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Zusammenfassung

Terrestrische Planeten, wie zum Beispiel Erde und Mars, besitzen eine Kruste, die sich
während der Akkretion bildet und Informationen über grundlegenden Prozesse konserviert,
die an deren Entstehung und Entwicklung beteiligt sind. Im Unterschied zur Erde, bei der
ein Großteil der alten Kruste recycelt wurde, ist die Marskruste aufgrund fehlender Plat-
tentektonik erhalten geblieben. Die Untersuchung von dessen Dicke und Struktur kann
dazu beitragen, die frühe Entwicklung und Bildung des Planeten einzugrenzen. Bish-
erige Schätzungen der Dicke der Marskruste basieren, aus Ermangelung verfügbarer seis-
mographischer Daten, hauptsächlich auf orbitalen Topographie- und Schwerkraftdaten.
Die Ergebnisse waren sehr unsicher, da diese Methoden nur relative Variationen statt
absoluter Daten liefern können. Im November 2018 hat die InSight-Mission erfolgreich
ein Dreikomponenten-Breitband-Seismometer auf der Marsoberfläche in Betrieb genom-
men. Nach kontinuierlicher seismischer Überwachung des Planeten für mehr als drei
Erdjahre, geben die Daten von InSight nun zum allerersten Mal die Möglichkeit zur In-
situ-Untersuchung der Marskruste. Diese Dissertation zielt darauf ab, eine Methode für
eine einzelne seismische Station zu entwickeln und anzuwenden, mit der die Kruste des
Mars abgebildet und seine Dicke und Struktur basierend auf aufgezeichneten Marsbeben
unterhalb des InSight-Landeplatzes evaluiert werden kann. Eine solche Messung dient
auch als Referenzpunkt, der zusammen mit Gravitations- und Topographiedaten genutzt
werden kann, um Schwankungen der globalen Krustendicke einzugrenzen. Es wird eine
Technik präsentiert, die auf dem Receiver Function (RF)-Verfahren basiert. Unter Ver-
wendung von Phasenumwandlungen zwischen Kompressionswellen (P) und Scherwellen
(S), können RFs planeteninterne Grenzflächen abbilden, während seismische Wellen durch
diese propagieren. Um die Mehrdeutigkeit der Inversionen zu reduzieren, wurde eine ein-
fache Relation genutzt, die die scheinbare S-WellenGeschwindigkeit als eine Funktion von
beobachteten Einfallswinkeln scheinbarer P-Wellen beschreibt, was wiederum den Param-
eterraum einschränkt. Diese Einfallswinkel werden, zusammen mit der Bewertung der
Parameterunsicherheiten und den RFs gemeinsam invertiert. Terrestrische Daten mit ver-
schiedenen zu Grunde liegenden geologischen Gegebenheiten veranschaulichen die Meth-
ode. Die erhaltenen Werte zu Krustendicke, Geschwindigkeiten und Anzahl der Schichten
innerhalb der Marskruste stimmen mit den Ergebnissen früherer Studien überein. Diese
Dissertation präsentiert die erste RF-Analyse seismischer Marsdaten unter Verwendung
mehrerer Marsbeben. RF-Berechnungen und Inversionen nach verschiedenen Ansätzen
zeigen durchgängig drei klare Phasenankünfte innerhalb der ersten 8 Sekunden. Diese wer-

xi



xii Zusammenfassung

den als Konvertierungen von entweder einer zweischichtiger Kruste mit einer Dicke von 20
km oder einer dreischichtige Kruste mit einer Dicke von 39 km interpretiert. Extrapolation
dieser Punktmessungen auf den gesamten Planeten unter Verwendung von Schwerkraft-
und Topographiedaten schätzen die durchschnittliche Dicke der Marskruste auf zwischen
24 und 72 km. Um die Mehrdeutigkeit des Modells aufzulösen, ist ein Ansatz zur Identi-
fizierung von mehrfach konvertierten Phasen in RF-Wellenformen unter Verwendung der
Zufallsmatrixtheorie umrissen. Ein Spike-Kovarianzmodell für die Daten voraussetzend,
approximiert und extrahiert das Verfahren zufällige Rauschkontamination aus den RF-
Wellenformen und erlaubt dadurch die Beobachtung kohärenter Phasenankünfte. Neue
mehrfach reflektierte Phasenankünfte werden mit dieser Methode in den InSight-Daten
identifiziert. Die Ergebnisse zeigen ein dreischichtiges Krustenmodell mit einer Krusten-
dicke von 43 km, konsistent mit dem dreischichtigen Modell der früheren Studie.



Summary

Terrestrial planets, such as Earth and Mars, possess a crust that forms during the accretion
phase, preserving impressions of the fundamental processes involved in their formation and
evolution. Unlike Earth, where most of the ancient crust has been recycled, Mars retains
most of it as it does not possess plate-tectonics. Investigation of its crustal thickness and
structure can thus help constrain its early evolution and formation. Previous estimates
of Martian crustal thickness have been primarily based on orbital topography and gravity
data due to a lack of seismic data. The results were highly uncertain as these can only
constrain relative variations and not absolute values.

In November 2018, the InSight mission successfully deployed a three-component, very
broad-band seismometer on the surface of Mars. With continuous seismic monitoring of
Mars for over three Earth years, the seismic data from InSight now presents us with an
opportunity for in-situ investigation of the Martian crust for the very first time. This
thesis aims to develop and apply a single-station seismic method to image the crust of
Mars and evaluate its crustal thickness and structure below the InSight landing site using
the recorded marsquakes. Such a measurement also serves as a ”tie-point” that can be
used with the gravity and topography data to provide constraints on the global crustal
thickness variations of the Martian crust.

A technique based on the Receiver Function (RF) method has been introduced. RFs
can image subsurface interfaces by utilizing the mode conversion between the compressional
(P) and shear (S) waves as seismic waves propagate through them. To reduce the non-
uniqueness of their inversions, a simple relation which defines apparent S-wave velocity
as a function of observed apparent P-wave incidence angle has been used to constrain
the parameter space. This is then used with RFs simultaneously in a joint inversion
scheme along with the evaluation of parameter uncertainties. Terrestrial data from various
geological settings illustrate the method. The obtained crustal thickness values, velocities
and inter-crustal layerings are consistent with results obtained in previous studies.

This thesis presents the first RF analysis of Martian seismic data using several marsquakes.
RF computation and inversions using di↵erent approaches consistently show three clear
phase arrivals within the first 8 seconds. These are interpreted as conversions from either
a two-layer crust with a thickness of 20 km or a three-layer crust with a thickness of 39
km. Extrapolation of these point measurements to the whole planet using gravity and
topography data estimates the average thickness of the martian crust to lie between 24
and 72 km. To help resolve the model ambiguity, an approach to identify multiply con-
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xiv Summary

verted phases in the RF waveforms using the random matrix theory is outlined. Assuming
a spiked covariance model for the data, the method approximates and extracts random
noise contamination from the RF waveforms and emphasizes coherent phase arrivals. New
multiply reflected phase arrivals are identified in the InSight data using this method. In-
version results indicate a three-layer crustal model with a crustal thickness of 43 km below
the InSight landing site, consistent with the three-layer model and global thickness values
of the earlier study.



1

Chapter 1

Introduction

Along with Earth, Venus, and Mercury, Mars is one of the four terrestrial planets in our
Solar System. With striking similarities and di↵erences to our world, it has been a focus
of planetary exploration since the beginning of the space age. Questions about its past,
present and future continue to spark curiosity and fantasy. Early telescopic observations
of Mars showed numerous dark linear canals on its surface, interpreted as evidence of
intelligent civilizations inhabiting the planet (Lowell, 1906). It was not until the first
Mars flyby missions broadcasted clear pictures of its surface in the late 1960s that these
interpretations were finally debunked. Our understanding of the planet has increased
enormously over these last 60 years, with crewed missions and habitats planned for the
next decades. With over a dozen successful missions to Mars, evidence strongly suggests
that Mars was once much more Earth-like with a warmer, wetter climate.

The crust of Mars presents more such conundrums. A sharp contrast exists between
the elevation and crustal thickness of the Northern plains and the Southern highlands.
Moreover, the density of impact craters is much higher in Southern highlands than in
the smoother, younger terrain of the North. This dramatic di↵erence between the two
hemispheres is known as the Martian crustal dichotomy and is one of the planet’s most
prominent and ancient features. Sitting on the edge of this dichotomy is Tharsis, an enor-
mous elevated volcanic plateau. The evolution of this dichotomy remains unclear, with
competing explanations of both endogenic and exogenic origins. It is also naively reminis-
cent of the oceanic-continental crustal diversity on Earth, with the bizarre confinement of
continents to just one hemisphere. But, contrary to the Earth’s granitic continental crust,
the composition of the Martian crust is basaltic and resembles the Earth’s oceanic crust.
Mars also does not seem to have active plate-tectonics and is presumed to be surrounded
by one single rigid plate that forms an outer shell of the planet.

The thickness of the crust has profound implications for a planet’s present physical
state and past evolution. It influences the rate at which heat is released to the surface and
sets conditions for the rigour of mantle convection. A planet with plate tectonics dissipates
internal heat by transporting it to the surface and radiating it through a thin lithosphere.
A single lid planet, on the other hand, will cool down by lithosphere growth resulting in a
thicker crust. Thus, a precise estimate of the Martian crustal thickness has fundamental
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Figure 1.1: Mars and its two moons, Phobos and Deimos. Courtesy of NASA/JPL-Caltech

importance as it can help put better constraints on the planet’s evolution, present and past
plate-tectonic processes, and the origins of its hemispheric dichotomy. Previous estimates
using gravity and topography data have high uncertainty as these could only constrain
relative values. The estimated range of the crustal thickness lies between 30 and 115 km,
with a mean thickness of 65 km. With in-situ surface observations now available through
the seismometer on board the InSight mission, this thesis aims to develop and apply single-
station seismic methods to measure the crust’s thickness below the lander to within a few
kilometres and reveal any possible crustal stratification.

1.1 Mars

The contents of this section have been compiled from Taylor (2009), Taylor and McLennan
(2009), and Barlow (2014) unless otherwise indicated.

Mars is a complex, vast world with a long history of formation. Like other terrestrial
planets, it is postulated to have been born in the inner half of a slowly rotating cloud of
gas and dust, known as a proto-planetary disc, surrounding the early Sun. The extremely
high temperatures within the disc cause all volatile elements like water to exist only in a
gaseous state. With increasing solar activity, these elements migrate outwards to regions
with lower temperatures. Only non-volatile elements such as metals and oxides of silicon
and magnesium remain suspended in solid form in the inner regions. These slowly agglom-
erate by repeated collisions to form kilometre-sized objects called planetesimals, which are
the building blocks of planets. With enough mass and gravity to attract more material,
planetesimals undergo an accretion process that rapidly leads them to grow into planetary
embryos. A final stage of planetary formation, the late accretion stage, consists of plane-
tary embryos either increasing or decreasing in size due to impacts, similar to the events
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Figure 1.2: Topography map of Mars constructed from MOLA data indicating the hemi-
spheric dichotomy and other relevant features. Lowest elevation is shaded in blue while
highest elevation is shaded in white. Courtesy of NASA/JPL-Caltech

that lead to the formation of the Earth-Moon system. This last stage is mainly responsible
for the planet’s final characteristics like mass, size, and rotation rate. Current theories
suggest that such a collision also led to the formation of the two martian moons, Phobos
and Deimos. Figure 1.1 shows an image of Mars along with its moons.

With an average distance of 2.279⇥ 108 km from the Sun, Mars is the fourth planet in
the Solar System, lying between Venus and Earth. It has an equatorial radius of 3397 km
and is about half the size of Earth. A solar day on Mars, referred to as a Sol, is 24 h 39
m 35 s and is slightly longer than the Earth’s, defined to be exactly 24 h. Like Earth, its
rotation axis is tilted with respect to its orbital plane at an angle of 25.1�, and undergoes
precession due to the gravitational perturbations from the Sun and other planets. This
precession rate for Mars is rather unstable, and is presently –7576 ± 35 milli-arcseconds
per year (Folkner et al., 1997), as calculated by Mars Viking and Pathfinder missions. The
orbit of Mars around the Sun is also inclined at an angle of about 1.851� to the ecliptic
plane, and its orbit is one of the most eccentric in the Solar System. This results in a
significant di↵erence in its perihelion and aphelion distances. Mars and Earth are aligned
on the same side of the Sun and are the nearest to each other approximately every 779
Earth days. This serves as a cost-e↵ective launch window for Mars expeditions.

The atmosphere is thin and made up of 95% carbon dioxide, 3% nitrogen, and 1.6%
argon gases, along with trace amounts of oxygen, carbon monoxide, water, methane, and
other noble gases. With a density of ⇠ 0.020 kg/m3, its surface pressure is only about 1% of
that of the Earth’s and prohibits the existence of liquid water on the surface. It is debated
whether the atmosphere was much thicker in the past, allowing liquid water to accumulate.
The density of the atmosphere varies throughout the year, decreasing by about 25% during
winters when the carbon dioxide partially freezes and settles into the polar caps. The daily
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temperature range in the lower atmosphere varies considerably from �75� to 0� near the
surface. The upper atmosphere temperatures are also significantly lower than on the Earth
as there is no stratospheric ozone layer on Mars. Massive convective vortexes often form
on the surface due to heating and load vast volumes of dust particles into the air. These
often form dust devils with diameters of tens of meters, extending to several kilometres
in height. In addition, there are regular local and regional dust storms that cover the
atmosphere and sometimes can even be seen on telescopic observations.

Martian topography has been determined by the Mars Orbiter Laser Altimeter (MOLA)
with a vertical accuracy of ⇠ 1 m (Smith et al., 2001). As mentioned before, the most
prominent feature of the Martian surface is the hemispheric dichotomy in crustal thickness
topography and crater density between the young plains in the northern hemisphere and
the older, elevated southern terrain. The northern lowlands comprise about one-third of the
surface of Mars, with the southern highlands accounting for the other two-thirds. The sep-
arating boundary is complex and consists of three geologically-distinct regions: the Tharsis
Province, fretted terrain and the chaotic terrain (Robinson, 1995). The Tharsis province
consists of a volcanic plateau located at the western edge of the dichotomy boundary. Here
we find the largest volcano in the Solar System - Olympus Mons (21.287 km in height),
along with three enormous shield volcanoes. To the east of the Tharsis lies a canyon system
stretching for about a quarter of the planet’s circumference - Valles Marineris. Fretted ter-
rain is characterized by abrupt and highly irregular escarpments, while the chaotic terrain
comprises areas of deep fractured depressions that consist of polygonal blocks (Robinson,
1995; Pedersen, 2014). The origin of the crustal dichotomy is still debated, with main
theories proposing either a low-angle giant impact or a degree-one mantle convection.

1.2 Interior

The accretion process leads to the formation of a homogeneous hot planet that gradually
cools down over time. The two main contributions to this heat energy come from the
accretion heating and compaction, and small quantities of radioactive elements contained
within the planet that generate heat as they decay with time. This heat energy is sometimes
enough to melt the planet entirely. At this point, the semi-fluid state of the planet allows
high-density, iron-rich material to sink down towards the centre while the lower low-density
material starts to rise to the surface. This allows materials to segregate into distinct layers
in a process called di↵erentiation. The primary reason for this is the density di↵erence
of materials and their chemical a�nities. Thus, iron and siderophile elements like nickel
(Ni), cobalt (Co), platinum (Pt), and iridium (Ir) settle at the centre to form the core. In
contrast, lighter oxygen-a�ne lithophile elements like potassium (K), sodium (Na), calcium
(Ca), and silicon (Si) rise to the surface to form the crust. This gives rise to a di↵erentiated
interior with a high-density core, intermediate-density mantle, and a low-density buoyant
crust (Elkins-Tanton et al., 2003).

Early indications of Mars having such a di↵erentiated interior predominantly came
from geodetic data and the results of geochemical analysis of several meteorites believed
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to have come from Mars. Geodetic data on the gravity field, shape, and rotation of a
planet is usually derived from various landers and spacecrafts orbiting it. Radio science
data from Doppler tracking of spacecrafts in orbit around Mars, such as Mars Global
Surveyor (MGS), Mars Odyssey (ODY), Mars Reconnaissance Orbiter (MRO), and Mars
Express (MEX), have been the primary source of this information. The gravity field
depends on the three-dimensional distribution of mass within the planet and thus provides
information on how density varies laterally and with depth. It is generally expressed in
terms of spherical harmonic functions with lower degree terms describing the deep interior.
With the estimates of mass, radius and precession rate or ellipsoidal flattening from these
observations, the mean density and the mean moment of inertia of the planet can be
calculated, which can further constrain the composition and density variations within the
planet. The impact of tidal forces on a planet can also provide crucial information on
the interior mass distribution, for example, the k2 Love number that describes the change
in the second spherical harmonic coe�cient of tidal potential on the body due to the
gravitational influence of another.

For Mars, the gravity field has been accurately determined up to harmonic degree 120,
corresponding to a horizontal surface resolution of about 215 km (Konopliv et al., 2016;
Genova et al., 2016). Using precise orientation parameters including precession, pole lo-
cation, and rotation rate from data spanning several decades (Le Maistre, 2013; Konopliv
et al., 2011), a mean moment of inertia and k2 Love number have been calculated (Kono-
pliv et al., 2016). Value for the principal moment of inertia has been previously estimated
using the zonal harmonics of the radio Doppler tracking data along with measurement of
the precession of the rotation axis (Folkner et al., 1997; Kaula, 1979). The SNC meteorites
(short for shergottites, nakhlites, and chassignites), believed to be of Martian origin, are
achondritic meteorites that derive from a basaltic crust (shergottites and nakhlites) and an
olivine upper mantle (chassignites). Several techniques have been developed to extract a
chemical composition of Mars using elemental correlations in the meteorites (e.g., Dreibus
and Wänke (1984); Wänke and Dreibus (1994); Taylor et al. (2006)) and isotopic mass
balance methods (e.g., Lodders and Fegley Jr (1997); Sanloup et al. (1999)). These pro-
vide important constraints on the timeline of the early evolution and di↵erentiation (Lee
and Halliday, 1997; Kleine et al., 2002) and have allowed calculations of mineralogy and
areotherms of the Martian interior using analytical and experimental techniques (Bertka
and Fei, 1997, 1998a; Fei et al., 2000). All these studies suggest Mars is a di↵erentiated
planet with a distinct crust, mantle and core. However, there is little consensus on the
exact extent of these.

In the absence of seismic data, the gravity and topographic data analysis has been the
primary source of information for the thickness of the crust and the lithosphere of Mars.
The inversion of the gravity field alone is inherently a non-unique problem, hence it is only
possible to infer properties of the crust and the lithosphere using some reasonable assump-
tions and the surface topography of the planet (Smith et al., 2001). Several approaches
have been developed to this end. One method predicts a relationship between the average
crustal thickness, the crustal density and the ratio of the geoid and topography (Wiec-
zorek and Phillips, 1997), assuming an interior di↵erentiated into a crust, mantle and core
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with the thick southern crust being isostatically compensated by Airy mechanism. Based
on the petrological properties of the SNC meteorites, Wieczorek and Zuber (2004) used
conservative values for the density of the crust and mantle in the ranges 2700-3100 kgm�3

and 3400 –3550 kgm�3 and estimated the best-fitting average thickness of the highlands
crust to lie between 53 and 68 km. Considering 1� uncertainties, they concluded that the
mean crustal thickness of Mars is 57± 24 km.

The ratio of the geoid and topography is generally known as admittance. Spectral
studies of localized regions can result in a wavelength-dependent admittance function.
These studies have also been employed previously to infer crustal properties like density
and elastic thickness (e.g., Nimmo (2002); McGovern et al. (2002, 2004)). Here it is assumed
that the planet’s lithosphere acts as an elastic layer and responds to loads on the surface
with compensatory deflections. For a given lithosphere thickness, models that match the
observed surface topography can be constructed. From the line-of-sight observations of
spacecraft acceleration over the southern hemisphere, McKenzie et al. (2002) constrained
an e↵ective compensation depth of less than 10 km and an associated elastic thickness
of 14.5 km. A similar method employed by Nimmo (2002) constrained the crustal and
elastic thicknesses of the dichotomy boundary to values within the range 1–79 km and
37–89 km, respectively. They further concluded an elastic plate model comprising two
distinct crustal layers. McGovern et al. (2002) obtained values of 50± 12 km for Noachis
Terra using spherical harmonic gravity field studies to calculate local admittance values.
Turcotte et al. (2002) used a spatial approach and obtained a mean crustal thickness of
90± 10 km around the Hellas basin.

Another approach assumes that the observed gravitational field is exclusively the result
of surface topography and relief along the crust-mantle interface. Using constant values
for the density of the crust and mantle, and a mean crustal thickness, one can invert for
the relief along the Moho (e.g., Wieczorek and Phillips (1998); Neumann et al. (2004)).
This results in a global crustal thickness map without any assumptions on isostasy. Since
the mean thickness itself is unknown, the thickness of the crust can be anchored to a
specific value. In practice, the minimum estimate of the crustal thickness is usually set to
an arbitrary value greater than 0. With gravity data from the Viking mission, Bills and
Ferrari (1978) first used this technique and postulated the Hellas impact basin to be such
a minimum-thickness region, and inferred a minimum globally averaged crustal thickness
of 23–32 km. Zuber et al. (2000) used the MGS data, improved the crustal thickness
maps to spherical-harmonic degree 60 and showed that the Isidis basin, and not Hellas,
was the region of minimum crustal thickness. By setting the minimum crustal thickness
to 3 km and assuming crust and mantle densities of 2900 and 3500 kgm�3 respectively,
they deduced a mean crustal thickness of 50 km for Mars. Using a crustal density of 2900
kgm�3 with a contrast of 600 kgm�3 at the mantle, Neumann et al. (2004) reported a
bimodal result with average crustal thicknesses of 32 km and 58 km for the northern and
the southern hemispheres, respectively, and a mean global crustal thickness > 45 km.

The major uncertainties in these estimates result from the assumed densities of the
crust and the mantle. For example, Goossens et al. (2017) constrained the average crustal
density to be as low as 2582± 209 kgm�3 while McGovern et al. (2004) places the upper-
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bound at 3100 kgm�3. These di↵er significantly from the 2660�2760 kgm�3 range assumed
by Khan et al. (2018). Pauer and Breuer (2008) provide a maximum density value of 3020
kgm�3 and argue that the mean crustal thickness can be as high as 110 km. Furthermore,
it is also possible that the density of the crust has lateral variations, which introduces more
uncertainty in the constraints given by gravity and topography measurements (e.g., Spohn
et al. (2001); Plesa et al. (2016)). Other lose constraints on the Martian crustal thickness
have been provided by the moment of inertia studies in conjunction with mineralogical
constraints (e.g., Sohl and Spohn (1997); Bertka and Fei (1998a,b)). With such a large
uncertainty in its value, it is, therefore, crucial to obtain an in-situ measurement of the
crustal thickness of Mars. Such a measurement will also serve as an “anchor” point that
can be used in conjunction with the existing gravity and topographic data to extract the
global crustal thickness of the planet.

1.3 InSight mission

InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat
Transport, is a Mars lander designed for geophysical exploration of Mars (Banerdt et al.,
2013). It successfully landed at the Elysium Planitia region of Mars on 26 November
2018 and has been in operation since then. The mission’s main objective is to place
a seismometer on the surface of Mars that would allow the investigation of its internal
structure, which will further aid in understanding the formation and evolution of terrestrial
planets. Apart from the moon, where the Apollo program in the 1960s previously deployed
seismometers, InSight is the first successful seismic mission to another planet. Previous
attempts of establishing a seismic network on Mars have been unsuccessful due to mission
failures or instrument deployment problems. For example, the Mars 96 mission had two
seismometers on board but failed to launch. In contrast, the Viking mission could not
unlock the first seismometer and the second one provided no convincing event detection
after 19 months of operation (e.g., Anderson et al. (1977); Surkov and Kremnev (1998)).

The three main instruments onboard the InSight lander are the Seismic Experiment
for Interior Structure (SEIS) (Lognonné et al., 2019, 2020), the Heat Flow and Physical
Properties Package (HP3 ) (Spohn et al., 2018), and the Rotation and Interior Structure
Experiment (RISE) (Folkner et al., 2018). SEIS monitors the planet’s seismic activity and
records the ground motion caused by seismic waves travelling through its interior. Using
the lander’s low gain X-band antennas to precisely track its location, RISE measures the
rotation rate of Mars and its precession and nutation. These measurements will further
enable tight constraints on the Martian core size, its density and state (liquid or solid).
The HP3 is now inactive but was designed to burrow 5 m into the subsurface and measure
the thermal conductivity to constrain the heat flow out of the planet’s interior. On 14
January 2021, the e↵orts to drill into the martian surface using the device were finally
terminated due to friction between the soil and the probe being too low for the mole to
hammer itself deeper than 40 cm (Spohn et al., 2022). In addition, the lander is equipped
with a temperature sensor, pressure sensor, wind sensor (TWINS), and a magnetometer to
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Figure 1.3: Artist’s view of the InSight lander on Mars showing the SEIS, HP3, RISE and
TWINS instruments. Courtesy of NASA/JPL-Caltech

help decorrelate the seismic signals from atmospheric disturbances and measure magnetic
potentials on the surface (Banfield et al., 2019). Figure 1.3 shows an artist’s view of the
InSight lander on Mars and the onboard instruments. HP3 and SEIS were deployed on the
surface by the robotic arm (Trebi-Ollennu et al., 2018) while the RISE is located on the
lander.

With this set of instrumentation, the InSight mission aims to accomplish six primary
science objectives (Banerdt et al. 2013):

• Determine the size, composition, and physical state of the core

• Determine the thickness and structure of the crust

• Determine the composition and structure of the mantle

• Determine the thermal state of the interior

• Measure the rate and distribution of internal seismic activity

• Measure the rate of impacts on the surface

This work aims to contribute to the fulfilment of the second scientific objective - to
determine the thickness and structure of the crust. For this, the data from the seismic
experiment suite SEIS has been used here. It consists of a three-component ultra-sensitive
broad-band seismometer (VBB) and a co-located miniature three-component short-period
seismometer (SP). Both of these are based on the principle of an inertial mass in suspen-
sion, which is excited into vibration by external forces. The VBB sensors are sensitive to
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Figure 1.4: Cross-section image of the complete SEIS assembly. Courtesy of IPGP/D.
Ducros

frequencies between 0.01 Hz and 10 Hz, and three SP sensors are sensitive to frequencies
between 0.1 Hz and 50 Hz (Lognonné et al., 2019, 2020). This broad frequency range
makes the VBB more suitable to detect distant marsquakes, while the SP is better capa-
ble of detailed analysis of regional events and lander-induced signals (Teanby, 2015). The
VBB sensors are placed in a tetrahedron configuration inside a vacuum sphere, serving as
a thermal protection layer. The SP sensors are placed around this sphere. This assembly
rests on a motor-driven, three-legged, conical levelling system (LVL), specially designed to
sink into the Martian regolith to form a solid mechanical coupling. These together com-
prise the sensor assembly (SA), which is further covered by a Wind and Thermal Shield
(WTS), and connected to the electronic box inside the lander by a semi-rigid umbilical
teether (Mimoun et al., 2017). SEIS is also equipped with internal heaters that can be
activated when inside temperatures for any component drops below �65� C. A schematic
figure of the SEIS assembly can be seen in Figure 1.4

The six axes of SEIS have been continuously recording the seismic data since the de-
ployment was completed. The VBB has a sample acquisition frequency of 20 samples per
second (sps) while the SP records data at 100 sps. This data is stored in a flash memory
inside the lander’s electronic box before they are decimated and transmitted to SISMOC
(SEIS on Mars Operations Center) at rates from 2 to 20 sps for continuous records and
100 sps for event records. After an initial inspection and basic technical processing (e.g.
time stamp corrections and file format conversions) in near real-time, it is transmitted to
mission support groups such as the Marsquake Service (MQS) (Ceylan et al., 2021). The
MQS is an o�cial service within the InSight community responsible for routine data mon-
itoring for detecting seismic events, locating them, and curating a seismicity catalogue for
Mars during the mission’s lifetime (Clinton et al., 2018). With a specially developed suite
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of single-station approaches and a prioiri interior models (e.g., Panning et al. (2015); Khan
et al. (2016); Böse et al. (2017)), the MQS verifies a suspected event signal and calculates
magnitude, distance, and location of the event, whenever possible. This information is
then catalogued and communicated to the InSight team for further analysis.

1.4 SEIS continuous data

The VBB sensors have an oblique, non-Galperin configuration, recording ground motion in
the U, V, and W coordinate system, while the SPs are aligned orthogonally in one vertical
and two horizontal components. With data from di↵erent instrument packages, instrument
sub-types, and gain, sampling rates and operating modes, InSight uses an extended version
of the SEED (Standard for the Exchange of Earthquake Data) data format with a unique
channel/location code combination for di↵erent data streams (Ceylan et al., 2021). Table
1.4 shows an example of the inventory code used to fetch VBB data. The main features
of the continuous SEIS data have been documented in detail in Lognonné et al. (2020)
and Ceylan et al. (2021). Due to very low self-noise, the SEIS VBB sensors have been
able to record the lowest noise on the surface of a terrestrial body at periods between 5
and 20 seconds (Lognonné et al., 2020). Unlike Earth, where the seismic noise spectrum is
dominated by ocean wave activity (e.g., Hasselmann (1963); Rhie and Romanowicz (2006);
Tanimoto et al. (1998)), the seismic noise on Mars is ⇠ 500 times lower than on Earth,
reaching -200 dB in acceleration at night (Stutzmann et al., 2021). A typical Sol of seismic
data on Mars shows three primary distinct noise regimes. From early morning until sunrise
relatively weak laminar winds dominate the noise spectrum, followed by thermally-driven
strong turbulent winds that last throughout the day until sunset. This noisy daytime
eventually turns into extremely quiet evenings as the wind fluctuations settle until early
morning (Banfield et al., 2020; Lognonné et al., 2020). Most marqaukes have been identified
in this quiet period of the Sol. This picture can most clearly be expressed by Figure 1.5
where the stacked spectrograms from Sol 72 to Sol 478 show the evolving broadband
background noise recorded by vertical component of the VBB along with the identified
events. The event quality and family is further discussed in Section 1.5. The correlations
of the seismic data with the wind and pressure sensors of the APSS package confirm that
the martian atmosphere is the principal contributor to the noise spectrum.

Besides noise signals, several other sustained and transient signals of aseismic origin
are observed in the continuous SEIS data. Figure 1.6 displays some of these as seen in
the spectrogram of Sol 99 data. Here the most prominent of such features have been
summarized. For a detailed description, the reader is referred to Scholz et al. (2020) and
Kim et al. (2021).

