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Aufgabenstellung

Bewertung von Hyper-Reduktionsverfahren im Kontext von CFD-basierten
intrusiven Modellen reduzierter Ordnung

Es wurden bereits einige Techniken für Modelle reduzierter Ordnung (ROMs) präsen-
tiert und intensiv von der Forschungsgemeinschaft der Luft- und Raumfahrttechnik mit
dem Ziel untersucht, aufwändige CFD Analysen durch approximative Modelle zu erset-
zen, ohne in Folge dessen, deutliche Verschlechterungen in der Vorhersagegenauigkeit her-
vorzurufen. Von besonderem Interesse sind intrusive ROM-Techniken, welche auf CFD
Lösern basieren, um eine hochgenaue Abbildung der Physik in ihren Formulierungen
beizubehalten. Am Institut für Aerodynamik und Strömungstechnik des DLR wurde
ein parametrisches, intrusives Modell reduzierter Ordnung basierend auf dem DLR CFD
Löser TAU erfolgreich implementiert und umfassend für verschiedene stationäre und in-
stationäre Anwendungsfälle eingesetzt. Dennoch hat der TAU Löser einige wesentliche
Einschränkungen, die eine effektive Implementierung von aktuellen ROM-Techniken, ins-
besondere Hyper-Reduktionsalgorithmen, verhindern. Aufgrund eines geringen Bestandes
an Literaturquellen zur sinnvollen Anwendung von Hyper-Reduktionsverfahren, ist es
schwierig, den realen Nutzen (falls vorhanden) hinsichtlich der Reduktion von Rechen-
zeiten für solche Methoden abzuschätzen. Das primäre Ziel dieser Masterarbeit ist es, eine
effektive Schnittstelle zwischen dem bestehenden, in der SMARTy-Bibliothek des DLR im-
plementierten ROM-Algorithmus und dem neuen CFD Löser CODA zu implementieren,
welche es ermöglicht, den Nutzen von Hyper-Reduktionsverfahren für hochdimensionale
Probleme der Luft- und Raumfahrt zu bewerten. Der Student wird sich zuerst mit der
Formulierung und Implementierung des Modells reduzierter Ordnung vertraut machen,
um, basierend auf der FlowSimulator Simulationsumgebung, den existierenden ROM Pro-
grammcode mit dem CFD Löser CODA speicherbezogen zu verbinden. Anschließend wird
die Schnittstelle für die Nutzung von modernen Hyper-Reduktionsverfahren erweitert,
zu denen die discrete empirical interpolation method (DEIM) und ein fortgeschrittener
Greedy-Algorithmus gehören. Die resultierende Schnittstelle wird abschließend mit dem
Ziel, die Leistungsfähigkeit der ROM-Techniken zu beurteilen, anhand industriell relevan-
ter Anwendungsfälle (2D und möglicherweise 3D) getestet.



Abstract

The aircraft design and optimization process relies on an extensive numbers of compu-
tations for a wide range of parameters defining flight conditions, mass cases or shape
variations. As the deployment of high-fidelity methods like computational fluid dynamics
(CFD) is still too expensive for such multi-query scenarios, reduced order models (ROMs)
are a popular approach to reduce the computational costs while retaining sufficient ac-
curacy levels. ROMs are usually based on a low-dimensional representation of the full
order model (FOM), that is utilized to map a set of input parameters to an approximative
solution of the FOM. This thesis investigates a physics-based ROM that seeks an opti-
mized representation of the FOM in a proper orthogonal decomposition (POD) reduced
space by minimizing the steady residual obtained from a CFD solver. The so called least
squares ROM (LSQ-ROM) is extended by a consistent hyperreduction, which aims for a
reduction of the entries of the residual vector that is minimized during the prediction. In
particular, hyperreduction has been proposed by former studies on LSQ-ROM in order
to decouple the algorithm computational complexity from the problem size. However,
limitations within the DLR’s CFD solver TAU prevent the consistent application of the
hyperreduction. The CFD solver “CFD for ONERA, DLR and AIRBUS” (CODA), which
is currently under development, allows the implementation and investigation of a consis-
tent hyperreduction that effectively removes the dependency on the original problem size.
The main goal of this thesis is the implementation and the performance assessment of a
consistent hyperreduction for the LSQ-ROM that is coupled with the solver CODA and
based on a reduced CFD mesh. The reduced mesh is identified by a set of hyperreduction
indices selected by the discrete empirical interpolation method (DEIM) and missing point
estimation (MPE) and allows a direct reduction of the effort for the residual evaluation
in the CFD solver CODA. For an assessment of the performance of the hyperreduction
with respect to accuracy and prediction time, the consistent hyperreduction implemen-
tation is applied to the steady flow prediction of two 2D test cases in the subsonic and
transonic regime and one 3D test case in the transonic regime. It can be shown that the
implemented hyperreduction effectively reduces the time for the predictions while causing
only minor accuracy deterioration. The results highlight that the new hyperreduction is
superior to the former implementation of the hyperreduction. In particular, for high re-
duction levels, the consistent hyperreduction becomes significantly faster than the former
one with speed-up factors of around 5 for the 2D test cases and up to 25 for the 3D test
case.
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Chapter 1

Introduction

1.1 The role of reduced order modelling

The design, control and optimization processes in nearly every technical field rely on
methods, which have developed in accuracy and complexity at the same time. Let it be
the generally known progress in image and signal processing, modelling of chemical or
biological systems or the analysis of heat transfer and fluid dynamics. The systems and
the amount of data has become larger and more complex and coincidentally the effort to
obtain insights in form of accurate and robust simulations [22].
An illustrative example for the rising effort and complexity in system analysis in the
field of aerospace engineering is the growing importance of high fidelity CFD simulations
in the design and optimization of aircraft. In order to reduce the resources required
by expensive experimental campaigns and to reduce the uncertainty of critical design
choices, high-fidelity, numerical methods like CFD become more relevant. Therefore, to
reach sufficient accuracy the models and methods used in CFD become more sophisti-
cated and the overall problem size can easily reach hundreds of millions of degrees of
freedom. At the same time, there is a trend towards an application of CFD in earlier
phases of the design process. In combination with the tremendous number of flight con-
ditions tested during design or iterations during an optimization process, the restriction
to high-fidelity methods becomes infeasible. Even with the capability of substantial par-
allelization, highly resolved CFD simulations can take hours to days for a single flight
point and geometry. Investigating a whole flight envelope for different geometries and
masses can require hundreds of these simulations and thus relying on massive computing
power, which becomes too costly for preliminary design or detailed optimization problems
[44]. So, even for steady simulations the application of CFD in a multi-query scenario can
lead to computational times not sufficient for fast design decisions. Therefore, processes
like multidisciplinary design analysis and optimization (MDAO) not only in the field of
aerospace have to include methods, which are a compromise between sufficient prediction
accuracy and acceptable time requirements.
An important role in overcoming the difficulty in achieving sufficient accuracy in a rela-
tively small amount of time is played by surrogates. Surrogates are models that aim for
reducing the computational effort in computationally costly applications, such as aircraft
design, without causing a substantial degradation in the result accuracy. The broad range
of surrogates can be divided into three different classes [55]. One class is constituted by
data-fit models, which rely on interpolation or regression of simulation data. By fitting
the model to the data, the model is trained to predict the behaviour of the underlying
system based on some input parameters. Gaussian processes and neural networks are
currently the most popular methods, which are applied to various aerodynamic problems
like the prediction of pressure distributions or inverse geometrical airfoil design [11], [65],
[78]. The second type of surrogates are hierarchical models that are based on the original
system but apply simplifying approaches e.g for the physics or the discretization. These
models reach from simplified-physics models, that e.g solve the potential equations instead

7



1.1 The role of reduced order modelling

of the Navier-Stokes equations for the prediction of flow fields to multigrid approaches
that are also utilized in CFD [50], [14]. The last category of surrogates is represented
by ROMs. A reduced order model is a “characterization of a physical process, such that
the essential behaviours of the process are captured with a relatively small number of
DOFs” [17]. Projecting the underlying FOM onto an appropriate subspace is one com-
mon possibility to obtain a suitable reduced representation of the FOM for a ROM. In
most cases, the application of a ROM can be divided into two stages. First, in a so-called
“offline stage” the model is constructed based on training data from the FOM including
all computations that can be performed without knowledge of the specific queries, the
model will be used for.
These relatively high up front costs leads to a reduced representation of the system that
is used in the second stage, i.e. the “online stage” or “prediction stage”, to predict the
system response at different conditions. Since the prediction is based on the reduced rep-
resentation, the online stage has relatively low evaluation cost and can thus effectively be
used in a multi-query context. This thesis focuses on ROMs because they are extensively
used for aerodynamic problems. This group of surrogates can be further divided into the
groups of intrusive and non-intrusive ROMs. While intrusive ROMs retain a connection
to the underlying FOM even in the online stage, non-intrusive models lack such incorpo-
ration of characteristics of the original system. The advantage of non-intrusive ROMs is
that the FOM is run as a black-box during the offline stage only to collect the model train-
ing data. However, as the online stage is not bound to any representation of the system
behaviour, the predictions can lead to undetected violations of the underlying physics. A
common way of constructing a non-intrusive ROM is to represent the system output in a
suitable low-order basis, which can be derived by various methods like rational interpo-
lation methods or POD [55]. After that, the reduced basis is utilized to find a mapping
from the input parameters to an approximation of the FOM output. Such a mapping
can be realized e.g by any interpolation method. Models based on a POD basis and an
interpolation for the estimation of the POD coefficients were extensively investigated e.g
for the prediction of flows around airfoils and whole aircraft [72].
Intrusive models, on the other hand, keep a linkage to the system behaviour by incorpo-
rating a FOM representation into the model. Because of that connection to the FOM,
intrusive model complexity often scales with the size of the original problem, therefore
preventing an effective reduction of the computational effort or requiring special methods
to circumvent the issue. Nevertheless, the intrusive character of such models ensures a
connection to the physics of the system and facilitates the derivation of error estimates
to assess the approximation quality of the model. One of the most established intrusive
ROMs in the field of aerodynamics is the well-known Galerkin-projection [13] [36], often
combined with a POD base. POD is applied to the training data collected during the
offline stage in order to obtain a reduced representation of the system behavior. Then,
the resulting orthogonal basis of a POD is applied to approximate the state quantities
of the equations, often partial differential equations (PDEs), defining the FOM and it
can serve at the same time as the low-dimensional subspace, the equations are projected
onto. Through the Galerkin projection, the PDE can be transferred into a small system
of ordinary differential equations (ODEs). However, this reduction method falls short in
the presence of general nonlinear terms that remain dependent of the original problem
size. In order to circumvent this difficulty, several methods were proposed to reduce the
evaluation costs of the nonlinear term. These methods are also known as hyperreduction
methods [7], which play an important role within this thesis and are presented in detail in
section 2.4. Another famous intrusive ROM that is also based on some kind of hyperre-
duction is the GNAT method [10] [41]. The GNAT method is based on a Petrov-Galerkin
projection of the system’s PDE, which is represented in a low-dimensional subspace. This
results in a minimization problem, which is solved using Gauss-Newton and gappy POD
[59] for the Approximated Tensors within the algorithm. Finally, another popular ROM
within the German Aerospace Center (DLR) research group is the LSQ-ROM, which relies
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on the direct minimization of the FOM residual in a low-dimensional POD subspace in
order to determine the prediction POD coefficients. The LSQ-ROM and its acceleration
through application of the hyperreduction approach is part of this thesis and presented
in more detail in the next section.

1.2 The LSQ-ROM

The ROM investigated in this thesis is the least squares ROM. It is an intrusive, POD-
based ROM that contains, in contrast to a non-intrusive ROM based on POD plus interpo-
lation, an additional minimization process, which represents the linkage to the equations
of the FOM. Hereinafter and without loss of generality, the description concentrates on
an aerodynamic application with a CFD solver as a FOM. However, the same approach
can be applied to different disciplines like stress analysis in structural engineering. For
an aerodynamic application, the LSQ-ROM predicts the solution of the flow field, which
is normally the result of a CFD computation. For the construction of the model, a POD
basis is generated from set of CFD solutions, which span over the defined parameter space
and represent the training snapshots; examples of common parameter for aerodynamic ap-
plication cases are Mach number, Reynolds number or angles defining the flow direction.
However, even shape parameters for the geometry are conceivable as input parameters.
POD identifies a proper low-dimensional representation of the parameter space, which is
used during the online stage for the prediction of a solution that is based on a linear com-
bination of POD modes. The required POD coefficients are obtained in the LSQ-ROM
technique by an optimization process that aims for an improved solution by minimizing
the residual from the CFD solver with respect to the POD coefficients. As the residual
can be understood as the (nonlinear) deviation from the numerically exact solution, a
significant reduction of it should correspond to more accurate solution.
There are multiple investigations in the literature for steady aerodynamic problems that
compare the accuracy of the LSQ-ROM with the solution obtained from a pure inter-
polation [63], investigate the extrapolation capabilities [62] or test a LSQ-ROM which is
subject to aerodynamic constraints [64]. Especially for the prediction of extrapolation
points and through incorporation of additional constraints into the optimization process,
the intrusive characteristics of the LSQ-ROM lead to substantial improvements compared
to non-intrusive interpolation based methods. As investigations indicated good accuracy
in combination with significant time savings compared to the CFD solution, the LSQ-
ROM was further extended towards unsteady simulations. The first promising results for
the prediction of gust-load cases were shown in [50] and [3].
However, some of these studies highlight how the intrusive formulation of LSQ-ROM leads
to a computational complexity that scales with the size of the original problem (e.g. the
number of cells in the CFD grid). For this reason, an additional hyperreduction technique
is usually integrated into the LSQ-ROM to pose a second reduction step. More specifi-
cally, hyperreduction application to the residual vector of the FOM promises high time
saving potentials as the residual vector is still linked to the size of the original problem
and a hyperreduction removes this dependency by evaluating the residual vector only for
a subset of cells.

1.3 A consistent hyperreduction

The hyperreduction implemented so far, is not exhausting its full potential, as the re-
duction of the residual vector is performed after its full evaluation, which reduces solely
the computational cost of linear algebra operations in the optimizer. Therefore, the
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LSQ-ROM is still depending on the original problem size. In order to exploit the full ac-
celeration potential of the hyperreduction approach, it is necessary to reduce the residual
vector for its evaluation in the CFD solver. However, prior applications of the LSQ-ROM
within DLR were based on DLR’s CFD solver TAU, which does not have the capabilities
to successfully perform a consistent hyperreduction approach.
This work instead makes use of the new CFD solver CODA, which is currently developed
at the DLR together with other partners, to implement a consistent hyperreduction that
computes the residual only for a subset of cells. As before, this subset is identified by the
DEIM [68] and MPE [61]. The approach to compute the reduced residual is based on the
construction of a reduced mesh that contains only the cells that are needed to correctly
evaluate the residuals corresponding to the subset of hyperreduction indices. All residual
evaluations are then performed solely on this submesh whose size scales with the number
of indices.
Thus, the costs for the evaluation of the residual can be expected to scale with the size
of the submesh and not with the original problem size anymore. Since the effort for the
residual evaluation is linearly dependent on the size of the mesh or to be more precise on
the number of faces contained in the mesh, the additional acceleration through application
of the proposed hyperreduction is expected to linearly scale with the size of the submesh.

1.4 Scientific objective

The work aims for an assessment of the effectiveness and prediction accuracy of the cho-
sen approach for a consistent hyperreduction not only for realistic reduction levels in
the LSQ-ROM context, but also in a direct comparison with the former hyperreduction.
Therefore, a successful implementation of the consistent hyperreduction is expected to
significantly reduce the prediction time of the LSQ-ROM in its absolute magnitude, but
also when comparing it with the computational cost of LSQ-ROMs based on the former
hyperreduction implementation. In addition to the acceleration potential, the influence
of the hyperreduction on the accuracy needs to be examined to assess the compromise
between acceleration and accuracy.
For that, tests are conducted for the prediction of steady, turbulent flows around 2D
airfoils in subsonic and transonic regimes as well as for a more realistic 3D aircraft config-
uration. The LSQ-ROM prediction processes are performed with different combinations
of the reduction level for the reduced space and the hyperreduction. The analysis of the
resulting error levels and the required computational time makes it possible to assess
the implemented hyperreduction under realistic conditions, which should lead to realistic
recommendations for the choice of proper reduction levels for future applications of the
LSQ-ROM.

1.5 Outline of the thesis

After the presented motivation and background for the development of the LSQ-ROM
in this chapter, the second chapter outlines the required theoretical background for the
application of the LSQ-ROM. At first, some fundamental approaches within in the field
of CFD are introduced, in order to assess their implications on the LSQ-ROM. These
information mainly focus around approaches for the spatial discretization that determine
the residual that is utilized in the LSQ-ROM. Following, basic methods from the field of
reduced order modelling are introduced, that constitute the LSQ-ROM. The main com-
ponents are POD, the hyperreduction technique, which is the MPE together with the
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DEIM, and the optimization algorithm in form of the Levenberg-Marquardt (LM) algo-
rithm. With the definition of these methods at hand, the second chapter is concluded by a
description of the algorithm of the LSQ-ROM including the newly implemented hyperre-
duction method. For the consistent implementation of the hyperreduction an estimation
for its acceleration potential is given that is verified during the investigations. The fol-
lowing chapter presents the software tools utilized in this work and the environment they
are operating in. Moreover, the implementations for the application of the LSQ-ROM
coupled with CODA and for the realization of the submesh-based hyperreduction are pre-
sented in more detail. After that, the geometries and meshes of the test cases are shown
as well as settings for the CFD solver and LSQ-ROM for the subsequent presentation of
the investigation results. The chapter for that is split into a section for the validation of
the coupling of the LSQ-ROM with CODA and a section for the results concerning the
consistent hyperreduction. The validation includes the comparison of LSQ-ROM predic-
tions for a coupling with TAU and CODA on the basis of two 2D test cases at subsonic
and transonic conditions. In the second section, that focuses on the hyperreduction, an
additional 3D case is part of the examinations. For each test case, the influence of the hy-
perreduction on the accuracy and the acceleration of the LSQ-ROM is investigated. This
also includes considerations of the POD reduction, the residual minimization procedure
and assessments of the performance of the consistent hyperreduction with respect to the
former hyperreduction. The findings of all the investigation are summarized in the final
chapter besides some remarks concerning current limitations and future improvements for
the consistent hyperreduction.
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Chapter 2

Theoretical foundations
The following chapter introduces the most important methods and equations for the
application of the LSQ-ROM method as a reduced order model for a CFD-based FOM.
After a brief description of the governing equations of the FOM and their discretization
within the CFD solver, the key techniques for the ROM are presented. Two reduction
methods, which are part of the LSQ-ROM method, are described in detail; first, POD
for the identification of a reduced basis and second hyperreduction techniques to reduce
the evaluation costs of nonlinear terms. Moreover, a spline based interpolation technique
is presented. Next, the general optimization problem will be described and some basic
approaches to solve it. The special case of Least-squares problem arising from the LSQ-
ROM method and the applied algorithm to solve it, is presented in the same manner.
Having all the key elements of the LSQ-ROM method at hand, a outline of the overall
algorithm is given in the final section of this chapter.

2.1 Full order model: CFD-based solution algorithm

Defining the behaviour of a continuous fluid, the Navier-Stokes equations form the gov-
erning set of equations, which needs to be solved in order to obtain the solution of a
specific flow problem. The set of nonlinear partial differential equations is based on the
conservation laws for the mass, energy and the momentum in all three spatial dimensions.
Assembling the conservative variables ρ (mass), ρv (momentum) and ρE (energy) in the
vector w and integrating over the flow domain Ω, gives the Navier-Stokes equations in
their integral form [34]

∂

∂t

∫
Ω

w(x, t)dΩ +
∫

∂Ω
Fc(w)− Fv(w)ds =

∫
Ω

Q(w)dΩ (2.1)

with

w =


ρ
ρu
ρv
ρw
ρE


where u, v, w are the components of the velocity vector v. eq. (2.1) consists of the term for
temporal change of the conservative variables, the convective flux vector Fc, the viscous
flux vector Fv and the sources Q. The explicit formulation for the fluxes and the sources
can be found in [34]. As this system of equations is not closed, there are at least two
additional relations needed. Usually for gaseous fluids, the first is the perfect gas law

p = ρRiT (2.2)
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to obtain an additional equation for the pressure p and the temperature T . The second
is the relation between the inner energy e and the temperature of a perfect gas.

e = cvT (2.3)

The specific gas constant Ri and the heat capacity cv are defined by the chemical compo-
sition of the gas. They are often assumed to be constant, which is a good approximation
for non-reactive flows below hypersonic flow speeds. Although fluxes and source terms
include several other substance properties like the viscosity or the heat conduction coeffi-
cient, these can be modelled with the knowledge of the quantities of state and the specific
type of the fluid.
Despite having a closed form for the description of a continuous flow at hand, there
is an additional difficulty when discretizing it for the numerical solution of a turbulent
flow. Since turbulent flows consist of flow phenomena ranging from the size of the whole
flow domain down to a microscopic scale [26], a simulation resolving even the smallest
scales of the turbulence becomes intractable for industrial application cases. A common
approach is to perform a Reynolds-averaging of the Navier-Stokes equation, resulting in
the Reynolds averaged Navier-Stokes (RANS) equations. This results in a time averaged
influence of the turbulent fluctuations, which is represented in the RANS equations by the
Reynolds-stress tensor τturb. As this tensor contains six unknown fluctuation components,
an additional approach is needed to model this stress tensor. Often times, the Boussinesq
hypothesis is used for modelling approaches like the well known one equation model of
Spalart and Allmaras [71]. The Boussinesq hypothesis claims an analogy of the turbulent
stress tensor to the shear stress tensor but with an additional free parameter, the turbulent
dynamic viscosity µt. The turbulent model of Spalart and Allmaras (SA model) consists
of a transport equation for the turbulent viscosity νt, which needs to be solved additionally
to the five equations for the conservation of mass, momentum and energy. However, this
sixth equation can be discretized in a similar way like the others and can either be solved
loosely coupled with defined update intervalls between the equations or strongly coupled
as one system of equations.

2.1.1 Discretization of the governing equations

Until now there is no analytical solution to the full Navier-Stokes equations or the RANS
equations known. Therefore, a classic approach for the computation of an approximative
solution corresponding to a specific flow problem, defined by its boundary conditions, is
to discretize the equations separately in the spatial and temporal dimension. A common
strategy for the spatial discretization is the Finite-Volume approach, which divides the
spatial flow domain into smaller control volumes. For every of these volume elements,
often also referred to cells, one assumes a constant distribution of W⃗ in every element
and conservation like it is defined by the equations. The purpose of an iterative solution
process is to drive the imbalances for the conservation laws in every element towards zero.
For the definition of the volume elements, there are two established ways irrespective of
the mesh being structured or unstructured: node-centered and cell-centered. With the
node-centered approach (used in TAU), the volume element is constructed around each
node of the mesh, whereas with the cell-centered approach (used in CODA), the volume
elements are equal to the elements of the original mesh. As a result of this, one differs
between the original mesh, which is a discrete representation of the flow domain, and
the computational mesh that the CFD solver operates on. Moreover, the computational
mesh is stored in a face-based manner, meaning that geometrical quantities needed for
the integration over the volume elements are stored indirectly through the face elements
forming the surface of every volume. This enables the computation of surface integrals
efficiently via a loop over all faces.
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2.1 Full order model: CFD-based solution algorithm

The presented Finite-Volume discretization allows to replace the volume integrals in
eq. (2.1) with multiplications of the cell volume and the surface integrals with sums
over all faces of an element. These equation manipulations result in the semi-discretized
formulation of eq. (2.1) for an arbitrary volume cell i:

∂

∂t
wiΩi +

ni∑
j=1

(Fc)j∆sj −
ni∑

j=1
(Fv)j∆sj = qiΩi (2.4)

All the terms representing the spatial discretization are normally combined in the residual
Ri, which consists of the conservation imbalances for cell i. The global formulation for
this is given by

∂W
∂t

= − 1
Ω

R(W), (2.5)

where R is the residual vector, W the vector of all conservative variables and Ω the mass
matrix. This formulation is the starting point for the frequently used method of lines
that treats spatial and temporal discretization seperately [34] and enables the application
of different discretization strategies for the spatial and temporal domain of the RANS
or Navier-Stokes equations. Frequently used methods for the temporal discretization
are Runge-Kutta time-stepping schemes, which are often applied in case of stationary
problems via a pseudo time step [70]. For stationary problems, which are the focus of
this work, the aim of the time-stepping scheme is to drive the residual vector towards
zero, which automatically leads to ∂W

∂t
≈ 0 and therefore to the solution of the stationary

problem. However, for a further insight into the wide range of CFD solution algorithms
the reader is referred to [34]. The same is true for the various discretization schemes of the
convective flux, viscous flux and the sources, which form the residual. Nevertheless, some
remarks are given because of the importance of the residual vector within the LSQ-ROM
method.
An important feature of a discretization scheme is the stencil it implies. For example, the
computation of the fluxes across the surfaces of a cell requires quantities at the surface.
Since in a Finite-Volume approach the conservative variables are only given in the cell
centers, many discretization schemes use an approximation of the flux based on the values
of the neighbouring cells. As a result of the summation of all fluxes (see eq. (2.4)) for
the residual, the residual Ri becomes dependent of the direct neighbourhood N(i). The
neighbourhood N(i) forms the stencil of cell i and is defined by all cells, that share a face
with this cell. Numerical schemes that give a discretization with a convergence order that
is higher than one can even require an extended stencil. The approximative flux across
a face is then also influenced by the neighbours of the face neighbouring cells, and the
residual even by its second neighbours.

basic stencil: Ri = Ri(N(i)) (2.6)
extended stencil: Ri = Ri(N(N(i))) (2.7)

Figure 2.1 illustrates different stencils for the residual in an arbitrary cell i. It is possible
to see that the number of cells in the stencil is not only influenced by the type of the
stencil but also by the cell types, which defines the number of direct neighbours. Another
important point concerning the residual is that every change of the underlying spatial
discretization influences the solution of the flow problem. As the stationary solution is
the root of the residual function, one has to expect a different solution from a different
residual definition. At the same time, when separating spatial and temporal discretization,
one can adapt the latter without influencing the final, stationary solution.
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Figure 2.1: Different stencils for the residuum in cell i.

