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Subdirección de Estudios de Posgrado

Bin packing applications in additive

manufacturing

por

Aned Esquerra Arguelles

como requisito parcial para obtener el grado de
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orientación en Sistemas.

Universidad Autónoma de Nuevo León.
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INTRODUCTION

“If we knew what it was we were doing, it would not be called research, would it?”

ALBERT EINSTEIN.
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1.9.2 Chapter 2: Theory, assumptions and requirements . . . . 14

1.9.3 Chapter 3: Methodology and research workflow . . . . . . 15

1.9.4 Chapter 4: Experimentation, materials, and methods . . . 15

1.9.5 Chapter 5: Conclusions, research limitations and future

works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1 Additive manufacturing

Additive manufacturing1 is a set of tools and techniques for constructing three-

dimensional objects from CAD/CAM data or digital models. This technology,

also known as 3D printing frequently refers to a diversity of processes where raw

materials melt, join and solidify under computerised controlled build-chambers to

create three-dimensional articles by the primal matter deposition layered fusion, or

another specific technique.

Late in the ’90s, 3-D printing procedures were suitable barely for functional

or aesthetic prototypes production, and their use was mainly in rapid prototyping,

hence the association with the term ’rapid prototyping’.

As of 2019, additive technologies are viable as industrial-production-technology

schema on account of the increased progress in precision, easy repeatability of

processes, low waste primal ore, and a wide range of raw material to use, among

other features. One of the essential benefits of 3D printing is the ability to compose

complex shapes impossible to construct by hand, or traditional manufacturing approaches,

including hollow parts or parts with internal truss structures to reduce weight. Also,

fused deposition modelling becomes the most common 3D printing process in use.

The lastest years show notable advances in the rapid prototyping forefront:

leading the production of titanium-alloy fully functional parts for the aero-spacial

1The term additive manufacturing can be used interchangeably with 3D printing.
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and medical fields; powder bed fusion technology allows building hollow near-net

shapes with accurate resolutions; directed energy-based high-tech offers the ability

to add features on existing elements, remanufacture, and repair damaged ones; as

well as producing parts directly from CAD data, see Figure 2.1 from page 17.

With industry 4.0 in full motion, the non-subtractive production arena is

ultimately exciting and endless in opportunities, becoming a transformer agent in

numerous domains and one of the most growing fields in the next decades, with

applications in almost every aspect of modern life. Three-dimensional printing is

revolutionising industries focused on industrial manufacturing, but with the advances

in hi-tech, the possibilities are much broader.

1.1.1 General additive manufacturing benefits

1. Control prototyping and manufacturing costs.

2. Quick replacement of complex parts.

3. Ease of workability and waste reduction.

4. Reduced part counts and increased product complexity.

1.1.2 Applications of additive manufacturing

The backbone of additive manufacturing utilisation practically to date has been

in the realm of engineering, especially to generate model prototypes. However, the

potential of 3DP has increasingly been recognised in areas of commercial manufacture,

in architecture, Materials Science, medicine, and so on due to its capacity to create

supplies and devices matching, if not exceeding, the advantages of traditional consumer

assets. This section presents various applications areas with an essential role in

modern life.
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(a) MTU Aero Engines parts, Source [1] (b) Parts for Airbus. Source [1]

(c) Airbus injector part. Source [1] (d) Decorative items. Source [74]

Figure 1.1: 3D printing applications

In the pharmaceutical area, the discoverings and enhancing of 3-D printing

systems can lead to the creation of a new dosage form designs, pre-clinical drugs

development, on-demand production of medical devices, customised medications in

clinical pharmacy practice, and the production of functional implants [3].

As the aerospace enterprise has a long history adopting and pioneering avant-

garde technologies additive manufacturing fits right in with its historical trend,

initially having a niche role in aerospace manufacturing like technology for rapid

prototyping, however, as aerospace-oriented manufacture focuses on low-volume

production of systems incorporating complex mechanical and electronic components

[48].
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(a) NP-hard problems diagram. Source [36] (b) Time complexity curves, based on [58]

Figure 1.2: NP-hard relationships [25][73] and time complexity in big-O notation

1.2 Bin packing problems

Bin packing problems are a class of mathematical optimisation problems where a set

of objects, also known as items2, e.g., projects budget items, geometrical objects,

and metal granules, is restrained to a bigger one frequently called the container3,

this simplistic explanation gives the reader an erroneous idea about the complexity

of the solution strategies of these problems.

Typically, the objective is either to bind one container as dense as possible or to

restrict all items using a minimum number of vessels, maintaining a non-overlapping

packing pattern between elements and receptacle boundaries.

Bin packing quandaries are notable cases of the C&P category, see Section

2.2 from page 18. There are numerous of variations of BPPs, e.g., 1BPP [52],

2DBPP, 3DBPP [10], linear, weighted packing, cost-based packing, sparse packing

[67], irregular packing [39][11], among other classifications; all these problems are

frequently combined with a variety of constraints [9] becoming strenuous ones. One

of the most challenging aspects of this mathematical queries is the exponential

2This set may contain different-shaped, mono-sized regular, or irregular objects.
3Often a one-dimensional, three-dimensional or n-dimensional convex region, infrequently an

infinite space or non-convex region.
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growth of their solution search space with small increments in the number of items to

bind, see Figure 1.2b from page 5, this is why they receive the name of combinatorial

NP-hard problems [36][58][71] in computational complexity theory.

Packing problems have a wide range of real-life practical applications: logistics,

i.e., containers loading [79][35]; materials science, i.e., [47]; in medicine; additive

manufacturing; biology; nanotechnology; telecommunications, i.e., [51] [76] [62];

security services; architecture among other fields.

The objective function in a bin packing problem can vary from: maximising

the area covered by a limited number of service centres; minimising the interference

between service zones corresponding to different providers; maximising the volume

of the container using dense packing; to place the objects sparse to keep distance

between groups of similar ones.

1.3 Relationship between additive

manufacturing and bin packing

As a parallel manufacturing process, AM enables manufacturing of different parts

in a single build volume give rise to “Build Volume Packing” problems, see Figure

1.3 from page 7. A set of 3D items must be placed into containers or build volumes,

see Figure 4.13 from page 65, optimising a particular objective subject to non-

overlapping between items, and the edges of the container. The objectives vary from

the densest packing (minimising space between the items) to the sparsest packing

(maximising the minimal distance between the items).

In these problem typologies, modellers know the additive manufacturing items

beforehand and design the best object layout inside the build volume. Generally, the

build volume has the form of a prismoid, the following cases of “Building Volume



Chapter 1. INTRODUCTION 7

Figure 1.3: Build volume problem.

Problem4” various consider different object shapes:

1. Densest packing: the objects are placed in the container without overlapping

and minimising the total space between the objects, with higher density ratios,

the minimal distance between the objects is at least a given threshold.

2. Sparsest packing: the objects are placed in the container as distant as

possible between them, and from the container border. This type of situation

occurs when it is necessary to maintain parts separated to prevent possible

deformations while cooling, or mechanical changes due to laser heat propagation.

3. Cluster packing: an object cluster is composed of items with similar features

(mechanical properties, shapes, sizes or primal matter used for printing). The

elements in the same batch are placed close enough to similar ones in a

kind of densest packing. However, the distance between clusters must be

sufficiently large to avoid low-quality end products or the detriment of parts

characteristics. In this sense, this type of configuration considers packing

clumps as the sparsest packing for macro-objects [66].

Additive manufacturing offers enormous geometrical freedom to create parts,

4These classes of problems belong to 3D optimised packing problems.



Chapter 1. INTRODUCTION 8

hollow structured systems are typical practices for printing primal matter, and time

reduction in 3D printing of light-weighted parts. “Generating Void Structures5”, is

also a packing problem with holes standing for packing items, see Figure 1.4 from

page 9. The number of holes, their shapes and sizes, positions and space orientations

has to be defined minimising, e.g., the weight of the part without significant loss of

its mechanical strength.

GVS is a design problem for manufacturing light-weighted hollowed structures

or parts. Designing void structures is a particular variety of packing problem with the

holes interpreted as objects placed into the piece. In contrast to the “Build Volume

Packing”, where the objects are given, in “Generating Void Structures” the number

of holes, their shapes and sizes are defined subject to certain mechanical constraints.

