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2. Abbreviations and Acronyms 

 

AI    Artificial intelligence 

AJCC   American Joint Committee on Cancer 

CRAN   The Comprehensive R Archive Network 

CT    Computed tomography 

DNA   Deoxyribonucleic acid 

ENT   Ear, nose, and throat 

FDG   18F-2-Fluor-2-deoxy-D-glucose 

HNSCC  Head and neck squamous cell carcinoma 

HPV   Human papillomavirus 

LRP   Locoregional progression 

ML    Machine learning 

OPSCC  Oropharyngeal squamous cell carcinoma 

PCR   Polymerase chain reaction 

PET   Positron emission tomography 

RNA   Ribonucleic acid 

TCIA   The Cancer Imaging Archive 

TNM   Tumor-node-metastasis 

UICC   Union for International Cancer Control 

VOI   Volume of interest 
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4. Introduction 

4.1 Oropharyngeal Squamous Cell Carcinoma 

Oropharyngeal squamous cell carcinomas (OPSCC) elicited considerable interest 

across various research fields in recent years, given the dramatic increase in incidence 

of human papillomavirus (HPV)-attributable OPSCC in numerous regions around the 

world, including Europe and North America [1, 2]. Notably, this marked trend, which 

some termed a cancer epidemic [1, 3], contributed to the adoption of primary preventive 

measures: Prophylactic HPV vaccination is now recommended for boys aged 9-14 years 

in addition to the already established vaccination for girls in Germany and elsewhere [4].  

OPSCC arise in the squamous epithelial lining of pharyngeal subsites collectively termed 

the oropharynx, including the inferior surface of the soft palate and uvula, the tonsillar 

pillars, the palatine tonsils, the glossotonsillar sulci, the base of the tongue, the 

valleculae, and the portion of the lateral and posterior pharyngeal walls extending 

between the level of the free border of the soft palate and the level of the superior surface 

of the hyoid bone [5].  

In 2018, oral and pharyngeal cancers accounted for 1,9 % and 3,7 % of all new cancer 

diagnoses in German females and males, respectively [6, 7]. Approximately 38 % of all 

oral and pharyngeal cancers were localized in the oropharynx [7]. Squamous cell 

carcinoma is the most frequent histological type, representing 84 % of oral and 

pharyngeal cancers [6].  

4.1.1 Etiopathogenesis 

In carcinogenesis of HPV-negative head and neck squamous cell carcinomas (HNSCC), 

chronic exposure to mutagens such as tobacco and alcohol typically leads to progressive 

accumulation of numerous genetic and epigenetic alterations, which may present 

clinically as precursor lesions such as leukoplakia, and ultimately cancer [8, 9]. 

Frequently mutated genes thought to act as cancer driver genes include CDKN2A (tumor 

suppressor gene, encoding the p16INK4A protein) and TP53 (tumor suppressor, encoding 

the p53 protein), which are key actors in cell cycle control; FAT1 and NOTCH1 (tumor 

suppressors, encoding eponymous proteins), whose inactivation may disinhibit WNT 

signaling; and KMT2D (tumor suppressor, encoding Histone-lysine N-

methyltransferase), which is involved in epigenetic regulation [8, 10].  

In addition to tobacco and alcohol, sustained infection of epithelial cells with high-risk 

HPV strains has been identified as a major exogenic risk factor for OPSCC – especially 

for cancer in the palatine and lingual tonsils [1, 3, 8]. Sexual transmission is the principal 
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cause for oral and pharyngeal HPV infection, with the lifetime number of oral intercourse 

partners considered the decisive factor [1, 11-13]. On a molecular level, carcinogenesis 

of HPV-associated OPSCC is remarkably different from the HPV-negative form. 

Expression of viral oncoproteins E6 and E7 initiates malignant transformation of 

predominantly tonsillar crypt epithelial cells: E6 binds and induces proteolysis of the p53 

protein, and E7 inactivates retinoblastoma pocket proteins (pRB, p107 and p13, tumor 

suppressor proteins), leading to dysfunctional cell cycle control, inhibited apoptosis and 

cell immortalization, and therefore setting the stage for accumulation of mutations and 

carcinogenesis [3, 8, 14-16].  