• Lander modes: The spectrogram of the seismic data shows certain bands at various
frequencies like 3.3 Hz, 4.1 Hz, 6.8 Hz, and 8.6 Hz. These are resonances of the InSight
lander which have been consistent throughout the mission. Their frequency can vary
with wind and temperature (Clinton et al., 2021; Dahmen et al., 2021b).
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Instrument Loc./Channel Samp. rate Details

VBB
02.MH [UVW] 2 VEL high gain SCI mode
07.ML [UVW] 2 VEL low gain SCI mode
17.ML [UVW] 2 VEL low gain ENG mode
72.MH [UVW] 2 VEL high gain SCI mode
03.BH [UVW] 2 VEL high gain SCI mode
02.BH [UVW] 20 VEL high gain SCI mode
00.HH [UVW] 100 ERP, high gain SCI mode

Table 1.1: Location and channel code used for VBB data. U, V and W denotes the three
non-orthogonal components of of VBB. VEL: velocity, SCI: science, ENG: engineering,
ERP: event request proposal
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Figure 1.5: Stacked spectrograms showing evolving broadband background noise recorded
by vertical component of VBB along with identified events. Event types are indicated
by geometrical symbols and event quality by the colour. Sunrise and sunset times are
indicated by grey lines and data gaps are displayed as white and yellow bars. The long
data gap around Sol 280 is the conjunction period when SEIS was not operating. High
noise levels are observed between sunrise and sunset. Quiet period is seen from sunset to
early mornings. LMST stands for for Local Mars Solar Time. Figure adapted from Clinton
et al. (2021)

• Ticks: Sustained artefacts at 1 Hz and their harmonics existing upto 6 Hz produced
by the electrical cross-talk of various instrument components.
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Figure 1.6: Vertical VBB acceleration spectrograms and average power spectral density
(PSD) for Sol 99 showing various signals of aseismic origin that can be seen in data. (a)
for frequencies between 10–50 Hz in a linear scale (b) for longer periods between 0.1 and
50 s in log scale. Figure adapted from (Ceylan et al., 2021)

• 2.4 Hz resonance: A sustained broad resonance band around 2.4 Hz that is unaf-
fected by wind speed and temperature variations. The exact origin of this is not yet
clearly understood but appears to be related to the subsurface structure (Hobiger
et al., 2021). It is systematically excited by seismic waves and amplifies the observed
seismic signals (van Driel et al., 2021).

• Glitches: Transient instrumental self-noise appearing as a high-amplitude, one-sided
pulse. The time duration of these is related to the instrument’s transfer function
and has been modelled as a step function in acceleration convolved with instrument
response (Scholz et al., 2020; Ceylan et al., 2021). Glitches are the most common
types of anomaly seen on the VBB data.

• Donks: High frequency (⇠ 12 Hz) pulses of energy burst that excite all the lander
modes and can be observed simultaneously on all the components of SEIS. They have
a duration of a few seconds and resemble a waveform pattern of micro quakes.

In addition, there are disturbances injected by the turbulent martian environment, de-
spite the additional deployment of the WTS to isolate exterior e↵ects from seismic signals.
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For example, there are regular transient drops in the pressure sensor due to dust devils
whose signatures appear as tilt e↵ects on the seismic data. Evening rumbles also appear
in the frequency-domain data and can mimic low events with low-frequency content and
long duration, often 2-3 hours. These artefacts and injections must be isolated and taken
care of before any analysis for sub-surface structure is performed using the SEIS data. The
InSight science team has endeavoured to present pitfalls and corresponding methodologies
associated with these features. For example, Kim et al. (2021) attempt to provide some
basic guidance to make robust interpretations from the data by taking into account these
idiosyncrasies which manifest in waveforms and noise correlograms. Similarly, Scholz et al.
(2020) present various methods and algorithms to detect and remove the glitches that
contaminate the SEIS data.

1.5 Martian seismicity

Mars does not currently possess active plate tectonics and is considered a stagnant lid
planet. However, theoretical studies have suggested some level of active seismicity on Mars
resulting from surface faulting (e.g., Golombek et al. (1992); Knapmeyer et al. (2006)) and
lithospheric thermo-elastic cooling (Phillips and Grimm, 1991). These studies predict the
seismicity level of Mars to lie somewhere between that of the intraplate activity of Earth
and the shallow quake seismicity of the moon. There have been past indications of ongoing
seismic activity in the Cerberus Fossae region based on the bolder trails assumed to be
originating from marsquakes (Knapmeyer et al., 2006; Roberts et al., 2012). Meteorite
impacts have been another expected source of seismicity on Mars. They could provide
further constraints if their location could be identified using orbital imaging, making them
an essential part of the analysis.

With a highly sensitive broadband seismometer currently active on Mars, InSight is now
providing us with unprecedented information about its true seismicity levels. As of 1st June
2022, the MQS has identified and catalogued 1244 marsquakes since the beginning of its
operation (InSight Marsquake Service, 2022). Most events are generally low in amplitude
and were identified in the quiet early evening hours up to midnight. Each quake is named
after the solar day it was observed, followed by a letter (a, b, c, etc.) in case there were
multiple events on that particular day. Marsquakes are further categorised into di↵erent
families, depending on their type and quality. The event type reflects the signal’s frequency
content, the primary types being low-frequency and high-frequency. They are distinguished
based on the 2.4 Hz resonance mode. The low-frequency family consists of low-frequency
(LF) and broadband (BB) events. The energy content of LF events is predominantly
below 1 Hz, while BB events have energy content up to 2.4 Hz. These events are similar to
those observed on Earth and occur at teleseismic distances (Brinkman et al., 2021). The
high-frequency family consist of high frequency (HF), very high frequency (VF), and 2.4
Hz events which have energy predominately around 2.4 Hz and above. These events have
highly scattered waveforms, making their analysis more complex than their low-frequency
counterparts. The propagation of HF events is believed to be restricted to the crust that
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Event Type Details
Low Frequency (LF) Energy in all three components below 2.4 Hz
Broadband (BB) Energy in all three components predominantly below 2.4 Hz but

excite the 2.4 Hz resonance
2.4 Hz Energy in all three components centered around the 2.4 Hz reso-

nance
High Frequency (HF) Energy in all three components predominantly at and above 2.4 Hz
Very High Frequency Special case of VF events with horizontal energy significantly larger

than vertical energy at higher frequencies
Super High-Frequency (SF) Very short duration high frequency events with energy in range 5-

10 Hz

Table 1.2: Characteristics of the di↵erent types of events as defined by the MQS. The Low
Frequency and High Frequency families are separated to show their respective sub-families.

acts as a waveguide (Giardini et al., 2020; van Driel et al., 2021) for the energy. More than
90% of the total events fall into this category. In addition, a separate independent family
is defined for events of unusual characteristics with very high energy content in the range
of 5-10 Hz and short duration (⇠ 20s), called Super High Frequency (SF) events. With
their origin linked to the local thermal cracking of the crust (Dahmen et al., 2021a), there
are more events in this family than in LF and HF families combined, totalling 1291 events.
A summary of all event families is provided in Table 1.2.

Further, an event quality is assigned to each event based on the strength of the signal
and the ability to identify and interpret various phase arrivals (Giardini et al., 2020).
The event quality classifies the seismic events into four categories: Quality A for events
with a high signal-to-noise ratio (SNR) with multiple clear and identifiable phase arrivals
and clear polarisation. This indicates that a location for the event can be determined.
Quality B is for events with medium SNR with multiple clear phase arrivals but no clear
polarisation. These events cannot be located with a single station. Quality C is for events
for low SNR events with either no phase arrival or a single-phase arrival identified. Quality
D is maintained for signals that are almost indistinguishable from noise. Only a handful
of events (10) have been assigned Quality A, and their locations are well constrained.
Most of these originate in the general Cerberus Fossae region at 30� distance from InSight
(Giardini et al., 2020; Clinton et al., 2021) which is believed to have had recent volcanic
activity (Vaucher et al., 2009). Owing to their highly scattered waveform, none of the
events belonging to the high-frequency family has yet been located (van Driel et al., 2021).

The magnitudes of Quality A events range between 1 and 4, with an uncertainty of
±0.4 (Clinton et al., 2021). A detailed description of the method of calculating moment
magnitudes for marsquakes is available in Böse et al. (2018). One peculiar feature of
marsquakes is that they generally do not contain surface wave arrivals. Few exceptions
have been observed so far, most of which have been associated with a meteorite impact.
However, orbital techniques have not imaged an impact crater for all these events. Based
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on the identified locations of the LF events, marsquakes seem to be predominantly related
to tectonically induced stresses and thermo-elastic cooling. It should be noted that the
observed seismic activity on Mars till now is comparable to that estimated previously by
Golombek et al. (1992) and Knapmeyer et al. (2006). Like earthquakes, many marsquakes
show evidence of aftershocks with characteristics similar to those of the mainshock (Giar-
dini et al., 2020). However, unlike earthquakes that closely follow the Gutenberg-Richter
magnitude law and have random time distribution, the HF events on Mars also show some
evidence of seasonality which associates them with variations in solar illumination, the
CO2 ice cycle and solar tides (Knapmeyer et al., 2021; Dahmen et al., 2021a).

1.6 Methods

1.6.1 Receiver Function Analysis

Analyzing the Martian interior structure using the data from the InSight mission requires
special methods that utilize only a single sensor. These so-called “single-station techniques”
are well-established and have previously been used to infer properties of the Earth, although
new array-based methods involving numerous broadband sensors have recently become
more common with the increase in terrestrial coverage of seismic networks. One widely
used single-station technique is the Receiver Function (RF) analysis (Langston, 1979).
The RF technique uses teleseismic body waveforms to image the crustal structures directly
beneath seismic stations or receivers. The seismic wavefield inside an isotropic, layered
media consists of one compressional P-wave component and two shear (SV and SH) wave
components, all of which di↵er in particle motion. The principle behind the RF technique
is that apart from reflection and refraction, the P-waves give rise to converted S-waves
and vice-versa when they interact with a velocity discontinuity. For horizontally-layered
structures, all converted P-wave energy results only in SV phases that can be observed on
the radial component of the seismic data. For anisotropic and dipping structures, P-to-SH
conversions are commonly observed along with the SV conversions (Levin and Park, 1998).

These parent and converted phases di↵er in their velocity. They, therefore, arrive at
the station with a time-lag that depends on the depth to the seismic discontinuity, velocity
of the layer above, and the distance of the teleseimic event from the station (i.e., ray
parameter). If the velocity of the above layer is known, this time-lag can lead to an
estimate of the depth to the discontinuity that produced the converted phases. In addition
to the converted wave, we also commonly observe their multiples which can further help
constrain the interface depth as both the depth and the velocity of the above layer are
usually unknown. Figure 1.7 illustrates this in the case of a layer over a half-space with an
incident P-wave giving rise to converted S-waves. Mathematically, for a P-to-S conversion,
the time separation between the direct and the converted wave, tPs, is provided by:
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Figure 1.7: Theoretical ray paths and RF waveform for a layer-over half-space model.
Note that Ps is a direct conversion, while PpPs, PpSs, and PsPs are generated by multiple
reflections
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Similarly, for the multiply converted phases, PpPs,PpSs and PsPs, the time separation
can be expressed as:
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Here, H, Vs, Vp, and p denote the layer thickness, S-wave velocity, P-wave velocity and
the ray parameter, respectively. A similar set of equations describe the Sp arrival and its
multiply reflected reverberations relative to the parent S-wave arrival.

Figure 1.7 shows the synthetic case with only direct and converted phases in the signal.
However, there is a lot more complexity in a real seismogram generated by a complex
earth structure, making it challenging to identify these low-amplitude converted phases.
To isolate the impulse response of the crust and the upper-mantle near the receiver lo-
cation, other unwanted contaminations such as distant structural variations, path e↵ects,
etc. should be removed from the raw data (e.g., Vinnik (1977)). Assuming a convolutional
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model, di↵erent components of the seismic record can be e↵ectively used to cancel these
common features. This convolutional model describes the recorded wavefield as the convo-
lution of the source-signal of the event with di↵erent operators that a↵ect this signal from
the origin-time to its arrival at the seismic station. Receiver functions are then described
as the time series obtained from three-component seismic data by removing source and
path e↵ects to isolate the vertically-varying velocity structure beneath the receiver. The
components that contribute the most to the convolutional representation are:

• Near Source E↵ects (Ns): Seismic waves emanating from the source first interact
with the local structure in the vicinity of the hypoceneter. These e↵ects include
surface reflections, their reverberations and internal reflections produced by strong
seismic interfaces.

• Path E↵ects (P ): Teleseismic events sample the planet along specific ray-paths and
are a↵ected by lateral variations in seismic velocity, multi-path e↵ects, small scale
heterogeneity, geometrical spreading, and frequency dependent anelasticity. During
their propagation, these e↵ects are picked up by the waves causing distortion in
phase, amplitude, and energy content.

• Near Receiver E↵ects (Nr): The structure in the vicinity of the seismic station
has the most dominant e↵ect on the recorded signal. These e↵ects primarily in-
clude reflections from the seismic discontinuities below, their multiples, sedimentary
reverberations. This is the component of the signal we are interested in.

• Instrument response (Ip): Recording seismic signals involves the conversion of a
mechanical and electrical response to a unit of displacement or velocity. This response
varies for di↵erent sensors and should be taken into account during the analysis of
seismic data.

The linear system theory is often used to describe an observed seismic signal produced
by a source using the principle of superposition (Lay andWallace, 1995). Here, the response
at any point in space can be represented by a set of cascaded linear systems acting on the
source-time function S(t). The three components of ground motion can then be written as
a convolution operation:

uV (t) = S(t) ⇤Ns ⇤ P (t) ⇤NrV ⇤ Ip(t) (1.4)

uR(t) = S(t) ⇤Ns ⇤ P (t) ⇤NrR ⇤ Ip(t) (1.5)

uT (t) = S(t) ⇤Ns ⇤ P (t) ⇤NrT ⇤ Ip(t) (1.6)

Here uV indicates the vertical, uR the radial component on the great circle between
the source and the receiver, uT the tangential component in the horizontal plane and t
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Figure 1.8: Rotation of the ZRT into LQT coordinate system through the angle of incidence
✓

represents the time. This can be written in the frequency-domain using the multiplicative
property of Fourier Transforms:

uV (!) = S(!)⇥Ns ⇥ P (!)⇥NrV ⇥ Ip(!) (1.7)

uR(!) = S(!)⇥Ns ⇥ P (!)⇥NrR ⇥ Ip(!) (1.8)

uT (!) = S(!)⇥Ns ⇥ P (!)⇥NrT ⇥ Ip(!) (1.9)

with ! representing the angular frequency. The various components of ground motion
recording can also be expressed in the ray-coordinate system (LQT or P-SV-SH system).
This is achieved by rotating the Z and R components into L and Q using the polarization
angle of the incident P-wave, as shown in Figure 1.8. The L-component indicates the
direction of the incoming P-wave and contains mainly P-wave energy, while the Q and T
components include the SV and SH energy, respectively. This work has adopted the ZRT
coordinate system.

A deconvolution operation of various components with each other can now eliminate
the common terms. This operation is called “source-equalization” as termed by Langston
(1979). To emphasize the converted S-waves, the radial component is usually deconvolved
with the vertical component resulting in the radial P-receiver function. This leads to the
emergence of NrR term among all the other contributions. Similarly, the deconvolution
of the transverse component from the vertical leads to the emergence of the NrT term,
giving the transverse component of the P-receiver function. The vertical component of
the receiver function is ideally a spike located at the incident P-wave arrival time, usually
re-scaled to 0 time (t = 0) to define a relative time-scale between the direct and various
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converted phases.

RFR =
uR(!)

uV (!)
=

NrR

NrV

(1.10)

RFT =
uT (!)

uV (!)
=

NrT

NrV

(1.11)

Various methods have been proposed for the implementation of the deconvolution op-
eration (e.g., Phinney (1964); Langston (1979); Owens et al. (1987); Kind et al. (1995);
Menke (1984)). For details and comparison of various methods, the reader is referred to
Pesce (2010). In this work, the time-domain deconvolution technique based on Wiener
Filtering (Kind et al., 1995) has been utilized. A time-domain Wiener filter is computed
using the P-wave signal on the vertical component, such that it transforms the complex
P-wave signal into a band-limited spike. The R and T components are then folded with
this filter to obtain the vertical and transverse RFs. The Wiener filter is estimated using
the built-in function “spiking” of the Seismic Handler package (Stammler, 1993).

Phinney (1964) was one of the first to use the RF technique using teleseismic P-waves to
analyze the crustal structure beneath stations at Albuquerque and Bermuda using the ratio
of the vertical and horizontal component spectrum. (Langston, 1979) later modified the
processing technique and used time-domain deconvolution to study the structure beneath
stations at Mount Rainier in Washington. Owens et al. (1987) introduced a linearized
time-domain inversion technique of RF waveforms to estimate the crustal structure using
data from broadband sensors. Ammon (1991) added correction by introducing a method
to estimate absolute RF amplitudes and showed a decrease in the amplitude of converted
phases with epicentral distance. Since then the RF method has been extensively used in
various settings to the study the crust (e.g., Kind et al. (1995); Park and Levin (2000);
Sheehan et al. (1995); Grad et al. (2009); Geissler et al. (2010)) and the upper mantle ( e.g.,
Farra and Vinnik (2000); Levin et al. (2002); Lawrence and Shearer (2006); Andrews and
Deuss (2008); Ozacar et al. (2008)). S-wave RFs have been widely used to study the Moho
depth and the lithosphere-aesthenosphere boundary of the earth (e.g., Yuan et al. (2006);
Savage and Silver (2008); Geissler et al. (2010); Kind et al. (2012); Knapmeyer-Endrun
et al. (2017)). Various strategies have also been proposed for inferring seismic anisotropy
of the crust and upper-mantle using the RF waveforms (e.g., Levin and Park (1997);
Savage (1998); Bianchi et al. (2010); Schulte-Pelkum and Mahan (2014)). In the context of
extra-terrestrial seismology, the use of RFs has been limited to the Moon due to a lack of
successful seismic missions to other planetary bodies (e.g., Vinnik et al. (2001); Lognonné
et al. (2003); Gagnepain-Beyneix et al. (2006)). In this study, we show the application
of receiver function analysis to the InSight seismic data for inferring the properties of the
Martian crust.

1.6.2 Apparent S-wave velocity

For a P-wave arriving at a station, an apparent incidence angle can be defined by analysing
the particle motion of the three-component seismic data. This particle motion recorded at
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Figure 1.9: Schematic representation of the relationship between the true incidence angle
✓ and the apparent incidence angle ✓̄

the surface results from the superposition of the incoming P-wave and two outgoing waves
- the P-wave reflected o↵ the free surface and the converted Ps wave. As a result, the
apparent incidence angle at the sensor is di↵erent from the true P-wave incidence angle.
Figure 1.9 shows this schematically. To quantify this, consider a P-wave travelling in the
x-y plane, arriving at an incidence angle ✓ to the vertical. Assuming � as the S-wave
angle to the vertical, and ↵ and � as the P and S-wave velocities of the medium, the total
displacement uP can be written as:

u
P (x, y, t) = U

P (sin ✓x̂� cos ✓ŷ)exp

"
i!

✓
sin ✓

↵
x� cos ✓

↵
y � t

◆#
(1.12)

+U
P (sin ✓x̂+ cos ✓ŷ)Ṕ P̀ exp

"
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✓
sin ✓

↵
x+

cos ✓

↵
y � t

◆#

�U
P (cos�x̂� sin ✓ŷ)Ṕ S̀exp

"
i!

✓
sin�

�
x+

cos�

�
y � t

◆#

Here UP is the amplitude of the incident P-wave, ! is the angular velocity and Ṕ P̀ and
Ṕ S̀ are the P-to-P and P-to-S reflection coe�cients. x̂ and ŷ denote the unit vectors along
the x and y directions. For a sensor placed at the free-surface, y = 0. In this case, the
equation reduces to:

u
P (x, 0, t) = UP

⇢h
(1 + Ṕ P̀ ) sin ✓ + Ṕ S̀ cos�

i
x̂+

h
(�1 + Ṕ P̀ ) cos ✓ � Ṕ S̀ sin�

i
ŷ

�
exp[i!(px�t)]
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Here p denotes the ray parameter given by the Snell’s law: p = sin ✓
↵ = sin�

�

tan ✓̄ =
(1 + Ṕ P̀ ) sin ✓ + Ṕ S̀ cos�

(1� Ṕ P̀ ) cos ✓ + Ṕ S̀ sin�
(1.13)

Aki and Richards (2002) derive the forms of Ṕ P̀ and Ṕ S̀ using the free-surface boundary
condition

Ṕ P̀ =
�A+B

A+B

and

Ṕ S̀ =
C

A+B

where A =
⇣

1
�2 � 2p2

⌘2

, B = 4p2 cos ✓↵
cos�
� and C = 4p cos ✓

�

⇣
1
�2 � 2p2

⌘

Substituting for these in equation 1.13, we get

tan ✓̄ = tan 2� (1.14)

which leads to the result,
✓̄ = 2� (1.15)

Further, using the Snell’s law, its straight forward to derive the relation:

✓̄ = 2arcsin(�p) (1.16)

This shows that the apparent P-wave incidence angle measured at the sensor does not
depend on the P-wave velocity of the medium (vP ), but solely on the S-wave velocity vS.
This result was first derived by Wiechert and Zoeppritz (1907). Here, the derivation from
Park and Ishii (2018) has been adapted. Equation 1.17 can be rearranged to express vS as
a function of the apparent P-wave incidence angle. vS is relabelled as vS,app to emphasize its
dependence on the apparent P-wave incidence angle rather than the true angle of incidence.

vS,app =
sin(0.5ip)

p
(1.17)

The polarization angle of body waves has traditionally been calculated by measuring
the particle motion on the vertical (Z) and radial (R) component of three-component seis-
mic data using specific time windows around their arrival time. Svenningsen and Jacobsen
(2007) proposed a method to directly estimate the apparent incidence angle using RFs
instead of the raw waveform data to minimize the contamination from the P-wave com-
plexity. Here they estimate the apparent P-wave incidence angle from the amplitudes of
vertical (ZRF) and radial receiver functions (RRF) at time t=0 using the relation:

tan īp =
RRF (t = 0)

ZRF (t = 0)
(1.18)
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Figure 1.10: (a) An example crustal model showing Vs profile (b) Vertical and Radial RFs
at di↵erent filter periods. The red, dashed-line represents the P-wave arrival. (c) vS,app

curve derived from the ratio of Vertical and Radial RFs at filter periods up to 100 s

By successive filtering at increasingly longer periods (T ), the variations of the apparent
incidence angle as a function of the filter period (T) can be estimated. Then, using equation
1.17, this can be transformed into a frequency-dependent apparent S-wave velocity profile
vS,app(T ). Larger T implies that more multiples at later times influence the values of the
filtered receiver functions at t=0, sampling increasingly deeper subsurface velocities. For
this, Svenningsen and Jacobsen (2007) proposed the use of low-pass cosine filters with
increasing, logarithmically distributed corner frequencies to emphasize the vS,app variations.
Following Hannemann et al. (2016), a set of second-order zero-phase Butterworth low-pass
filters was used to estimate the variation of vS,app with period. The corner periods of the
filters are selected to be logarithmically distributed, and periods smaller than the dominant
period of the spike on the ZRF are discarded to avoid measurements at periods shorter
than the corner period of the event’s source spectrum. Figure 1.10 graphically displays the
procedure of estimating vS,app for an example crustal model with Moho depth of 50 km. The
suitability of the application of vS,app curves to Mars along with depth-sensitivity profiles
has been studied in detail by Knapmeyer-Endrun et al. (2018). They successfully apply
the method to Martian synthetic and terrestrial data from various geological settings using
a grid-search procedure on the parameter-space. This thesis closely follows their work and
uses vS,app in conjunction with RF data and Monte-Carlo sampling schemes.

1.6.3 Inverse Problem

For a physical system, the ‘forward’ problem involves using a physical theory to predict
an outcome of a series of possible experiments. For example, in seismology, given some
parameters for an interior mode (vS, depth, vp/vS ratio, attenuation, etc.) and a source, the
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forward problem will use the theory of seismology to calculate the observed seismograms
at di↵erent places on the surface of a planet. This is mathematically represented as:

dobs = G(m) (1.19)

The observed data, dobs, can be regarded as a projection of the model through a function
G. The ‘inverse problem’, on the other hand, consists of estimating a suitable model for
the planet’s interior, given a set of seismic observations or seismograms. Thus, the problem
involves finding a model, m that corresponds to some observed data dobs

m = G
�1(dobs) (1.20)

Often G
�1 is highly non-linear and not available in an analytical form. In this case, G

can represent the result of an algorithm that allows the calculation of data based on given
model parameters. The RF inverse problem also falls into this category. Various methods
have been proposed in the literature to estimate a solution to this problem.

One way is to linearize the problem around some reference model using a Taylor expan-
sion and seek a damped least-square solution using a gradient-based, iterative approach
(e.g., Owens et al. (1987); Ammon et al. (1990); Wilde-Piorko et al. (2002); Mangino et al.
(1993)). The solution may or may not converge or converge to a local minimum and shows
a strong dependence on the starting model. Kosarev et al. (1987) and Kind et al. (1995)
proposed the use of Tikhonov and Arsenin (1979) approach of tying the solution to an a
priori model for stability. For simple models, a brute-force grid-search approach was intro-
duced by (Zhu and Kanamori, 2000). This, however, proves inadequate for crustal models
comprising dipping interfaces and several layers. Techniques utilizing global search algo-
rithms such as simulated annealing and its variants based on physical annealing process
(e.g., Zhao et al. (1996); Vergne et al. (2002); Vinnik et al. (2004)), and genetic algorithm
based on analogy with biological evolution (Shibutani et al. (1996); Levin and Park (1997))
were later introduced to infer subsurface structure from the RF waveforms. Both of these
techniques belong to a wider class of algorithms known as Monte-Carlo methods and pro-
vide a possible methodology for RF inversions to avoid solutions trapped in local minima
of the objective function. However, a full analysis of the model parameter uncertainties in
the inversion results is di�cult and remains limited to only a few cases.

The inversion of RFs is also inherently a non-unique problem. Non-uniqueness arises
because of the higher sensitivity of RFs to S-wave velocity contrasts than to the absolute
values. This is usually referred to as a velocity-depth trade-o↵ that makes shallower low-
velocity models and the deeper, high-velocity models fit the data equally well ( e.g., Ammon
et al. (1990); Julià et al. (1998); Frederiksen et al. (2003); Jacobsen and Svenningsen
(2008)). One solution to reduce this non-uniqueness is the simultaneous inversion of RF
data with other independent datasets with di↵erent sensitivities like gravity (e.g., Lawrence
et al. (2006); England and Ebbing (2012); Chai et al. (2015)), surface-wave dispersion
(e.g., Özalaybey et al. (1997); Du and Foulger (1999); Julia et al. (2000); Chang et al.
(2004)) and Rayleigh wave ellipticity (Chong et al., 2016). Successful implementation of
these techniques is encouraging and usually reduces non-uniqueness and improves model
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resolution. To deal with the RF non-uniqueness, the joint inversion of the RF data with
frequency-dependent S-wave velocity curves is proposed here. Previous studies have been
limited to terrestrial data, and only a few implement a joint inversion of receiver functions
and P-wave polarisation ( e.g., Kieling et al. (2011); Schi↵er et al. (2016, 2019, 2022)).
Such a joint inversion approach is applied here to data from the InSight mission using
two Monte-Carlo-based global sampling methods - (i) The Neighbourhood Algorithm, (ii)
Transdimensional reversible-jump Markov-chain Monte Carlo (rj-McMC) Method

To estimate full uncertainties of the model parameters, a Bayesian approach to the
inverse problem has been adopted (e.g., Tarantola and Valette (1982); Mosegaard and
Tarantola (1995)). The basic idea is to represent all information in a probabilistic for-
mulation. Given some prior information about the system expressed as a probability
distribution, p(m), the aim is to quantify the posterior distribution of the model param-
eters, m, given some observed data, d. This posterior distribution is then expressed as
a joint probability density, p(m|dobs), over the full range of the parameter space. The
Bayes’ rule (Bayes, 1763) is then used to combine the likelihood of observing the data with
the prior distribution to define a joint posterior probability density function of the model
parameters:

p(m|dobs) / p(dobs|m)p(m) (1.21)

The term p(dobs|m) is called the likelihood function and describes the goodness of fit
of a model to the observed data. Its exact form depends on the definition of the misfit
function and hence, the assumed distribution of the data noise. In the following, the essence
of the sampling algorithms that have been used in this study are briefly described. For full
details, the reader is referred to Sambridge (1999), Mosegaard and Tarantola (1995) and
Bodin et al. (2012)

The Neighbourhood Algorithm

A fully nonlinear, derivative-free, direct-search algorithm referred to as ‘The Neighbour-
hood Algorithm’ (NA) was proposed in Sambridge (1999). It uses nearest-neighbour regions
called Voronoi cells to tessellate the parameter space and model the misfit function. The
misfit within each cell is assumed to be constant, and with each iteration, the sampling
gets concentrated in cells where the computed misfit value is lower than the rest. Thus
the random generation of samples is guided by the previous computations toward more
promising regions. The algorithm has only two tuning parameters: Ns, the number of
tessellations produced in each iteration and Nr, the number of low-misfit cells selected for
further sampling. The algorithm comprises four basic steps:

• Uniformly generate Ns samples in the parameter space with their Voronoi cells

• Calculate the misfit between the observed and predicted data from the generated
models and select Nr models with lowest misfit
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Figure 1.11: Various search stages of the NA shown in a 2 parameter (velocity and depth)
space. The algorithm starts with a random coarse sampling of the whole parameter space,
and with each iteration, the sampling concentrates into low misfit regions

• Generate new Ns models inside the Voronoi cells of these Nr lowest misfit models
by uniform random walk

• Reiterate step 2

In addition, the total number of iterations is supplied by the user. Fig 1.11 shows various
stages of the inversion process as the algorithm proceeds. As the number of iterations
grow, the sampling gets increasingly concentrated in regions of lower misfit values. The
ratio Ns/Nr controls whether the algorithm behaves exploratively or exploitatively, i.e., if
it quickly convergence to a minimum of the misfit function or slowly investigates all the
potential regions in the misfit landscape. With comprehensive sampling of the parameter
space, rather than taking a single ‘best fit’ model as the solution, an alternative is to use
the entire ensemble of generated models to draw inferences about the observed data. To
employ the Bayesian approach, we use the complete ensemble of generated models and
characterise them according to their misfits. The L2 norm is used to define the misfit,
�(m), between the observed dobs and the predicted data for the model g(m)

�(m) =

����
g(m)� dobs

�d

����
2

(1.22)

� denotes the uncertainty of the observed data. The likelihood function then takes the
form:
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p(dobs|m) / exp

✓
��(m)

2

◆
(1.23)

A minimal prior knowledge is imposed on all the model parameters using a uniform
distribution over the full range of values. Thus, the prior for each parameter takes a
constant value over its defined interval. For example, if the range of values assumed by
the parameter xi lie between Xmin and Xmax,

p(xi) =

(
1

�X , if Xmin  xi  Xmax

0, otherwise
(1.24)

where,
�X = Xmax �Xmin

Transdimensional rj-McMC Inversion

Like most other inversion schemes, the NA adopts fixed dimension model parameters that
need to be specified. In the transdimensional rj-McMC formulation, the number of model
parameters itself becomes an unknown quantity that needs to be estimated along with the
other model parameter and, therefore, the posterior density is defined across the whole
range of available dimensions. This way, the method lets the data themselves infer the
complexity of the model rather than the user having to specify the model parametrization
a priori individually. Since the misfit decreases with an increase in the number of model pa-
rameters, it is often di�cult to determine the level of model complexity needed to estimate
the solution of an inverse problem. The transdimensional approach avoids this problem as
it is inherently designed to find a parsimonious solution (Malinverno, 2002), i.e., models
with a higher level of complexity are naturally discouraged, and the least complex models
are preferred to avoid the over-fitting of data.

Each model is parameterized by velocity, depth, vP/vS ratio, layers, and the noise
parameters of the observed data which include two the noise correlation r and the noise
amplitude �. The initial model parameters are randomly drawn according to the prior
distribution. A new model is generated at each following iteration by perturbing the
previous model according to some specified proposal distribution. The proposed model is
evaluated in comparison to the current model according to its acceptance probability ↵

and is either accepted or rejected based on that. ↵ is computed as:

↵ = prior ratio⇥ likelihood ratio⇥ proposal ratio⇥ Jacobianm!m0 (1.25)

↵(m0|m) = min


1,

p(m0)

p(m)
⇥ p(dobs|m0)

p(dobs|m)
⇥ q(m|m0)

q(m0|m)
⇥ |J|

�
(1.26)
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Similar to the NA case, the prior distributions for the model parameters are again taken
as uniform random. The various terms of the above equation can be simplified and assume
specific forms depending on the type of perturbation imposed. Details can be found in
Bodin et al. (2012).