Generally, a mechanical strength engineer defines zones of the part suitable for hole

introduction without losing significant mechanical characteristics; also the type of

the holes allowed must be indicated, e.g., smooth or non-smooth, see Figure 1.4 from

page 9. The difference resides in smooth holes, e.g. spheres or ellipsoids, are easier for

finishing processes after printing and may provide more strength due to the absence

of “corners”. Alternatively, polyhedral holes may provide more weight savings under

the same strength and fit tighter to technological constraints. Similarly, the holes

have to be separated sufficiently one from another to avoid mechanical crash of the

overall part under peak loads. The objective of the “Generating Void Structures” is

minimising the weight of the part under mechanical constraints; this section presents

several cases:

1. Ellipsoidal holes: ellipsoidal or/and spherical objects6 have to be placed

entirely in the convex 3D hollow zone without overlapping or distant enough

one from another and the border of the container. The number of ellipsoids,

their sizes, positions and space orientations are unknown and have to be defined

maximising the total volume of the ellipsoids.

5Idem fon:bin-packing-classes
6This objects are hollow regions in the printed part.
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Figure 1.4: Generating void structures with smooth and non-smooth objects.

Source [24]

2. Polyhedral holes: similar to the previous case, but using polyhedra7 for

the hollowing systems. A priori the modelling engineers fix the shapes of

the polyhedra, increasing or decreasing polyhedra numbers in a homothetic

manner. Alternatively, the operators fix only several vertices of the polyhedron,

while the optimisation volume defines its shape.

Laser 3D printers operate with various raw materials, including metal particles,

i.e., powders of titanium alloys are promising for the aerospace industry due to the

attractive combination of high structural strength, low density, and tremendous

corrosion resistance. There are two main approaches for manufacturing parts using

3D printing: a) fixation (alloying, sintering) of powder in the previously applied

layer and b) direct layer-by-layer application of the already melted powder onto the

substrate. In both cases, pores resulting from the sintering process are difficult to

eliminate in the layer-by-layer technique. The quality of the powder is related to

its packing density depending on the powder particles composition, their sizes and

7Idem to fon:hollow-section
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shapes. This way a packing problem corresponding to the “Densest Layer Filling

arises”8, see Figure 1.5 from page 10.

Figure 1.5: Snapshots of the densest filling layer packing morphologies of

tetrahedral-shaped particles obtained via physical tryout and DEM simulations.

Source [91]

This problem refers to the ore-alloys preparation used for additive manufacturing

final processes. The quality of the powder is highly related to its packing density

depending on the powder particles composition, their sizes and shapes. Usually,

the powder engineers know a relative number of particles of a given size (relative

frequency) and fulfilled the necessary conditions in the final packing. This section

describes “Densest Layer Filling” for cuboidal layers cases:

1. Spherical powder: the spherical powder particles define the height of the

layer resulting in the maximal density subject to a given relative frequency[40][49].

2. Non-spherical powder: similar to spherical, just involving non-spherical,

i.e., polyhedral or cylindrical powder particles [41] [91] [63][90] [20].

3. Mixed powder: this is a mix of prior two approaches..

8Idem fon:bin-packing-classes



Chapter 1. INTRODUCTION 11

Modelling, validating and solving “Build Volume Packing”, “Generating Void

Structures” and “Densest Layer Filling” problems; require different models, analytics,

spatial and mathematical conditions, and involve several families of constraints

adding complexity not only to the model but also to every instance type; in each

type of problem, the dimensionality of the instances vary from one model to another.

1.4 Motivation

Several motivations are leading to start a research of bin packing applications in the

additive manufacturing field: scientific ones related to the challenging and complex

nature of problems associated with 3D printing “Densest Layer Filling” in large-

scales production schemas; practicals ones related to the essential importance of

these technologies in the future of manufacturing production; economic motivations

due to forecast on the rise and inclusion on 3D printing in the global economy,

and the destination of funds to investigate new trends, production workflows, and

techniques.

1.5 Hypothesis

Through the generation of avant-garde model approaches, theories, and solution

methods solve problems in additive manufacturing which nowadays remain unexplored

with a significant improvement in modelling, elapsed times to find feasible or optimal

solutions with excellent time responses.
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1.6 Objectives

• Develop avant-garde models for “Build Volume”, “Void structures”, and “Densest

Layer Filling” problems from a novel vertex-approach to apply in additive

manufacturing.

• Demonstrate the validity of these models with experimentation on several kinds

of instances, related to “Densest Layer Filling” of problem.

• Propose a cyclical methodology to face problems in bin packing from several

solution strategies.

1.7 Expected contributions

• Open a brand-new area of investigation, with vertex-based model approaches

to apply in 3D printing to solve specific field problems.

• Create an online public repository of recent 3D instances, vertex-based 3D

models, tables of results, and experimentation imagery to share with the

scientific community involved in bin packing research.

• Publish in a JCR journal a research article centred on a series of 3D vertex-

based approach model for bin packing of mono-sized regular items.

1.8 Scope and limitations

The scope of the current study is bound to the activities listed next in this section.

The investigation workflow follows a prior designed methodology, see Figure 3.1

from page 40, the process goes from the analysis of problem instances to the study
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of their mathematical formulations, and characteristics, it includes the development

of a vertex-based baseline model, and the model validation through experimentation

with different containers and objective functions, see Chapter 4 from page 45.

The experimentation focus on packing regular tetrahedra9 into different convex

regular containers due to discrete computational resources and the lack of

mathematical solver licensing limitations.

The proposed instance complexity study lingers as an element of future work

due to technical concerns with the massive growth of models search spaces.

The investigation focuses its efforts on exact methods as the principal strategy

used to find solutions; meta-heuristics, decompositions tactics, Q-neural networks,

and other techniques remain as other elements of future work.

1.9 Thesis structure

This section concisely overviews the contents of this document chapter by chapter,

describing the main course of actions taken in each one of them. Every topic gives

the reader a description of the structured workflow developed by both: the author

and the leading assessor.

1.9.1 Chapter 1: Introducing C&P problems and its

applications to additive manufacturing

This chapter introduces additive manufacturing; it also overviews several essential

characteristics of the C&P problem typologies. Furthermore, it exposes the relationship

9The models can manage a wide range of three-dimensional items, e.g., tetrahedra, cubes,

octahedra, Plato’s solids, and others.
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Figure 1.6: Build chamber for large scale parallels additive manufacturing

production. Source [2]

of these kinds of techniques with 3D printing in large production schemas and

finally describes an approach using vertex to model structures and objects in CAD

systems. It is about making a concise approach to the investigation subject, author

motivations, research importance, analysis implications, scope and limitations, as

well as how convenient is the vertex-base method to study of packing different three-

dimensional elements in regular convex containers.

1.9.2 Chapter 2: Theory, assumptions and requirements

This chapter brings to the table the thesis theoretical framework, and is the fundamental

pillar of the investigation. The analytical, experimental, and mathematical outcomes

constitute the basis on which any further analysis, experiment or proposal for the

development of the project will be supported; it also exposes the relevant related

works to this research. The related areas follow from the research objectives, see

Section 1.6 from page 12.
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1.9.3 Chapter 3: Methodology and research workflow

This chapter outlines the scientific method present in the current research, in detail

explains every stage step of the workflow process methodology design, it also gives

some details about the instance design, and model mathematical formulation.

1.9.4 Chapter 4: Experimentation, materials, and

methods

This chapter presents the experiment planning and serves as a blueprint for the

experimentation execution and outcomes interpretation. It describes step by step

the software involved in mathematical modelling; the solvers used and why their

selection to execute the models; the tailored tools for 3D plotting, web-scrapping,

instances generation, the data analysis; and the equipment related to run the models,

shows and explains the mathematical formulation of the models. The design supports

the research goals and hypotheses aiding the current investigation; it also provides

the details of the experimental design including its parameters, variables, planning,

expected participants, objects, instrumentation and procedures for data collection

and analysis. A final evaluation based on an experimental design shows the validity

of the insights.

1.9.5 Chapter 5: Conclusions, research limitations and

future works

The last chapter summarises and exposes accomplished goals that support the initial

hypothesis, it also reveals the outcomes resulting from the experimentation design

and presents the drawbacks found during the research lifespan, and finally some

areas of future work with ideas to overcome these obstacles.
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THEORY

“He who loves practice without theory is like the sailor who boards ship without a

rudder and compass and never knows where he may cast.”

