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Abstract—In any mechatronic system, faults can occur. Likewise
also in the MMX rover, which is a wheeled rover mutually
developed by CNES (Centre national d’études spatiales) and
DLR (German Aerospace Center), intended to land on Phobos.
An essential part of the MMX rover is the locomotion subsystem
which includes several sensors and eight motors actuating the
four legs and the four wheels. In each of these components and
their interfaces, there is a possibility that faults arise and lead
to subsystem failures, which would mean that the rover cannot
move anymore. To reduce this risk, the possible faults of the
MMX locomotion subsystem were identified in a FMECA study
and their criticality was classified, which is presented in here.
During this examination, the criticality was graded depending
on different mission phases. With the help of this study, the
hardware, firmware and software design were enhanced. Fur-
ther, certain fault detection, isolation and recovery strategies
were implemented in the locomotion firmware and software as
well as in the full rover software.
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1. INTRODUCTION
The goal of JAXA’s Martian Moons eXploration (MMX)
mission is to scout both Mars moons Phobos and Deimos.
For the larger of the two moons, Phobos, it is planned to
deploy a rover, jointly developed by CNES and DLR [1].
This rover serves to explore the surface of Phobos, which is
up to now unknown. Despite - or rather particularly because
of - the milli gravity on this moon, namely around 0.004 −
0.007m/s2, the rover is designed with four fully rotatable
legs and four wheels, each actuated by one motor. The lo-
comotion subsystem, which is developed at the Robotics and
Mechatronics Center (RMC) at DLR, also includes sensors
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Figure 1: Overview of the communication interfaces that
are relevant for the MMX locomotion subsystem.

which are necessary for monitoring and traceability of the
rover behavior. These sensors include:

• one commutation sensor (Hall sensors) per motor
• one absolute position sensor (potentiometer) per leg
• one torque sensor per leg
• current sensors
• voltage sensors
• four 3-axis-accelerometers
• two single-axis-gyroscopes
• numerous temperature sensors
• a radiation sensor.

Analog sensor values are digitalized by A/D converters
(ADC) to make them usable for the FPGA (Field Pro-
grammable Gate Array). The FPGA is forwarding the digital
values to the locomotion software on the on-board computer
(OBC). The locomotion software (LOCO) can then forward
the sensor data, but also already detected faults, to the
Command- and Control Software (CCSW) and the Hardware-
and Software-Events-Manager (HSEM). An overview of this
communication path is depicted in Fig. 1.

The sensor data from the motors are monitored in the FPGA,
but also forwarded to the locomotion software. The sensor
values are evaluated and monitored on the OBC in the loco-
motion partition. This software partition - hereinafter called
LOCO - is also responsible to forward the sensor- and motor
data via higher level software to ground as housekeeping data.

To evaluate faults across the MMX locomotion subsystem,
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Figure 2: The FDIR principle.

the FMECA approach was used, which is explained in the
remainder of this chapter. The faults have different impacts in
the distinct mission phases, which are described in the second
chapter. The third chapter presents the fault detection in the
firmware, followed by the fault detection in the software in
the fourth chapter. The fifth and sixth chapter explain the
fault recovery in the locomotion subsystem and the full rover
software, respectively.

FDIR

The design of a complex system like the MMX rover is
a challenging task. Even with highly sophisticated design
processes, the existence of faults is unavoidable. Fortunately,
not every existing fault evolves into a system failure. A
systematic practice to handle such faults is commonly re-
ferred to as FDIR (Fault Detection, Isolation and Recovery).
This methodology attempts to prevent faults from turning into
failures. Fig. 2 shows the FDIR principle.

Of course, the addition of FDIR mechanisms in the hardware
or software of the rover leads to a more complex system.
Either additional hardware elements are needed or software
algorithms have to be added in order to provide the outlined
mechanism. The fault detection and isolation is a reactive
subsystem, which is triggered for instance by an abnormal
operating state or odd sensor values. During the fault pro-
cessing, multiple scenarios are feasible to overcome this ex-
ceptional operating state. The range measures from a simple
rejection of sensor values up to a switch over to the redundant
system path, if available. In general, all FDIR measures are
added in order to increase the reliability and availability of
the system. An overview of FDIR methodologies in space
application is well explained in [2].