2.2 Proper Orthogonal Decomposition

The proper orthogonal decomposition (POD) has become one of the most widely used
techniques in the field of reduced order modeling with various application cases. Often
used for defining a reduced basis in projection-based reduced models, its applicability is
unrestricted by the underlying system. Therefore, POD, also known as Principal Com-
ponent Analysis (PCA) in the field of statistics, can be applied to linear and nonlinear
problems. With its first application for the analysis of turbulent flows [54], the decompo-
sition is utilised in various fields like image processing [6], chemical reaction systems [67],
aeroelasticity [73] or structural mechanics [69]. The underlying idea is that the points
of a given dataset lie sufficiently close to a manifold of lower dimensionality [12]. If the
dataset has indeed a lower intrinsic dimensionality than the individual data points, the
aim is to find a proper description of the defining subspace. Thus the complexity of the
dataset can be reduced without pruning the most relevant information. POD decomposes
a dataset into a set of orthogonal modes, that contain a decreasing amount of information
of the original dataset. The decreasing content of information of the specific modes can
then be utilised by neglecting a certain number of modes. Cutting off just the modes
with the lowest information content ensures that the remaining modes are still able to
adequately describe the behaviour of the system the original dataset was generated from.
There are several approaches to derive the POD modes. The following derivation is based
on a linear projection that minimizes the error between the data points of the dataset
and their projection onto the subspace, spanned by the POD modes.
Given the dataset denoted by the matrix Y ∈ Rn×m, which contains the data points
yi ∈ Rn as column vectors, the projection of an arbitrary vector y onto the d-dimensional
subspace V ⊂ Rn is defined by

ỹ =
d∑

j=1
⟨y,uj⟩uj (2.8)

where ⟨·, ·⟩ represents the dot product and uj the normalised j-th basis vector of the
reduced basis, represented by the matrix U ∈ Rn×d. The squared summed error between
the column vectors yi of Y and their projections ỹi is defined as

E =
m∑

i=1
|yi − ỹi|2. (2.9)

This error can be minimized through a proper choice of the d basis vectors uj which are
also referred as the POD modes. Since the basis vector should minimize the projection
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error, they have to meet the following condition [12]

∂E(U)
∂uj

= 0 . (2.10)

The arising Least-squares problem

min
u1,...,ud∈Rn

∣∣∣∣∣∣y−
d∑

j=1
⟨y,uj⟩uj

∣∣∣∣∣∣
2

= min
α∈Rn

|y−Uα|2 (2.11)

with α = UT y illustrates that the projection defined by the matrix U is an orthogonal
projection (in case of orthonormal basis vectors ui) yielding the best approximation of y
in the reduced space U. Assuming normalized basis vectors, the minimization problem
can be transferred into a simpler maximization problem, which aims for obtaining the
basis vector uj giving the best approximation to all vectors of Y. Therefore, instead of
minimizing the projection error, the projection of all vectors yi onto the basis vectors is
maximized:

max
u∈Rn

n∑
i=1

d∑
j=1
|⟨yi,uj⟩|2 (2.12)

Solving the maximization problem requires a constraint through a Lagrange multiplier λ
for the term 1− |uj|2, which prevents the trivial solution uj →∞ for the optimization.

L(u, λ) =
n∑

i=1

 d∑
j=1
|⟨yi,uj⟩|2 +

d∑
j=1

λ
(
1− |uj|2

) (2.13)

Differentiating the above expression for the maximization with respect to the arbitrary
basis vector uk yields the following (cf. [66]):

∂L(u, λ)
∂uk

= ∂

∂uk

 n∑
i=1

 d∑
j=1
|⟨yi,uj⟩|2 +

d∑
j=1

λ
(
1− |uj|2

) (2.14)

= 2
(

n∑
i=1
⟨yi,uk⟩yT

i − λuk

)
= 0 (2.15)

Thus, for every uk with k = 1, ..., d, the following eigenvalue problem holds

YYT uk = λuk . (2.16)

This eigenvalue problem needs to be solved in order to obtain the basis that minimizes the
projection error of Y onto the subspace V. It follows that the basis vectors of the reduced
space U are exactly the eigenvectors of the positive definite matrix (YYT ). This matrix is
called the Gramian matrix, which has n non-negative eigenvalues λ1 ≥ λ2 ≥ ... ≥ λn ≥ 0,
because the Gramian is positive-definite and of rank r = rank(Y) [31].
For the case that U forms a reduced space with d < m, the displacement between a vector
y and its approximation in the reduced space ỹ lies in the space orthogonal to the reduced
subspace. The error of the projection can be quantified by the sum of the eigenvalues
corresponding to the vectors laying orthogonal to the subspace [12].

m∑
i=1

∣∣∣∣∣∣yi −
d∑

j=1
⟨yi,uj⟩uj

∣∣∣∣∣∣
2

=
m∑

j=d+1
λj (2.17)
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This information can be utilized to define a measure for the amount of information cap-
tured by the reduced subspace. A often used definition is the relative information content
(RIC)

RIC =
∑d

i=1 λi∑m
i=1 λi

(2.18)

which can be understood as the ratio of information modeled by the subspace to the total
information contained in the system Y. In the context of fluid flows, where Y contains
information about the velocity of the flow, the eigenvalues correspond to the fluid’s kinetic
energy associated with the POD mode of the specific eigenvalue [5]. Considering that the
eigenvalues are sorted, a reduction of system Y by m − d dimensions neglects exactly
those modes which contain the smallest amount of information of the original system.
POD modes d in the reduced basisdivided by the maximum number of POD modes m:

compression rate = d

m
(2.19)

So a compression rate of 1.0 refers to a full POD basis, while lower compression rates
refer to reduced POD bases.

Computation of the POD modes To compute the proper orthogonal decomposition
of Y and obtaining the reduced space from it, one has to compute the eigenvectors and
eigenvalues of YYT. Since common algorithms to compute the eigenvalue decomposition
scale cubic with the largest dimension of the matrix [27], the effort to compute the eigen-
value decomposition (EVD) of YYT ∈ Rn×n would be ∼ n3. This method is called the
direct method [35]. In case of large data vectors y ∈ Rn, which contain for example the
solution of a flow field with thousands of values, this method becomes infeasible. However,
since the rank r of Y is r = min(n,m), one has to compute only r pairs of eigenvector
and eigenvalues while: umax(n)

j=r+1 = 0. Therefore [43] proposed in case of n < m to compute
the EVD of the matrix YT Y ∈ Rm×m, leading to the so called method of snapshots. To
obtain the same eigenvectors as the direct method, the eigenvectors vi from the method
of snapshots have to be rescaled in the following way [60].

U = YV
√

Λ
−1

(2.20)

Herein V ∈ Rm×d is the matrix with the column-wise stacked eigenvectors vi and Λ ∈
Rd×d is a square matrix containing the corresponding eigenvalues on the main diagonal.
The connection between the two presented methods of computing the POD of the matrix
Y can be found by application of the singular value decomposition (SVD) to Y, which
represents another method of obtaining the eigenvectors and eigenvalues of the matrix
YYT . The Singular Value Decomposition decomposes a real matrix C ∈ Rn×m:

C = LΣRT (2.21)

into an n×n orthogonal matrix L, an m×m orthogonal matrix R, and an n×m diagonal
matrix Σ with the diagonal entries σ1 ≥ σ2 ≥ ... ≥ σr ≥ 0, with r = min(n,m), which are
called singular values of C [74]. Since all {σi}max(n,m)

r+1 of Σ are 0, one can derive a more
compact form of the SVD, which is called thin SVD or compact SVD, which increases
the efficiency of algorithms computing the decomposition of a matrix C. Neglecting all
columns of the matrices L and R that correspond to singular values equal to zero, the
thin SVD takes the form [74]:

C = [l1, l2, ..., lr]diag(σ1, σ2, ..., σr)[v1,v2, ...,vr]T (2.22)
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Applying the SVD of Y to YYT results in the following expression:

YYT =
(
LΣRT

) (
LΣRT

)T
=
(
LΣRT

) (
RΣT LT

)
= LΣΣT LT (2.23)

Comparing the last term with the EVD

YYT = UΛUT (2.24)

shows that L of the SVD corresponds to the matrix of the POD modes (eigenvectors)
U, while the term ΣΣT represents the matrix of the eigenvalues Λ. Therefore, the SVD
constitutes a third option to calculate the POD, besides the direct method and the method
of snapshots.
Another point to mention is the common approach to center the dataset Y around its
mean value y, which is calculated by

y = 1
m

m∑
i=1

yi (2.25)

and is then substracted column-wise from Y. The main reason for this step is often the
desire of similar magnitudes for the entries within a snapshot yi and its POD modes U,
which are usually further processed in the framework of a ROM. Although this centering
influences the physical interpretation of the POD modes, the overall procedure stays the
same. However, it is essential to notice, that such centering lowers the rank of Y by
one.

Interpretation and application of POD modes Having multiple methods at hand to
compute the proper orthogonal decomposition of an arbitrary dataset, its of particular
interest to interpret the meaning of the orthogonal modes. In general, without any specific
information of the system from which the dataset or snapshots were generated, the modes
define the directions of a subspace, which give the best approximation of the original
dataset. Considering that the modes are ordered by their content of information with
respect to the dataset, analysing the first few dominant POD modes could possibly reveal
the most important features of the whole dataset. The condition for that is a rapidly
decreasing information content along the modes, as the dataset not necessarily lies on a
manifold, which can be approximated with only a few POD modes. However, in many
application cases one can observe such a decrease [5]. With the information about the
directions of the most important features, a powerful technique in analysing a snapshot
is to project it onto the POD modes (reduced space in case of already neglected modes).
The snapshot can then be reconstructed by a linear combination of the projections onto
the orthonormal system spanned by the POD modes. This allows to identify the most
prominent characteristics of the snapshot due to the normally high contribution of the
projections of the dominant modes. Given the orthonormal POD modes U, the projection
of a snapshot yi is defined by the coefficient vector a, whose components are

ai = yT
i ui . (2.26)

The coefficients can be understood as the representation of the snapshot in the orthonor-
mal system. As long as the orthonormal basis U has the full rank of the dataset Y, the
projection followed by the reconstruction yields the exact snapshot. The coefficients of
every projected snapshot yi can be combined in the coefficient matrix A ∈ Rm×d

A = YT U⇒ Y = UAT (2.27)
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The full set of snapshots can then be reconstructed by multiplication of the POD modes
with the transposed of the coefficient matrix. This property is due to the orthonormality
of the modes (⇒ AT = A−1). The information of a snapshot yi, which is held by the
k-th POD mode can then be computed in the following way:

yk
i = (ai)k uk (2.28)

The reconstruction of the snapshot results in the sum over the contributions of all modes:

yi =
d∑

k=1
yk

i =
d∑

k=1
(ai)k uk (2.29)

2.3 Thin plate spline interpolation

The Thin plate spline (TPS) interpolation is part of the investigated LSQ-ROM and is
utilized for the generation of a suited set of intial POD coefficients for the optimization
process (section 2.6). TPS is an interpolation and smoothing method based on splines
represented by radial basis functions. These splines are defined in correspondence to the
mechanical analogy of the bending of a thin plate [33], whose shape is defined by the
spline function:

z = f(x, y) (2.30)
As every interpolation method, TPS is based on a set of m known data values zi at the
control points xi, yi; i = 1, ..,m. The basic characteristic of the thin plate splines is
their definition according to an minimum energy principal. They have to minimize the
external energy Eext, which is induced by the displacement of the spline representation of
the thin plate from the control point values zi. So, the sum of all squared displacements
constitutes the external energy as defined by

Eext =
m∑

i=1
(zi − f(xi, yi))2 (2.31)

This term needs to be minimized in order to find a solution for the spline based interpo-
lation function f(x, y). It is possible, to control the smoothness of the spline function by
adding a second term to the energy minimization problem, which represents the internal
bending energy of the plate function f(x, y). The internal energy Eint is defined by [39]

Eint =
∫ ∞

−∞

∫ ∞

−∞

(
∂2f

∂x2

)2

+ 2
(
∂2f

∂x∂y

)2

+
(
∂2f

∂y2

)2

dxdy (2.32)

and can be adapted by an scaling factor α to control its contribution to the total energy
Etot.

Etot = Eext + αEint (2.33)
When α takes the value 0.0, TPS is an interpolation spline, otherwise it is an approx-
imation function or regression method. The minimization problem of the total energy
can be determined by setting its first derivative to 0. As a results, the Euler-Lagrange
differential equation is obtained, which has the fundamental solution

f(r) = r2ln(r) (2.34)

where r defines the distance of two points in R2 [39]:

r2
i = (x− xi)2 + (y − yi)2 (2.35)
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Therefore, the interpolation spline in its representation of radial basis functions takes the
form

f(x, y) =
m∑

i=1
bir

2
i ln(ri) (2.36)

and the approximation or regression function with α ̸= 0.0 is defined by

f(x, y) =
m∑

i=1
bir

2
i ln(ri) + d0 + d1x+ d2y (2.37)

The definition for the interpolation spline has m free parameters that need to be deter-
mined, while the approximation function includes three additional parameters; d0, d1 and
d2. These parameters can be found by solving the linear system

Nc = z (2.38)

which includes the matrix N ∈ R(m+3)×(m+3)

N =



α a12 a13 . . . a1n 1 x1 y1
a21 α a23 . . . a2n 1 x2 y2
... ... ... ... ... ... ... ...
an1 an2 an3 . . . α 1 xn yn

1 1 1 . . . 1 0 0 0
x1 x2 x3 . . . xn 0 0 0
y1 y2 y3 . . . yn 0 0 0


(2.39)

and the vector c containing all the desired parameters on the left side and on the right
side the vector z of the values at all the control points.

c =



b1
b2
b3
...
bn

d0
d1
d2


z =



z1
z2
z3
...
zn

0
0
0


(2.40)

For the construction of N, the entries aij are computed by

aij = r2
ijln(rij). (2.41)

After solving this linear system of equations, the interpolation or regression function
f(x, y) is fully defined by the coefficient vector c. The formulation for the interpolation
spline in eq. (2.36) or the regression function in eq. (2.37) can then be evaluated at an
arbitrary point (xi, yi) to obtain an value of z.

2.4 Hyperreduction techniques

In the field of reduced order modeling the term Hyperreduction techniques is often re-
ferred to techniques, that aim to accelerate the computation or evaluation of nonlinearities
[7]. Especially in projection based ROMs that are based on a Galerkin projection, nonlin-
earities pose a fundamental problem for the model reduction. This is because the inner
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product of potential nonlinear terms prevents a reduction of the model complexity, that
is independent from the complexity of the full order model [68]. To circumvent this bot-
tleneck several methods have been proposed, which reduce the cost of the evaluation of
nonlinearities by reducing the query points for the nonlinear term. The approaches to find
a suitable approximation for the full nonlinear term reach from (empirical) interpolation
methods [45], [68], [48] over regression based methods [38], [61], [59], [23] to collocation
/ domain decomposition methods [16], [15], [53]. In the following sections two well es-
tablished methods within the field of numerical flow simulations are presented. These
methods have been widely used and were already investigated in the papers referring to
previous activities concerning the LSQ-ROM method. In the context of compressible fluid
flows, the FOM is described by the Navier-Stokes equations, which consist of several non-
linear terms for the description of fluxes and sources. These nonlinear terms constitute
the need for hyperreduction techniques for efficient ROMs in the field of aerodynamics.

2.4.1 Discrete Empirical Interpolation Method

The DEIM is the discrete variant of the empirical interpolation method (EIM), described
in [45]. The EIM was developed to reduce the complexity of non-affine functions within
partial differential equations. The idea is to represent the non-affine term by a reduced-
basis expansion. For that, several empirical interpolation functions are defined, via a
proper choice of interpolation points, to represent the reduced basis. Because the EIM
identifies the interpolation points through optima in a continuous spatial domain, the
DEIM includes modifications to make this technique applicable to discrete representations
of a spatial domain. Thereby, the DEIM has been successfully utilized as a hyperreduction
technique.
Given a spatial domain, discretized by a set of n grid points, we assume an already
reduced space V ⊂ Rn, spanned by U = [u1,u2, ...,um] ∈ Rn×m. The reduced space for
the solutions within the spatial domain can be produced e.g. through POD, that was
described in section 2.2. The aim of the DEIM is an approximation of the function f(U),
projected onto the reduced space, which fullfills certain error bounds [68]. Defining the
approximation of f by a linear combination in the reduced space by

f ≈ f̃ ≈ Uc (2.42)

leads to an overdetermined system for the coefficient vector c ∈ Rm. The determination of
c follows through selection of m distinguished rows from the basis vectors of the reduced
space. These rows or their indices can be understood as the interpolation points for the
approximation of f . The row selection can be described by a mask matrix P ∈ Rn×m,
that contains m unit vectors eji

with ji ∈ J = {j1, ..., jm} ⊂ {1, .., n} as columns. A
multiplication with PT from the left picks m rows out of the matrix it were multiplied
to. Applied to the approximation of f , the overdetermined system for the coefficients c
reduces to

PT f̃ ≈ PT Uc. (2.43)
With this equation together with eq. (2.42), the approximated function f̃ can expressed
as

f̃ = U
(
PT U

)−1
PT f . (2.44)

This formulation makes clear that the effort for the evaluation of the nonlinear function
O(m) becomes independent from the size of the original problem O(n). The main task
in the preprocessing is the determination of the appropriate interpolation indices for the
specific reduced basis U. The algorithm to select these indices is described in table 2.1
and refers to the one in [68] The entry into the algorithm is the first basis vector of
the reduced space. Its maximum absolute entry defines the first selected index. From
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Algorithm: Discrete Empirical Interpolation Method

1 [rmax, j1]← max(|u⃗1|)

2 U← u1, P← ej1 , J← {j1}

for: l = 2, ...,m

3 solve: PT Uc = PT ul

4 r← ul −Uc

5 [rmax, jl]← max(|r|)

6 U← [U,ul] , P← [P, ejl
] , J← {J, jl}

Table 2.1: DEIM algorithm

that on, all remaining m − 1 indices are chosen by the steps 3-5 in the algorithm. Step
3 includes the computation of a small scale linear system for the coefficients c ∈ Rl−1,
where the left side corresponds to the sampled nonlinear term of eq. (2.43). The solution
coefficients lead to an approximation of the basis vector ul, which is exact at the current
set of indices {j1, ..., jl−1}, like interpolations are exact at their sampling points. In the
next step of the algorithm, the residual or the error between the current processed basis
vector ul and its approximation in the current basis {u}l−1

l=1 is computed. The error is
then used in step 5 to determine the next index, which is the index of the residual with
the highest absolute value. Therefore, the newly added index in step 6 is the one that
would result in the highest interpolation error between the former basis and its added
basis vector. To guarantee that the interpolation indices are nonrepeated and that PT U
is always nonsingular, the vectors {u}m

l=1 have to be linear independent, which is assured
by a POD basis. Since the DEIM approximation is uniquely determined by its underlying
projection basis U, the overall accuracy of the DEIM is influenced and determined by
the chosen basis. In [68] an additional bound for the stepwise growth of the error during
the process of indices determination is given, which results in a restriction of the overall
error introduced by the discrete empirical interpolation method. One drawback of the
DEIM is the restriction of the number of selectable indices to the number of basis vectors.
However, this can be utilized for other hyperreduction methods, which rely on a start set
of indices like the Missing Point Estimation, which is described next.

2.4.2 Missing Point Estimation

Missing point estimation is a nonlinear reduction method to select a subset of a spatial
domain in order to minimize the error between the exact solution of a certain physical
model and the solution reconstructed within a reduced subspace. This results in an
optimization problem that seeks the subset for which the alias sensitivity is minimal [52].
Because of the high complexity of this combinatorial optimization problem, the authors
in [52] proposed a heuristic approach for the selection of a subset, that is somehow close
to the optimum set. The foundation for this method can be found in the gappy POD
[59] and techniques originating from the field of signal processing and the problem of
signal reconstruction. First applications of the MPE were demonstrated for a ROM for
the incompressible Navier-Stokes equations based on a galerkin projection. However, the
MPE proved successful also for compressible aerodynamic problems and in general as a
hyperreduction method. The efficiency and accuracy of the original algorithm for the
MPE was improved in [61] by a Accelerated Greedy MPE, whose characteristics shall be
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presented after a description of the underlying combinatorial optimization problem.
The MPE is assumed to operate in a projection-based ROM to further reduce the model
complexity by lowering the number of degrees of freedom in case of a spatial problem.
Although a POD basis is not essential for the application of the MPE, a subspace, which is
constructed by POD modes, is assumed for the following derivation of the MPE method.
The subset of the spatial domain is identified by a mask matrix P = (ej1 , ..., ejs) ∈ Rn×s,
that consists of s column-wise stacked unit vectors eji

with ji being an index of the subset
of indices J = {j1, ..., js} ⊂ {1, ..., n}. Multiplying a vector y with the transposed of P,
selects the rows j1, ..., js of y. In a usual application like a spatial discretization, these
indices refer to certain points, nodes or cells. Similar to section 2.2, the state vector of
the modeled system is described by the vector y and the reduced subspace is spanned
by the d POD modes, which are represented by the matrix U ∈ Rn×d. In order to find
the optimum set of indices of the MPE, the following Least-squares problem needs to be
solved [61]

min
α∈Rn

∣∣∣PT y−PT UUT y
∣∣∣2, (2.45)

which is the masked version of the projection problem in section 2.2. In contrast to the
DEIM, presented in section 2.4.1, the MPE relies on a predefined set of start indices, whose
cardinality is larger than the number of basis vectors, so that the Least-squares problem
is not rank-deficient. Whereas the solution of the unmasked Least-squares problem is the
orthogonal projection of y onto the subspace, spanned by U, the optimum projection for
the masked problem is

ỹ = Πy (2.46)
with the projection operator Π

||Π||= UT
(
UT PPT U

)−1
UT PPT . (2.47)

This formulation can be easily obtained by applying the general solution of a linear Least-
squares problem to the masked problem. From this, it is possible to derive a bound for
the error between the exact solution y and its masked projection ŷ:

||y− ŷ||≤ ||Π||||y−UUT y||. (2.48)

The norm of the projection operator directly controls the maximum error of the masked
projection. By using an SVD of the projection operator and specifying the norm as the
spectral radius, the factor for the error bound takes the form

||Π||= 1
σmin(PT U) (2.49)

Since P is the only variable parameter (constant POD basis assumed), minimization of the
error introduced by the masked projection means maximizing the minimum eigenvector
of the matrix PT U ∈ Rs×d. The application of an exhaustive greedy search for this
problem leads to an inefficient algorithm, because it has to add indices successively by
computing for all potential new mask matrices Ps+1 = (P, ejs+1) the minimum eigenvalue
and comparing them to each other. In [61] another error bound is proposed with the goal
of restricting the residuals of the projected solution ỹ and the masked projected solution
ŷ. This bound is defined by

||Π||= 1
σmin(PT L) (2.50)

with L being the left matrix of the compact SVD of U as it was introduced in section 2.2.
When searching for the optimum set of indices by minimizing one of the two presented
error bounds, one has to solve almost n SVDs for every step adding a new index to
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the current subset (exhaustive greedy algorithm). To accelerate the index selection, the
algorithm from [61] is extended by different screening criteria that reduce the number
of potential new indices to a smaller set with the best values according to the specific
screening criteria.
The developed screening criteria are based on specific characteristics of a rank-one SVD
update problem, which needs to be solved to obtain the minimum eigenvalue of PT

s+1U.
When decomposing this matrix with the compact SVD PT

s+1U = LΣRT , the following
formulation can be found:(

PT
s+1U

)T (
PT

s+1U
)

= Rs

(
Σ2

s + vvT
)

RT
s (2.51)

where the subscript s indicates matrices of the SVD of the mask matrix Ps before the
rank-one update. The vector v

v = RT
s uT

js+1 ∈ Rd

is therefore the row with the index js+1 of the matrix URs. The potential vectors vji
for

the rank-one update problem are called candidate vectors and are the key objective of the
screening criteria. When examining eq. (2.51) it is clear, that the term

M = D + vvT with: D = Σ2
s

constitutes the eigenvalues of PT U after the rank-one update. The candidate vector v is
the only modification to the original eigenvalue problem and therefore used for an effective
screening of all potential rank-one updates. An important property of a rank-one update
is that the eigenvalues λi of the updated problem and the eigenvalues di of the original
problem are ordered in the following way [32]

λ1 ≥ d1 ≥ d2 ≥ ... ≥ dp−1 ≥ λp ≥ dp (2.52)

(assuming that λi and di i = 1, ..., d are in descending order). Therefore, the smallest
eigenvalue of the updated problem λd is bound by the intervall [dp−1, dp], which is impor-
tant when someone aims to maximize the smallest eigenvalue in order to minimize the
error bound for the masked projection.
The characteristic polynomial of M leads to the expression [24]

f(λ) = 1 +
p∑

i=1

v2
i

di − λ
, (2.53)

which can be differentiated under the assumption that D is strictly positive definite [61].
The partial derivative of the eigenvalue λk by vi is

∂iλk(v) = −2
||qk||2

vi

di − λk(v) (2.54)

with qk being the eigenvector of M, that corresponds to the k-th eigenvalue. From this,
it is possible to already derive some important properties of a candidate vector for the
minimum eigenvalue λp. So for all entries vi : i < p (di ≥ λp) λp is decreasing for values
vi > 0 and increasing for values vi < 0. The opposite is true for the last entry of the
candidate vector vp : i = p (dp ≤ λp). For the largest growth in σmin, the last component
of v should be as large as possible while the remaining entries should be as small as
possible.
The proposed screening criteria make use of an approximation of the exact eigenvalue λp,
which is the p-th root of eq. (2.53). To obtain a good estimation λp,0, [61] approximates
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eq. (2.53) with the help of two constants, either

cup = 1 +
p−2∑
i=1

v2
i

di − dp−1
(2.55)

or
clo = 1 +

p−2∑
i=1

v2
i

di − dp

, (2.56)

depending on how close λp is either to dp−1 or dp. Inserting one of the terms into eq. (2.53)
leads to a quadratic equation in λp which can be solved straightforward. With this, an
estimate for the distance between the updated last eigenvalue λp and the second last
eigenvalue of the original problem dp−1 is