LEONARDO DA VINCI.
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Figure 2.1: 3D printing workflow direct from CAD data. Source [24]

2.1 Introduction

Research on 3DBPP problems with different characteristics is plentiful. This section

does not pretend to cover every single article in this branch of knowledge. Therefore,

it is restricted to the review of some type of three-dimensional objects packing in

several different containers with various methods and approaches, i.e., simulations

using 3D vibrations and DEM techniques, exact methods, heuristics, see Table 2.1

from page 18. This section also refers to several excellent research works for reviews

with possible applications to AM.

Despite the increasing computing power of today’s vertical scaled-up workstations,

there are still limitations as the processing speeds and fast computational storage

involved is not enough to run the upcoming extended complex mathematical models

optimally. However, there are considerable signs of progress with the inclusion of new

horizontal computational integrated systems, even when those kinds of architectures

mainly focused on Big Data applications. Hopefully soon, exact methods will

overcome those drawbacks shortly, in a concordance of mathematicians efforts to

discover and innovate new ways to improve models and these specific solution methods,
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as shown next in the compilation of the recent scientific articles on the subject.

This section also includes several papers on simulation, and physical packing

experiments using DEM techniques for different mono-sized 3D particles. All the

papers presented use techniques related to 3D vibrations and start from a random

lose packing state to achieve a random close state in the final phases of the experimentation,

the primary reason those investigations inclusion in this document resides in the

outcoming ideas for further implementation of a GSA heuristic-based [64] in these

experimentations, in future works.

Table 2.1: Problem typologies reviewed in the literature

Container type 3D Item class Methods

Cylindrical Ellipsoids Exact, see Section 2.6.3.1

Prismoidal Spheres Simulations, see Section 2.6.3.2

Spherical Tetrahedra Heuristic and meta-heuristics, see Section 2.6.3.3

Prisms

Other shapes

2.2 C&P problems classification

Cutting and packing problems appear under various names in literature, e.g. cutting

stock or trim loss problem, bin or strip packing problem, vehicle, pallet or container

loading problems, nesting problem, knapsack problem etc. In 1990 appeared the first

review paper exposing a consistent and systematic approach for a comprehensive

typology integrating various kinds of problems [22], this typology is founded on the

underlying logical structure of cutting, and packing problems. The primary purpose

was to unify the different use of notions in the literature and to concentrate further

research on particular types of problems, see Table 2.2 from page 19.
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Table 2.2: A basic typology of C&P problems.

Objective Items nature Type of problem

Output maximisation Identical Identical item packing problem

Weakly heterogeneous Placement problem

Strongly heterogeneous Knapsack problem

Input maximisation Arbitrary Open dimension problem

Weakly heterogeneous Cutting stock problem

Strongly heterogeneous Bin packing problem

As the number of publications in the area of Cutting and Packing (C&P)

increased considerably in the next two decades, the first typology of C&P problems

introduced by Dyckhoff initially gave an excellent instrument for the classification

of existing ones and incoming uncategorised problems appearing in new papers.

However, over the years, some deficiencies of this typology became obvious, creating

difficulties dealing with recent developments and preventing their acceptance. An

improved typology was necessary partially based on Dyckhoff’s original ideas introducing

new categorisation criteria, defining problem categories different from those of Dyckhoff’s

[89].

2.3 Plato’s solids

Plato’s solids refer to five...., see Figure 2.2, from page 20,

2.4 Tetrahedra

The regular tetrahedron is the simplest Plato’s solid [83]; Notwithstanding, in the

study of its packing properties, several ancient Greek mathematicians, renowned



Chapter 2. THEORY 20

Figure 2.2: Plato’s solid and their 2D representations. Source [83]

academics, and world-class scientists have made mistakes; many inquiries and interrogations

about these structures persist unsolved. Currently, no one knows the density of its

densest packings, the density of its densest translating packings, or the exact value

of its congruent kissing number1 [38] [21].

Nowadays, it is clear that regular tetrahedra cannot tile three-dimensional

Euclidean spaces [32]. Our results suggest that the regular tetrahedron may not be

able to pack as densely as the sphere, which would contradict a conjecture of Ulam.

The regular tetrahedra might even be the convex body having the smallest possible

packing density [14].

θ = cos−1
(

AE +BF + CG√
A2 +B2 + C2

√
E2 + F 2 +G2

)
(2.1)

2.5 Non-overlapping and containment

conditions

Let P , G ⊂ Rn be convex bounded polytopes defined by their vertices [45].

1The number of equivalent hyperspheres in n dimensions which can touch an equivalent

hypersphere without any intersections, also sometimes called the “Newton number”, contact

number, coordination number, or ligancy.
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P = {xs, s = 1, 2, 3...S} G = {yl, l = 1, 2, 3...L} (2.2)

By convexity, a linear combination of their vertices can represent any point of

P and G:

x ∈ P ⇔ x =
∑
s

λsx
s,

∑
s

λs = 1, λs ≥ 0 (2.3)

y ∈ G⇔ y =
∑
l

µly
l,

∑
l

λl = 1, λl ≥ 0 (2.4)

By the definition P ∩ G 6= ∅ if there exists a point belonging to both P and

G. Thus, if P ∩G 6= ∅ there exists λs, µl such that:

∑
s

λsx
s =

∑
l

µly
l,

∑
s

λs = 1, λs ≥ 0,
∑
l

µl = 1, µl ≥ 0. (2.5)

Correspondingly, if system 2.5 has no feasible solutions, then P ∩ G = ∅. To

check out if 2.5 is feasible, consider the following optimisation problem:

z∗ = max
∑
s

λs +
∑
l

µl∑
s

λsx
s =

∑
l

µly
l

∑
s

λs ≤ 1, λs ≥ 0

∑
l

µl ≤ 1, µl ≥ 0

(2.6)

Note that 2.6 always has a feasible solution λs = 0, µl = 0. Moreover, by

constraints in 2.6, each term in the objective does not exceed 1. If z∗ = 2 then the

optimal solution to 2.6 fits 2.5 and hence P ∩G 6= ∅. Otherwise, for z < 2 we may

conclude that 2.5 is infeasible and hence P ∩G = ∅.
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The associated Lagrangian function to 2.6 has the following expression:

L (λ, µ, v, α, β) =
∑

s λs +
∑

l µl + v
(∑

s λsx
s −

∑
l µly

l
)
− α (

∑
s λs − 1)− β (

∑
l µl − 1) (2.7)

v ∈ Rn, α, β ≥ 0

For fixed xs, yl the problem 2.6 is an LP problem. The corresponding dual has

the form:

z∗ = min {α + β} (2.8)

∂L

∂λs
= 1 + vxs − α ≤ 0, s = 1, 2...S (2.9)

∂L

∂µl

= 1 + vyl − β ≤ 0, l = 1, 2... (2.10)

v ∈ Rn, α, β ≥ 0. (2.11)

By the strong duality theorem for LP we may state the non-overlapping condition

P ∩G = ∅ in the form:

α + β =
∑
s

λs +
∑
l

µl < 2 (2.12)

1 + v · xs − α ≤ 0 (2.13)

1 + v · yl − β ≤ 0 (2.14)∑
s

λsx
s =

∑
l

µly
l (2.15)

∑
s

λs ≤ 1, λs ≥ 0 (2.16)

∑
l

µl ≤ 1, µl ≥ 0 (2.17)

v ∈ Rn, α, β, µl, λs ≥ 0 (2.18)

System 2.12 has S + T + n+ 4 linear constraints and S + L+ n+ 4 variables.
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Note, that in the overall optimised packing problem coordinates xs, yl of the

vertices are the variables to define. Then to fix the shape/size of the polytopes P

and G, is mandatory to impose additional constraints.

