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Abstract (English): 5 

Abstract (English): 

The severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) 
caused an infectious disease that began in Wuhan, China in 2019 and resulted 
in a worldwide pandemic that did not end until second half of 2022, namely the 
coronavirus disease 2019 (COVID-19) (1). Most COVID-19 patients show mild to 
moderate symptoms, but the SARS-CoV-2 infection can occasionally cause se-
vere symptoms and even death. The persistent symptoms after recovery from the 
acute phase also raises more and more concerns about the long term effects. To 
explain the various severities of infection and disease, we hypothesized that: 1) 
SARS-CoV-2 infection is heterogenous in different organs of the body and there 
are potential unknown infected regions to be explored, 2) the skull-meninges con-
nections might contribute to the COVID-19 related brain disorders. Therefore, we 
aim to map all the infection sites of SARS-CoV-2, examine the lung, kidney, and 
brain samples from postmortem COVID-19 patients, and also investigate the role 
of skull-meninges in COVID-19. 

In this thesis: 1) first, we studied the heterogenous tissue tropism of SARS-CoV-
2 using a mouse model and various human organs, taking advantage of the op-
tical clearing technology, which enables imaging of large tissue volumes at the 
cell level, 2) then, to unravel the proteome changes due to SARS-CoV-2 infection 
in lung, kidney, and brain tissues of COVID-19 patients, we compared the Spike 
protein-positive region with the Spike protein-negative region by proteomics com-
bined with laser capture dissection microscopy (2). We identified differentially ex-
pressed proteins consistent with previous publications and several novel dysreg-
ulated proteins whose role in COVID-19 remains to be clarified. A closer exami-
nation of the mouse head and human skull revealed SARS-CoV-2 accumulation 
in the skull bone marrow. Using COVID-19 patients’ tissue samples collected 
postmortem, viral spike protein accumulation was also observed in the skull, me-
ninges, and brain, whereas viral RNA and nucleocapsid protein were only found 
outside the brain. Proteomics and imaging data showed neutrophil activation, in-
flammation, and vascular changes in the skull, meninges, and brain.  

Overall, our experimental results suggest that SARS-CoV-2 Spike protein accu-
mulates at the central nervous system (CNS) borders, where it might use the 
skull-meninges connections to reach the brain parenchyma and trigger long-term 
changes. 
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1. Introduction 

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is respon-
sible for the coronavirus disease 2019 (COVID-19) (1). Numerous studies, includ-
ing proteomics and single-cell RNA sequencing, have been conducted since then 
to understand the mechanisms of COVID-19 pathology (3–12), focusing on spe-
cific organs or specific cell types. Considering that multiple organs are affected in 
COVID-19 patients, further research is required to understand to what extent 
SARS-CoV-2 infects human tissues, and whether these molecular changes re-
sulted from the systematic response to the cytokine storm or direct tissue re-
sponse to viral infection. 

 

1.1 Epidemiology, virology, and pathology of COVID-19 

1.1.1 Epidemiology and clinical manifestations of COVID-19 

The first reported case of COVID-19 developed symptoms on December 1, 2019, 
in Wuhan, China (13). Rapid human-to-human transmission led to intercontinen-
tal spread, and COVID-19 was declared as a pandemic by the World Health Or-
ganization (WHO) in March 2020. The mean incubation time from exposure to 
infection source to symptom onset is about five to six days (14,15), and the re-
production number (R0) is estimated to be 3.32 (95% CI, 2.81 to 3.82) (16), mean-
ing that every infected patients spreads the infection to three to four susceptible 
persons on average. The asymptomatic rate is estimated to be 17.9% to 30.8% 
(17,18). Globally, the WHO reported 587,396,589 confirmed cases as of 15 Au-
gust 2022, 4:42 pm CEST, including 6,428,661 deaths (Fig. 1).  

 

Typical symptoms of acute COVID-19 patients are fever, cough, anosmia, hy-
posmia, myalgia, breathing difficulties, and fatigue. Headache, sore throat, and 
rhinorrhea were also reported as less prevalent symptoms. Ground-glass opacity 
on chest computed tomography (CT) was very common in hospitalized patients 
(13,19–21). More than 75% of COVID-19 patients admitted to hospital needed 
supplemental oxygen. Age appears to be the most important risk factor predicting 
the progression of critical illness, acute respiratory distress syndrome (ARDS). 
Males, those over the age of 60, and those who have concomitant medical con-
ditions are more prone to a severe respiratory illness that necessitates hospitali-
zation. In contrast, the majority of adolescents and children mainly have minor 
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symptoms or do not have any symptoms (22). The key risk factors for worse out-
comes and higher mortality are underlying comorbidities such as hypertension, 
cardiovascular disease, and diabetes (20,22). Acute renal, hepatic or cardiac in-
jury and increased levels of blood biomarkers (CRP and D-dimer) are associated 
with adverse outcomes and death (23). 

 

Figure 1. WHO COVID-19 Dashboard. Geneva: World Health Organization, 2020. 
Available online: https://covid19.who.int/ (last cited: [August 15, 2022]). 

 

1.1.2 Virology of COVID-19 

SARS-CoV-2 is a single-stranded RNA virus that has a genome of about 30 kb 
and encodes at least 29 proteins, including four structural proteins: nucleocapsid 
protein, envelope protein, membrane protein, and spike protein (24). Although 

https://covid19.who.int/
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SARS-CoV-2 encodes a RNA polymerase with proofreading function, many mu-
tations have been detected. The variant with amino acid substitution D614G on 
the Spike protein became the most common form in the global pandemic as of 
March 2020 (25). Subsequently, several variants with a recurrent mutation have 
been reported in addition to the principle D614G, and causing several waves of 
infection in some countries and regions. There are five variants of concern ac-
cording to the WHO: The Alpha variant, the Beta variant, the Gamma variant, the 
Delta variant, and the Omicron variant (26).  

Mutations in the Spike protein lead to different transmissibility of these variants, 
for example, the Omicron variants are more transmissible than the previous line-
ages, and the convalescent plasma in a person infected with early variants ex-
hibited decreased neutralizing ability against it (26,27). In addition, compared to 
the SARS-CoV-2 Delta variants, the Omicron variants infection showed a signifi-
cantly reduced probability of severe consequences (28).  

Furthermore, when we look at the different sublineages of the Omicron variants, 
we will notice that the transmissibility of newly developed sublineages is increas-
ing, as is the evasion of neutralizing antibodies against plasma from vaccination 
or infection with previous sublineages. BA.2 is more pathogenic and has higher 
replication efficacy than BA.1 (29). BA.4 and BA.5 have higher transmissibility 
than the BA.2 lineage (30). 

 

1.1.3 Pathophysiology and cytokine storm  

SARS-CoV-2 infection is mediated by the binding of its Spike protein and the 
angiotensin-converting enzyme 2 (ACE2) receptor on host cell surface. ACE2 is 
extensively expressed throughout the body (31,32). The type 2 transmembrane 
serine protease (TMPRSS2) promotes the cell entry via the cleavage and activa-
tion of the SARS-CoV-2 Spike protein (33). Early in infection, SARS-CoV-2 at-
tacks the ciliated cells of the respiratory epithelium and sustentacular cells in the 
olfactory mucosa (34). As virus replication increases over time, the epithelial-en-
dothelial barrier is impaired, leading to infection in endothelial cells, the amplifi-
cation of inflammation causes infiltration of immune cells. According to postmor-
tem studies, the alveolar wall has diffusely thickened, and the air gaps have been 
invaded by mononuclear cells and macrophages (35). 

The virus particles induce the pathogen-associated molecular patterns of the im-
mune response and cause an increase in proinflammatory cytokines, chemo-
kines, and type I interferons (36). Severe COVID-19 patients showed elevated 
levels of proinflammatory macrophages in the bronchoalveolar lavage fluid (7). 



1 Introduction 13 

The upregulated genes for innate immune and inflammatory pathways were en-
riched in lung alveoli, including neutrophil degranulation, IFNγ signaling, and in-
terleukin signaling (37). Proinflammatory cytokines including IFNγ, IL-1β, IL-6, 
CXCL10, and CCL2 were found to be increased in the serum of COVID-19 pa-
tients (13). Overproduction of proinflammatory cytokines early in the disease 
leads to a cytokine storm (38), if the elevated cytokine concentrations continue 
dysregulated, the risk of multiple organ failure and eventual death will be higher. 
Markedly increased concentrations of cytokines (IFN, MCSF, IL-2) and chemo-
kines (CCL1, CCL2, CLL2) were detected in non-survivors of COVID-19 (39). 
Additionally, T lymphocytes were seen in much lower numbers and frequencies 
in COVID-19 patients (39,40). Lymphopenia was reported to predict mortality and 
correlate with the severity of COVID-19 (41). 
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Figure 2. Schematic of immune response during SARS-CoV-2 infection. SARS-CoV-2 in-
fects bronchoalveolar epithelial cells through binding with ACE2, virus replication causes host 
cell pyroptosis and release of damage-associated molecular patterns, leading to generation of 
proinflammatory cytokines and chemokines. The elevated cytokines and chemokines recruit T 
cell, monocyte, and macrophage to the infection site, promoting inflammation and eliminating 
the infected cells. Overproduction of proinflammatory cytokines cause local damage, the cyto-
kine storm causes multiorgan damage (42). 

Reprinted by permission from [Springer Nature Customer Service Centre GmbH]: [Springer Na-
ture] [Nature Reviews Immunology] [Tay, M.Z., Poh, C.M., Rénia, L. et al. The trinity of COVID-
19: immunity, inflammation and intervention. Nat Rev Immunol 20, 363–374 (2020). 
https://doi.org/10.1038/s41577-020-0311-8], [COPYRIGHT] (2020).  
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SARS-CoV-2 infection also activates the complement cascade (42). The level of 
C-reactive protein (CRP) is significantly increased in COVID-19 patients (43). 
Complement activation is associated with advanced severity of COVID-19, e.g., 
C4 and factor B levels increase in hospitalized patients requiring oxygen support, 
and C3 overactivation and consumption may predict mortality (44). Patients with 
severe illness or died of COVID-19 had lower serum C3 and C4 levels than those 
with moderate cases (45). 

SARS-CoV-2 infection also results in endothelial damage and thrombosis (46–
48). Consumption of ACE2 by the virus could lead to increased angiotensin II 
concentration (49), contributing to microvascular thrombosis (50). Diffuse alveo-
lar damage and capillary microthrombi were observed in most COVID-19 cases 
(51). D-dimer levels, indicating activation of the coagulation and fibrinolysis sys-
tems, are also increased in COIVD-19 patients (52).  

 

1.1.4 Damage to other tissues 

Despite that COVID-19 is mainly a respiratory disorder, the virus antigen or RNA 
can be detected in many organs, including the pharynx, kidney, heart, liver, in-
testine, and brain (53), which is consistent with the broad expression of ACE2 in 
various organs (31,32).  

Significant increases in interferon responses are reported in SARS-CoV-2 in-
fected liver, and infectious pathogen can be isolated in postmortem liver sample 
(12,54). SARS-CoV-2 also infects gastrointestinal organs because ACE2 is abun-
dantly expressed, and antigen persistence is reported in gastrointestinal tissues 
seven months after infection (55,56). Direct viral infection of the kidney was re-
ported in biopsy, and associated with acute kidney injury, glomerular and tubular 
damage (53,57). Proteomic research shows that COVID-19 patients have 
dysregulated clotting, angiogenesis, and fibrosis-related pathways, for instance, 
the coagulation factors are unbalanced in heart, thyroid, and kidney cortical tis-
sues (58).  

Neurological and neuropsychiatric complications such as loss of smell or taste, 
fatigue, myalgia, depression, and headache are common in COVID-19 patients, 
SARS-CoV-2 infection is also associated with encephalopathy and meningitis 
(59–65). There are also reports that observed some ocular manifestations similar 
to conjunctivitis in COVID-19 patients (66). 
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1.2 Treatments and vaccination 

There is no standardized treatment for COVID-19 patients; instead, the optimal 
course of action should be determined entirely by the patient's individual condition. 
The treatments of COVID-19 mainly include antiviral therapy, immunotherapy, 
anticoagulant therapy, antifibrotic therapy, respiratory support for critically ill pa-
tients, and treatment of acute renal injury. There are multiple medications to pre-

Figure 3. Extrapulmonary manifestations of COVID-19. Besides pneumonia and ARDS, 
abnormal manifestations in many organ systems are associated with COVID-19 (68). 