The likelihood term p(dobs|m) for each proposed model is defined as:

p(dobs|m) =
1p

(2⇡)n|Ce|
⇥ exp

⇢
��(m)

2

�
(1.27)

where �(m) is the Mahalanobis distance (Mahalanobis, 1936) between the observed
and predicted data vectors, and is given by

�(m) = (g(m)� dobs)
T
C

�1
e (g(m)� dobs) (1.28)

Ce in equations 1.27 and 1.28 is the data covariance matrix and its form depends on
the assumptions imposed on data noise. A Gaussian correlation law ci = r

(i2) has been
assumed here. In this case C

�1
e and |Ce| do not have any analytical form and need to be

estimated which is costly for each iteration. Since

C
�1
e = (�2

R)�1 and |Ce| = �
2n|R| (1.29)

it is possible to fix a value of r and invert for � at each iteration. Ce can then be
obtained by equation 1.29.

1.6.4 Random Matrix Theory

A random matrix is a matrix that has random numbers generated from some joint prob-
ability distribution (here, Gaussian) as its elements. The eigenvalues and eigenvectors
of such matrices are also random. The main objective of this subject is to understand
the behaviour of the properties of random matrices, which show remarkable deterministic
properties. Two particular kind of well-studied random matrices are Wigner and Wishart
Matrices. A Wigner matrix is a random Hermitian matrix defined by:

XN(ij) = XN(ji) =

8
<

:

Zi,jp
N
, if i < j

Yip
N
, if i = j

(1.30)

where Zi,j and Yi can be complex or real numbers and N is the dimension of the square
matrix. The distribution of the eigenvalues for such matrices almost surely convergence to
a semi-circular form as the size of the matrix grows. This is called Wigner’s semi-circular
law and is as universal as the central limit theorem in statistics. Figure 1.12 shows the
distribution of the eigenvalues of such a random matrix with size 500x500. As n ! 1, the
shape of the distribution reaches a perfect semi-circle.

Similarly, for a non-symmetric matrix Z with i.i.d entries, a Wishart matrix is defined
as:
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Figure 1.12: Distribution of eigenvalues of a 500⇥ 500 Wigner random matrix

Xn⇥n =
Z

?
n⇥mZn⇥mp

n
(1.31)

In analogy with Wigner’s semi-circular Law, the limiting eigenvalue distribution of such
a Wishart matrix is given by the Marchenko-Pastur (MP) Law. Suppose X denotes am⇥n

random matrix which has i.i.d. entries with mean 0 and variance �
2, and �1,�2,�3, ... are

the eigenvalues of X, the MP Law can be written as:

p(�|�, �) =

8
<

:

p
(�+��)(����)

2⇡��� , if ��  �  �+

0, otherwise
(1.32)

with �± = �
2(1±p

�)2

��, �+, �, and � denote the smallest eigenvalue, largest eigenvalue, noise level, and
matrix aspect ratio n/m, respectively. The shape of the MP distribution depends on �.
Figure 1.13 (a) shows the distribution for � = 1/3. The MP law can equivalently be
expressed in terms of the singular values of non-symmetric matrix Zn⇥m rather than the
eigenvalues of the Hermitian matrix Xn⇥n. In the case of � = 1, this then reduces to the
quarter-circle law (Figure 1.13(b)).

This self-arranging behaviour of the eigenvalues of Wishart matrices into a “bulk” is
a universal phenomenon and was interpreted by Dyson as the particles of a Coulomb gas
confined to a quadratic potential (Dyson, 1962). The positions of the gas particles can
be identified as the eigenvalues of the random matrix arranged on a line. The largest
and the smallest eigenvalues (�±) of this bulk fluctuate on the small scale n�2/3 according
to the Tracy-Widom distribution (Tracy and Widom, 1996). In the presence of a non-
random coherency (e.g. a signal) superimposed with the random matrix, a phase transition
phenomenon (Baik et al., 2005) is observed. If this signal is above a certain signal threshold,
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Figure 1.13: (a) Distribution of eigenvalues of a Wishart matrix with �Z = 1/3 (b) Distri-
bution of singular values of a random matrix Z with �Z = 1

the signal eigenvalues separate away from the “bulk” eigenvalues of the random matrix and
converge asymptotically to a di↵erent distribution. The corresponding eigenvectors also
show such a transition behaviour. Within the bulk, they are orthogonal to the signal vectors
but become strongly correlated and show a non-zero dot product past the largest eigenvalue.
The same follows for the singular values which scale as the square-root of eigenvalues
(Benaych-Georges and Nadakuditi, 2012) and the corresponding singular vectors. This
phase transition is known as the BBP phase transition (Baik–Ben Arous–Péché), named
on its founders.

These properties of the Wishart Matrix and the MP Law can be well applied to mul-
tivariate statistics where random noise contamination is of concern. Given a set of n
independent random m-vectors Xi, i = 1, 2, . . . , n, that are drawn from the same
underlying distribution, one can estimate a covariance matrix ⌃ for these. One way to
think about this is as a set of measurements obtained from a physical system. The data
covariance matrix ⌃ has the form:

⌃ =
NX

i=1

(Xi � X̄)T (Xi � X̄) (1.33)

= X
T
X, for X̄ = 0 (1.34)

Here, X̄ denotes the mean vector. This is equivalent to equation 1.31 when Xij 2 R.
In fact, the covariance matrix of a set of random m-vectors belongs to the Wishart distri-
bution. In absence of an underlying coherent signal in the data, the eigenvalue spectrum
of the covariance matrices should follow the MP Law. However, if coherent signals are
present, the BBP phase phenomenon is observed above a certain signal threshold, and the
eigenvalues of these signals separate out.

Figure 1.14 illustrates this using a simple toy problem. 100 time-series with 500 samples
each were produced by adding high amplitude random noise to a sine wave. Subplot (a)
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Figure 1.14: (a) Sine wave with added high amplitude random noise (b) Singular value
spectrum of the dataset (c) Histograms of the singular values showing bulk separation

shows one of these series. The singular value spectrum of the data matrix was analysed. In
subplot (b) the singular value spectrum is presented. The first singular value, marked in
red, represents the sine wave signal present within the random noise. The singular values
of the random noise decay down slowly. Subplot (c) shows a histogram plot for these. The
noise singular values all bunch together to form the bulk while the value for coherent sine
wave signal separates out. �+ gives an estimate for the edge of the bulk. The distance
between the bulk and the signal singular value depends on the strength of the signal. If the
signal showed more attributes, e.g., translation of the sine wave with time, more singular
values would separate out to accommodate for this.

Chapter 4 outlines a procedure to estimate a threshold that separates the noise singular
values from the signal singular values. The example in Figure 1.14 uses a simple random
noise model for the purpose of illustration. This results in a clean and uncomplicated
singular value spectrum. However, the spectrum could get much more complicated in real
data where simple heuristics and scree plots often lead to overestimation or underestimation
of noise. The application of random matrices originated with its use in nuclear physics by
Eugene Wigner who first modelled the complex atomic spectra using an ensemble of random
matrices. Since then random matrices have been used to model many dynamical systems.
However, its use in seismology has been limited. Wave coherency based techniques like
Karhunen-Loève transform (e.g., Jones (1985); Jones and Levy (1987); Al-Yahya (1991)),



1.6 Methods 31

singular value decomposition, and PCA have been widely used in exploration seismology to
enhance and identify signals from subsurface reflectors, and separate ground roll, di↵racted
and guided waves from reflected phases (e.g., Freire and Ulrych (1988); Jackson et al.
(1991); Bekara and Van der Baan (2007); Liu (1999)). However, an objective criterion
to select the required number of components has not been well established. This work
shows how these methods can work in conjunction with random matrix theory to identify
an objective threshold and extract various coherent phase arrivals in RF data. Once
identified, the secondary phase arrivals together with the primary conversions from crustal
interfaces can be used to invert for the structure.
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Chapter 2

Joint inversion of receiver functions
and apparent incidence angles

This chapter was published in Earth and Space Science, Volume 8, Issue 10, in September
2021 under the title “Joint Inversion of Receiver Functions and Apparent Incidence Angles
for Sparse Seismic Data” by Joshi et al. Conceptualization, data analysis, creation of
figures, and writing the draft was carried out by me, under the supervision of Dr. B.
Knapmeyer-Endrun, Prof. Dr. Heiner Igel and Prof. Dr. Ulrich Christensen.

The supporting information for this chapter can be found in Appendix A. At the request
of the publishing journal, the following text has been included without any changes in
presentation or the contents of the copyright information.



1. Introduction
Receiver function (RF) analysis is a powerful technique to gain information about the discontinuities in the 
crust and upper mantle beneath a single three-component seismic station. RFs are essentially time series 
that are sensitive to the structure near the receiver. The basic principle behind this method is that when a 
seismic wave is incident upon a discontinuity, mode conversion between the compressional (P) and shear 
(S) waves will take place in addition to the generation of reflected and transmitted waves. The resulting con-
verted wave (Ps or Sp) will have a time offset with respect to its parent wave, and this time offset is directly
proportional to the depth of the discontinuity and the velocity of the layers above. In addition to the direct
converted waves, the multiples resulting from reflections and conversions between the discontinuity and
the free surface can provide further constraints on the layer thickness and help to resolve the depth-velocity 
trade-off. The RF can be obtained by deconvolving the vertical component from the radial component of
a teleseismic event recorded on a three-component seismometer (Ammon,†1991; Langston,†1979; Owens
et†al.,†1987). Since only a small percentage of the incident energy is converted at a discontinuity, it is difficult 
to observe these conversions in a single seismogram. A number of RFs can instead be used to measure the
crustal thickness and average v vP S/  ratios by H-k (crustal thickness—average v vP S/ ) stacking for individual 
stations (Helffrich & Thompson,†2010; Zhu & Kanamori,†2000) or for imaging by common conversion point 
(CCP) stacking of data from many stations (Dueker & Sheehan,†1997). This, however, requires assumptions 
on the velocity structure.

One method to obtain a detailed velocity structure is to directly invert the calculated RFs using linearized 
iterative procedures, but Ammon et†al.†(1990) showed that such inversions of RF contain an inherent trade-
off between the depth to a discontinuity and the velocity above. The primary sensitivity of the RF inversion 
is to velocity contrasts and relative travel time, not to absolute velocity. This lack of sensitivity to absolute 
velocity results from the relative S-P travel time constraints along with the limited range of horizontal 
slowness contained in the data (Ammon et†al.,†1990). Thus RF data sets are generally inverted jointly with 

Abstract The estimation of crustal structure and thickness is essential in understanding the
formation and evolution of terrestrial planets. Initial planetary missions with seismic instrumentation on 
board face the additional challenge of dealing with seismic activity levels that are only poorly constrained 
a priori. For example, the lack of plate tectonics on Mars leads to low seismicity, which could, in turn, 
hinder the application of many terrestrial data analysis techniques. Here we propose using a joint 
inversion of receiver functions and apparent incidence angles, which contain information on absolute 
S-wave velocities of the subsurface. Since receiver function inversions suffer from a velocity depth trade-
off, we in addition exploit a simple relation that defines apparent S-wave velocity as a function of observed 
apparent P-wave incidence angles to constrain the parameter space. We then use the Neighborhood 
Algorithm for the inversion of a suitable joint objective function. The resulting ensemble of models is 
then used to derive uncertainty estimates for each model parameter. In preparation for the analysis of 
data from the InSight mission, we show the application of our proposed method on Mars synthetics 
and sparse terrestrial data sets from different geological settings using both single and multiple events. 
We use information-theoretic statistical tests as model selection criteria and discuss their relevance and 
implications in a seismological framework.
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other independent data sets that provide additional constraints on absolute shear wave velocities like sur-
face wave dispersion curves (e.g., Du & Foulger,†1999; Julia et†al.,†2000), or Rayleigh wave ellipticity (Chong 
et†al.,†2016). One such relation, which has not been heavily exploited is between apparent S-wave velocities 
and P-wave polarization. The polarization of body waves has been traditionally used in seismology to study 
the anisotropy of crustal and upper-mantle structures (Fontaine et†al.,†2009; Schulte-Pelkum et†al.,†2001). 
But the P-wave polarization can also be used to constrain the near-surface shear wave speed. Svenningsen 
and Jacobsen†(2007) showed that the amplitudes of the vertical (Z) and radial (R) components of the P-re-
ceiver function at zero time is directly related to the polarization of P-waves. Deconvolution removes the 
complex waveform of the incoming P-waves, which dominate the Z component. Hence the Z RF is an 
approximate zero-phase spike with arrival instant at exactly t†=†0, where the time is measured relative to 
the P-wave arrival. This can be used to estimate the apparent P-wave incidence without influences from the 
P-wave coda. Further, filtering at successively long periods, a frequency-dependent apparent shear wave 
velocity profile can be obtained (Knapmeyer-Endrun et†al.,†2018; Svenningsen & Jacobsen,†2007) which can 
be used as an effective independent data set to be jointly inverted with the RFs.

Svenningsen and Jacobsen† (2007) used a linearized inversion of apparent S-wave velocity curves and 
demonstrated its independence of the starting model. Hannemann et†al.†(2016) applied the method to an 
ocean-bottom data set and used a grid search method concluding that the method is usable for single sta-
tion estimates of the local S-wave velocity structure beneath the ocean bottom. Schiffer et†al.†(2016) used 
an iterative least squares method to jointly invert apparent velocity curves and RFs utilizing a minimum 
number of layers (6–8). Knapmeyer-Endrun et†al.†(2018) used a grid search over parameter space to invert 
the S-wave velocity curve for crustal structure at several Earth stations with varying geology and synthetic 
Mars data. It has also been shown that a priori S-wave velocity information deduced from P-wave polariza-
tions can be useful when inverting RF waveforms (Peng et†al.,†2012). Park and Ishii†(2018) further showed 
that the S-wave polarization is sensitive to both the compressional and shear wave speeds, and successfully 
combined P- and S-wave polarization directions measured by principal component analysis to derive the 
distribution of near-surface P- and S-wave speeds in Japan.

In this study, we use a modified version of the Neighborhood Algorithm (Sambridge,†1999a; Wathelet,†2008) 
for the joint inversion of receiver functions and apparent S-wave velocity profile. The Neighborhood Algo-
rithm (NA) is a derivative-free optimization method that uses a pseudo-random trajectory in exploring the 
parameter space. Rather than making inferences on model parameters using only the lowest-misfit model, 
it provides the option of using the suite of all generated models for this purpose. With a well-sampled pa-
rameter space, an ensemble algorithm also benefits from the possibility of a probabilistic solution with full 
uncertainty estimates. In contrast with earlier studies on this topic, which are predominantly based on large 
amounts of available data, we show how this method can be used with limited data sets comprising only a 
few events. This becomes crucial in the context of planetary seismology where the amount of data may be 
limited. For example, it can be used to study the crustal structure of Mars using data from the InSight mis-
sion (Lognonné et†al.,†2019). Another problem associated with determining the crustal structure is the num-
ber of inter-crustal layers to be inverted for. We address this problem using a two-fold approach: we start by 
inverting for a model of low complexity and gradually increase it till no significant velocity contrast along 
with misfit reduction is observed, with major discontinuities being adequately represented by the model. 
We then use Akaike weights derived from Akaike Information Criterion (AIC) values (Akaike et†al.,†1973) 
for all of these models as selection criteria. We apply this joint inversion scheme on synthetic seismograms 
for Mars and selected terrestrial data.

2. Data Sets
2.1. Mars Synthetics

In order to demonstrate and verify our proposed method, we first use synthetic seismograms for Mars that 
are generated using Green's Function (GF) databases prepared for a suite of a priori one-dimensional (1D) 
velocity models with varying crustal thicknesses, seismic wave speeds, densities, mantle compositions, 
and aerotherms. These a priori models are obtained by the inversion of bulk chemistry, mineralogy, and 
geotherm, following the approach described in Khan and Connolly† (2008), Connolly† (2009), and Khan 
et†al.†(2016). The GF databases are computed using a 2.5D axis-symmetrical spectral element code, AxiSEM 
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(Nissen-Meyer et†al.,†2014), and are publicly available within the Marsquake Service (MQS) at ETH Zurich 
(Ceylan et† al.,† 2017, http://instaseis.ethz.ch/marssynthetics/). Synthetic broadband seismograms can be 
calculated from these GF databases for arbitrary moment tensors and source-receiver combinations using 
the Instaseis package (van Driel, Krischer, et†al.,†2015). These simulations are based on full numerical solu-
tions of the visco-elastic wave equation and include the effects of attenuation, are accurate down to a period 
of 1†s, and allow for a total simulation duration of 30†min.

Since a large variation in crustal thickness is expected across Mars, a thin (30†km) and thick (80†km) crust is 
employed to create the initial models, both with a 10†km thick upper crustal layer. Further details of these 
models can be found in Ceylan et†al.†(2017). The thin and thick crusts with different velocity contrasts at the 
Moho represent 1-D global end-member models, rather than what is expected beneath the InSight landing 
site. In this study, we have used two thin crust models (C30VH_AKSNL, C30VL_AKSNL) and one thick 
crust model (C80VL_AKSNL) for the purpose of demonstrating the method. For all of these models, we 
calculated synthetic seismograms and receiver functions at epicentral distances between 15 and 180 in 1 
increments. Assuming normal faulting, a dip-slip source at an angle of 45 and at a depth of 5†km north of 
the seismometer was used to generate the synthetic waveforms. Since the synthetics do not have any added 
noise, we assume a reasonable 25% standard deviation on mean absolute values of RFs and ,S appE V  whenever 
appropriate for likelihood calculations. We demonstrate the results of applying our method first on a single 
event and then multiple events together.

2.2. Terrestrial Data

To verify how the algorithm works in a real setting, we analyzed data from two stations in Central Europe—
BFO in Germany (Federal Institute for Geosciences and Natural Resources,† 1976) and SUW in Poland 
(GEOFON Data Centre,†1993). Details of the events used are listed in Table†1. Reference values of crustal 
thickness for these stations were taken from the Moho depth map of the European plate (Grad et†al.,†2009) 
and Knapmeyer-Endrun et†al.†(2014). Because these sites have known differences in crustal structure, this 
gives us the opportunity to test how the method works in a range of possible scenarios and in the presence 
of noise. Station BFO is located on the thinned crust of the Upper Rhine Graben, which is a part of the 
European Cenozoic Rift system (Ziegler,†1992). In contrast to this, station SUW is situated on the relatively 
thick East European Craton, which is the core of the Baltica proto-plate and occupies the northeastern half 
of Europe. It is characterized by a thick three-layer crust with an additional fast lower crustal layer (Grad 
et†al.,†2003). The East European Craton is of Precambrian origin and overlain by a young thin sedimentary 
cover (Bogdanova et† al.,† 2006) which leads to strong reverberations in the P-receiver function for SUW 
(Wilde-Piórko et†al.,†2017)

Date
Origin time 

(UTC) Station
Ray p 

(s/deg)

Location

wE M
Distance 

(°) 2 RFLatitude Longitude

Sep 3, 2007 16:14:53 BFO 5.35 45.836N 150.060E 6.2 79 0.036

Jul 6, 2008 09:08:21 BFO 5.31 45.387N 150.965E 5.7 82 0.052

Jun 6, 2009 20:33:28 BFO 7.66 23.864N 46.105W 6.0 51 0.056

Nov 24, 2008 09:02:58 BFO 5.68 54.203N 154.322E 5.3 70 0.048

Oct 29, 2009 17:44:31 BFO 7.78 36.391N 70.722E 6.2 45 0.078

Feb 8, 2008 09:38:14 SUW 6.38 10.671N 41.899W 6.8 72 0.082

Sep 30, 2009 10:16:09 SUW 5.17 0.720S 99.867E 6.9 82 0.063

Oct 7, 2009 21:41:13 SUW 5.57 4.079N 122.371E 6.8 77 0.056

Mar 30, 2010 01:02:53 SUW 6.26 43.308N 138.379E 5.7 68 0.162

Sep 10, 2008 13:08:14 SUW 6.35 8.093N 38.705W 5.2 64 0.052

Oct 2, 2007 18:00:06 SUW 6.01 54.511N 161.708W 5.8 60 0.073

Table 1 
Event Information for Stations BFO and SUW
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3. Method
3.1. Calculation of Receiver Functions

The teleseismic P-wave receiver function represents the structural response near a recording station to the 
incoming teleseismic P-wave. It can be obtained by removing the source wavelet, propagation effects and 
the instrument response from the vertical, radial and transverse waveforms. This is generally done by de-
convolving the vertical component from the radial and transverse components in a process called source 
equalization (Phinney,†1964; Vinnik,†1977). Several methods have been described in the literature for this 
deconvolution process (e.g., see Kind et†al.,†1995; Langston,†1979; Owens et†al.,†1987; Phinney,†1964; Vin-
nik,†1977). We use a time-domain Wiener filter for deconvolution as described by Hannemann et†al.†(2017). 
The receiver function datasets used here are a subset of those used in Knapmeyer-Endrun et†al.†(2014) and 
Knapmeyer-Endrun et†al.†(2018). The synthetic seismograms do not require the removal of any instrument 
response, but they are filtered between 1†Hz and 50†s, 1†Hz being the upper-frequency limit of the synthet-
ics. Additionally, due to the alignment of source and receiver, these data are already in the ZRT system. 
For the terrestrial data, we first remove the instrument response from all components and then filter the 
seismograms between 5†Hz and 50†s. The ZNE coordinate system is then rotated into ZRT using back-azi-
muths determined by polarization analysis (Jurkevics,†1988) to obtain radial and transverse components. 
The Wiener filter is determined such that it transforms the P-wave signal on the vertical component into a 
band-limited spike. This filter is then applied to all components of the signal to finally obtain the RF with 
the spike positioned at the centroid of the signal.

3.2. Apparent S-Wave Velocity

Following the relationship between true and apparent incidence angles (Wiechert,†1907), it can be shown 
that the apparent incidence angle is sensitive to absolute shear wave velocity

v i pS app p,
sin( . ) 0 5 / (1)

where ip  denotes the apparent P-wave incidence angle and E p denotes ray parameter. Svenningsen and Jacob-
sen†(2007) proposed a method to directly estimate the apparent incidence angle using RFs instead of the 
raw waveform data, which in turn emphasized the true S-wave velocity information contained in them. We 
follow a similar procedure and estimate the apparent P-wave incidence angle from the amplitudes of verti-
cal and radial receiver functions at time t†=†0 using the relation

tan
( )

( )
i

RRF t

ZRF t
p 




0

0
 (2)

Now estimating ip  as a function of low pass Butterworth filter period (T) results in a ( )SE v T  curve which 
emphasizes the absolute S-wave velocity variation with depth. Larger T implies more smoothing and thus 
more multiples at later times influence the values of the filtered receiver functions at t†=†0. In contrast with 
the squared cosine filters used by Svenningsen and Jacobsen†(2007), we use a Butterworth filter which has 
twice the corner period as a cosine filter. For each trace we measure the dominant period of the spike in the 
ZRF and discard the values of filter periods smaller than that. We show cases with both single and multiple 
events. When multiple events are used at varying epicentral distances, we calculate the median of the ap-
parent S-wave velocity curve at each sample period. For a numerical approximation of sensitivity kernels, 
showing the change in , ( )S appE v T  curves in response to changes in S-wave velocity in the background model 
IASP91 (Kennett et†al.,†1995), see Knapmeyer-Endrun et†al.†(2018).

3.3. Inversion

For the purpose of this study, we have employed a modified version of the Neighborhood Algorithm (NA) 
(Wathelet,†2008) for the joint inversions of RF and apparent S-wave velocity curves. Being a derivative-free 
optimization algorithm and taking into account the low dimensionality of our problem, NA seems to be a 
good choice because of its simplicity (two tuning parameter scheme) and lack of dependence on starting 
models (Sambridge,†1999a). Moreover, an ensemble of models rather than a single model can be used to 
make robust statistical inferences about the model parameters. The modifications by Wathelet†(2008) fur-
ther implement dynamic scaling of model parameters and allows to define irregular limits to the searchable 
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parameter space. The idea behind the NA is to start with an initial coarse sampling of the parameter space, 
then select the regions with lowest misfits and continue to resample these regions such that the heaviest 
sampled regions correspond to the models which best fit the data. In each iteration, the NA uses near-
est-neighbor regions defined by Voronoi cells to partition and search the parameter space. The misfit is 
assumed to be constant within each of these Voronoi cells, and with each iteration, sampling is concentrat-
ed on the cells with lower misfit relative to the rest of the cells. The algorithm relies on only two control 
parameters: Ns - number of new samples to generate at each iteration and Nr—number of promising mod-
els to select for further sampling. The ratio Ns/Nr controls whether the algorithm behaves exploratively or 
exploitatively (Sambridge,†1999a,†1999b).

We use the L2 norm in order to measure how well a given model with a particular set of parameters can 
reproduce the given data quantitatively

( )
( )

m
dobs

d


g m



2

(3)

where ( )E g m  is the estimated data and 2
d  is the estimated variance of the data noise. In this study, the noise 

has been assumed uncorrelated for simplicity and thus a simple Euclidean distance can be used. For a joint 
inversion of receiver function and apparent S-wave velocity, the objective function is defined by the linear 
combination of misfits of the weighted receiver functions RF  and the apparent velocity curve Vapp , using 
the L2 norm, thus takes the form

( ) RF Vappm      (4)

The weighting constant  is tuned manually by sample forward runs prior to the inversion process such 
that both the individual misfits are of the same order of magnitude. Here we have used 8   for synthetic 
data and 10   for terrestrial data. As mentioned before, the two parameters that control the NA need to 
be tuned depending on the problem and the style of sampling needed. For a more explorative search that is 
robust against local minima, we perform 1200 iterations in each inversion run with 300 models produced 
at each iteration ( sE n ) and 100 cells re-sampled at each iteration ( rE n ), resulting in an ensemble of 360,000 
models per run. Each inversion was repeated several times to test the stability of the results. High n ns r/  ratio 
ensures faster convergence while a high number of initial models ( 0 3000sE n  ) ensures highly explorative 
behavior.

Knapmeyer-Endrun et†al.† (2018) compared several algorithms used in literature for the computation of 
receiver functions before choosing the forward calculation implemented by Shibutani et† al.† (1996). The 
algorithm calculates the impulse response of a layer stack in the P-SV system. We then convolved the result-
ing synthetic Z- and RRFs with the observed ZRFs to account for the observed complexity and waveform 
widths. Once the RFs are obtained, we can straight away calculate the apparent S wave velocities using the 
procedure described in the last section. Density was not considered to be a parameter to be inverted for and 
was calculated using Birch's law (Birch,†1961), while the S-wave velocity and the v vP S/  ratio of each layer 
were allowed to vary. Furthermore, the S-wave velocity was constrained to increase with increasing depth. 
The fact that a single forward calculation can be performed in a matter of seconds and the waveform com-
plexity matches that of real data makes this algorithm suitable for the purpose of this study.

3.4. Bayesian Formulation

The Bayesian formulation allows to account for prior knowledge of the parameters of our model, provid-
ed that this information can be expressed as a probability distribution ( ) m . The prior corresponds to the 
knowledge that we have about our system, for example from previous studies. As new data is available, 
often in the form of likelihoods, this prior information can then be updated using Bayes' rule. This results 
in what is known as the posterior distribution for these unknowns—A distribution over the full range of 
these parameters.

3.4.1. Computing Average Likelihoods

The likelihood ( )d m
obs

|  is a function of the model parameters that describes the goodness of fit of a model 
to the observed data. Assuming a Gaussian error distribution for a given misfit measure, ( )Φ m , the likeli-
hood function is defined as:
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( )
( )

d m
obs

| 








exp

m
2

(5)

As mentioned before, the NA initially starts with a coarse sampling of the parameter space, and eventually, 
the algorithm guides the sampling such that the best fitting regions of the parameter space are also the 
most heavily sampled regions. This, therefore, introduces a bias in the sampling of the parameter space 
which otherwise could be used to compute the full uncertainty from the ensemble of acceptable solutions. 
Sambridge†(1999b) demonstrates that this could be achieved by a Gibbs re-sampling of the output ensemble 
which essentially concentrates on the low misfit regions and approximates the true posterior density by 
an approximate one. Here we show a simple alternative method to compute marginal histograms from the 
biased samples based on binning model parameters. In essence, each model in the ensemble has a pair-wise 
distance to every other model, which can be calculated using multi-dimensional scaling. Binning model 
parameters within a small distance and computing average likelihoods then approximates the true posterior 
density as a histogram.

Consider N sample models (1) ( ), , Nm m  in a K-dimensional space, distributed according to an (everywhere 
positive) unknown distribution ( )ν m . Assume that ( )ν m  is close to the distribution, ( )E f m , and that we wish 
to compute the marginal histograms ( )k kE f m  from the samples.

The height [ , ]a bE h  of the histogram column for an interval [a,b] must (for E N  ) be proportional to the mar-
ginal probability ( )k kE P a m b  . Hence,

[ , ] ( )b
a b a k k kh f m dm  (6)

except for a normalization factor. This can be re-written as a mean value (expectation) of the ratio ( )
( )

k k

k

f m
m

over the interval [ , ]E a b  with respect to ( )kE m :

[ , ]
( ) ( )
( )

b k k
a b a k k

k

f mh m dm
m




  (7)

and since the sample models (1) ( ), , Nm m  are distributed according to ( )ν m , we have the approximation:
( )

[ , ] ( )( ){ | }

1 ( )
( )

i
k

a b
ii a m bk

fh
N  

  i
m

ν m (8)

This expression can be used when kE f  can be evaluated in the sample points, and when we can evaluate 
( )( )iν m  from the density of sample points. The density at ( )im  can, for example, be evaluated over a cube E C 

with edge length E m , centered at ( )im :
( ) 1( )

( ) cK N
m




iν m (9)

where CE N  is the number of sample points in E C

3.4.2. Priors

We impose a minimal prior knowledge on all the parameters by using the uniform distribution as our 
choice of priors. The prior for each parameter takes a constant value over a defined interval. For example, 
if X is a model parameter which can take values over the interval ( )max minE X X X   , we define the prior 
probability density as:

( )
,

,
x X

X x X
i

min i max
 







1

0


if

otherwise
(10)

We can now apply Bayes' rule (Bayes,†1763) to combine the likelihood of observing the data with the prior 
distribution and to give the posterior probability density function:

  ( ) ( ) ( )m d d m m
obs obs

| | (11)

Note that the denominator in the Bayes' rule, ( )obsρ d , which is a sum over all possible models has been 
treated as a constant in this work, leading to a proportionality sign in the equation.
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3.5. Model Selection

We use AIC (Akaike et†al.,†1973) as a model selection criterion, which essentially gives the Kullback-Leibler 
divergence between a candidate model and the true model as

2 2 ( )AIC k ln L  (12)
where k and L denote the number of model parameters and the value of maximum likelihood of the model, 
assuming Gaussian errors. The first term in this equation is a measure of fit between the synthetic model 
and the true model representing the reality; the second term penalizes the order of complexity of this syn-

thetic model. While raw AIC values themselves have no meaning, the quantity 
2

min iAIC AICE exp 
 
 

 is an 

estimate of the relative likelihood of the th model. These model likelihoods can then be normalized to 
obtain Akaike weights iE w (AIC) (Burnham & Anderson,†2002; Wagenmakers & Farrell,†2004),

1

{ 0.5 ( )}( )
{ 0.5 ( )}

i
i K

k k

exp AICw AIC
exp AIC

 

  

 (13)

which can be interpreted as the probability that the th model is the best (i.e., it minimizes the estimated 
information loss Anderson & Burnham,†2004). The strength of evidence in favor of one model over the 
other can then also be obtained by dividing their respective Akaike weights. When the number of samples 
is small, a correction factor is added to the above equation giving the corrected AIC (AICc) values

22 2 ( )
1

knAICc k ln L
n k

  
 

 (14)

Here k denoted the number of model parameters and n the number of independent samples. Since the sam-
ples of a seismogram are generally correlated, with the correlation length being proportional to sampling 
frequency, we instead use the product of the Nyquist rate and the signal length as a measure of the number 
of independent samples (van Driel, Wassermann, et†al.,†2015). For a band-limited signal, the Nyquist rate 
is given by 2 ( )high lowE f f   which gives 1.96 and 9.96†Hz for synthetics and terrestrial data, respectively  
( highE f  and lowE f  denote the upper and lower frequency limits). Anderson and Burnham†(2004) suggest using 
AICc when the ratio between the sample size E n and the number of model parameters E k is low ( 40 ). We will 
therefore use AICc when dealing with synthetic data and AIC for terrestrial data.