0 < dp−1 − λp < dp−1 − λp,0

= dp−1 − dp

2 − 1
2cup

(
v2

p−1 + v2
p −

√
(βp − v2

p)2 + (βp + v2
p−1)2 + 2v2

p−1v
2
p − β2

p

) (2.57)

with βp = cup(dp−1 − dp) .
This equation states the evaluation criterium for every candidate vector. A potential
greedy algorithm would always pick the candidate vector, which implies the largest growth
in λp and leads, because of eq. (2.57), to the smallest distance to the second last eigenvalue
of the original problem. Picking up a simplified form of eq. (2.57) from [61]

0 < dp−1 − λp <
v2

p−1(dp−1 − dp)
v2

p − cup(dp−1 − dp) (2.58)

indicates that this is achieved by increasing the last entry of v⃗ and/or decreasing the second
last entry as far as possible. However, when performing this strategy multiple times, a
problem can occur, because the upper limit of λp, which is dp−1, does not increase with
the same amount. In contrast, dp−1 will change minimally for candidate vectors with
entries vp−1 → 0, which is due to [32]

(D + vvT )ei = Dei + vvi
vi→0≈ di. (2.59)

To circumvent a very slow growth behaviour, a suggested improvement is a compromise
between greedily driving λp towards its upper limit and targeting an increase of the upper
limit itself for the current iteration. The criterium from eq. (2.57) can be applied to any
eigenvalue λp−k with minor modifications:

(2.60)
dp−k−1 − λp−k <

dp−k−1 − dp−k

2 − 1
2ck,up

(
v2

p−k−1 + v2
p−k − sgn(ck,up)√

(βp−k − v2
p−k)2 + (βp−k + v2

p−k−1)2 + 2v2
p−k−1v

2
p−k − β2

p−k

)
k = 1, ..., p− 1

Therefore, it is possible to target any growth limiting eigenvalue. So for example, after
multiple iterations, which targeted λp, λp−1 could limit further growth of the smallest
eigenvalue. Therefore, one of the proposed algorithms in [61] switches between targeting
the smallest and the second smallest eigenvalue. By targeting for every third iteration the
second smallest value, the upper limit is continuously increased to enable further growth
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Algorithm: Fast MPE with "module-three" target switching

1 Js = {1, ..., n} \ Js = {j1, ..., js}

2 while: |Js| ≤ nmax

3 if: mod(s, 3) ≤ 1

4 kt = 0

5 else:

6 kt = 1

7 copt = dp−k−1 − dp−k

8 for: i = s+ 1, ..., n

9 v⃗ ← v⃗ji

10 cs ← (screening criterium according to eq. (2.60) with k = kt)

11 if: cs < copt

12 copt = cs, jopt = ji

13 Js+1 = Js ∪ {jopt}, Js+1 = Js\{jopt}

14 s = s+ 1

Table 2.2: Fast MPE algorithm

of the smallest eigenvalue. The basic steps of this algorithm are outlined in table 2.2. The
second algorithm proposed in [61] targets recursively the eigenvalues that are indicated to
limit further growth of the next smaller eigenvalue. This recursive problem is incorporated
into the following criterium

dp−k − dp−k+1

dp−k

< τ k = 1, ..., p− 1 (2.61)

to identify the upper bound, which is too constraining for the future growth of λp−k. The
parameter τ ∈ (0, 1) can be set individually as there are no general guidelines for its
value. When this criterium is fulfilled, the interval (dp−k+1 − dp−k) is considered as too
small for further growth and the upper bound of λp−k, which is the next larger eigenvalue
λp−k−1, is targeted instead of λp−k itself. In that way the smallest eigenvalue is targeted
as long as its upper is bound not too close to limit the future growth. Both algorithms
lead to satisfactory results with respect to acceleration and error limits. Due to its simpler
application, which does not need any experience for the parameter τ , the first algorithm
was utilized for this work.
According to this, the algorithm relies solely on a starting set of indices J of a cardinality
> d and the parameter nmax that defines the total number of indices to identify by the
MPE. The starting set can be found for example by a peliminary application of the DEIM
algorithm. This proposed surrogate for the full rank-one update of the eigenvalue problem
has only computational costs which are linear in n (length of basis vectors) and quadratic
in d (number of basis vectors) for every iteration. This leads to a significant reduction
in computational time, as the exhaustive greedy algorithm, which solves the full rank-
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one update problem, has computational costs which scale cubic with d. Investigations in
[61] show that this acceleration comes at minor costs concerning the accuracy, since the
acclerated algorithm picked in most of the cases the same candidate vector / index as the
exhaustive algorithm.

2.4.3 Artificial hyperreduction indices

During the investigation of the hyperreduction methods it became clear that the hyper-
reduction indices selected by the MPE + DEIM need to be extended because often they
do not include a sufficient number of boundary cell indices. This can lead to problems,
since most boundary conditions are defined in a local way so that the imposed boundary
conditions only affects cells and their stencils, which are directly connected to the bound-
ary. Because of that, a residual which is not evaluated for those cells is not linked to the
boundary anymore, although the states may highly deviate from the imposed condition.
This can lead to problems during the optimization process of a LSQ-ROM, which can
converge towards local minima at training points, as the training points may be defined
solely by input parameters imposed at a boundary not included in the set of hyperre-
duction indices. To circumvent such issues, the set of hyperreduction indices for the
LSQ-ROM should include a sufficient number of cells / indices at boundaries referring
to the input parameter. In case of the angle of attack and the Mach number, which
are utilized in this work, the corresponding boundary is the farfield of the flow domain,
where the outer state is imposed based on flow angles and velocity. The importance of
such boundary cells for the success of the hyperreduction was already shown in [2], which
also emphasized that farfield cells are suited for the reduction of the residual. Neverthe-
less, the specific boundary that needs to be considered for additional boundary indices
depends on the type of input parameter. While the angle of attack corresponds to the
farfield boundary, a shape parameter of an airfoil would correspond to the wall boundary
at the airfoil. So, the boundary that provides the additional indices has to be chosen with
respect to the input parameters or the design space respectively. The required number
of additional boundary indices is probably depending several factors like the number of
hyperreduction indices or the initial condition of the optimization problem so as a rule
of thumb a small percentage of all hyperreduction indices should correspond to boundary
indices, just like a full residual includes a small percentage of residuals at the boundary.

2.5 Optimization algorithms

The investigated LSQ-ROM method relies on the minimization of the nonlinear residual
of the dicretized governing equations. As this minimization poses a nonlinear Least-
squares problem, which is a special case of a general optimization problem, the following
section will describe important strategies for the solution of such problems. Although
the investigated LSQ-ROM method harnessed solely the well-known LM method, the
underlying methods, which it is based on, shall be presented briefly, too.
The general optimization problem can be described as the search for a local minimizer
x⋆ ∈ Rn of a real-valued function F (x). The objective function F (x) is assumed to be
at least twice differentiable, since this is a common requirement for established gradient
based solution methods. Moreover, the problem shall be unconstrained with no conditions
imposed on x and the minimizer x⋆ is in general only a local minimizer [9]:

min
x
F (x) = F (x⋆) ≤ F (x) for all x : ||x− x⋆||< δ, δ > 0 (2.62)

While it is often possible to find such a local minimizer, the identification of the global
minimum becomes infeasible for arbitrary functions F (x) and an unrestricted parameter
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space for x. A minimum needs to meet two conditions for optimality. First, the necessary
condition

F ′(x⋆) = 0 (2.63)
to identify an extremum and second, the sufficient condition that F ′′(x⋆) is strictly positive
definite. Only points satisfying both of these conditions are local minimizer.
The gradient of F (x), which is F ′(x) or ∇F (x), is the derivative of F (x) with respect to
every component of x, whereas the second order derivative is F ′′(x) or ∆F (x).
All presented minimization methods are iterative Descent Methods, which enforce the
descending condition F (xk+1) < F (xk) for every iteration k = 1, ..., n. A Descent Method
is built up on three generical steps [37]:

1. find a descent direction hd;
2. find a step length α in the found descent direction, giving a sufficient decrease for
F (x);

3. apply the step to the current minimizer: xk+1 = xk + αhd;
Iteratively running through these steps drives the parameter vector x continuously towards
a local minimizer. The number of iterations needed for this procedure is heavily influenced
by the method-specific convergence order p, which is defined by

||xk−1 − x⋆||≤ K||xk − x⋆||p 0 ≤ K ≤ 1. (2.64)

Hence, a method with a convergence order of 2 decreases the error of the next iterated so-
lution quadratically and is therefore called quadratically-convergent. Another noticeable
point is the dependence of the finale solution x⋆ of the starting point x0. The iterative
process is influenced by x0 in such a complex way, that does not guarantee, that the found
local minimizer x⋆ is the one closest to x0 [37]. This is why even small changes of the
starting point for the iterative process can lead to totally different local minima.

Steepest Descent Method

The Steepest Descent Method describes a globally convergent algorithm, that is capable
of finding a local minimum [9]. Its iterative procedure takes the classic form

xk+1 = xk − αhsd (2.65)

wherein hsd is the descent direction, which is simply the negative gradient of the objective
function:

hsd = −F ′(x) = −∇F (x). (2.66)
Because F ′(x) scales with the magnitude of F (x), the step length α needs to be chosen
appropriately to ensure a continuous decrease in F (x). To find such an appropriate step
length, a popular class of methods are Trust Region Methods that require – on top of
the optimization problem – the solution of a Trust Region sub problem, generally defined
by:

htr = min
||h||≤∆

{m(h)}. (2.67)

For that, a quadratic model m(h) for the objective function F (x) is given by

m(h) = F (x) + hTF ′(x) + 1
2hTF ′′(x)h. (2.68)

This model is assumed to to be a sufficiently accurate approximation F (x) within the
radius ∆ of the Trust Region. A detailed description of this problem and the various
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techniques to solve it are beyond the scope of this thesis, but can be found e.g in [9].
After having found a suitable step length, the Steepest Descent step (see eq. (2.65)) can
be applied. The overall method has a good performance in the initial stage of the iterative
process for many problems, but converges only linearly in the final stage [37].

Newtons Method

Newtons method is a locally convergent method, that requires its initial iterate x0 to be
sufficiently close to x⋆, so that the sufficient optimality condition holds. The method is
normally used to solve systems of nonlinear equations by finding the root of the function

m(x + h) = F (x) + hTF ′(x). (2.69)

By setting this formula equal to zero, the iterative procedure definition of Newtons method
becomes:

xk+1 = xk − F ′(xk)−1F (xk). (2.70)
In the context of the minimization problem, Newtons method can be roughly understood
as the application of eq. (2.70) to F ′(x) instead of F (x). Or to be more precise: The
new iterate x of Newtons method converges to the minimizer of the local quadratic model
m(x + h) of F (x) [9]. This leads to

m′(x + h) = 0 = F ′(x) + F ′′(x)h (2.71)

and from that to the equation for the descent direction hnm

F ′′(x)hnm = −F ′(x). (2.72)

In contrast to the Steepest Descent method, the received direction needs no scaling as it
is independent of the magnitude of F (x). Therefore, it is possible to set the step length
α simply to 1, such that

xk+1 = xk + hnm. (2.73)
However, one has to make sure that hnm is actually a direction of descent, which is only
ensured if the Hessian F ′′(x) is positive definite. This is the case when x is sufficiently
close to the local minimum. Within this neighbourhood of the minimum, Newtons method
converges quadratically towards the local minimum [56].

2.5.1 Nonlinear Least-squares problem

As mentioned in the beginning of this section, the LSQ-ROM method requires the so-
lution of a nonlinear Least-squares problem, which is a intermediate stage between non-
linear equations and optimization problems. This perspective becomes clear by defining
the Least-squares problem, which is basically the search for an optimum solution of a
overdetermined nonlinear system. It can be solved by the minimization of the objective
function F (x) for the overdetermined system

A(x) = b b ∈ Rm, x ∈ Rn (2.74)

and its error function

f(x) = b−A(x) f(x) : Rn → Rm (2.75)
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with m ≥ n. From that, the objective function can be defined as the squared sum of all
elements of f(x) [37]:

F (x) = 1
2

m∑
i=1

(fi(x))2 = 1
2f(x)Tf(x). (2.76)

Given this specific formulation of the objective function, the former mentioned first order
derivative is [37]

F ′(x) =
m∑

i=1
fi(x) ∂fi

∂xj

(x) = J(x)Tf(x) (2.77)

with J ∈ Rn×m being the Jacobian matrix consisting of the derivatives of every element
of f(x) with respect to every element of x. The second derivative of F (x) has the form

F ′′(x) = J(x)T J(x) +
m∑

i=1
fi(x)f ′′

i (x) (2.78)

and is also referred as the Hessian H. It has to be noted, that the full evaluation of the
Hessian of F (x) requires m evaluations of Hessians of f(x). This is the reason why classic
Newtons method would be too costly for the solution of the minimization problem arising
from the overdetermined system in eq. (2.74).

Gauss-Newton Method

The large cost of a exact Hessian matrix needed by the classic Newton method require
some sort of simplification for the Hessian in order to enable a Newton like method
with quadratic convergence order. The Gauss-Newton method approaches this task by
approximating the error function f(x) by a linear model

f(x + h) = f(x) + J(x)h. (2.79)

Inserted into eq. (2.76), it follows

F (x + h) = 1
2f(x + h)Tf(x + h) = F (x) + hT J(x)Tf(x) + 1

2hT J(x)T J(x)h. (2.80)

The Gauss-Newton method minimizes this term instead of F (x) within the Newton
method [37]. Hence, the Gauss-Newton method operates with

F ′(x + h) = J(x)Tf(x) + J(x)T J(x)h (2.81)

and the Hessian
F ′′(x + h) = J(x)T J(x). (2.82)

Comparing F ′′(x+h) and F ′′(x), illustrates that the Gauss-Newton methods just neglects
the costly term of F ′′(x) and transfers eq. (2.72) into

J(x)T J(x)hgn = −J(x)Tf(x). (2.83)

So, in the Gauss-Newton algorithm there is solely the Jacobian needed to solve for the
descent direction hgn. Some remarks concerning the evaluation of the Jacobian are given
in the next section in combination with a detailed description of the damped version of
the Gauss-Newton method. The simplifications made through the linearization of f(x)
make the computation of the Hessian feasible but on the other hand one can not expect
to generally obtain the same quadratic convergence as for the classic Newtons method.
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Similar behaviour requires F ′′(x+ h) to be a good approximation of F ′′(x), which should
only be the case for x being close to x⋆ and under the assumption of weak nonlinearities
(f ′′

i ≈ 0):
F ′(x + h) ≈ F ′(x), F ′′(x + h) ≈ F ′′(x)

.

2.5.2 Levenberg-Marquardt method

The LM method, originally proposed by [40] and [19], can be understood as a damped
Gauss-Newton method, combining the method of the Steepest Descent with the Gauss-
Newton method. The formula for the descent direction of the LM method is given by [56]
(J = J(x)): (

µI + JT J
)

hlm = −JTf(x). (2.84)
While the right hand side is the same as for Steepest Descent and the Gauss-Newton
method, the left hand side consists of the term JT J originating from the Gauss-Newton
method and the term µI being the scaled left hand side of the Steepest Descent method.
The pure Gauss-Newton method can be regained by setting the damping factor or LM
parameter µ to 0.

hlm = −
(
JT J

)−1
JTf(x)

Instead, setting µ → ∞ eq. (2.84) yields a scaled step into the direction of the steepest
descent:

hlm = − 1
µ

JTf(x)

As the damping factor is added to the diagonal elements of JT J, a proper control of µ can
ensure that the matrix

(
µI + JT J

)
is positive definite and thus hlm a descent direction.

With µ steering the characteristics of the LM method, it is possible to use the global
convergence of a steepest-decent like method in the early stage of the iterative process
and the quadratic convergence of a newton like method in the final stage of the iterative
process. To make advantage of that, a strategy is needed in order to properly increase and
decrease µ during the iterative process. In [37], the described method to control µ follows
the idea of the aforementioned trust region method. It is important to underline that
the damping factor not only influences the descent direction but also the step size. This
gives the possibility to reduce the number of parameters within the trust region problem
to only one. The key of the control strategy is the gain ratio ρg. It is ratio of the actual
gain in F (x) induced by the step hlm to the gain predicted by the quadratic model m(h)
for F (x). Given the model function

m(h) = F (x) + hT
lmJ(x)Tf(x) + 1

2hT
lm

(
J(x)T J(x)

)
hlm (2.85)

the gain ratio takes the form [37]

ρg = F (x)− F (x + h)
m(0)−m(h) = F (x)− F (x + h)

1
2hT

lm (µhlm − JTf(x)) . (2.86)

For the case that ρg takes value close to 1, e.g. ρg > ρg,high = 0.75, the approximation
of F (x + h) by the model is in good agreement with the actual value and the damping
factor µ can be decreased to drive the algorithm towards the Gauss-Newton method. On
the other side, if ρg is close to 0, e.g. ρg < ρg,low = 0.25 the model provides a poor
approximation and the damping factor should be increased. An increased damping factor
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leads to a descent direction closer to the direction of steepest descent and simultaneously
reduces the step length. The given limits, which define a decrease, increase or no change
in the damping factor are just recommendations from [37] and can be chosen problem
dependent.

Computation of the Jacobian So far, it was assumed for all the presented methods,
that the Jacobian already exists. However, the computation of an accurate Jacobian is
not trivial. In most cases the analytical formulation is not known or extremely compu-
tationally expensive. When having the full source code at hand, automatic differentation
[4] may be a practical approach to obtain the exact Jacobian from the differentation of
the underlying code for the evaluation of f(x). Unfortunately, in case of a black-box
function f(x) this approach falls short. The common way to obtain the Jacobian from a
black-box function is by computing it by finite difference. Using this method, the function
f(x) is derived with respect to each parameter xi through a small perturbation of the
corresponding parameter. A derivative via a forward difference is obtained from

∂f(x)
∂xj

= f(x + hej)− f(x)
h

, (2.87)

where h is the magnitude of the perturbation and ej the j − th unit vector. Hence, for
J ∈ Rn×m, there are m function evaluations needed for the full Jacobian. The error of
a forward difference is O(h + ϵf

h
) with ϵf being the error caused by the limited number

representation (≈ 10−16 for 8-Byte floating numbers). Because of this, the perturbation
magnitude needs to be chosen with some care, since the error can not be driven to zero
by just further decreasing the perturbation value. Although there is no general rule for
choosing h, in several application cases a constant value of 10−6, which lays between the
analytical optimum for a forward and a central difference [25], led to satisfactory results
[70]. A generally more accurate approximation can be expected from a central difference
like

∂f(x)
∂xj

= f(x + hej),−f(x− hej)
2h . (2.88)

with an error of O(h2 + ϵf

h
). However, this requires twice the number of function evalua-

tions than the forward difference.
Since the evaluation of f(x) is often computational expensive, a recomputation of the Ja-
cobian in every step of the LM algorithm can become performance limiting for the overall
process. A way to circumvent this drawback is by computing the Jacobian in the first
iteration and to successively update it during the following iterations. Broyden’s Rank
One Update [8] provides a way to obtain an approximation of the Jacobian Jk+1 based
on the Jacobian of the prior step. The update mechanism is based on solving

Jk+1v = Jkv

for every vector v that is orthogonal to the step hlm = xk+1 − xk. This leads to the
formulation:

Jk+1 = Jk +
( 1

hT h
(f(xk+1)− f(xk)− Jkh)

)
hT . (2.89)

In case of expensive function evaluations, the Broyden Update drastically reduces the
computational costs for the evaluation of the Jacobian. However, it is not ensured that
the updated Jacobian is a sufficient approximation of the real Jacobian. To counteract
a deterioration of the Jacobian during the iterative process, it is possible to periodically
recompute the full Jacobian via finite difference or just selected derivatives based on a
measure of their approximation quality [37].
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Stopping criteria In order to stop the infinite iterative process when the solution has
reached a certain level of accuracy, an adequate stopping criteria has to be defined. To
restrict the maximum number of iterations, the iterative process is halted when:

niter ≥ nmax . (2.90)

The process should also be stopped when the change in the objective function F (x) is
small enough to assume the proximity to a local minimum (since F ′(x⋆) = 0).

||J(x)Tf(x)||≤ ϵ1 > 0 (2.91)

One can also define a fallback criterium for the case that ϵ1 is chosen too small causing
rounding errors to prevent a proper stop. Hence, it should be checked that the step size
is larger than a certain threshold:

||xk+1 − xk||≤ ϵ2(||xk||+ϵ) (2.92)

2.6 Algorithm of the LSQ-ROM

The purpose of this section is to give a basic overview of the algorithm that forms the
LSQ-ROM method as it was proposed in [63], [62] for steady simulations and in [50]
and [3] for unsteady simulations. Its description is divided into the offline stage and
the online / prediction stage. During the offline stage, the CFD solver is queried to
generate the training data (I), the POD basis is computed (II) and the prerequisites for
the hyperreduction like the index selection are prepared (III). All these parts are presented
roughly in the following paragraph. Since the new hyperreduction implementation within
this method is subject of the following chapter, a detailed description of it can be found
there. The prediction stage is based on the minimization of the residual of the CFD solver.
This minimization process leads to a coefficient vector for the POD basis, that defines
a solution for which the residual has a local minimum. Including the residual in the
ROM preserves the connection of the reduced model to the physics of the FOM and thus
gives the ROM an intrusive character. Since a residual with a value of 0 corresponds to
the exact solution of the FOM, the value of the residual obtained from the minimization
process is automatically an error measure for the predicted solution of the LSQ-ROM
method.

2.6.1 Offline stage

The offline stage can be split into three main steps, which need the results of the previous
step as its input. Since every step relies on its own algorithms, their brief description
follows the sequential process chain of the offline stage. An illustration of the overall
process is given in fig. 2.2 consisting of the three steps: Generation of snapshots (I),
computation of the POD basis (II) and the preparation step for the hyperreduction (III).

I: Generation of snapshots The main part in the process chain is the generation of
the training snapshots, which are solutions of the flow field computed by the CFD solver.
Usually, the CFD algorithm has multiple free parameters including specific schemes for
the flux discretization that need to be defined. These parameters can be divided into
settings for the spatial discretization, which influence the final converged solution and
for the time discretization, which solely influence the iterative process. And as part of
the spatial discretization, boundary conditions have to be defined for the boundaries of
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the solution domain. The independent variables ψ, which define the design point for
the training snapshots, are also passed to the solver. Typical variables can be physical
quantities like the Mach number or theoretical even geometrical quantities like airfoil
shape parameters. The investigated parameter for this thesis are the Mach number and
the angle of attack, giving:

ψi =
(
Mi

αi

)
for the i-th sample point. All the sample points are generated from a Design of Exper-
iments, given for example by a multidimensional Halton series [30]. So, every training
snapshot refers to a CFD solution computed for a specific set of (physical) parameters ψi.
The combination of all the solutions y or W 1 into the snapshot matrix Y presents the
input for the next step for the offline stage of the LSQ-ROM.
Although the origin of the training snapshots is not of importance for the generation of
the ROM, it is essential that the residual definition for the prediction stage refers to the
definition used for the generation of the training data. Therefore, one has to pass the
same settings for the spatial discretization to the CFD solver for the residual evaluation
and the generation of the training data, as these settings influence the overall solution
(see section 2.1.1).

II: Proper Orthogonal Decomposition Next, the snapshot matrix Y ∈ Rn×d, is passed
as an input to the POD. The decomposition is computed by an EVD or SVD with a
prior centering of all snapshots around their mean value y. This yields a basis of m − 1
orthogonal POD modes, which are combined in the matrix U. Further outputs are the
coefficient matrix A, the singular values σi and the eigenvalues λi, respectively. The latter
are necessary for the first reduction tier of the model. After computing the full POD basis,
a reduction can be performed by neglecting a certain number of the least important modes.
This number needs to be defined either directly by rm, which is the number of modes to
retain for the reduced basis, or indirectly by the RIC. When passing a value for the
RIC, the model will comprise as many modes as needed to reach at minimum the defined
RIC. Besides the reduced basis U, which is passed to the last step of the offline stage,
the other outputs of the POD are stored for later use during the prediction stage and for
the reconstruction of solutions.

III: Hyperreduction preparations The hyperreduction method poses the second reduc-
tion method within the LSQ-ROM method and relies on the reduced POD basis U result-
ing from the previous step. Although the reduction is executed only during the prediction
stage, its definition and preparations can be conducted during the offline stage. For that,
in a first step, a proper set of indices (Js) has to be identified. In all investigations the
Fast MPE algorithm from section 2.4.2 is used after exploiting the DEIM to obtain the
first d indices. Another input is the maximum number of indices nmax, which defines the
cardinality of Js. Because of the restrictions for a index specific evaluation of the residual
by the CFD solver, the indices can not be used directly but need to be further processed.
They are input to the extraction of a reduced mesh or submesh that allows the compu-
tation of the residual for a smaller set of cells. Since every residual depends on its stencil
(cf. section 2.1), this submesh contains all cells identified by Js plus the cells belonging
to the neighbourhood of these cells. Origin of this extraction is of course the mesh, the
CFD solver is operating on for the training snapshots from step (I). The role and the
need for this submesh is explained in more detail in the following chapter together with
a description of the new implementations needed for this kind of hyperreduction.

1The solutions / snapshots were previously defined by Y or y. However, to correspond to the usual
CFD notation, W and y are used analogously
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Figure 2.2: Schematic representation of the offline phase of the LSQ-ROM.
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2.6.2 Prediction stage

Based on the reduced model from the previously explained offline stage, the prediction
of a solution proceeds as it is outlined in fig. 2.3. From a specified prediction point ψp, a
initial solution for the POD coefficient vector a is generated by an interpolation method.
Although the applied interpolation method was fixed, it is essential to keep in mind that
the initial solution can influence the final solution (cf. section 2.5). The initial coefficients
a0 are then used to compute an approximative solution W. within the subspace V,
spanned by the POD modes U (cf. section 2.2).