Reprinted by permission from [Springer Nature Customer Service Centre GmbH]: [Springer 
Nature] [Nature Medicine] [Gupta, A., Madhavan, M.V., Sehgal, K. et al. Extrapulmonary man-
ifestations of COVID-19. Nat Med 26, 1017–1032 (2020). https://doi.org/10.1038/s41591-020-
0968-3], [COPYRIGHT] (2020). 
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vent the disease progression, for example, remdesivir, favipiravir, and convales-
cent plasma can be used as antiviral treatments (67). Dexamethasone, tocili-
zumab, and ruxolitinib can be used to relieve infalmmation (68). 

Vaccination is the most effective method of preventing infectious diseases. Vac-
cine development has continued from the earliest trials to the present day and is 
based on the same principles. Typically, a vaccine comprises a substance that 
mimics the pathogen. There are various methods to formulate a vaccine, for ex-
ample, live-attenuated vaccine, inactivated vaccine, subunit vaccine, toxoid, con-
jugate vaccine, and genetic vaccine (69). 

 

The development of vaccines against COVID-19 employed a variety of vaccine 
formulation strategies, including the use of purified inactivated virus, viral subunit 
particles, recombinant viral proteins, and nucleic acid-based vaccines. Sinovac 
Biotech’s vaccine (CoronaVac), for example, is inactivated virus. Pfizer/BioNTech 
(BNT162b2) and Moderna (mRNA-1273) vaccines formulate mRNA in lipid na-
noparticles, enabling an antibody response against the viral Spike protein (70,71). 
The AstraZeneca-Oxford (ChAdOx1 nCov-19), Johnson & Johnson (Ad26.CoV2-
S), and Gamaleya (Sputnik V) vaccines use adenovirus vectors to encode the 
Spike protein of SARS-CoV–2. The above vaccines showed 95% (BNT162b2), 
94% (mRNA-1273), 67% (ChAdOx1 nCov-19), 67% (Ad26.CoV2-S), and 91% 
(Sputnik V) efficacy in preventing COVID-19 infection (72). COVID-19 vaccination 
does not completely prevent against infection, whereas immunity acquired after 
vaccination helps to reduce susceptibility to severe disease (73). 

The adverse effect develops following vaccination is the typical pain at the injec-
tion site which lasts around one to two days, ~1% of recipients experienced se-
vere adverse effects (70,71,74). 

 

1.3 Prognosis  

1.3.1 Acute and convalescent-phase 

The recovery rate after infection with COVID-19 varies according to severity. Peo-
ple with mild disease often recover in two weeks, but in case of severe illness, 
recovery can take up to six weeks. Time from the symptom onset to death was 
observed to be two to eight weeks. Various complications and health problems 
associated with COVID-19 have been reported, including pneumonia, ARDS, ab-
normal blood clotting, sepsis, and multiple organ failure (75–77). Readmission 
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rates for acute COVID-19 patients account for approximately one-third, and sig-
nificantly increased rates of cardiovascular disease and diabetes were reported 
in hospitalized patients (78). 

Following recovery from COVID-19, around 80% of patients experienced chronic 
symptoms, namely post-COVID-19 syndrome (79). Up to 44.9% of patients suffer 
from pulmonary fibrosis, and Patients with fibrosis more frequently experience 
lasting symptoms like breathlessness, cough, chest discomfort, tiredness, and 
muscle pain (80). Studies suggest that renin-angiotensin-aldosterone system im-
balance worsens the prognosis of COVID-19 with increased pulmonary artery 
pressure and coagulation (81). People with COVID-19 also have dysfunction of 
extrapulmonary organ systems, including cardiovascular disease, acute coronary 
syndrome, myocarditis, acute kidney injury, and chronic kidney disease (82–84). 

Immune memory of SARS-CoV-2 persists eight months or more after infection, 
and the number of memory B cells increases between one and eight months after 
infection. The number of memory T cells decreased with an initial half-life of three 
to five months, and the antibodies against SARS-CoV-2 decreased moderately 
over eight months (85). According to a different study, the antibodies were de-
tectable for at least 11 months after infection (86).  

 

1.3.2 Potential long-term effect 

Fatigue, headaches, attention deficit, and shortness of breath were most fre-
quently experienced in long COVID. Memory loss, depression, and sleep disturb-
ances were also reported as persistent sequelae, suggesting long-term effects 
on the central nervous system (87–89). Indeed, many patients suffer from prev-
alent brain fog (90–93). Surprisingly, even patients with mild COVID-19 disease 
suffer from the long-term effects on the brain, including fogging and decreased 
grey matter thickness and overall brain size (63,93,94). The consequences of 
brain damage could be due to systemic inflammation or, in severe cases, viral 
infection of the brain (95,11,96). In some cases, invasion of the brain has been 
demonstrated, for example, Spike protein immunostaining was positive in brain 
tissue from COVID-19 human autopsies (97,98), and viral RNA can also be de-
tected in multiple organs, including the brain (53). It has been suggested that the 
virus infects the brain through an impaired blood-brain barrier (99,100) and via 
the olfactory nerve (101–103), although there are controversial reports that 
SARS-CoV-2 infection was not observed in olfactory sensory neurons or olfactory 
bulb parenchyma (34,104,105), the route of viral infection to the brain remains 
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elusive. Tissue clearing methods would be beneficial to understand the extent 
and route of infection at the body level. 

 

1.4 Tissue clearing technology 

1.4.1 Overview of tissue clearing technology 

Tissue clearing technologies are state-of-the-art methods to obtain information 
with subcellular resolution for intact organs and even for some whole organisms. 
Transparency is achieved by removing pigments to reduce light absorption and 
changing the tissue's refractive index (RI) to minimize light scattering (106). De-
pending on the chemical reagents used, tissue clearing methods can be classi-
fied as: Hydrophilic methods such as Scale (107) and CUBIC (108) can expand 
tissue to increase effective resolution. Hydrophobic methods such as 3DISCO 
(109) generally shrink the tissue, allowing imaging of larger samples. Hydrogel-
based tissue clearing methods such as CLARITY (110) transform the tissue into 
a tissue-hydrogel hybrid by crosslinking it with hydrogel monomers. Combined 
with light-sheet fluorescence microscopy (111), these methods reveal the 3D 
structural cellular structural information of large biological samples for unbiased 
analysis. 

 

1.4.2 Tissue clearing for intact human organs 

For the purpose of labeling and imaging human organ pieces, numerous tech-
niques have been developed, including methods focusing on human brain tissue 
(112–118), myocardial tissue (119), and lung tissue (120). However, these tech-
niques are only applicable to human organ sections and not to whole human or-
gans. To overcome the limited size of human sample tissue clearing and enable 
imaging and 3D rendering of whole human organs, we developed the SHANEL 
pipeline (121,122). The human lung, spleen, pancreas, kidney, heart, and brain, 
as well as rigid tissues like the skull, have all been successfully cleared. 

 

1.5 Mass spectrometry-based proteomics 

Proteomics based on mass spectrometry is now a common technique for identi-
fying, characterizing, and quantifying proteins, as well as verifying and validating 
biological functional analyses (123). A mass spectrometer is based on an ion 
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source, a mass analyzer, and an ion detector. Sample molecules are ionized with 
the ion source in vaccum condition. The excess energy acquired causes the ion-
ized molecule to further fragment into different ions and neutral particles of 
smaller mass. They enter the mass analyzer with the impact of the accelerating 
electric field. A mass analyzer is a device that separates ions of different masses 
according to the mass-to-charge ratio (m/z). The separated ions enter the ion 
detector and the amplified ion signals are collected, processed by the computer, 
and drawn into a mass spectrum (124). 

Tandem mass spectrometry (MS/MS) is the use of two mass spectrometers 
linked together to improve the analysis. The first mass spectrometer analyzes the 
ionized samples, then a specific range of abundant ions are selected for fragmen-
tation and proceeded to the second mass spectrometer for further analysis; this 
is also called data-dependent acquisition MS (DDA-MS). The development of 
data-independent acquisition MS (DIA-MS) allows fragmentation of all detected 
ions in the MS1 spectra range, achieving better reproducibility and sensitivity 
(125). The most popular separation technique for the examination of biological 
specimens is high performance liquid chromatography (HPLC). Generally, the 
application of liquid chromatography and mass spectrometry involves separating 
proteins from biological samples into peptide fragments using enzymes; the 
amount of proteins contained in the biological samples is then determined using 
LC/MS. Sequencing time and sensitivity benefits from trapped ion mobility spec-
trometry (TIMS) and parallel accumulation–serial fragmentation (PASEF) are es-
pecially remarkable (126). 

 

1.6 Objectives of this project 

Considering the diversity of each patient, including gender, age, diet, and habits, 
we aim to find the pathophysiological changes by comparing the virus infection 
site with internal controls, i.e., regions without infection from the same patient. In 
this way, we can understand the direct virus-related response rather than the 
systemic changes resulting from a cytokine storm. 

 

On the other hand, the extent to which tissues in the body are affected by SARS-
CoV-2 is still unclear, although multiorgan infection has been demonstrated 
(53,127,12). Therefore, we aim to investigate the pattern of infection in different 
organs and inspect the potential sites of infection throughout the body using an 
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experimental mouse model. We are also interested in understanding how the 
brain is affected by SARS-CoV-2. 
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2. Material and Methods 

2.1 Material 

2.1.1 Human organ sources and experimental mouse 

 

Origin of human tissue and related work 
PFA-fixed human brains and human skull blocks were obtained from donors and 
autopsies from COVID-19 diagnosed patients during their lifetime or positive 
SARS-CoV-2 PCR test post-mortem following the European Control for Infectious 
Diseases. The post-mortem interval was, on average five days. All donors or their 
next-of-kin provided informed, written consent for donation for educational and 
research purposes. Human brain tissue was obtained from the Anatomical Insti-
tute of the University of Leipzig, Germany, and the Institute of Pathology Tech-
nical University of Munich, Germany. Human lung, kidney and skull samples were 
collected during autopsies at the Institute of Legal Medicine of the University Med-
ical Center Hamburg-Eppendorf. The 1994 Saxon Death and Burial Act and the 
independent ethics committee of the Hamburg Chamber of Physicians (protocol 
2020-10353-BO-ff) were followed to acquire institutional approval. Patient infor-
mation are listed in the following table (Table. 1). 

 

Table 1． Clinical background of human samples. 
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Animals involved in the study 
We used the following animals for the Spike protein trafficking study: 2-month-old 
wildtype C57Bl6/J mixed-sex mice purchased from Charles River Laboratories 
(Germany). Based on previous experience with similar models, the sample size 
was selected. Animals were housed in conditions that included free access to 
food and water, a 12-hour light/dark cycle, a temperature range of 18 to 23°C, 
and a humidity range of 40 to 60 percent. The animal experiments were per-
formed according to institutional guidelines of the Helmholtz Center Munich and 
the Ludwig Maximilian University of Munich after approval by the Ethical Review 
Board of the Government of Upper Bavaria (Regierung von Oberbayern, Munich, 
Germany) (Vet 15-236, 19-036, 03-21-2, and 51-15) and according to the Euro-
pean Directive 2010/63/EU for animal experiments. All data are reported accord-
ing to the criteria of ARRIVE. 

 

2.1.2 Equipment and consumables 

• UltraMicroscope II light-sheet microscope (Miltenyi Biotec) 
• UltraMicroscope Blaze light-sheet microscope (Miltenyi Biotec) 
• Zeiss inverted laser-scanning confocal microscope (LSM 880) 
• Laser Microdissection Microscopes (Leica LMD7000) 
• EASY-nLC 1200 (Thermo Fischer) 
• Orbitrap Exploris 480 Mass Spectrometer (Thermo Fischer) 
• timsTOF SCP (Bruker) 
• Cryostat (Thermo Fischer) 
• Peristaltic pump (ISMATEC, REGLO Digital MS-4/8 ISM 834) 
• Glass chamber (Omnilab, cat. No. 5163279) 
• Shaker (IKA, model KS 260 basic) 
• pH meter (WTW, model pH7110) 
• Incubator (Memmert, model UN160) 
• Falcon tubes (Thermo Fisher) 
• Polyethylene Naphthalate (PEN) Membrane Slides (Carl Zeiss, cat. No. 