4. Results
4.1. Mars Synthetics

Figures†1 and†2 show the result of applying the method on single events for a priori Martian velocity models 
with a thin fast (C30VH_AKSNL) and a thick slow (C80VL_AKSNL) crust, respectively. Since noise is not a 
limiting factor here, in both cases, the residual includes the misfit for the complete waveform up to 30†s and 
apparent S wave velocity to 117†s. Each inversion was repeated three times to test the stability and the results 
were concatenated. The plots include all models within a maximum misfit value, ranked and color-coded 
according to misfit with black models being the best fitting solutions. This maximum misfit value is derived 
such that it encompasses the best 25% of all the models in the ensemble.

Adding a third layer to the model parameterization did not produce any considerable changes to the result. 
For C30VH_AKSNL the additional third layer produced a velocity contrast of around 0.8% against the lay-
er adjacent to it with an insignificant misfit drop, while C30VH_AKSNL produced a similar low velocity 
contrast of around 0.45%. This shows that an additional layer is not warranted by the data. This is also 
confirmed numerically by our model selection criteria. Figures†3a and†3b show the respective probabili-
ties obtained from AICc values for 1, 2, 3, and 4 layer models with constant velocity over a half-space for 
C30VH_AKSNL and C80VL_AKSNL respectively. For C30VH_AKSNL, there is a higher probability ( 16% ) 
of explaining the data with just a single layer than for C80VL_AKSNL. This is consistent with a weak Moho 
signal produced by the small velocity contrast. Since the two layer model has the highest probability (and 
thus minimum AIC), we conclude that it is the optimum model that explains this data set. This is also in 
agreement with the true models indicated by the blue dashed lines in Figures†1 and†2. The a priori range for 
each parameter in both cases are identical to the ranges shown for the 1D marginals and can be retrieved 
from Figures†4 and†5.
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The top layer crustal E S-wave velocity and transition depth is well resolved for both the representative 
end-member models. For C30VH_AKSNL, there is high uncertainty in the Moho depth which in turn es-
calates the uncertainty in the E S-wave velocity in the lower crust. This might be explained as the direct con-
verted phase (1.8†s) and the multiples (5.5 and 7.2†s) produced by the intra-crustal discontinuity at 10†km 
depth are clearly visible in the data while the Moho conversion (4.1†s) for the thin crust model is not readily 
recognizable. This is in contrast to C80VL_AKSNL where the direct converted phase (14.7† s) produced 
at the Moho is clearly visible. The mantle S-wave velocities on the other hand are better constrained for 
C30VH_AKSNL than for C80VL_AKSNL. This is explained by the ,S appE v  curves for the models. The ,S appE v  
curve for C80VL_AKSNL does not contain any information on the upper mantle velocity within its period 
range whereas in the ,S appE v  curve for C30VH_AKSNL, the velocities converge to the upper mantle velocity 
of 4.1†km/s for periods longer than 50  s. This demonstrates the advantage of inverting receiver functions 
along with frequency-dependent apparent S-wave velocities.

In both cases, the v vP S/  ratio is also fairly well constrained for the top two layers by the method, as can 
be seen in the sub-figures (d). This is in agreement with Sambridge†(1999a), where it was shown that the 
v vP S/  ratio from the NA inversion is better resolved in the top layers than for the deeper ones. The thick-
ness of the layers and their corresponding S-velocities are also better constrained than the v vP S/  ratio. For 
C80VL_AKSNL, the v vP S/  ratio of the half-space is not well resolved and varies across the whole model 
range investigated, whereas for C30VH_AKSNL, it is adequately resolved for all the layers even though the 
variance increases with depth.

Figure 1. Result for thin crust model C30VH_AKSNL and event distance 70 (a) 1-D velocity profile. The light gray lines represent traversed models outside 
the maximum misfit range. The blue dashed line represents the true model. (b) Fit to ,S appE v , (c) v vP S/  ratio as a function of depth and (d) Fit to receiver function 
waveforms. The blue dashed lines denote the observed data and the green dash-dotted lines represent the uncertainty in observations.
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Figure 2. Same as Figure†1 for C80VL_AKSNL. Event distance is 40.

Figure 3. Model probabilities based on Akaike Information Criterion (AICc) values for (a) C30VH_AKSNL (b) C80VL_AKSNL (c) C30VL_AKSNL and AICc 
values for (d) BFO (e) SUW.
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To test how the method performs when multiple events are available, a median ,S appE v  curve was calculated 
for model C30VL_AKSNL from the RFs between 40 to 90 where the ,S appE v  curves are similar for each dis-
tance (Knapmeyer-Endrun et†al.,†2018). This median ,S appE v  curve was then jointly inverted with 6 receiver 
functions selected at epicentral distances of 90, 80, 70, 60, 50 and 40. The resulting profile along with 
the waveform fit for each RF and ,S appE v  curve is shown in Figure†6. The velocity profile lies well within the 
range of the uncertainty and the receiver function at each distance is also well modeled. The variance in 
velocity again increases with depth and is maximum for the mantle. The median ,S appE v  curves are also close 
to the observed curve, even though the kinks between 2–3 s and 7†s appear to be slightly sharper than in 
the observed curve. Unlike C30VH_AKSNL, C30VL_AKSNL has a shorter ,S appE v  curve extending to 82†s 
(Figure†7). This restricts the retrieval of S-wave velocity information from longer periods and has the effect 
of an increased variance in the upper mantle velocity. The Moho on the other hand is well resolved due to 
a high impedance contrast which results in a direct phase at around 6†s for RFs at 40 and 50, and a clear 
multiple at around 19 and 24†s for RFs at 90, 80, and 70. Looking at the probability densities we see that 
using more data has the effect of an overall decrease in uncertainty levels. From Figure†3c, we see that the 
data is best explained by a 2 layer model which has the highest value for jE w  (AICc). To check how a joint 
inversion performs against separate inversions of ,S appE v  and RF, we further compared their density plots for 
depth and the velocity of the second layer using the data generated from model C30VL_AKSNL. Here we 
used the best 25% models of the respective ensembles. In the case of RF inversion alone (Figure†8a), we 
see a strong trade-off between the Moho depth and velocity above, as RFs as a relative travel-time method 
are sensitive to the depth-velocity quotient and not absolute velocity. When ,S appE v  data are inverted alone 
(Figure†8b), the velocity is well recovered but the Moho depth is not very well constrained. Joint inversion 
of both datasets (Figure†8c) shows a considerable improvement in resolving both the depth and velocity of 

Figure 4. C30VH_AKSNL: 1D marginal posterior densities of depth, velocity and v vP S/  ratio for each layer. The half-space has no depth parameter. The red 
dashed line denotes the mean value and the black dotted line represents the true parameter value.
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Figure 5. Same as Figure†4 for C80VL_AKSNL.

Figure 6. Example of multiple inversions for C30VL_AKSNL (a) 1-D velocity profiles. The light gray lines represent traversed models outside the maximum 
misfit range. (b) Fit to receiver function waveforms at epicentral distance of (i)90 (ii) 80 (iii) 70 (iv) 60 (v) 50 and (vi) 40 (c) Fit to the median ,S appE v  (d) v vP S/

ratio as a function of depth. The blue dashed curves denote the observed data and the green dash-dotted lines represent the data uncertainty.
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the second layer and, therefore, the two data types are complementary. For an application of the method to 
synthetic data with added noise see Drilleau et†al.†(2020).

4.2. Terrestrial Data

The examples above from synthetic data show that in principle the joint inversion of apparent S-wave ve-
locity with receiver functions serves as a useful complement. This section presents inversion results for 

Figure 7. Same as Figure†4 for C30VL_AKSNL.

Figure 8. Comparison of depth-velocity trade-off for (a) receiver function (RF) inversion (b) ,S appE v  inversion (c) Joint inversion of RF with ,S appE v . The gray 
dashed lines denote the true values of depth and velocity of second layer.
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terrestrial data where the inherent data noise becomes an important consideration and has a strong influ-
ence on the resulting model parameters and their associated uncertainties. The RF uncertainty is calcu-
lated using the pre-event noise of the radial component of the receiver function since it should ideally be 
independent and non-correlated. It is defined as twice the standard deviation of the amplitude of the pre-
event radial receiver function between �30 and �10†s, relative to the direct P-wave arrival. The uncertainty 
value for each RF is listed in Table†1. Similarly, the uncertainty in the ,S appE v  is defined as twice the standard 
deviation of the residuals from the median curve. Figure†9a shows the noise levels computed for stations 
BFO (green) and SUW (blue)—for each station we calculate the mean of the pre-event noise of the radial 
component of each receiver function from all the events considered here for multiple inversions and bin 
them according to amplitude, creating a distribution from which noise parameters can be estimated. The 
variance in noise level was found to be the higher for SUW with each roughly following a Gaussian distribu-
tion. Similarly, Figure†9b shows the noise characteristics for the ,S appE v  curve for both the stations calculated 
by binning of residuals from the median curve.

Selection of the model complexity that best describes the data is again done using the procedure described 
in the previous section. Starting at a low degree, we gradually increase the complexity until the parameter-
ization produces no significant deviation in profile and misfit reduction. We then compare the correspond-
ing relative likelihood values and choose the maximum.

The results for seismic station BFO are summarized in Figure†10. From the velocity profile (subplot a) we 
can see that the data can be sufficiently described by a minimum parameterization comprising 3 layers with 
constant velocity over a half-space—A low velocity top layer of sediments, an upper crustal layer extending 
from the base of the sediments to a depth of 7  km and a thick lower crust that extends from 7 to 8†km 
to the Moho at 25  km depth. Various studies found the Moho depth between 23.8 and 27†km for station 
BFO (Geissler et†al.,†2008; Grad et†al.,†2009; Knapmeyer-Endrun et†al.,†2014). The mantle velocities are also 
adequately constrained by the data showing a maximum probability for mantle SE v  velocity of 4.6†km/s. The 
results for the S-wave velocity model also show close agreement with Svenningsen and Jacobsen† (2007) 
(shown in blue dashed lines) and Knapmeyer-Endrun et†al.†(2018) (shown in green dashed lines). Since 
Svenningsen and Jacobsen†(2007) used the apparent velocity curve up to 0.2†s in contrast to 1.3†s allowed 
by our data set, the top sediment layer could be better resolved to thickness values below 1†km. Subplots (b) 
and (c) show the corresponding fits to the receiver function for each event and a median ,S appE v  curve. Except 
for the RF waveform in event (i) where the phase at 10  s is over-pronounced, the models fit the data from 
other events adequately well. The modeled ,S appE v  curve also follows the data closely at all periods, including 
the sharp kink around 2  s. At longer periods after 50  s, the velocities seem to converge to 4.8  km/s pro-
viding a tight constraint on the upper mantle which explains the low uncertainty seen in the half-space SE v .

Figure 9. Noise characteristics of (a) Receiver function (RF) shown as a frequency distribution of amplitude calculated from radial component of receiver 
functions for different stations (b) ,S appE v  calculated as a frequency distribution of error from the median curve.



Earth and Space Science

JOSHI ET AL.

10.1029/2021EA001733

14 of 19

Station SUW is located on the East European craton and sits on a relatively thicker crust than BFO. Using 
a similar parameterization as before with 3 layers including a top sedimentary layer results in a subsurface 
velocity profile shown in Figure†11a. The model predicts the Moho to be located at a depth of 45  km with 
the highest probability density and an intra-crustal discontinuity at 15†km. Previous studies have estimat-
ed the Moho depth to lie between 41 and 46.8†km for station SUW (Geissler et†al.,†2008; Grad et†al.,†2009; 
Knapmeyer-Endrun et†al.,†2014). The thickness and SE v  of the sedimentary layer, however, are not well con-
strained with the uncertainty for SE v  being the highest amongst all layers. This is also evident from the mod-
eled ,S appE v  curves (subplot c) which show a slight deviation from the observed curve at short periods. Such 
a deviation could indicate that the sedimentary layer is more complex than our parameterization, which 
models it simply as a layer with constant velocity. An increase in the model complexity (e.g., modeling the 
sedimentary layer with a velocity gradient) could lead to a better fit here as suggested by Knapmeyer-En-
drun et†al.†(2018). Further, the missing SE v  information at long periods in the observation leads to an increase 

Figure 10. Example of joint inversions for terrestrial data from station BFO (a) 1-D velocity profiles. The blue and green dashed line represents the results from 
Svenningsen and Jacobsen†(2007) and Knapmeyer-Endrun et†al.†(2018). The light gray lines represent traversed models outside the maximum misfit range. (b) 
Fit to receiver function waveforms at epicentral distance of (i) 82 (ii) 79 (iii) 70 (iv) 51 (v) 45. The blue dashed curve denotes the observed radial receiver 
function and green dashed lines represent the standard error. The dark blue dotted line at 15s shows the end of the misfit window. (c) Fit to the median ,S appE v  (d) 
v vP S/  ratio as a function of depth.

Figure 11. Same as Figure†10 for station SUW (b) shows the fit to receiver function waveforms at epicentral distances of (i) 82 (ii) 77 (iii) 72 (iv) 68 (v) 64 
(vi) 60.
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in uncertainty in the upper mantle velocity which shows the highest probability density at a value of 4.9  
km/s. The modeled RFs shown in Figure†11b clearly show the ringing effect with gradual decrease in am-
plitude with time caused by the thin sediment layer. These strong reverberations produce high amplitude 
oscillations in the early part of the signal and completely masks the direct Moho conversion at 6E s . This 
example in particular shows that caution is needed to interpret receiver functions with a sedimentary layer 
in terms of subsurface structures.

Figures†3d and†3e show the respective model probabilities obtained from AIC values. We see that both the 
data can be best explained by three layer models with constant velocity over a half-space. However, there 
is still 9%  probability for a 4 layer model in both cases. The resulting values for v vP S/  for each layer are 
also shown in subplots (d) in Figures†10 and†11. The a priori ranges for these were selected such they con-
tain and considerably extend around the results from previous studies. Here we used Knapmeyer-Endrun 
et†al.†(2014) and Geissler et†al.†(2008) for information on crustal v vP S/  values and Artemieva†(2007) for the 
upper mantle. Unlike the case for synthetics, a high variation is observed here between the layers. In all 
the examples, the top sediment cover shows the highest uncertainty. The first and second layers are better 
resolved. For the half-space, the resulting values for BFO were observed to be rather variable dependent on 
the a priori range which indicates that one should be cautious in interpreting the result and that this param-
eter is not well constrained. The average crustal v vP S/  values estimated from RF analysis in previous studies 
are between 1.69 and 1.75 for BFO (Geissler et†al.,†2008; Knapmeyer-Endrun et†al.,†2014) and between 1.81 
and 1.84 for SUW. We find that the mean values from our results are broadly similar with values of 1.67 and 
1.82, respectively. Figures†12 and†13 show the respective 1D marginal posterior densities and a priori ranges 
used for stations BFO and SUW.

5. Implications for InSight
Some aspects in applying this method to InSight data do warrant attention. As the primary aim here is to 
obtain a first-order 1D subsurface structure, we have neglected the effects induced by azimuthal anisotropy 
from our analysis. Although this could potentially lead to amplitude errors in the observed RF waveforms, 
with only sparse data available, we can consider these to be of second-order. The effect of location uncer-
tainties will also considerably affect the calculation of ,S appE v . Knapmeyer-Endrun et†al.†(2018) showed that
the biggest effect in ,S appE v  can be caused by uncertainty in distance and back azimuth. A 25%  uncertainty
in distance could yield an uncertainty of 1  s/deg of the ray parameter for the P phase, while an erroneous 
back azimuth will lead to a decrease in estimated SE v  values at shorter periods. The thickness and velocity of 
a thin regolith layer can also be quite difficult to resolve if there is missing or erroneous information at short 
periods, as was the case in our study of terrestrial data. Another factor that limits the information that can 
be obtained from ,S appE v  on Mars is long-period noise and effects of glitches (Scholz et†al.,†2020). Knapmey-
er-Endrun et†al.†(2018) suggests that long period noise will affect longer periods while it has been observed 
that glitches can contaminate any part of the signal. Unlike the synthetics and terrestrial data used in this 
study, the ,S appE v  curve obtained from actual Mars data could be limited to much shorter periods. This would
then increase the uncertainty in the retrieved SE v  values at larger depths. A similar situation was encoun-
tered in Drilleau et†al.†(2020). In our previous study, Lognonné et†al.†(2020), we have been able to constrain 
the S-wave velocity and depth for the first inter-crustal layer of Mars between 1.7–2.1†km/s and 8–11†km, 
respectively, using such a limited ,S appE v  curve while further work involving the entire crust is in preparation. 
It is therefore important that all these factors are correctly accounted for.

6. Summary and Conclusion
In the context of the InSight mission, receiver function analysis has been envisioned as a likely method to 
study the crustal structure of Mars (Panning et†al.,†2017). In order to diminish the depth-velocity trade-off 
inherent in travel time methods, we propose to use the information provided by apparent P-wave incidence 
angles derived from P-receiver functions as an additional constraint (Knapmeyer-Endrun et†al.,†2018). In 
this study, we present a method for joint inversion of receiver functions and frequency-dependent apparent 
S-wave velocity curves using the Neighborhood Algorithm. This results in an ensemble of model solutions 
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along with their respective misfit values which can, in turn, be used to compute the full uncertainty of the 
model parameters. We then develop such a probabilistic solution using the resultant ensemble and apply 
this method to various data sets. Further, determining the sufficient number of layers for an optimal model 
presents another challenge in waveform inversion. We tackle this by gradually increasing the number of 
layers till adding yet another produces no significant change, and then using AIC as a statistical inference 
test on all possible model families. The method is successfully applied to synthetic seismograms generated 
for three a priori Mars subsurface models. Here we used both single and multiple events, and the uncertain-
ty in the retrieved model parameters decreases with an increase in the size of the data set. We then applied 
the method on terrestrial data from three different seismic stations located in different geological settings. 
The resulting subsurface models were in good agreement with the results obtained in previous studies using 
diverse approaches, which corroborated the efficacy of the method.

Figure 12. Same as Figure†4 for the inversion of data from station BFO.
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Data Availability Statement
Seismic data for station BFO and SUW were obtained from the Federal Institute for Geosciences and Natu-
ral Resources and GEOFON data centre of the GFZ German Research Centre for Geosciences, respectively. 
The data are publicly available and can be obtained from EIDA (http://www.orfeus-eu.org/data/eida/) us-
ing the event details listed in Table†1. The GF databases for Martian synthetics are publicly available within 
the Marsquake Service (MQS) at ETH Zurich (http://instaseis.ethz.ch/marssynthetics/). Details of the seis-
mic station used to retrieve the terrestrial data can be found in the supplement. The authors are thankful 
to the two anonymous reviewers for their feedback, which helped to improve the manuscript. This study is 
InSight Contribution Number 216.

Figure 13. Same as Figure†4 for the inversion of data from station SUW.
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A  planet’s  crust  bears  witness  to  the  history  of  planetary
formation  and  evolution,  but  for  Mars,  no  absolute
measurement  of  crustal  thickness  was  available.  Here,  we
determine  the  structure  of  the  crust  beneath  the  InSight
landing site on Mars using both marsquake recordings and the
ambient wave!eld. Analyzing seismic phases that are re#ected
and  converted  at  subsurface  interfaces,  we  !nd  that  the
observations are consistent with models with at least two, and
possibly  three  interfaces.  If  the  second  interface  is  the
boundary of the crust, the thickness is 20±5 km, while if the
third  interface  is  the  boundary,  the  thickness  is  39±8  km.
Global maps of gravity and topography allow extrapolation of
this point measurement to the whole planet, showing that the
average thickness of the Martian crust lies between 24 and 72
km. Independent bulk composition and geodynamic constraints
show that the thicker model is consistent with the abundances
of  crustal  heat-producing elements observed for  the shallow
surface,  whereas  the  thinner  model  requires  greater
concentration at depth. 

One Sentence Summary:
Based on multiple approaches, direct seismic measurements constrain global crustal thickness, 
geochemistry and geodynamic processes.

Planetary crusts form as a result of mantle differentiation and subsequent magmatic processes, including 
partial melting of mantle reservoirs that may continue to the present day (1). For Mars, the cratering 
record shows that much of its crust formed early in the planet’s history and was accompanied by 
substantial volcanism (2,3). During both the initial crystallization of a putative magma ocean as well as 
later-stage partial melting, incompatible components, including heat-producing elements (HPE) and 
volatiles, concentrated in the melt and were largely sequestered into the crust. The thickness of the crust 
of Mars thus provides fundamental constraints on how the planet differentiated, how incompatible 
elements were partitioned among the major silicate reservoirs, and how the planet evolved thermally and 
magmatically over geologic time (4-6).

Previous estimates of the crustal thickness of Mars and its spatial variations were made by modeling the
relationship between gravity and topography. By assuming Airy isostasy and using a restrictive range of
crustal densities of 2700-3100 kg m-3, the average crustal thickness of the planet was reported to be 57±24
km (7). More recent analyses, however, have used elemental abundances of the surface  (8)  along with
major element chemistry of Martian meteorites to argue that the crust could be considerably denser, with
values close to ~3300 kg m-3. If these higher densities were representative of the underlying crust, the
gravity data would allow average crustal thicknesses up to 110 km (9). In contrast, bulk crustal densities
lower than previously assumed (~2600 kg m-3) have been inferred from gravity analyses and would allow
a  thinner  average  crustal  thickness  (10).  Low densities  were  confirmed  locally  for  the  near-surface
sediments in Gale crater  (11) as well as the pyroclastic deposit of the Medusa Fossae Formation  (12).
Low bulk crustal densities could result from either substantial porosity or the presence of buried silica-
and feldspar-rich rocks  (13). Silica-rich magmatic rocks are potentially consistent with ancient evolved
lithologies identified in Martian meteorite breccias (14).
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We used data from the Seismic Experiment for Interior Structure (SEIS) on NASA’s InSight mission (15)

to provide an absolute measurement of Mars’ crustal thickness and layering. Our assessment of the crustal
structure at the landing site is based on a combination of methods using both converted and reflected
seismic phases, in order to resolve trade-offs between the depth of a layer and its seismic velocity (16).
By calculating receiver functions (17,18), we extracted P-to-S conversions from the P-wave coda of three
seismic  events  with  the  clearest  P-wave  onsets  and  polarizations.  In addition,  we  applied  seismic
interferometric techniques by calculating autocorrelations of both ambient noise and event coda using the
vertical component. Under the assumption of a diffuse wavefield, as expected in the case of noise from
homogeneously distributed,  uncorrelated sources  as well as in the coda of high-frequency events,  the
correlations  can  be  interpreted  as  zero-offset  vertical  reflection  responses  (19).  By  focusing  on  the
reflected  wavefield,  the  autocorrelations  provide  independent  and  complementary  information  to  the
receiver function conversion-based methods that make use of the transmitted wavefield (20).

In a previous study (18), we already considered P-to-S receiver functions for two of the same events, but
only inverted for the properties of the interface at the base of the shallowest layer (interpreted there as a
transition from fractured to unfractured basalt within the crust), causing the first converted arrival at 2.4 s.
Including an additional event and applying extensive re-analysis to the data  (16),  the P-to-S receiver
functions for 9 different processing methods (16) show three consistent positive arrivals within the first 8
s, but no clear and consistent negative arrivals or later phases (Fig. 1A). As all three events are located at
epicentral distances between 25° and 59° (21,22), no strong move-out of either direct arrivals or multiple
reflections is expected, which impedes the unambiguous identification of multiples. The third positive
arrival at 7.2-7.5 s could be either simply a PpPs multiple of the first arrival at 2.4 s (ray path 3 in Fig.
2B), or contain additional energy from a direct conversion from a third, deeper discontinuity (ray path 3
in Fig. 2D). We applied two inversion approaches to the P-to-S receiver functions  (16), and both can
match the three clear peaks with either two (Fig. 2A-B) or three interfaces (Fig. 2C-D). In both inversion
approaches, our models showed robust and consistent depths of the two shallowest interfaces. The first
layer with a thickness of 6-11 km and an S-wave velocity between 1.2 and 2.1 km/s is consistent with the
previous  results  for  the  shallow crust  (18),  whereas  a  second interface  is  found at  15-25 km depth
independent of the model parameterization. The third interface, the existence of which is supported but
not  absolutely  required  by  the  data,  showed greater  variability  in  depth  between different  inversion
choices and generally required a smaller velocity contrast at the base of this layer than for the shallower
second interface (Figs. S18, S19). Based on the ensemble of models from the two inversion approaches,
our results are consistent with either a local crustal thickness at the InSight landing site of 15-25 km,
when the base of layer 2 is the Moho (thin crust models), or 27-47 km, when the base of layer 3 is the
Moho (thick crust models; Figs. 2, S18, S19). S-to-P receiver functions can also be calculated for 2 events
(S0173a and S0235b; Figs. S4, S6, S7) and both show a signal consistent with conversion at the first
interface, while S0235b also shows possible arrivals consistent with deeper conversions  (16).  Further
support for the P-to-S receiver function-derived models is provided by waveform fits in inversions for
source mechanisms (16), where a strong interface around 24 km depth is required to match S-precursors. 

Vertical component autocorrelations based on different data sets and processing algorithms (16,23) show
consistent energy maxima in the 5 to 6 s, 10 to 11 s, and 20 to 21.5 s time ranges (Fig. 3). Comparison
with predicted  arrival  times from representative models  produced by the  receiver  function  inversion
shows that these energy maxima can be explained by P-wave reflections in those models interacting with
the first two interfaces, without any clear observations requiring the third interface. Previously published
autocorrelations  (24)  contain an arrival near 10 s that is consistent with our results, and which can be
explained as a P-wave reflection from the bottom of the second layer at around 22 km depth. A second
arrival reported by (24) near 20 s, that is also present in many of the autocorrelation functions calculated
here, is consistent with a multiple reflection from that layer (Fig. 3). These arrivals were interpreted by
Deng and Levander (24) as P and S reflections, respectively, from a crust-mantle discontinuity at a depth
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of 35 km. However, we do not expect a strong S reflection in a vertical autocorrelation as vertically
propagating S waves are horizontally polarized. Interpreting the second arrival as a multiple P reflection
instead is consistent with our receiver function-derived results and more likely to be observed in a vertical
component  autocorrelation.  The  previously  published  crustal  thickness  estimate  of  35  km based  on
autocorrelations  (24) is  consistent  with the possible range of the thick crust  models,  but  the specific
arrivals identified in that study are more consistent with a reflection and multiple from the shallower
second interface around 20 km depth.

We inverted for the thickness of the crust at global scale using the seismically-estimated thickness at the
InSight landing site and observed gravity field as  constraints  (16). Our models consider the gravity of
hydrostatic relief along density interfaces beneath the lithosphere, surface relief, variations in thickness of
a constant  density crust,  and the low-density polar  cap  deposits  (25).  We employed several  different
interior pre-landing models (26) that specify the density profile of the mantle and core, and for each, we
constructed crustal thickness models for all permissible crustal densities. For a given seismic thickness,
the mean thickness of the crust depends almost exclusively on the density contrast across the crust-mantle
interface (Fig. S22). To ensure that the thickness of the crust is positive within the major impact basins,
each reference model has a maximum permissible crustal density. If the thin crust seismic model is used
as a constraint,  the global  mean crustal  thickness is  predicted to lie between 24 and 38 km and the
maximum permissible density of the crust is 2850 kg m-3 (Figs. 4, S22, S23). For the thick crust seismic
model, the average crustal thickness lies between 39 and 72 km and the maximum permissible crustal
density is 3100 kg m-3 (Figs. 4, S22, S23). For both seismic constraints, the crustal density is substantially
less than would be expected based on the composition of surface materials (9), which is close to 3300 kg
m-3. The lower bulk densities are signatures of highly altered layers and can be accounted for by the
presence of more than 5% porosity in the crust on average, the presence of fluids or low-density cements
filling fractures and pore space, the existence of abundant petrologically evolved felsic rocks beneath the
surface layer, or a combination thereof.

The seismic observations argue for a relatively thin crust, or at least thinner than some earlier predictions
(9), providing constraints on crustal heat production and the degree of planetary silicate differentiation
(Fig. 4). As the present-day crustal thickness is the outcome of the planet’s differentiation history (27,28),
geodynamic and geologic modeling can place constraints on the composition of the crust  and of the
mantle,  and on the cooling rate of the  planet  (16).  Our  results indicate that average crustal thickness
models that are consistent with the thick crust seismic model are compatible with currently accepted bulk
(29,30) and  crustal  (8,31) heat  producing element contents, and the occurrence of present-day melting
only in an ascending plume below the thickened crust of the Tharsis province (Fig. S27). Such a scenario
implies a crust that is about 13 times more enriched in heat producing elements than the primitive mantle
(Fig. S24), consistent with 55-70% of the Martian heat producing elements being sequestered into the
crust. In contrast, the thin crust seismic model requires a crust that is about 21 times more enriched than a
relatively cold  primitive mantle  (Fig.  S25).  This  is  more  than two times  larger  than  estimates  from
gamma-ray spectroscopy data which constrains the surface layer of the crust (Table S6) and would point
towards  an  enrichment  in  heat-producing  elements  beneath  the  surface  layer  (16).  Furthermore,  this
would  call  for  an efficient  process  of  incompatible  element  extraction from the mantle,  possibly  by
upward  segregation  during  the  solidification  of  a  magma  ocean,  or  by  a  secondary  differentiation
mechanism, as for the continental crust of Earth. In both crustal models, assuming a Wänke and Dreibus
(29) bulk composition, the present-day heat flux is predicted to lie between 20 and 25 mW m-2 (Fig. 4).
The depth to the crust-mantle boundary, as well as layering in the crust can further constrain crustal
magnetization amplitudes, depending on whether the magnetization is carried in upper or lower crustal
layers, or both (16). We can also investigate whether crustal thickness and density models are consistent
with moment-of-inertia measurements and constraints on the properties of Mars core from the k2 tidal
Love number (16). Generally, these constraints are easier to match for most mantle composition models
with the thick crust seismic models, although some models also allow for the thin crust model. Overall,
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when considering geodynamic, geochemical, and geodetic constraints, the thin crust models place tighter
constraints on the density and enrichment of heat producing elements within the crust, as well as on the
mantle composition, than the thick crust models, but neither of the two can be excluded.
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Fig. 1. Measured and modeled converted phases that constrain the crustal structure at the InSight landing 
site. (A) P-to-S receiver functions for the three events considered, and the summed trace. Different traces 
for each event correspond to different processing methods as described in the Supplementary Materials. 
Gray shading highlights the three clear positive phases within the first 8 s. Numbered labels correspond to
predicted ray paths shown in Fig. 2B,D. The two datasets used for model inversions shown in Fig. 2 are 
highlighted in cyan. (B) Comparison between the low-frequency representative receiver function sum 
trace and synthetic summed P-to-S receiver functions for the 2- and 3-layer models. Data is shown in 
black on top, with the time window used in the inversion drawn solid. Solid and dashed red lines show the
synthetics computed by the range of models produced by inversion method A (16), while solid and 
dashed blue lines show the mean receiver functions with standard deviations based on the 5000 best 
fitting receiver functions derived from inversion method B (16). Gray shaded regions are the same as in 
(A). (C) Same as panel (B), but for the high-frequency receiver functions.
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Fig. 2. Synopsis of the crustal structure of Mars at the InSight landing site from receiver function 
analyses. (A) Inversion results for all three events using inversion method A (in blue lines) and method B 
(in brown) using a two-layer parameterization. (B) Cartoon showing the ray paths of the main direct and 
converted phases present in the data. Blue lines show P phase paths, while the red lines show conversions 
to S phases at the interfaces below the lander. Direct conversions and one P multiple are shown and 
numbered labels correspond to arrivals identified in Fig. 1A. (C-D) Same as (A-B), except for assuming a
three-layer model and excluding the multiple arrival.
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Fig. 3. Autocorrelation functions for different data sets, components, and processing methods. (A) 
Overlaid traces are from the three analysis methods discussed in the supplementary material. The dashed 
bar at 9.5 s corresponds to a change in normalization in order to see smaller amplitude arrivals later in the 
trace. Green bars highlight areas where all methods are nearly in-phase and show potential arrivals, 
whereas purple bars highlight arrivals indicated from an independent study (24). (B) Envelopes of the 
ACFs displayed in (A). (C) Envelopes of synthetic zero-offset Green’s functions for a representative 
model from the family of two-layer models in Fig. 2A for method A in blue and method B in red. (D) 
Same as (C), but for the three-layer models from Fig. 2C. (E) Histograms of predicted arrivals from the 
family of two-layer models as shown in Fig. 2A. The first subscript of the arrival in the legend refers to 
the interface of reflection, and the second subscript (if present) represents a second or third bounce 
between the free surface and that interface. (F) Same as (E), but for the three-layer models in Fig. 2C.
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Fig. 4. Schematic interpretations of the geochemical and geodynamical implications for the thin and thick
crust models (A and B, respectively). In order to match geodynamic constraints, an enrichment of heat 
producing elements, shown in color, and lower density than observed from the surface are required in the 
thin crust model, whereas the thick crust model is consistent with surface observations.
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Chapter 4

Receiver Function analysis of the
martian crust

This chapter was published in Geophysical Research Letters, Volume 50, Issue 3, in January
2023 under the title “Joint inversion of receiver functions and in apparent incidence angles
to determine the crustal structure of Mars” by Joshi et al. Conceptualization, data analysis,
creation of figures and writing of the draft were carried out by me under the supervision
of Dr. B. Knapmeyer-Endrun, Prof. Dr. Heiner Igel and Prof. Dr. Ulrich Christensen.