W = W + Ua (2.93)

Because the snapshots were centered around their mean, the linear combination (Ua) of
the POD modes is added to that mean to obtain the approximated solution. This solution
can be passed to the CFD solver, which computes the residual for that state. CFD
solver and POD are queried by the Levenberg-Marquardt algorithm while it optimizes
the coefficient vector a based on the objective function F (a).

min
a∈Rd

F (a) = min
a∈Rd
||R(W + Uâ)||2 (2.94)

The LM algorithm minimizes the squared sum of every residual entry, which can be
understood as the search for a local minimum for the sum over all violations of the
conservation laws. A local minimizer a⋆ is assumed, when one of the defined stopping
criteria is met (cf. section 2.5.2) and the objective function is at a local minimum. It is
essential to notice that the chosen algorithm includes the residual of every conservative
variable and treats them equally. As the residuals scale with the surface area of the
individual elements, it becomes clear that some sort of normalization, e.g by the volumes,
is required to prevent overrating of larger cells. Besides the residual evaluation for the
objective function, the residual is also required for the computation of the Jacobian,
which is evaluated via finite difference. The first step in the LM algorithm computes the
Jacobian via full finite difference, while all the following iterations exploit the Broyden
update, which is promoted by finite difference in the direction of a poorly approximated
derivative. The whole algorithm follows the description of the Levenberg-Marquardt
method in section 2.5.2.

Hyperreduction application To evaluate the potential of the new hyperreduction method,
a comparison with its old implementation from [50] and [3] shall be presented. The main
idea of a hyperreduction is to reduce the time needed to evaluate the nonlinear residual.
As the required evaluation on only a specific set of cells is usually not part of a CFD
solver, the former approach was to reduce the residual after its evaluation. Although this
approach does not reduce the evaluation time in the CFD solver, it still lowers the costs
of the optimization problem. When applying such subsequent residual reduction, the
optimizer operates on a masked residual, leading to the formal minimization problem:

min
a∈Rd

F (a) = min
a∈Rd
||PT R(W + Ua)||2 (2.95)

where P is the mask matrix. The mask matrix reduces the full residual to a reduced
residual Rred by solely picking the residual entries defined by the hyperreduction indices
Js.

Rred(W + Ua) = PT R(W + Ua) (2.96)

Consistent hyperreduction The aim of this thesis is the implementation and investiga-
tion of a hyperreduction that is reducing the actual evaluation of the nonlinear residual.

36



2.6 Algorithm of the LSQ-ROM

To achieve this, a reduced mesh or submesh is constructed that serves as an additional
mesh that is only used for the evaluation of the selected residuals Js. The reduced mesh is
defined by another set of cells Jp, which differs from Js because of the way the residual is
evaluated in the CFD solver (see section 3.2.2). Therefore, the reconstruction of the state
is done for the reduced mesh, leading to the reduced state vector Ŵ ∈ Rnred , nred = nc ·np,
(nc = number of conservative variables, np = |Jp|) which can be formally obtained from
a masked POD basis with

Ŵ = P̂T W (2.97)
and

Û = P̂T U. (2.98)
The mask matrix P̂ ∈ Rn×np selects every row that corresponds to Jp and hence to a cell
in the reduced mesh. By applying the mask matrix directly to the POD basis instead of
performing the hyperreduction after the reconstruction with the full POD basis, the effort
for the reconstruction of the states is reduced and proportional to the hyperreduction level.
The hyperreduction level shall be defined by the ratio of cells not included in the submesh
to the number of cells in the base mesh.

hyperredution level = number of cells not in the reduced mesh
number of cells in the base mesh = n− np

n
(2.99)

Its values range from 0 for an reduced mesh that is equal to the base mesh to 1.0 for
an empty reduced mesh. It is expected that the reduced number of cells in the submesh
translates to a proportional reduction in residual evaluation computational cost, although
the residual evaluation effort is more precisely determined by the number of faces. As the
residual evaluation is performed on the reduced mesh, the minimization from eq. (2.94)
becomes:

min
a∈Rd

F (a) = min
a∈Rd
||R̂(Ŵ + Ûa)||2 (2.100)

So, the optimization includes the residual R̂ as a reduced black-box function instead of the
full residual R. From there, it is easy to see that the hyperreduction is directly acting on
the computationally expensive evaluation of the nonlinear residual. As a result, the overall
acceleration potential is based on the reduced effort for the reconstruction of the states
Ŵ, the evaluation of the objective function / residual and the computations in the LM
algorithm. Since the effort for the reconstruction of the states and the residual evaluation
is roughly O(n), the time savings by application of the consistent hyperreduction should
be proportional to the hyperreduction level.
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Figure 2.3: Schematic representation of the prediction phase of the LSQ-ROM.
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Chapter 3

Implementation and validation
approaches
The subsequent chapter shall give some insights into the framework the LSQ-ROM is
operating in, as the method is based on independent software products, which are coupled
through a HPC framework. After presenting the basic structure of this environment, the
next sections explain how the LSQ-ROM is implemented in the DLR-Surrogate Modeling
for Aero Data Toolbox in Python (SMARTy) and coupled with the CODA flowsolver,
which is currently under development at Airbus, DLR and ONERA. From that, a detailed
description of the implemented hyperreduction is given with its corresponding changes in
SMARTy and CODA. To validate and investigate the new hyperreduction within the
LSQ-ROM method coupled with CODA, multiple aerodynamic test cases with different
geometries, in various flow regimes are explored. The last section presents these test cases
and summarizes the most important settings for the generation of the training data and
the reduced order model; results are presented in the following chapter (chapter 4).

3.1 Software tools and simulation framework

3.1.1 SMARTy

The DLR-Surrogate Modeling for Aero Data Toolbox in Python is a software package
developed at DLR to make data-driven techniques like regression models or dimensional-
ity reduction techniques available for aerodynamic tasks. However, as purely data-driven
methods can be applied rather independently from their context, SMARTy can also be
utilized in other areas like thermodynamics or propulsion modeling [57]. SMARTy is
programmed in Python and follows the approach of an Application Programming Inter-
face (API). Its modular structure allows to compose large and complex models from its
various building blocks such as design of experiments, surrogate modeling, dimensionality
reduction, flowsolver access and optimization algorithms. To increase the performance for
expensive computations, these tasks are implemented in Cython, which can be addition-
ally parallelized through OpenMP. A special feature of SMARTy is its close linkage to
the CFD solver TAU and CODA, which are presented in the upcoming sections together
with the framework that couples all the LSQ-ROM tools. The available interface be-
tween SMARTy and CFD solvers simplifies the implementation of physics-based methods
like intrusive reduced order modeling (e.g. the LSQ-ROM used in this thesis) and the
application of data-driven turbulence modeling to the physical equations of CFD.
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3.1.2 CFD solver: TAU and CODA

TAU is a CFD solver, whose development already started in the 90s at DLR in the form
of a modern software system for the computation of viscous and inviscid flows for steady
and unsteady cases [18]. TAU can cover subsonic to hypersonic flows around complex
geometries on hybrid unstructured grids. Although its main use case is the prediction
of flows around complex aircraft-type configurations, many extensions emerged from re-
search and industry contributions [18]. TAU implements a Finite-Volume scheme with a
node-based approach for the storage of the flow variables. Various different upwind and
central schemes are available for the discretization of the fluxes from Euler, Navier-Stokes
or RANS equations. For the solution of the RANS equations, several turbulence models
are implemented like the one equation model of Spalart and Allmaras as well as Reynolds
stress models. The solution techniques for steady state problems are explicit Runge-Kutta
schemes or low-cost implicit schemes, which both can be accelerated by available tech-
niques like local time stepping or multigrid [29]. TAU features many further capabilities
like mesh deformation and adaption or transition modeling, which are also described in
[18] and documented in [29]. With over twenty years of active usage both in research and
industry, TAU is highly validated within a wide range of application fields.
However, during the years more sophisticated solution algorithms and discretization ap-
proaches emerged, which can not be implemented straightforward into TAU’s architecture.
Therefore, a new CFD solver named “CFD for ONERA, DLR and AIRBUS” (CODA)
is currently under development [75]. CODA is the computational fluid dynamics (CFD)
software being developed as part of a collaboration between the French Aerospace Lab
ONERA, the German Aerospace Center (DLR), Airbus, and their European research
partners. CODA is jointly owned by ONERA, DLR and Airbus. In contrast to TAU,
CODA is designed to natively operate in the FlowSimulator environment (section 3.1.3),
whereas TAU is originally a standalone software. Some of the main development goals
of CODA are new higher order discretization approaches like Discontinuous Galerkin
Methods together with implicit solution algorithms and advanced multigrid methods [28].
Besides such methods which are still part of active research, CODA already features the
established Finite-Volume discretization with a cell-centered scheme for the solution of
the Navier-Stokes equations and its most common derivatives. Upwind schemes as well as
central schemes are available for the discretization of the fluxes. Further alterations focus
on structural and algorithmic adaptions to improve the performance on high performance
computing (HPC) clusters with their parallel architecture. Although CODA is still under
active development, its core functionalities are already available, validated and used for
this work.

3.1.3 FlowSimulator environment

Since the LSQ-ROM method is mainly implemented in the SMARTy package, the overall
implementation relies on an additional CFD solver like TAU or CODA. Such a coupling
of different software tools, which normally introduce their own software architecture and
interface, requires an efficient and aligned framework. The LSQ-ROM is, as a method
of SMARTy, part of the FlowSimuluator environment. The FlowSimuluator provides
an open framework for the integration of various software tools with the main focus on
multi-disciplinary simulations, e.g. for MDAO of an aircraft [46]. In such application
cases, fully evolved software tools from various areas of the aircraft design process are
required, therefore creating the need for a computational infrustructure able to effectively
connect these tools to each other. The FlowSimuluator, developed by Airbus and several
other partners like DLR, tackles these tasks [42]. Figure 3.1 gives a brief overview of the
architecture of the FlowSimuluator, which is based on the FlowSimulator DataManager
(FSDM) as a common data handler for the tools linked through this framework. Tools
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Figure 3.1: The FlowSimluator environment.

like SMARTy are part of the plug-in layer, that forms a common environment for the
integration of applications. Besides SMARTy and the CFD solvers TAU and CODA,
various other tools are available or can be potentially integrated in the plug-in layer; e.g.
a Computational Structural Mechanics (CSM) solver and additional post processing tools
could be introduced in case of an aeroelastic problem. Of particular value for this work
are plug-ins to manipulate meshes and to import and export the data stored for these
meshes to usual file formats. All the different plug-ins can be steered via the control
layer by using e.g python control scripts, whereas their interactions are enabled either
through the python API of the FSDM or directly through the C++ core. In order to
support parallel applications, the FSDM is fully compatible with highly parallel cluster
architectures, which are normally distributed memory systems [46].
SMARTy offers in-memory views of data-structures in the FSDM to reduce the number
of unnecessary copy operations, thereby improving the efficiency while relying on other
software tools connected to the FSDM [57]. Therefore, the data structures can be easily
accessed in other tools like a CFD-solver. Within the scope of the LSQ-ROM method,
the control is mostly done from the SMARTy side as it provides problem adapted control
methods for the CFD solver. Some of these methods are part of the implementations
carried out for the investigations of this thesis, and they are described in the next section.

3.2 Implementations within SMARTy and CODA

The main part of this section describes the idea and the basic structure of the implemented
hyperreduction for the LSQ-ROM method in SMARTy. So far, the LSQ-ROM was only
coupled to TAU. Therefore, additional implementations are required to enable the usage
of CODA for the LSQ-ROM. Hence, some remarks concerning these changes are given
in advance. Finally, the adaptions to the preprocessor of CODA and to the LSQ-ROM
in SMARTy are summarized. These adaptions become necessary because of the chosen
hyperreduction approach.
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Figure 3.2: CODA class diagram.

3.2.1 LSQ-ROM method with CODA as the flow solver

The implementations for the coupling of the LSQ-ROM with CODA can draw on an
already existing rudimentary interface class to CODA. In order to guarantee the inter-
changeability of the two CFD solvers (TAU and CODA) within SMARTy functionalities,
the two corresponding SMARTy modules have to share the same fundamental structure
for public Python methods. In particular, the following functionalities are added to the
existing CODA module in SMARTy in order to successfully reach the final objective of
this thesis research:

• computation of the residual in CODA based on a snapshot, which holds an arbitrary
field solution and corresponds to the mesh / spatial discretization in CODA

• manipulation of the residual vector obtained from CODA (e.g normalization, selec-
tion of specific entries, ...)

• evaluation of a CODA flow solution with respect to physical meaningful values (e.g
non-negative density)

• additional helper methods
A simplified class diagram of the CODA interface class in SMARTy can be seen in fig. 3.2
where the new functionalities introduced during the thesis work are in bold characters.
Together with some code restructuring, these changes enable the application of the LSQ-
ROM method coupled with the flow solver CODA. This code state is used for the val-
idation and comparison of the LSQ-ROM based on CODA with the already existing
LSQ-ROM based on TAU.
It is important to mention that the application is restricted to steady state simulations
as the unsteady LSQ-ROM would require further adaptions, which are beyond the scope
of this work. Moreover, it is not clear if or to which extend it is applicable to CODA
utilizing a multistage Runge-Kutta scheme for the computation of unsteady simulations
instead of the Backwards-Difference scheme applied in TAU.
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3.2.2 Hyperreduction for the LSQ-ROM with CODA

As it is stated in the introduction (cf. section 1.2), the hyperreduction technique in the
LSQ-ROM was already investigated for unsteady aerodynamic problems in [3] and [50].
These investigations showed a significant acceleration of the ROM by application of some
sort of hyperreduction, without causing a perceivable deterioration in the prediction ac-
curacy when the reduction levels are appropriately chosen. However, the solver TAU
that has been used in the previous LSQ-ROM applications does not have the capability
to compute the residual on a subset of entries or cells, and therefore the reduction of
the residual was performed after its full evaluation. Therefore the main effort, which is
the actual evaluation of the nonlinear residual, is not reduced. As a consequence, all
the time savings are solely due to a reduction of the optimization problem, which then
operates on a smaller subset of the residual. Giving up the main acceleration potential
in form of a residual evaluation on a smaller subset, a true hyperreduction is seeked,
that is independent of the total problem size O(n). With CODA it becomes possible to
implement a residual evaluation that is just performed on a subset of cells. The subset is
initially identified by means of one of the hyperreduction methods previously described
in section 2.4 and further processed to obtain a reduced mesh allowing the evaluation
of a reduced residual. Given the aforementioned promising results with TAU and the
estimations given in section 2.6.2, a further acceleration of the LSQ-ROM is expected by
such a hyperreduction implementation.
The basic idea behind the new implemented hyperreduction is to compute the reduced
residual by reducing the mesh and computing the full residual on this reduced mesh. This
new mesh is called a submesh from here on as it is based on a subset of cells (indices) of the
original mesh. While the original mesh is used to generate the training data and to obtain
the entire solution after the optimization process for the POD coefficients, the submesh is
generated purely for the residual evaluation. One of the reasons for this approach is the
reduction of the interference with CODA to a minimum. This is because the submesh can
be constructed outside of CODA in the FlowSimulator environment from where it can
be passed to CODA as an input for the subsequent transfer into a computational mesh.
This is achieved in a preprocessing step, which is fairly independent from the solution
algorithms of CODA. So any changes do not effect the overall algorithm for the residual
evaluation, which is favourable because the loops for the evaluation of the residual are
highly optimized as they play a crucial role for the overall performance of a CFD solver.
Other conceivable approaches for the hyperreduction, that directly interfere in these loops
e.g to evaluate only the fluxes for the selected residuals, are likely to significantly deterio-
rate the overall performance, which could offset the benefits from a reduced number of flux
evaluations. A further advantage of the mesh-based approach is that the parallelization
through mesh partitioning is unaffected. The domain defined by the submesh can still be
split into subdomains and distributed to multiple processes, although one has to expect a
loss in parallelization efficiency due to the size of the mesh and its separation into various
unconnected parts. And finally, all the operations for the extraction of a submesh can be
executed independently from the CFD solver, in the future even purely in the FSDM, as
the mesh is already stored on the C++ level of the FSDM.
The procedure to extract such a submesh is sketched in fig. 3.3, which gives a schematic
overview of the process. The whole extraction process is defined in a method of the
Extractor-class, that contains e.g. helper methods and methods to visualize the extracted
meshes. Required information for the extraction are the base mesh, the definitions of
the boundary conditions JBC , the size of the residual stencil pd resulting from the spatial
discretization, and the set of selected indices Js (corresponding to volume elements or
residual entries). The boundary conditions are defined by a set of marker values, which
uniquely identify for every boundary face of the base mesh the imposed boundary con-
dition at this face. So, when having a face-based representation of the original mesh at
hand, the next step is to gather all faces belonging to a specific marker and therefore rep-
resenting this boundary condition. As the second input from the CFD solver, the stencil,
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Figure 3.3: Submesh extraction for the hyperreduction of the LSQ-ROM.
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which is determined by the spatial discretization of the solver (cf. section 2.1), defines the
neighbourhood of every cell identified by the indices Js. This neighbourhood has to be
included in addition to Js, since the residuals rely on the state values of their neighbours.
The indices Js are selected by the DEIM and MPE as described in section 2.4.
With the described inputs, the extraction process starts by obtaining the face-based rep-
resentation of the original mesh. This face-based mesh is provided by the FSDM and
includes every face of the mesh. The faces are defined by the indices of the cells, which
share this face, and a value for the marker in case of a face at a boundary. From this, it is
possible to retain the direct neighbours of every cell, which allows to recursively identify
arbitrary stencil sizes for every cell. In addition to the selected cells from Js, it is also
possible to append cells at certain boundaries. These boundary cells are not chosen by
the selected hyperreduction methods, but by a user input, that identifies the type of the
boundary condition and the maximum amount of cells that are added for the specific
boundary condition. The reason for this is elaborated in section 2.4.3. These cells and
their stencils are added to Js. Since the stencils are already defined by pd, the next step
is to add all cells included in Np(ji) with ji ∈ Js to the set of cells Jp, that identifies the
submesh. Jp is then utilized to extract the corresponding geometrical information defining
the submesh. The submesh still needs some preparation steps like the partitioning, which
are executed right after its extraction in order to pass it directly to CODA.
To illustrate a submesh resulting from this procedure, fig. 3.4 displays three different
sections of a submesh, generated from a mesh around a NLR7301 airfoil with 100 primarily
selected cells and all farfield cells in addition. The cells are coloured depending on the
neighbourhood they are belonging to. All the green coloured cells i ∈ Js are the ones
that are selected via DEIM and MPE or selected because they consist of at least one
boundary face. Yellow cells instead are direct neighbours of green ones, whereas orange
cells belong to the neighbours of neighbours Js. In (b) the submesh can be seen at
the leading edge of the airfoil including several stencils without any connection to the
rest of the mesh. A closer view of (b) is shown in (c) illustrating some stencils which are
connected through cells belonging to multiple neighbourhoods. The cells of section (d) are
included by the optional addition of boundary cells, which are in this example all the cells
(and their neighbourhoods) adjoint to the farfield of the flow domain. When emphasizing
that solely green cells are referring to the hyperreduced residual, it becomes clear that
the effort for the residual computation is not only driven by the number of selected cells,
but also by the stencils defined by the numerical schemes and the cell type. In a 2D case
with a common second order scheme, a hexaeder cell implies 12 additional cells and in a
3D case even 24. However, because of the properties of the selection methods, it is likely
that the submesh consists of clusters of cells reducing the number of pure "stencil cells".
Furthermore, as the residual is computed by loop over all faces, the crucial parameter for
a reduced effort is the number of faces in the submesh compared to the number in the
original mesh. Another good estimate for the acceleration potential of a submesh residual
computation is therefore the ratio of the total number of faces in both meshes. For the
applied numerical schemes, it is possible to further reduce the effort by neglecting all outer
faces of the cells of the outer most neighbourhood. However, the described approach still
has some overhead, because the mesh still includes faces that are not necessary for the
correct evaluation of the residuals from Js. All the faces of the nearest neighbours that
are not also a face of a cell from Js, are still part of the flux evaluation, although these
terms are not required. These faces are solely required for the construction of gradients
or laplacians.

Preprocessor changes in CODA Before transferring a mesh into its CFD solver specific
representation as a computational mesh, every solver should check if the passed mesh
forms a consistent discretization of the spatial domain. As CODA also includes such
consistency checks, it is not possible to directly compute a residual on a submesh like
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Figure 3.4: Submesh generated from a base mesh for the NLR7301 airfoil.
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it is presented in the prior section. This is due to cells like in fig. 3.4 (a), that are not
connected to either other cells or a boundary. The cells of the outer neighbourhood
consist of faces, which are lacking a second cell as these cells were originally inner faces.
Therefore, it is essential to ensure that such faces are just skipped when the faces for
the face-based computational mesh are collected. This adaption together with turning
off some consistency checks (e.g. checks for the correct number of faces for every cell)
are sufficient to let CODA successfully operate on a submesh. As a result, the residual
computation on the submesh provides correct solutions only for the primarily selected
cells Js and JBC . Residual values from any other cell are incorrect as they are missing
information from neighbouring cells or even some of their faces and their corresponding
fluxes. Specific to the employed turbulence model of Spalart and Allmaras, which relies
on the distance to the nearest solid wall for every cell, the changes involved also a security
check, that these distances are imported from the values of the original mesh. As the
submesh could lack some faces to a wall, a recomputation for the submesh would result
in inaccurate values for the wall distance.

Adaptations of the LSQ-ROM implementation The approach to implement the hy-
perreduction based on a submesh requires modifications to the implementations of the
LSQ-ROM method. This paragraph identifies the most important issues for an efficient
implementation and it describes how these tasks are solved within this work. Nevertheless,
future developments could tackle these issues in a more structured way. First, one has
to organize the switching between the submesh and the mesh. The full mesh is required
during the offline stage of the LSQ-ROM method and when computing the full solution
based on the optimized POD coefficients, whereas the submesh is required in between
these steps during the LM algorithm. However, this can be easily done on the control
level by a method that repeats all preparation steps for the usage of the mesh in the CFD
solver and the LSQ-ROM. The second issue is the efficient determination of the solution
for the submesh. Referring to fig. 2.3, it can be seen that every updated set of POD
coefficients a leads to a recomputation of the state W. In the POD basis U, the effort
for this is of O(n) and the obtained state still needs to be restricted to the intersection of
submesh and original mesh. Because of that, it is more efficient to reconstruct the state
for the submesh directly from a suitable POD base. A possible solution to this is to store
a second POD, which is just a masked copy of the original POD. The masked basis Û,
which contains only entries corresponding to the s cells in the submesh, allows to compute
the new state Ŵ at costs O(s). The last challenge in this context is the identification
of the valid residuals from the submesh residual vector. For that, the indices of the cells
referring to Js are needed, which can obtained e.g. from the submesh extraction process.
Only these residual entries are relevant for the evaluation of the objective function. A
praticable solution is a simple indexing of the full submesh residual vector.
Future extensions could include a recomputation of the hyperreduction indices during
the prediction, which would also lead to a new submesh extraction. Since the submesh
extraction is in almost every case faster than the selection of the indices, the extraction
should not be the critical part performance-wise.

3.3 Validation and investigation test cases

A brief presentation of the meshes, the residual discretization and the settings for the
LSQ-ROM is given in this section. These settings are chosen for all the investigations as
long as it is not stated otherwise. Especially, the information about the discretization in
the CFD solvers are kept general without going to much into the wide field of discretization
approaches in CFD.
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Figure 3.5: Mesh and geometry of the NLR7301 airfoil.

3.3.1 Meshes for the application in the CFD solver

This paragraph presents the meshes used to obtain the full CFD solutions and to perform
the residual computations. They also constitute the base mesh for the construction of a
submesh resulting from the hyperreduction. When comparing results of the LSQ-ROM
based on different flow solvers like CODA and TAU, it is essential to keep in mind that
the same mesh leads to different computational meshes for these solvers. This is due to
the different approaches on how to form the finite volumes. While CODA follows a cell-
centered approach, TAU uses a node-based approach. Therefore, the usage of the same
mesh leads to different discretizations even when using the same numerical schemes.

2D airfoil: NLR7301 The NLR7301 airfoil is chosen for investigations in the subsonic
and transonic flow regime. The airfoil has become a common case for numerical investiga-
tions of CFD solvers and was already considered in prior investigations of the LSQ-ROM
method. Its geometry and the mesh used for the CFD solver are shown in fig. 3.5. In
(a) the whole airfoil is given, while (b) presents a closer view of the leading edge and the
hexahedron based mesh near the airfoil. The hexahedrons form a O-type mesh around
the entire airfoil, which consists of highly stretched cells to resolve the gradients resulting
from the boundary layer. From (c) one can see the trailing edge, which is not sharp and
chopped instead. Besides the hexahedrons near the airfoil, the mesh consists purely of
prisms. In total, there are 17313 hexahedron cells and 23609 prismatic cells. Assuming
five unknowns per cell, like it is the case for the RANS equations with a one-equation
turbulence model, the flow problem comprises 204610 degrees of freedom. However, these
assertions are only correct for the cell-centered approach pursued in CODA. In TAU,
whose computational grid is node-based, the same mesh results in a flow problem with
147205 unknowns as the mesh consists only of 29441 nodes.
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Figure 3.6: Mesh and geometry of the RAE2822 airfoil.

2D airfoil: RAE2822 Besides the NLR7301, the well-known airfoil RAE2822 is part of
the investigations. It has been extensively studied in experimental investigations [21] and
numerical investigations in the field of CFD [58] [70]. In particular, the mesh utilized
in this works was generated and used for the studies in [70]. It constitutes a medium
resolved mesh out of a sequence of successively refined grids. Several sections of this mesh
are shown in fig. 3.6. Section (a) displays the hexahedron based mesh around the airfoil,
while (b) and (c) exhibit closer views of the mesh at the leading edge and the trailing
edge respectively. The hexahedrons in the proximity of the airfoil are highly stretched for
a good resolution of the boundary layer. Resulting from the structured mesh generation,
the cells behind the sharp trailing edge also embody high anisotropies. In total, the
mesh consists of 20480 hexahedrons. Therefore, the flow problem modelled by the RANS
equations plus a one equation turbulence model has a total number of unknowns of 102400
in case of the cell-centered approach in CODA. For the node-based approach in TAU, the
flow is described by 104160 degrees of freedom as the mesh is composed by 20832 nodes.