15350731) 
 

2.1.3 Chemicals and antibodies 

• 4% paraformaldehyde (PFA) (Morphisto, cat. No. 11762.01000) 
• Heparin (Ratiopharm, cat. No. N68542.03) 
• Ethylenediaminetetraacetic acid (EDTA) (Carl Roth, cat. No. 1410.4) 
• Guanidine hydrochloride (Carl Roth, cat. No. 6069.3) 
• Acetic acid (Carl Roth, cat. No. T179.1) 
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• Dextran, Alexa Fluor™ 647; 10,000 MW, Anionic, Fixable (Invitrogen, cat. 
No. D22914)  

• Tetramethylrhodamine isothiocyanate–Dextran (Sigma-Aldrich, cat. No. 
52194) 

• p-maleimidophenyl isocyanate (Thermo Fisher, cat. No. 28100) 
• Methanol (Carl Roth, cat. No. 4627.6) 
• Dithiothreitol (Sigma-Aldrich, cat. No.43815) 
• Propidium Iodide (Sigma-Aldrich, cat. No.P4864) 
• 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (Carl Roth, 

cat. No.1479.4) 
• N-methyldiethanolamine (Sigma-Aldrich, cat. No.471828) 
• Tween-20 (Sigma-Aldrich, cat. No. P9416-100ML) 
• Sodium acetate (Sigma-Aldrich, cat. No. S2889) 
• DMSO (Carl Roth, cat. No. A994.2)  
• Triton X-100 (Sigma-Aldrich, cat. No. T8787)  
• Ethanol (Merck, cat. No. 10098535000) 
• 30% hydrogen peroxide solution (Honeywell, cat. No. 15693480) 
• Tetrahydrofuran (Carl Roth, CP82.1) 
• Dichloromethane (Carl Roth, cat. No. KK47.1)  
• BABB (benzyl benzoate and benzyl alcohol at the volume ratio of 2 to 1, 

Sigma-Aldrich, cat. No. W213802, cat. No. 24122)  
• Goat serum (GIBCO, cat. No. 16210072) 
• O.C.T. Compound (Sakura Tissue-Tek, cat. No. M71484) 
• Invitrogen™ ProLong™ Gold Antifade Mountant with DAPI (Thermo 

Fisher, cat. No. P36931) 
• SARS-CoV-2 (COVID-19) Spike RBD Protein, B.1.1.7 / Alpha variant, His 

tag (active), Unconjugated (Biozol Diagnostica, cat. No. GTX136014-
PRO-100) 

• Coronavirus (COVID-19 Spike Protein; Full Length) Antigen (ECB-LA636-
100, Enzo Life Sciences), Alexa Fluor 647 Conjugation Kit (Fast) - Light-
ning-Link&reg (ab269823, Abcam) 

• DoubleStain IHC Kit: M&R on human tissue (DAB & FastRed) (Abcam, cat. 
No. ab210062) 

Antibodies against SARS-CoV-2 (COVID-19) Spike (GeneTex, GTX135356, 
GTX632604), CD31 (Abcam, ab32457), Nucleocapsid (Invitrogen, PA1-41098), 
ACE2 (Invitrogen, PA5-20039), CD45 (14-0451-85, Thermo Fisher), Iba1 (019-
19741, Wako). Goat anti-rabbit IgG Alexa Fluor 647 (Invitrogen, A-21245); goat 
anti-rabbit IgG Alexa Fluor 568 (Invitrogen, A-11036); goat anti-mouse IgG Alexa 
Fluor 568 (Invitrogen, A-11031); goat anti-mouse IgG Alexa Fluor 647 (Invitrogen, 
A-21235); goat anti-rat IgG Alexa Fluor 568 (Invitrogen, A-11077). Goat anti-rab-
bit IgG HRP antibody (Abcam, ab6721). 

 

https://www.sigmaaldrich.com/catalog/substance/dichloromethane84937509211
https://www.sigmaaldrich.com/catalog/substance/dichloromethane84937509211
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2.1.4 Computer and software 

The computer for data analysis is a workstation with following configurations: Intel 
Xeon E5-2640 v3; 256 GB RAM; NVIDIA Quadro M5000. 

The softwares used are: 

ImSpector (Version 7.0.53, MiltenyiBioTec GmbH), Fiji (v.1.51, https:// fiji.sc/), 
Imaris (v.9.6, Bitplane), Vision4D (v.3.3 ×64, Arivis), Arivis converter (v.2.12.6, 
Arivis), MaxQuant (version 1.6.14.0), Perseus (version 1.6.14.0), DIA-NN 1.8, 
GraphpadPrism (version 8), IBM SPSS Statistics (version 22.0), R studio (Ver-
sion 1.4.1717), Photoshop CS6 (v. 13.0, Adobe). 

 

2.2 Methods 

2.2.1 Spike protein labeling and tissue clearing for intact human kidney 

After autopsy of the COVID-19 patient, the kidney artery opening was inserted 
with a tubing for perfusion with PBS and lectin Alexa-647, then the kidney was 
fixed in 4% PFA for 7 days. Next, we washed the kidney with PBS and injected 
50 ml dextran solution (4.3 mg PMPI, 7.7 mg DTT and 2 mg dextran Alexa-647 
in 50 ml PBS) through the artery opening, then the kidney was sealed in a plastic 
bag and kept at 37°C overnight.  

Pre-treatment before antibody labelling: PBS wash 3 times for 3 hours each time, 
CHAPS/NMDEA solution (10% CHAPS and 25% NMDEA) for 10 days, PBS 
wash 3 times for 3 hours each time, dehydrate with EtOH/H2O series: 50%, 70%, 
100%, 100% for 2 days each step, DCM/MeOH for 3 days, rehydrate with 
EtOH/H2O series: 100%, 70%, 50% for 2 days each step, diH2O for 1 day, 0.5 M 
acetic acid solution for 2 days, wash with diH2O for 8 hours, and guanidine solu-
tion (2% Triton X-100, 0.05 M sodium acetate, and 4 M guanidine hydrochloride 
in PBS) for 2 days, PBS wash for 8 hours, treat with blocking buffer (10% DMSO, 
10% goat serum, and 0.2% Triton X-100 in PBS) for 1 day. 

Antibody labeling for Spike protein: 400 uL FluoTag®-Q anti-SARS-CoV-2 Spike 
protein S1 (N3501-At565-L, NanoTag) was added in 2 L antibody incubation so-
lution (5% goat serum, 3% DMSO and 0.2% Tween-20). The kidney was treated 
under active pumping for 7 days. PBS wash 3 times for 1 day each time. 

Tissue clearing: Dehydrate with EtOH/dH2O series 50%, 70%, 100%, 100% for 2 
days each step. DCM for 2 days, change to refractive index matching solution 
BABB for 3 days. 
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2.2.2 Deep tissue immunolabelling of human tissue 

Deep tissue labeling was performed according to the protocol known in our labor-
atory as the SHANEL protocol. Cut 1 cm thick slices of the desired human tissue 
for SHANEL pretreatment. The slices were then treated twice with 
CHAPS/NMDEA solution for 12 hours. PBS washing for 20 minutes each three 
times.Tissue was dehydrated by stepwise addition of ethanol (50% x1, 70% x1, 
100% x1, 4 h for each). Then the solution was replaced with DCM/MeOH (2:1, 
v/v) for overnight. Tissues were rehydrated stepwise in diH2O to remove ethanol 
(100% x1, 70% x1, 50% x1, 4 h for each step). After treating the tissue with a 0.5 
M acetic acid solution overnight, wash it twice in diH2O for 20 minutes. After 6 
hours of guanidine solution treatment, wash the tissue twice with diH2O. Block 
the tissue with 10% DMSO, 10% goat serum, and 0.2% Triton X-100 in PBS at 
37°C overnight and then incubate it with propidium iodide (1:1000, Sigma, P4864) 
or antibodies against SARS-CoV-2 (COVID-19) Spike (1:1000, GeneTex, 
GTX135356, GTX632604), CD31 (1:1000, Abcam, ab32457), Nucleocapsid 
(1:1000, Invitrogen, PA1-41098), CD45 (1:1000, 14-0451-85, Thermo Fisher), 
Iba1 (1:1000, 019-19741, Wako), and ACE2 (1:1000, Invitrogen, PA5-20039) in 
antibody incubation solution (0.2% Tween-20, 5% goat serum, 3% DMSO) at 
37°C for 5 days. After primary antibodies incubation, the tissue was washed three 
times in PBS for 2 hours each, and then secondary antibodies (Goat anti-rabbit 
IgG Alexa Fluor 647, Invitrogen A-21245; goat anti-rat IgG Alexa Fluor 568, Invi-
trogen, A-11077; goat anti-rabbit IgG Alexa Fluor 568, Invitrogen A-11036; goat 
anti-rat IgG Alexa Fluor 647, Invitrogen A-21235; and goat anti-mouse IgG Alexa 
Fluor 568, Invitrogen A-11031) were incubated at a concentration equal to that of 
each primary antibody for 5 days at 37°C. The tissues were then washed for 1 
hour at room temperature to remove excess antibody. Dehydrate gradually in 
EtOH/H2O (50% x1, 70% x1, 80% x1, 100% x2, 6 h for each step). Treat the 
sections with DCM for 1 h and finally immerse in BABB. The samples will be 
ready for imaging after 24 hours. 

 

2.2.3 Spike S1 protein trafficking in the whole mouse 

Protein preparation and injection 

The Alexa Fluor 647 (AF647) was used to tag the Spike S1 protein according to 
the manufacturer's instructions (AlexaFluor 647 conjugation kit lightning link, 
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Abcam, ab269823). Briefly, Spike S1 protein (20 μg) supplied by the manufac-
turer (SARS-CoV-2 (COVID-19) Spike RBD Protein, B.1.1.7 / Alpha variant, His 
tag (active), Unconjugated, GTX136014-PRO-100) were dissolved in 0.1 M PBS 
(18 μl). The modifying reagent (1 μl) was added to the Spike S1 protein solution, 
and then mixed gently and transferred to a lyophilized material. The reaction was 
stopped after 15 minutes of incubation at room temperature by adding the 
quencher reagent (1 μl). The concentration of the fluorine-labeled protein is 1 mg 
ml-1. The animals were given 4% isoflurane in a N2O/O2 mixture (70%/30%) to 
induce anesthesia, and 1.5% isoflurane was used to maintain it for the entire in-
jection. 0.1 ml PBS solution containing 1 μg AF-647 of labeled Spike S1 protein 
was injected intravenously into the mouse tail vein. The Spike protein was al-
lowed to circulate throughout the mouse for 30 minutes.  

 

Perfusion 

At the 30-minute time point, intraperitoneal injection of midazolam, medetomidine, 
and fentanyl (1 ml/100 g of body mass) was used to deeply anesthetize mice until 
they exhibited no pedal reflex response. Then, the mice were perfused intracar-
dially for 5 minutes with PBS (10 U/ml of Heparin) to remove the blood, followed 
by a total volume of 20 ml of TRITC-dextran (5 mg/ml, MW 500000, Sigma, 52194) 
for vascular labeling. Mice were then perfused with 50 ml of 4% PFA for fixation. 
Then, after being post-fixed in 4% PFA for a day at 4°C, the bodies underwent 
three 10 minute room temperature washings with 0.1 M PBS. 

 

Clearing the whole mouse using 3DISCO method 

We performed tissue clearing based on the 3DISCO protocol for whole mice as 
previously described (109). For this purpose, mouse bodies were incubated in 
gradient of THF with gentle shaking in a fume hood: 50% x1, 70% x1, 80% x1, 
100% x2, 12 hours each step, then 3 hours in DCM and lastly BABB solution until 
optical transparency. 