FMECA

For a space project, the existence of FDIR mechanisms is
mandatory. In 1966, a procedure for failure mode, effects
and criticality analysis (FMECA) was developed and first
deployed for the NASA’s Apollo program [3]. Every project
which is in line with the ECSS (European Cooperation for
Space Standardization) standards shall implement a depend-
ability assurance by means of a systematic process. More
information about these requirements can be found in the
ECSS-Q-ST-30C standard [4] which is provided by the ESA
- ESTEC (European Space Research and Technology Centre)
division.

Table 1: Severity numbers, taken from [5]

Table 2: Probability levels, taken from [5]

One possibility of such a systematic process is the so called
FMEA (Failure Mode and Effects Analysis) and the FMECA
(Failure Mode, Effects and Criticality Analysis) which is an
extension of the FMEA. Both processes are performed to
identify potential failures in products and processes. The dif-
ference between both is in the classification of the identified
failures. The FMEA classifies the failures according to the
severity of their consequences while the FMECA classifies
the failures according to their criticality.

Since the FMEA / FMECA are very generic processes, in-
structions on how such an analysis can be performed for
the MMX rover locomotion system are not available. Only
guidelines, which topics should be considered, could be
found. One document which provides some basic information
on the FMEA / FMECA is the ECSS-Q-ST-30-02C standard
[5]. Therefore, in the following the most important details of
the performed FMECA in the MMX project are highlighted.

As already stated, the FMEA and FMECA classify failures
according to the severity with respect to the criticality. There-
fore, a scale must be defined and agreed by all involved par-
ties. Fortunately, the standard ECSS-Q-ST-30-02C provides
solutions, which are typically used without modification.
Table 1 shows the definition of the severity numbers “SN”
which are defined in reversed order to the severity level.
The severity level is defined from “Catastrophic” down to
“Negligible”. The meaning of these levels are described more
in detail in the standard.

Similarly to the severity levels, the probability levels are de-
fined. The meaning of the numbers “PN” go from “Probable”
down to “Extremely remote”(see table 2).

Finally, the criticality number is calculated as the product of
the severity number and the probability number. As shown
in table 3, an unacceptable risk is defined by a criticality
number greater or equal to 6, or if the severity is classified
as “Catastrophic”.

These definitions according to the ECSS standard are the
baseline for the table which is part of the FMECA process
in the MMX locomotion subsystem explained below.

2
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Figure 3: FMECA table for the MMX locomotion subsystem.

Table 3: Criticality matrix, taken from [5]

The FMECA process was initiated in parallel to the hardware
and software design process. This ensures that last minute
modifications in the hardware or in the software are avoided
which are based on upcoming possible critical failures. These
modifications are cost effective when considering their long-
term benefits with respect to the relatively light efforts. Since
the rover is a mechatronic system, where mechanics, elec-
tronics and software have to work together, the FMECA table
covers all these domains. This leads to a seemingly large table
on the one side, but on the other side, effects which trigger
failures in different domains compared to the root cause can
be monitored in a very effective way. Figure 3 shows a screen
copy of the used FMECA table which was designed based on
the needs of the MMX project by DLR-RM.

For a better overview and traceability, each module in the
FMECA table was identified by a module ID, see Fig. 3.
These modules are either a complete subsystem, a sub module
or a software module. Furthermore, all important information
like failure mode, cause and effects as well as the numbers
and the failure handling are provided for each entry.

The whole FMECA followed a bottom-up approach. Depend-
ing on the module, the function could be a simple procedure
in the software like “read sensor data” or a more elaborate
function like the motor driver which is an electronic part on
one of the PCBs (Printed Circuit Boards). Every module

can have several functions. The next step is the definition
of possible failure modes, their root causes and whether the
failures have only local effects or system wide effects, which
is usually more critical.

After these preliminaries, the next step is the core of the
FMECA which assesses the failures and its probability.
Based on these values the criticality numbers were calculated.
Then, for each possible failure, where the criticality was
greater or equal to 6 (cf. table 3), a second run was performed,
where the failure recognition and countermeasures were ex-
amined in detail. During this second run multiple changes in
the design were found and defined, which lead to a decrease
of the severity level and therefore of the criticality value.