3D airplane configuration: NASA-CRM In order to examine the implemented hyper-
reduction for an industrial relevant 3D case, the NASA common research model (CRM)
serves as a test case for a generic configuration of a civil transport plane. The CRM is
an established geometry for numerical investigations of CFD codes [49]. It was part of
several Drag Prediction Workshops [20], so that many results and adapted meshes can be
found in [20]. The mesh, that is used in this work and shown in fig. 3.7, also originates
from one of the workshops. The full geometry, as given in (a) together with the mesh,
resembles fuselage and wing of current transonic aircraft configurations. Since the con-
figuration is assumed to be symmetric, only one half of the configuration is part of the
discretized flow domain in the shape of a hemisphere. A detailed view of the mesh around
the nose of the CRM is given in (b), whereas (c) displays the slice through the mesh
around the swept wing of the configuration. The mesh is purely based on hexahedrons,
which are stretched around the solid CRM body to increase the number of cells in the
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Figure 3.7: Mesh and geometry of the NASA-CRM configuration.

area of boundary layers. Summed up, the relatively coarse mesh for the CRM consists of
638976 cells. Modelling the flow through the RANS equations and the turbulence model
of Spalart and Allmaras leads to a problem with 3833856 unknowns solved by CODA.
This test case is not investigated with TAU.

3.3.2 Settings for the application of the LSQ-ROM

The section gives a brief description of the settings and input parameters for the CFD
solver and the LSQ-ROM and which options are chosen for the investigations in chap-
ter 4.

Discretization schemes in the CFD solvers

TAU and CODA have different native discretization schemes. While TAU’s main dis-
cretization scheme for the discretization of the convective fluxes is a central scheme [58],
CODA’s development started with the famous upwind Roe scheme [51]. Although the
central scheme became recently available also in CODA, its performance in CODA can
not compete with the chosen Roe scheme. That is why different schemes are applied for
both solver within this thesis. The Roe scheme in CODA is based on a reconstruction of
states to obtain a discretization scheme that is of second order. As this reconstruction
process can lead to instabilities e.g at strong discontinuities, a limiter is applied for the
transonic flow cases [77]. Additionally, a positivity preservation of quantities, that need
to stay in the physical meaningful range, is utilized to increase the robustness of solution
process. The computation of the gradients is done by the Green-Gauss approach [34]. In
TAU, a central schemes with scalar dissipation is applied, which is automatically a second
order scheme and does not need any further reconstruction of states. Stabilization of this
second order scheme is accomplished with a pressure switch [58]. The gradients are also
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reconstructed through application of the Green-Gauss approach. It is mentionable that
the gradient computation in TAU and CODA is different, although the used approach is
the same. Because of the different ways the finite volumes are formed in TAU and CODA,
the gradients and every numerical scheme relying on the volumes leads to varying results
between the solvers.

LSQ-ROM settings

Based on the CFD solutions as the snapshot data, the POD basis is computed by an
eigenvalue decomposition as described in section 2.2. Before that, the snapshots are cen-
tered around their mean. This reduced basis is then utilized to select the hyperreduction
indices via DEIM and MPE algorithms presented in section 2.4. The algorithm is stopped
as soon as the predefined number of indices is reached. The number of selected indices
and the number of included POD modes define the reduction levels for the model and are
often part of parameter variations for the investigations in chapter 4. A higher number of
settings need to be chosen for the online stage of the LSQ-ROM. For the estimation of the
start coefficients for the LM algorithm, a Thin Plate Spline interpolation is chosen (cf. sec-
tion 2.3), which is augmented by an additional constant trend function and scaling of the
control points to the unit hypercube. The following optimization of the coefficients relies
on the LM algorithm as outlined in section 2.5. For that, the full Jacobian is constructed
by a forward finite difference once at the beginning of the optimization and then updated
via Broyden update, whose approximation quality is improved by a gradient computation
based on finite difference. The residuals are scaled by the square root of the cell volumes
to properly adjust the weighting of the residuals, whose magnitude is depending on the
cell size. The native scaling of the residuals is the full cell volume, however, this scaling
can lead the optimization process towards solutions that are not in line with the farfield
boundary condition. The reason for this is that common meshes consists of way more
cells around the airfoil than at the farfield, so that the summed residual is dominated
by entries corresponding to cells far from the exterior state. Therefore, violations of the
imposed farfield conditions can be counterbalanced by smaller residual reductions at the
airfoil. Additional options like the selection of specific residual variables for the evalu-
ation of the objective function value and the scaling of it with its initial value are not
considered, but could serve as a starting point for further tuning of the prediction quality
of the LSQ-ROM.

3.3.3 Prediction error metrics

The accuracy of the predictions with the LSQ-ROM are assessed based on different error
metrics depending on the desired level of detail for the error analysis. A highly detailed
view on the error of a prediction can be obtained, when computing the relative error
field for a certain variable z ∈ Rn e.g the pressure. For that, the difference between the
predicted solution of the LSQ-ROM and the reference CFD solution is normalized by the
values of the reference solution. So, the relative error is defined by:

relative error of z = 100 · zLSQ−ROM − zCFD

zCFD
(3.1)

However, in some cases a scalar measure for the assessment of the prediction accuracy is
required to examine and compare the accuracy of a larger number of predictions. There-
fore, to obtain a quick overview of the prediction quality, it is possible to utilize the
coefficient of determination (CoD) as an integral measure for the agreement of the pre-
dicted solution with the reference solution of the FOM. The coefficient of determination
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is applied to every value in the flow field for the variable z, so it can be computed by:

CoD = 1−
∑n

i=1 (zi,CFD − zi,pred)2∑n
i=1 (zi,CFD − z)2 . (3.2)

The higher the agreement is between the prediction and the reference solution the closer
the coefficient of determination is to 1.0. For predictions deviating from the reference
solution, the coefficient of determination is decreasing towards 0; for really high errors
eventually even below 0. However, as the predictions with the LSQ-ROM are normally
small for major parts of the flow field, the coefficient of determination usually exhibits
values very close to one. Because of that, a second integral error metric is used in some
cases. It is defined by root of the sum over all squared differences between the predicted
quantity z and the value from the CFD solution and termed as RSSE.

RSSE =
√√√√ n∑

i=1
(zi − zi,CFD)2 (3.3)

A perfect agreement between the two solutions results in RSSE = 0.0, while any deviation
between them increases the value for this error metric.
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Chapter 4

Results
The depiction of the investigation results is split into two sections. The first part presents
the results of a validation study for the implementation that enabled the application
of the LSQ-ROM method together with the new flowsolver CODA without considering
the hyperreduction. In particular, results from the LSQ-ROM coupled with TAU, which
were investigated in relatively high detail, serve as comparison for the LSQ-ROM with
CODA. Although both CFD solvers rely on different discretizations, outputs from the
overall model are expected to lead to comparable results. The investigations for this
comparison include two different 2D cases, one in a subsonic flow regime and one in the
transonic regime. The same cases are further examined in the second part of this chapter,
which focuses on the findings for the hyperreduction, including a comparison of the former
hyperreduction implementation and the new consistent implementation. Besides the 2D
cases, a 3D test case is investigated to assess the performance of the hyperreduction for
relevant industrial configurations.

4.1 Validation of the LSQ-ROM coupled with CODA

The comparison of the results of the LSQ-ROM coupled with TAU or CODA is first
carried out for the subsonic flow around the NLR7301 airfoil and then for the transonic
flow around the RAE2822 airfoil. The LSQ-ROM prediction of a flow field is conducted for
both cases and both CFD solvers, including the full offline stage required to generate the
training data. The settings for the generation of the training snapshots are summarized
for both solvers together with the settings for the optimizer in section 3.3.2.

4.1.1 NLR7301: subsonic flow

The starting point of the LSQ-ROM is the definition of the design space, which is spanned
by the parameters Mach number and the angle of attack (alpha). The ranges for these
parameters are:

Mach = [0.2, 0.4] angle of attack = [−4◦, 8◦]
Within the given ranges, the training points ψi are defined by a two-dimensional Halton
sequence that leads to a pseudo-random and deterministic distribution in the parameter
space. The locations of the training points are illustrated in fig. 4.1 as blue dots. The red
dot indicates the arbitrary test case at the conditions

Mach = 0.25, angle of attack = 6◦

where a prediction of the flow is performed with the LSQ-ROM coupled with both TAU
and CODA. The CFD solutions are based on the mesh presented in section 3.3.1 and are
computed for a Reynolds number of 1.7·106. After computing the set of training snapshots
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Figure 4.1: Design space for the prediction of the subsonic flow around the NLR7301.

both for TAU and CODA and defining the related POD subspaces, the POD modes can
be visualized to analyze the information content represented by the most relevant modes.
A comparison of the mean of all snapshots and the two most relevant POD modes are
given in fig. 4.2. The left figures correspond to modes of the snapshots generated with
CODA, while the right ones refer to the TAU solutions. Three additional POD modes
are displayed in fig. 4.3. While the first row of fig. 4.2 shows the mean value of the
density fields of the training snapshots, all the further subfigures in fig. 4.2 and fig. 4.3
illustrate POD modes, which are centered around the mean. The mean density fields
are quite similar for the snapshots from CODA and TAU. The first three modes, which
are also the three modes with the highest information content, capture primarily density
variations around the nose at the airfoil. This is because of the varying location of the
stagnation point for the snapshots with different angles of attack. When comparing the
modes between the two data sets from CODA (left) and TAU (right), it is possible to see
that the first two modes are in good agreement, while the modes with a lower information
content (3, 4 and 5) have some differences. However, this is not surprising as these modes
represent less important flow features and the flow solutions from CODA and TAU are not
perfectly equal due to their differing approaches for the spatial discretization. Because of
that, the information content in the training data differs to a limited extent and therefore
also its representation in a POD basis.
An overview of the varying information content of the POD modes is shown in fig. 4.4
where the relative information content of the POD basis is plotted as a function of different
number of modes included in the model. For both POD models, the RIC shows a very
similar trend, although the differences become larger with increasing RIC. This meets
the expectation resulting from the comparison of some of the POD modes (e.g. in fig. 4.2),
which feature similar characteristics and should therefore refer to similar eigenvalues, too.
It is remarkable that only 5 POD modes are necessary to construct a model that contains
more than 99.99% of the information content of the total POD basis. The fact that a
small number of modes is sufficient to capture a major part of the flow phenomena within
the design space is the main motivation that led to the development of POD-based ROMs.
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Figure 4.2: NLR7301: Mean and POD modes of Density from CODA (left) and TAU
(right) solutions.
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Figure 4.3: NLR7301: Three POD modes of Density from CODA (left) and TAU (right)
solutions.
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Figure 4.4: NLR7301: Relative information content of POD bases.

Prediction of the test point Figure 4.5 shows the Mach flow field of the two reference
CFD solutions for the test case (Mach = 0.25, angle of attack = 6◦) obtained with CODA
and TAU. Both flow fields depict reasonable characteristics with a stagnation point at the
lower side of the airfoil around the nose and the expected suction and pressure side. The
two solutions are in good agreement to each other showing only minor differences for the
location of the iso-Mach lines. Applying the LSQ-ROM with a compression rate of 0.05 for
the prediction of this test case results in the solution for the Mach field shown in fig. 4.6.
Although the illustrated solution is solely based on the mean value and two additional
POD modes, the overall flow field is already well approximated, when comparing it to
the corresponding reference solution. Hence, subsonic flow, at least for this test case, is
suited to be approximated in a low-dimensional subspace spanned by a small number of
POD modes.
To quantify the deviations between predicted LSQ-ROM solutions and reference CFD
solutions, fig. 4.7 presents the relative error between these solutions, which is defined
according to eq. (3.1). The relative error in pressure is given in fig. 4.7 side by side for
LSQ-ROM solutions based on CODA (a, c and e) and TAU (b, d and f) for different
numbers of POD modes. For an approximation with two modes (a and b) both solutions
depict errors which are below 5%. The highest deviations for the pressure are located
at the leading edge of the airfoil, where the flow field has the highest gradients and is
strongly influenced by the input parameter α. This pattern can still be seen for the
solution based on ten POD modes (c and d). Moreover, the addition of POD modes
improves the overall accuracy and decreases the maximum errors below 0.1% and even
further for the solutions including all POD modes (e and f). The comparison of these
results with respect to the used CFD solver shows similar trends for the accuracy of the
predicted solutions and its underlying POD basis. Besides the accuracy, the potential
time savings are of interest when comparing the LSQ-ROM coupled with the new CFD
solver CODA. Figure4.8 reports the plot of the relative prediction time as a function
of the compression rate, where the relative prediction time is the time needed for the
online stage of the LSQ-ROM normalized by the computational time of the reference
CFD solution. Furthermore, fig. 4.8 shows also the influence of the compression rate on
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(a) CODA reference solution (b) TAU reference solution

Figure 4.5: NLR7301: CFD reference solutions at M = 0.25 and α = 6◦.

(a) LSQ-ROM solution with CODA (b) LSQ-ROM solution with TAU

Figure 4.6: NLR7301: LSQ-ROM solutions for M = 0.25 and α = 6◦ and a compression
rate of 0.05.
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Figure 4.7: NLR7301: Relative error in pressure for a predicted solution with 2, 10 and
39 POD modes.
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(a) LSQ-ROM with CODA
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(b) LSQ-ROM with TAU

Figure 4.8: NLR7301: Relative prediction time and objective function value over com-
pression rate.

the final objective function value of the residual minimization process. From fig. 4.8 it can
be seen that the prediction time generally increases with a higher compression rate, which
is expected as a higher compression rate corresponds to higher number of POD modes
resulting in a increased effort per iteration in the LM algorithm. Moreover, the effort
for the construction of the Jacobian increases and more iterations are usually required
to converge to a local minimum because of the larger problem dimensionality. Besides
some outliers due to varying number of iterations in the optimization process, both LSQ-
ROM results confirm this trend. In addition, a comparison between the values of the
relative prediction time for the LSQ-ROM with CODA and TAU seems to indicate that
the online stage relying on TAU is significantly faster than the counterpart with CODA.
This result is mainly caused by the fact that the computation of the reference solution
with TAU took almost 2.5 times more time than with CODA (the computational time for
reference CFD solution is at the denominator of the relative prediction time). It is also
important to report that the residual computation in TAU is based on a relatively low
effort central scheme, while the residual computation in CODA utilizes a more expensive
upwind scheme.
The final observation about fig. 4.8 is that the ojective function value, which is the summed
squared residual, is monotonically decreasing for an increasing compression rate. This is
the expected behaviour for the optimizer since considering more POD modes leads to
extra degrees of freedom for the approximation of the solution, and therefore potentially
to a solution that further decreases the residual.

4.1.2 RAE2822: transonic flow

The same analyses presented for the subsonic case are completed also for the prediction of
transonic flows around the 2D airfoil RAE2822. The airfoil geometry and the correspond-
ing mesh for its discretization are described in section 3.3.1. In contrast to the subsonic
regime, the transonic regime is influenced by strong nonlinear flow phenomena like com-
pression shocks that need to be captured by the solutions of the LSQ-ROM. Therefore,
the next results prove that the LSQ-ROM coupled with CODA behaves similar to the
LSQ-ROM with TAU in the presence of strong nonlinearities. First of all, the design
space for the training points is defined by a Halton sequence for the parameters Mach
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Figure 4.9: Design space for the prediction of the transonic flow around the RAE2822.

number and angle of attack in the ranges:

Mach = [0.7, 0.8] angle of attack = [−2◦, 6◦]

The total number of points is 60, and their location in the two dimensional design space
are illustrated in fig. 4.9. Besides the blue colored training points, the test point at

Mach = 0.75 angle of attack = 3.0◦

is represented in the figure as a red dot. For all points, a Reynolds number of 6.5 · 106 is
chosen and the resulting snapshots are used to perform a POD, whose modes are displayed
in fig. 4.10 and fig. 4.11 that compare side by side the mean and the first modes resulting
from the CODA (left) and the TAU (right) snapshots. The mean density fields show again
a good agreement featuring low density at the upper suction side and higher densities at
the nose near the stagnation point and at the lower pressure side of the airfoil. The
first POD mode features two relatively large density fluctuations, which are a negative
one at the leading upper side and a positive one at the leading lower side. All further
modes possess strong fluctuations at the rear upper side, where a shock is located for
a large majority of the training points. Because the position and characteristic of this
shock is quite sensitive to both Mach number and angle of attack, the POD modes have
to comprise information of this important flow feature. In addition, the shock strength
and location does not linearly dependent on global parameters such a the angle of attack.
However, with focus on the comparison between the results based on CODA and TAU,
it can be seen that the first five POD modes include reasonable flow characteristics and
their basic patterns match well. This aspect is particularly important when considering
the different discretization schemes utilized in CODA and TAU, which should lead to
deviations in the flow solutions particularly in regions of large gradients. The amount
of information captured by a specific number of POD modes is illustrated by the relative
information content in fig. 4.12 for both POD bases. First, its obvious to see that an
incorporation of additional modes increases the RIC of the model. This increase is very
similar for the two bases, indicating a good agreement of the information included in
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Figure 4.10: RAE2822: Mean and first two POD modes of Density from CODA (left)
and TAU (right) solutions.
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Figure 4.11: RAE2822: Third to fifth POD mode of Density from CODA (left) and
TAU (right) solutions.
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Figure 4.12: RAE2822: Relative information content of POD bases.

every mode. When comparing the values of the RIC with the ones from the subsonic
case in fig. 4.4, it becomes clear that a given number of modes includes less information
in the transonic case than in the subsonic condition. In fact, only 5 modes out of 39 are
needed to capture 99.99% of the information of the POD basis in the subsonic regime,
while around 42 of 59 modes are required in the transonic regime. This behaviour was
already observed in [3] and is most probably due to the presence of compression shocks
that induce strongly nonlinear behaviour, which requires more POD modes due to the
linear combination of the modes.

Prediction of the test point The comparison of the CFD reference solutions for the
test point at Mach = 0.75 and α = 3◦ given in fig. 4.13 shows similar results for the
Mach field from CODA (left) and TAU (right). Both solutions embody a compression
shock at around 60% of the chord length that decelerates the flow from supersonic speed
of around Mach = 1.35 to subsonic speeds of around 0.85. At the same time, the flow at
the pressure side of the airfoil stays subsonic. Behind the shock, a wake develops with
a thickening boundary layer. These phenomena can be found in both solutions and only
minor differences are present around the location of the shock and in the wake of the
airfoil. So, as already described for the comparison of the POD modes, the flow field
solutions from CODA and TAU give comparable and reasonable results. The LSQ-ROM
is now applied to predict the flow at the test conditions leading to the predicted Mach field
in fig. 4.14 for a compression rate of 1.0. In contrast to the subsonic case, the predicted
solution has some noticeable deviations, when compared to the reference solution, even
when including all POD modes.

These disparities are mostly localized around the compression shock, as it can be seen
from fig. 4.15. The magnitude of the maximum error is around 20% for the prediction with
LSQ-ROM + CODA and around 25% for LSQ-ROM + TAU. This underprediction of the
pressure is related to the shock location as the LSQ-ROM solution predicts the location
a bit more towards the rear. Hence, the predicted pressure is lower at the location of
the shock of the CFD solution. The rest of the flow field has lower deviations, which are
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(a) CODA reference solution (b) TAU reference solution

Figure 4.13: RAE2822: CFD reference solutions at M = 0.75 and α = 3◦.

(a) LSQ-ROM solution with CODA (b) LSQ-ROM solution with TAU

Figure 4.14: RAE2822: Solutions predicted with the LSQ-ROM atM = 0.75 and α = 3◦

and with a compression rate of 1.0.

65



4.1 Validation of the LSQ-ROM coupled with CODA

(a) Relative error of the LSQ-ROM solution
with CODA

(b) Relative error of the LSQ-ROM solution
with TAU

Figure 4.15: RAE2822: Relative error in pressure of the LSQ-ROM at M = 0.75 and
α = 3◦ and with a compression rate of 1.0.

mostly below 5%. To compare the accuracy of the method for different levels of reduction
through restriction of the included POD modes, fig. 4.16 illustrates the pressure coefficient
at the surface of the airfoil for different compression rates. The pressure coefficient Cp is
defined as

Cp = p(x)− p∞

q∞
(4.1)

and describes the pressure difference between the local pressure p(x) and the ambient
pressure p∞ normalized by the ambient dynamic pressure q∞:

q∞ = ρ∞
||v∞||22

2 .

From fig. 4.16 its possible to see that the surface solution of the LSQ-ROM meets the
reference solution quite well for the high compression rates of 1.0 and 0.8. So, although
the deviations in the flow field are relatively high for this case, as seen from fig. 4.15,
the pressure distributions are still highly accurate. However, when lowering the number
of POD modes, the prediction of the shock location and strength becomes worse. While
the solution of the LSQ-ROM coupled with CODA gives even for a compression rate
of 0.6 a sufficient shock prediction, the optimized solution from LSQ-ROM with TAU
already fails to capture this phenomena. This can be related to the optimization process
in the LSQ-ROM not finding a proper minimum for the residual, which is also supported
by the behaviour of the objective function values illustrated in fig. 4.17b. It can be
seen that the objective function value is increasing by a full order of magnitude when
lowering the compression rate from 0.8 to 0.6. This indicates higher errors as the objective
function value is the squared summed error of the residuals, which refer to the violation
of the conservation laws. Nevertheless, despite the shock, the overall pressure distribution
still matches the characteristic of the reference solution. The behaviour of the objective
function in fig. 4.17a and fig. 4.17b follows the expected decreasing trend when increasing
the number of POD modes for the model. At the same time, the relative prediction
time, which is the time needed for LSQ-ROM prediction stage normalized by the time
for the CFD solution, shows an increasing trend as the computational effort raises for
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(a) RAE2822: LSQ-ROM with CODA (b) RAE2822: LSQ-ROM with TAU

Figure 4.16: RAE2822: Pressure distributions of the LSQ-ROM prediction at Ma =
0.75 and α = 3◦.
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(a) LSQ-ROM with CODA
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Figure 4.17: RAE2822: Relative prediction time and objective function value over com-
pression rate.
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a higher number of POD modes. Comparing the relative prediction time between the
models coupled either with CODA or TAU indicates a high difference in the prediction
time. However, this is explained by the huge difference in the computational time for
the CFD solutions. As anisotropic grids like the one for the RAE2822 rely on implicit
solvers for a fast convergence, TAU’s explicit solver struggled with convergence and hence,
required nine times more time than CODA’s implicit solver. So, the absolute prediction
times are in good agreement with each other.

4.1.3 Assessment of the validation results

The presented results confirm the functionality of the LSQ-ROM method when coupled
with the new CFD solver CODA. The results used for the comparison are obtained with
LSQ-ROM connected with TAU, i.e. a framework that was already part of several inves-
tigations. So, a proper implementation of LSQ-ROM coupled with CODA is expected to
give results that are comparable to the ones from the LSQ-ROM + TAU as long as both
CFD solvers yield similar flow solutions. This is tested by comparing several POD modes,
which are defined by the snapshots referring to the training points computed by the re-
spective flow solver. The training data in both the subsonic and transonic regime lead to
comparable POD bases as it is confirmed through a comparison of several modes and the
information content contained in all the modes. Hence, it is possible to conclude that both
subspaces contain similar information to approximate solutions with a low dimensional
representation of the design space. The presented analysis compares also the accuracy of
the LSQ-ROM predictions based on both CODA and TAU solutions and residual evalu-
ations. The subsonic test case exhibits very similar prediction errors for all investigated
reduction levels not only in their magnitude but also for their structure within the whole
flow domain. For the transonic case, the LSQ-ROM solutions show good agreement for
the lower reduction levels (higher compression rate), while the coupling with CODA leads
to a better prediction of the shock location and strength for the higher reduction levels
in comparison to the results obtained with TAU. The reasons behind this are assumed to
be a different behaviour during the optimization process, which relies on slightly differ-
ent POD modes together with a different residual definition and ends in a different local
minimum. Further results for the final objective function value from the optimizer verify
that the minimization process is able to find local minima, which improve when including
a higher number of POD modes. The analysis of the time required for the prediction
of a LSQ-ROM solution is presented for different compression rates. Results show that
the prediction time increases, as expected, for higher compression rates and its absolute
value is comparable for the LSQ-ROM coupled with both CODA and TAU. Compared to
the time of the reference CFD solution, the LSQ-ROM + CODA is still multiple orders
of magnitude faster, although this comparison is highly influenced by the chosen solver
settings, which is also the reason why the LSQ-ROM + TAU seems to perform better
when considering the relative prediction time. All these summarized outcomes prove the
correct behaviour of the LSQ-ROM coupled with CODA and establish the foundation for
the main investigations that focus on the reimplemented hyperreduction method, which
is presented in the next section.
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4.2 Investigation of the hyperreduction

The section includes results about the hyperreduction technique and the analyses to de-
termine its influence on the accuracy and acceleration within the LSQ-ROM coupled with
CODA. The main goal is to give insights into the behaviour and potential acceleration
improvements compared to the former implementation of the hyperreduction. In addition
to the two 2D test cases, which are also part of section 4.1, a 3D case is included in the
investigations to test whether the 2D findings can be transferred to 3D. For all three test
cases, the first part contains a presentation of results that allow an assessment of the
prediction quality for different levels of hyperreduction. After that a comparison of the
time savings of the new, consistent implementation of the hyperreduction with the former
implementation is given and finally an assessment of proper reduction levels for the POD
basis and the hyperreduction, which are a compromise between acceleration and accuracy
deterioration.