 

2.2.4 Light-sheet microscopy imaging 

A Blaze or II ultramicroscope (LaVision BioTec) with an axial resolution of 4 μm 
was used to capture image stacks. Entire mouse bodies were scanned with the 
1.1x objective (LaVision BioTec MI PLAN 1.1x/0.1 NA [WD = 17 mm]). We im-
aged the ventral and dorsal sides to a depth of 11 mm, with a Z-step of 10 µm, 
and used tiling scan of 3x8 tiles with 25% overlap. The exposure time was set to 
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120 ms, and the laser power was changed in accordance with the brightness of 
the fluorescent signal. High-magnification tile scans for multiple organs (including 
brain, spinal cord, intestine, thymus, liver, lung, heart, spleen, kidney, testis, and 
ovary) were acquired individually. 

The stitching plugin of Fiji was used to process the acquired raw pictures. Stitched 
images were loaded to Vision4D for volume fusion, and visualized in Imaris for 
3D reconstruction, analysis, and video generation. 

 

2.2.5 Laser capture microscopy 

Human lung, kidney and brain tissues were dehydrated with 30% sucrose, em-
bedded in OCT, then sectioned into 12 um slices with a cryostat, and adhered to 
the ZEISS Membrane Slides PEN for histochemical staining. 

Tissue slices were first washed with PBS for 10 min, immersed with 0.2% Triton 
X-100 and 6% goat serum in PBS for 30 min, then incubated with SARS-CoV-2 
Spike protein antibody (1:300 dilution) at 4°C overnight. After washing with PBS 
for three times, 10 min each, the slices were incubated in secondary antibody 
(1:500) for 1 hour, and visualized with DAB and FastRed according to the manu-
facturer’s instruction (Abcam, ab210062). 

Regarding microdissection of the Spike protein-positive regions, we laser-cut and 
isolated the selected samples using a laser microdissection system (Leica, 
LMD7000). Briefly, the sections were serially dehydrated with ethanol and air-
dried under a fume hood for 15 minutes. The Spike protein-positive and protein-
negative regions of the COVID-19 human tissue sections were selected with a 
closed-shape manual drawing tool and dissected using a UV laser. The excised 
regions were collected into a 0.5 ml tube and examined by camera. An accumu-
lated area of 6 mm2 was collected by laser cut and using 40x objective (HC PL 
FL L 40x/0.60 XT CORR). The tissues were quickly spun down and stored at -
80°C. 

 

2.2.6 Histology 

Immunofluorescence and confocal microscopy  

Briefly, frozen sections of human skulls were treated with 0.2% Triton X-100 for 
15 minutes and 10% goat serum in PBST for 40 minutes at room temperature. 
Incubation with primary antibodies: SARS-CoV-2 (COVID-19) Spike (1:500, 
GeneTex, GTX135356, GTX632604), Nucleocapsid (1:500, Invitrogen, PA1-
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41098), ACE2 (1:500, Invitrogen, PA5-20039), and NeuN (1:500, Invitrogen, 
PA5-78499) was performed overnight at 4°C. Next, the sections were washed for 
15 min, incubated with secondary antibodies (1:1000, goat anti-mouse IgG Alexa 
Fluor 647, Invitrogen, A-21235; goat anti-rabbit IgG Alexa Fluor 647, Invitrogen, 
A21245; goat anti-rabbit IgG Alexa Fluor 568, Invitrogen, A-11036; goat anti-
mouse IgG Alexa Fluor 568, Invitrogen, A-11031; goat anti-rat IgG Alexa Fluor 
568, Invitrogen, A-11077) for 1 hour. After Hoechst 33342 staining, sections were 
mounted and a confocal microscope (ZEISS LSM880) was used to capture the 
images. 

 

Immunohistochemistry (IHC) 

Briefly, frozen sections were treated with 0.2% Triton X-100 for 10 min, 3% H2O2 
for 10 min, 10% goat serum for 20 min, and incubated with primary antibody 
against SARS-CoV-2 (COVID-19) Spike (1:300, GeneTex, GTX135356) at room 
temperature for 1 h. Staining was detected with goat anti-rabbit IgG HRP antibody 
(1:300, Abcam, ab6721) and revealed by incubation with diaminobenzidine for 
10-20 seconds (Vector, VEC-MP-7714). Hematoxylin (Sigma, 51275) was used 
as counterstaining. Prussian blue staining was performed according to manufac-
turer’s instruction (NovaUltra, IW-3010). 

 

2.2.7 SARS-CoV-2 RT-PCR test 

Decalcified COVID-19 skull samples were minced in PBS; the tissue extract from 
the COVID-19 meninges samples was put through a 40 µm strainer after being 
ground in liquid nitrogen and reconstituted in PBS. RNA extraction was performed 
using RNeasy FFPE Kit (QIAGEN, 73504), followed by SARS-CoV-2 RT-PCR 
with the Seegene Allplex™ 2019-nCoV Assay (cat. no: RP10243X) on a CFX96 
Real-time PCR Detection System-IVD (Bio-Rad). 

 

2.2.8 Statistical analysis 

Prism 8.0 (GraphPad) was used for statistical calculations. The data was ana-
lyzed with Shapiro-Wilk normality test and had Gaussian distribution. To compare 
two means, two-tailed t tests were performed. All figure legends list the statistical 
analyses that were conducted. The mean and standard deviation are displayed 
for each data point. 
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2.2.9 Proteomics 

Sample preparation for mass spectrometry analysis 

The human samples comprised eight post-mortem samples of human skull and 
meninges tissues from COVID-19 deceased and control donors. Protein extrac-
tion was carried out from 4% neutral buffered formalin fixed tissues. Briefly, the 
cells from the skull and the meninges tissues were isolated by mincing or grinding, 
and the tissue extract was passed through 40 µm strainer. The cell pellet was 
washed with PBS and reconstituted in SDS-lysis buffer (6% Sodium dodecyl sul-
fate, 500 mM TrisHCl, pH 8.5). The samples were heated at 95°C in a thermo-
mixer for 45 min with 1000 rpm, then subjected to ultrasonication using a Biorup-
tor Pico sonication device operated at high frequency for 30 sec on and off for 30 
cycles. After ultrasonication, the samples were again heated at 95°C for 45 min 
with 1000 rpm in a thermomixer. This was followed by proteins precipitation in 
ice-cold acetone (80% v/v) overnight in -80°C, and centrifugation for 15 min at 
4°C. The proteins were resuspended in SDC solution and heated at 95°C for 10 
minutes with 1000 rpm for reduction and alkylation. The samples were digested 
with trypsin and LysC at a ratio of enzyme to substrate of 1:50 at 37°C overnight, 
1000 rpm in s thermomixer. Next, peptides were acidified using 1% TFA in 99% 
isopropanol in 1:1 v/v ratio. The peptides were subjected to in-house built 
StageTips made up of two layers of styrene divinylbenzene reversed-phase sul-
fonate (SDB-RPS; 3 M Empore) membranes. Peptides were loaded onto acti-
vated StageTips (100% ACN, 1% TFA in 30% Methanol, and 0.2% TFA), passed 
through the SDB-RPS membranes, and then washed with 1% TFA containing 
EtOAc, 1% TFA containing isopropanol, and 0.2% TFA, respectively. Peptide elu-
tion was carried out in 60 μL of 1.25% Ammonia, 80% ACN and dried for 40 min 
with SpeedVac (Eppendorf, Concentrator plus) at 45°C. Reconstitution of dried 
peptides was performed with 10 μL 2%ACN/0.1%TFA, the concentration was es-
timated using Pierce™ Quantitative Colorimetric Peptide Assay. 

 

Liquid chromatography and mass spectrometry (LC-MS/MS) 

The MS data was generated in both data dependent acquisition (DDA) as well as 
data independent acquisition (DIA) mode. Thermo Fisher Scientific's EASY-nLC 
1200, together with an Orbitrap Exploris 480 mass spectrometer and a nano-
electrospray ion source, were employed for the DDA analysis. With a flow rate of 
300 nL/min, peptides were segregated via reversed-phase chromatography that 
used a binary buffer system containing 0.1% formic acid and a 120-minute gradi-
ent of 80% ACN in 0.1% formic acid (5-30% for 95 min, 30-65% for 5 min, 65-95% 
for 5 min, and wash with 95% for 5 min).  
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A data-dependent cycle time (1 second) scan approach was used to gather MS 
data. Full scan MS targets had an automatic gain control target percentage of 
300 and were scanned in the 300–1650 m/z range. The data was acquired at 
60000 resolution with a maximum injection time of 25 ms. Higher-energy C-trap 
dissociation with a normalized excitation energies at thirty pencent is used to 
fragment MS/MS scan precursor ions. The maximum injection time for MS/MS 
scan sets was 28 ms, with an AGC target of 100% and a 15000 resolution. For 
DIA mode, Thermo Fisher Scientific's EASY nanoLC 1200 was used for the LC-
MS/MS analysis, together with a CaptiveSpray nano-electrospray ion source, 
quadrupole time-of-flight single cell proteomics mass spectrometer, and trapped 
ion mobility spectrometry. 50 ng of peptides was loaded onto a 25 cm Aurora 
Series UHPLC column with CaptiveSpray insert (75 µm ID, 1.6 µm C18) at 50°C 
and segregated using a gradient of 80% ACN in 0.1% formic acid at a flow rate 
of 300 nL/min for 50 min (5-20% for 30 min, 20-29% for 9 min, 29-45% for 6 min, 
45-95% for 5 min, 95% for 5 min, 95-5% for 5 min). MS data were acquired in 
single-shot library-free DIA mode and the timsTOF SCP was run with DIA/parallel 
accumulation serial fragmentation (PASEF) using the high sensitivity detection-
low sample amount mode. The ion accumulation and ramp time was set to 100 
ms each. The collision energy scaled linearly from 59 eV at 1/K0 = 1.6 V-s cm−2 
to 20 eV at 1/K0 = 0.6 V-s cm−2 as a function of the mobility. The isolation windows 
were defined as 24 X 25 Th from m/z 400 to 1000.  

 

Proteomics data processing 

The DDA files were handled with MaxQuant 1.6.14.0. Filtering at the level of pro-
teins, peptides, and modifications was done using FDR 0.01. Acetylation (protein 
N-term) and oxidized methionine (M) were chosen as variable modifications, and 
carbamidomethyl (C) was taken as a fixed modification. Proteolytic cleavages 
using LysC and trypsin/P were included. The number of missed cleavages that 
permitted protein analysis was 2. Label free quantitation (LFQ) and "Match be-
tween runs" were enabled, and the human Uniprot database was used for all 
queries. DIA-NN was used to search the human Uniprot database against the 
diaPASEF raw files (128). The search of peptides with N-terminal acetylation was 
performed for a length range of seven amino acids. Cysteine carbamidomethyla-
tion was regarded as a fixed modification and methionine oxidation as a variable 
modification. Trypsin/P with two missed cleavages was the chosen enzyme spec-
ificity. The FASTA digest for the library-free search was enabled for predicting the 
library generation. The global and precursor levels of the FDR were both set to 
1%. The "Robust LC (high precision)" quantification mode was selected, and the 
Match-between-runs (MBR) option was activated. Identification of the protein 
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group and PG was done using the Protein Group column in the DIA-NN report. 
The differential expression was calculated with MaxLFQ.  