As an example, let’s look at a sensor that measures the tem-
perature of the drive train electronics in order to avoid damage
due to overheating. Possible failures are part failure, damaged
harness or broken solder link. Even if the probability level is
given by “2” (remote), the criticality was set to “3” (major)
due to the very important role of the drive train electronics for
a rover. Finally, these numbers lead to a criticality number of
“6”, which means that a second run was necessary.

The only possible failure detection within the locomotion
subsystem is given by value comparison, since the listed
defects lead to invalid temperature levels (extremely low
or high). If a second, redundant temperature sensor was
available for monitoring of the drive train, the criticality could
be reduced to “1” (negligible), which leads to a criticality of
“2”. Finally, the outcome of this example was a modification
of the circuits and some additional items in the software target
specification. Since the FMECA was performed during the
design stage, these modifications could be realized without
serious effort.

FMECA Results

Since the FMECA was performed in an interdisciplinary
way, interactions across numerous interfaces were found and
defined. This lead to important modifications of the hardware
that were necessary in order to enable certain failure detection
and recovery capabilities of the software. In addition, failures
which have to be propagated to the system controller due
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Table 4: FMECA metrics of the locomotion subsystem

10 identified modules

440 possible failures in total

69 entries with a criticality number equal to 6

0 entries with a criticality number > 6

27 entries (out of the 69) are in the responsibility
of the system controller

8 entries (out of the 69) are avoidable by QM
and testing

to severity or criticality, were defined, too. To give some
numbers for the MMX locomotion subsystem: In total 440
items are listed in the FMECA table which are grouped
in 10 modules. Each of them has at least one subgroup
which are listed in the function column and at least one
possible failure mode per subgroup. After optimization of the
failure detection and countermeasures, only 69 entries with a
criticality number of “6” out of 440 entries are remaining. No
higher values of the criticality number was determined. For
27 of the 69 critical entries, countermeasures were identified.
These 27 items are related to the system controller. Hereby
the locomotion subsystem is able to detect the failure, but the
root cause for these failures (e.g. mission supply voltage)
is not in the responsibility of the locomotion subsystem.
For 8 of the remaining 42 entries, a sophisticated quality
management (QM) and testing phase is able to detect and
overcome them. Finally, 34 possible failures with a criticality
number of “6” have to be served by the system. Whereby a
power cycle of the locomotion subsystem, which is requested
by the subsystem itself after such an failure was detected,
could recover the subsystem from the failure state. Table 4
shows the numbers at a glance.

Finally, the FMECA process, which was performed in par-
allel to the development process, helped to develop a lean
system with increased failure tolerance. The effort for the
whole FMECA process was limited to some additional team
meetings and minor modifications of existing hardware or
software modules.

2. MISSION PHASES
The rover mission consists of several phases, the most impor-
tant ones from the perspective of the locomotion subsystem
are the cruise phase, the separation, landing, uprighting and
deployment phase (SLUD), the locomotion checkout and
the science phase. In the context of FDIR, these mission
phases influence the different levels of failure notifications
and recovery measures.

Cruise phase

During the cruise phase, several passive and active health
checks of the locomotion subsystem are planned. During
these health checks, pre-programmed sequences are run and
all sensor values are recorded and sent to ground. If an
error occurs during this phase, there is in general no need for
autonomous recovery. The potential error is instead analyzed
in depth on ground by the engineers of the subsystem to be
sure to understand all possible causes of that failure. This
ensures the best possible failure analysis since there is enough
time until the next health check or the start of the SLUD

phase.

Separation, Landing, Uprighting, Deployment (SLUD)

The rover itself only communicates with the main spacecraft,
which has altering communication slots to the MMX rover
and the earth. Due to these slots, a round-trip communication
between the control center on earth and the rover can take
more than a day. Unfortunately, the rover’s battery can only
be recharged after the SLUD sequence, which involves the
uprighting process of the rover with the locomotion sub-
system. Therefore, it must be ensured that the rover and
therewith the locomotion subsystem recovers autonomously
without ground interaction from all faults whenever possible.
If a fault leads to failure of the subsystem, this would auto-
matically lead to the end of the mission. This phase thus has
the highest demands for the FDIR of the subsystem.