4.2.1 NLR7301: subsonic flow

The upcoming results are based on the same training data used for the validation analysis
of the LSQ-ROM + CODA (cf. section 4.1). The test point is again defined by:

Mach = 0.25 α = 6.0◦

However, in contrast to the validation results that should solely prove comparability of
the results of the LSQ-ROM coupled with CODA or TAU, this section tries to assess the
absolute prediction quality. Therefore, additional nine test points are randomly chosen
in the design space to avoid that the selected test point is exceptionally well suited for a
prediction with the LSQ-ROM than other points. To check whether the test point with
Mach = 0.25 α = 6.0◦ can be used as a representative case for the investigations of the
hyperreduction, fig. 4.18 presents two heatmaps that give an overview of the performance
of the LSQ-ROM for different prediction points. The predictions rely on a full POD basis,
and therefore represent the model without reduction, which should be the baseline for an
assessment of further model reductions. In fig. 4.18a the colouring of the test points refers
to the objective function value from the optimizer, which is the summed squared residual,
and therefore it represents an indicator for the quality of the approximated solution. The
figures also include the training points as grey dots so the predictions can be seen in
the context of proximity to the sampling points, whose prediction would be nearly exact.
In fig. 4.18a the objective function values are normalized by the maximum value of all
validation points and the test point. Given this relative description, it is possible to
see that the prediction of the solution at the test point with Mach = 0.25, α = 6.0◦

leads to an minimized value that ranks among the higher values for the objective function
value. And as expected, there is a connection of these values to the overall accuracy of
the predicted solution, that is illustrated in fig. 4.18b in form of relative summed squared
error (cf. eq. (3.3)) for the total energy field. So, when comparing the relative values for
this error measure with the objective function values, a relatively low objective function
value corresponds also to a relatively low error in the prediction. Based on this discussion,
the test point with Mach = 0.25, α = 6.0◦ is among the points with lower accuracy, and
therefore the analysis of the related flowfield results is expected to be rather conservative.
For this reason, the results presented in the rest of this section refer to the flow condition
of Mach = 0.25, α = 6.0◦.
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Figure 4.18: NLR7301: Heatmaps for the validation of the test point.

Accuracy for different reduction levels

In section 4.1.1 it is already shown that the LSQ-ROM is able to predict highly accurate
subsonic solutions with negligible errors for the whole flow domain. However, the influence
of the two reduction methods integrated in the LSQ-ROM is first investigated in this
section. Figure 4.19 presents the absolute relative error of the predicted pressure field for
four different combinations of compression rate and hyperreduction indices. From (a) and
(b), it is possible to see that the error field is only slightly influenced when decreasing
the number of hyperreduction indices. The maximum errors are in both cases around
3%, which can be decreased when taking more POD modes into account. Although
the compression rate of 0.1 refers to solely 4 POD modes, the maximum errors can be
decreased by more than an order of magnitude, which can be seen from (c) and (d). The
relative number of hyperreduction indices can again be decreased down to 0.5% without
loosing too much accuracy. In order to assess the accuracy of multiple combinations of
reduction levels for the POD basis and the hyperreduction, the coefficient of determination
is utilized as an integral metric to measure the agreement between the predicted flow field
and the reference solution from the CFD solver. Its definition is given by eq. (3.2).
Figure 4.20 displays the coefficient of determination for the field of the total energy for
different compression rates and relative number of indices. The relative number of indices
corresponds to the number of hyperreduction indices normalized with the total number
of cells (maximum number of indices). So, these two parameters define the levels of
reduction for the two available reduction methods of the LSQ-ROM. It is possible to see
from fig. 4.20 that the number of selected indices has relatively small influence on the
coefficient of determination. Solely for extremely low numbers of indices a significant
deterioration of the prediction quality seems to appear. However, this decline is less
pronounced than the accuracy degradation caused by a reduction of the POD modes.
Lowering the compression rate leads to a clear decrease in the values for the coefficient
of determination, which becomes more distinct when decreasing the compression rate.
These trends for the total energy field are also present for the other conservative variables
(cf. appendix A), and therefore these findings are representative of the overall prediction
accuracy. In conclusion, it is possible to state that, for the specific scenario, feasible
reduction levels for the LSQ-ROM seem to be a compression rate of 0.1 and a relative
number of selected indices of 0.5%. Although the reduction levels are relatively high, the
field solution of the absolute error in pressure in fig. 4.19 (d) exhibits low errors. Even
the highest errors are only at around 0.1%, which is definitely sufficient for a reduced
order model application. At the same time the high reduction levels promise a distinct
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Figure 4.19: NLR701: Absolute relative error in pressure of the test point pediction.
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Figure 4.20: NLR7301: Coefficient of determination for different compression rates.

acceleration of the prediction in the online stage.

Comparison with the interpolated solution As described in section 2.6.2, the POD
coefficients are estimated in LSQ-ROM by means of the LM line search minimizer using
as initial condition the POD coefficient returned by an interpolation method. This refers
to a start solution that is based on a POD + Interpolation (POD+I), which can be seen
as an alternative ROM to the LSQ-ROM. The comparison of the POD+I model with the
LSQ-ROM was already investigated in [62] for extrapolation points and different interpo-
lation models. However, to examine the impact of the residual minimization process on
the accuracy, the solutions of the LSQ-ROM from fig. 4.20 are compared to the interpo-
lated solutions. The utilized interpolation method is based on Thin Plate Splines (TPS)
(cf. section 2.3). Interpolating the POD coefficients allows to reconstruct a solution the
same way as for LSQ-ROM solution. Although this interpolation is independent of the hy-
perreduction, for an easier comparison the coefficient of determination of the interpolated
solutions is presented in fig. 4.21 like in fig. 4.20. Increasing the compression rate above
0.1, does not lead to any significant improvement with respect to coefficient of determi-
nation. It is possible to see that the interpolated solutions lead to lower agreement with
the reference flow solution than the LSQ-ROM solutions. An exception is the solution for
the lowest compression rate of 0.05. For that, the solution with TPS interpolation leads
to a higher coefficient of determination than the LSQ-ROM solution. However, this is
is not the case for all conservative variables, as the coefficients of determination for the
momentum are still higher after the optimization. This comparison between interpolated
and LSQ-ROM solutions confirms the expected behaviour that the minimization of the
residual leads in general to a higher agreement to the reference solution. Nevertheless, it
is important to keep in mind that the residual is a nonlinear function of the conservative
variables, which means that a reduction in the residual does not automatically refers to a
more accurate solution. In fact, the minimization is done on the squared sum of the resid-
ual that is a global quantity, and therefore it lacks information of the underlying complex
field solution. Together with the observation of a decreased coefficient of determination
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Figure 4.21: NLR7301: Coefficient of determination for solutions of the LSQ-ROM and
TPS for different compression rates.

for one of the optimized solution, it can be assumed that a reduced summed residual does
not necessarily leads to an "global" improvement for all variables.

Assessment of the submesh-based Hyperreduction in 2D

Before assessing the acceleration potential achieved by the consistent hyperreduction im-
plementation, some remarks concerning their different approaches must be given in order
to define ways to fairly compare results based on both methods. While the former im-
plementation can be realized by a simple indexing of the full residual, the consistent
implementation utilizes a submesh, which is defined not only by the selected hyperreduc-
tion indices but also by the dependency of the residuals on neighbouring cells. Several
submeshes are illustrated in fig. 4.22 for different numbers of indices and a model including
all POD modes of the subsonic design space. The submesh in fig. 4.22 (a) is based on 100
selected indices (+ five farfield cell indices). The colouring of the cells refers to primarily
selected cells (green), direct neighbours (yellow) and neighbours of neighbours (orange).
Especially in (b) and (c) is is possible to see that the cells concentrate around the airfoil
with the focus on the nose, where relatively strong variations of the flow field can be
expected due to the varying location of the stagnation point within the design space.
Another important fact is that almost every primarily selected cell for the submesh in (a)
leads to twelve additional cells, since the selected cells and their stencil are in most cases
disconnected from each other. This is an important consideration for the assessment of
the computational effort of the submesh-based hyperreduction as the residuals need to be
evaluated for every cell in the submesh, and not only for the cells identified by the hyper-
reduction indices. Therefore, the computational effort for the residual evaluation scales
with the size of the submesh and just indirectly with the number of indices. However,
for the former hyperreduction it is sufficient to express the level of reduction in terms
of the number of indices as it directly refers to the reduction of the residual (after its
evaluation). To allow a fair comparison of both implementations, the number of indices is
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Figure 4.22: NLR7301: Submeshes utilized for the consistent hyperreduction implemen-
tation.
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Figure 4.23: 2D: Relative number of submesh cells depending on the relative number of
selected indices.

chosen for a measure of the reduction level, although it is not directly a measure for the
effort in the new, consistent hyperreduction. As a result, the relation between the num-
ber of hyperreduction indices and the resulting submesh size becomes important to assess
the acceleration potential and acceleration estimations from section 2.6 for the consistent
hyperreduction.
In order to illustrate the connection between the relative number of selected indices and
the resulting size of the submesh, fig. 4.23 shows some relations between the two measures
for indices selected by the MPE + DEIM, for randomly distributed cells / indices, and
the ideal but unrealistic case that all selected cells form a compact cluster. For the
small numbers of selected indices the number of cells in the submesh is near the values
for the randomly distributed cells. That is expected when looking at the submeshes in
fig. 4.22 (a) and (b) where most of the stencils are not connected, therefore resulting
in a negligible amount of shared neighbor cells. For increasing numbers of indices this
progression deviates from the one for the randomly distributed cells as the indices start
to cluster (cf. fig. 4.22 (c) and (d)). The clustering is observed for many applications
of the MPE and often undesired but in this case it is important for a better scaling of
the residual evaluations on the submesh. Without any clustering, it would take only 20%
of all indices to produce a submesh with 90% of the size of the original mesh. Besides
the clustering, the relation between indices and submesh is also influenced by the cell
types and the dimensionality of the mesh. The 2D mesh around the NLR7301 consists
mostly of tetrahedrons, which only imply at maximum nine additional cells, while the
additional hexahedrons (cf. section 3.3.1) imply twelve cells. For a three-dimensional
case a hexahedron would lead to 25 cells, which would automatically lead to a faster
growth of the submesh when increasing the number of indices. However, this issue is
investigated in more detail for the 3D case in section 4.2.3.
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Figure 4.24: NLR7301: Influence of the hyperreduction level on the time for the evalu-
ation of the residual.

Acceleration potential for different reduction levels

Before comparing the acceleration potential of the two hyperreduction implementations
at different reduction levels, the estimation for the savings in the computational effort for
the evaluation of the submesh residuals from section 2.4 is examined. While the former
hyperreduction implementation does not allow a reduction of the residual evaluation, the
evaluation on the submesh should be proportional to the number of cells and therefore
to the hyperreduction level from eq. (2.99). This aspect is confirmed in fig. 4.24 which
shows an almost linear relation between the time spent for the evaluation of the objective
function / residual and the hyperreduction level. For the case, that the time for the
residual evaluation is plotted directly over the the number of hyperreduction indices, the
linear scaling is lost. Instead, the behaviour would be influenced by the relation between
the number of indices and the resulting submesh size as it is illustrated in fig. 4.23.
Moreover, the same scaling can be expected for the effort for the reconstruction of the
state from the POD basis as it also linearly scales with size of the submesh. A similar trend
can be seen in fig. 4.25a, which presents the relative prediction time (i.e. the prediction
time divided by the time required for the CODA simulation) for different reduction levels
for the POD basis and the hyperreduction. It is possible to see, that this trend is present
for every compression rate of the model, which confirms not only the effectiveness of the
hyperreduction but also the time saving estimations applied to the whole online stage of
the LSQ-ROM. So, a prediction without any reduction for the POD basis and without
hyperreduction takes around 1% of the time required for the FOM. Taking only 0.5% of
all potential residual indices into account allows to reduce the relative prediction down
to around 0.1%, which is a reduction of one order of magnitude. Similar reductions
in prediction time are present for the models with a decreased number of POD modes.
As expected, the reduction of included POD modes also reduces the prediction time,
because of the lower costs in the optimizer and for the reconstruction of the states. The
minimum relative prediction time can be obtained for the highest reduction levels, here
at a compression rate of 0.05 and for a relative number of indices of 0.005. With these
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Figure 4.25: NLR7301: Relative prediction times for different compression rates.

settings, the ROM is around 5700 times faster than the FOM. However, the necessary
compromise between gain in acceleration and a loss of accuracy is discussed in the end of
this section. Despite the convincing results with respect to the acceleration potential with
the consistent hyperreduction, a comparison with the former implementation is needed
to review the actual gain of the new submesh-based implementation. For that, fig. 4.25b
illustrates the relative prediction time for different reduction levels but with the former
implementation of the hyperreduction. In this case, there is still a reduction in prediction
time, when reducing the relative number of indices. Nevertheless, the time saving is less
pronounced than the ones in fig. 4.25a. Reducing the number of indices, leads to an
maximum reduction by a factor of 2.5 (compression rate 0.05). So, the fastest model with
the former hyperreduction leads to a maximum speed-up factor compared to the FOM of
around 1200 in contrast to the factor of 5700 for the consistent hyperreduction.
An even clearer view of the difference is visible, when normalizing the relative prediction
time with the number of residual evaluations to remove the dependency on the fluctuat-
ing number of iterations in the optimizer. In fig. 4.26 this relative prediction time per
objective function evaluation is displayed side by side for both implementations. The nor-
malized relative prediction times in fig. 4.26a almost perfectly agree with the expectations
concerning the time saving through reduction of the POD modes and the hyperreduction.
It is remarkable, how well the decline for lower numbers of indices corresponds to the
behaviour in fig. 4.23, and that an illustration with respect to the hyperreduction level
would show the expected linear decline in prediction time. At the same time, fig. 4.26b,
outlines a minor time saving potential in the online stage per objective function evaluation
when using the former hyperreduction. As the time savings are even less distinct in this
representation, it becomes clear that the accelerations seen in fig. 4.25b partially originate
from a smaller number of optimizer iterations.
To assess the speed-up that can be obtained from a LSQ-ROM with the consistent hyper-
reduction compared to the former hyperreduction, fig. 4.27 displays the speed-up factor,
which is the prediction time with the former hyperreduction divided by the time required
with the consistent hyperreduction. At a relative number of indices of 1.0 both implemen-
tations should lead to similar predictions times and thus to a speed-up factor of 1.0, as the
residual evaluation is performed for a full mesh even for the consistent implementation.
Considering some variations due to statistical changes of the load of the workstation,
these values show good agreement. When reducing the number of hyperreduction indices,
the speed-up factor increases, except for the model with a compression rate of 1.0 and a
relative number of indices of 0.5. This is because of a slightly higher number of iterations
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Figure 4.26: NLR7301: Relative prediction times per objective function evaluation for
different compression rates.

in the optimizer, due to a relatively high sensitivity of the stopping criteria to numerical
errors. The increase of the speed-up factor is more distinct in the region of lower numbers
of hyperreduction indices, as the submesh size is reduced more effectively. So, especially
for high hyperreduction levels the new consistent hyperreduction becomes superior to the
former one with maximum speed-up factors between 3.8 and 5.5.

Assessment of the results

The NLR7301 test case confirms several important expectations for the LSQ-ROM for
predictions in the subsonic regime together with promising results for the newly imple-
mented hyperreduction. The prediction of the test case exhibits low errors within the
total flow field compared to the reference solution of the FOM. The findings from fig. 4.4
already indicate that the design space can be well approximated by a small number of
POD modes. The results for the coefficient of determination in fig. 4.20 support this,
although increasing the number of POD modes allows to further decrease the errors of
the LSQ-ROM. An application of the hyperreduction has only small impact on the overall
accuracy of the prediction. Solely very high levels of reduction show a significant accuracy
deterioration. From these results, it is possible to conclude that, choosing proper reduc-
tion levels allows to obtain a model that promises a high acceleration while still yielding
a prediction with sufficient accuracy.
Additionally, the optimized LSQ-ROM solution is compared to the interpolated solution
(POD+TPS) used as initial condition of the LSQ-ROM optimizer. This comparison shows
that the minimization of the summed residual can further increase the accuracy of the
interpolated solution. Although the minimization process acts solely on the sum of all
squared residual entries, which automatically focuses on the minimization of the highest
entries, it still manages to increase the overall agreement of the predicted solution with the
CFD solution. However, as it is shown in some cases, such a residual minimization does
not necessarily lead to a better overall accuracy. This happens because the minimization
of a global quantity can possibly reduce a small number of relatively high residuals while
increasing all other residuals. Moreover, the residual is even in the subsonic regime not
linearly dependent on the state variables. So, it can not be expected that a reduction of
a residual is directly proportional the accuracy of the state variables in the same cell.
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Figure 4.27: NLR7301: Speed-up factor for the consistent hyperreduction.

The investigation of the submeshes for the new hyperreduction implementation illustrates
the connection between the number of hyperreduction indices and the resulting size of the
submesh. The frequently observed clustering of the indices selected by the MPE leads to
a smaller growth of the submeshes. So, the illustrated case of randomly distributed cell
indices is flattened, which leads to smaller submeshes for the real sets of indices, and there-
fore to higher potential time savings. These time savings are clearly visible, when applying
the submesh-based hyperreduction. The highest reduction levels allow accelerations that
reduce the time spend in the online stage by an order of magnitude. At the same time, the
estimations from section 2.4 for the reduction in effort can be confirmed by the time spent
for the residual evaluations and even in the overall prediction time. Most importantly,
the former implementation is clearly outperformed by the consistent hyperreduction. The
reduction of the prediction time is also present for the former implementation, but partic-
ularly for the high reduction levels the gap between both implementations becomes clear.
The LSQ-ROM with the consistent hyperreduction reaches speed-up factors of around
5700 compared to the FOM, whereas the former hyperreduction reaches only a factor of
1200. So, given the option to use a model with a high hyperreduction level, the new
hyperreduction implementation can accelerate the whole online stage of the LSQ-ROM
by a factor up to 5.5 compared to the former hyperreduction for this specific test case.

Recommendation for proper reduction levels Some suited reduction levels are already
given in section 4.2.1. The proposed POD compression rate of 0.1 and a restriction of the
residual to around 0.5% of all entries leads to a model that predicts the pressure field with
relative errors of at most 0.1%. It is assumed that these relatively high reduction levels
are restricted to flow regimes that do not include strong nonlinear flow phenomena like
compression shocks or separation bubbles. As POD based ROMs are known to struggle
with the approximation of such nonlinearities [17], which are depending in a nonlinear
way on the input parameter, the recommendations are not universal. It is expected that
a design space including such nonlinear phenomena requires a higher density of training
points, and an effective and accurate ROM can not be obtained using the same reduction
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level of this test case. Nevertheless, for design spaces similar to the presented one, the
proposed reduction levels should be reasonable in terms of accuracy. The time savings
resulting from the reduction can be read from fig. 4.25a. While the model without any
reduction takes around 1% of the time for the FOM, the model reduction leads to a
relative prediction time of only 0.0004, which is a speed-up of more than 2300 compared
to the FOM. The LSQ-ROM with the former hyperreduction implementation instead has
a speed-up of around 430, emphasizing the advantage of the consistent hyperreduction.
For high levels of hyperreduction, the consistent implementation can easily outperform
the former implementation by factors of 5.

4.2.2 RAE2822: transonic flow

The transonic test case is based on the design space and training data already presented
in section 4.1.2 for the validation of the LSQ-ROM coupled with CODA. In contrast
to the subsonic test case for the NLR7301, the design space for the LSQ-ROM for the
RAE2822 covers the transonic flow regime. The distinction between these two regimes
is important, because with the occurrence of supersonic flow speeds, more complex flow
phenomena arise that often times need additional treatments for their computation. In
order to account for this increased complexity in the physics that has to be represented by
the model, the design space is covered with a higher number of training points compared
to the one for the subsonic flow. The test point for the prediction with the LSQ-ROM is
defined as in section 4.1.2 by:

Mach = 0.75 α = 3.0◦

Similarly to the subsonic test case, additional validation points are computed within the
design space. These validation points are presented in fig. 4.28 in form of two heatmaps
that illustrate the objective function value and the square root of the summed squared
difference between the predicted field of the total energy and the reference field solution as
defined in eq. (3.3). Both measures are divided by the maximum value of the validation
points or the test point and correspond to a LSQ-ROM based on the full POD basis.
From fig. 4.28a, it is possible to see that the test point exhibits the largest minimized
objective function value. Figure 4.28b displays the integral error measure for the total
energy field and shows that the performance of the different points with respect to the
residual does not automatically corresponds to this error measure. Points that lead to
high values for the residual exhibit in some cases smaller errors than points with smaller
objective function values. So, the test point has the highest value for the minimized
residual but not for the error. Although there still seems to be a connection between the
two measures, the differences are more distinct than in the subsonic case (cf. fig. 4.18).
Possible reasons for that are discussed later in this section. Nevertheless, the test point is
assumed to be suited to be a representative point for the predictions in the design space
and for further investigations.

Accuracy for different reduction levels

Section 4.1.2 presented some general results concerning the accuracy of the LSQ-ROM
for predictions in the transonic flow regime. An important outcome is that the predic-
tion of transonic flow fields becomes more complex and less accurate in the presence of
nonlinearities like shocks, therefore requiring more POD modes to capture the flow field
including a compression shock. Despite the increase of the relative errors in the flow field,
the models with an adequately chosen reduction level for the POD basis are still able to
properly predict quantities like the surface pressure distribution of the airfoil. Based on
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Figure 4.28: RAE2822: Heatmaps for the validation of the test point.

these results, the second reduction method, the hyperreduction, and its influence on the
accuracy of the LSQ-ROM is investigated in this section. Before assessing the accuracy
with respect to global measures like the coefficient of determination (cf. eq. (3.2)), some
selected field solutions of the relative error between the LSQ-ROM solution and the FOM
solution are presented in fig. 4.29.
From fig. 4.29 (a), it is possible to see that even a LSQ-ROM without any reduction of the
POD basis or hyperreduction predicts the pressure field with errors up to 20.%. These high
error values are concentrated around the shock location (cf. fig. 4.13 (left)), indicating
that the relatively high errors result from the difficulties to capture the compression shock
at the suction side of the airfoil. Nevertheless, the high errors do not span the full shock
front, as the pressure very close to the airfoil surface is still in good agreement with the
reference solution. The same can be observed for the rest of the pressure field, which has
relative low errors around 1.0%. A reduction of the residual vector via hyperreduction
only leads to minor changes for the pressure errors, as it can be seen from fig. 4.29 (b).
Although the number of considered residual entries is reduced by 75%, this reduction level
does not induces further deviations from the FOM. On the contrary, a reduction of the
POD basis to a compression rate of 0.4 increases mainly the maximum errors around the
shock. Without any hyperreduction, the relative errors increase up to around 24%, while
the application of the hyperreduction further increases the error up to 30%. In both cases,
the higher errors around the shock location reach closer to the airfoil surface. However,
the rest of the pressure field is hardly influenced. When comparing the influence of the
hyperreduction on the accuracy for the two different POD bases, the loss in accuracy is
more distinct for the reduced POD basis.
The interaction between reduction of the POD basis and hyperreduction is examined
in more detail in fig. 4.30a and fig. 4.30b, which display the surface pressure for the
predicted solutions at different levels of hyperreduction. These pressure distributions are
illustrated by the pressure coefficient Cp (cf. eq. (4.1)) along the airfoil surface. Figure
4.30a refers to a model with a full POD basis. The comparison of the various pressure
distributions illustrates a good agreement with the reference solution of the FOM. As
the illustrations from fig. 4.29 already suggested, the accuracy of the prediction is only
slightly influenced by the extend of the hyperreduction. Even for the highest level of
hyperreduction (only 0.5% of all residual entries included), the model is able to sufficiently
reproduce the reference pressure distribution. It is remarkable that the highest deviations
for all predicted pressure distributions are not located at the shock location betweeen 55%
and 60% of the chord length, but mostly at the suction side apart from the shock location.
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Figure 4.29: RAE2822: Absolute relative error in pressure for predictions with different
reduction levels.
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(a) compression rate = 1.0 (b) compression rate = 0.4

Figure 4.30: RAE2822: Pressure distributions for different reduction levels of the LSQ-
ROM.

In fact, the shock is captured almost perfectly, while the rest of pressure distribution
contains some offsets from the reference solution.
Figure 4.30b instead displays the pressure distributions for LSQ-ROMs with a compression
rate of 0.4. Besides the model with the lowest level of hyperreduction, all the models lead
to comparable pressure distributions. The main deviations can be found at the suction
side in front of the shock, where the pressure is constantly overestimated, while the
pressure at the rear is underestimated. The shock location is in good agreement with
the reference solution, whereas the pressure minimum in front of the shock is predicted
too high. The overall deviations are larger than for the models with the full POD basis
(cf. fig. 4.30a) but exhibit a similar behaviour. The sensitivity of the accuracy follows
the findings from the relative errors in the pressure fields, as the hyperreduction seems
to influence the pressure distributions more distinct for models with a POD basis with a
lower compression rate.
In order to obtain a broader view on the influence of the two reduction methods on
the model accuracy, the coefficient of determination is utilized as an integral measure of
the agreement of the predicted solution with the FOM. In fig. 4.31a, the coefficient of
determination for the field of the total energy is illustrated for various combinations of
reduction levels, while fig. 4.31b illustrates this coefficient for the surface pressure. From
fig. 4.31a, it is possible to see that the influence of both reduction methods drastically
increases when the reduction level is further increased from a certain critical level. So, a
reduction of the POD basis down to a compression rate of 0.6 has only a minor influence
on the coefficient of determination, at least for relatively high number of relative indices.
But when decreasing the compression rate to 0.4, the coefficient of determination drops
from around 0.998 to 0.993. This behaviour can also be observed for the coefficient
of determination for the surface pressure in fig. 4.31b and other mean flow variables (cf.
appendix B). The level of the hyperreduction has a similar influence on this error measure
as it stays nearly constant for the low levels of hyperreduction (high relative number of
indices), but significantly decreases, when exceeding a certain level for the hyperreduction.
This trend seems to be more pronounced for models, which act on a reduced POD basis.
Therefore, the models with a compression rate of 1.0 and 0.8 can rely on a low number of
residual indices without losing to much of the agreement with the FOM. The models with
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Figure 4.31: RAE2822: Coefficient of determination for the total energy field and the
surface pressure for different compression rates.

compression rates below 0.8 face a distinct decrease for the coefficient of determination,
when increasing the level of the hyperreduction too far (0.5% of all indices). These
findings can be directly transferred to the coefficient of determination for the surface
pressure. Moreover, the higher sensitivity of models with a reduced POD basis for the
application of the hyperreduction is in line with the results from fig. 4.29 and fig. 4.30b. A
possible reason for this behaviour is the influence of the POD basis on the set of selected
indices, so that the missing information in a reduced POD basis lead to less favourable
indices for the representation of the full residual vector. Figure 4.32 illustrates the indices
/ cells that are picked by the MPE + DEIM for a POD basis with a compression rate of
1.0 (a) and 0.4 (b) and the number of indices set to 5000. These reduction levels refer to
the models leading to the errors shown in (b) and (d) from fig. 4.29. It can be seen that
the set of indices cover similar locations around the airfoil like the nose, the rear suction
side and the wake. However, there are clear differences e.g. at the rear pressure side,
which is hardly covered for the reduced POD basis in contrast to the set of indices for
the full POD basis. Instead, more indices are selected at the nose and in the wake of the
airfoil. So, it becomes clear that the reduction of the POD basis has a distinct impact
on the chosen set of residual indices and therefore directly influencing the performance of
the hyperreduction.