 

Proteomics downstream data analysis 

The protein groups were filtered using Perseus and R studio such that only those 
proteins were considered for differential expression which were present in 3 out 
of 4 samples in each group with valid values. The values were log2 transformed 
and normalized with median centering the dataset. A Gaussian distribution with 
a range of 0.3 standard deviations and a downshift of 1.8 standard deviations 
was used to generate the missing values at random. The correlation heatmap 
was computed using the Pearson correlation coefficient. Differential protein ex-
pression of the COVID-19 compared to control groups was evaluated by student-
t test. Multiple comparisons were adjusted using the Benjamini-Hochberg 
method. p-value less than 0.05 and a fold change greater than 1.5 were consid-
ered statistically significant unless specified. The gene ontology (GO) and path-
way enrichment were performed in Cytoscape with ClueGO plug-in (129) or Clus-
terProfiler. PCA plot, volcano plot, GOChord plot, and heatmap were generated 
in R studio. 
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3. Results 

3.1 Optimization of tissue clearing method for human organs 

In comparison to organs from young experimental animals, human organs have 
substantially bigger volumes and include more complicated tissue constituents 
because of the effects of aging. This limits the post-staining methods that may be 
employed on human organs. To overcome the challenges in achieving transpar-
ency of whole human organs, we have standardized the SHANEL protocol and 
effectively cleared several human organs, such as the lung, heart, pancreas, kid-
ney, and spleen (Fig. 4) (122). 
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Figure 4. Tissue clearing and imaging of human organs with the SHANEL protocol (122): 
TRITC-dextran was used to label the vasculature of human heart, kidney, lung, pancreas, and 
spleen. Tissue autofluorescence (AF) was imaged with excitation of 488 nm wavelength. Scale 
bars: 1 cm (yellow) and 2 mm (white). 
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3.2 Heterogenous infection patterns of COVID-19 patient 

organs 

3.2.1 Volumetric investigation of SARS-CoV-2 Spike protein in lung, 

kidney, and brain of COVID-19 patients 

We aim to inspect the lung tissue in a large-scale 3D view rather than in microm-
eter-thick sections. Therefore, 1 cm3 lung tissue blocks were treated with SHA-
NEL protocol and stained with antibodies including Spike protein, ACE2, and Iba1. 
We found the Spike protein distributed heterogeneously in the lung of COVID-19 
patients, as we can see accumulation in some specific regions while other regions 
show minor infection, and there is a negative correlation between ACE2 level and 
Spike protein level. As a control, we did not find a signal of Spike protein in lungs 
from patients not infected with COVID-19 (Fig. 5). 

 

Figure 5. Heterogeneous SARS-CoV-2 infection in human lung. Representative images 
of Spike protein and ACE2 staining in human lung tissue block. Scale bars: 800 µm (3D 
reconstruction), 100 µm (2D section). 
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Using Iba1 antibody staining in lung tissue block, we identified massive macro-
phage infiltration in the lung of COVID-19 patients (Fig. 6).  

Figure 6. Massive macrophage infiltration in lung of COVID-19 patients. Representative im-
ages of Iba1 and PI staining in human lung tissue block. Scale bars: 700 µm (3D reconstruction), 
100 µm (2D section). Quantification of the Iba1 positive area in 6 fields of view. n = 3. Data rep-
resent mean ± SD. Two-tailed unpaired Student's t-test. *p < 0.05. 

Additionally, we confirmed Spike protein in the lung tissue of COVID-19 patients 
using traditional IHC staining, and detected evidence of lung fibrosis in the 
COVID-19 cases, which was determined by picrosirius red staining in lung sec-
tions (Fig. 7). 
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Figure 7. IHC staining of Spike protein and picrosirius red staining (PSR) in lung tissue. 
Spike protein is shown in brown, and cell nucleus in blue. Scale bars: 20 µm. 

 

Meanwhile, we inspected one intact kidney from a COVID-19 patient by labeling 
the kidney with anti-SARS-CoV-2 Spike protein S1 nanobody and dextran follow-
ing SHANEL protocol. After optical transparency, we scanned the kidney with a 
light-sheet microscope (Fig. 8). 

The signal of Spike protein showed infection mainly in the cortex of the kidney, 
and by zooming-in to different regions, we can see the Spike protein enriched in 
some glomeruli and collecting ducts. This result is in line with research showing 
that SARS-CoV-2 directly infects human kidney tissues (53).  
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Figure 8. SHANEL enabled visualization of Spike protein in an intact kidney. The kidney was 
labeled with lectin for vasculature and SARS-CoV-2 Spike protein nanobody. The white arrow 
indicates the infected regions in this kidney. Scale bars: 1 cm, 5 mm (3D reconstruction), and 100 
µm (2D section). 

 

Since COVID-19 patients share common neurological and neuropsychiatric com-
plications, we next investigated the effects of SARS-CoV-2 on the brain. Using 
volumetric imaging of cleared brain tissues of COVID-19 patients’ prefrontal cor-
tex, we found Spike protein in the brain parenchyma, some of which colocalized 
with the neurons as identified by Nissl staining. Interestingly, the meninges also 
harbor virus Spike protein (Fig. 9).  



3 Results 40 

 

Figure 9. Spike protein and Nissl staining of brain tissue block. Representative images of 
Spike protein antibody and Nissl labeling in the human brain tissue block. Samples from patients 
not infected with COVID-19 were used as control. Yellow arrowheads indicate Spike protein in 
meninges (left) and colocalization with neurons (right). Scale bars: 500 µm (left), 100 µm (right). 

Figure 10. Iba1 staining of brain tissue block. Representative images of Iba1 antibody staining 
and light-sheet imaging of human brain cortex. Samples from patients not infected with COVID-
19 were used as control. Scale bars: 500 µm (left and middle), 50 µm (right). Quantification of 
microglia cell body area, each filled dot represents the area of an individual microglia soma. n = 
3 brain cortex blocks from two COVID-19 patients and one control. Graph displays mean ± SD. 
Two-tailed unpaired Student's t test, ****p < 0.0001. 
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Microglia are specialized macrophages in the central nervous system. They will 
retract the ramified processes and have an increased soma size when stimulated 
by infection or inflammation (130). Using Iba1 antibody staining, we identified ac-
tivated microglia with enlarged cell body morphologies in the brain of COVID-19 
patients (Fig. 10). 

 

 

On the other hand, Spike protein was examined with traditional IHC methods and 
detected in the lung, olfactory bulb, brain cortex, and meninges tissue of COVID-
19 patients (Fig. 11). 

3.2.2 Spatial proteomics of lung, kidney, and brain of COVID-19 patients 

To explore the molecular consequences of the lung, kidney, and brain tissue in 
the presence of Spike protein, we performed laser capture microdissection of the 
IHC Spike protein-positive and negative regions for proteomics analysis (Fig. 12).  

Figure 11. Immunohistochemistry of kidney and brain. Spike protein staining in kidney, brain 
and meninges sections, revealed with HRP-DAB in brown, cell nucleus in blue. Scale bars: 20 
µm. 
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We identified that ARG1, TIMP3, CXCL12, ALDOB, ACY1, and CLIC1, are up-
regulated in the lung Spike positive region. ARG1 has been associated with the 
suppression of antiviral immune responses and could be a marker in the patho-
genesis of COVID-19 (131). TIMP3 has been reported to interact with ACE2 (132).  

 

CXCL12 is an inflammatory cytokine that has been reported to increase more 
than 10-fold in COVID-19 plasma compared to healthy donors (133) and is asso-
ciated with T cell infiltration (134). The role of ALDOB and ACY1 in COVID-19 
remains unclear. CLIC1 is required for the regulation of endolysosomal pH, and 
silencing of CLIC1 decreases infection by hepatitis C virus (135). It could be a 
possible target for antiviral strategies against SARS-CoV-2 (Fig. 13). 

Figure 12. Overview of laser capture microdissection for proteomics study. Representative 
images showing the Spike protein positive region (red) before and after dissection. Scale bars: 
20 µm. 
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Gene ontology analysis suggests enrichment in the collagen-containing extracel-
lular matrix, cell adhesion molecule binding, and cadherin binding are the evident 
changes in the Spike protein-positive lung region, correlating to the fibrosis we 
have observed in the lung tissue (136,137). 

 

In the kidney, dysregulated proteins in the Spike protein positive region compared 
to the Spike protein negative region consists of ribosomal subunit proteins like 
RPL5, RPL35, RPL4, RPL7, RPL8, RPS3, RPS5, and RPS8, they engage in in-
teractions with viral non-structural proteins and are necessary for viral replication. 
Previous plasma proteomics study reported apolipoprotein APOD dysregulation 
in COVID-19 (138). Mitochondrial protein UQCRB is upregulated in COVID-19 
bronchoalveolar lavage (139). In our study, we also identified some other dysreg-
ulated mitochondrial proteins in the kidney: COX7A2, UQCRQ, UQCRC1, 
NDUFA5, ATP5F1A, ATP5F1B, and ATP5F1C. It is reported that SARS-CoV-2 
causes apoptosis in mitochondria from epithelial cells (140). Heat shock protein 
is involved in viral entry, replication, and viral exit from host cells (141). We found 
that HSPA8 and HSPA2 decreased in Spike protein-positive kidney tissue (Fig. 
14). 

Gene ontology analysis also identified changes in the cytosolic ribosome, struc-
tural constituent of ribosome, and focal adhesion, cadherin binding,these extra-
cellular matrix changes are associated with fibrosis. 

Figure 13. Proteomics analysis of lung tissue of COVID-19 patients. Dysregulated proteins 
and gene ontology registration of Spike protein positive lung region compared to Spike protein 
negative lung region. (p < 0.05, logFC = 1). n = 3 biological replicates. 
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Regarding proteomics, principal component analysis (PCA) showed clustering of 
samples from the same patient and a similar shift from Spike protein negative 
brain regions to Spike protein positive brain regions in all three patients (Fig. 15). 

Figure 14. Proteomics analysis of kidney tissue of COVID-19 patients. Chord plot and gene 
ontology of dysregulated proteins between Spike protein-positive and negative kidney regions. (p 
< 0.05, logFC = 1). n = 3 biological replicates. 

Figure 15. Proteomics analysis of brain tissue of COVID-19 patients. PCA plot of Spike pro-
tein positive and negative samples and volcano plot between Spike protein positive and negative 
brain regions. (p < 0.05, logFC = 1). n = 3 biological replicates. 
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SARS-CoV-2 infection has been linked to mitochondrial dysfunction (142). We 
identified several upregulated mitochondrial proteins in our Spike-positive brain 
regions compared to the Spike-negative regions (Fig. 15). The list includes pro-
teins such as NADH dehydrogenase [ubiquinone] 1 subunit C2 (NDUC2), Cyto-
chrome c oxidase subunit 6B1 (QCR1) and Cytochrome c oxidase subunit 2 
(COX2). However, their exact roles in COVID-19 pathogenesis have, to our 
knowledge, not been investigated in detail yet. The water-specific channel protein 
Aquaporin-4 (AQP4) was also identified as a downregulated protein. The expres-
sion of this protein could link COVID-19 to neurological disorders that may arise 
together with brain edema (143). Notably, patients with neuromyelitis optica pre-
sent auto-antibodies against AQP4 (144). The extracellular matrix protein Fi-
brillin-1 (FBN1) was another downregulated protein. The expression levels of An-
nexin A2 (ANX2) predict mortality among hospitalized COVID-19 patients (145). 
Integrin alpha-2 (ITGA2) was also downregulated in the Spike-positive tissues. 
Integrins, in particular, have been implicated in the internalization of the SARS-
CoV-2 (146).  

3.3 A mouse model to study SARS-CoV-2 Spike protein S1 

distribution 

Recent studies showed the use of Spike protein subunit as a proxy to explore 
SARS-CoV-2 targeting and pathology in mice (147–149). We used intact trans-
parent mice to map the distribution of the fluorescently labeled Spike S1 protein 
in order to determine all tissues that SARS-CoV-2 can infect. TRITC-dextran was 
injected intravenously together with Spike protein to visualize the blood vessels. 
After 30 minutes, we rendered the entire mouse body optically transparent using 
the 3DISCO method as described previously (109). We then used light-sheet mi-
croscopy to image the cell-level biodistribution of Spike protein throughout the 
transparent mouse bodies unbiasedly (Fig. 16).  
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Figure 16. Spike S1 distribution in whole mouse body. S1 protein was graded colored by 
intensity. Scale bar: 4 mm. 

 

We found Spike S1 protein binding in the heart, lung, liver, kidney, gut, thymus, 
spleen, and pancreas, among other organs (Fig. 17). The distribution within each 
organ was heterogeneous, with some regions of the organ depicting more Spike 
protein accumulation than others (Fig 1b, arrowheads vs. arrows). In particular, 
we found that the Spike S1 protein accumulated in and around areas with a high 
density of blood vessels in the liver, kidney, and lung, consistent with the known 
ACE2 expression pattern, an enzyme widely expressed in various organs in the 
body and serving as the receptor of SARS-CoV-2 (31,32). The fact that Spike S1 
protein is present in all of these organs strongly suggests that multiple organ tro-
pism of either the full virus or protein extrusions from the viral particles causes 
the widespread body pathology of SARS-CoV-2. 
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Figure 17. 3D reconstruction of main internal organs and representative high-resolution 

optical section view. Spike S1 protein in green and dextran in magenta. Arrow heads and arrows 
indicate regions with and without Spike S1 protein, respectively. Scale bars: 500 µm and 50 µm. 