As an example, if a motor does not move as intended, that
would usually result in a fault state, see section 3. However,
during the SLUD phase, this problem needs to be tackled by
the autonomous initiation of the stuck recovery mode.

Post-SLUD phase

Once the solar array is deployed, the battery can be recharged
and a downtime of multiple days is not as critical anymore
as during the SLUD phase. Therefore, a lower level of
autonomy is foreseen in these phases. Faults can be assessed
on ground rather than having to autonomously tackle them on
the rover since much more information is available on ground
and more sophisticated decisions can be taken.

In the example from above, the stuck motor is probably not
recovered autonomously, since other problems like a faulty
sensor might have led to the fault as well. However, even
during the post-SLUD phase, autonomous decisions might
be needed in certain situations, e.g. if the rover is in a pose
which would not provide enough power generation of the
solar arrays.

This phase consists of the locomotion checkout and the
science phase, in which the locomotion subsystem is used
for driving and to enable scientific measurements. Both sub-
phases are handled similarly, although in the checkout phase,
extreme care is taken when it comes to the commands. Only
very short and slow drives are executed since it is unclear at
that point how well the rover driving works on the Phobos
surface.

3. FAULT DETECTION IN THE FPGA
Whether a fault can be detected on the FPGA or needs to be
detected by higher control layers depends on several factors.
Some faults have to be detected at the motor control loop
frequency of 40kHz, e.g. high motor currents, and therefore
cannot be monitored by the LOCO software which is operat-
ing at a 10 Hz control loop frequency. Other faults cannot be
detected by FPGA firmware due to lack of information, e.g.
during cruise phase the legs and wheels are not free to move.
Additionally, the FPGA is limited in its resources and not all
features that could be implemented in the FPGA firmware
actually fit into it.

Error detection

For each motor, a motor controller is implemented by the
FPGA firmware operating at a control loop frequency of

4

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on May 17,2023 at 10:27:39 UTC from IEEE Xplore.  Restrictions apply. 



Table 5: Errors monitored by the FPGA firmware
grouped by their source and monitoring frequency

Module name Error

Power inverter chip overtemperature warning

fault

Motor current overcurrent

Hall sensors Hall sector sequence

invalid Hall signal

Motor controller
sector generator skipped

sector generator invalid

controller saturation

theta overflow

Communication timeout

wrong packet count

40 kHz. A detected error causes the motor controller to go
to the state FAULT in which the motor is stopped. In the
following, the errors detected by the motor controller are
described in detail.

Motor faults have to be detected on the FPGA since the
control loop frequency between FPGA and OBC is at 10 Hz.
This is too slow for motor faults, since they might be detected
either too late or missed entirely and inflict damage to the
locomotion subsystem or the whole rover as a result. A list of
all error flags monitored within the FPGA is shown in table
5.

The power inverter chip, the motor current measurement and
the Hall sensors can be monitored by the motor controller im-
plemented by the FPGA firmware. Those errors are detected
by monitoring sensor inputs, such as the motor current or the
Hall sensor signals. For example, the motor controller can
decode the Hall sensor signals and derive a motor position.
If there is an unexpected sequence of Hall signals, the Hall
sector sequence flag is raised. Another group of errors are
internal errors of the motor controller. For example, if the
motor cannot match the commanded movement speed, the
controller saturation error flag is raised.

While the faults described above are individual for each
motor, the communication errors cause all motors to go to the
state FAULT. First, there is an error flag for a communication
timeout. If no successful communication cycle between the
OBC and the Locomotion E-Box has been performed for a
configured amount of time, this error flag is raised. Second,
a packet counter keeps track of received communication
packets. If the internal packet counter does not match the
received packet identifier, the error flag for a wrong packet
count is raised. In both cases, all motor controllers revert
to the state FAULT and stop their motors. This behavior
prevents unintended movements that might inflict damage to
the locomotion subsystem or the rover. Additionally, if there
has been no successful communication for a longer period
of time, a reset of the FPGA firmware can be performed
by means of an external watchdog chip. This allows to
recover e.g. from an FPGA firmware internal deadlock and
to reestablish a connection with the OBC.