Comparison with the interpolated solution To investigate the influence of the residual
minimization on the model accuracy, the previous results are compared to the purely
interpolated solution (POD+I), which serves as initial condition of the optimization pro-
cess. The interpolation of the POD coefficients is based on the TPS interpolation method
as stated in section 3.3.2, which are then used to reconstruct the interpolated solution.
Both the LSQ-ROM and the TPS interpolation are compared in fig. 4.33 with respect to
the coefficient of determination for the total energy field. As the interpolated solutions
are only depending on the POD basis, they are constituted by the straight lines. The
solutions for the compression rates of 0.4 to 1.0 exhibit similar values for the coefficient
of determination, so their lines lay beneath the dark blue one. Comparing the results
from the TPS interpolation with the ones from the LSQ-ROM leads to the unexpected
conclusion that the interpolated solutions lead to higher agreement with the FOM with
respect to the coefficient of determination than the LSQ-ROM solutions. This outcome
is somehow surprising, as the optimization in the LSQ-ROM seems to decrease the agree-
ment with the FOM, although the overall residual is decreased during this process. In
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Figure 4.32: RAE2822: Visualization of the cells referring to sets of hyperreduction
indices.
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Figure 4.33: RAE2822: Coefficient of determination for solutions of the LSQ-ROM and
POD + TPS for different compression rates.
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Figure 4.34: RAE2822: Pressure distributions from POD + TPS.

order to find an explanation for this behaviour, the pressure distributions from the pre-
dicted solution with the TPS interpolation are shown in fig. 4.34 for varying compression
rates. It can be seen that the interpolated solutions lead to pressure distributions almost
perfectly following the reference solution. Beside the solution referring to a compression
rate of 0.2, the pressure distributions show only minor differences. The superior agree-
ment with the FOM compared to the approximations with LSQ-ROM e.g. in fig. 4.30a
is present for almost all parts of the surface. However, the pressure around and at the
shock is predicted more precisely by the LSQ-ROM. The TPS interpolation instead leads
to some overshoots before and undershoots behind the actual shock location. Even the
interpolation with the full POD basis (blue line) is not able to accurately predict the steep
gradients induced by the compression shock. Summarizing, the residual minimization in
the LSQ-ROM leads to an better agreement with the FOM for the solution around the
shock, while it is simultaneously worsened for the rest of the solution. This connection
become clearer, when examining the residual field of the interpolated (start) solution and
the one from the optimized solution. In fig. 4.35 the residuals for the total energy are
displayed for the TPS interpolated solution (a and c) and the LSQ-ROM solution (b and
d) without any model reduction. The residuals are divided by the square root of the cell
volumes, which refers to their usage in the optimizer. This formulation is differing from
the way the residuals are treated in the CFD solver, where the residuals are normalized
exactly by the cell volume. From the residual fields of the interpolated solution, it is
possible to see that the highest residuals are located at the rear suction side around the
compression shock. So, the highest residuals are referring to highest deviations of the
interpolated solution to the FOM, which are located around the shock. This is implied by
the outlined pressure distributions from fig. 4.34, but it is also confirmed when compar-
ing the relative errors of the total energy field of the POD+TPS (a) and LSQ-ROM (b)
solution (cf. fig. B.5). After the optimization (cf. fig. 4.35 (d)), the residuals around the
shock are mostly reduced by at least one order of magnitude, while the residuals e.g. at
the leading suction side and at the farfield boundary (cf. fig. 4.35 (b)) increased. These
increased residuals seem to be connected to the offsets of the pressure distributions in
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Figure 4.35: RAE2822: Residual fields for the POD + TPS and LSQ-ROM predictions.

fig. 4.30a, whereas the residual reduction around the shock may refer to the improved
agreement with the reference solution around the shock, both for the surface pressure and
the field solution of the total energy. Nevertheless, it is important to keep in mind that
low residuals in individual cells are not automatically equal to low errors in these cells,
because the residuals are influenced in a complex way by their neighborhood and can not
be assessed independently from each other. The comparison of the residual fields and their
corresponding deviations from the reference solution clarifies the surprising results for the
coefficient of determination. The residual minimization process aims on reducing the sum
of all squared residual. This does not only imply an optimization of a global quantity for
the prediction of a whole flow field but also the (over-) weighting of the largest residuals
due to their squaring. So, in case of strong nonlinearities like the compression shock
(and the flow separation behind it) even relatively small errors in the solution can cause
residuals that dominate the sum over all squared residuals. As a result, the minimization
process can achieve a reduction of the objective function by focusing these high but lo-
calized residuals, although the majority of all residuals is negatively influenced by this.
So the intrusive character of the LSQ-ROM and its connection to the FOM ensures, that
important flow features are still in correspondence with the underlying physics, although
the costs for this may be a loss in accuracy for the remaining domain. Similar findings
concerning the prediction quality of the LSQ-ROM compared to the POD+TPS can also
be found in [2], where the TPS interpolation outperformed the LSQ-ROM for the given
test cases. However, investigations in [62] were able to show that the LSQ-ROM becomes
beneficial for predictions points that lie outside of the design space and are therefore hard
to predict with interpolation models. In these cases, the incorporation of the underlying
physics ensures the proximity to the correct solution.

Extrapolation capability of the LSQ-ROM and TPS interpolation To confirm the
superior extrapolation capabilities of the LSQ-ROM, an additional test point is chosen
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outside of the design space, which is still defined by

Mach = [0.7, 0.8] angle of attack = [−2◦, 6◦]

and illustrated in fig. 4.9. The extrapolation point is specified by

Mach = 0.75, angle of attack = 6.5◦ .

Its prediction shall be briefly examined on the basis of the pressure distributions for
two LSQ-ROM and two POD+TPS models with different compression rates. They are
illustrated in fig. 4.36 along the reference solution from the FOM. It can be seen that
the reference solution features again a compression shock, which is located at the suction
side at around 35% of the chord length. The LSQ-ROM predicts the overall pressure
distributions with relatively small errors at the pressure side and at the leading suction
side. The main deviations can be found for the prediction of the shock location that has an
offset of around 5% of the chord length. Further but smaller deviations underestimate the
pressure coefficient at the rear. The accuracy of this prediction is persuasive considering
that the shock location is very sensitive and strongly influenced by the angle of attack,
whose value is not part of the design space. As the shock location is moving to the leading
edge with increasing angle of attack, the POD basis lacks the modes that could capture
such a flow phenomena at the correct location. With respect to this, the prediction
quality of the LSQ-ROM is impressive, especially when comparing it to the solution
from the POD+TPS model. The interpolated solutions exhibit once again undershoots
of the pressure coefficient behind the shock, whose magnitude is more distinct than for
the previous test point. Similar to the LSQ-ROM predictions and probably also resulting
from the missing information in the POD basis, the shock location is displaced. Moreover,
the pressure distributions contain offsets at the leading suction and pressure side. So, the
interpolated solution is clearly outperformed by the LSQ-ROM through incorporation
of the residual. Although these finding can not be generalized, they are in line with the
outcomes from [62] and confirm the advantage of the intrusive character of the LSQ-ROM
for extrapolation cases.

Acceleration potential for different reduction levels

Although the transonic test case leads to different results for the prediction accuracy than
the subsonic case, the general steps of the algorithms are not affected. Therefore, the
results with respect to the acceleration capabilities of the submesh-based hyperreduction
are not discussed in detail like it is done in section 4.2.1. For example, the connection
of the number of selected indices to the submesh size is only slightly influenced by the
different mesh, which now solely contains hexahedrons, and the different sets of indices,
which are based on differing POD modes but still tend to form clusters (cf. fig. 4.32).
The resulting flattening growth rate of the submesh can also be found for the RAE2822
test case. Its influence can be seen in fig. 4.37a, which displays the relative prediction
time for different levels of reduction of the POD basis and hyperreduction. For that,
the time spent in the online stage of the LSQ-ROM is divided by the time required
by the CFD simulation. For every line corresponding to a specific compression rate, a
distinct reduction of the prediction time can be observed, when reducing the relative
number of indices for the evaluation of the residual. This reduction is enhanced when
fewer hyperreduction indices are utilized. This trend is a bit blurred by the influence of
the total number of optimizer iterations on the prediction time. Comparing the relative
prediction of the models with no hyperreduction (relative number of indices = 1.0) to the
ones with the highest level of hyperreduction (relative number of indices = 0.005) shows
speed-up factors of 4.0 up to 18.0 solely due to hyperreduction. On average, the speed-up
is similar to the one observed for the subsonic case (cf. section 4.2.1). The reduction
of the POD basis also accelerates the online stage. However, the compression rates have
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Figure 4.36: RAE2822: Pressure distributions from the LSQ-ROM and POD + TPS
for an extrapolation point.

to be kept higher than for the subsonic case, so this kind of reduction has less effect on
the prediction time. When utilizing the unreduced LSQ-ROM, it is possible to predict
a solution in roughly 1% of the time needed for the FOM. Through the influence of the
described reduction models, the gap to the FOM can be further increased up to speed-up
factors of around 4000 for the model with a compression rate of 0.4 and a relative number
of residual indices of 0.005.
The presented results can be compared to the results of the former hyperreduction im-
plementation in fig. 4.37b, in order to to assess the benefit of the new and consistent
hyperreduction implemented for this thesis. The corresponding results also show a trend
towards a reduction in the prediction time for both reduction methods. Nevertheless, the
acceleration by the former implementation of the hyperreduction is lower. Comparing the
prediction times for the models utilizing the full residual with the models relying solely on
a small subset of 0.5% of all entries, reveals speed-ups of 1.3 to around 4.0. These accelera-
tions are expectedly smaller than for the models relying on the consistent hyperreduction.
Especially for the relatively low number of included indices, the residual evaluation on a
submesh leads to distinct time savings compared to the former hyperreduction. So, the
fastest LSQ-ROM model becomes 800 times faster than the FOM, while with the consis-
tent hyperreduction the fastest model is 4000 times faster. The speed-up factors between
both hyperreduction implementations show similar behaviour and values like the ones
from the subsonic case (cf. fig. 4.27); their depiction can be found in appendix B. These
results confirm the findings from the subsonic case, which is reasonable as the LSQ-ROM
algorithm and its underlying hyperreduction do not change its fundamental behaviour for
the transonic case.
It is interesting to see the behaviour of the prediction time with the consistent hyperreduc-
tion, when normalizing it by the number of objective function evaluations and plotting it
over the hyperreduction level instead of the relative number of indices. By this, the influ-
ence of the number of iterations and the influence of the first jacobian computation within
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Figure 4.37: RAE2822: Relative prediction times for different compression rates.

the optimizer are resolved. At the same time, the usage of the hyperreduction level as a
parameter allows to test the estimations from section 2.4 that suggest a linear scaling of
acceleration potential of the new consistent hyperreduction implementation. Figure 4.38
shows that indeed the acceleration seems to scale in nearly linear fashion. The normalized
relative prediction time flattens a bit with increasing hyperreduction level. However, this
might be explained by the growing influence of some offset costs for the optimization
process like the interpolation of the initial POD coefficients. So, the acceleration of the
LSQ-ROM online stage can estimated by the hyperreduction level as defined by eq. (2.99).

Assessment of the results

The investigations of the LSQ-ROM for the predictions of transonic flow fields show some
important differences to the predictions in the subsonic regime. While the subsonic de-
sign space is sufficiently captured by a small number of POD modes, the transonic design
space includes additional flow phenomena like shocks and shock induced separations that
require more POD modes. This is due to the nonlinear characteristic of these flow phe-
nomena, which are depending in a nonlinear way on the parameters defining the transonic
design space. Therefore, the POD struggles capturing nonlinearities like varying shock
locations [17], and the LSQ-ROM requires a higher number of POD modes for the pre-
diction in the transonic regime. The relative information content of several reduced POD
bases is plotted in fig. 4.12, where it is evident that several additional POD modes are
required to reach the same RIC as for the POD basis for the subsonic regime. In addition
to that, even POD modes with small contributions to the total information content can
include important information for the low dimensional representation of the FOM [17].
The results shown for the RAE2822 test case support the assumed difficulties, as the
accuracy of the predicted flow fields can not match the results obtained for the subsonic
case. Although the flow fields exhibit relatively high errors in the proximity of shocks,
the pressure distributions still show good agreement with the FOM. To capture all the
important flow phenomena, the LSQ-ROM requires POD bases that include at least 40%
of all modes. This value can not be understand as a general benchmark, as the error
induced by the POD representation is affected by the density and location of the training
points in the design space [47], but it still clarifies the effect of the transonic phenomena
in the design space. The hyperreduction instead can be driven to rather high levels of
reduction. While models with low compression rates seem to be more affected by high
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Figure 4.38: RAE2822: Influence of the hyperreduction level on the normalized predic-
tion time.

levels of the hyperreduction, the accuracy of models with high compression rates is only
slightly influenced by it. So for example, the overall agreement of the predicted flow field
with the FOM is better for a model with no reduction of the POD basis but the highest
level of hyperreduction than for a model with a reduced POD basis but no hyperreduc-
tion. For future investigations it might be of interest to examine the influence of the POD
basis on the quality of the hyperreduction indices.
Additional investigations of the accuracy lead to the unexpected results that the the
overall flow field can be approximated more precisely by the POD+TPS model, whose
interpolated solution serves as an initial solution for the optimization process in the LSQ-
ROM. It can be shown that the reason for this is the minimization of high residuals in
the region of the predicted shock. So, while the interpolated solutions do not enforce any
relation to the physically correct behaviour at such strongly nonlinearities, the intrusive
character of the LSQ-ROM assures a better agreement with the FOM at such locations.
The LSQ-ROM is able to accurately predict the magnitude and location of the shock,
whereas the interpolated solution exhibits unphysical over- and undershoots. However,
the enforcement of the residual reduction at the shock comes at a loss in accuracy for
the remaining flow field. The superior prediction quality of POD+TPS the in terms of
the whole flow domain are also observed in the investigation in [2]. Nevertheless, the
incorporation of the residual minimization should prevent the occurrence of local error
spikes as their resulting residuals are effectively reduced during the optimization process.
So with this kind of error damping large over- or undershoots are settled, which becomes
even more obvious for the examined prediction of an extrapolation point. Herein, the
interpolated solution is clearly outperformed by the LSQ-ROM not only for the surface
pressure at the shock but almost for the whole airfoil surface. So, when the interpolation
falls short due to a lack of sampling points, the LSQ-ROM still leads to sufficient pre-
dictions. The extrapolation capability of the LSQ-ROM was already investigated in [62],
which gives similar results for the comparison of the LSQ-ROM and POD+TPS.

91



4.2 Investigation of the hyperreduction

In terms of prediction time, the investigation confirms the main findings of the subsonic
test case. The consistent submesh-based hyperreduction method effectively reduces the
time spent during the online stage by reducing the effort for the evaluation of the residual
and for the reconstruction of the states from the POD coefficients. It is shown that the
potential acceleration is estimated correctly by the linear dependency on the hyperreduc-
tion level, which is based on the submesh size. As the growth rate of the submesh is
high for relatively small sets of hyperreduction indices and flattens towards larger sets
of indices, the new hyprreduction implementation overproportionally benefits from small
set of indices. So, especially for small numbers of indices, the consistent hyperreduction
is superior to the former implementation. The results for this test case suggest speed-up
factors of the online stage, which are up to five times higher than for predictions with
the former hyperreduction. Together with the outcome from the subsonic test case, the
newly implemented hyperreduction proves its effectiveness and its advantage over the
former implementation for the prediction of two dimensional flow fields.

Recommendation for proper reduction levels The findings for the transonic test case
suggest that it is less critical for the prediction accuracy to apply a stronger hyperreduc-
tion than to reduce to POD basis. For the given test case, lower compression rates of e.g.
0.4 for the POD basis can be chosen. However, for such reduction levels the potential
of the hyperreduction can not be fully exploited without degrading the prediction. Since
high hyperreduction levels are preferred to take advantage of the acceleration of the con-
sistent hyperreduction, rather high compression rates of 0.6 or 0.8 are recommended to
use hyperreduction levels that solely use 0.5% of all residual entries. Proper reduction
levels for the POD basis are depending on the design space and the distribution of train-
ing points in it. Therefore, a generalized recommendation can not be given. However,
with respect to the hyperreduction it is assumed that the POD basis needs to be able to
accurately represent the design space as the POD basis directly influences the hyperre-
duction indices. So, when choosing a proper POD basis, it should be possible to utilize
rather high levels of hyperreduction. In case of the investigated test case, the proposed
reduction levels (compression rate = 0.8, relative number of indices = 0.005) still lead
to a distinct acceleration of the online stage and simultaneously retain high accuracy for
important measures like the surface pressure distribution. Compared to an LSQ-ROM
without any reduction, the whole prediction process can be accelerated by a factor of
around 24 leading to a speed-up of around 2300 compared to the FOM. In contrast, the
application of the former hyperreduction leads to for the same reduction levels only to a
speed-up of 500.

4.2.3 NASA-CRM: three-dimensional, transonic flow

The NASA-CRM generic civil aircraft configuration and its mesh, which discretizes the
three-dimensional domain, are shown in section 3.3.1. The aim of the investigations for the
flow around the NASA-CRM is to check if the results for the two-dimensional problem can
be transferred to a three-dimensional problem that is more representative of a potential
industrial application of LSQ-ROM. The dimension influences not only the problem size n,
but also the residual computation and the construction of the three-dimensional submesh
for the consistent hyperreduction. In addition to that, the flow around a full aircraft
is more complex than the flow around a simple airfoil. Therefore, it becomes necessary
to confirm the previous outcomes by additional investigations for a 3D test case. The
investigations are based on a design space that is once again defined by the Mach number
and angle of attack in the ranges:

Mach = [0.75, 0.95] angle of attack = [−2◦, 6◦]
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Figure 4.39: Design space for the prediction of the transonic flow around the CRM.

The specific training points are defined by a two-dimensional Halton sequence and are
illustrated in fig. 4.39 together with nine randomly chosen validation points and the test
point at:

Mach = 0.85 angle of attack = 3.0
The validation points are utilized to ensure that the test point can be taken as represen-

tative point for the design space, so that it is not outperforming all other validation points
in terms of accuracy. As for the 2D cases, the test and validation points are compared
based on two heatmaps that illustrate the objective function values at the end of the op-
timization process and the summed squared error of the total energy fields as it is defined
in eq. (3.3). The predictions for every point refer to an LSQ-ROM without reduction. For
an easier comparison, the values in fig. 4.40 are normalized by the maximum value of all
investigated points. Figure 4.40a shows that the test point is not exceptional in terms of
the objective function value. In fact, the prediction of the test point leads to an objective
function value that ranks among the highest value of the validation points. The same
can be observed for the summed error in fig. 4.40b. A reasonable correspondence can
be seen between the relative ranking of the objective function values and the respective
summed error of the prediction. Similar to the transonic 2D case, the summed residual
indicates the magnitude of the prediction error, although the relation is not as clear as
for the subsonic test case (cf. fig. 4.18).

Accuracy for different reduction levels

The accuracy of the predicted solution is assessed with respect to the CODA reference
solution, which represents the FOM. The pressure coefficient is illustrated in fig. 4.41
for the FOM (top) on the surface of the CRM and for an LSQ-ROM (bottom) that
operates on a full POD basis with no hyperreduction. Figure 4.41 shows the upper
side of the swept wing and the fuselage of the CRM. At the nose of the configuration
a small area of increased pressure can be observed, which is due to the presence of a
stagnation point at the nose tip. The wing exhibits over its whole span a low pressure
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Figure 4.40: NASA-CRM: Heatmaps for the validation of the test point.

region that starts at the leading edge and ends with a compression shock at around 40%
to 60% of the respective chord length. It can be seen that the LSQ-ROM is able to
predict a pressure distribution that is in good agreement with the FOM. Nevertheless,
the location of the shock front is a bit off and further deviations are present at the root
and tip of the wing. A more detailed illustration of the accuracy of the LSQ-ROM with
respect to various levels of hyperreduction is given in fig. 4.42. Figure 4.42a displays
various pressure distributions for a compression rate of 1.0 at a slice in the Z-X plane
located at 50% of the wing span. Comparing the pressure distributions of the LSQ-ROMs
with the reference solution reveals distinct deviations between the FOM and the ROM.
Besides the LSQ-ROM with the lowest number of relative indices for the residual, all
LSQ-ROMs exhibit similar predictions of the pressure coefficient. While the pressure
side is predicted with a high accuracy, the suctions side exhibits differences along the
total chord length. In contrast to the two-dimensional transonic case, where the LSQ-
ROM is able to precisely predict the pressure around the shock, the 3D case exhibits
deviations also at the shock location. Although the shock phenomena is still captured,
the magnitude is underestimated and its location is shifted a bit towards the trailing
edge. The loss in accuracy compared to the 2D case is somehow expected, because of
the more complex flow field, which would probably require a much higher density of
training points in order to achieve a similar accuracy. Nevertheless, the influence of the
hyperreduction is relatively small, so only the model with the lowest number of indices
shows significant differences in front of the compression shock compared to the LSQ-
ROMs with higher numbers of indices. When reducing the POD basis to a compression
rate of 0.5, the agreement with the reference solution further degrades as it can be seen
from fig. 4.42b. The predicted pressure distributions are not able anymore to fully capture
the shock at the suction side: they highly overestimate the pressure before the previous
shock location and they underestimate it behind this location. This degradation of the
predicted solution is not surprising, as the the model with the double amount of POD
modes already struggles to accurately capture the pressure distribution at the suction side.
The pressure side at this wing location is still captured very precisely, which is probably
due to the small influence of the input parameter on the flow at the pressure side. Similar
to the results from fig. 4.42a, the pressure distributions are only slightly influenced by the
hyperreduction. Merely the highest level for the hyperreduction clearly deviates from the
predictions of the all other models. Further pressure distributions for other wing span
locations can be found in appendix C. As the presented results indicate that the highest
errors along the wing emerge on the suction side, the next depictions focus on the errors
of the pressure coefficient at the suction side of the wing. For that, fig. 4.43 illustrates

94



4.2 Investigation of the hyperreduction

Figure 4.41: NASA-CRM: Pressure distributions of the FOM and the unreduced LSQ-
ROM at M = 0.85 and α = 3.0◦.

(a) compression rate = 1.0 (b) compression rate = 0.5

Figure 4.42: NASA-CRM: Pressure distributions for a slice at 50% of the wing span.
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Figure 4.43: NASA-CRM: Error of the surface pressure coefficient for a compression
rate of 1.0.

the difference in the pressure coefficient between the specific LSQ-ROM and the reference
FOM. The error is shown again for four different levels of the hyperreduction, described
by the relative number of residual indices taken into account. It is possible to see that the
highest deviations stretch span-wise along the shock front as described for fig. 4.41. So, the
overestimation of the pressure before the shock front, which is already observed for the slice
section at 50% of the wing span, is present almost along the full wing span. Behind the
shock front, the pressure is underestimated leading to small band of negative deviations
from the pressure coefficient of the reference solution. This characteristic behaviour of the
error can be found for all illustrated model predictions. As for the pressure distributions
at the presented slice location, the hyperreduction has a relatively small impact on the
predicted surface pressure. Even for the model with the highest level of hyperreduction,
the maximum error is only increased for a localized area at the wing tip. The effect
of an additional reduction of the POD basis on the predicted surface pressure can be
examined from fig. 4.44, which illustrates the pressure predicted by LSQ-ROMs with a
compression rate of 0.5 and varying levels for the hyperreduction. Compared to the results
from fig. 4.43, the surface solutions used for fig. 4.44 feature much higher deviations from
the reference solution. The highest differences reach values of 0.3, while the predictions
with full POD basis reached only deviations below 0.2. Nevertheless, the characteristics
of the error distribution across the wing stay almost the same, but with an increased
magnitude of the error. Also the sensitivity of the solution to the hyperreduction is quite
similar to the one for the model with an unreduced POD basis. Anyway, from fig. 4.44
(d) and its comparison to the other error distributions (a,b, and c) it is clear that the
influence of the hyperreduction can become substantial when the number of indices is
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Figure 4.44: NASA-CRM: Error of the surface pressure coefficient for a compression
rate of 0.5.

too low. As the underlying solution of (d) clearly deviates from the other solutions in
fig. 4.44 and additionally in a more distinct way than fig. 4.43 (d), the LSQ-ROMs with
the reduced POD basis seem to be more distinctly influenced by the hyperreduction than
the LSQ-ROMs with the full POD basis. This trend is also one of the findings from the
investigations of the two-dimensional transonic test case, and it is additionally supported
by the illustration of the coefficient of determination for the surface pressure in fig. 4.45,
where the coefficient of determination is displayed as a function of the reduction of the
POD basis and the hyperreduction. It can be seen that the models with compression rates
of 1.0 and 0.5 face solely slight decreases of the agreement of the surface pressure when
increasing the level of the hyperreduction; for the compression rate of 0.5 it even increases
a bit. In contrast, the decrease is more distinct for the models with lower compression
rates. As for the two-dimensional case, it can be assumed that this degradation is caused
by the selection of hyperreduction indices, which are less suited for the representation of
the whole residual vector.