For the convex container Ω, the containment conditions P ⊆ Ω are equivalent

to:

xs ∈ Ω, s = 1, 2, ...S (2.19)

2.6 Articles and literature review
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2.6.1 Additive manufacturing

In 2019, Luiz et al. present an article [7] reviewing existing general cutting and

packing taxonomies and provides a new, more appropriate specification for classifying

the problems encountered in AM. It comprises a clear-cut problem definition, a set

of precise categorisation criteria for objectives and problem instances, and a simple

notation. Furthermore, this review document establishes an improved terminology

with terms that are familiar to, but not limited to, researchers and practitioners in

the field of AM. Finally, this paper describes a new dataset used in the evaluation of

existing and proposed computational solution methods for 3DIP problems encountered

in additive manufacturing. It discusses the importance of this research for further

underpinning work

Romanova et al. present a paper in 2019 with a study of a layout problem with

a variable number of variable-sized ellipses placed into an arbitrary disconnected

polygonal domain with a maximum packing factor [68]. The authors show and

introduce some tools for mathematical modelling of placement constraints (distance

constraints between ellipses and containment of ellipses into a polygonal domain)

using the φ-function technique. These φ-functions allow formulating the layout

problem in the form of a MIP model equivalent to a sequence of a non-linear

programming sub-problems. The researchers propose and develop a new solution

algorithm involving the feasible starting point algorithm and optimisation procedure

to search for efficient local optimal solutions of the layout problem. The resulting

algorithm can be used in the design of parts for support-free additive manufacturing,

taking into account the conditions for its static-dynamic strength.

In 2019, Litvinchev et al. introduce a packing problem for irregular 3D objects

approximated by polyhedra [44]. In this formulation, a cuboid of minimum height

packs the objects under a finite number of continuous rotations, translations with

minimum distance between articles. The problem has various applications and arises,

e.g. in additive manufacturing. This study describes containment, distance and non-
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overlapping constraints using the φ-function technique. It also presents the related

irregular packing problem in the form of a non-linear programming problem besides

proposes a solution algorithm based on a fast starting point strategy and efficient

local optimisation procedure.

2.6.2 Items packing

In a recent paper, Romanova et al. present an investigation on packing ellipsoids

of revolution in a cylindrical container of minimum volume [65], the authors describe

how to pack ellipsoids using continuous rotations and translations. They also introduce

two non-linear mathematical programming models: one exact, and other approximated;

this second model uses an optimised multi-spherical approximation of ellipsoids, both

models used the φ-function technique to describe analytically non-overlapping and

containment constraints. The authors introduce two solution approaches to solve

the current packing problem, a set of computational results for up to 500 ellipsoids

prove the efficiency of the proposed approaches.

In 2019, Hifi et al. present a study on sphere packing [31] where they study

the three-dimensional sphere packing consisting in finding the highest density of a

(sub)set of predefined spheres (small items) into a single three-dimensional container

(large object) of given dimensions: cuboid of fixed dimensions or cuboid of variable

length. The researchers tackle a problem with the prismoidal container of fixed

dimensions by applying a local search-based method combining three principal features:

(i) a best-local position procedure stage, (ii) an intensification stage and (iii) a

diversification stage. The developed method also resolves the problem of packing

a set of predefined spheres into a variable-length cuboidal/prismoidal container.

Authors also present the method performance evaluation tested on a set of benchmark

instances taken from the literature. The comparison of obtained results to those

reached by their method shows the algorithms competitiveness for treated problems.
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2.6.3 Solution methods

2.6.3.1 Exact methods

Litvinchev et al. propose in May 2020 novel procedures of packing 2D, and 3D

elements in regular convex containers from vertex-based, and inequations-based

models using a Lagrangian approach combined with KKT optimally conditions. The

researchers prove the validity of the models and methods using several strategies and

mathematical solvers for a range of randomly generated instances. They also provide

a massive library of results fro extensive experimentation, next to the imagery,

models, mathematical programming of the models, and instances in a public domain

repository to investigation reproduction and consult [45].

In 2013, Yaxiong et al. present an investigation where the authors investigate

a more general type of 3DBPP with bins of various sizes [10], unlike traditional

bin packing problem where all bins are of the same size. The researchers propose a

modified univariate marginal distribution algorithm (UMDA) for solving the problem

with a strategy derived from the deepest bottom left packing method. The modified

UMDA was experimentally compared with CPLEX and a genetic algorithm (GA)

approach. The experimental study shows that the proposed algorithm performed

better than GA and CPLEX for large-scale instances.

In 2010 Hifi et al. respectively solve a 3DBPP problem considering containers

of identical dimensions to minimise the number of used containers [29], they use a

mixed-integer linear mathematical formulation and introduce certain unique, valid

constraints to improve the relaxed the lower bound of MILP1. After extensive

experimentation, the researchers obtained satisfactory results showing a reliable and

consistent execution of the proposed model before the tested instances.
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(a) Vibration device (b) Cylindrical-shaped containers (c) Particles

Figure 2.3: Dodecahedral 3D vibration physical experiment using DEM technique.

Source [41]

2.6.3.2 Simulations

In May 2020, Li et al. presented a new study on systematic physical experiments

to densely packing of mono-sized regular dodecahedral particles exposed to 3D

vibrations [41]. The research analyses the influences of various vibration conditions

and container size on the packing density with optimised parameters, the way 3D CT

non-destructive inspection characterise the microstructures obtained from different

packings. The results show the possibility of experiment’s reproduction of the

transition from initial loose to final denser packing structure of mono-sized regular

dodecahedral particles (a maximum packing density of 0.709) with proper control

over the vibration conditions. Later microscopic analyses on the 3D computer re-

constructed packing structures from experiments demonstrate the specific characteristics

of the generated initial loose and final dense packings, see Figure 2.3 from page 30.

Also, in 2020, Zhao et al. present a DEM simulation and physical experiments

study on packing different mono-sized tetrahedral particles under 3D vibrations [91].

In this study, researchers comprehensively investigate and optimise the effects of

vibration conditions and particle shape on the packing densification during physical

experiments. Similar characteristic microscopic properties such as coordination

number (CN), particle contact type, radial distribution function (RDF), and particle
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orientations were numerically characterised and analysed. The results validate the

resulting DEM model through physical experiments. Microscopic analysis indicates

the minimum mean CN appears for tetrahedral particles with regular shape. The

RDF exposes the effect of shape deviations from regular tetrahedral particles, the

frequency of face-face, vertex-face and edge-edge contacts all drops out while that

of edge-face contact increments. The cluster evolutions’ validate the reduction or

disappearance of two crucial local clusters (dimer and wagon wheel structures) as

one of the principal reasons for density packing shrinkage of irregular tetrahedral

particles.

In another recent paper, Li et al. experimentally study the packing of ellipsoidal

particles with a range of aspect ratios under vibration conditions [40]. The authors

investigate the effects of operational conditions such as dropping heights, feeding

methods, and vibration modes on packing density systematically. The results indicate

that packing density first increases with dropping height and then tends to be a

particular value when dropping height is over 180dv. The relationship between

packing density and aspect ratios gives an M-shaped curve, irrespective of operational

conditions being consistent with literature observations. The packing density obtained

by batch-wise feeding method is higher than the one obtained by the total feeding

method, mainly when three-dimensional vibration is applied; the packing density

increases proportionality to the vibration frequency and then decreases, i.e. there is

an optimum frequency to achieve maximum packing density. The optimum frequency

varies with vibration dimensions, and derives in a local particle orientation order

under three-dimensional vibration with proper amplitude and frequency.

Quan Quian et al., in 2018 published a study of packing densification (a

maximum packing density without wall effects can reach about 0.7166) of mono-sized

equilateral cylindrical particles under mechanical vibration; this physical experiment

is numerically reproduced using the discrete element method (DEM) [63]. The study

analyses the influences of vibration frequency, amplitude and container size on the

macro property (e.g. packing density) of each packing are studied. Meanwhile,
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various micro-properties including coordination number (CN), radial distribution

function (RDF), local structures, contact types, particle position/orientation distributions,

forces/stresses of the vibrated dense packing are characterised and compared with

those of the loose initial poured packing. The outcoming results show that properly

controlling vibration conditions can realise the transition of equilateral cylindrical

particles from random loose packing (RLP) to random close packing (RCP).

In 2017, Bo Zhao et al. model the transition from random loose packing

(RLP) to random close packing (RCP) of mono-sized regular tetrahedral particles

under 3D mechanical vibration [90] by using the discrete element method, this

paper presents, and systematically studies on the effects of vibration conditions and

container size on the packing densification, the macro and micro properties such

as packing density, coordination number (CN), particle contact type, RDF, particle

orientation correlation, and forces between particles were characterised and analysed.

The randomness of the obtained dense packings and corresponding densification

mechanisms were also investigated.