The supporting information for this chapter can be found in Appendix C.



1. Introduction
The InSight mission landed in the Elysium Planitia plain of Mars on 26 November 2018 (Banerdt et al., 2020) 
and deployed a three component very broadband seismometer (SEIS; Lognonné et al., 2019, 2020) on the surface. 
Along with measuring the seismicity and the present thermal state of its interior, a primary goal of the mission 
is to constrain the interior structure of Mars. In comparison with the Earth, Mars has a low seismicity rate with 
quakes of smaller magnitude (2–5 Mw) (Giardini et al., 2020). Receiver function (RF) analysis is a robust single 
station technique that can be used in this case to constrain the crustal structure. Primary body waves (P and 
S) give rise to converted secondary phases (Ps and Sp) when they impinge upon a seismic discontinuity from
beneath. RFs exploit these converted phases to gain information about the discontinuities in the crust and upper
mantle. They have previously been used to investigate the thickness of the lunar crust using seismic data from
the Apollo missions (Gagnepain-Beyneix et al., 2006; Lognonné et al., 2003; Vinnik et al., 2001). Using the data
from the InSight mission, Lognonné et al.  (2020) computed RFs from two marsquakes and showed evidence
of subsurface layering with low seismic velocities in the first upper 8–11  km. Recently, Knapmeyer-Endrun
et al. (2021) used RFs from three marsquakes and showed the observations to be consistent with either a two-layer 
model with the Moho at 20 ± 5 km or a three-layer model with the Moho at 39 ± 8 km depth below the lander.
Although the thicker model is more compatible with geodynamical constraints, this ambiguity could not be
resolved from the data due to a lack of phase move-out information and excessive noise in the later part (>10 s)
of the waveforms which inhibited the identification of multiple arrivals. Compaire et al. (2021) and Schimmel
et al. (2021) analyzed ambient field autocorrelations and identified reflection signals consistent with the first two
interfaces. Li et al. (2022a) confirmed the first interface at ∼8 km depth and the anisotropic nature of the layer

Abstract Recent estimates of the crustal thickness of Mars show a bimodal result of either ∼20 or ∼40 km
beneath the InSight lander. We propose an approach based on random matrix theory applied to receiver 
functions (RFs) to further constrain the subsurface structure. Assuming a spiked covariance model for our data, 
we first use the phase transition properties of the singular value spectrum of random matrices to detect coherent 
arrivals in the waveforms. Examples from terrestrial data show how the method works in different scenarios. 
We identify three previously undetected converted arrivals in the InSight data, including the first multiple from 
a deeper third interface. We then use this information to jointly invert RFs with the absolute S-wave velocity 
information in the polarization of body waves. Results show a crustal thickness of 43 ± 5 km beneath the lander 
with two mid-crustal interfaces at depths of 8 ± 1 and 21 ± 3 km.

Plain Language Summary Recent analysis of seismic data from InSight shows that the crustal
thickness beneath the InSight lander can be either 20  or 40 km. To resolve this ambiguity, we apply results 
from random matrix theory to receiver function (RF) analysis. The distribution of singular values of a random 
matrix shows well-behaved deterministic properties that can be used to separate them from those of an 
underlying coherent signal if present. We use examples from terrestrial data to show how the method works. 
When applied to RFs computed from InSight seismic data, we identify three new energy arrivals, including one 
that supports the existence of a deeper third layer. Using this information, we simultaneously inverted the RF 
data along with the measured incidence angle of body waves. Results show a crustal thickness of 43 ± 5 km 
beneath the lander with two mid-crustal interfaces at depths of 8 ± 1 and 21 ± 3 km.
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above based on SH-wave reflections. Durán et al. (2022) and Kim et al. (2021) later used updated RF data sets 
with more events to provide additional constraints and connoted a preference for the three-layer crustal model. 
Drilleau et al. (2022) and Khan et al. (2021) arrived at similar results using body wave travel-times. In this paper, 
we build upon the previous work of Knapmeyer-Endrun et al. (2021) to infer further constraints on the crustal 
structure of Mars using new techniques and additional data from the InSight mission.
We first focus on the problem of detection of multiple phases in our selected RF data set. For this, we propose 
a method that utilizes recent results from the random matrix theory to extract coherent signals in the RF wave-
forms. Assuming the observed signal to be a superposition of random noise and an underlying low-rank signal, 
the eigenvalues of the data covariance matrix follow a well behaved and deterministic limiting spectral distri-
bution dictated by the generalized Marchencko-Pastur law. This information can be effectively used to decouple 
and identify coherent signal eigenvalues reflecting primary subsurface features from a bulk spectrum formed by 
incoherent scattering, random noise, and small-scale heterogeneity with distinct eigenvector rotation properties. 
Once identified, the secondary phase arrivals together with the primary conversions from crustal interfaces can 
be used to invert the structure. We then address the problem of non-uniqueness of RF inversions. Being primar-
ily sensitive to shear velocity contrasts of interfaces and relative travel-time of converted waves, inversions of 
RF data alone can be affected by depth velocity trade-off (Ammon, 1991). They are therefore usually inverted 
jointly with other independent data sets that provide additional constraints on absolute shear wave velocities 
like surface-wave dispersion (e.g., Bodin et al., 2012; Du & Foulger, 1999; Julia et al., 2000). Svenningsen and 
Jacobsen (2007) showed that P wave polarization can also be used to constrain the S wave velocity structure of the 
subsurface using a simple relation between the observed apparent incidence angle and half-space S wave velocity 
(Wiechert, 1907). Following this, we previously showed how a joint inversion of apparent velocity curves and 
RF data can lead to a well constrained velocity structure for limited data sets comprising only a few events (Joshi 
et al., 2021). We adopt a similar methodology here to jointly invert an RF data set with a mean apparent velocity 
curve using a transdimensional approach.

2. Data and Method
2.1. RF Processing
InSight has identified 1,244 marsquakes (InSight Marsquake Service, 2022) since its operations started in 2018. 
Each quake is assigned a type and quality depending on its energy content and uncertainty in location estimate 
(Giardini et al., 2020). Only a few of these marsquakes generate waves that propagate through the mantle like 
teleseismic earthquakes, most of which do not have a precise location. Our database for Mars thus consists of 8 
LF and BB seismic events (InSight Mars SEIS Data Service, 2019) with high SNR and event quality A-B (Clinton 
et al., 2021). Most of these events have similar distances and back azimuths as they all originate in the Cerberus 
Fosse region which is a young tectonic structure located to the east of the lander. S0183a is located farther away 
but we nevertheless use it as its inclusion does not have a significant effect on the results. For the terrestrial exam-
ple, we use data from seismic station VSU in Vasula, Estonia. We select events with a similar back azimuth and 
distance range to mimic the InSight data. Details of the events used in this study are provided in the Supporting 
Information (Tables S1, S3, and S4 in Supporting Information S1).
To calculate RFs, we apply a time-domain Wiener filter for deconvolution as described by Hannemann 
et al. (2017). We first remove the transfer functions from the individual components of the data, rotate to ZNE 
coordinates as VBB uses the U, V, and W component system, and filter the seismograms between the corner 
frequencies (Table S1 in Supporting Information S1) using a zero-phase Butterworth filter. Subsequently, the 
ZNE coordinate system is rotated into ZRT to obtain radial and transverse components using the back azimuth 
estimates provided by the Marsquake Service (Clinton et al., 2018). For S0784, a back azimuth of 100° was 
determined by comparing RFs across different azimuths. A Wiener filter is determined such that it transforms 
the P wave signal on the vertical component into a band-limited spike. All the components of the data are then 
folded with this filter to obtain the RFs. The terrestrial data was processed similarly but was filtered between 
5 Hz and 50 s.

2.2. Phase Identification
In RF data, the travel-times of the converted phases relative to the direct P arrival depend on the epicentral 
distance. This is generally seen as phase move-out which is different for direct and multiple phases, and helps to 
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distinguish between these. For complex structures with dipping interfaces and seismic anisotropy, the travel-times 
and amplitudes of conversions also vary with back azimuth. Although events generated from similar epicen-
tral distance and back azimuths should theoretically have coherent conversions and multiples, interference with 
the scattered wavefield, small-scale heterogeneity, and random noise generates variations which can be seen as 
perturbations superimposed on the response of the primary sub-surface feature. The observed RF data matrix, 
Yn×m = Xn×m + σZn×m, can now be modeled as a fixed rank perturbation (rank[X] = r ≤ n) of the random noise 
matrix ! " ∼  (0, 1) . This is known as the spiked covariance model (Johnstone, 2001). To extract an approxima-
tion of the uncontaminated response "̂(# )$×% ≈ "$×% , we exploit the fact that the asymptotic eigenvalue distribu-
tion of the covariance of a random matrix follows the Marchenko-Pastur (MP) law (Marchenko & Pastur, 1967) 
which has a compact support Ω with bounds λ±.

Φ(!|", #) =

⎧
⎪
⎨
⎪
⎩

√
(!+ − !)(! − !−)

2$!#"
, !− ≤ ! ≤ !+

0, otherwise

, with !± = "2(1 ±
√
#)

2 (1)

Φ denotes the probability density of eigenvalues. λ−, λ+, σ, and γ denote the smallest eigenvalue, largest eigen-
value, noise level, and matrix aspect ratio n/m, respectively. λ± fluctuate on the small scale n −2/3 according to the 
Tracy-Widom distribution (Tracy & Widom, 1996). Qualitatively, the empirical distribution of the eigenvalues of 
Z forms a deformed quarter circle bulk with bulk edges given by λ± and bulk width 4√!"2 , and all eigenvalues 
lie strictly within these bounds. The eigenvalues show a sort of self-arranging behavior which, in presence of a 
non-random sample coherency (i.e., X ≠ 0), have a repulsion effect on the signal eigenvalue if present. Thus we see a 
phase transition phenomenon (Baik et al., 2005) where, above a certain signal threshold, the signal eigenvalues sepa-
rate away from the bulk “noise” eigenvalues and converge asymptotically to a different distribution. The same follows 
for the singular values which scale as the square root of the eigenvalues (Benaych-Georges & Nadakuditi, 2012). 
Setting ! "# =

∑$
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 , the BBP (Baik-Ben Arous-Péché) phase transition results in a 
mapping of singular values yi of the observed matrix Y to xi of the uncontaminated low rank signal X:
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Similarly, the left and right singular vectors pairs (ui, ai) and (vi, bi) are orthogonal within the bulk but become 
strongly correlated and show a non-zero dot product past the critical point:
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Using these transition equations, Gavish and Donoho  (2014) derive an analytical expression for the optimal 
rank-r approximation of the data matrix "̂(# ) by minimizing the asymptotic mean squared error of their misfit 
‖! − !̂(# )‖2

$
 over all singular values ! "# > $

√
1 + %  and 0 < γ ≤ 1. For the complete derivation, see Gavish and 

Donoho (2014). This results in an expression for a threshold value τ:

! = "⋆($) ⋅
√
%& (5)

where

!⋆ =

√

(2# + 1) +
8#

(# + 1) +
√
(#2 + 14# + 1)

 (6)
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This threshold marks the unique transition point of the signal singular values from those of random noise matrix 
Z for a given spectral distribution of Y with noise σ, taking into account the support fluctuations. The median of 
a standard MP distribution (σ = 1) is given by:

!"# =
1

2$% ∫

&

'−

√
('+ − %)(% − '−)(% (7)

The noise σ can be estimated by matching the median of the standard MP distribution to that of the bulk singular 
values. This results in a robust noise estimator that estimates noise by comparing the perturbed singular values 
with the MP distribution.

"̂(# ) ∶=
$%&'

√
()*+

 (8)

Using ! #̂($ ) for σ in Equation 5, we get

"̂⋆ = $(%) ⋅ &'() (9)

where

!(") ≈ 0.56"3 − 0.95"2 + 1.82" + 1.43 (10)

In the final step, the singular value matrix yi is replaced by ! #̂$ where the values below the threshold limit given by 
Equation 5 are padded and the approximate uncontaminated signal matrix "̂(# ) is reconstructed from the obser-
vations Y using "̂(# ) =

∑$

%=1
&',%(̂%)

*
',%

 . A sample algorithm is provided in the Supporting Information. In essence, 
the outlined procedure provides objective criteria to select the number of principal components that describe the 
variance of the structural signal by modeling noise as an additive independent and identically distributed (i.i.d.) 
random matrix.

2.3. Apparent Velocity Curves
In order to reduce non-uniqueness in the inversion of RFs, we use the absolute S wave velocity information 
contained within the P wave polarization as a complementary constraint. A consequence of Snell's law, the 
relation between the apparent P wave incidence angle 

(
"̄#
)
 and the subsurface S wave velocity was derived by 

Wiechert (1907) and is given by Equation 10. Here p denotes the ray parameter. This apparent P wave incidence 
angle can be calculated directly from the amplitudes of vertical and radial RFs at time t = 0, as described in 
Svenningsen and Jacobsen (2007).

!",#$$ = sin
(
0.5%$

)
∕$ (11)

tan !" =
##$ (% = 0)

&#$ (% = 0)
 (12)

Following a similar procedure as Knapmeyer-Endrun et al. (2018) and estimating ip as a function of low pass 
Butterworth filter period (T), we calculate a frequency-dependent S wave velocity curve vS(T) which emphasizes 
the absolute S wave velocity variation with depth. A mean RF is calculated from all the raw RF waveforms in the 
data set. This is then used to compute a ! "#,$%% curve which is jointly inverted together with the mean RF. We meas-
ure the dominant period of the spike in the mean ZRF and discard the values of filter periods smaller than that.

2.4. Inversion
A Markov-chain Monte Carlo (McMC) transdimensional Bayesian inversion method based on Bodin et al. (2012) 
(Dreiling & Tilmann, 2019) was used for the joint inversion of the mean RF and ! "#,$%% curve. In this formulation, 
the number of layers itself becomes an unknown and is also inverted for along with the other model parameters. 
The solution is an ensemble of models that are distributed according to a posterior probability density function 
given by Bayes's rule. Each layer is parameterized by depth, Vs and the vP/vS ratio. Density is not inverted but 
is calculated using Birch's law (Birch, 1961). We use flat model priors and their ranges for depth, Vs and vP/vS 
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ratio were set to 0–100 km, 1–5 km/s, and 1.4–2.2, respectively. A maximum of 20 layers was imposed and the 
range for the noise amplitude was set to 0.01–0.5 with correlation values of RF and ! "#,$%% data fixed to 0.96 and 
0, respectively. For calculating synthetic RFs, we use the forward calculation module implemented by Shibutani 
et al. (1996). The algorithm calculates the impulse response of a layer stack in the P-SV system. The resulting 
synthetic Z- and RRFs are convolved with the observed ZRF in order to account for the observed waveform 
complexity (Knapmeyer-Endrun et al., 2018). A ! "#,$%% profile is then calculated for the RFs using the procedure 
described in Section 2.3.

3. Results
To illustrate the method, we show its application on data from the terrestrial seismic station VSU. Figure 1a 
shows the raw data which consists of RFs computed from closely located events. In general, the data are noisy. 
Subplot (b) shows the distribution of singular values and its spectrum for the data. We see the general singular 
value repulsion behavior with a “bulk” noise region well separated away from the signal “spike.” This noise 
bulk follows the limiting spectral distribution given by the MP law with extreme eigenvalues and their vari-
ance given by Equations 1 and 8. The red line shows the optimal threshold for singular value truncation when 
noise is modeled as an independent and identically distributed (i.i.d.) random matrix. Using the singular value 
above this threshold, we reconstruct the data by projecting it onto the corresponding eigenvector. Subplot (c) 
shows the reconstructed RF data showing clear coherent energy arrivals at ∼1, 5, 12, 14, and 23 s. We interpret 
these as the Ps phases of an intracrustal discontinuity (IC), the Moho (Ps) and a low-velocity zone, and the 
Moho PpPs and PsPs + PpSs phases, respectively. The reference timing for the Moho Ps phase here is taken 
from Knapmeyer-Endrun et al. (2014). In general, the method is applicable equally well to data sets covering a 
wider range of distances and back azimuths. The number of singular values above the threshold then increases 

Figure 1. (a) Raw receiver functions (RFs) from terrestrial station VSU in epicentral distance range 65°–69° and back azimuth 10°–40° (b) distribution of the singular 
spectrum (top) and the singular values arranged in decreasing amplitude (below). The red dashed line denoted the noise threshold. (c) RFs reconstructed using singular 
values above the noise threshold. The marked phases represent the Ps phases of an intracrustal discontinuity (IC), the Moho (Ps) and a low-velocity zone (LVZ), and the 
Moho PpPs and PsPs + PpSs phases, respectively.
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to accommodate the data variance. Figure 2 shows the reconstruction of RFs from similar back azimuths but a 
wider epicentral distance range (55°–85°). Here, the threshold increases to three to accommodate the move-out of 
various phases. Synthetic examples are provided in the Supporting Information (Figures S1 and S2 in Supporting 
Information S1).

Figure 3 shows the result of applying the phase identification methodology to our selected data from the InSight 
mission. Apart from the three primary phases at 2.4, 4.8, and 7.2 s previously identified in Knapmeyer-Endrun 
et al. (2021), the raw RF data (subplot (a)) does not seem to contain any consistent phases after the initial 8 s. 
From subplot (b), we see that the first principal component is sufficient to identify the main phase arrivals within 
the first 30 s of the RF waveforms. This is expected as all the events considered here have similar distances and 
back azimuths. The reconstructed RF waveforms are shown in subplot (c). In addition to the three primary phases, 
we report three new multiple phases at 15, 20, and 23 s. We interpret these as the P2pPs, P2pSs, and P3pPs phases, 
where the sub-scripted numeral in the phase name denotes the generating interface. Note that the P3pPs  phase 
holds significant importance as it corroborates the existence of the much speculated third inter-crustal layer below 
the InSight landing site. These arrival timings are used to define a misfit window for the RFs which are then 
jointly inverted with the mean ! "#,$%% profile. We initialized 72 chains of 1,000,000 iterations, each sampling the 
model space simultaneously and independently, with 500,000 iterations discarded as the burn-in phase. Outlier 
chains were removed, and the models were thinned to obtain a final ensemble of 100,000 models. The main 
results of the inversion are shown in Figure 4.

A three-layer model exhibits the highest probability density in the solution ensemble. Subplot (a) shows the 
posterior distribution of the vS profiles as a function of depth, along with the probability for each interface depth. 
We see two well-defined mid-crustal interfaces at depths of 8 ± 1 and 21 ± 3 km, along with the crust-mantle 
transition at 43 ± 5 km. The resulting crustal models agree well with the three-layer models presented in Durán 
et al. (2022) and Knapmeyer-Endrun et al. (2021). The modeled ! "#,$%% curves and the RFs follow the observed data 
closely and are shown in subplots (b) and (c), respectively. Due to the low SNR of the individual RF waveforms at 
longer periods, the ! "#,$%% curves are limited to periods <13 s. This helps provide tight constraints on the observed 

Figure 2. Same as Figure 1 but for epicentral distance range 55°–85° and back azimuth between 80° and 120°.
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vS value within the shallow part of the crust, but the uncertainty increases with depth where the vS values and their 
increases are primarily controlled by the RF amplitudes. The estimated mean vP/vS ratio for the three layers is 
1.82, 1.77, and 1.64, yielding an average value of ∼1.75 for the crust. A distinct negative arrival of unclear origin 
is seen at 11.5 s. Although we do not include this in our analysis to avoid over-interpretation, it could either be 
a Pp phase from the second interface or a low-velocity zone at a depth of ∼70–75 km. The P1pSs would arrive 
earlier, between 8 and 10 s, ruling out this possibility. When combined with the observed gravity field using 
results from Wieczorek et al. (2022), our crustal thickness estimates predict a global average crustal thickness of 
46–73 km, assuming a uniform density crust of 2,600 kgm −3 for Mars. If a higher crustal density is considered for 
the northern lowlands, the global average crustal thickness of Mars will lie in the range of 34–73 km.

4. Discussion
With just a handful of good quality, small magnitude, and closely located marsquakes, the analysis of the RF 
data from the Insight mission present us with many challenges. In this work, we attempt to use this close distance 
range to our advantage to uncover additional features in the data using concepts of random matrix theory and 
principal component analysis. For events from similar distances and back azimuths, considerably fewer principal 
components can reconstruct the main features present in the data. Additional components are needed as distance 
and back azimuth ranges increase. Using synthetics and real data, Zhang et al. (2019) demonstrated that just the 
first few principal components could effectively reconstruct all the data variance within events from varying back 
azimuths. Here, we used events with varying distances and similar back azimuths to establish an equivalent idea. 
A few points are, however, worth noting. Occasionally, data reconstruction with a few principal components can 
lead to an erroneous broadening of phases. Though it does not affect the detection of phases, it could sometimes 
lead to an unwanted merge of very close arrivals. We also find that the singular spectrum, and hence the result-
ing threshold, can show slight variations based on the data set's quality. For highly irregular RF waveforms, this 
could severely bias the threshold estimate to lower values. In this case, utilizing higher principal components for 
data reconstruction will likely result in individual waveform variations instead of emerging features like phase 

Figure 3. Same as Figure 1 but for Mars. The shaded regions show the denoted arrivals.
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move-out and back azimuth variations. The compact support of the random singular values can sometimes be 
disconnected, and therefore, choosing the threshold based only visually on the histograms can lead to errors. On 
the other hand, histogram bins might not always clearly reflect the transition gap from random to signal singular 
values. A full computation of the threshold is therefore required. The number of events is also an essential factor. 
As the size of the data set (m, n) increases, the fluctuations of the Tracy-Widom distribution decrease. Thus, the 
larger the data set, the higher the stability of the threshold. For a small data set, the assumption of the spiked 
covariance model can break down. Finally, the noise in RFs is not entirely random and generally has a finite 
covariance. A recent study by Donoho et al. (2020) generalizes the spiked covariance model to include correlated 
noise. Extending this analysis to include the correlated case is essential and will be the subject of a later study.

Figure 4. (a) Posterior density of resulting Vs profiles and with histograms for interface depth. KE 3la represents the 2σ bounds of the three-layer ensemble from 
Knapmeyer-Endrun et al. (2021). (b) Fit to the mean ! "#,$%% curve (c) Fit to the mean receiver function waveform. The red dashed lines denote the observed data and 
green dash-dotted lines represent the 2σ uncertainty.
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Various interpretations are available for the first two interfaces, ranging from a change in porosity to chemical 
composition. The low seismic velocity of the first layer has been attributed to a combination of high porosity 
(20%–30%) and low-density lithology of the region due to the presence of cements and aqueous alterations of 
minerals (Li et al., 2022b). With increasing depth, material compaction and viscous deformation of host rock 
can lead to the closure of pore spaces resulting in a transition zone between the porous and non-porous material 
(Gyalay et al., 2020). Fractured ejecta deposits from the Utopia basin, change in rock crystallinity, and the Borea-
lis impact melt could also explain these crustal layering (Wieczorek et al., 2022). Recent studies on surface wave 
dispersion show an almost constant S wave velocity of ∼3.2 km/s in the top 5–30 km depth range for the crustal 
structure away from the InSight landing site (Kim et al., 2022). These values likely represent the average  crus-
tal structure in the Northern Hemisphere, indicating that the topmost low-velocity layer beneath the lander is 
plau sibly a local feature.

5. Summary and Conclusion
The RF method has played an important role in the analysis of the Martian crustal structure using data from 
the InSight mission. In order to contribute to that effort, here we present a method to identify coherent phase 
arrivals in noisy RF waveforms by modeling data noise as samples from an independent and identically distrib-
uted random matrix and using this information to jointly invert the RFs with apparent velocity curves. With 
examples from terrestrial data, we first show how only a few singular values can help reconstruct coherent parts 
of the signals enabling the detection of phase arrivals in RF waveforms. The number of singular values needed 
for this depends on the range of the distance and back azimuths of the events in the data set, with often a single 
value being sufficient in the special case of closely located events. We then apply this method to a set of eight 
marsquakes detected by the InSight mission and evaluate the crustal structure below the landing site based on 
these data. Three new crustal phases were identified in the RF waveforms, which we interpret as P2pPs, P2pSs, 
and P3pPs phases. A subsequent joint inversion of the RFs with the mean ! "#,$%% curve shows that the crust of Mars 
below the InSight landing site is composed of three distinct layers with increasing velocity. A crustal thickness 
of ∼43 km is estimated.

In conclusion, the results presented here agree well with previous work from Knapmeyer-Endrun et al. (2021). 
The identified P3pPs phase suggests a strong preference for the three-layer model in their study. The inver-
sion results presented here have further constrained the subsurface velocities at the InSight landing site. Our 
preferred interpretation of the observed crustal layering beneath InSight considers this a result of a series of tran-
sitions from sediments or pyroclastic deposits that experienced aqueous alterations to less porous Utopia ejecta 
and finally to the pre-existing crustal materials from early differentiation of Borealis impact melt (Wieczorek 
et al., 2022). A thicker crust, like one obtained from such a three-layer model, is also more compatible with 
the amount of heat-producing elements within the Martian crust estimated by spectroscopy observations and 
geodynamical modeling (Knapmeyer-Endrun et  al.,  2021; Taylor,  2013). A much lower bulk crustal density 
and significant enrichment in crustal heat-producing elements would otherwise be needed for a thinner crust 
(Knapmeyer-Endrun et al., 2021). However, it is unlikely that this three-layered formation is indicative of the 
global Martian crustal structure (Kim et al., 2022) and can be plausibly just a feature of the local geology in the 
vicinity of the InSight landing site.

Data Availability Statement
Seismic data for station VSU are publicly available and can be obtained from EIDA (http://eida.gfz-pots-
dam.de/webdc3/) using the event information provided in the Supporting Information. The InSight seismic 
data presented here (http://dx.doi.org/10.18715/SEIS.INSIGHT.XB_2016) are publicly available through 
the Planetary Data System (PDS) Geosciences node of the Incorporated Research Institutions for Seismol-
ogy (IRIS) Data Management Center under network code XB (https://pds-geosciences.wustl.edu/missions/
insight/seis.htm), and through the data center of Institut de Physique du Globe, Paris (http://www.seis-insight.
eu).
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Chapter 5

Discussion and Outlook

With the first successful deployment of a broad-band seismometer on the surface of another
terrestrial planet, NASA’s InSight mission has enabled the in-situ investigation of the
Martian interior. As the ancient crust of Mars holds clues to its evolution and formation,
investigation of its thickness and structure have been one of the primary goals of the
mission. The RF method has played an important role in the analysis of the Martian
crustal structure using the InSight seismic data. This thesis presents some of the methods
that were developed and applied in order to contribute to this endeavour.

Chapter 2 outlines a single-station technique that can be applied to study the crustal
structure using sparse seismic data, as would be expected on a planet with highly un-
certain seismicity levels. It describes the general RF technique, the limitations imposed
by non-uniqueness on inversion results, and how these can be used to derive absolute S-
wave velocities of the subsurface using P-wave polarization as a constraint. Further, an
alternative method for calculating probability densities from the NA ensemble along with
determining the optimal model among several others using AIC is also presented. Appli-
cation to synthetic waveforms show promising results, in both single and multiple event
cases. As expected, the uncertainty of the model parameters is observed to decrease with
an increase in the size of the dataset.

Examples of application to terrestrial data from stations BFO and SUW show that
the joint inversion of RFs and vS,app curves is suitable for use in diverse geological settings
and Moho depths. As vS,app curves can be directly calculated from the RF data, reliance
on other observable data can be avoided. This becomes especially important in extra-
terrestrial setting where the seismic data might not contain certain observables like surface
waves. On Mars, the lack of surface wave data limited the information that could be
derived from their analysis. As absolute vS values are highly influenced by the vS,app curve
in the presented method, these need careful estimation. While the lack of measurements
at shorter periods can lead to high uncertainty in regolith layer thickness, missing values
at longer periods can increase uncertainty in the depths and velocities of deeper layers and
upper mantle. Moreover, fractures and stress can lead to material anisotropy which can
a↵ect the inversion results. In this work the e↵ects of anisotropy have been neglected. The
model selection using AIC works well if the least misfit model is a good representative of
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the entire ensemble. Strong deviations within the family can bias the preferred model.
Moreover, AIC can often chose a more complex model when the sample-size is small. In
this case, AICc is used instead, but the exact cut-o↵ for the transition can be blurred for
di↵erent data types. A more optimal approach to model selection is preferable.

Chapter 3 shows a first glance at the Martian seismic data from the InSight mission.
Three low-frequency marsquakes with clearest P-wave onsets and polarizations have been
analysed primarily using RF analysis. Three consistent phase arrivals at 2.4, 4.8 and 7.2
s are seen across all the events which make the data equally compatible with either a
two-layer or a three-layer model. The additional constraints from noise and coda auto-
correlations show energy maxima consistent with the first two interfaces, but show no
clear indication of the third interface. The lack of events from a wider range of distances
and the high noise levels in the later parts of the waveforms prevent identification of later
arrivals, making an unambiguous choice di�cult. Although spectroscopic observations of
heat-producing elements, geodynamical, and moment of inertia studies favour the three-
layer model, none could completely exclude the two layer model. This uncertainty also
increases the range of mean global crustal thickness values that are compatible with the
data.