These findings, among others, support the notion that two distinct OPSCC entities prevail 

in the current epidemiological landscape: HPV-associated and HPV-negative cancers. 

This is a common theme in the work presented. We sought to investigate the utility of 

advanced imaging features of OPSCC in prediction of HPV “status” and in 

prognostication of outcome of HPV-associated cancers.  

4.1.2 Clinical Presentation and Diagnostic Workup 

Signs and symptoms of OPSCC may include palpable or visible neck masses, sore 

throat, dysphagia, globus sensation, odynophagia, otalgia, bleeding and hemoptysis, 

voice changes, and B-symptoms [9, 17]. Patients with HPV-associated OPSCC are more 

likely to note a neck mass as the initial symptom, while HPV-negative patients tend to 

complain of a sore throat, dysphagia or odynophagia first [9, 17]. HPV-positive patients 

tend to present with smaller primary tumors, and more advanced lymphadenopathy, 

compared to their HPV-negative counterparts [3, 9, 16, 18]. HPV-driven OPSCC tend to 

affect younger, healthier, patients with higher socioeconomic status who are more 

frequently male and more often lack a significant smoking history [1, 9, 16, 18, 19]. 

Initial diagnostic OPSCC workup typically involves clinical examinations including an ear-

nose-throat (ENT)-examination, imaging studies such as B-mode sonography, computed 

tomography (CT), magnetic resonance imaging or positron emission tomography 

combined with CT (PET/CT, see section 4.1.2.1), and a diagnostic panendoscopy under 

general anesthesia with tissue sampling for histopathological examination and HPV 

testing (see sections 4.1.2.2 and 4.1.3.1) [20-24]. The above examinations are essential 

for determining the cancer entity, anatomic location, and extent of the primary tumor and 

any regional or distant metastatic spread, for cancer staging (see section 4.1.3.2), and 

for detecting any synchronous malignancies or dysplastic precursor lesions [20-23]. The 

obtained findings, in addition to the patient’s performance status and personal 

preferences, will guide the therapeutic approach.  

In this work, we focused on pretreatment PET/CT imagery and applied advanced image 

analysis to facilitate molecular and prognostic characterization of OPSCC.  
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4.1.2.1 PET/CT Imaging 

Both CT and PET are cross-sectional diagnostic imaging techniques, which, if a sufficient 

number of cross sections is obtained, can generate digital volumetric representations of 

the scanned object. PET/CT combines a CT and a PET scanner in a single gantry and 

can therefore obtain co-registered CT and PET images, which may be digitally fused for 

anatomic localization of PET findings and attenuation correction of PET images [25].  

In CT scanners, an x-ray tube and diametrically opposite detectors synchronously rotate 

around the object [26, 27]. The attenuation of x-ray beams is measured as they pass 

through the patient at various angles of rotation, and the measurements are repeated 

regularly along the patient’s z-axis as they translate through the scanner [26, 27]. 

Computer algorithms reconstruct tomographic images from the raw data, wherein voxel 

values represent physical density expressed in Hounsfield units [26, 28].  

Intravenous injection of a radiotracer precedes PET imaging, allowing the tracer to 

distribute in the body and to accumulate in certain tissues, depending on its 

pharmaceutical characteristics. Radiolabeled glucose, namely 18F-2-Fluor-2-deoxy-D-

glukose (FDG), is the mainstay among radiotracers currently utilized in clinical oncologic 

PET [29]. Following cellular uptake, the enzyme hexokinase phosphorylates FDG, 

leading to metabolic “trapping” of the radiotracer in the cell [29]. Given the altered 

glucose-dependent metabolism of cancer cells, comparatively greater amounts of FDG 

accumulate therein, providing the image contrast for clinically viable PET [29]. As the 

radioisotope (18F in FDG) decays, positrons are emitted (beta plus decay) [30]. The 

positron travels a short distance, typically few millimeters, before interacting with an 

electron. This triggers a matter-antimatter-reaction known as annihilation, in which the 

particles’ masses are converted into a pair of 511 kilo electron volt photons [30]. The two 

photons are emitted in diametrically opposite directions (i.e., at almost exactly 180 

degrees to each other), and may hit detector elements arranged in detector rings, in the 

center of which the patient resides [30]. The scanner can now narrow down the location 

of the annihilation event to an approximately straight line connecting two opposing 

detector elements activated by the photon pair. After recording a great number of 

annihilations over a period of typically several minutes, a series of data processing steps 

is applied, including attenuation correction [30]. Computer algorithms reconstruct 

tomographic images, in which voxel values usually represent radioactivity concentration 

expressed in Becquerel per milliliter.  