Fault Flag Mask

An essential feature of the FPGA firmware is the fault flag
mask. It allows to identify invalid sensor signals and then
ignore them by using a fallback control mode. For example,
failure of the Hall sensors of one motor would stop oper-
ation of the motor. However, due to the FPGA’s firmware
capability to detect such failures, the motor controller can be
commanded to ignore (i.e. to mask) the faulty Hall sensor
signals, e.g. invalid signal or sector sequence, and use a
fallback control mode. Fault flag masks have to be set by
the LOCO software.

4. FAULT DETECTION IN THE SOFTWARE
The LOCO software reacts to the fault flags raised by the
FPGA and also monitors the sensor values to detect and
isolate sensor faults. Furthermore, due to the control allo-
cation calculations in the LOCO software, it can also detect
geometric risks like wheel collision. There are two different
approaches to fault detection: either the monitoring is contin-
uous, or active depending on the function which is executed.
For example, the wheel collision only has to be monitored
when the motors are actuated.

Monitoring of the FPGA fault flags

The motor statuses are continuously monitored. When a
motor is in fault mode, depending on the fault flag, a soft reset
of this motor is initiated. If the motor stays in fault mode, a
ground loop to examine the fault on earth is initiated.

Not all motor fault flags shall be active the entire time. For
example, the ”invalid Hall signal” is not relevant if the motor
is in feedforward mode (= open loop mode). In the same way,
also other motor fault flags are ignored or only active when
certain activities are commanded.

All switches and command bytes such as the fault flag mask
and resets can be configured via a telecommand to LOCO.

Monitoring of the sensor data

There are two basic types of A/D converter (ADC) signals:
ratiometric signals and absolute signals.

Ratiometric signals are in a fixed ratio to the reference voltage
of the ADC. With the ratiometric signals, the input signal
is derived from a supply voltage that has a fixed ratio to
the reference voltage of the respective ADC. The absolute
value is therefore not critical and the raw value of the con-
verter provides a valid result regardless of fluctuations in the
supply voltage. In the MMX locomotion subsystem, this
category includes the temperature sensors, torque sensors,
rover angular rate sensors (gyroscopes) and joint position
sensors (potentiometers). If a fault in the reference voltage
is detected, this has to be considered for all other ratiometric
sensors.

For absolute signals, the absolute value is of interest. In the
MMX locomotion subsystem, this category includes current
measurements, voltage measurements and accelerometers.
With these signals, a deviation in the reference voltage leads
to an incorrect measured value. The actual value of the
reference voltage must therefore be determined for these
signals. The raw values from the ADC must then be corrected
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Figure 4: Wheels close to a wheel-wheel collision.

mathematically in order to get a valid absolute value, which
is done in the LOCO software. The reference voltage of an
ADC is determined by measuring a known voltage with the
ADC.

Wheel collision detection

There are different kinds of collisions that could happen:

1. collision of one wheel against another
2. collision of the wheels against the solar panels

The calculations of these two collisions are explained in more
detail below.

All possible wheel collisions have to be monitored after the
uprighting of the rover was performed and while the motors
are actuated. During uprighting, no collision of a wheel
against a solar panel is possible since they are still retracted.

The leg positions are measured with two redundant sensors
each: a motor Hall sensor and a classic potentiometer. The
hall sensors provide the most exact values for a relative leg
position, but in the case of an E-Box restart, they are zeroed.
The potentiometer measures the absolute leg position, see
also [6]. The sensor values are compared in the software
and if both sensors indicate different values with a certain
deviation, the hall sensor is taken into account since it is more
reliable.

Wheel-wheel-collision—Since the legs have only one rota-
tional degree of freedom, a wheel can only collide with the
other wheel on the same side - right side or left side. First,
the distance of the two wheels hubs on one side is calculated,
respectively, by the knowledge of the leg angle. If that
distance is lower than two time the wheel hub plus a safety
distance, then a warning is thrown.

With the help of the leg commands, a future wheel position is
calculated which can be used to predict if the wheel will soon
collide. If this would be the case, an error is reported and the
movement is interrupted.