Chapter 4 assumes the RF data to be a fixed-rank perturbation of random noise and
attempts to separate the coherent signals from this noise using the generalized Marchenko-
Pastur law. Once separated, the filtered waveforms are used to identify multiply-reflected
phase arrivals. For small distance ranges, only a few and often a single principal component
(PC) can su�ce. This is also the case for the data from the InSight mission. As most of
the events in our dataset are located in the general region of Cerberus Fossae, a single
PC has been utilized to identify phases. The basic assumption in this method is that the
noise in RF data is i.i.d. random. This, however, is not always the case. Correlations
can exist within the data noise. Therefore, extending the analysis to a more general case
of correlated noise could lead to better results. Another crucial assumption is that the
location estimates and their uncertainties are precise. Given a single station, this can be
di�cult, although MQS has verified the high precision of its location algorithms through
orbiter-imaged impacts. SVD is highly dependent on the data quality; hence di↵erences
may arise when used on data from di↵erent RF computation techniques. The number of
events is also an essential factor. As the size of the dataset increases, the fluctuations of the
Tracy-Widom distribution decrease. Thus, the larger the dataset, the higher the stability
of the threshold. When the PC below the threshold is within the fluctuation regime of the
largest noise eigenvalue, the assumption of the spiked covariance matrix can break down.

Finally, a transdimensional inversion method is adopted for a more robust model se-
lection procedure. The optimal number of layers required by the data is assessed by
calculating absolute model probabilities rather than AIC values to avoid data over-fitting
or under-fitting. However, the full waveform is not inverted for, and only time windows
containing the identified phases are used to form the misfit function. Although this avoids
fitting noise, it could result in models with lower complexity than the entire RF waveform
required. More minor discontinuities can be overlooked. A Gaussian correlation law is
assumed for the data noise in the inversion algorithm. Although this is close to reality for



83

RF waveforms, a full covariance matrix can lead to better results. More data is needed
to estimate such a covariance matrix reasonably, which can be di�cult when only sparse
data are available.

The peculiarities of the seismic data from the InSight mission also need careful analy-
sis. Various signals of aseismic origin contaminate the data at di↵erent frequency ranges.
Strong environmental injections also influence the recorded ground motion. The superpo-
sition of all these with the various seismic phases arriving at the station makes it di�cult
to identify them. More than 90% events fall in the HF category and cannot be used to
calculate RFs as these do not interact with the crust-mantle boundary like teleseismic
events.

The method presented in this thesis can nevertheless be improved using various strate-
gies. The RF forward computation used here does not allow for dipping interfaces which
could better model complex crusts. Including anisotropy analysis in the study can help
avoid picking the wrong phase arrivals. Another improvement would be to use full RF
waveforms and a data covariance matrix in the inversion process. This could improve the
resolution of the retrieved vS profiles.

Some uncertainty bounds could be attributed to the threshold value for PCA. The
fluctuations of the Tracy-Widom distribution could be calculated for the dataset size, which
hints at the stability of the threshold. With more surface wave data, the RFs could also
be jointly available with their group and phase velocity dispersion curves. This can help
provide more independent constraints on the absolute velocities, especially in the upper-
mantle region. Rayleigh wave ellipticity measurements could also be used in conjunction
with the RF waveforms for constraining velocities and discontinuities in the shallow crust.
However, more data are required for such analysis. The work presented here can also be
adapted and improved for planned future extra-terrestrial seismic missions like NASA’s
Dragonfly and Farside.
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Chapter 6

Conclusion

Before NASA’s InSight mission, constraints on Martian crust were primarily based on
geodetic, gravity and topography data, geochemical analysis of Martian meteorites, and
thermal evolution models. Their lack of sensitivity to absolute values resulted in high
uncertainty in measurements. With over three years of continuous seismic monitoring of
Mars, the InSight mission has provided valuable data on the planet’s interior structure.
The methods presented in this thesis have been applied to the InSight seismic data to eval-
uate the crustal thickness and layering below the landing site, along with the uncertainty
estimates. Lognonné et al. (2020) provide the first constraints on the crustal structure
using the methods developed in this thesis. Using RF and a vS,app profile computed from
a single marsquake (S0173a), they show the evidence of crustal layering on Mars with the
first low-velocity layer extending down to a depth of ⇠ 10 km.

Chapter 3 of this thesis further investigates this layered crustal structure using three
marsquakes and concludes the existence of two layers and possibly another third layer below
the landing site. Assuming a two-layer crust, the crust-mantle boundary is located at 20±5
km depth. In contrast, in the three-layer case, the crust-mantle boundary is located at a
depth of 39± 8 km with another inter-crustal interface at ⇠ 20 km. Both models show a
mid-crustal interface at ⇠ 10 km. This dubiety resulted from the interference of the directly
converted phase from the third interface with the reverberation from the uppermost layer.
Chapter 4 attempts to resolve this ambiguity using a random matrix theory approach. By
extracting random noise from the RF data, it was possible to identify the reverberation
from a deeper third layer. Inversion results suggest a strong preference for the three-layer
model with a crust-mantle boundary at 43 ± 4 km depth, consistent with other studies
using di↵erent approaches.

The interpretation of this layered crustal structure on Mars can be based on various
arguments ranging from compositional to porosity changes. One possible interpretation
from Wieczorek et al. (2022) suggests that the first layer could result from either heavily
fractured extrusive lava flows or thick pyroclastic deposits that might have undergone
aqueous alteration, which accounts for its low vS value. The second layer below this
could result from impact-ejecta sediments from the Utopia basin with much lower porosity
indicating an abrupt increase in vS. Finally, the last layer could represent the transition to
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the initial crust formed from the di↵erentiation of the material from the Borealis impact
melt. It should be noted that this three-layer stratigraphy is not representative of the
global Martian crust and is more plausibly a result of the local geology in the vicinity of
the InSight landing site. A recent surface wave dispersion analysis does not show such a
layered structure of the Martian crust. However, the last interface showing the transition
to the ancient crust could also be present in the northern lowlands.

The range of possible crustal densities estimated for these models, estimated to lie
between 2800-3100 kg/m3, is substantially less than that predicted by surface materials at
⇠ 3300 kg/m3 (Baratoux et al., 2014). This lower bulk density can be explained by the
presence of high porosity materials, presence of fluids, and fractures filled by low-density
cements or a combination of these. Using the three-layer crust to model the cooling and
di↵erentiation history suggests that the crust of Mars is ⇠ 13 times enriched in radioactive
heat-producing elements compared to the primitive mantle. This is greater than that
estimated by the surface measurements, indicating that most heat-producing elements are
sequestered into the crust. These results can further be utilized to investigate dynamical
mantle models for understanding the present and past Martian evolution, the origins of its
crustal dichotomy and the mysteries surrounding crustal magnetism.
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Introduction 

This document provides information on the search criteria 
needed to retrieve the terrestrial seismic data used in the 
manuscript along with the ray parameter used for RF 
calculation. The details of the source distances and models 
used to create the synthetic waveform have been tabulated 
additionally. 

Terrestrial data for seismic stations BFO and SUW are publicly 
available and can be  obtained from EIDA : http://www.orfeus-
eu.org/data/eida/

Synthetic data was created using Instaseis (https://instaseis.net/).
The interior models  used in the manuscript are publicly available
and can be obtained from : 
http://instaseis.ethz.ch/marssynthetics/ 

Station code Network code Latitude (°N) Longitude (°E)

BFO GR 48.330 8.30

SUW PL 54.0125 23.1808

Table S1.  Station information for seismic stations BFO and SUW

Event Time Ray parameter

3-SEP-2007 16:14:53 5.35

6-JUL-2008 09:08:21 5.31

6-JUN-2009 20:33:28 7.66

15-JAN-2009 17:49:39 5.32

24-NOV-2008 09:02:58 5.68

29-OCT-2009 17:44:31 7.78

Table S2.  Event information for station BFO

2



Event Time Ray parameter

8-FEB-2008 09:38:14 6.38

30-SEP-2009 10:16:09 5.17

7-OCT-2009      21:41:13 4.57

30-MAR-2010 01:02:53 6.26

10-SEP-2008 13:08:14 6.35

2-OCT-2007 18:00:06 6.01

Table S3.  Event information for station SUW

Model Distance used (°)

C30VH_AKSNL  70

C30VL_AKSNL  40

C80VL_AKSNL  90, 80, 70, 60, 50, 40

Table S4. Source distance and models used for creating synthetic waveforms

3
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Materials and Methods

S1.  Receiver functions  
The P-to-S receiver function (RF) method is based on the assumption that the P-component

of a teleseismic P-wave recording approximates the source and distant path effects in the three-
component seismogram. The P-component is obtained by removal of the instrument response,
and transfer of the recorded seismograms into the ray coordinate system. Then, deconvolution of
the P- from the SV-component of the P-wave and its coda results in the impulse response of the
subsurface  for  transmitted  S-waves,  the  so-called  receiver  function  (17).  On Earth,  this  is  a
standard method for determining and mapping crustal and upper mantle structure (33-35). The S-
to-P RF method is based on the same principle, but uses P-precursors to the S-wave. It has the
additional benefit that, while direct S-to-P conversions arrive before the S-onset, all  multiply
converted and reflected phases arrive after it.  S-to-P receiver functions have previously been
applied  to  extract  crustal  structure  from  the  Apollo  lunar  data  (36,37).  Fig.  S1  shows
seismograms of two events for which precursors to the S-wave onset can tentatively be identified
on the vertical component before any further processing. The timing of the initial precursor is
consistent with the phase observed in S-to-P receiver functions (see sections S1.1, S1.3, and
S1.4).

P-to-S RFs were calculated by seven groups using nine different algorithms and parameter
settings for the rotation and deconvolution steps. This allows assessing the influence of a specific
processing method on the resulting receiver function waveform. The different algorithms are
described briefly below and summarized in Tab. S1. In contrast to the previous analysis of two
events for shallow crustal layering  (18), RFs are calculated in the LQT ray coordinate system
here instead of the ZRT system. While this involves an additional rotation around the P-wave
incidence angle that needs to be determined from the data first, it has the advantage of better
separating P- and SV-energy on the L- and Q-component, respectively, and thus, by removing
energy from multiple P-wave reflections, providing a cleaner P-to-S RF. The P-wave recording
of event S0173a contained a prominent glitch on all three components, and a deglitching method
was first applied to remove this glitch (18,38). All P-to-S receiver functions are plotted overlaid
on each other in Fig. 1A, and on the same scale but offset for clarity in Fig. S2. While the general
shape of the different RFs and the timing of the prominent arrivals within the first 8 seconds is
generally consistent between different methods, the frequency content and the amplitude of the
arrivals varies, with higher frequencies contained in the RFs resulting from processing methods
A1, A2, B1, C2, D, E1 and E2 compared to B2, C1, F and G. Accordingly, we chose one set of
high-frequency and one set of low-frequency RFs as exemplary data sets representing the range
of  RFs  for  the  inversions  (section  S3),  to  investigate  both  the  effect  of  differences  in  RF
processing and in inversion method on the resulting models. S-to-P RFs were calculated by a
subset of three groups. The methods used are also detailed below and summarized in Tab. S1.

S1.1      Method A: (Vedran Lekic, Doyeon Kim)  
We  computed  P-to-S  and  S-to-P  RFs  of  two  Mars  events,  S0173a  and  S0235b  using

transdimensional  hierarchical  Bayesian  deconvolution  (THBD,  39).  Instead  of  a  single
deconvolved timeseries, our method yields an ensemble of RFs for each event, whose features
appear in proportion to their  likelihood.  We carried out one million iterations of the THBD,
discarding the first half as burn-in, and saving every 1000th sample to the ensemble. A window
between 8 to 9 seconds in duration, starting at the P- or S-arrival, was applied to remove later
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arriving phases and pre-event noise while minimizing abrupt waveform truncation (dashed line,
Fig. S3). We then estimated the up-going P and SV energy using a free surface transform matrix
(40), using published back azimuths of 91° and 74° for S0173a and S0235b (21), respectively,
and performing a  grid-search  on  values  of  VP,  VP/VS,  and  ray  parameter  that  minimize  the
correlation between the P and SV waveforms within 2 and 5 seconds of the P- and S arrival,
respectively.  To maximize  the signal-to-noise ratio  of the RFs,  we also estimated  two noise
parameters  that  characterize  the  decay and oscillation  rates  of  the  noise correlation  function
derived from pre-event data. All of the parameters for processing the RFs are shown in Fig. S4
(see Fig. 1A for the suite of RFs computed by different methods).

S1.2      Method B: (Benoit Tauzin)  
P-to-S RFs were computed for events S0173a, S0183a, S0235b and S0325a. Broadband

records  in  the  UVW  system  were  deconvolved  from  the  VBB  instrumental  response,
synchronized, and rotated to the vertical-north-east (ZNE) system using information from the
response file on May 23, 2019 (components azimuth and dip, poles and zeros). The information
from MQS about the arrival times of the P-wave was then used to find the teleseismic P-wave
coda on the records, and to normalize the traces with respect to the amplitude of the P-wave on
the Z component. The onset time of the P-wave was measured by band-pass filtering (4th order
Butterworth, forward and reverse) records within the 0.1-0.9 Hz frequency-band and picking the
onsets on the Z component. The records are further analyzed to find the azimuths of arrival and
polarizations  of  the P-waves in  the vertical  plane  through principal  component  analysis,  for
component rotation from ZNE to PSvSh. The aligned and normalized waveforms were trimmed
over a 5 s-long window after the onset of the P-wave. Covariance matrices were obtained (i)
from  the  N  and  E  components,  for  rotation  from  ZNE  to  vertical-radial-transverse  (ZRT)
directions,  and (ii)  from Z and R components  for  rotation  from ZRT to the PSvSh system.
Estimates for the best azimuth and polarization direction for the P-wave were obtained from the
eigenvector  direction  minimizing  the  energy  on  the  T  and  Sv  components.  The  RFs  were
obtained  from  two  methods,  water-level  deconvolution  (41)  and  iterative  time-domain
deconvolution (42). The source was trimmed within -10 to +25 s from the P-wave onset, and
tapered using a Tukey window. A low-pass Gaussian filter with parameter a = 3.0 rad/s was used
in both cases. See Fig. S5 for the final RFs.

S1.3      Method C: (Felix Bissig, Amir Khan)  
In order to compute P-to-S and S-to-P RFs for the events S0173a, S0183a, and S0235b, we

first detrended and tapered waveforms in the ZNE-system and subsequently filter them by means
of a Butterworth bandpass filter of 2nd order with corner periods at 2 and 10 sec or 1 and 8 sec,
respectively. The former is referred to as “low-frequency”, the latter as “high-frequency” RFs,
respectively.  Seismograms  were  rotated  to  the  ZRT-system  on  the  basis  of  back-azimuth
estimates provided by the MQS. Rotation to the LQT-system to further separate P- and SV-
waves was achieved via a principal-component analysis approach, minimizing the energy on the
R-/Z-component  ±30  sec  around  the  estimated  P-/S-wave  for  P-to-S  and  S-to-P  RFs,
respectively.  P-  and  S-wave  arrival  times  were  provided  by  MQS.  For  computing  RFs,  we
utilized the iterative time-domain deconvolution (42), which requires appropriate estimates of the
source- and response-signals. We therefore cut the L-/Q-components to [-20, +50 sec] around the
picked P-wave for P-to-S RFs and to [-150, +50 sec] and [-100, +30 sec] around the S-wave for
S-to-P  RFs,  respectively,  and tapered  them using  a  Hanning-window.  Different  source-  and
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response-windows were tested, but their influence on the final RF was found to be small. The so-
obtained RFs were filtered between periods of 2 sec and 10 sec or 1 and 8 sec for low- and high-
frequency RFs, respectively. See Fig. S6 for the final RFs.

S1.4      Method D: (Brigitte Knapmeyer-Endrun)  
Data of events S0173a, S0183a, and S0235b were response corrected, rotated to the ZNE

system and filtered by a Butterworth zero-phase bandpass of third order with corner periods at
0.1 and 0.8 Hz in the case of S0173a and S0235b and 0.3 and 0.8 Hz in the case of S0183a. Data
were rotated to the ZRT system using the back-azimuth estimates by MQS, i.e. 91°, 74° and 73°,
respectively. For further rotation to the LQT-system, the incidence angles were determined by
polarization  analysis  via  diagonalizing  the  coherence  matrix  of  the  P-wave onset.  RFs were
calculated by creating a time-domain Wiener  filter  that  transforms the P-wavetrain on the P
component into a band-limited spike (43,44). The three-component seismogram traces were then
folded with the spiking filter to obtain the RFs. Various window lengths for the P-wave train,
damping factors, and spike positions within the window were tested. The parameters actually
used are deconvolution window length of 40 s for S0173a, 28 s for S0183a and 33 s for S0235b,
with the spike position at the centroid of the signal (i.e., at 18.4 s, 11.5 s, and 14.4 s), and a
damping factor  of 0.1 for S0173a, 0.5 for S0235b and 1 for S0183a.  Resulting P-to-S RFs,
together with results for two additional, more noisy events, are shown in Fig. S7A. For these two
events, S0407a and S0325a, only a distance estimate, but no azimuth was available from MQS.
Thus,  for  determining  the  azimuths,  a  set  of  radial  RFs  were  calculated  after  rotating  the
horizontal components of the waveform in 10° steps and compared to the radial RFs for the other
three events,  with special  attention to the three arrivals within the first  8 s.  The comparison
pointed to a likely azimuth of 11010° for S0325a and 9010° for S0407a. The corresponding
RFs  still  tend to  have a lower  signal-to-noise  ratio  than  those  of  the  three  previous  events,
though,  and  stacking  all  five  events  only  leads  to  small  changes  in  the  average  waveform
compared to the stack of only the three best events.

S-to-P RFs were computed in a similar fashion to P-to-S RFs for events S0235b, S0173a
and S0325a. Results show a clear peak at 2.9 s, regardless of whether only data of S0235b and
S0173a or all three events are stacked, and hints of later arrivals that are however not consistent
between all three events (Fig. S7B). 

S1.5      Method   E: (Saikiran Tharimena)  
The  data  for  events  S0173a,  S0183a,  and  S0235b  were  corrected  for  the  instrument

response in the UVW system, and the resulting velocity seismograms were trimmed to 10 min
before and 15 min after the P-wave arrival time as reported by MQS. For the S0173a event,
deglitched data were also corrected for the instrument response. Data were rotated to the ZNE
system and then to the ZRT system using back-azimuths of 91°, 73°, and 74° respectively, as
reported by MQS. Furthermore, the waveforms were rotated to the LQT system, which separates
P- and SV- energy on the L- and Q- components respectively. The incidence angles for rotation
to  the  LQT system were  estimated  by  principal  component  analysis  where  P-wave  energy,
around the estimated P-wave arrival,  was minimized on the SV component.  A second order
Butterworth, zero-phase bandpass filter was applied with corners at 1 and 10s. The time axis of
the resulting waveforms was centered on the P-wave arrival.

P-to-S receiver  functions  were calculated  using the iterative  time-domain deconvolution
(ITD,  42)  and  extended-time  multi-taper  deconvolution  (EMTD,  45)  methods.  For  the  ITD
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method,  the waveform in a time window 30s before and after  the P-wave arrival  on the L-
component was chosen as source function and a Gaussian filter parameter of 5 rad/s was used.
For the EMTD method,  the source waveform was chosen on the L-component  by manually
selecting a window around the visible P-wave arrival. Deconvolution was then performed using a
50s  window,  a  time-bandwidth  product  of  3  that  translates  to  a  frequency  bandwidth  of
permissible spectral leakage of 0.2 Hz, and 4 tapers (46). For both methods, the source function
was deconvolved from the SV component. Different time windows for the source function were
tested and found to produce similar results.

S1.6      Method   F: (Matthieu Plasman)  
Data of events S0173a, S0183a and S0235b were detrended, response corrected and first

rotated  to  the  geographical system  (ZNE).  We  then  applied  a  Butterworth  band-pass  filter
between 0.1 and 0.8 Hz for S0235b and S0173a and between 0.3 and 0.8Hz for S0183a and a
symmetric taper using a Hanning-window. We next rotated data to the ZRT system using the
back-azimuth estimated by MQS, i.e. 91°, 74° and 73°, respectively. We then finally rotated to
the LQT system using the same incident angles computed in method D (18° for S0183a, 24.5°
for  S0235b  and  29.5°  for  S0173a).  RFs  were  computed  from  an  iterative  time-domain
deconvolution on a 95 s time window (15s before P and 80s after) with a Gaussian width of 2.5s
(42). The quality of the computed Q-RF is defined by how well it reproduces the initial Q signal
when  convolved  with  the  source  signal  on  the  L-component.  The  recovered  RFs  reproduce
73.3%, 76.7% and 76.9% of the Q-component, respectively, for S0173a, S0183a and S0235b. 

S1.7      Method G (  Paul   Davis):  
Receiver functions were generated from 20 sample-per-second UVW deglitched data (38)

taken 3 sec before the P  arrival and 30 sec after for events S0173a, S0235b, S0183a, S0105a,
S0325a, S0395a, S0421b. The data were corrected for the instrument response, filtered with a
causal, 4-pole, bandpass, Butterworth filter between 0.25 and 0.8 Hz, and rotated, as in Method F
to the LQT system using surface velocities of Vp=3.5 km/s and Vs=1.95 km/s. The receiver
function analysis used Chuck Ammon’s water level code, with water level 0.1 (41,47). The three
events with known azimuths and ray parameter values (S0173a, S023b, S0183a) were used to
construct a summed reference receiver function, Rref (Fig. S8).  We then tested all 28 deglitched
event  RFs  for  cross-correlation  with  Rref,  finding the  maximum correlation  by  varying  their
unknown azimuths between 0 and 360 degrees in 10-degree steps, and setting the ray parameter
inversely proportional to distance (determined by P-S times).  Events with a cross-correlation
greater  than 0.5 were retained and are shown in Fig.  S9.  The 4 extra  events,  so found, are
S0105a, S0325a, S0395a, and S0421b.

S2.  Autocorrelations  
S2.1      Method A (Nicolas Compaire, Ludovic Margerin, Raphael F. Garcia,)  

To compute the autocorrelation functions (ACF) of the ambient noise recorded by SEIS, we
based our approach on the workflow of Bensen et al. (48), but with two important differences.
First, we compute the ACF by LMST (Local Mean Solar Time) hour, and not by day as it is the
case in Bensen et al.  (47). This allows us to check the stability of the reconstructed Green’s
functions over the duration of a SOL (martian day). Second, we apply a modified version of the
pre-processing of De Plaen et al. (49) which has been tested in single-station configurations. The
only difference lies in the special attention given to the effect of the spectral normalization on the
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waveforms of the ACF. Similar to De Plaen et al. (49) and Ito and Shiomi (50), we do not apply
any spectral whitening. This choice can result  in a reconstruction of the Green’s function of
lesser  quality  because  the  required  equipartition  of  energy  is  not  ensured.  Nevertheless,  it
prevents us from adding pre-processing artefacts to the ACF waveforms. Moreover, it has been
shown by various studies (51,52) that the equipartition of energy is only required to perfectly
retrieve  the  Green’s  function.  The  various  phase  arrivals  can  be  reconstructed  without  this
prerequisite, which is the primary goal of this study.

Each trace of one LMST hour duration is band-passed and cut into windows of 60 seconds
duration  with  70% overlap.  One-bit  normalization  is  applied  to  these  windows  in  order  to
remove the effect of transient signals (48). The normalized autocorrelations were computed in
the spectral domain and then linearly stacked in time domain to improve the Signal-to-Noise
Ratio (SNR). The resulting stacked function is the ACF computed for a particular LMST hour
and a particular SOL.

In order to compute the ACF on the scattered part  of the seismic event recordings (e.g.
52,53),  we applied the same processing.  When a clear  S-phase is  visible,  we used it  as  the
beginning of the coda time window of interest, otherwise the whole duration of the seismic event
is  used.  Obviously,  no  subdivision  in  LMST  hours  was  applied  in  that  case.  The  event
nomenclature refers to the catalogue of the MarsQuake Service (MQS) (54,23).

After the computation of the ACFs, we performed a SNR analysis over the correlation lag-
time using the definition given in Clarke el al. (55). This SNR is defined as the ratio of the
envelope  of  the  stack  to  the  variance  over  the  realizations  (the  various  SOLs  for  the  ACF
computed on ambient noise and the various events for the ACF computed on the events). This
SNR is a good indicator of the reliability of the phase arrivals. 

Our analysis validates energy arrivals in the ACF when the amplitude of the waveforms are
large,  the  SNR is  high  and  the  same energy  arrival  is  retrieved  for  different  types  of  data
(background noise and events). With such criteria in mind, Fig. S10A suggests that four arrivals
are visible in the various datasets (at 5.6 s, 10.6 s, 12.6 s and 21 s) on the vertical ACF. Fig.
S10B suggests several arrivals in the North ACF at 11.9 s, 14.4 s, 16.5 s and 22.4 s. Fig. S10C
suggests arrivals in the East ACF at 9.0 s, 12.4 s and 14.5 s. A conservative estimate of the error
bar of these arrival times is 1 s. Only the frequency range of 1-3 Hz, which is dominated by a
broad amplification around 2.4 Hz, is considered for the noise auto-correlations because only in
this frequency range, during nighttime, high SNR values are observed (23). The ACFs of the
2.4Hz events,  High Frequency  events  (HF)  and Very  High Frequency events  (VF)  are  also
computed between 1 Hz and 3 Hz because it is in this frequency band that these events have the
major part of their energy. 

S2.2      Method B (Martin Schimmel, Eleonore Stutzmann)  
In  the  following  analysis,  the  main  data  pre-processing  steps  are  correction  to  ground

velocity, data segmentation and selection, and frequency band-pass filtering. These are common
processing steps to prepare the data for the computation of autocorrelations. Often, these steps
are  expanded  by  amplitude  normalization,  such  as  by  one-bit  normalization  and/or  spectral
whitening, to reduce bias due to outlying signals. Here, we do not make use of any amplitude
normalization processing steps and focus our analysis on the vertical component VBB data at 20
samples-per-second (Sol 178-410).
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Our data segmentation and selection  (56) deviates from what is commonly used. In this
step,  we basically  determine the seismic  root-mean-square (RMS) amplitude  variability  with
time. The measured RMS variability is then used to build a mask to select data segments without
abrupt changes in the RMS amplitude. Data irregularities such as glitches and donks have an
elevated RMS variability and are therefore excluded from further processing. Here, we use this
data segmentation and selection step to build a smaller subsidiary dataset with a size of about
30% of the total data volume. The selected dataset contains only recordings with the lowest RMS
amplitude variability. This processing step is justified since InSight seismic data contains many
aseismic transient signals inherent to the difficult acquisition conditions (18,57).

Further pre-processing consists only in filtering the data to the desired frequency bands and
to attenuate the strongest lander modes and tick noise through three band rejection filters. The
autocorrelations  are computed  using the  Phase Cross-Correlation  (PCC;  58).  This  method is
based on analytic signal theory and finds the coherent signals through their instantaneous phase
coherence as a function of lag time. The approach is amplitude unbiased. PCC has proven to be
efficient  in  various  seismic  monitoring  and  imaging  studies,  including  ambient  noise
autocorrelation research (59-62; among others). It works in analogy to the classical correlation
and can also be employed in a computationally efficient manner to process large data volumes
(63). 

The  computed  autocorrelograms  are  then  stacked  both  linearly  and  employing  time-
frequency  phase  weighted  stacking  (tf-PWS;  64,65)  for  comparison.  tf-PWS  can  further
attenuate incoherent signals because it uses the instantaneous phase coherence. 

Fig.  S11  shows  an  autocorrelogram  section  for  three-sol  long,  non-overlapping  time
windows. Negative amplitudes are in blue. The considered frequency band is 1.2-8.9 Hz and the
three-sol binned autocorrelograms are stacked using tf-PWS. The figure shows three lag time
windows to improve the visibility of signals through amplitude normalization in each of the lag
time windows. The blue arrows mark signals which coincide with the expected P-to-P wave
reflections (Fig. 3 D,E) for the proposed discontinuities. Similarly, the green arrows point to P-
to-S or  S-to-P reflection  conversions  from the  same discontinuities.  Fig.  S11 presents  these
signals as stable features over the considered time span. Also note that the 6.14 s signal has a
higher frequency content than the other signals. Further, this figure reveals the presence of other
signals which have not yet been identified.

The total data stacks using the tf-PWS are shown with red lines in Fig. S12 for different
frequency bands. Black traces are tf-PWSs using 10% of the available PCC autocorrelations and
are shown to visualize amplitude variability. The frequency bands of the top three and lower-
most panel are 1.5-3.0 Hz, 2.4-4.8 Hz, 3.6-7.2 Hz, and 1.2-8.9 Hz. The fourth panel contains the
three total data tf-PWS stacks from the top three panels. The blue line in the lower-most panel
shows the linear stack of all PCCs for comparison. The 6.14 s signal becomes visible only at the
higher frequencies while the 10.46 s signal is coherent for the lower frequencies. The polarities
are  negative  as  expected  for  an  impedance  increase  (56).  Linear  and  tf-PWS  stacks  both
consistently show both signals. 
 
S2.3      Method C   (Doyeon Kim, Vedran Lekic, Nicholas Schmerr  )  

Similar to SEIS data from Mars where we only have seismic measurements from a single
station,  such  single  station  driven  constraints  produced  from  both  RF  and  autocorrelation
function on Earth have shown to be consistent (20). To verify our RFs and their structural signals
from the Martian subsurface, we use continuous seismic recordings of ambient noise (e.g., Fig.
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S13)  as  well  as  high-frequency  (HF)  events  on  Mars  (e.g.,  Fig.  S14A-B)  and  compute
autocorrelation functions (ACFs) to approximate the impulse response at InSight’s seismometer.
First, we take 6 months (between April and September, 2019) of deglitched continuous data (38)
recorded by the very broadband (VBB) sensor. The instrument response is removed from the
data to obtain velocity recordings and the three SEIS-VBB components are rotated to the ZNE
coordinate frame. An example of the amplitude measurements from ambient noise waveforms is
shown in Fig. S13. The ambient noise recording on Mars shows a clear contrast between the
time-frequency  character  of  daytime  and  nighttime  signals  (Fig.  S13;  18).  This  first  order
difference reflects the bimodal noise regime on Mars, with the current interpretation being that it
is associated with the atmospheric boundary layer activity related to the transition from nighttime
laminar flow to daytime turbulent flow (18). Data is segmented by a 30-min window and further
separated into two groups using a Gaussian mixture model. The two groups represent signals
from high vs. low amplitude noise regimes (e.g., day vs. night portions of the data).

Data from the two groups (Fig. S13D) are processed in the following manner. We apply a
bandpass filter  to  the waveforms between 0.05-3.5 Hz. To suppress  nonstationary  noise,  we
normalize  the  data  using  a  weighting  function  (48)  that  computes  running absolute  median
amplitudes with a 300 s sliding window. We further apply spectral whitening (with a whitening
width of 0.1 Hz) prior to autocorrelation in order to obtain stable autocorrelation functions in the
lower frequencies.  The power spectral  density (PSD) of the noise records shows a relatively
larger spectral amplitude below 1 Hz so an adaptive weighting function was used to address this
bias toward lower frequencies in the records (66). The autocorrelation is computed in the spectral
domain  for  each  30-min  data  segment  using  a  70%  overlap  between  successive  segments.
Phase-weighted stacking  is  then performed on the  autocorrelations,  after
which  they  are  bandpass  Kltered  between 1.5–3  Hz (e.g.,  Fig.  S14C).  To
minimize the eMect of 1 Hz instrument tick artifact and its overtones (e.g.,
Fig. S13C and S13E), a notching comb Klter is applied to the processing Now.
Source eMects in the ACFs are suppressed by applying a cosine taper at lag-
times <1.8 s. ACFs for the high-noise (daytime) and low-noise (nighttime)
regimes are shown in Fig. S14C, in blue and red, respectively.