In summary, CT and PET gather complementary information: CT measures physical 

density at high spatial resolution, thus reflecting structural/morphological tissue 

properties. FDG-PET indirectly measures glucose metabolism at lower resolution, thus 

reflecting functional properties. One objective of this work was to investigate whether 

combined analysis of tissue density features form CT and functional metabolism features 
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from PET would leverage greater value for molecular and prognostic characterization of 

OPSCC than CT or PET features alone.  

While essential for detection and staging of OPSCC, cross-sectional imaging provides 

few visual clues that would allow the reader to discern HPV-associated from HPV-

negative OPSCC [31-34]. We therefore aimed to investigate if advanced quantitative 

imaging features of OPSCC would enable precise differentiation.  

The role of PET/CT in initial workup and staging of non-recurrent OPSCC with non-occult 

primaries varies across different centers and geographic regions and is yet to be 

definitively established: However, a US National Comprehensive Cancer Network 

guideline [20] states that PET/CT is the preferred imaging modality to screen for distant 

metastases in patients with locoregionally advanced HNSCC and acknowledges a 

limited role in workup of nodal metastases; and a joint guideline by the European Head 

and Neck-, Medical Oncology- and Radiation Oncology-Societies [21] strongly 

recommends PET/CT to assess for distant metastases, with chest CT as a possible 

alternative. In Germany’s statutory health insurance system, especially reimbursement 

restrictions presently limit the use of PET/CT to guiding treatment decisions regarding 

neck dissections in patients with advanced cancer [35, 36].  

4.1.2.2 HPV Testing 

Testing for HPV association is recommended and routinely performed on all newly 

diagnosed OPSCC using tissue samples obtained, for example, during panendoscopy 

[20, 24]. Different assays may be employed, including high-risk HPV ribonucleic acid 

(RNA) or deoxyribonucleic acid (DNA) in situ hybridization, viral DNA amplification by 

polymerase chain reaction (PCR), detection of viral E6 and E7 messenger RNA by 

reverse transcription PCR, and immunohistochemical staining for p16INK4A protein 

overexpression [16, 24, 37, 38]. p16 overexpression is induced by the HPV E7 protein – 

therefore, p16 immunohistochemistry is a surrogate marker for HPV [8, 24, 37]. Per the 

latest edition of cancer staging manuals, a different tumor-node-metastasis (TNM) and 

stage group classification applies for p16 positive OPSCC, making p16-testing a 

prerequisite for staging (see section 4.1.3.2) [5, 39].  

In this work, we aimed to devise exploratory PET/CT imaging biomarkers for HPV 

association by extracting advanced imaging features of OPSCC primary tumors and 

metastatic cervical lymphadenopathy. If sufficient diagnostic accuracy is attained, such 

imaging markers may offer non-invasive, inexpensive, and readily available alternatives 

to tumor specimen-based HPV testing, given that tomographic imaging is routinely 

performed as part of the diagnostic workup.  
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4.1.3 Determinants of Prognosis 

A wide range of variables affect the prognosis of OPSCC patients, including HPV 

“status”, TNM stages, patient age, performance status, presence of comorbid conditions, 

and tobacco exposure [3, 5, 18, 19, 39-45]. The variables introduced in detail below are 

most relevant to this work.  