Dong et al. present a structural analysis of the packings of identical non-

spherical particles based on Voronoi cells [20]. The packings are generated by the

discrete element method (DEM) simulations. The particles include axisymmetric

ellipsoidal particles from oblates to prolates and cylindrical particles from disks

to rods. The Voronoi cells are constructed under space discretisation and surface

reconstruction, which is shown to be universal for different shapes. The effects of

particle aspect ratio and sliding friction coefficient on the properties of Voronoi cells,

including the reduced volume, reduced surface area and sphericity, are quantified.

The reduced volume and surface area are found to observe log-normal distributions,

while their mean values and standard deviations have different dependencies on

particle shape and friction. By analyzing the correlations and using inherent relationships

between different Voronoi cell properties, we establish a group of universal equations

to predict these distributions according to particle sphericity and overall packing

fraction. Such findings cannot only improve our understanding of the packings of
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non-spherical particles but also provide a basis for evaluating the transport properties

and advancing the statistical mechanics theory for granular matter composed of non-

spherical particles.

2.6.3.3 Heuristics and meta-heuristics

Alonso et al. in 2020, present a study of a real-life multi-container loading problem

solved using a GRASP with improved methods for a company serving its customers:

by first placing the products on pallets and then packing pallets on delivery trucks

[4]; when the company ships numerous units of a product it requires homogeneous

pallets, i.e., pallets containing only one product or weakly heterogeneous ones each

layer corresponding to a single product, and finally strongly heterogeneous pallets

with the remaining units of the products. The solutions to this problem have to

satisfy five types of constraints: geometric constraints, the pallets are entirely inside

the trucks and do not overlap each other; weight constraints, limiting the total weight

a truck can bear and the maximum weight supported by each axle; constraints

limiting the position of the cargo gravity centre; dynamic stability constraints,

avoiding cargo displacements when the truck is moving; and constraints ensuring

the delivery dates of products are respected.

Also, in 2020, Zhao et al. develop a novel heuristic solution method for

solving three-dimensional irregular packing problems [11]. It introduces a three-grid

approximation technique to approximate irregular objects. Then, authors design

a hybrid heuristic method to place and compact each object where chaos search is

embedded into the firefly algorithm to enhance the algorithm’s diversity for optimising

packing sequence and orientations. Results from several computational experiments

demonstrate the effectiveness of the hybrid algorithm.

In 2018, Pankratov et al. present research motivated by packing non-spherical

particles problem arising in natural sciences, e.g., in powder technologies. The
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concept of an ε-cover is introduced as an outer multi-spherical approximation of the

spheroid with the proximity ε. The researchers proposed a fast heuristic algorithm

to construct an optimise ε-cover giving a reasonable balance between the value of

the proximity parameter ε and the number of spheres used, provided computational

results demonstrate the efficiency of the approach [57].

In 2018, Zudio et al. present a variable neighbourhood descent (VND) inspired

algorithm which improves the state-of-art biased random-key genetic algorithm (BRKGA),

for the three-dimensional bin packing problem [92]. The constructive greedy-heuristic

method to pack the boxes uses integer sequence to establish the order. The presented

BRKGA/VND alternative supplies the initial and mutating the population on sorted

box sequences. The devised composite method exhibits significantly superior average

fitness through the generations, finding solutions with high quality faster. Authors

test the novel approach with a standard set of 320 instances. The computational

experiment proves that BRKGA/VND produces equal or better results compared to

other state-of-art algorithms proposed in the literature. Data shows that BRKGA/VND

hybrid variants systematically provide high-quality solutions at fewer iterations as

opposed to the results attained by BRKGA.

Ma et al. in a 2018 paper consider the most general forms of irregular shape

packing problems in 3D space, where both the containers and the objects can be

of many shapes, where the free rotations of the objects are allowed [50]. The

authors’ propose a heuristic method for efficiently packing irregular objects by

combining continuous optimisation and combinatorial optimisation. The initial

strategy starts from the initial placement of an appropriate number of objects;

then they optimise the positions and orientations of the objects using continuous

optimisation. In combinatorial optimisation, and they further reduce the gaps

between objects by swapping and replacing the deployed objects and inserting new

objects. It demonstrates the efficacy of the authors’ method with experiments and

comparisons.
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Hongteng et al. present, in 2018, a new practical problem treated as a decomposition

into three three-dimensional packing problems: three-dimensional irregular packing

with variable-size cartons problem, three-dimensional variable-size bin packing problem,

and the single container loading problem [88]. Since the three sub-problems are NP-

hard, searching for a suitable solution becomes more difficult. In this research,

the authors developed mathematical models for each sub-problem and proposed

three-stage heuristic algorithms to solve this new problem. They also conducted

experiments with random instances generated by real-life cases. Computational

results validate the algorithm efficiency and yield satisfactory results.

In this paper Hifi et al. solve the three-dimensional sphere packing problem by

using a dichotomous search-based heuristic, the researchers define an instance of the

problem by a set of n unequal spheres, and an object of fixed width and height and,

unlimited length [30]. Its radius characterises each sphere, and the the problem aims

to optimise the length of the object containing all spheres without overlapping. The

proposed method employs a beam search combining three complementary phases:

Phase one: a greedy selection determining a series of single search subspace.

Phase two: a truncated tree search, using a width-beam search that explores

some promising paths.

Phase three: a dichotomous search that diversifies the search.

Researchers evaluated the performance of the proposed method on benchmark

instances found in reviewed literature and compared the obtained results to those

reached by some novel methods. The proposed method is competitive, and it yields

promising results.

In 2015, Xueping et al. consider multiple container loading problem, commonly

known as the three-dimensional bin packing problem (3D-BPP), which deals with

maximising container space utilisation while the containers available for packing are

heterogeneous [42]. The problem has several applications in cargo transportation,
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warehouse management, medical packaging, container loading, and various fields of

logistics. The authors develop a differential evolution (DE) algorithm hybridized

with a novel packing heuristic strategy, best-match-first (BMF), which generates a

compact packing solution based on a given box packing sequence and a container

loading sequence. Authors evaluated the effectiveness of the developed algorithm on

an assortment of industrial and randomly generated instances. The results determine

the proposed algorithm outperforms existing solution approaches concerning quality.

In 2014, Li Xueping et al. present a genetic algorithm along with an innovative

heuristic packing procedure [43] to solve industrial container loading strategies,

the researchers use a novel packing heuristic procedure to converts box packing

sequence and container loading sequence encoded in a chromosome to a compact

packing solution, the genetic algorithm approach is used to evolve such sequences,

this implementation of a hybrid strategy is first applied to 12 industrial instances and

later on tested on randomly generated instances, the obtained results demonstrate

that solutions with high quality can be found within a reasonable time.

In this paper, Gonçalves et al. present a novel biased random-key genetic

algorithm (BRKGA) for 2D and 3D bin packing problems [26]. The approach uses a

maximal-space representation to manage the free spaces in the bins. The proposed

algorithm hybridises a novel placement procedure with a genetic algorithm based

on random keys. The BRKGA is used to evolve the order in which the boxes

are packed into the bins, and the parameters used by the placement procedure.

Two new placement heuristics are used to determine the bin and the free maximal

space where each box is placed. A novel fitness function that improves the solution

quality significantly is also developed. The new approach is extensively tested on 858

problem instances and compared with other approaches published in the literature.

The computational experiment results demonstrate that the new approach consistently

equals or outperforms the other approaches, and the statistical analysis confirms that

the approach is significantly better than all the other approaches.
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METHODOLOGY DESIGN

“The researcher suffers the disappointments, the long months spent in the wrong

direction, the failures. But failures are also useful, because, well analyzed, they can

lead to success. And for the researcher, there is no joy comparable to that of

discovery, however small...”

SIR ALEXANDER FLEMING.
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3.1 Introduction

The scientific method offers a set of techniques and procedures to obtain accurate

theoretical understanding, experimental verification and validation by the use of

reliable instruments eliminating any kind of subjectivity. This approach can provide

useful and proven answers about many cases of study. The scientific community

considers the scientific method as one of the most useful procedures since it allows

the explanation of phenomena objectively, provide solutions to research problems

and encourages the declaration of laws. Its construction is rigorous and logical in

an orderly manner with clear, pure and complete principles seeking correction and

enhancement to overcome, order and understand the gathered knowledge [87].