In addition to ambient noise, we perform autocorrelations on P- coda signals from 48 HF
events  (Fig.  S14B lists  HF  events  used).  For  each  event,  we  used  a  standard  algorithm of
STA/LTA triggering on the corresponding Hilbert envelope averaged across components (Fig.
S14A) to pick the  P- and S-arrivals.  Then, the P-arrival times are reKned using an
implementation  of  MCCC (67),  and  used  to  precisely  align  the  vertical
component waveforms (Fig. S14B). Only the P-coda portion of the vertical
component  waveforms  (Fig.  S14A-B  yellow  vertical lines)  is  used  for
computing P-coda ACFs, and we maintain most of the steps from the ambient
noise processing described above. These include minimization of the 1 Hz
tick artifact, spectral whitening, post-Kltering 1.5–3 Hz, and cosine tapering.
The P-coda signal start time, relative to each P arrival, is taken to be the
average across events of the times when the component-average envelope
reaches its maximum value, prior to the arrival of the S wave.  The  P-coda
signals  used in  the  ACF  construction  have  a  duration  of  148.7s,  which
corresponds to the shortest P-coda length amongst the HF events (e.g., Fig.
S14A).  Comparison with predicted arrival times from representative models
produced by the RFs (e.g., Fig. 2) shows that many of these arrivals can be
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explained by P-wave reNections from interfaces within the crust (P1P,  P2P,
P3P and P2P2 in Fig. 3).

 

S3.  RF inversion  
S3.1      Method A (Felix Bissig, Amir Khan, Domenico Giardini)  

Inversion method A follows Bissig et al. (68) in parametrizing the crust, modeling of RFs,
and inversion strategy. A visualization of the model parametrization is given in Fig. S15. We
invert for the seismic structure, i.e., density, S-wave, and P-wave velocity, from the surface to
100  km  depth.  Within  the  crust,  we  adopt  a  staircase-like  structure,  where  the  depth  and
magnitude of discrete S-wave velocity jumps across crustal discontinuities are free parameters in
the inversion. At greater depth, we employ linear gradients in velocity from the Moho to 100 km
depth and from there to 400 km, respectively. To allow for variations in mantle structure, the S-
wave velocity at 100 km is a free parameter. Elastic properties are fixed to the seismic reference
model TAYAK (69) below 400 km. We assume constant ratios of density- and P-to-S-wave

velocity, i.e.,  /Vs and Vp/Vs, respectively, from the surface to 100 km depth and invert for

them. The quantity of model parameters depends on the number of crustal layers used (Tab. S3).
Here we explore 2-, 3-, 4-, 6-, and 8-layer models.

For  a  given  1-D  seismic  model  and  event,  we  compute  waveform  synthetics  via  the
reflectivity method (70). We vary epicentral distance for each of the three events separately, but
use only one source depth value for all events in order to reduce computational costs by a factor
of three. These four location parameters are treated as unknowns in order to achieve a greater
variation in P-wave incidence angle. The moment tensor is set to that of an explosion and back-
azimuth estimates are provided by Giardini et al. (21). Anelasticity is included through shear-
and bulk-attenuation quality factors, which are held constant to their respective values in model
TAYAK. Processing of synthetic and real waveforms are equivalent (cf. section S1.3), except
that 1) the orientation of the LQ-axes is equal to that of real data, and 2) arrival times of P- and
S-waves are computed via ray tracing (71).

The probabilistic solution to the inverse problem,   = g( ), where   are the observed

data,   the model parameter vector, and g the forward operator mapping from model to data

space, is expressed by (e.g., 72,73):

where  is the prior probability distribution of model parameters (cf. Tab. S3),  is

the likelihood-function quantifying the misfit between synthetic and observed data, and  is

the posterior distribution. We consider low- and high-frequency Ps RFs (processing method C)
of events S0235b, S0173a, and S0183a in the inversion and discriminate between distinct time
windows, i, in computing the likelihood-function for a given event, e:

where  is the L2-norm misfit between synthetic, , and observed RF amplitudes, 

, scaled by an uncertainty estimate,  , and weighting factor,  , for that particular event

and window:
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We use four windows in total  per event,  one for the P-wave at  time zero and three for the
positive arrivals within the first 10 seconds. The windows are defined separately for each event
and are shown in Fig.  S16 and S17. Uncertainty is set  to 50% of the mean absolute Ps RF
amplitude within 0–10 sec. We opted for this rather conservative value to allow for an extended

exploration of the model space. The weighting factor  is set to 2/3 for S0235b and to 1/6 for

S0173a and S0183a,  respectively,  reflecting  the  higher  confidence  in  the  Ps  RF from event
S0235b. The conjunction of the likelihood-functions for each event and window results in the
total likelihood-function:

We sample the posterior distribution by means of the cascaded Metropolis-Hastings algorithm

(74). At iteration , a model, , is proposed and retained only if the following criterion is true

for each event and window:

with  being a random number between 0 and 1.

We invert Ps RFs for S0235b, S0173a, and S0183a jointly in ten separate inversions that
differ in the number of crustal layers and corner-frequencies of RFs. For each inversion, we ran
32 chains in parallel, each starting at a different initial model and subsequently sampling ~12,000
– 25,000 models of which every 10th was retained for further analysis. Overall, this results in
~40,000-80,000 collected models per inversion. 

Inversion results are presented in blue color in Figs S18 and S19. All parametrizations are
capable of fitting the timing of Ps RFs for events S0235b and S0173a, while a slight phase-shift
is apparent in S0183a. Amplitudes are more difficult to model, in particular because observed Ps
RFs of the different events disagree on the relative amplitudes  of peaks and hence velocity-
contrasts across discontinuities. However, we emphasize the large uncertainties associated with
amplitudes,  as  evident  for  S0173a  where  differently  deglitched  data  sets  result  in  distinct
amplitudes  (Fig.  S6).  Parametrizations  with  more  layers  tend  to  produce  gradient-like
discontinuities that result in overall diminished RF amplitudes. From the model ensembles (Fig.
S18A  and  S19A)  and  the  discontinuity  depth  distributions  (Fig  S18B-G  and  S19B-G),  we
observe three discontinuities at depths 8±2 km, 20±5 km, and 39±8 km.

S3.2      Method B (Rakshit Joshi, Brigitte Knapmeyer-Endrun)  
Here we have employed a modified version of the Neighbourhood Algorithm (NA) (75,76)

for the  simultaneous inversion of the three receiver functions computed from events S0173a,
S0183a and S0235b (77). The forward calculation of receiver functions is based on the code of
Shibutani  et  al.  (78)  that  uses  a  simple  reflectivity  matrix  approach  to  provide  the  P-to-S
response of a layer stack. The resulting synthetic vertical and radial RFs are convolved with the
measured vertical RF to consider source complexity. An additional step of coordinate rotation
and re-scaling is  performed to transform the RF components  into the ray coordinate system.
Tests with synthetic seismograms for Mars models have shown that this allows obtaining results
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comparable  to  full  Instaseis  synthetics  based  on  an  AxiSEM data  base  (79) with  a  greatly
reduced computation time  (80). Density was not used as an independent parameter during the
inversion, but calculated from P-wave velocity values using Birch’s law (81). In addition to the
layer thickness and the S-wave velocity within the layer and the half-space, the Vp/Vs ratios of all
the layers and half-space were also included as model parameters (Tab. S4). The two parameters
that control the NA need to be tuned depending on the problem and the style of sampling needed.
For an explorative search that is robust against local minima, we perform 2000 iterations in each
inversion run with  200 models  produced at  each  iteration  and 200 cells  re-sampled at  each
iteration, resulting in an ensemble of 400,000 models per run. Furthermore, each inversion was
repeated several times with a different  starting random seed value to test  the stability of the
results.

We invert the RF waveforms generated by processing methods C (Section S1.3), considering
both low- and high-frequency P-to-S RFs.  For each of these data sets, we tested the data against
models with increasing degree of complexity. Starting with 2 layers with constant velocities over
a half space, we subsequently increased the complexity to include cases with 3, 4, 6 and 8 layers.
The L2 norm misfit was then used to compare observations to synthetic RFs using the same
misfit  function as described in Section S3.1.  The uncertainty level  along with the weighting
factor and the time windows for misfit calculation for each event were also left unchanged in
order  to minimize  any processing differences  between the two inversion methods.  From the
resulting  ensemble,  we first  retained  every  5th model  which  down-sampled our  ensemble  to
80000 models. In order to reduce the bias in NA sampling, we then compared the distance of
each model to the best fitting model within this subset using multi-dimensional mapping, and
binned these models into 50 bins according to this distance. Finally, we selected 100 models
from each bin, giving us a total of 5000 models. The results of the inversion are shown in yellow
color in Figs S18 and S19, indicating that the data can be explained either by two discontinuities
at depths 8±2 km and 20±5 km, or with an additional discontinuity at 39±8 km.

S4.  Comparison   with  waveform  modeling  for  source  inversion  (Nienke  Brinkman,  Simon  
Stähler, Domenico Giardini)
The first effort on fitting waveforms of observed marsquakes was done by Brinkman et al

(81) in the context of seismic source inversion. This study was performed to find optimal source
mechanisms  of  three  high-SNR marsquakes  (S0173a,  S0183a,  S0235a),  and  tested  different
crustal models. Considering P- and S-wave phases, the proposed two-layer model of this study
provided well-matching waveform fits, specifically for the coda of the P-waves on the radial
component and S-wave precursors, interpreted here as a S-to-P conversion at an interface in 24
km depth. Crustal models where the Moho was located deeper did generally not result in stable
source results. For S0235b, we illustrate this agreement in Fig. S20 by showing waveform fits for
two different crustal models.

S5.  Global crustal thickness from gravity, topography, and seismic constraints (Mark Wieczorek,  
Adrien Broquet)
Our global crustal thickness modeling employs standard methods that have been applied

previously  to  the  terrestrial  planets  and  Moon  using  spacecraft  data  (83). In  particular,  the
observed gravity field is assumed to be the result of surface relief, relief along the crust-mantle
interface,  and hydrostatic  density interfaces in the mantle and core.  The crust has a constant
density in our models, with the sole exception of the low-density polar ice cap deposits. We
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make use of 13  a priori density profiles of the mantle  and core  (25) that span the range of
plausible pre-landing Martian compositional models and core radii. In addition to these reference
models,  we also include two additional  reference density profiles based on the Martian bulk
composition model of Yoshizaki and McDonough (84).  

For  each reference  interior  model,  the global  crustal  thickness  model  was computed  as
follows. First,  the gravitational attraction of the surface was computed using finite-amplitude
techniques (85). Second, the gravitational attraction of the low-density polar caps was accounted
for using densities of 1250 and 1300 kg m-3 for the north and south polar caps, respectively,
along with the polar cap thickness model of Broquet et al. (86). Third, the gravitational attraction
of hydrostatic  relief  in the mantle  and core beneath the lithosphere was computed using the
method described in Wieczorek et al. (25). Fourth, for an assumed average crustal thickness, and
using the uppermost mantle density of the reference interior model, we inverted for the relief
along the crust-mantle  interface that  satisfies the observed gravity field.  Finally,  the average
crustal  thickness  was adjusted  iteratively  in  order  to  obtain  the desired  value  at  the  InSight
landing site.

We made use of the MarsTopo2600 spherical harmonic shape model of Mars (87) and the
GMM-3 gravity field model (88). Spherical harmonic degrees were considered up to degree 90,
and a downward continuation filter was employed that has a value of 0.5 at degree 50. For each
reference interior model, we tested all bulk crustal densities that were greater or equal to 2550 kg
m-3, which is a reasonable lower bound taken from Goossens et al. (10). It was found that as the
crustal density increases, the minimum crustal thickness of the model decreases. The maximum
permissible crustal density is thus obtained when the minimum crustal thickness reaches zero,
which  always  occurred  within  the  Isidis  impact  basin.  Tests  showed that  the  inclusion  of  a
constant thickness layer at the surface with reduced densities (from meters to kilometers thick)
had only an extremely minor impact on the results presented here. Further tests that made use of
lower crustal densities in the southern highlands than in the northern lowlands (26) showed that
the maximum permissible crustal densities were unchanged with respect to our constant density
model.  Fig.  S21 shows a representative global  crustal  thickness  model  for one set of model
parameters: Other models are, to first order, simply scaled versions of this model.

The two parameters that have the largest impact on the global crustal thickness model are
the difference in density between the upper mantle and crust, and the seismic thickness of the
crust at the InSight landing site. The average thickness of the crust for each model is plotted as a
function of the crust-mantle density contrast in Fig. S22 for various assumed crustal thicknesses
at the InSight landing site (text annotation) and reference interior models (legend). For a given
InSight crustal thickness, the average thickness of the crust is seen to decrease with increasing
density contrast, and this dependence is only weakly sensitive to the specific reference interior
model that was used. Nevertheless, the reference interior model fixes the density of the upper
mantle (which ranges from 3352 to 3492 kg m-3), and this affects the permissible values of the
crustal density and crust-mantle density contrast. The minimum density contrast for each curve
corresponds to  the  maximum crustal  density,  and also  corresponds to  that  model  where  the
minimum crustal thickness is zero.

The average crustal  thickness is plotted in Fig. S23 as a function of crustal  density, for
assumed thicknesses at the InSight landing site of either 20 or 39 km, central values for the two-
layer  and  three-layer  seismic  models,  respectively.  For  the  20-km thick  case,  the  range  of
allowable crustal densities is small (2550-2700 kg m-3), and the average crustal thickness is well
constrained to 28-31 km. In contrast, for the 39-km thick case, the range of allowable crustal
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densities is larger (2550-3050 kg m-3), and the average crustal thickness varies from 47 to 59
km. When the uncertainties associated with the InSight seismic thicknesses are considered, the
two-layer model predicts an average crustal thickness between 24 and 38 km with a maximum
permissible crustal density of 2850 kg m-3. For the three-layer seismic model, the average crustal
thickness is predicted to lie between 39 and 72 km with a maximum permissible crustal density
of 3100 kg m-3. 

S6.  Implications for the heat-producing element budget and the thermo-chemical history of Mars   
(Chloé Michaut, Ana-Catalina Plesa, Henri Samuel, Scott McLennan)
The crustal thickness inferred from RFs and gravity data allows placing constraints on the

composition of the crust and of the mantle both in terms of major and trace elements.  Due to
enriched HPE, crustal  thickness  is  a key parameter  in predicting  present-day heat  flux.  The
present-day crustal thickness is an essential anchor point for thermo-chemical evolution models
that predict past mantle rheology and cooling rates. 

S6.1      Constraints from 1D parameterized models considering bulk crust formation by melt   
extraction over time

To  exploit  the  relationship  between  the  present-day  crustal  thickness  and  the  planet’s
history, we conducted an extensive exploration of the possible thermo-chemical histories of Mars
using parameterized convection calculations to model the evolution of a Mars-like planet for 4.5
Gyr. This approach models the heat transfer and the chemical element partitioning within the
main planetary envelopes: an adiabatic convecting iron alloy core overlaid by a silicate mantle
convecting underneath an evolving, stagnant lithospheric lid. The latter includes a crust enriched
in  radioactive  heat  producing  elements  (HPE).  Both  the  crustal  and  lithospheric  thicknesses
evolve as a result of the thermal history of the planet. The crust is assumed to progressively form
via magmatic processes triggered by shallow mantle melting. Details of the model can be found
in Samuel et al. (27) and references therein. The only difference is that we now use melting
curves that are more appropriate for a Martian-like composition (89) instead of the solidus and
liquidus  derived  for  a  peridotitic  mantle  (90)  that  are  more  appropriate  for  an  Earth-like
composition.  We note that the solidus of Ruedas and Breuer (89) is similar to the solidus of
Duncan et al. (91), and nearly identical for the relevant pressure, at which partial melting takes
place  (i.e.,  up  to  8  GPa).  While  this  parameterized  modelling  approach  is  computationally
efficient, it accurately reproduces 1D structures obtained in curved geometries (27,28,92,93). We
explored a wide range of Martian evolutions  by randomly sampling the values for the main
governing  parameters  within  plausible  bounds.  The  sampling  space  is  composed  of  mantle
rheological  parameters  (effective  activation  energy  E* and  activation  volume  V*,  reference
viscosity �0), initial thermal state (core-mantle boundary temperature Tc0 and temperature at the
top of the convecting mantle  Tm0), and the crustal enrichment factor,  ⇥ (i.e., the ratio of HPE
content in the enriched crust to that of the primitive mantle). We fixed the bulk HPE content
corresponding to the values suggested in Wänke and Dreibus (29) (i.e., U=16 ppm, Th=56 ppb,
K=305 ppm). The explored bounds of the governing parameters  are listed in  Table S5. The
values  of  other  model  parameters  can  be found in  Tab.  1  in  the  supplementary  material  of
Samuel et al. (27). 

Fig. S24 displays the sampled input range of governing parameters and several resulting
distributions  that  lead  to  a  present-day average  crustal  thickness  in  the  range  39-72 km,  as
proposed by the three-layer crust inferred by RF analysis and gravity-topography considerations.

14



The  latter  correspond  either  to  present-day  model  output  (e.g., surface  heat  flow)  or  input
governing  parameters.  The  crustal  thickness  requirement  considered  here  does  not  strongly
constrain  mantle  activation  energy  or  volume  (Fig.  S24a,b),  but  favours  1-⌅ range mantle
reference viscosity around 1021±0.5 Pa s (Fig. S24c), which is in line with pre-mission estimates
(6,27). The initial mantle temperature is also not strongly constrained, but relatively cold values
(1770±50 K) are favoured in a statistical sense (Fig. S24d). The lack of strong constraints on the
mantle  rheology  and  its  initial  thermal  state  essentially  stems  from  the  trade-offs  between
temperature and viscosity, which require additional independent constraints such as orbital data
(27)  and/or  tighter  ranges of inferred crustal  thickness  to  resolve.  The predicted  present-day
surface heat flux ranges between 20 and 25 mW/m2 (Fig. S24e), which is consistent with pre-
mission estimates (6,27,69,94) and corresponds roughly to the sampled (i.e., prior) range. The
latter is considerably influenced by the assumed bulk HPE content (92,942). The most strongly
constrained quantity  is the crustal  enrichment with a corresponding range of 5-24 and a 1-⌅
range =15.5±3.5 (Fig. S24f). This range is consistent with recent estimates that rely on elastic

thickness constraints (28) and with a crustal HPE content inferred at the surface by GRS data
corresponding to a crustal enrichment of 8.7 to 10.6 for crustal densities between 2550 and 3100
kg m-3. We note that these crustal enrichment factors have been calculated based on the Wänke
and  Dreibus  (29)  bulk  abundance  of  heat  producing  elements.  The  compositional  model  of
Taylor  (30)  has  a  similar  bulk  abundance of  radioelements,  and,  hence,  will  lead  to  similar
enrichment factors. Other compositional models such as Yoshizaki and McDonough (84) with a
higher bulk abundance of radioelements would require in a higher crustal enrichment to match
the same geodynamical and geological constraints.

Performing  the  same  exercise  for  the  two-layer,  thinner  crust  end-member  (24-38  km)
yields more constrained matching histories corresponding to a smaller solution subset (Fig. S25).
A thinner crust requires an even colder mantle,  triggering smaller amounts of partial  melt  at
shallow depth. This colder mantle state calls for a higher HPE content in the crust (at the expense
of that of the underlying mantle),  and/or an initially colder mantle. These two effects can be
observed in Fig. S25d and Fig. S25f, respectively. The initial mantle temperature is therefore
more strongly constrained than in the thick crustal end-member case to 1750±40 K for the 1-⌅
range, (see Fig. S25d). The crustal enrichment relative to the primitive mantle is constrained to
values distinctly larger than 16 (24.9±3 for the 1-⌅ range, see Fig. S25f). The reference viscosity
remains constrained to 1021.3±0.5 Pa s (Fig. S25c) as in the thick three-layer crustal end-member.
The  temperature  and  pressure  dependence  of  viscosity  are  constrained  to  relatively  smaller
values than in the thick crustal end-member. However, due to the persisting trade-off between
temperature and viscosity such constraints remain relatively weak (with the corresponding 1-⌅
ranges: V*=3.3±2 cm3/mol, and E*= 260±114 kJ/mol, see Fig. S25a and Fig. S25b). Finally, due
to  the  same  bulk  HPE  content  considered  for  the  two-layer  and  the  three-layer  cases,  the
corresponding present-day surface heat flux compatible with the thin end-member case is 20-24
mW/m2 (Fig. S25e), which is very similar to the range inferred for the thick crustal end-member
(Fig. S24e).

S6.2      Constraints from 3D convection models and 1D parameterized models accounting for   
regional variations in crust thickness and looking for present-day mantle melting

The surface of Mars is on average very old (>3 to 3.5 Gyr), showing that volcanism and
resurfacing by lava flows was mostly active early in the Martian history, and then became much
sparser. Although recent lava flows have been observed, visible only in the Tharsis province (95,
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96),  thermal  evolution  models  producing  widespread  melting  in  the  Martian  mantle  at  the
present-day  are  unlikely. For  a  given  crustal  HPE concentration,  the  occurrence  of  mantle
melting is dependent on the crustal structure since the thicker the crust, the higher the amount of
heat sources at that location and the larger the temperature at depth. To exploit this relationship,
we  also  conducted  an  extensive  exploration  of  the  possible  thermal  history of  Mars  using
parameterized convection models accounting for two different hemispheres with different crustal
properties (28) as well as 3D convection simulations accounting for lateral variations in crustal
thicknesses  (6).  In  contrast  to  the previous  set  of  numerical  experiments  (Section  S6.1),  the
crustal structure is set at the  start of the simulations (t=0)  to account for an alternative crustal
formation  that  would result  from the differentiation  of a  magma ocean.  The model  is  let  to
evolve for 4.5 Gyr in both the parametrized models and 3D simulations,  where we used the
Wänke and Dreibus  (29) model for radioelement concentration for the bulk silicate Mars. We
also note that the bulk of the Martian crust has been built during the first 500 to 700 Myr (96),
therefore the present-day thermal state is not sensitive to the exact mechanism of crustal growth
but rather to the final crustal thickness.

We used the model of Thiriet et al. (28) to account for the two hemispheres and consider a
uniform crustal density, thermal conductivity and enrichment factor, but two different average
crustal thicknesses for the North and the South, which respectively cover 40% and 60% of the
planet’s  surface.  One  difference  with  the  model  of  Thiriet  et  al.  (28) is  that  here  we
parameterized the average crustal thickness in the South,  DS, based on that in the North,  DN,

using  DS  = DN + h(1+ c/( m- c)), where  m=3500 kg m-3 is the mantle density,  c the crustal

density, and h=3.3 km (instead of 6 km), a value that is in good agreement with inversions of
gravity and topography data presented in this manuscript (Section S5). Another difference is that
we estimated a posteriori the lithosphere thickness below the Tharsis province accounting for a
thicker  crust,  which  we also  parameterized  from the  results  of  gravity  and topography  data

inversions using  DT  = DN + hT(1+ c/( m- c)), where  hT=4.45 km and  DT is the average crustal

thickness below the Tharsis province. The temperature at the radius at the base of the crust below
the Tharsis province,  TC(RMT), is then calculated assuming a steady-state temperature profile in
the crust below Tharsis from the Moho heat flux, QMoho, which we estimate from the heat flux at
a radius r=RMT in the southern hemisphere: TC(RMT)=AC(RP

2-RMT
2)/6k+RMT

2(ACRMT/3-QMoho)(1/RP-

1/RMT)/k+TS, where TS is the surface temperature, k=3 W m-1 K-1 is the crust thermal conductivity
and  AC the  present-day  crustal  heat  production.  Transient  effects  due  to  the  decay  of  heat
producing elements that are neglected in this calculation would increase the temperature at the
Moho below Tharsis. Although they are not negligible in a lithosphere that is several hundreds of
kilometres  thick  (97),  they  are  much  more  limited  in  a  crust  of  several  tens  of  kilometres
thickness.  The  lithosphere  thickness,  HL

T,  below  the  Tharsis  province  is  then  found  by
interpolating the temperature profile starting from the temperature at Moho depth considering a
constant  heat  flux  equal  to  the  Moho  heat  flux  in  the  lithospheric  mantle  and  up  to  the
temperature characterizing the base of the lithosphere, TL.

For each model, we checked whether melting would occur at the present-day:
 within a plume ascending from the core-mantle boundary and up to the base of the

lithosphere below Tharsis, by comparing the temperature of the plume (28) to the
solidus  temperature  at  the  pressure  of  the  base  of  the  lithosphere  below  Tharsis
(contrary to Thiriet et al.  (28) we do not consider that the plume penetrates through
the lithosphere),
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 within local, smaller-scale, upwellings below the South, as well as below the North,
by comparing the solidus temperature at the pressure of the lithospheric base in the
South, respectively North, to the mantle temperature.

We assume that the melt reaches the surface and is responsible for the recent volcanic activity in
Tharsis.

We used the parameterization of the solidus temperature TT
solidus by Ruedas and Breuer (89)

applying a correction for crustal  extraction from the primitive mantle: Tsolidus=TT
solidus+dcrust Tsol/

Dref, where Tsol=150K, dcrust is the average crust thickness and Dref =190 km.

The results of the parameterized model described above are in good agreement with fully
dynamical 3D simulations (Figs. S26, S27), where the locations at which partial melt is produced
in the mantle have been estimated by comparing the local temperature to the solidus (6). In both
1D and 3D models, melting occurs only below Tharsis if the percentage of the bulk radioelement
content in the crust is about 55% or higher (Figs. S26 and S27). This is the case if the average
GRS-derived concentration in HPE is used for the bulk crust in the 3-layer (thick crust) model (

=12.2±2.0). On the contrary, for the 2-layer (thin crust) model, a GRS-derived concentration in

HPE for the bulk crust amounts to about 30% of bulk radioelement content in the crust and
would lead to widespread melting as shown in both Fig. S26 and Fig. S27.  While melts may not
reach the surface and remain intrusive today, such widespread melting areas would be difficult to
reconcile with the geological history of Mars since evidence of recent eruptions is only present in
localized areas. As shown in Fig. S26, successful models that consider a thin crust can be found

if the crustal enrichment of radioelements is increased ( =19.6±2.4). Given the range of surface

concentration in HPE derived from GRS measurements,  this  would imply,  however, that the
lower  crust  contains  significant  amounts  of  HPE,  and,  hence,  was  formed  by  a  different
mechanism than the basaltic surface layer. 

S6.3 Combining all constraints together
Overall,  the consistent  results  obtained independently by the complementary approaches

described  above  indicate  that  the  thin  crustal  end-member  requires  a  large  concentration  of
radioelements in the crust (⇥>15 and a consistent most probable value of 22), larger than GRS
estimates (7.8-9.5 and 8.7-10.6; Table S6) (31,98,117), which would point towards the presence
of a buried enriched component. Such a large concentration of radioelements in the crust may
imply  an  upward  segregation  of  heat  producing  and  incompatible  elements  during  the
solidification of an initial magma ocean as is observed on the Moon, or secondary differentiation
events for the crust, as for the continental crust on Earth. On the other hand, the thicker three-
layer model appears to be consistent with a crustal enrichment compatible with estimates from
GRS,  as  well  as  progressive  crust  formation  triggered  by  shallow  melting.  The  commonly
accepted estimates from Wänke and Dreibus (29) and Taylor (30), favor the thicker crustal end-
member. In addition, considerations on crustal production via magma extraction (Section S6.1)
favor  a  crustal  enrichment  factor  ⇥=5-22  and  a   1-⌅ range  of  16.2±4.2  (Fig.  S24f),  while
constraints  on the occurrence  of  present-day melting  underneath Tharsis  only (Section  S6.2)
suggest a crustal enrichment factor of ⇥=9-18 with 1-⌅ range of 12.2±2.0, leading to a consistent
overlapping interval of ⇥=9-18 and a consistent most probable (1-⌅) overlapping range ⇥=12.0-
14.2 for the crustal enrichment of Mars.
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In both thin or thick end-member cases, the reasonable assumption of a bulk HPE content
from commonly  accepted  estimates  by  Wänke  and  Dreibus  (29) and  Taylor  (30)  implies  a
present-day surface heat flux range of 20-25 mW/m2 (Figs. S24e and S25e), which is consistent
with the average values of 22.5-23.6 mW/m2 associated with the 3D models (Figs. S26 and S27).

S7.  Do GRS HPE Abundances Reflect the Uppermost Igneous Martian Crust?  
The Mars Odyssey GRS instrument interrogates the upper few decimeters of the Martian

surface and the analytical signal is dominated by what is generally considered to be well-mixed
regolith  and in  places,  also  by  dust  (98,99).   Use  of  GRS HPE data  (K  and Th  measured
abundances and U based on an assumed Th/U ratio of about 3.8) as a crustal composition model
(Table  S6)  assumes  the  HPE  abundances  reflect  the  uppermost  igneous  crust  and  are  not
significantly affected by upward or downward secondary mobility on a scale significantly greater
than the GRS interrogation depths.  There have been suggestions that GRS data are influenced by
secondary  aqueous  processes,  resulting  in  enrichments  in  the  surficial  regolith  relative  to
protolith  igneous  materials  (e.g.  99),  in  part  to  explain  differences  between  compositions
(including HPE) in Martian meteorites (SNC) and the GRS data. However, in situ measurements
of a wide variety of Martian rocks and regolith by rovers suggest that potassium abundances are
significantly enriched, on average, compared to SNC meteorites  (e.g. 13,31,100). In addition,
analyses  of  the  NWA7034  Martian  meteorite  breccia  (and  its  multiple  pairs)  has  greatly
expanded the range of HPE concentrations observed in Martian crustal rocks, consistent with
elevated  crustal  HPE  compared  to  SNC  meteorites  (e.g.  14,101).  A  consequence  of  these
observations is that the SNC meteorites are now widely considered to be non-representative of
the overall crust  (e.g. 100).   Many workers have instead observed spatial correlations of the
GRS data that mostly align with factors such as apparent crustal age and crustal terrane type
(102,103,104) and have further noted the lack of geochemical fractionation between K and Th
that might be expected during alteration processes (104), consistent with the compositions being
representative  of  their  igneous  protoliths.   If  correct,  then  the  GRS  HPE  data  would  be
representative  at  least  to  the  average  impact  gardening and  sedimentary  erosion  depths  that
produce  the  regolith.   Accordingly,  while  the  possibility  that  GRS  data  reflect  secondary
alteration processes, leading to significant enrichments in average HPE abundances at the near-
surface, cannot be entirely discounted, currently it is not a favored model. 

On the other hand, there is a possibility of a slight "dilution" effect in the near-surface HPE
concentrations  due  to  hydrogen  (likely  both  free  and  structural  water)  enrichments  and
accumulation  of  Cl-  and  S-bearing  components  measured  by  GRS  (98,105),  and  perhaps  a
meteoritic component, within the Martian regolith. Enrichments of H-, S- and Cl-rich materials
ultimately  result  from various  outgassing processes  that  accumulate  at  the near  surface.  The
overall effect would be to lower the levels of HPE compared to the ultimate igneous protoliths.
Taking these "dilution" factors into account is basically the procedure that Taylor and McLennan
(31) carried out in order to arrive at their estimates of crustal HPE (Table S6).

S8.  Implications for magnetization (Catherine Johnson, Anna Mittelholz)  
The InSight fluxgate magnetometer, IFG, is the first surface magnetometer on Mars (106).