4.1.3.1 HPV “Status“ 

Compared to the HPV-negative form, HPV-associated OPSCC carries a more favorable 

prognosis, with longer overall survival and lower rates of locoregional progression [18, 

41, 46-50]. This is in part attributed to differences in demographic and risk profiles, with 

HPV-driven cancer afflicting a younger and healthier patient population with little tobacco 

exposure [1, 3, 18]. However, studies demonstrate HPV positivity remains significantly 

associated with favorable outcome after adjustment for such confounders, suggesting it 

is an independent prognostic marker [18, 41, 47-50]. To date, the underlying biologic 

mechanisms remain somewhat elusive, with much of the pertinent research focusing on 

increased sensitivity to treatment which is evident in HPV-positive patients [3, 16, 18, 19, 

51]. In addition to HPV classification, we investigated the possible added prognostic 

value of advanced imaging features of OPSCC in prognostically favorable HPV-

associated cancers.  

4.1.3.2 TNM Staging of HPV-associated Oropharyngeal Cancer 

Although performed as part of diagnostic workup (see section 4.1.2), cancer staging is 

discussed here since this work is centered around its relevance for prognosis. The 

previous seventh edition of the Union for International Cancer Control (UICC) and 

American Joint Committee on Cancer (AJCC) TNM staging system failed to reflect the 

pronounced outcome discrepancies between HPV-driven and HPV-negative OPSCC at 

equal disease stages, and was found inadequate for prognostic stratification of HPV-

mediated cancer in general, warranting reconsideration of the staging approach for 

OPSCC [42, 52]. Therefore, the eighth and latest edition of the UICC/AJCC TNM staging 

system introduced separate anatomic stages and prognostic groups for p16INK4A positive 

OPSCC [5, 39, 42, 53]. Effective since 2017, it is a relatively new prognostic tool, and 

may evolve in the future. In this work, we aimed to devise prognostic models based on 

advanced imaging features of OPSCC, to compare their performance with TNM models, 

and to explore the potential added value of combining TNM staging and imaging 

features.  
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4.1.3.3 Locoregional Disease Progression 

Locoregional disease progression (LRP) is the most frequent type of treatment failure 

after definitive therapy of OPSCC in curative intent, occurring in approximately 10% of 

HPV positive patients [41, 54, 55]. LRP worsens the prognosis of those affected and 

correlates strongly with reduced overall survival [54, 56, 57]. Salvage therapy after LRP 

is often morbid and impairs patients’ functional outcome and quality of life [58, 59]. LRP 

is thus an endpoint of major clinical interest. We aimed to devise advanced imaging 

biomarkers for LRP risk prediction in HPV-associated OPSCC. Such biomarkers may 

improve patient selection for therapeutic strategies before treatment, and may allow early 

identification of patients at elevated risk of LRP post treatment, who may benefit from 

closer surveillance and swift initiation of diagnostic and therapeutic interventions.  

4.2 Radiomics 

4.2.1 General Concepts of Head-and-Neck-Cancer Radiomics 

In current clinical practice, interpretation of tomographic imaging findings primarily relies 

upon qualitative visual evaluation: Taking an HNSCC primary as an example, the 

anatomic tumor location and extent, presence and pattern of contrast uptake, signs of 

necrosis, degree of margin irregularity and the displacement or infiltration of surrounding 

structures are qualitative imaging features of interest, to name a few [60, 61]. In addition, 

simple length measurements are commonly performed, mostly of the in-plane tumor size.  

Enabled by advancements in computational capabilities and the rise of artificial 

intelligence (AI) technology, radiomic analysis emerged as an alternate, exploratory 

means for medical image evaluation in recent years [60-65]. In radiomics, advanced 

computer algorithms automatically extract large numbers of so-called features, usually 

from contoured and annotated volumes-of-interest corresponding to disease sites in 

standard-of-care tomographic images [61-65]. Radiomic features are quantitative 

descriptors of shape and size, pixel/voxel grey scale intensity and intensity distribution 

as well as texture characteristics [60-63]. Many studies report the use of image filters or 

decompositions prior to feature extraction to enhance the granularity of analyses [61-63]. 