We found that most of the Spike S1 protein signal from the abdomen was in the 
capillary bed, and according to the morphological structure of tissues, we inferred 
that Spike S1 protein localized in liver Kupffer cells, spleen follicles, glomeruli, 
and alveoli.  

Spike S1 protein was also found in the brain, spinal cord, and parenchyma of the 
testis and ovary (Fig. 18). It is worth mentioning that the presence of virions was 
also reported in human patient testis (150).  
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Figure 18. Spike S1 protein in the mouse central nervous system and reproductive system. 
Spike S1 protein in green and dextran in magenta. Scale bars: 300 µm and 50 µm. 

 

To further confirm that the binding of the injected Spike protein to the ACE2 re-
ceptor is specific, we used ovalbumin as a control. Unlike Spike protein, ovalbu-
min is mainly detected in the kidney, liver, and spleen (Fig. 19). Interestingly, the 
pattern of ovalbumin and Spike is different in the kidney and spleen, the binding 
region in the kidney appears to be the renal collecting duct rather than glomeruli, 
and ovalbumin does not accumulate in spleen follicles. No ovalbumin is found in 
the brain, lung, pancreas, heart, or intestine.  
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Figure 19. Tissue specificity of Spike S1 and ovalbumin binding to mouse organs. Fluores-
cently conjugated ovalbumin as a control for inspecting Spike S1 protein binding in intact mice. 
Scale bars: 4 mm (top), 500 µm (middle), 50 µm (bottom). 

 

Next, to check whether this Spike S1 protein injection model mimics human in-
fections, we stained the human tissue from COVID-19 patients with Spike anti-
bodies, and compared the Spike S1 protein distribution in mouse models to the 
COVID-19 patient tissue. We found a similar pattern of Spike protein in different 
organs (Fig. 20). There are many proteins in the lung alveolar, and we found 
Spike protein mainly binding to glomeruli in the kidney. A few Spike proteins can 
be found in the brain perivascular space, confirming the validity of Spike S1 pro-
tein imaging in whole transparent mice as a proxy for human tissue investigation. 
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Figure 20. Comparison of the Spike protein in COVID-19 patient tissues and the Spike S1 

protein in mouse tissues. Vasculature was labeled with αSMA antibody and dextran in human 
and mouse tissues. Scale bars: 100 µm (left), 50 µm (right). 

 

We then addressed how SARS-CoV-2 might impact the brain by examining the 
heads of mice injected with Alexa-647-conjugated Spike S1 protein (Fig. 21). We 
found substantial Spike protein accumulation in the skull marrow niches. Notably, 
we detected the Spike protein in the channels connecting the skull bone marrow 
and the meninges, suggesting translocation of Spike S1 protein between the skull 
and meninges. Similarly, the Spike S1 protein accumulated in the marrow of other 
mouse bones including the tibia and femur, indicating its capacity to reach bone 
marrow niches in general (Fig. 22). As control, ovalbumin was not detected in 
brain or bone marrow. 
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Figure 22. Spike S1 protein homes in mouse CNS borders: skull marrow and meninges. 

Visualization of Spike S1 protein in the intact mouse head. Scale bars: 1 mm. Representative 
sagittal images of the skull bone marrow, SMCs, and meninges. Arrow heads indicate Spike S1 
protein in SMCs. Arrow heads indicate Spike S1 protein in SMCs. Scale bars: 100 µm. 

 

3.4 SARS-CoV-2 homing in human skull marrow and 

meninges niches 

The skull bone marrow has been characterized as a myeloid cell reservoir for the 
meninges and CNS parenchyma, enabled by the channels between the skull mar-
row and meninges (151–153). In another mouse model with bacteria-induced 
meningitis, a small amount of bacteria transit from perivascular CSF through skull 

Figure 21. Spike S1 protein homes in mouse bone marrow. Representative images of mouse 
skull marrow and bone marrow of tibia and femur. Scale bars: 100 µm and 500 µm respectively. 
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channels into marrow cavities (154). Therefore, we hypothesized that the skull 
marrow and meninges channel may also facilitate SARS-CoV-2 virus entrance 
into the brain. 

We looked at the distributions of SARS-CoV-2 and Spike proteins in COVID-19 
human tissues and confirmed our finding in mouse model that the Spike S1 pro-
tein accumulates at the CNS borders and in the brain (n = 11 different COVID-19 
cases, Table 1).  

We dissected the skull with the underlying dura from COVID-19 human patients 
and stained with the Spike protein antibody and PI using SHANEL protocol (121). 
We identified the Spike protein in COVID-19 human skull bone marrow niches, 
SMC, and meninges using three-dimensional reconstruction corroborating the 
mouse data (Fig. 23). There was no Spike protein labeling in control individuals 
without SARS-CoV-2 infection. 

 
Figure 23. Spike protein in COVID-19 patient skull and meninges. Representative images of 
Spike protein antibody and PI labeling in the COVID-19 patient skull with meninges. The dura 
mater is segmented manually based on autofluorescence and imported for 3D reconstruction in 
Imaris. Non-COVID-19 sample is used as a control. Scale bars: 400 µm (left), 70 µm (middle and 
right). 

 

Imaging vessels via CD31 labeling, we found that about half of Spike protein ac-
cumulated outside of the blood vessels in the skull marrow niches (Fig. 24), sug-
gesting the homing of Spike protein to the patient’s skull marrow. 
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Figure 24. Spike protein homes in COVID-19 patient skull and meninges. Representative 
images of Spike protein antibody and CD31 labeling in the COVID-19 patient skull with meninges. 
Arrowheads indicate Spike protein homing in the skull marrow niche. Scale bars: 500 µm (left), 
50 µm (middle and right). Quantification of Spike protein colocalization with CD31 signal in 6 
optical sections. Data are mean ± SEM. 

 
Given the potential for infected cells to release a significant number of free solu-
ble Spike protein subunits (155), we aimed to check whether the immunostaining 
of Spike protein in the skull and meninges only resulted from the circulating pep-
tide or the presence of virus particle. The examination of SARS-CoV-2 RNA by 
RT-PCR in tissues from infected patients showed positive results only in 2/10 
skull and 2/5 meninges of patients who died from COVID-19. In these PCR-pos-
itive samples, we confirmed the virus infection by coronavirus structural protein 
nucleocapsid staining (Fig. 25) as complementation to Spike protein staining. In 
contrast, we found viral Spike protein in all skull and meninges samples evaluated 
using confocal microscopy. These findings demonstrated that the skull and me-
ninges were infected with SARS-CoV-2. The presence of Spike protein in the 
skull and meninges tissues in the absence of viral load (PCR negative) shows 
that Spike protein has a longer half-life than SARS-CoV-2 in the skull marrow 
niches.  
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Figure 25. SARS-CoV-2 infection in human skull and meninges. Representative image of 
nucleocapsid protein in COVID-19 patient skull with meninges. Scale bar: 400 µm. Representative 
confocal images of Spike protein and nucleocapsid protein in human skull marrow and meninges. 
Scale bars: 20 µm. 

 

In addition, we identified co-expression of ACE2 and Spike protein in the COVID-
19 cases (Fig. 26). The level of ACE2 decreased in the Spike protein-positive 
regions of COVID-19 patient meninges compared to control meninges, which is 
consistent with a report that SARS-CoV-2 Spike protein affects endothelial func-
tion by reducing ACE2 (156). 

 

 

 

Figure 26. Colocalization of Spike protein with ACE2. Representative confocal images of 
Spike protein antibody and ACE2 antibody labeling in the COVID-19 patient and control meninges. 
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Scale bars: 20 µm. Quantification of the ACE2 positive region in 6 fields of view. n = 3. Data 
represent mean ± SD. Two-tailed unpaired Student's t-test (p = 0.0142). *p < 0.05. 

 

To investigate the effects of SARS-CoV-2 infection and Spike protein accumula-
tion at the CNS borders, we performed mass spectrometry-based label-free 
quantitative proteomics analysis on region matched tissues from COVID-19 vs. 
control (non-COVID-19) human tissues. The clinical samples were comprised of 
8 post-mortem samples of human skull and meninges tissues from the COVID-
19 deceased victims and control donors. The MS data were generated in data-
independent acquisition mode, and DIA-NN was used to analyse the raw data 
against the Human Uniprot database. 5975 protein groups were identified across 
the skull marrow samples from COVID-19 and control, with Pearson correlation 
values ranging from 0.36 to 0.92 between the two groups (Fig. 27). PCA plot 
showed the clear segregation of the skull marrow samples from COVID-19 and 
control group.  

 

 
Figure 27. Proteomics information of COVID-19 patient and control skull marrow. Protein 
numbers, PCA plot and Pearson correlation map of skull marrow samples are listed here. 

 

Out of the 519 proteins differentially expressed in the COVID-19 skull marrow, 
we identified 271 upregulated proteins and 248 downregulated proteins (Fig. 28). 
Some of the SARS-CoV-2 host-cell entry factors including neuropilin 1 (NRP1), 
neuropilin 2 (NRP2) (102) and dipeptidyl peptidase 4 (DPP4, also known as CD26) 
(157,158), were significantly decreased in COVID-19 skull marrow. While other 
coronavirus entry factors such as basignin (BSG, also known as CD147) and 
alanyl aminopeptidase (ANPEP, also known as CD13) (157), and cathepsin B 
(CTSB) (33) were not changed. Using KEGG pathway analysis to relate the 
dysregulated proteins to biological processes whose activity is modulated in re-
sponse to SARS-CoV-2, we discovered the most significantly dysregulated pro-
teins were involved in the coronavirus disease pathway or in the complement and 
coagulation cascades (Fig. 28). The majority of the coronavirus disease 
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pathway's proteins were upregulated in COVID-19 patients' skull marrow, this in-
cludes various large and small ribosomal subunit proteins and suggests COVID-
19 related immune response due to virus hijacked human cells and replication in 
the skull marrow of COVID-19 patients. 

We discovered that the complement components were significantly 
downregulated, C1, C3, C4, C5, C8, and factor H in the skull marrow of these 
non-survivor COVID-19 patients were decreased compared to controls (Fig. 28).  

 

 

We also identified some of the key regulators of Interferon alpha/beta signaling 
cascades, for example, Interferon-stimulated gene 20 kDa protein (ISG20), Inter-
feron-induced GTP-binding protein Mx1 (MX1), and Signal transducer and acti-
vator of transcription 1-alpha/beta (STAT1), an important regulator of IL-6 signal-
ing were all upregulated in the skull marrow of COVID-19 patients (Fig. 29), 
thereby indicating the active antiviral inflammatory response in skull marrow of 

Figure 28. Dysregulated proteins and enriched pathways in COVID-19 patient skull mar-

row. Volcano plot between COVID-19 and control skull marrow (p < 0.05, LogFC = 1). n = 4 
biological replicates. 
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COVID-19 patients. Such inflammatory response induces the cytokine storms in 
COVID-19 cases, which is further associated with increased accumulation and 
degranulation of neutrophils (159,160). Some of the proteins involved in neutro-
phil degranulation such as Interleukin-18 (IL-18), Interleukin enhancer-binding 
factor 2 (ILF2), Heat shock protein HSP 90-alpha (HSP90AA1), High mobility 
group protein B1 (HMGB1) were also upregulated in the skull marrow of COVID-
19 patients. 

Furthermore, we found expression changes in proteins related to the VEGFA-
VEGFR2 and PI3K-AKT signaling pathways, which are implicated in COVID-19 
infections and are associated with coagulopathies, e.g., HSP90AA1, HSP90AB1, 
and GNB1 which were upregulated and EGFR, IGF2, FN1 which were downreg-
ulated (Fig. 29).  

