy of the nowcasting system has to be improved. Al-
ternatively, Nouri et al. (2019) determine additional DNI
maps that only reduce the DNI at positions that have a
significantly higher chance to be shaded. Using these un-
certainty maps, reduces clearly the probability of concen-
trating too much onto the receiver center. In combination
with the adapted controller settings, this could be a way
to handle the emerging oscillating spots in the flux density
distribution under transient DNI conditions.

5. Conclusion

In this paper, the Static Optimal Control is proposed
as a closed-loop aim point control technique for solar power
tower plants. The Static Optimal Control assumes a static
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system; thus, the sample time of the control has to berss
selected longer than the maximum heliostat movements
within one control step. The heart of the Static Opti—zzj
mal Control is the embedded optimizer. This optimizer,g,
finds optimal solutions regarding an objective function and7se
makes the control stand off among other existing closed-°
loop aim point control techniques. !

The flux density feedback is recorded directly by a ﬂux793
density measurement system. An error signal calculatorrs
compares this feedback with the reference flux density and™
a weight calculator estimates weights based on the errorzj
signal. These weights are included in the objective func-;e
tion of the optimizer. In this way, the Static Optimalrs
Control compensates for static modeling errors in the sys-*®
tem model. In two investigated test cases, it enhanceszz:
the performance of a plant of commercial scale by 1.7-s0s
8.6 % in comparison to the Dynamic Aimpoint Processings
System (DAPS) (Vant-Hull et al., 1996a) as reference ap- 80:
proach. Under a real cloud scenario, the Static Optlmal807
Control reaches its limits as the flux density exceeds thesos
AFD by maximally 15.25%. Here, more conservative ob-8
jective functions have to be studied. Scaling the powerz?
of the heliostats by the predicted DNI of a nowcastings,,
system in a feed forward manner, does not enhance thess
control quality since the accuracy of the nowcasts is not®*
sufficient. :iz

In the future, nowcasting maps that only reduce theg,
DNI in regions that have a high probability to be shadedss
will be applied for the feed forward control and more con-*°
servative controller settings will be investigated for the820
Static Optimal Control. In this way, the oscillating ﬂU.X322
density spots under transient conditions should be pre-ss
vented. Furthermore, this closed-loop control will be em-**
bedded in an aim point management system. This overallzzz
system detects scenarios, where the control can be applieds
safely. In the remaining transient scenarios, more conselr—828
vative control approaches are used. Finally, this bystem
including the Static Optimal Control will be validated aten
the Jiilich solar tower.
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