Comparison with the interpolated solution Similarly to the two-dimensional analyses,
the LSQ-ROM for the CRM is compared with the interpolated solution referring to a non-
intrusive POD+TPS model; it is important to remember that the interpolated solution is
used in LSQ-ROM as a starting condition for the minimization of the residual vector. The
comparison from section 4.2.2 shows that the residual minimization of the LSQ-ROM is
not automatically leading to a higher agreement of the overall flow field, but rather focuses
on reducing the most dominant errors in the flow field. For example, small errors in the
proximity of nonlinearities – such as the shocks on the suction side of the CRM wing –
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Figure 4.45: NASA-CRM: Coefficient of determination for the surface pressure for dif-
ferent compression rates.

can result in relatively high residuals, which probably become the focus of the residual
optimization process. Nevertheless, the LSQ-ROM is expected to improve the accuracy
in the regions of the largest residuals, which correspond in a nonlinear fashion to the
actual deviations from the FOM. The agreement of the surface pressure is illustrated in
fig. 4.46 for the predictions of the LSQ-ROM and the POD+TPS model. As expected,
this integral measure for the accuracy of the predicted surface pressure is higher for the
interpolated solutions than for the corresponding LSQ-ROM with the same POD basis.
Even the POD+TPS model with a compression rate of 0.25 predicts a solution with a
higher agreement than the best LSQ-ROM. Before examining the accuracy at the wing,
where strong nonlinearities appear due to the shock front, it must be noted that the
coefficient of determination from fig. 4.46 is computed for the whole surface of the CRM
including the fuselage. In fig. 4.47 the difference in the pressure coefficient is displayed
for the LSQ-ROM and the POD+TPS interpolated solution with respect to the FOM.
It is remarkable to see that the LSQ-ROM without any reduction is outperforming the
interpolation model for the prediction of the surface pressure around the shock front along
the wing. The underestimation of the pressure ahead of the shock front is lower after the
residual minimization of the LSQ-ROM, especially for the central part of the wing. So,
in this case, the residual minimization within the whole flow field is able to reduce the
maximum errors at the surface of the CRM. However, for a reduced POD basis with only
half of all modes, the LSQ-ROM is not able to effectively reduce the errors at the wing
surface. The interpolated solution from (c) instead is very similar to the one in (a), which
is already indicated in fig. 4.46 by the small difference in the coefficient of determination.
It is somehow unexpected that the errors increase, even the maximum errors, during the
residual minimization process, since it should focus on the reduction of the relatively high
residuals like it seems to be the case in (b). However, the surface values are just a small
extract of the flow field, so the residual minimization is likely to decrease the residuals in
cells not associated to the shown surfaces, which still result in a local minimum for the
sum of all squared residuals. A speculation about why this behavior occurs for the CRM
case but not for the 2D case might be the weighting of the residuals by the square root
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Figure 4.46: NASA-CRM: Coefficient of determination for the surface pressure of the
LSQ-ROM and POD+TPS for different compression rates.

of the corresponding cell volume. While the mesh for the RAE2822 has extremely small
cells at the surface of the airfoil compared to cells located farther away, the mesh of the
CRM does not have such a fine resolution in the neighborhood of the wing. Therefore,
the errors directly at the CRM wing are not favoured as much as for the RAE2822 during
the residual minimization process.

Assessment of the submesh-based Hyperreduction in 3D

As already mentioned in the beginning of this section, the dimensionality of the predicted
flow problem directly influences the performance of the consistent submesh-based hyper-
reduction due to the necessity to include the stencil of every residual / cell index selected
by the MPE and DEIM. These three-dimensional stencils contain more neighbouring cells
than the same stencil for a two-dimensional mesh. This fact is important as the accel-
eration potential of this hyperreduction is determined by the size of the submesh and
not directly by the number of hyperreduction indices like for the former implementation.
So, the connection between the number of indices and the submesh size is crucial for a
potential acceleration of the hyperreduction. Hence, this connection is investigated with
respect to the expected changes due to the additional dimension of the flow problem. To
evenly compare both hyperreduction implementations, the number of (hyperreduction)
indices is still utilized. Figure 4.48 displays a section of two different submeshes of the
CRM. While (a) and (c) illustrate only the cells, which directly refer to hyperreduction
indices, (b) and (d) additionally show the cells contained in the respective stencils. As
the hyperreduction indices are mostly concentrated around the wing of the CRM other
parts of the submesh are not visualized. Nevertheless, all the submeshes contain further
cells at the farfield boundary and in the wake of the wing and the fuselage. From the
comparison of (a) and (b), it becomes clear that the submesh is substantially growing
through addition of the stencil cells. The full mesh is purely based on hexahedrons and
adding the neighbours and the neighbours of the neighbours to a hexahedron leads to 24
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Figure 4.47: NASA-CRM: Error of the surface pressure coefficient for solutions of the
LSQ-ROM and POD+TPS.
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Figure 4.48: NASA-CRM: Submeshes utilized for the consistent hyperreduction.

more cells, which are twice as many as in a two-dimensional case. However, the hyperre-
duction indices are clustered in small regions of the whole domain as it can be seen from
fig. 4.48. As a result, adding another cell with its stencil to an existing mesh implies much
less new cells added to the submesh than the full 24. An illustration of this growth rate
is given in fig. 4.23. It displays the relative number of cells in the submesh with respect
to the relative number of indices picked for its construction. The green line poses the
unrealistic but ideal case that all indices are perfectly clustered and thus implying only
the cells referring to the hyperreduction index. In contrast to that, the red line is based on
randomly distributed hyperreduction indices. The real distribution of the hyperreduction
indices for the CRM lays between these two extrema indicating a clustering of the indices,
which is also part of the results from fig. 4.48. The pessimistic estimation that all indices
are somehow randomly distributed in the domain would lead to extremely fast growing
submeshes. In fact, 20% of the total number indices would be enough to obtain a sub-
mesh containing more than 99% of the original mesh. Compared to the two-dimensional
case, where 20% of the indices would results in submesh containing roughly 90% of all
cells (cf. fig. 4.23), this scenario is even worse for the three-dimensional case. Based on
the estimations for the acceleration potential of the hyperreduction (cf. section 2.4), this
would automatically result in computational times similar to the former implementation.
However, the clustering of the hyperreduction indices reduces the growth rate, so that
20% of all indices result in a submesh, which still has only half of the size of the original
mesh. The overall behaviour of the growth rate of the submesh is quite comparable to the
one presented for the NLR7301 mesh. It has a flattening increase in the submesh size with
increasing number of hyperreduction indices, which means that a reduction of the number
of indices reduces smaller submeshes more distinct than larger ones. So, to maximize the
potential advantage of the consistent hyperreduction over the former hyperreduction, the
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Figure 4.49: 3D: Relative number of submesh cells depending on the relative number of
selected indices.

number of indices should be as low as possible.

Acceleration potential for different reduction levels

Although the performance of the new hyperreduction implementation is already con-
firmed for the 2D test cases in section 4.2.2 and section 4.2.1, an investigation of a three-
dimensional problem is still of interest, because of the dependency of the submesh size
on the dimension and the increased problem size n. In addition to that, the investiga-
tions in [3] revealed for the application of the LSQ-ROM to an unsteady flow around the
CRM, that the former hyperreduction becomes less effective for larger meshes, because
the main part of the prediction time is spend for the evaluation of the residual and not
in the LM algorithm. A direct comparison with the findings for the steady application is
not seeked, but the upcoming investigations assess the new implementation with respect
to the estimations in [3] for the acceleration of a hyperreduction that also acts on the
residual evaluation. First, it is verified that the residual evaluation in the CFD solver still
scales linearly with the number of cells. For that, the average time spent in the evaluation
of the objective function during the prediction stage is displayed in fig. 4.50 with respect
to the hyperreduction level. Indeed, the time per objective function evaluation scales
linearly with the size of the submesh. This is an important keystone for the effectiveness
of the submesh-based hyperreduction, but rather confirms a desirable characteristic of
the CFD solver than of the hyperreduction itself. The acceleration potential for the full
online stage is illustrated in fig. 4.51a by the relative prediction time. As expected, both
reduction methods lead to decrease in the prediction time, which is normalized by the
time spent for the FOM. It is possible to see that the decrease of the prediction time with
a decreasing number of indices corresponds to the behaviour of the submesh growth in
fig. 4.49. Therefore, the reduction in the prediction time is enhanced with the decrease
of the number of indices. The relative prediction time for the unreduced LSQ-ROM cor-
responds to a speed-up factor of around 9 compared to the FOM. Applying the highest
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Figure 4.50: NASA-CRM: Time spent for the evaluation of the residual / objective
function.

level of hyperreduction (0.16% of all indices) leads to a prediction that is more than 400
times faster than the FOM. So, the solely the hyperreduction can reduce the prediction
time by a factor of 48. For the other models with lower compression rates, the hyperre-
duction accelerates the specific model by a factor between 13 and 51. These factors are
multiple times higher than for the transonic 2D case. This is mostly because of the lower
hyperreduction level applied in for the CRM case, but also because of the larger prob-
lem size n, which increases the share of the time for the residual evaluation on the total
prediction time. Although the previous results show that the highest reduction levels for
both the POD bases and the hyperreduction do not lead to accurate predictions, their
application in the LSQ-ROM would dramatically decrease the prediction time. For the
lowest compression rate and number of indices the LSQ-ROM becomes around 5500 times
faster than the FOM. In order to assess the benefits of the consistent hyperreduction, the
relative prediction times of the LSQ-ROMs with the former hyperreduction are displayed
in fig. 4.51b to compare them with the times in fig. 4.51a. The illustrated prediction times
decrease for models with a lower compression rate. By applying the former hyperreduc-
tion, the prediction time is decreased only slightly. For various models, the prediction
time is even increased for higher levels of hyperreduction. However, this is caused by
an higher number iterations in the optimizer, which could not be compensated by the
hyperreduction. The consistent hyperreduction faces the same trend but is clearly able
to still reduce the overall prediction time. With the former implementation the model
with a compression rate of 1.0 is only accelerated by a maximum factor of around 6,
which is the highest value among all investigated models. In contrast to that, the con-
sistent hyperreduction can reduce the prediction times up to a full order of magnitude.
Nevertheless, to obtain such superior acceleration results, it is crucial that the number of
indices is extremely low so that the submesh size if effectively reduced. This becomes clear
when examining the speed-up factor for the LSQ-ROM for the different hyperreduction
implementations. Thereby, the speed-up factor is the prediction time with the former
hypererreduction dived by the time with the consistent hyperreduction. From fig. 4.52 it
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Figure 4.51: NASA-CRM: Relative prediction times for different compression rates.

is possible to see that the speed-up through the consistent hyperreduction dramatically
increases for low numbers of hyperreduction indices. When taking 20% of all indices into
account the speed-up factors are around 2.5, whereas a further reduction of this number
below 0.2% leads to speed-ups between 22 and 28 depending on the actual submesh size.
Through comparison of the prediction times of the two hyperreduction implementations
it is also possible to assess the acceleration estimations from [3]. These estimations are
done in the context of an unsteady LSQ-ROM and they assume an acceleration of the
whole online stage by a factor 5 for a model with a relative number of indices of 5% and
an POD basis with 60 modes. Despite some differences between the unsteady and steady
LSQ-ROM algorithm, the estimated acceleration should be at least of the same order of
magnitude. When examining the speed-up factors at the given relative number of indices,
it can be seen that all the models exhibit speed-up factors between 6 and 9, which are
even a bit higher than the estimated factor of 5 from [3]. So the real speed-up factors are
in good agreement with the estimated factor, especially when considering the different
context of the estimations.

Assessment of the results

By investigating the LSQ-ROM for the prediction of a transonic, three-dimensional flow,
it is possible to confirm important findings from the two-dimensional case and to add
further results that apply to three-dimensional problems with a larger problem size. So,
as the design space for the CRM is also fully transonic, similar issues concerning the
representation of nonlinear shock phenomena by a linear combination of POD modes
are expected. Beyond that, the shock is not anymore a two dimensional phenomena,
but forms a three-dimensional shock front. Therefore, the POD basis needs to capture
more complex flow field affected by extensive areas dominated by compression shocks.
The results examining the accuracy of the predicted solutions indeed reveal similar issues
for the prediction of the flow including shocks. Even the full POD basis is not able to
predict the surface pressure at the wing of the CRM as precisely as the POD basis for the
RAE2822. This can be explained by the higher complexity of the flow, but also by the
different design spaces. Although the design space for the CRM includes more training
points, the range for the Mach number is doubled, so that the chosen number of training
points may be not sufficient to reach the the same level accuracy like the prediction for
the RAE2822. Nevertheless, the investigated LSQ-ROMs based on the full POD basis
are still able to capture main flow characteristics at the surface of the CRM. Particularly,
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Figure 4.52: NASA-CRM: Speed-up factors of the consistent hyperreduction for differ-
ent compression rates.

for areas aside the shock dominated flow at the suction side of the wing, the agreement
with the FOM is overall acceptable. The highest deviations occur ahead and behind the
shock front at the suction side of the wing, which suggests that the POD basis misses
information to accurately represent the shock, especially its location. As a consequence,
a considerable reduction of the POD is not possible without causing a significant loss in
accuracy. Generally, the hyperreduction constitutes a feasible way to reduce the effort
for the LSQ-ROM as even extreme reduction levels including less than 2% of all residuals
entries do not degrade the solution beyond reasonable limits. Similar to the transonic 2D
test case, the hyperreduction can be further extended, when choosing higher compression
rates. While the full POD basis allows to reduce the number of indices below 0.2%, the
models with lower compression rates are more sensitive and require higher numbers to
prevent a further loss in accuracy due to the hyperreduction.
The comparison of the LSQ-ROM with the POD+TPS model – which generates the POD
coefficients used as optimization initial condition – confirms the findings from the 2D case.
The interpolation model outperforms the LSQ-ROM for the accuracy in a global sense.
The residual minimization procedure in the LSQ-ROM seems to reduce localized errors
around the shock front, which is therefore captured more accurately by the LSQ-ROM.
With respect to the newly implemented hyperreduction, it is shown that the submesh size
is not growing as fast as one might expect from the larger stencils in three dimensions.
However, the same relative number of hyperreduction indices still leads to a larger mesh
in 3D than in 2D. Considering that the acceleration should linearly depend on the size
of the submesh, the reduction potential is decreased in 3D, at least for a pure residual
evaluation.
The consistent hyperreduction is able to achieve clear reduction of the prediction time.
For the lowest number of hyperreduction indices (0.16%), the consistent hyperreduction
can accelerate the models without hyperreduction up to a factor of 50. The former
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hyperreduction instead reaches only factors of 6 emphasizing the large acceleration ad-
vantage of the consistent hyperreduction. The direct comparison of the prediction times
for the two hyperreductions exhibits distinct speed-up factors for predictions with the
consistent hyperreduction, which can reach values around 25 for very low numbers of the
hyperreduction indices. These results confirm the superior performance of the new hyper-
reduction implementation also in three dimensions. For the same levels of hyperreduction,
the speed-ups are similar for the 2D and 3D cases, although an increased problem size
should increase the share of the time spent for the residual computation. Anyway, the
small number of POD modes limits the effort for the linear algebra operations in the
LM algorithm, so its share is relatively small even for the 2D problems. Moreover, the
growth behaviour of the submesh counteracts the trend towards a higher effectiveness
of the consistent hyperreduction. As a final result, the acceleration estimations from [3]
for a consistent hyperreduction are verified. The estimated speed-up factor for such a
hyperreduction is in convincing agreement with the one calculated from the presented
result.

Recommendation for proper reduction levels As already described, the prediction of
the flow around the CRM should utilize a preferably complete POD basis in order to
obtain a solution with a sufficient accuracy level. For predictions with a similar accuracy
level like the 2D prediction, it seems to be necessary to increase the density of training
points in the design space due to the transonic conditions and the dimensionality of the
flow field. For the design space utilized in this work, a reduction of the POD basis is not
recommended, since the reduction can cause a severe accuracy deterioration. However, a
full POD model allows to choose high levels for the hyperreduction, which leads to distinct
time savings. For the presented test case and an unreduced POD basis, the number of
indices can be reduced down to about 0.2% of all indices. With these reduction levels
a similar accuracy like the baseline LSQ-ROM without any reduction can be obtained,
while reducing the prediction time by a factor of 48. The resulting ROM leads to a
prediction time that is 400 times lower compared to the FOM. In contrast to that, the
application of the former hyperreduction would result in a model that is only 17 times
faster than the FOM, which is a distinct acceleration, yet the speed-up with the consistent
implementation of the hyperreduction is more than 20 times higher.
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Conclusion
Reduced order models (ROMs) are popular techniques that are conceived to reduce the
growing computational effort needed for the solution of complex problems in several en-
gineering fields. Besides purely data-driven models like neural networks or interpolation
based methods, multiple intrusive ROMs have been proposed and successfully tested like
the Galerkin projection, the GNAT method or the LSQ-ROM, which is investigated in
this thesis for the prediction of steady-state problems.
More specifically, the LSQ-ROM couples a POD reduced space representation with the
direct minimization of the residual vector computed by the full order model (FOM), which
usually consists of a numerical Finite-Volume solver for partial differential equation. This
link between the LSQ-ROM and the FOM retains the full description of the underlying
physics in the prediction framework, but it also causes the ROM model to scale with the
original problem size, e.g. the size of the CFD mesh. In order to overcome this limitation,
hyperreduction techniques are included into the model in order to reduce the computa-
tional cost associated with the residual evaluation. Within the DLR research group, the
current implementation of hyperreduction in the LSQ-ROM framework is limited to a
reduction of the residual after its evaluation in DLR’s CFD solver TAU. So, the full po-
tential benefit of a hyperreduction is not exhausted because of some intrinsic restriction of
the available solver TAU. However, the new CFD solver CODA, which is currently under
development, allows new approaches for the implementation of a consistent hyperreduc-
tion.
This thesis work presents the implementation of a consistent hyperreduction that utilizes
a reduced submesh for the evaluation of the residual, and thus effectively removes the
dependency on the original problem size. The benefit of this consistent hyperreduction
is tested for 2D test cases in subsonic and transonic conditions as well as for a tran-
sonic 3D test case. The application of this consistent hyperreduction implementation
allows to significantly reduce the time spent in the online stage of the LSQ-ROM, which
leads to predictions that are several hundred times faster for the 3D case and several
thousand times faster for the 2D cases. For high levels of hyperreduction, the consistent
hyperreduction leads to speed-up factors up to 25 compared to the former hyperreduction
implementation. Overall, this thesis successfully implements a submesh-based hyperre-
duction, and the result analyses highlight some key aspects that are briefly described in
the following paragraphs.
First of all, it can be shown that the POD basis can be reduced up to relatively high
level when operating in subsonic conditions because the resulting aerodynamics do not
exhibit strong nonlinearities. However, for the investigated design spaces in the transonic
flow regime, an accurate representation of the nonlinear phenomena like shocks requires
additional POD modes, i.e. a lower level of reduction. Although the density of training
points is more than doubled for the transonic test cases, results show that an inappropriate
reduction of the POD basis can easily lead to a distinct accuracy deterioration of the LSQ-
ROM.
The second observation is the influence of the POD basis reduction on the effectiveness of
the hyperreduction selection process. It has been noticed that the hyperreduction indices
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seem less suited for the representation of the full residual when computed from a POD
basis that is inappropriate to properly characterize the solution space. As a result, the
hyperreduction can cause distinct deterioration of the prediction accuracy when applied
together with a reduction of the POD basis that is too high. Thus, the reduction of
the POD basis of the LSQ-ROM is critical for the prediction quality, whereas high levels
of hyperreduction seem to be applicable as long as the POD basis effectively spans the
design space.
With respect to the hyperreduction indices, a preliminary set of analysis revealed that the
indices selected by the DEIM and MPE are missing information of the input parameter,
which are defined only at the boundary of the computational domain. Therefore, the
resulting reduced residual is not penalized when violating the imposed boundary condi-
tions at the farfield boundary. As a consequence, the LSQ-ROM prediction process may
converge to a local optimal solution that substantially violates the boundary conditions.
The successfully implemented approach to circumvent this issue is to add a small percent-
age of indices corresponding to cells at the farfield boundaries to the primarily selected
hyperreduction indices.
Apart from these accuracy related results, investigations are conducted to assess the
performance of the consistent hyperreduction with respect to the expected reduction in
computational cost and time. The time for the full online stage decreases according
to the lowered effort for the residual evaluation and the reconstruction of the reduced
state, which both scale linearly with the submesh size. The consistent hyperreduction
allows to reduce the prediction time for all investigated test cases by around an order of
magnitude (c.f. section 4.2.1 and section 4.2.2). For the larger 3D case, higher levels for
the hyperreduction can be applied leading to even more distinct accelerations, that reduce
the prediction time up to a factor of 50 (c.f. section 4.2.3). With this acceleration the
LSQ-ROM becomes several hundred to thousand times faster than the FOM. In addition
to the hyperreduction, the reduction of the POD basis leads to the expected reduction of
the prediction time.
In comparison with the former hyperreduction, the results show that the submesh-based
approach is clearly outperforming the former implementation. Although the former hy-
perreduction also leads to a reduced time spent in the online stage of the LSQ-ROM,
the consistent hyperreduction is consistently superior thanks to its direct influence on
the residual evaluation which represents the most computationally expensive operation in
the LSQ-ROM algorithm. For example, the results show that the highest hyperreduction
levels lead to speed-up factors of about 5.0 for the 2D test cases and 25 for the 3D test
case. Therefore, the consistent hyperreduction exceedingly benefits from the possibility
to reduce the residual to very small subsets.
It is evident that the influcence of the two different reduction methods (POD basis re-
duction and hyperreduction) on the LSQ-ROM prediction accuracy and computational
time is the result of a compromise between an acceptable accuracy level and a sufficient
acceleration. The choice of proper reduction levels primarily depends on the design space
and the flow regime it spans. For steady, subsonic applications of the LSQ-ROM it seems
that the POD basis can be reduced to rather high levels without exceeding errors of 1%
in the whole flow field. The hyperreduction is barely influencing the accuracy even when
combined with reduced POD basis. Therefore, the LSQ-ROM can be accelerated by sev-
eral orders of magnitude by choosing a low percentage of hyperreduction indices with a
POD basis defined by only a few modes to accurately capture the design space. When
aiming for an increased accuracy it is recommended to utilize more POD modes as their
influence on the accuracy is more distinct than additional residual entries.
In case of a design space in the transonic regime, the POD basis can not be reduced as
effectively as in the subsonic regime. The representation of nonlinearities requires a high
number of POD modes, and therefore only a limited POD basis reduction can be achieved
without excessively worsening the prediction quality. Because a reduction below a certain
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level can also negatively influence the performance of the hyperreduction, a reduction of
the POD basis should be only considered for design spaces with a sufficient coverage with
training points. However, the hyperreduction can be driven towards similar reduction
levels like in the subsonic case as long as the POD basis contains a sufficient number of
modes.
Future investigations of the LSQ-ROM, particularly for the hyperreduction, could include
the examination of different approaches to select the hyperreduction indices. Although the
selected indices allow to effectively reduce the residual vector, the set of indices selected
by the MPE is not optimal as the indices are selected in a greedy algorithm. There are
several other approaches, e.g. for optimal sensor locations based on a Bayesian perspec-
tive [1], [76] that could possibly further improve the performance of the hyperreduction
indices. More advanced approaches could also utilize information about the residuals, as
the indices selected by the DEIM and MPE rely on the POD basis, although the indices
should represent the residual, which is only a nonlinear function of the POD basis in this
context.
Related to the submesh-based approach further work needs to be done to enable other
discretization approaches on the submesh. So far, only the Green-Gauss approach for the
gradient reconstruction can be applied for the residual evaluation on the submesh. How-
ever, more accurate approaches in CODA are based on the Least-squares approach, which
relies on a minimum number of cell neighbours. For the outer cells of a solitary stencil this
minimum number is undercut, which prevents the application of these approaches. At the
same time it reveals potential for further acceleration of the submesh residual evaluation,
since so far, the fluxes and gradients are evaluated for every face in the submesh, although
they are solely need for specific cells of the full stencil. This produces overhead, which
might be reduced. Nevertheless, it would probably require more invasive changes in the
CODA algorithms.
Moreover, the hyperreduction could be further developed towards an application for un-
steady predictions to utilize the acceleration potential of the consistent hyperreduction,
e.g for the prediction of gusts like in [3]. Although it is still an open question, how this
can be realized in the context of CODA’s unsteady time stepping scheme, the persuasive
results of the conducted investigations should motivate further research on this topic.
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Figure A.1: NLR7301: Coefficient of determination for the predicted density field.
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Figure A.2: NLR7301: Coefficient of determination for the predicted field of the mo-
mentum in x-direction.
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Figure A.3: NLR7301: Coefficient of determination for the predicted field of the mo-
mentum in z-direction.
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Figure B.1: RAE2822: Coefficient of determination for the predicted density field.
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Figure B.2: RAE2822: Coefficient of determination for the predicted field of the mo-
mentum in x-direction.
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Figure B.3: RAE2822: Coefficient of determination for the predicted field of the mo-
mentum in z-direction.
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Figure B.4: RAE2822: Speed-up factors for the two hyperreduction implementations.
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Figure B.5: RAE2822: Relative error of the Total Energy for the POD + TPS and
LSQ-ROM predictions.
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Figure C.1: NASA-CRM: pressure distributions at 25% of the wing span for a LSQ-
ROM with a compression rate of 1.0.

Figure C.2: NASA-CRM: pressure distributions at 75% of the wing span for a LSQ-
ROM with a compression rate of 1.0.
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Figure C.3: NASA-CRM: pressure distributions at 25% of the wing span for a LSQ-
ROM with a compression rate of 0.5.

Figure C.4: NASA-CRM: pressure distributions at 75% of the wing span for a LSQ-
ROM with a compression rate of 0.5.
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