  

Figure 29. Dysregulated VEGFA-VEGFR2 signaling pathway and PI3K-AKT signaling path-

way in COVID-19 patient skull marrow. 

 

In the meninges, we identified 4171 protein groups across all samples with Pear-
son correlation coefficients between 0.41 and 0.98. The PCA plot clearly distin-
guished the meninges samples from the COVID-19 group and the control group 
(Fig. 30). 
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Figure 30. Proteomics analysis of COVID-19 patient and control meninges. Protein numbers, 
PAC plot and Pearson correlation map of meninges samples are listed here. 

218 differentially expressed proteins were identified, with 126 upregulated and 92 
downregulated in the meninges (Fig. 31). Neutrophil migration directly from the 
channels that link skull marrow and meninges has been reported in the inflam-
matory events (151). Our pathway analysis discovered that proteins associated 
with the neutrophil extracellular traps (NETs) formation were significantly upreg-
ulated in the meninges of COVID-19 patients (Fig. 31). These include fibrinogen 
(FGA, FGB, FGG), cathepsin G (CTSG), and myeloperoxidase (MPO) (Fig. 32). 
FGA, FGB, and FGG not only play a role in NETs but also in the formation of 
blood clots. The NETs increase in COVID-19 meninges could be due to the up-
regulation of HMGB1 in the skull marrow niches, as extracellular HMGB1 stimu-
lates NETs formation (161). 

 

Figure 31. Dysregulated protein and pathways in COVID-19 patient meninges. Volcano plot 
between COVID-19 and control meninges (p < 0.05, LogFC = 1.5). n = 4 biological replicates. 
KEGG pathway analysis shows the most dysregulated pathway in COVID-19 meninges when 
comparing to controls. 
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Figure 32. Dysregulated Neutrophil extracellular trap formation and PI3K-AKT signaling 

pathway in COVID-19 patient meninges. 

 

We also noticed the overexpression of calprotectin (S100A8/A9) proteins in the 
meninges, which play a pro-inflammatory role in the migration of neutrophils (Fig. 
33). Specifically, S100A8 has recently been hypothesized to be involved in hyper-
inflammation in severe COVID-19 (162). Higher inflammation would induce 
thrombosis (163). We also identified upregulation of platelet factor 4 (PF4) and 
Platelet basic protein (PPBP) in the meninges tissue (Fig. 33). 

 

Figure 33. Chord diagram showing the most enriched biological processes with their dif-

ferentially expressed proteins in the meninges of COVID-19 patients. 
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These data demonstrate that neutrophils, constituting the predominant cell pop-
ulation in the skull bone marrow niches (164), might be moving into the meninges 
and inducing both formation of NETs and a pro-inflammatory response. Indeed, 
neutrophil migration directly from channels between skull marrow and meninges 
has been reported in inflammatory events (151,152). We examined skull samples 
of COVID-19 patients with general immune cell marker CD45 and with the Spike 
protein (Fig. 34). Our data clearly showed colocalization of immune cells with the 
Spike protein, confirmed that the Spike protein interacts with the immune cells in 
skull marrow and meninges, suggesting a potential immune activation via protein 
binding. Spike protein accumulation in skull-meninges niches and gene expres-
sion changes in the brain 

Figure 34. Representative images of Spike protein and CD45 antibody labeling in COVID-

19 patient skull with meninges. Yellow arrow indicates the colocalization of Spike protein and 
CD45. Scale bars: 300 µm (left), 150 µm (right). 
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Through staining Spike protein and vasculature in the meninges attached to the 
brain tissues of COVID-19 patients, we identified the Spike protein both in the 
meninges and brain tissues (Fig. 35). However, we could not detect the nucle-
ocapsid protein in the patient brain tissue (Fig. 36) again suggesting a longer half-
life of Spike protein compared to SARS-CoV-2.  

Figure 35. Representative image of Spike protein and collagen IV antibody staining in 

COVID-19 patient brain with meninges. The yellow arrow indicates Spike protein in meninges 
and brain parenchyma. Scale bar: 1000 µm. 

 

 
Figure 36. Representative confocal images of nucleocapsid staining in COVID-19 patient 

lung and brain tissue. Scale bars: 20 µm (left), 10 µm (right, zoom-in). 
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Proteomics study of brain tissues (COVID-19 cases vs. controls) showed clear 
segregation of the brain samples from the COVID-19 and control group in the 
PCA plot (Fig. 37). The predominant dysregulated pathways were the VEGFA-
VEGFR2 signaling pathway, neutrophil degranulation, COVID-19, and PI3K-AKT 
pathways (Fig. 38), pathways that were also differentially expressed in the skull 
marrow.  

 

The proteins related to the VEGFA-VEGFR2 signaling pathway that were com-
monly differentially expressed in the skull marrow and brain samples include: 
RHOA, P4HB, HSP90AA1, CALR, STIP1, and STAT1 (Fig. 29 and 38). The Ras 
homolog family member RHOA was upregulated in the brain and skull tissues. 
Reportedly, the viral Spike protein leads to the activation of RHOA, which triggers 
the disruption of the blood-brain barrier (165). It has been suggested that PI3K 

Figure 37. PCA plot of COVID-19 patient and control brain proteomics. 

Figure 38. The dysregulated proteins in the brain of COVID-19 patients are enriched in the 

VEGFA-VEGFR2 signaling pathway, Coronavirus disease 19, neutrophil degranulation and 

PI3K-AKT pathway. 
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regulates the RHOA GTPase (166) and activates RHOA in the neutrophil degran-
ulation pathway. This GTPase and other protein family members in human neu-
trophils regulate actin dynamics and cell migration (166). Protein disulfide-iso-
merase (P4HB) was also common to the skull and brain tissues, upregulation of 
this protein was associated with thrombosis in COVID-19 patients (167). The heat 
shock protein HSP90AA1 was upregulated in the skull and brain samples. Earlier 
reports suggested a positive correlation in this gene expression with SARS-CoV-
2 RNA and associated with the disease progression (168). This protein may as-
sist in the protein folding of newly synthesized viral proteins. Notably, HSP90AA1 
is also listed as related to the neutrophil degranulation pathway in KEGG. In re-
sponse to HSP90AA1, calreticulin (CALR) is known to be one of the heat shock 
proteins that greatly enhance viral Spike accumulation and immunobiological ac-
tivity (169). The Stress-induced-phosphoprotein 1 (STIP1), an HSP90AA1 co-
chaperone (170), was upregulated in both tissues. It has been found that the 
protein interacts with SARS-CoV-2 proteins Nsp12, Orf3a, Orf8, and E (171). The 
transcription factor STAT1 is another common upregulated protein between skull 
marrow and brain; reportedly, SARS-CoV-2 blocks STAT1 translocating into cell 
nucleus and reduces transcription of interferon response-related genes (172).  

 

Among the VEGFA-VEGFR2 signaling pathway-related proteins, ADP-ribosyla-
tion factor 6 ARF6 was identified only in the brain tissue as an upregulated protein. 
A recent report suggested that ARF6 mediates viral entry by regulating endocy-
tosis (173). Actin Gamma 1 (ACTG1) was also upregulated in the brain tissue. Its 
expression was reported to correlate with disease severity (174). We identified a 
subunit of 19S regulatory complex PSMD11 as a downregulated protein in brain 
samples of COVID-19 patients. Myc box-dependent-interacting protein 1 (BIN1), 
an Alzheimer's disease risk gene was also identified as an upregulated protein in 
the brain tissue (175). However, detailed functional association of PSMD11 and 
BIN1 proteins in COVID-19 pathogenesis was not performed at the time of writing.  

In the PI3K-AKT signaling pathway, which was differentially regulated in all three 
tissue types investigated here, six proteins were commonly identified in the brain 
and skull tissues: COL4A1, COL4A2, GNB1, HSP90AA1, LAMA2, LAMC1 (Fig. 
29 and 38). The brain and skull both had decreased levels of collagen alpha-1(IV) 
chain (COL4A1), but collagen alpha-2(IV) chain (COL4A2) had increased levels 
in the brain but decreased levels in the tissues of the skull. COL4A1 protein has 
a role in regulating cerebrovascular homeostasis, although a role in COVID-19 
pathogenesis has not been reported yet (176). At the transcript level, COL4A2 
was downregulated in COVID-19 brain samples (177). Guanine nucleotide-bind-
ing protein G(I)/G(S)/G(T) subunit beta-1 (GNB1) was upregulated in the post-
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mortem brain tissue of COVID-19 patients and has been associated with intellec-
tual disability (178), but no associations have—to our knowledge—been made 
with respect to COVID-19 pathogenesis previously. Components of the extracel-
lular matrix were reported to be downregulated in COVID-19 lung tissues (179). 
We observed downregulated expression of laminin subunit alpha-2 (LAMA2), 
laminin subunit beta-2 (LAMB2), and laminin subunit gamma-1 (LAMC1), indicat-
ing a loss of structural integrity of the infected tissues. Activation of the pro-
teasome-mediated protein degradation pathways in COVID-19 infection is well 
established (180). Heat shock protein HSPA1B was reported to be upregulated 
at the transcript level and we also observed the same in our dataset along with 
other HSPs, including HSPA8, HSP90AA1, HSP90B1and HSP90AB1 (181). 
These proteins may assist in the protein folding of newly synthesized viral pro-
teins. As reported earlier, the RNA binding protein PA2G4 was also upregulated 
in COVID-19 conditions (182). A potential strategy to target SARS-CoV-2 has 
been through targeting RNA binding proteins among others (183). Another up-
regulated protein was GTPase KRas (KRAS), which was only identified in the 
brain tissue. Interestingly, a drug screen previously identified drugs used to treat 
KRAS-mutated cancers as potential drugs to inhibit replication of SARS-CoV-2 
(184). We identified TSC2, an autophagy initiation-related molecule among the 
downregulated proteins. The downregulation of the autophagy pathway during 
SARS-CoV-2 has been reported earlier (185). Overall, in the brain parenchyma 
sample, we observed dysregulation of the regulators of protein homeostasis and 
maintenance of the blood-brain barrier. 

In addition, we examined micro-bleeds and found in all four brain tissues of 
COVID-19 patients analyzed using Prussian blue staining, compared to only one 
out of four in control brain tissues (Fig. 39). 

 
Figure 39. Representative images of Prussian blue staining in COVID-19 patient and con-

trol brain. Cell nucleus in red. Scale bars: 20 µm. 

 

In summary, we discovered SARS-CoV-2 infection in the skull marrow and me-
ninges. Our proteomics data suggest a correlated inflammatory state associated 
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with complement, coagulation, and neutrophil as well as dysregulated VEGF sig-
naling pathway between the skull marrow and brain of COVID-19 patients (Fig. 
40). Brain inflammation and probable vascular injury may be a result of virus 
homing and Spike protein shedding that accumulates at the brain border. 

 

Figure 40. Model of SARS-CoV-2 Spike protein accumulation in the CNS borders and Spike-

induced molecular changes. 
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4. Discussion  

4.1 Whole mouse clearing as a platform to study the long-

term effect of SARS-CoV-2 infection and inspect specific 

biodistribution of Spike protein 

The SARS-CoV-2 virus infects cells by binding to the ACE2 receptor on their sur-
face. Human and mouse ACE2 both have 805 amino acids, eight crucial residues 
in human ACE2 are involved in its ability to bind to viral Spike protein, however 
five of these amino acids are different in mouse ACE2 (186). Similarly, mouse 
ACE2 was reported to bind the S1 domain of SARS-CoV less efficiently than hu-
man ACE2 (187). Therefore, the binding of Spike S1 in wild-type mice would be 
lower than that in human ACE2 transgenic mice (188). The K18-hACE2 mouse 
model has been generated since the SARS-CoV outbreak in 2003 (189) and is 
also widely used as a model to study SARS-CoV-2 (190). There are other line-
ages of transgenic mice that express humanized ACE2, including CMV-hACE2 
(191) and Syn-hACE2 (192) mice, as well as hACE2 knock-in (hACE2-KI) mice 
(193), mice transduced with adenovirus type 5-expressing hACE2 (Ad5-hACE2) 
(194). 