Figure 1 defines and summarizes important traits of radiomics.  
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Figure 1. Radiomics entails the transfer and application of the “omics” concept (defined as 

comprehensive high-throughput characterization of biological matter and known from disciplines 

like genomics, proteomics, and transcriptomics) to medical imaging [66]. It encompasses 

extraction of high-dimensional sets of quantitative radiomic features from tomographic medical 

imagery (A, B) as well as mapping of imaging phenotypes to medically significant variables to 

facilitate automation of detection and diagnosis, predictive and prognostic modelling, and imaging 

biomarker development (C, D) [61-64].*  

 

Radiomic features, combinations thereof – termed radiomic signatures – and predictions 

from more complex radiomics-based models were shown to correlate with variables of 

interest across numerous diseases and may serve as the basis for imaging biomarker 

development [60-65]. In HNSCC, studies explored associations with histological grade, 

nodal status and extra-nodal extension, treatment response and oncologic outcome, 

 
* Created with BioRender.com  PET/CT image in (A) and (B) sourced from „Head-Neck-

PET-CT“ collection [67]. 
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tumor biology including HPV “status”, TP53 mutation status, and PD-L1 expression, as 

well as chemoradiotherapy side effects, among others [68-73].  

The main hypothesis underlying radiomics is that features may decode medically 

significant imaging patterns which are not visually perceivable, therefore postulating that 

standard-of-care imaging data is underutilized in current clinical practice, and that 

radiomics may provide added clinical value [60-62]. For example, certain features may 

reflect spatial intratumor heterogeneity of biological traits, which poses a diagnostic 

challenge on the one hand as it is not reliably assessed by single-site biopsies, and on 

the other hand may carry important implications for tumor behavior [65, 74-77]. 

Therefore, radiomics may be applied to devise imaging biomarkers of tumor 

heterogeneity [65, 75-77].  

This work sought to characterize OPSCC using PET/CT radiomics.  

4.2.2 Machine Learning-Analysis of Radiomic Data 

Machine learning (ML) refers to the study and application of computer algorithms which 

learn from experience [78-80]. Put another way, ML algorithms derive intelligent 

functionality from data, without requiring explicit programming with rules [78-80]. 

Therefore, ML research typically relies on training and test samples for model 

development and performance validation, respectively. ML is considered a subfield of 

AI [79, 80].  

Radiomics produces large feature sets, often supplemented by clinical or other “omics” 

data. The discovery of medically meaningful patterns and relationships in such extensive 

datasets is challenging. Rather than relying on hypothesis-driven evaluation of individual 

features, radiomics research is largely data driven, whereby a priori no assumptions are 

made about the biological significance of individual features [61, 65, 81]. ML has proven 

to be very useful in this setting, with a considerable fraction of radiomics studies relying 

on ML for model and biomarker generation [81].  

In this work, we applied a series of ML algorithms to derive predictive models from 

radiomic data.  
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4.3 Radiomics-based Machine Learning-Models for HPV 

Classification and Locoregional Progression 

Prognostication 

This work sought to explore the potential of radiomics in OPSCC patients. The primary 

aim was to investigate the utility of pretreatment FDG-PET and non-contrast CT radiomic 

features for molecular and prognostic characterization of therapy-naïve OPSCC.  

Recognizing the etiopathogenetic, molecular, demographic, clinicopathologic and 

prognostic differences between HPV-driven and HPV-negative cancers as well as the 

profound impact of HPV on OPSCC epidemiology (see section 4.1), we selected HPV 

association as the molecular trait of interest. Applying ML classification algorithms, we 

aimed to devise radiomic biomarkers indicating HPV association.  

LRP of OPSCC carries major clinical significance, given its strong association with 

decreased overall survival, and the added morbidity salvage therapy often entails (see 

section 4.1.3.3). Therefore, LRP was selected as the endpoint for prognostic analyses in 

HPV-attributable cancer in this work. ML was used to explore the prognostic significance 

of radiomics compared to clinical variables including TNM staging, as well as its added 

prognostic value.  