The scientific research is categorised according to the purpose, scope, design,

source and focus of the activities involved; thus, the type of investigation influences

the scientific method workflow.

3.2 Type of research

Following the related categories classification and the characteristics of the project

carried out and described in this document, it can be grouped as applied quantitative-

experimental-explicative research.

Applied:

Quantitative:

Experimental component:

Explicative research:
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3.3 Research activities

To a better comprehension of the methodology used in this research, see Figure 3.1

of page 40.

1. Review related bibliography to find similarities and singularities with the

proposed solution methods and models.

2. Develop new mathematical models and tailored algorithms focused on vertex

approach to face additive manufacturing problems from a bin packing perspective.

3. Design and coding computational hybrid algorithms using a mixed-approach

and starting point strategies to develop some optimisation algorithms to make

solutions optimal or with minimal gaps.

4. Develop computational experimentation for various types (heterogeneity, size,

quantity, and complexity) of simulated and real instances with different combinations

of heuristics, meta-heuristics and exact methods and strategies.

5. Extend the previous model to large scale additive manufacturing problems like

densest layer filling.

3.4 General procedure workflow

3.4.1 Modelling phase

In this methodology phase, incipient mathematical models representing the vertex-

based approach and the conditions to obtain them are studied and tested, it also

includes a thorough study of the mathematical structure of “optimal theoretical

solutions” for several hand-made instances. This workflow milestone allows developing
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Figure 3.1: Flowchart of methodology cycle.

important theoretical properties, select an order in the testing of solution methods

and other strategies to face this specific situation.

This stage has an a critical theoretical-algorithmic impact, focused on modelling

packing non-overlapping, containment and other problem-specific conditions, and an

iterative process of model improvement. The tools to use in this part are as simple

as possible: adjacency matrix for three-dimensional object representation, distance

metrics, and geometrical formulations.
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3.4.2 Solution methods phase

From the results obtained in the modelling phase, and appropriate decision on

selecting solution techniques is desirable. There are several ways presented in the

reviewed literature to face non-linear optimisation problems, i.e., exact methods,

heuristics and meta-heuristics, model decomposition, which today are state-of-the-

art for solving hard optimisation problems.

The fact that packing problems are classified as NP-hard combined with a large

number of instances makes developing solution methods a real challenge, Thus, is

a must either developing exact methods to find the optimal global solution of the

problem or building heuristics-based strategies guaranteeing right quality solutions

in reasonable computation times.

3.4.3 Computational implementation phase

With the end of the solution methods, the computational implementation step is

beginning, in this methodology stage expert criteria are required. Models implementation

is a fundamental step with significant importance due to the inclusion of a variety of

mathematical programming, general-purpose-high-level languages, available solvers

and rendering and plotting tools, see Section 4.4 from page 50 as a part of the

implementation.

3.4.4 Models

3.4.4.1 Model variables

Xijk — Polytope vertex coordinates.
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αij — Lagrangian multipliers.

βij — Lagrangian multipliers.

υijk — Lagrangian multipliers

λijk — Linear combinations vectors.

µijk — Linear combinations vectors.

3.4.4.2 Model parameters

i, i = 1..p — number of polytopes: this parameter defines the dimensionality of the

instance, it refers to the number of small items to pack inside the container walls.

j, j = 1..s — number of vertexes: defines the types of polytopes to pack.

k, k = 1..n — number of dimensions: defines the format of the space, adjusting this

parameter, the dimensions can be squeezed or extended.

dikl — Euclidean distance between points k and l of the polytope i: refers to the

adjacency matrix of polyhedra structure.

3.4.4.3 Model objective function for packing in

spherical-shaped containers

minimise r1 (3.1)

1r: for sphere or cylinder radius.
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3.4.4.4 Model objective functions for packing in

cylindrical-shaped containers

minimise r + h2 (3.2)

minimise r2 ∗ h (3.3)

minimise (r − h)2 + 9 ∗ r2 + 3 ∗ h2 (3.4)

3.4.4.5 Model objective functions for packing in

prismoidal-shaped containers

3.4.4.6 Model general constraints

p∑
i=1

s∑
j=1

n∑
k=1

(Xijk −Xij′k)2 = dijj′2 (3.5)

p∑
i=1

s∑
j=1

n∑
k=1

(Xijk −X0k)2 = r2 (3.6)

p∑
i=1

s∑
j=1

n∑
k=1

υijk ∗Xijk − αij ≤ −1 (3.7)

p∑
i=1

s∑
j=1

n∑
k=1

υijk ∗Xi′jk − βij ≥ 1 (3.8)

p∑
i=1

αii′ + βii′ < 2 (3.9)

p∑
i=1

s∑
j=1

n∑
k=1

λii′k + µii′k =

p∑
i=1

αii′ + βii′ (3.10)

2h: cylinder height.
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p−1∑
i=1

n∑
k=1

λii′k ≤ 1 (3.11)

p−1∑
i=1

n∑
k=1

µii′k ≤ 1 (3.12)

∀i 6= i′, j 6= j′, k 6= k′ (3.13)

υijk ∈ Rn, αij, βij, λijk, µijk ≥ 0. (3.14)

3.4.5 Experimentation and evaluation phase

In this methodology step, an experimental evaluation is carried out to assess the

contribution of each of the features recorded that make up the solution method

implemented. Adjusting algorithms parameters, analyzing real convergence, estimating

limits for problem size, all are carried out using suitable experimental statistical

design. Parametric or non-parametric analysis of variance allows establishing with

statistical rigour the contribution to the solution quality of each of the components

developed, as well as adequate comparison with existing methods if any.
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EXPERIMENTATION,

MATERIALS AND METHODS

“No amount of experimentation can ever prove me right; a single experiment

can prove me wrong”

ALBERT EINSTEIN.
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4.1 Design

After the execution of 3456 experiments classified by container, e.g., 1296 for cylindrical

containers, 1296 for prismoidal containers and 864 for spherical ones, to carry out the

experimentation; several elements were taken into consideration: different containers

types, the number of packing items, various strategies to improve the solutions,

solvers and other factors that emerged as part of the solution analysis and previous

model validations, see Table 4.1 from page 47.

Two main strategies1 directed the second part of the experimentation: an

initial point strategy using IPOPT solver solution as an entry point to BARON, and

an initial point strategy using BARON solver with short execution times as an entry

point to itself in a second execution.

4.2 Solvers selection

The solvers’ selection involved a massive bibliographic revision of benchmark articles

[37] on their performance on several sets of problems, other features reviewed for

their inclusion in the research are: the availability on the mathematical modelling

suites, type of access, licensing restrictions, API integration, usability and typology

of problems to solve, among others.

4.2.1 Computational solvers

• BARON solver: is a computational system for solving non-convex optimisation

problems to global optimality like purely continuous, purely integer, and mixed-

integer non-linear problems. The Branch And Reduce Optimisation Navigator

1Strategies using LGO and other combinations arise in low-quality solution results.
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Table 4.1: Experimentation summary

Container Solver Items Strategies Tolerance Objec. Function Experiments

Cylindrical IPOPT,

BARON,

LGO

5, 7, 10,

14, 15,

20, 25,

30, 40,

50, 100,

200, 300

1) No initial

solution.

from 10e-

1 to 10e-7,

step 10e-1

variable radius,

variable height

1296

2) Initial

solution

IPOPT

fixed radius,

variable height

3) Initial

solution

BARON

variable radius,

fixed height

Spherical IPOPT,

BARON,

LGO

5, 7, 10,

14, 15,

20, 25,

30, 40,

50, 100,

200, 300

1) No initial

solution.

from 10e-

1 to 10e-7,

step 10e-1

fixed radius 864

2) Initial

solution

IPOPT

variable radius

3) Initial

solution

BARON

Prismoidal IPOPT,

BARON,

LGO

5, 7, 10,

14, 15,

20, 25,

30, 40,

50, 100,

200, 300

1) No initial

solution.

from 10e-

1 to 10e-7,

step 10e-1

variable length,

variable width,

fixed height

1296

2) Initial

solution

IPOPT

variable length,

fixed width, fixed

height

3) Initial

solution

BARON

variable length,

variable width,

variable height
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receives its name from the combination of constraint propagation, interval

analysis, and duality in its reduce armoury with enhanced branch and bound

concepts as it weaves its way through the local minima and maxima of complex

optimization problems in search of global solutions [70][77].