Prior to the InSight landing, satellite vector field measurements, Borbit, allowed global modelling
of the crustal magnetic field at the surface, Bsurf, by downward continuing models derived from
orbital  data  (107,108).  Bsurf is  to  proportional  to  the  product  of  the  magnetization  and  the
thickness of the magnetized layer.  Previous satellite-based models have typically assumed the
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layer thickness to be a constant value globally of 40 km (107,108), in the absence of seismically-
constrained values for absolute crustal  thickness or other constraints on the magnetized layer
thickness.  From IFG data, the local magnetic field strength at the surface, Bsurf was found to be
an  order  of  magnitude  larger  than  satellite-based  models  (106).  Combined  with  geological
information  on  the  maximum  burial  depth  of  the  magnetized  layer  these  new  observations
allowed the minimum magnetization strength required to explain the surface field to be estimated
for different maximum depths of the magnetized layer (106,109).  In this study, we extend our
earlier work (106) to also include bounds on the maximum depth of the magnetized layer derived
from the seismic data.   We use the approach of  (109),  summarized and applied in  (106),  to
estimate the minimum magnetization that is compatible with the surface magnetic field strength
measured at the InSight landing site (106,109) and is also constrained by the two estimates for
crustal  thickness.  The two crustal  thickness  models  also have implications  for the minimum
magnetization that is compatible with the surface magnetic field strength measured at the InSight
landing  site  (106,109).  Deep  magnetization  extending  to  the  Moho  but  confined  below  the
seismically-determined layer 1, would have an amplitude of 1.8 A/m and 3.3 A/m for the ~20-
km and ~37-km crustal thicknesses respectively. This represents a case in which the first layer
transition around 10 km is indicative of a change in mineralogy or deposition age leading to no
substantial magnetization acquisition in the upper layer. If substantial magnetization is carried in
the upper seismically-determined layer (but beneath the thin few-hundred-meter-thick veneer of
Amazonian  and  younger  Hesperian  flows),  compatible  with  a  longer-lived  dynamo  (110),
magnetizations are <1 A/m for either crustal thickness model (Fig. S28).

S9.  Matching moment of inertia and tidal Love Number (Attilio Rivoldini)  
Further constraints on the set of average crust thickness and density pairs inferred in this

study can be obtained from the moment of inertia (MOI) and tidal Love number k2 of Mars (i.e.
69). The moment of inertia provides a direct constraint on the crust of interior structure models
as it is highly depending on the mass of the crust and mantle.  The Love number k2 of Mars
requires a large core (i.e., 111) and can for this reason further reduce the set of crust models. To
assess the effect of the geodesy data (111,112) on the crust we use the same mantle composition
models employed in this study (section S5) together with two plausible mantle temperature end-
members (113). 

Following Rivoldini et al.  (114), we construct global interior structure models that use the
two end-member temperature profiles in the mantle and assume a convecting liquid iron-sulfur
core. The thermoelastic properties of the mantle for the studied compositions are computed with
PerpleX  (115) using the thermodynamic  database and formulation  of Stixrude and Lithgow-
Bertelloni  (116). The crustal density and thickness of each model are chosen according to the
relation depicted in Fig. S23. For each interior structure model, the MOI is then calculated and
only  models  that  agree  with  the  measured  value  (111,112) within  its  uncertainty  (1_)  are
retained. A further down-selection of compatible models is achieved by retaining only those that
have a core radius large enough to agree with the tidal Love number k2 (111).

We  find  that  geodesy  data  favours  for  all  composition  models  but  the  Yoshizaki  and
McDonough (84) composition a thick crust and hot mantle temperature (Fig. S29). Among the
used composition models, the Yoshizaki and McDonough (84) model has less iron and for this
reason a different mass distribution in the mantle that results in a weaker constraint on the crust
density and thickness for the hot mantle temperature but it  is in favor of thicker crust if the
mantle temperature is colder.
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Fig. S1. S-onsets of events (A) S0173a and (B) S0235b, showing two precursory phases on
the P-component. Data are band-pass filtered between 0.1 and 0.8 Hz and rotated in the P-SV
coordinate system. Vertical solid black lines mark the S-onset, vertical dashed black lines the
two precursors (with inverted sign, as expected for S-to-P conversions) at about 2.6 s and 6.6 s.
Note  that  the  definition  of  coordinate  systems  implies  a  change  in  sign  between  the  radial
component, as shown in Fig. S2, and the SV-component shown here. Phase picks are on the first
local maximum rather than on the onsets here as those are easier to identify for the precursors.
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Fig. S2. All P-to-S receiver functions estimated by different groups plotted with identical
amplitude scaling and offset for clarity. Data are shown separately for events S0235b (A),
S0173a (B), S0183a (C) and the mean across all events calculated with the specific method (D).
For clarity, data using a slightly higher frequency passband in method A (panels A2 and B2 in
Fig. S4) are plotted as A1, while the remaining P-to-S receiver functions are plotted as A2.
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Fig. S3. Waveforms of event S0235b used in the (A) P-to-S and (B) S-to-P RF analysis.
Waveforms  plotted  here  are  bandpass  filtered  0.1-0.7  Hz  and  0.05-0.7  for  (A)  and  (B),
respectively. We estimate the up-going P-SV waves (bottom) from the recorded Z-R waveforms
(top) using the free surface transformation by minimizing the correlation between P- and S-
energy at the time of the P or S arrival, computed in 8s-long windows starting at the P or S
arrival.
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Fig. S4. Ensemble P-to-S and S-to-P RFs combining all of the models. For each event,  one
million iterations of the THBD were performed, discarding the first half as burn-in, and saving
every 1000th sample to the ensemble. The average RF for each of the ensembles is shown in red.
All of the parameters  used to process the RFs (parameters associated with taper length,  free
surface transformation,  and noise parameterization)  are shown in the right-hand side of each
ensemble solutions. NB: the acronyms for Vp, Vs, RP and BAZ refer to P-wave velocity, S-wave
velocity, ray parameter, and back azimuth, respectively.
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Fig. S5. RFs obtained from iterative time-domain (A) and water-level (B) deconvolutions as
described in Methods B. Left and right panels show the Sv and Sh components for the four
marsquakes, whose names are indicated at the bottom of the Sv traces. Estimated back-azimuths
are indicated along the vertical axis. For S0173a, results of four different deglitching algorithms
are shown (38).
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Fig. S6. P-to-S (A) and S-to-P RFs (B) for events S0173, S0183a, and S0235b using method
C. RFs for event S0173a are based on waveforms deglitched by different groups (grey lines),
whereas the RF based on the “final” deglitched data set and used for the inversion is depicted in
black. The additional set of P-to-S RFs filtered at higher frequencies are shown in red.
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Fig. S7. P-to-S and S-to-P RFs using method D. (A) P-to-S RFs for events S0235b, S407a, 
S0173, S0325a and S0183a. Summed trace either contains only the three best events (S0235b, 
S0173a, S0183a; thick black line) or all five events (thin black line). (B) S-to-P RFs for events 
S0235b, S0173a and S0325a. Summed trace either contains only the two clearest traces (S0235b,
S0173a; thick black line) or all three events (thin black line).
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Fig. S8. Comparisons between stacks of receiver functions computed with method G.  The
top stack is Rref.  The events in the second stack were inverted for azimuth by comparing with
Rref.  The third stack is for all events.
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Fig. S9. Receiver functions for 7-deglitched events marked, using method G.
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Fig. S10. Comparison of waveforms (in red) and SNR (color bar) of the ACFs for (A) the
vertical (ZZ) component, (B) the North (NN) component and (C) the East (EE) component.
From top to  bottom:  ACF computed  on the  ambient  noise between 1 Hz and 3 Hz during
nighttime (17:00 LMST to 23:00 LMST) (149 SOLs); ACF computed on 2.4 Hz events between
1 Hz and 3Hz (69 events); ACF computed on high frequency (HF) and very high frequency (VF)
events between 1 Hz and 3 Hz (55 events). The colored background corresponds to the signal-to-
noise ratio (SNR) in logarithmic scale. The various vertical black lines indicate potential energy
arrivals corresponding to large amplitudes in the waveforms, and large SNR. (A) On the ZZ
component we identify arrivals at 5.6 s, 10.6 s, 12.6 s and 21.0 s. (B) On the NN component we
identify arrivals at  11.9 s,  14.4 s, 16.5 s and 22.4 s.  (C) On the EE component  we identify
arrivals at 9.0 s, 12.4 s and 14.5 s.
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Fig.  S11.  Vertical-component  noise  autocorrelation  stacks  for  sliding  three-sol  data
windows. The frequency band is 1.2-8.9 Hz and data windows do not overlap. Shown are time-
frequency phase weighted stacks of phase autocorrelations. Blue marks negative amplitudes. The
blue and green arrows point to expected or observed P-wave reflections and converted P-to-S
(and vice versa) reflections. The three lag-time windows have been used to improve the visibility
through independent amplitude normalization.
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Fig.  S12. Vertical-component  noise  autocorrelation  stacks. The  three  lag-time  windows
correspond to those of Fig. S11 and have been chosen to improve signal visibility. Red and black
traces  show time-frequency phase  weighted  stacks  of  phase  autocorrelations.  Red and black
mark the stacks for all data and subsidiary data sets of 10%, respectively. The first three panels
are for  1.5-3.0 Hz,  2.4-4.8 Hz,  and 3.6-7.2 Hz band-passed filtered  noise.  The fourth panel
compares the stacks from the top three panels. The lowermost panel shows the linear stack (blue
line) and phase weighted stack (red line) of phase autocorrelations in the frequency band 1.2-8.9
Hz. Arrows are the same as for Fig. S11.
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Fig.  S13.  Seismic  noise  recordings  at  Mars. (A)  Median  amplitude  of  20  Hz  broadband
velocity recordings (VBB) during June-November, 2019. Blue and red lines indicate low and
high noise level recordings modeled in (D). SEIS data in gray shaded box is not available due to
solar  conjunction.  (B)  Outset  shows  rise  and  fall  of  the  amplitudes  between  three  sols  of
recording (June 24-27, 2019). (C) Spectrogram of one sol of SEIS data recorded on the vertical
component, showing a clear contrast between the nighttime and daytime signal. During the day,
large signals are generated by windy conditions, while at night the signals approach the noise
floor of the VBB. Several resonance modes are apparent, including tick noise at 1 Hz (with its
overtones) and a potential structural resonance at 2.4 Hz. (D) PDF of a Gaussian mixture model
with two components (high and low noise) used for distinguishing day vs. night portions of the
data. (E) Average power spectral density of daytime (blue) and nighttime (red) signals. NB: the
acronyms  for  MM/DD/YYYY,  UTC,  pdf,  and  PSD refer  to  month/day/year,  universal  time
coordinated, probability density function, and power spectral density, respectively.
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Fig. S14. HF event data, and comparison of the ACF stacks. (A) 
Average three-component envelopes aligned by P arrival from the 48 HF 
marsquakes analyzed, and the corresponding (B) vertical component 
waveforms. Yellow lines denote the P-coda analysis windows used in the 
correlation analysis. (C) Comparison of phase-weighted ACF stacks computed
from day- and night-time continuous ambient noise recordings (blue and red,
respectively) and P-coda energy from the HF events (black), post-Kltered 
between 1.5-3.0 Hz.
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Fig. S15. Sketch of model parametrization (inversion method A).  The black and grey lines

indicate example-profiles of S-wave velocity ( ), while free parameters are visualized as green

dots in contrast to fixed nodes in red. See text for further explanations.
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Fig. S16. Data fit  resulting from joint inversions of S0235b (A, D),  S0173a (B, E),  and
S0183a  (C,  F)  low-frequency  Ps  RFs  using  inversion  method  A (top)  and  B (bottom),
respectively. Inversions differ in the number of crustal layers included (vertical axis). Observed
data and their uncertainty bounds are plotted in magenta as solid and dashed lines, respectively.
Synthetics picked from the model samples are shown in grey. Grey shaded areas indicate time
windows employed in misfit computation.
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Figure S17: Same as Figure S16, but for high-frequency Ps RFs.
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Fig. S18. A collection of S-wave velocity profiles (A) extracted from the model ensemble
from low-frequency Ps RF inversions differing in number of crustal layers for inversion
method  A  (blue)  and  B  (orange),  respectively,  and  corresponding  discontinuity-depth
histograms (B-G).
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Fig. S19.  Same Figure S18, but for high-frequency inversions
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Fig. S20. Source inversion results for event S0235b (black lines show the recorded data)
taken from Brinkman et al. (82) for 2 layer-models with the Moho at 80 km (red lines) and
24 km (blue lines). The latter model is equivalent to the 2-layer model of this study. The two left
panels  represent  from  top  to  bottom the  vertical  (Z)  and  radial  (R)  component  of  the  P-
waveform.  The right  three  panels  show  from  top  to  bottom  the vertical  (Z), radial  (R)  and
transverse (T) component of the S-waveform. The dashed gray lines and area present the total
length of the inversion window and higher weighted part of the inversion window, respectively.
The solid gray vertical lines denote the first arriving P- and S-waves and later-arriving phases
(pP,  PP,  sP,  sS  and  SS)  calculated  using  ray  theory.  The  misfit value (χ2)  for  each  of  the
inversion is specified in the legend.
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Fig.  S21.  A representative  global  crustal  thickness  model  of  Mars. This  model  uses  the
reference interior  model  of TAYAK (26),  a crustal  density of 2900 kg m-3,  and an assumed
crustal thickness at  the InSight landing site of 39 km. The average crustal  thickness for this
model is 56 km, the minimum thickness is 5 km (located in the Isidis impact basin), and the
maximum thickness is  118 km (located in the Tharsis  plateau).  The yellow star  denotes  the
location of the InSight landing site, grid lines are spaced every 30° of latitude and longitude, and
the  image  is  presented  using  a  Mollweide  projection  with  a  central  meridian  of  135.6°  E
longitude.
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Fig. S22. Average thickness of the Martian crust as a function of the density contrast across
the crust-mantle interface from inversions of global  gravity and topography data. Each
curve corresponds to a different reference interior model that specifies the density profile of the
mantle  and core (legend) and an assumed seismic thickness  at  the InSight  landing site (text
annotation). Shown are suites of models for InSight seismic thicknesses from 20 to 45 km. The
minimum crustal density is assumed to be 2550 kg m-3, and the maximum density is limited by
the ability  of the model to fit  the observed seismic thickness  and gravity field.  The interior
reference models are described in Smrekar et al. (26).
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Fig.  S23. Average thickness of  the Martian crust  as  a function of crustal  density from
inversions  of  global  gravity  and  topography  data. Each  curve  corresponds  to  a  different
reference interior model that specifies the density profile of the mantle and core (legend). Shown
are two suites of models that satisfy two possible seismic thicknesses at the InSight landing site
of 20 and 39 km. The minimum crustal density is assumed to be 2550 kg m-3, and the maximum
density is limited by the ability of the model to fit the observed seismic thickness and gravity
field. The interior reference models are described in Smrekar et al. (26).
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Fig. S24. Results of the parameterized convection modelling. Exploration of the parameter
space for the thermo-chemical  evolution of a Mars-like planet,  showing the input governing
parameters and output quantities associated with n=104 possible histories and a subset (n=103) of
modelled histories that are compatible with a present-day crustal thickness ranging between 39
km and 72 km. 
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Fig. S25. Results of parameterized convection modelling. Exploration of the parameter space
for the thermo-chemical evolution of a Mars-like planet, showing the input governing parameters
and output quantities associated with n=104 possible histories and a subset (n=103) of modelled
histories that are compatible with a present-day crustal thickness ranging between 24 km and 38
km.
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Fig. S26. Results of parameterized convection modelling accounting for different crustal
structures in the geological provinces of Mars, testing for melting in a plume below Tharsis.
5000 models randomly sampled in terms of crustal density (2550-2850 kg m-3 in the thin crust
case, 2550-3100 kg m-3 in the thick case), northern crustal thickness (16-28 km in the thin crust
case, 28-55 km in the thick crust case), these a priori ranges being given by topography and
gravity data inversion (Section S5). The crustal enrichment factor  ⇥ is in the range 5-25. The

rheology is fixed with a reference viscosity  0=1021.5 Pa s at  T0=1600 K and E*=300 kJ mol-1,

V*=6 cm3/mol. The initial mantle temperature is Tm0=1800 K and the core radius is RC=1850 km.
Results for 6 of the 3D simulations indicated on the graph are shown on Fig. S27.
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Fig. S27. Distribution of partial melt produced by mantle plumes in the interior of Mars at
present day. The left column shows the models that employ a thin crust (31.7 km) and contain
the following amounts of radioelements in the crust: a) 48.8%, b) 53.2%, and c) 60.3% of the
total bulk content. The right column shows models with a thick crust (62.2 km) that contains: d)
49.1%, e) 55.2% and f) 61.4% of the total heat-producing element content. All models use the
same parameters as the parametrized thermal evolution models in Fig. S26 and are indicated by
star symbols on Fig. S26. The amount of melt reduces with increasing radioelement content in
the  crust,  and  the  melt  distribution  becomes  confined  to  smaller  regions  on  the  southern
hemisphere and finally to Tharsis. 
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Fig. S28. Estimation of minimum magnetization. The minimum magnetization required from a
surface field of 2013 nT and the upper and lower 99% confidence intervals on the surface field
strength (107). Burial depth describes the depth extent of the unmagnetized layers above the top
of the magnetized layer. For a burial depth of 200 m (blue), corresponding to burial beneath the
young, Amazonian-Hesperian, near-surface lava flows (107) magnetizations are ~0.4 A/m if the
entire underlying crust is magnetized. A burial depth of 10 km requires magnetizations larger
than 1 A/m. The velocity profiles show the range of seismically-determined interface depths as
in Fig. 2 of the main paper.  
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Fig. S29. Ability of crustal models to match moment of inertia and k2. Each panel shows the
average crust density and thickness pairs (blue dots) resulting from this study for different mantle
composition and two mantle temperature end members (hot and cold). The colored dots represent
the crust density and thickness pairs of interior structure models that agree with the moment of
inertia of Mars and have a core large enough to agree with the tidal Love number k2. Figures are
labelled with the composition models discussed in section S5.
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Method RFs Rotation angles Deconvolution 
method

Length of source 
window for 
deconvolution 

Filter 
band [Hz]

A P-to-S and 
S-to-P

MQS 
backazimuths and
free surface 
transfer matrix for
incidence angles 
(39)

transdimensional
hierarchical 
Bayesian (39)

8-9 s after P- or 
before S-arrival

event 
dependent:
0.1-1 or 
0.1-0.8 for 
P-to-S, 
0.05-0.7 
for S-to-P

B P-to-S principal 
component 
analysis for both 
azimuth and 
incidence angle

water-level (41) -10 to +25 s around
P-wave onset

0.1-0.9

iterative time-
domain (42)

C P-to-S and 
S-to-P

MQS 
backazimuths and
principal 
component 
analysis for 
incidence angles

iterative time-
domain (42)

-20 to +50 s around
the P-wave onset
-150 to +50 s and
-100 to +30 s 
around the S-wave 
onset

0.1-0.5 
(low-
frequency),
0.125-1 
(high-
frequency)

D P-to-S and 
S-to-P

MQS 
backazimuths and
principal 
component 
analysis for 
incidence angles

Wiener filter 
(43,44)

event dependent, 
between 28 and 40 
s after P- or before 
S-arrival

event 
dependent:
0.1-0.8 or 
0.3-0.8

E P-to-S MQS 
backazimuths and
principal 
component 
analysis for 
incidence angles

iterative time 
domain (42)

30 s around P-
wave onset

0.1-1

extended-time 
multi-taper 
deconvolution 
(45)

50 s around P-
wave onset

F P-to-S MQS 
backazimuths and
incidence angles 
from D

iterative time 
domain (42)

-15 to +80 s around
the P-wave onset

event 
dependent:
0.1-0.8 or 
0.3-0.8

G P-to-S MQS 
backazimuth and 

water-level 
(41,47)

-3 to + 30 s around 
the P-wave onset

0.25-0.8
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incidence from 
ray parameter and
assumed near-
surface velocities

Table S1. Summary of processing methods and parameters used by different groups to
compute RFs.
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Data  set  /
lead team

SEIS sensors Sol range Number of 
events

Pre-
processing 

Comments

Continuous
Noise
Analysis  /
ISAE-IRAP

three 
components 
VBB-VEL 
channels

222 to 399 N.A. Tick-noise 
and glitch 
removal

Deglitch by 
ISAE

HF  events  /
ISAE-IRAP

three 
components 
VBB-VEL 
channels

N.A. 41 Tick-noise 
and glitch 
removal

Deglitch by 
ISAE /
Event quality:
B and C

VHF events  /
ISAE-IRAP

three 
components 
VBB-VEL 
channels

N.A. 14 Tick-noise 
and glitch 
removal

Deglitch by 
ISAE /
Event quality:
B and C

2.4Hz events /
ISAE-IRAP

three 
components 
VBB-VEL 
channels

N.A. 69 Tick-noise 
and glitch 
removal

Deglitch by 
ISAE /
Event quality:
B and C

Continuous 
Noise 
Analysis / 
CSIC, IPGP

vertical 
component 
VBB-VEL 
channel

178 to 410 N.A. Data selection
based on 
RMS 
amplitude; 
band rejection
filtering to 
remove lander
modes and 
tick noise

PCC, linear 
and tf-PWS 
stacks

Continuous 
Noise 
Analysis / 
UMD

vertical 
components 
VBB-VEL 
channels

123 to 301 N.A. Glitch 
removal: 
moving 
median or 
comb filter to 
remove tick 
noise

Consider day 
time vs. night 
time data

HF events / 
UMD

three 
components 
VBB-VEL 
channels

N.A. 48 moving 
median filter 
to remove 
tick noise

Event quality:
B and C

Table S2. Summary of data sets and processing used by different groups to compute ACFs.
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Description Parameter Quantity Prior range
Crustal layer thickness (km) 0.1-50 km

S-wave velocity of uppermost crustal 
layer (km/s)

1 1.0-4.0

S-wave velocity jump across crustal 
discontinuities (km/s)

0.0-1.5

S-wave velocity at 100 km depth (km/s) 1 4.0-4.5
Density- and P-to-S-wave velocity 
crustal ratios /

1
1

0.7-0.9
1.7-1.9

Source depth (km) 1 40-100
Epicentral distance (°) 
[cf. Giardini et al., 21]

(S0235b)

(S0173a)

(S0183a)

1
1
1

25-30
25-30
40-60

total
Table S3. Overview of model parameters and the range of the uniformly distributed prior

values for RF inversions described in section 3.1.   denotes the number of crustal layers

used in the crustal parametrization.
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Parameter Range

layer depth (km) 0-100

S-wave velocity (km/s) 1 - 5

VP/VS ratio 1.5 - 2.1

Table S4. Parameter range used in the inversion of RFs with method B (section S3.2). The
same limits were used for all the layers in the respective model parameterization, and – for the
velocity ranges – the half-space. 
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Parameter Meaning Range
E* Mantle eMective activation energy 100-500

kJ/mol
V* Mantle eMective activation volume 0-10 cm3/mol�0 Mantle reference viscosity 1020-1023 Pa s⇥ Crustal HPE enrichment 5-30

Tm0 Initial  uppermost  convecting  mantle
temperature

1700-2000 K

Tc0 Initial CMB temperature Tm0  +  [100-
300] K

Table S5.  Ranges considered in the governing parameter space for the exploration of the
thermo-chemical history of a Mars-like planet. See text for further details. 
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 K (g g-1) Th (g g-1) U (g g-1) Λ Reference

Martian crust

Bulk crust 3,740 0.70 0.18 8.7 – 10.6 31

"GRS crust" 3,300 0.62 0.16* 7.8 – 9.5 117

2-layer crust 8,240 – 9,210 1.51 – 1.69 0.43 – 0.48 22  
3-layer crust 4,132 – 5,861 0.76 – 1.08 0.22 – 0.31 12 – 14  
Martian primitive mantle

Wänke & Dreibus 305 0.056 0.016  29

*-assuming Th/U=3.8.

Table S6. Estimates of HPE concentrations in the Martian crust and primitive mantle. The
conversion between the enrichment factors and concentrations of heat producing elements has
been calculated assuming a bulk density of 3500 kg/m3. For the crustal  density the range of
2550-2850  kg  m-3 and  2550-3100  kg  m-3 has  been  used  for  the  2-layer  and  3-layer  crust,
respectively.
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Event Time Lat. (°N) Long.

(°E)

Type Quality Filter

Freq.

S0173a 2019-

0523T02:19:33

3.45 164.48 LF A 0.1-0.8

S0183a 2019-06-

03T02:22:25

15.09 179.59 LF B 0.1-0.8

S0235b 2019-07-

26T12:19:16 

11.59 163.79 BB A 0.3-0.8

S0784a 2021-02-

09T12:11:32

- - BB B 0.3-0.8

S0809a 2021-03-

07T11:09:26

5.40 165.55 LF A 0.3-0.8

S0820a 2021-03-

18T14:51:33

4.9 165.91 LF A 0.3-0.8

S01048d 2021-11-

07T22:04:04

-1.10 165.31 LF A 0.12-0.8

S01133c 2022-02-

03T08:08:25

3.89 165.89 BB A 0.12-0.8

Table S1. Event information for InSight data

  

 Station code Network code Latitude (°N) Longitude (°E)

VSU GE 58.462 26.7347

Table S2.  Station information for seismic station VSU



      Time  (UTC)                            Lat(°N)     Lon(°E)     Distance(°)   Dep(km)   Mag (Mw)    

  2010-12-23T14:00:32.033    53.13   171.16     65.0839     18      6.3

  2006-10-01T09:06:02.032    46.47   153.24     66.5045     19      6.5

  2006-09-30T17:50:23.005    46.35   153.17     66.5888     11      6.6

  2009-01-15T17:49:39.007    46.86   155.15     66.7549     36      7.4

  2008-05-25T19:28:20.090    52.23   176.16     66.8954     17      6.2

  2006-11-16T06:20:20.077    46.36   154.47     66.9907      9       6

  2007-01-13T04:23:21.016    46.24   154.52     67.1134     10      8.1

  2010-07-18T05:56:44.091    52.88  -169.85     68.2012     14      6.6

  2008-05-02T01:33:37.024    51.86  -177.53     68.2728     14      6.6

  2006-08-26T23:46:18.052    51.38  -179.54     68.4368     35      5.7

  2007-01-13T04:33:21.011    51.84  -176.28     68.4681     35      6

  2006-08-26T23:40:39.047    51.33  -179.57     68.4806     35      5.7

  2006-05-10T02:42:51.003    52.51  -169.26     68.6241     18      6.4

  2006-07-08T20:40:00.098    51.21  -179.31     69.6377     22      6.6

Table S3.  Event information for station VSU (small distance range case)



          Time  (UTC)                           Lat(°N)       Lon(°E)  Distance(°)    Dep(km)   Mag (Mw)

  2008-10-06T06:08:39.048    32.24     104.98    55.15      9         5.8

  2006-05-11T17:22:51.096    23.31      94.31     59.73      30       5.6

  2007-06-02T21:34:57.078    23.03     101.05    62.49      5         6.1

  2007-07-30T22:42:05.063    19.31     95.61      62.70      14       5.6

  2007-05-16T08:56:14.012    20.51     100.73    64.40      9         6.3

  2010-03-30T16:54:46.073    13.67     92.83      65.99      34       6.7

  2008-06-27T11:40:13.099    11.01     91.82      67.73      17       6.6

  2008-06-28T12:54:46.036    10.85     91.71      67.81      15       6.1

  2010-05-31T19:51:45.086    11.13     93.46      68.46      112     6.5

  2010-06-12T19:26:50.046     7.88      91.94      70.47      35       7.5

  2006-06-21T12:34:52.068     6.94      92.45      73.53      16       6.0

  2007-10-04T12:40:31.013     2.54      92.9       75.54       35       6.2

  2010-05-09T05:59:41.062     3.75      96.02      76.06      38       7.2

  2006-08-11T20:54:14.037     2.4        96.35      77.39      22       6.2

  2008-07-14T04:44:51.064     2.18      96.52      78.66      24       5.6

  2010-04-06T22:15:01.058     2.38      97.05      79.16      31       7.8

  2006-05-16T15:28:25.092     0.09      97.05      79.72      12       6.8

  2009-09-30T10:16:09.025    -0.72      99.87      80.84      81       7.5

  2009-08-16T07:38:21.070    -1.48      99.49      81.30      20       6.7

  2007-09-20T08:31:14.049    -2           100.1      82.07      30       6.7

  2008-02-25T21:02:18.042    -2.24      99.81      83.11      25       6.7

   2009-10-01T01:52:27.033    -2.52     101.5      84.21      9        6.6

  2008-05-18T12:17:23.034     -3.2       101.4      85.74      32       5.7

Table S4.  Event information for station VSU (large distance range case)



Figure S1. Synthetic example for small distance ranges: (top) original RFs computed 

from martian interior model C30VL_AKSNL (Ceylan et. al. (2017)) for ray parameters 

between 6.7 s/deg and 7.1 s/deg (bottom) (a) corruption of RFs by different noise 

levels. Noise was created using transverse component of terrestrial RFs and setting the 

maximum amplitude to the desired fraction of maximum amplitude of synthetic radial 

RFs  (b) Singular values and their distribution (c) Reconstructed RFs  



Figure S2. Synthetic example for large distance ranges: (top) original RFs computed 

from martian interior model C30VL_AKSNL (Ceylan et. al. (2017)) for ray parameters 

between 4.2 s/deg and 7.0 s/deg (bottom) (a) corruption of RFs by diIerent noise levels. 

Noise was created using transverse component of terrestrial RFs and setting their 

maximum amplitude to the desired fraction of maximum amplitude of synthetic radial 

RFs (b) Singular values and their distribution (c) Reconstructed RFs  



Figure S3. 1D distributions of  model parameters 



Figure S4. Posterior density of resulting Vs proJles and with histograms for interface depth. 

KE 2la represents the 2σ bounds of the two-layer ensemble from Knapmeyer-Endrun et al. 

2021)

Figure S5. Comparison of the mean RF with the mean PCA Jltered waveforms



Algorithm for PCA and optimal threshold truncation
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J. Baik, G. B. Arous, and S. Péché. Phase transition of the largest eigenvalue for non-null
complex sample covariance matrices. The Annals of Probability, 33(5):1643–1697, 2005.
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J. Julià, J. Vila, and R. Macià. The receiver structure beneath the Ebro basin, Iberian
Peninsula. Bulletin of the Seismological Society of America, 88(6):1538–1547, 1998.

J. Julia, C. Ammon, R. Herrmann, and A. M. Correig. Joint inversion of receiver function
and surface wave dispersion observations. Geophysical Journal International, 143(1):
99–112, 2000.



166 BIBLIOGRAPHY

W. M. Kaula. The moment of inertia of Mars. Geophysical Research Letters, 6(3):194–196,
1979.

A. Khan, M. van Driel, M. Böse, D. Giardini, S. Ceylan, J. Yan, J. Clinton, F. Euchner,
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J. CE Irving, P. Lognonné, J.-R. Scholz, et al. Potential pitfalls in the analysis and
structural interpretation of seismic data from the Mars InSight mission. Bulletin of the
Seismological Society of America, 111(6):2982–3002, 2021.

R. Kind, G. Kosarev, and N. Petersen. Receiver functions at the stations of the German
Regional Seismic Network (GRSN). Geophysical Journal International, 121(1):191–202,
1995.

R. Kind, X. Yuan, and P. Kumar. Seismic receiver functions and the lithosphere–
asthenosphere boundary. Tectonophysics, 536:25–43, 2012.

T. Kleine, C. Münker, K. Mezger, and H. Palme. Rapid accretion and early core formation
on asteroids and the terrestrial planets from Hf–W chronometry. Nature, 418(6901):
952–955, 2002.
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P. Lognonné, J. Gagnepain-Beyneix, and H. Chenet. A new seismic model of the Moon:
implications for structure, thermal evolution and formation of the Moon. Earth and
Planetary Science Letters, 211(1-2):27–44, 2003.
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S. Özalaybey, M. K. Savage, A. F. Sheehan, J. N. Louie, and J. N. Brune. Shear-wave
velocity structure in the northern Basin and Range province from the combined analysis
of receiver functions and surface waves. Bulletin of the Seismological Society of America,
87(1):183–199, 1997.
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