An additional overarching goal was investigation of the complementary value of primary 

tumor features and features of cervical metastatic lymphadenopathy, as well as of 

metabolic PET features and structural CT features. Given the magnitude of radiomic 

feature sets, we applied various combinations of feature dimensionality reduction 

techniques and ML algorithms to devise optimized biomarkers and models. To enhance 

the generalizability of findings, we sought to acquire multicentric data, and applied cross 

validation techniques throughout this work, as well as independent and external 

validation of select HPV biomarkers.  
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5. Summary 

Every day, extensive amounts of tomographic imagery including CT-, PET- and magnetic 

resonance-images are acquired in hospitals. Recent advances in radiomics suggest 

computer algorithms quantifying size, shape, intensity, and texture of imaging findings 

may provide added clinical value beyond physicians’ qualitative visual evaluation. 

Radiomics may be a readily available, cost-efficient, and non-invasive means to expand 

the scope of standard-of-care imaging to include provision of quantifiable, objective 

biomarkers and prognostic models. The data-driven analysis of radiomic features is often 

accomplished by ML – a type of AI which is especially capable of exploiting the vast 

datasets generated in “omics” research. 

High-risk HPV strains are causally linked to a marked increase in OPSCC incidence 

around the world in recent decades. HPV-driven cancer affects younger, healthier 

patients, carries more favorable prognosis, and has recently been assigned a separate 

TNM classification – compared to frequently tobacco- and alcohol-related HPV-negative 

OPSCC. HPV testing is routinely performed on tissue samples of OPSCC.  

To devise non-invasive radiomic HPV biomarkers, we gathered a multicentric, 

multinational cohort and extracted radiomic features of 435 OPSCC primary tumors and 

741 metastatic cervical lymph nodes on pretreatment FDG-PET and non-contrast CT. 

Combining different sources of radiomics input, feature dimensionality reduction 

techniques, and ML algorithms, we trained, optimized, and compared 360 candidate 

HPV classification models, reaching moderate to high performance in cross validation. 

Twelve select top performing models did satisfactorily generalize to an independent 

validation dataset, and the best PET-based models were additionally validated in an 

external set. A model combining radiomic PET and CT features of primary tumors as 

input and applying ridge regression feature selection and an extreme gradient boosting 

ML classifier achieved the highest overall performance.  

Locoregional treatment failure occurs in approximately 10% of HPV-associated cancers 

and entails worse outcome and morbid salvage therapies. Using a subset of 190 patients 

with HPV-attributable OPSCC and sufficient follow-up intervals, we pursued a similar 

analysis approach to develop ML models for prognostication of LRP after definitive 

therapy in curative intent. We generated and compared models relying on radiomic 

features or clinical variables including eighth edition UICC/AJCC TNM staging or a 

combination of both. A random survival forest ML model with radiomic PET and CT 

features of primary tumors as input was superior, and addition of clinical variables did 

not improve performance. A random forest classifier using the same radiomics input 

achieved significant stratification into high- and low-LRP-risk groups. All models were 

cross validated.  
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Across HPV and LRP analyses, combining radiomic PET and CT features tended to yield 

higher performance than single-modality models, likely reflecting the complementarity of 

information gathered by metabolic PET and morphological CT imaging. Conversely, 

supplementing radiomic features of primary tumors with metastatic lymph node 

radiomics did not reliably improve model performance. Models relying on lymph node 

radiomics alone fared worse than primary tumor models in predicting HPV “status”.  

The radiomic HPV biomarkers and LRP prognostication models devised in this work are 

promising. In the future, non-invasive PET/CT biomarkers may supplement or substitute 

tissue-based HPV testing, and LRP prediction models may guide therapy planning and 

alert physicians to increased risk of progression after treatment in certain patients who 

may especially benefit from tight surveillance. Radiomics and ML could become key 

enablers of personalized “precision medicine”, which may help achieve the next major 

leap forward in cancer care. Before routine clinical application may be considered, higher 

model accuracy must be attained, and additional validation in large, prospective studies 

performed.  
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6. Zusammenfassung (German Summary) 

Tagtäglich werden umfangreiche Schnittbilddaten bestehend aus etwa CT-, PET- und 

Magnetresonanztomografie-Bildern in Kliniken aufgenommen. Jüngste Erkenntnisse auf 

dem Gebiet der Radiomics legen nahe, dass Computeralgorithmen, die Größe, Form, 

Intensität und Textur von Bildbefunden quantifizieren, klinischen Mehrwert gegenüber 

qualitativer visueller Befundung durch ÄrztInnen erbringen könnten. Radiomics könnten 

niederschwellig, kosteneffizient und nicht-invasiv das Leistungsspektrum klinischer 