Here, we used the S1 protein from SARS-CoV-2 Alpha variant, which consists of 
the N501Y mutation and has been shown to infect wild-type mice through binding 
with mouse ACE2 (195,196), to identify all potential SARS-CoV-2 tissue targets. 
In addition to the expected target organs such as the lung and kidney (197,198), 
our results showed an accumulation of virus and Spike protein in the skull marrow 
and brain meninges. The localization of the Spike protein in optically transparent 
mice brain tissues recapitulated the tissue distribution we observed in various 
post-mortem organs from COVID-19 patients. We can still improve this experi-
mental model by using real SARS-CoV-2 virus infection in an hACE2 mouse. 

 

With a biosafety level three laboratory, we can test and compare the infection of 
different variants of virus in different mouse model at different dosage and time 
points, and whole-body tissue clearing to study the distribution. The delivery route 
is also important to simulate human infection. For example, intranasal or aerosol 
infection would be better than intravenous injection to study the virus tropism.  

To better understand how SARS-CoV-2 infection will progress over time and be-
cause COVID-19's long-term consequences are still a significant concern, we 
could utilize this method with the combination of different reporter mouse strains 
to study different organ systems.  
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Our unbiased assessment of the fluorescently labeled Spike protein in whole 
mouse bodies provides clues of tissues that could potentially be targeted by 
SARS-CoV-2 infection. However, other cellular factors might limit the ability of the 
virus to enter a replicate cycle in different cell types. We identified several candi-
date proteins with no previous association with COVID-19, especially those ear-
lier associated with neurological diseases, supporting the power of combining 
unbiased imaging with molecular analysis. Our findings in the mouse model re-
produce our findings in the human brain, emphasizing the relevance of our mouse 
model.  

 

4.2 Spike protein accumulation in skull-meninges niches links 

to brain proteomics change 

Even in mild COVID-19 cases, significant brain tissue loss urges a quick 
exploration of the mechanisms of brain damage caused by SARS-CoV-2 (199). 

SARS-CoV-2 Spike protein was detected in the human skull bone marrow, 
meninges, and brain tissues and accumulated along with the viral nucleocapsid 
protein in the human skull bone marrow niches, SMC, and meninges suggesting 
that the virus infects the skull bone marrow and meninges. In contrast, only the 
Spike protein was detected in the brain parenchyma. The detected Spike protein 
could be either a residual viral infection in the brain that has been cleared, or it 
could have infiltrated the brain from the cerebral circulation. Either case suggests 
that the Spike protein could have a long lifetime in the body (200). A recent 
preprint supports this notion in medRxiv that suggests the persistence of Spike 
protein in plasma samples up to 12 months post-diagnosis (201). 

Although many studies in humans, animal, and cell line models addressed the 
molecular underpinning of SARS-CoV-2 infection, very few currently link the 
brain-associated pathologies evident in severe COVID-19 cases with the 
changes in the host proteome of the brain and adjacent tissues (202). In this study, 
the spatial proteomics datasets of COVID-19 infected brain samples provide 
leads to study Spike-specific changes in the brain. Our study benefited from the 
simultaneous analysis of compartments adjacent to COVID-19 infected 
individuals, namely the skull marrow and the meninges. 

The 29 proteins that the SARS-CoV-2 viral genome encodes (203) directly or 
indirectly regulate the expression of many host proteins. Our molecular analysis 
suggests activation of immune response in the skull-meninges-brain axis, 
potentially via recruiting and increasing the activity of neutrophils similar to what 
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has been reported in the respiratory tract (139,204). Individual viral proteins have 
been suggested to exert physiological effects in the absence of other viral 
components, especially the Spike protein which has e.g. been reported to induce 
the expression of inflammatory cytokines and chemokines in macrophages and 
lung epithelial cells and to compromise endothelial function (148,156,205–208). 

 

Trying to understand the changes in host cell expression, we find that certain host 
processes are most consistently dysregulated in individual tissues. In the skull 
marrow, predominant dysregulated pathways were the coronavirus disease 
pathway and complement and coagulation cascades as reported previously for 
peripheral organs of patients with severe COVID-19 (209). The increased 
expression of pro-inflammatory proteins, including calprotectin and proteins 
associated with thrombosis such as PF4 and PPBP, illustrate that the viral 
proteins act as an inflammatory stimulus that leads to the development of a 
significant immune response in the brain, although we cannot distinguish 
between direct effects by viral factors and systemic effects of the disease. 

In the meninges, we find that a major consequence of the inflammatory state is 
an upregulation of proteins involved in the release of chromatin webs and lytic 
proteins by neutrophils in the extracellular space to form NETs, a process known 
as NETosis to contain the infection. The upregulation of NET proteins such as 
FGA, FGB and FGG supports presumably leads to the formation of high levels of 
NETs in the skull-meninges-brain axis and the infiltration of circulating neutrophils 
into the meninges. The presence of NETs could further propagates the 
inflammation (161), potentially inducing tissue damage, including endothelium 
damage (210), leading to pathologies such as thrombosis and alterations in the 
coagulation process (211).  

In the brain, the neutrophil degranulation pathway was the most prominent path-
way that was only upregulated in the brain, suggesting an active immune re-
sponse in the brain parenchyma. 

The dysregulation of the VEGFA-VEGFR2 and PI3K-AKT pathways was 
detected in both the skull marrow and the brain. The upregulation of these 
pathways might explain the observed propensity of COVID-19 patients to 
develop mini-infracts in the brain parenchyma (212,213) and our observation of 
an increase level of micro-bleeds in COVID-19 patients, potentially contributing 
to the observed brain damage in the COVID-19 patients in acute and chronic 
stages. Alternatively, the upregulation of the VEGFA-VEGFR2 pathway could 
also reflect the initiation of tissue repair after the virus-induced vascular injury. 



4 Discussion 69 

A common feature of all three tissues is the activation of neutrophil related 
pathways, in the form of neutrophil degranulation in the brain and the skull 
marrow or in the form of NET formation in the meninges. This common feature 
suggests that neutrophils may play a key role in maintaining inflammatory 
responses in and around the central nervous system. 

We identified a number of candidate proteins with no previous association with 
COVID-19, especially those earlier associated with neurological diseases such 
as Ras-related protein Rab-8B (RAB8B), Ras-related protein Rab-6 (RAB6A, 
RAB6B) and EF-hand domain-containing protein D2 (EFHD2). Notably, role of 
these proteins have been associated with disorders such as Parkinson's 
disease, Alzheimer’s disease and dementia (214,215). This clearly supports the 
power of combining unbiased imaging with molecular analysis.  

The proteins and pathways identified to be differentially regulated in the brain, 
skull marrow and meninges provide leads to investigate the molecular 
mechanisms of immediate and long-term consequences of SARS-CoV-2 
infections for the human brain. The common dysregulation of neutrophil 
activation and PI3K-AKT pathways in the skull, meninges, and brain tissue 
demonstrated a common effect of SARS-CoV-2 infections on immune system 
along the skull-meninges-brain axis. These molecules or molecular pathways 
can be leveraged as therapeutic targets to prevent or treat brain related 
complications in COVID-19. 

Our data may also suggest a mechanism for the virus into the central nervous 
system. In both mouse and COVID-19 human tissues we find Spike protein in 
the SMCs, which the virus or virus components could use to travel from the 
skull marrow to meninges and from there to the brain parenchyma (151–
153,216). Of course, the virus might take other routes to reach the brain in a not 
mutually exclusive way. E.g. the virus could directly traverse the 
cerebrovasculature to reach the brain parenchyma or be carried there by 
immune cells (e.g., via neutrophils or phagocytic cells). More data will be 
needed to establish the most common route of brain invasion by SARS-CoV-2, 
which might differ between different parts of the brain. Brain invasion of virus-
shed Spike protein found in some COVID-19 cases has been linked to a 
compromised blood-brain-barrier (100,99), and to trafficking along the olfactory 
nerve or vagus nerve (101). Here, we suggest an alternative scenario wherein 
SARS-CoV-2 Spike protein reaches first the skull marrow and then the 
meninges before entering the brain.  

Spike-induced alterations in the skull-meninges-brain axis presents diagnostic 
and therapeutic opportunities as both skull and meninges are easier to access 
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than brain parenchyma. Panels of such proteins tested in plasma samples of 
COVID-19 patients might provide an early prognosis of brain-related 
complications. 

 

4.3 mRNA vaccine encoded Spike protein may contribute to 

adverse effects 

The first company that received emergency validation from the WHO since the 
pandemic was Pfizer/BioNTech after the mRNA vaccine was authorized against 
COVID-19 for emergency use on December 31, 2020. By January 2021, nine 
vaccinations in all had received international approval for emergency use (217). 

Of note, mRNA Vaccine encoded the Spike protein of SARS-CoV-2 to stimulate 
the body to establish immunity. Although adverse effects of COVID-19 vaccine 
are rare, some recent studies demonstrated that vaccination recipients had a 
higher risk of cardiac and neurological issues (218–220), leading to the Spike 
hypothesis that the vaccine-encoded antigen can contribute to adverse effects 
(221). There are reports that Spike protein alone could result in vascular endo-
thelial damage (148,156). The half-life of Spike protein and its potential impact 
on the vascular system needs further study. 

How the vaccine product would distribute in the body of vaccinated individuals, 
remain elusive. Similarly to our study, lipid nanoparticles conveying mRNA en-
coding the Spike protein can be injected into the mouse to evaluate the biodistri-
bution of Spike protein in the whole body through different routes, dosages, and 
time points. In this context, the whole mouse tissue clearing technology offers an 
invaluable and powerful tool to assess the efficacy of vaccines and examine their 
long-term effects.  
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5. Summary  

COVID-19 is a pandemic that has had a profound impact on lives and communi-
ties around the world. In addition to the clinical manifestations of patients during 
the acute phase, symptoms not directly related to the respiratory system still ap-
pear several months or even years after the recovery. The present study aims to 
explore the sites of SARS-CoV-2 virus infection throughout the body, and to un-
derstand the mechanism of COVID-19 related neurological complications. 

We demonstrated that various internal organs can be bound by the SARS-CoV-
2 Spike protein, the skull bone marrow and meninges are also susceptible sites 
to the virus; elevated inflammatory responses and compromised vascular home-
ostasis were found in the skull bone marrow of COVID-19 patients. The accumu-
lation of virus and Spike protein in the skull marrow can spread to the meninges 
through the reported skull-meninges connections and potentially facilitate brain 
access. The Spike protein can be detected even though viral load was not de-
tectable by RT-PCR in the examined brain samples of COVID-19 patients, sug-
gesting the persistence of viral shedding proteins in the brain tissue. And it is 
worth noting that the Spike protein itself can also cause tissue damage. 

Using proteomic analysis, we discovered the consistent inflammatory response 
in the skull marrow, meninges and brain tissue of COVID-19 patients, which is 
highlighted by the complement activation, neutrophil extracellular trap formation 
and neutrophil degranulation. Proteins involved in the PI3K-AKT pathway were 
commonly dysregulated in the skull marrow, meninges and brain tissue of 
COVID-19 patients. We also identified a number of dysregulated proteins with no 
previous association with COVID-19 in the brain, especially those earlier associ-
ated with neurological diseases such as RAB8B, RAB6A, RAB6B and EFHD2. 
These pathways and protein candidates could be potential targets to prevent or 
treat the neurological complications of COVID-19. 
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Appendix A:  

I have also contributed to another study exploring the mechanism of Alzheimer’s 
disease with tissue clearing technology in the whole mouse brain. The manuscript 
was submitted to bioRxiv, DOI:10.1101/2021.11.02.466753, and has been ac-
cepted for publication at Cell. 

With the help of intact brain imaging, we found the earliest dense core amyloid 
plaques occurring at five weeks old 5xFAD mouse hippocampus. After 3D recon-
struction and positioning of the brain, we could dissect the plaques with spatial 
information and proceed with proteomics analysis. Briefly, 4 to 6 weeks old 
5xFAD mouse brains were stained with Iba1 antibody and Congo red with SHA-
NEL protocol. We identified some proteins associated with amyloid pathology and 
some novel molecules which might help learn the progression of Alzheimer’s dis-
ease at the initial stage.  
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