• IPOPT solver: is a software package for large-scale non-linear optimisation

that implements an interior point search filter method search filter method

that endeavours to find a local solution [12] [13], it is available from COIN-OR

(http://www.coin-or.org) under the EPL (Eclipse Public License) open-source

license. It includes the source code for IPOPT, wich means it is available free

of charge, also for commercial purposes. However, if you give away software

including IPOPT code (in source code or binary form) and you made changes

to the IPOPT source code, you are required to make those changes public and

to indicate which modifications you made. After all, the purpose of open source

software developers is the constant evolution and refinement of the software.

[6][15][61][81]

• LGO solver: is a solver suite system that has been developed and gradually

extended for more than a decade. It now includes a suite of robust and efficient

global and local non-linear solvers combining several search modes, providing

a reliable, effective, and flexible set of solvers approach to a broad range of

non-linear models. The solver suite approach enhances the reliability of the

overall solution process. It integrates the following global scope algorithms:

Branch-and-bound with adaptive partition and sampling-based global search

(BB), Adaptive global random search (GARS), and Adaptive multi-start global

random search (MS). The suit also includes the following local solver strategies:

Heuristic global scope scatter search method (HSS), Bound-constrained local

search, based on the effectiveness of an exact penalty function (EPM), constrained

local search, based on the sequential model linearisation (SLP), constrained

local search, based on a generalised reduced gradient approach (GRG) [72][23][60][59].

A systematic comparison of 1740 test problems shows that BARON has the



Chapter 4. EXPERIMENTATION, MATERIALS AND METHODS 49

(a) 141 MINLPs from IBMLib (b) 250 MINLPs from MINLPLib

Figure 4.1: Solvers performance profile on mixed-integer non-linear problems.

Source [69]

edge over other global codes for NLP/MINLP. The test problems used in this

comparison were originated from GlobalLib, CMU/IBMLib, MINLPLib, and PrincetonLib,

respectively. This test set includes all problems from these libraries that are accepted

by all solvers. These and additional test problems are available in a variety of

formats. Below we give performance profiles for individual test sets.

4.3 Instrumentation and equipment

All instances and solutions were pre-processed and processed, including solver execution

in a Workstation HP Z230, with the current specifications:

• Intel(R) Xeon(R) 3.40 Ghz octa-core.

• 16 GB RAM DDR3

• 2TB HDD SATA 3 Gbits/s
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(a) 369 NLPs from GlobalLib (b) 980 NLPs from PrincetonLib

Figure 4.2: Solvers performance profile on non-linear problems. Source [69]

4.4 Software and packages

The current research project involved several computer software ranging from general-

purpose, see Section 4.4.1 from page 50, mathematical modelling programming

languages, see Section 4.4.2 from page 51, computer cloud services, see Section 4.4.3

from page 54, to computational solvers, see Section 4.2 from page 46.

4.4.1 Programming languages and packages

The author used Python v3.7 programming language and packages extensively for

secondary and supporting activities like developing an instances generator, web

scraping NEOS-SERVER solver data files, three-dimensional instance plotting [34],

initial two-dimensional instance plotting for prior model validations [33], instances

data visualisation analysis [82], and analysis of results and other outcomes [78][80].
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4.4.2 Mathematical modelling languages selection

Mathematical optimisation, also known as mathematical programming is a process

that turns out a problem into an analytical model and then finds better solutions out

of a myriad of possibilities. This non-trivial course of actions helps decision-makers

to improve their proposals, optimise time-execution and saves a considerable number

of resources. This section presents a deep-in review over benchmark articles, solvers

and optimiser testing reports, analyses advantages and disadvantages on two groups

of computational software.

Gurobi Optimizer: founded in 2008 by arguably the most experienced and

respected team in optimisation circles claims to be the fastest and the most potent

mathematical programming solver available for LP, QP and MIP (MILP, MIQP, and

MIQCP) problems [56]. The development and maintenance team are continually

looking to push the performance boundary for linear, quadratic, and mixed-integer

programming forward, in presented test and evaluations the assured they have

doubled the speed of their solver with each major release. The suite of products

from Gurobi team represents new implementations, the latest mathematical and

engineering improvements, computing hardware and programming environments to

help meet the growing demands of business problems [55].

GAMS: is one of the preeminent tool providers for the optimisation industry,

from multinational companies, universities, research institutions to governments in

many different areas, e.g., including the energy and chemical industries, for economic

modelling, agricultural planning, or manufacturing [18]. Started as a World Bank

project by an economic modelling team in the 1970s, it was the first software

system to join the language of mathematical algebra with traditional concepts of

computer programming to describe and solve optimisation problems efficiently. By

the foundation of the GAMS Development Corporation, in 1987, the mathematical

modelling software became a commercial product. Nowadays, algebraic modelling is

one of the most productive ways of implementing linear and non-linear models and
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decomposition methods for optimisation problems [17].

AMPL: designed to combine and extend the expressive capabilities and techniques

of the existing mathematical modelling language while remaining easy to use for

industrial and another type of applications. It is particularly notable for the naturalness

of its syntax and the generality of its set and indexing expressions. It provides

strong support for validation, verification and reporting of optimal solutions, through

numerous alternatives for presenting data and results, Its extensive pre-processing

routines can perform transformations serve to subdue problem size, turn piecewise-

linearities to linear terms, and replace out selected variables. It is further characterised

by its continuous improvement to help users’ needs. New-fresh additions include

looping and testing constructs for writing executable scripts in the command language,

and facilities for establishing and working with several interrelated sub-problems [5].

After intensive review and experimentation on mathematical tools presented

before, the mathematical modelling software AMPL was the final decision to use in

this research, Next lines present the main reasons:

1. Easy to switch to other solvers with just a minimum of code adjustment.

2. Declarative AMPL models are regularly easier to read and are more high-level

than the procedural code used to construct problems thought an API.

3. AMPL isolates the solver processes, which can be beneficial for significant

issues, e.g, if any specific solver runs out of memory, this annoying issue will

not affect AMPL.

4. AMPL provides a built-in functionality to import data from and export to

databases and spreadsheets.

5. AMPL has an active ongoing community which is arguably more extensive

than any other solver, including Gurobi. AMPL Google Group has more than

1700 members and rising.
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Table 4.2: Comparison between GAMS, AMPL and Gurobi Optimizer

GAMS AMPL Gurobi

Learning curve Easy to learn Easy to learn Depends on the

implementation and

IDE used

Readability Average Easy More complex: high-

level than procedural

code to solve problems

via an API

Academic license 640.00 USD Free and renewable Free and renewable

Interface Batch oriented More flexible option of

interactively exploring

models and results

Python, R, Java

Environment-

related

Higher use in industry

modelling

Higher use in academic

researches

Industry and academic

in

Solvers included Large set of solvers Wide range is sell independent and

as is part of GAMS and

AMPL

Problems solved Depends on solvers

installation

Depends on solvers

installation

LP, QP and MIP

(MILP, MIQP, and

MIQCP)

Online

community

Medium Large Small to medium

Syntaxis Not intuitive Intuitive and expressive High-level language

oriented

Documentation Well documented Well documented Well documented

Design

conception

Relies on more special

conventions and

reformulations

Designed with the idea

of being much closer to

mathematical notation

To work mainly from

through API call using

a high-level declarative

language or included in

modelling software.
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Figure 4.3: NEOS-server landing page, Source [84]

4.4.3 Cloud computing clusters

Besides the in-place computational power utilised to take out the experimentation

concerning this research, See Section 4.3 from page 49, an extensive and intensive

parallel experiment was executed using open services cloud solvers, like NEO-server

[27][19][16] with different configurations and solvers, see Figures 4.5 and 4.4 from

pages 56 and 55.
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Figure 4.4: NEOS-server BARON interface, Source [85]
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Figure 4.5: NEOS-server IPOPT interface, Source [86]
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4.5 Results

4.5.1 Spherical-shaped container
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Figure 4.6: Model spatial complexity.

Figure 4.7: Model temporal behaviour.