Solar-array-wheel-collision—After the uprighting of the
rover and the deployment of the solar panels, the collision
of the wheels against the solar panels is detected simply
by comparing the current leg position with the allowed leg
position. In the marginal position as depicted in figure 5, the

Figure 5: Wheel close to the plane of the solar arrays.

wheel is not very close to an actual collision, but the range of
movement for the leg is sufficient and the risk that the rover
loses its balance is reduced.

5. FAULT RECOVERY IN THE SOFTWARE
The software was designed to be as robust as possible. Hence,
autonomous recovery was built in only where necessary. Here
again, one has to distinguish between the different mission
phases. For example, the potentiometer values are not used
and the thresholds for the torque sensors to stop the motors
are higher during the SLUD phase. Afterwards, in most cases,
the locomotion system will wait for the next ground loop be-
fore continuing its motions. Possible recovery telecommands
could be a motor reset, a full software reset or initiating an
algorithm for stuck recovery of the motors. A reset of the
LOCO software, handling the temperatures or restarting the
power supply for the locomotion E-Box can be handled by
the higher-level software and is explained in the next section.

Recovery of the FPGA fault flags

The fault flags raised in the FPGA were explained in section
3. As the FMECA process made clear, all these faults can
have different sources, hence a human interpretation of these
faults on ground is preferable.

Handling the sensor data

The sensor data are treated differently, depending on the type:

motor current—Since the motor currents need to be mon-
itored in the frequency of measurements, they are already
observed on the FPGA. Their fault flags are monitored by
LOCO and in case of a fault, movements are stopped and
internal recovery will be started.

torque sensors—If the torque is too high, the movement will
be stopped and a ground loop is requested.

gyroscopes and accelerometers:—The gyroscope and ac-
celerometer measurements are used during separation and
landing, which will be analyzed on ground. It is not planned
to monitor them on-board.

potentiometers—The potentiometer per motor is compared
with the related motor Hall sensor. In the case a hall sensor
fault was raised by the FPGA, the potentiometer values are
used to estimate the leg position.
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radiation monitor—It is not planned to evaluate the radiation
monitor on-board.

temperature—If the temperatures are too low or too high, an
event will be sent to HSEM (Hardware and Software Events
Manager, see next section) to demand for a heat-up or for
waiting to cool down.

voltages—If the voltages are not in range, an event will be
sent to HSEM to demand for a restart of the power supply.

Leg positions

Faults in the leg positions will only be recovered after the
SLUD phase. If a wheel appears to collide with another wheel
or the solar panel, the movement is stopped. Only a command
that moves the wheel away from the other wheel or the solar
panel is then accepted.

6. FAULT MANAGEMENT ON ROVER LEVEL
Some faults within the locomotion system cannot be recov-
ered within the subsystem itself, but have to be reported to
a higher lever in the on-board software. This applies for
example when the LOCO partition has to be rebooted or the
power supply for the Locomotion E-Box has to be restarted.
How the handling of these fault reports work is described in
the following.

Introduction to the rover software architecture

CNES has developed a TSP (Time and Space Partitioning)
framework named LVCUGEN [7] as a suite of software
components that can be reused for the software embedded
on space vehicles, providing basic features to platforms or
payloads, and allow the independent execution of embedded
applications as software partitions.

Spatial and temporal isolation are key aspects in a partitioned
system, and provide independent execution of system func-
tions executed within different partitions. Among others,
it allows fault containment, i.e. to prevent any partitioned
function from causing a failure in another partitioned func-
tion, facilitates software re-use, validation and maintenance
of partitioned applications with respect to their own criticality
level and integration of new partitions.

As software and programmable logic developments were to
be shared between CNES and several teams of the DLR,
LVCUGEN solution was chosen as the basis for the MMX
Rover software so that all parts can work as autonomously
as possible, in the respect of the short schedule of the rover
project.

The LVCUGEN environment offers generic partitions:
MMDL (Modes Management and Data Load) for memory
management, HSEM (Hardware and Software Events Man-
ager) for event management and FDIR features, IOS (In-
put/Output Server) as peripheral server to manage shared
access to devices, CCSW DevKit (Command and Control
SoftWare Development Kit) as generic command and control
partition basement, embedding CNES PUS library LibPUS
for TM/TC and AUTH for authentication features.