4.5.2 Cylindrical-shaped container
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Figure 4.8: Density packing behaviour in spherical container.
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(a) 4 mono-size tetrahedra (b) 5 mono-size tetrahedra

(c) 6 mono-size tetrahedra (d) 8 mono-sized tetrahedra

Figure 4.9: Small size instances of mono-sized tetrahedral packed in a spherical

container
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(a) 10 mono-size tetrahedra (b) 13 mono-size tetrahedra

(c) 20 mono-size tetrahedra (d) 25 mono-sized tetrahedra

Figure 4.10: Small to medium size instances of mono-sized tetrahedral packed in

a spherical container
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(a) 30 mono-size tetrahedra (b) 35 mono-size tetrahedra

(c) 40 mono-size tetrahedra (d) 50 mono-sized tetrahedra

Figure 4.11: Medium size instances of mono-sized tetrahedral packed in a spherical

container
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(a) 70 mono-size tetrahedra (b) 90 mono-size tetrahedra

Figure 4.12: Medium to high sized instances of mono-sized tetrahedral packed in

a spherical container.
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Figure 4.13: High sized instance of mono-sized tetrahedral packed in a spherical

container - 100 mono-size tetrahedra.
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(a) 5 mono-size tetrahedra (b) 5 mono-size tetrahedra (c) 5 mono-sized tetrahedra

Figure 4.14: Mono-sized tetrahedral packed in a cylindrical container with different

objective functions.



Chapter 5

CONCLUSIONS

“So Einstein was wrong when he said, “God does not play dice.” Consideration of

black holes suggests, not only that God does play dice, but that he sometimes

confuses us by throwing them where they can’t be seen”

STEPHEN HAWKING.

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Research limitations . . . . . . . . . . . . . . . . . . . . . . 68

5.4 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1 Introduction

This chapter presents the current research conclusions, illustrates impressive outcomes

about the problem analysis, exposes complex characteristics of the geometrical structures

that define the packing elements, characterises solutions and modelling phases, and

describes unexpected obstacles detected during the computational implementation.

It also includes several further ideas arose to overcome those drawbacks as future

67
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work to continue delving and generating new knowledge in bin packing techniques

applied to additive manufacturing.

5.2 Conclusions

• Initials solutions obtained from global solvers mixed with inner-point solver

strategies are a good starting point facing medium-sized densest filling layer

problems and work extremely efficient in void structure situations.

• Build volume problems can be treated by this model using an aggregation of

objects with similar mechanical and physical properties inside the chamber

with simple adaptations to objective functions.

• The multi-objective prospect could offer a different pathway to the solution of

general problems described in the current research. In general, experimentation

exposes a need for higher-order methods like decomposition, hybrid methods,

meta-heuristics, novel approaches, as well as mixed strategies to obtain better

quality parameters in a reasonable time.

• Despite the developed exact models can not solve instances with a massive

amount of items to pack, the case of densest filling layer applications so far,

the developed model has proven its efficiency in void structures problems and

build volume problems with some variations.

5.3 Research limitations

• Alternative solution methods, such as heuristics, Meta-heuristics, neural networks

and others, were nor implemented neither tested to deal with these typologies;

therefore this limitation is included in future research in the bin packing

applications in this field of knowledge.
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• Since this approach is vertex-based, smooth surfaces like ellipsoid, cylindrical-

shaped structures, must be created as mathematical approximations of themselves.

• This approach assumes the propagation of heat of sintering laser follows a

linear or pseudo linear distribution, would be challenging the introduction

of differential equations in the model to estimate this thermogenic process

accurately.

5.4 Future works

• Test the vertex approach model against the inequation1 approach model.

• Complete various instance complexity studies about the data generated.

• Extend the exact models to a broader range of structures combinations and

non-convex containers.

• Extend the models to large-scaled bin packing problems.

• Design a GSA heuristic or meta-heuristic to test the previous models in time

and solution quality parameters.

• Use reinforcement deep learnin with Q-learning to design neural network model

to test the results of avant-garde models in time, solution quality parameters.

1A model developed in a separated parallel investigation to face others bin packing — additive

manufacturing related-problems.



Bibliography

[1] 3Dnatives. Additive manufacturing in aerospace is

growing - 3dnatives. https://www.3dnatives.com/en/

additive-manufacturing-aerospace-growing-061220184/#:∼:text=Additive%

20manufacturing%20in%20aerospace%20have,engines%2C%203D%20printed%

20turbines%20etc., 01 2020. (Accessed on 01/10/2020).

[2] 3DScienceValley. A closer look at slm solutions’ large-format additive

manufacturing solution – 3d science valley. http://en.51shape.com/?p=1944,

2019 12. (Accessed on 01/09/2020).

[3] S. G. Abdul W. Basit. 3D Printing of Pharmaceuticals. AAPS Advances in

the Pharmaceutical Sciences Series 31. Springer International Publishing, 1st

ed. edition, 2018.

[4] M. T. Alonso, R. Alvarez-Valdes, and F. Parreño. A GRASP algorithm for

multi container loading problems with practical constraints. 4OR, 18(1):49–72,

Mar 2020.

[5] AMPL. How does AMPL compare to other modeling languages

and systems? - AMPL AMPL. https://ampl.com/faqs/

how-does-ampl-compare-to-other-modeling-languages-and-systems/, 05

2019. (Accessed on 01/09/2020).

[6] C. L. Andreas Waechter. Ipopt: Documentation. https://coin-or.github.io/

Ipopt/, 05 2019. (Accessed on 01/09/2020).

70

https://www.3dnatives.com/en/additive-manufacturing-aerospace-growing-061220184/#:~:text=Additive%20manufacturing%20in%20aerospace%20have,engines%2C%203D%20printed%20turbines%20etc.
https://www.3dnatives.com/en/additive-manufacturing-aerospace-growing-061220184/#:~:text=Additive%20manufacturing%20in%20aerospace%20have,engines%2C%203D%20printed%20turbines%20etc.
https://www.3dnatives.com/en/additive-manufacturing-aerospace-growing-061220184/#:~:text=Additive%20manufacturing%20in%20aerospace%20have,engines%2C%203D%20printed%20turbines%20etc.
https://www.3dnatives.com/en/additive-manufacturing-aerospace-growing-061220184/#:~:text=Additive%20manufacturing%20in%20aerospace%20have,engines%2C%203D%20printed%20turbines%20etc.
http://en.51shape.com/?p=1944
https://ampl.com/faqs/how-does-ampl-compare-to-other-modeling-languages-and-systems/
https://ampl.com/faqs/how-does-ampl-compare-to-other-modeling-languages-and-systems/
https://coin-or.github.io/Ipopt/
https://coin-or.github.io/Ipopt/


Bibliography 71
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[81] A. Wächter. Short tutorial: Getting started with ipopt in 90 minutes. In

U. Naumann, O. Schenk, H. D. Simon, and S. Toledo, editors, Combinatorial

Scientific Computing, number 09061 in Dagstuhl Seminar Proceedings,

Dagstuhl, Germany, 2009. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,

Germany.

[82] M. Waskom, O. Botvinnik, D. O’Kane, P. Hobson, S. Lukauskas, D. C.

Gemperline, T. Augspurger, Y. Halchenko, J. B. Cole, J. Warmenhoven,

J. de Ruiter, C. Pye, S. Hoyer, J. Vanderplas, S. Villalba, G. Kunter,

E. Quintero, P. Bachant, M. Martin, K. Meyer, A. Miles, Y. Ram, T. Yarkoni,

M. L. Williams, C. Evans, C. Fitzgerald, Brian, C. Fonnesbeck, A. Lee, and

A. Qalieh. mwaskom/seaborn: v0.8.1 (september 2017), Sept. 2017.

[83] E. W. Weisstein. Uniform polyhedro, Jan 2015.

[84] Wisconsin Institute for Discovery. Wisconsin Institute for Discovery at the

University of Wisconsin, 2019.

[85] Wisconsin Institute for Discovery. Wisconsin Institute for Discovery at the

University of Wisconsin, 2019.



Bibliography 79

[86] Wisconsin Institute for Discovery. Wisconsin Institute for Discovery at the

University of Wisconsin, 2019.

[87] A. Wolf. Essentials of scientific method. Routledge, 2019.

[88] H. Wu, S. C. Leung, Y. whar Si, D. Zhang, and A. Lin. Three-stage

heuristic algorithm for three-dimensional irregular packing problem. Applied

Mathematical Modelling, 41:431 – 444, 2017.
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