Figure 6: MMX rover FDIR flow: Communication
between the relevant partitions.

Rover FDIR principles - partitions at stake

The relevant partitions for understanding FDIR at rover level
are:

HSEM partition—Hardware and software event manager.
Within a LVCUGEN based software, HSEM partition is in
charge of software events management and filtering, FDIR
management, PUS 5 information gathering, other partitions
monitoring and memory scrubbing.

CCSW partition—Command and control software. The main
role of the CCSW partition is the on-board control command
management. As such, it includes and runs a PUS services
library, that includes in particular the PUS service 12 for on-
board monitoring of parameters.

Mission partition—There can be multiple mission partitions,
as for instance LOCO. The mission partitions may be in
charge of a particular function and, as in the case of the MMX
rover, of the interface with an equipment. In the MMX rover
software, mission partitions are responsible for forwarding
all the data from the equipment to CCSW for generation of
housekeeping telemetry and parameters monitoring, and to
HSEM for partition health check and events monitoring.

There are two ways to manage FDIR: Either by providing
observable values to monitor on an OBS (OBServable) sam-
pling port and using the monitoring service of the LibPUS,
or by sending events to HSEM and using the Event-Action
service 19 of the LibPUS.

Eventually, the HSEM Event ID can be optionally filtered
and/or forwarded to CCSW. Filtering means that an event
is forwarded to CCSW after the event was received n times
by HSEM. When the event is forwarded, CCSW is then
able to associate a RID (Report IDentifier) to the HSEM
Event ID and, if required for FDIR purpose, to consider the
HSEM event type which is sent with the payload of the event
package.

Both of the explained mechanisms can be coupled, and some-
times have to. Indeed, particular attention must be taken with
the dynamics of event generation in order not to saturate the
system: messages could then be lost on the communication
channel between the mission partition and HSEM. Hence, if
too many events may be generated when an anomaly occurs
(such as a dialog break with a device), it is preferable to
implement a counter of the events occurrences and to publish
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this counter on an observer port to CCSW; this counter may
then be monitored by PUS service 12. This mechanism not
only allows mitigating the event port saturation, but also adds
the ability to program a FDIR depending on the value of this
counter, thanks to PUS service 12.

7. TESTING
The implemented fault detection, isolation and recovery al-
gorithms, from which some examples were described before,
are tested either on hardware or in simulation. Tests ensure
the reliability of the software and ensure, that faults are
actually detected at the right moment.

On hardware, only algorithms that do not include destroying
hardware can be tested. It also needs to be possible to induce
a fault easily. These tests include for example disconnecting
particular motor harness and sensor harness. Also, applying
a certain torque carefully to the legs to see if the overtorque is
detected at the correct magnitude is possible by using a spring
scale as helping tool.

For simulation, the MMX Rover Simulator [8] was used.
Herein, also hardware-critical faults and faults that are dif-
ficult to induce can be tested. This includes tests such
as detecting and reacting to too high or low temperatures,
currents or voltages. If these tests were made on hardware,
there would be no guarantee that a fuse blows, for example.

Results

Having internal recovery functionalities in the software in-
creases the continuity of operation of the MMX rover. For
example, when a fault on the Hall sensor is detected, the
software can switch this motor automatically into the motors
feedforward control mode so that the ongoing movement can
be fulfilled until the end. Without autonomous recovery, it
would be not possible to perform any locomotion on the rover
further until the next ground loop, which could take up to
three of the 100 mission days.

8. CONCLUSION
The FDIR strategy of the MMX rover locomotion team was
presented. The FMECA approach was explained in detail and
showed that these efforts lead the team to more efficiency
and the locomotion subsystem to more reliability. Further,
it was explained why the distinction in the different mission
phases is important. The fault detection in the FPGA and
in the LOCO software, as well as the recovery in the LOCO
software and the synergy of the individual software parts were
presented.

The testing of the fault detection and isolation is ongoing.
Further work will include testing of the recovery strategies,
in particular the interaction between the OBC software parti-
tions.
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