Standardbilddiagnostik um die Bereitstellung quantifizierbarer, objektiver Biomarker und 

prognostischer Modelle erweitern. Zur Analyse von Radiomics Features wird häufig ML 

herangezogen – es handelt sich um AI, welche besonders effektiv die gewaltigen 

Datenmengen der „Omics“-Forschung verwerten kann.  

Hochrisiko-HPV sind ursächlich für einen deutlichen Anstieg an OPSCC-Fällen weltweit 

in den letzten Jahrzehnten. HPV-assoziierter Krebs betrifft jüngere, gesündere 

PatientInnen, geht mit besserer Prognose einher und wird anhand neuer separater TNM-

Stadien eingeteilt – im Vergleich zu HPV-negativen OPSCC, die häufig Tabak- und 

Alkohol-assoziiert sind. OPSCC-Gewebeproben werden routinemäßig auf HPV getestet.  

Zur Entwicklung von Radiomics-Biomarkern für HPV akquirierten wir eine 

multizentrische, multinationale OPSCC-Kohorte und extrahierten Radiomics Features 

aus 435 Primärtumoren und 741 metastatischen zervikalen Lymphknoten in 

prätherapeutischen FDG-PET- und nativ-CT-Bildern. Durch Kombination verschiedener 

Radiomics-Inputs, Feature-Dimensionsreduktionstechniken und ML-Algorithmen 

trainierten, optimierten und verglichen wir 360 Kandidatenmodelle, welche moderate bis 

hohe HPV-Klassifikationsleistung im Kreuzvalidierungsversuch erzielten. Zwölf 

ausgewählte leistungsstarke Modelle wiesen eine gute Generalisierbarkeit in einem 

unabhängigen Validierungsdatensatz auf; die besten PET-basierten Modelle wurden 

zusätzlich in einem externen Datensatz validiert. Die höchste Gesamtleistung erzielte 

ein Modell, das PET- und CT-Radiomics Features von Primärtumoren kombinierte und 

mittels Ridge Regression-Featureauswahl und Extreme Gradient Boosting-ML-

Klassifikationsalgorithmus erstellt wurde.  

Lokoregionäres Therapieversagen tritt bei etwa 10% der HPV-assoziierten Karzinome 

auf und zieht regelhaft schlechteres onkologisches Outcome und nebenwirkungsreiche 

Zweitlinientherapien nach sich. Mittels einer Teilkohorte bestehend aus 190 HPV-

assoziierten OPSCC mit ausreichenden Nachsorgeintervallen verfolgten wir einen 

ähnlichen Analyseansatz, um ML-Modelle zur Vorhersage von LRP nach kurativ 

intendierter Therapie zu entwickeln. Wir erstellten und verglichen Modelle, welche 

Radiomics Features oder klinische Variablen inklusive der UICC/AJCC TNM-

Klassifikation in der achten Edition oder eine Kombination beider nutzten. Ein Random 

Survival Forest-ML-Modell basierend auf PET- und CT-Radiomics Features von 

Primärtumoren erzielte die präzisesten Vorhersagen, und die Integration klinischer 
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Variablen verbesserte das Model nicht. Ein auf selbigem Radiomics-Input beruhender 

Random Forest-Klassifikationsalgorithmus erreichte eine signifikante LRP-

Risikostratifizierung. Alle Modelle wurden kreuzvalidiert. 

In sowohl HPV- als auch LRP-Analysen führte die Kombination von PET- und CT-

Features zu tendenziell höheren Modellleistungen als unimodale Analysen, was die 

Komplementarität metabolischer PET- und struktureller CT-Features widerspiegeln 

könnte. Umgekehrt verbesserte die Addition von Lymphknoten- zu Primärtumor-

Radiomics Features die Modellleistungen nicht zuverlässig. Radiomics-HPV-Biomarker, 

die allein auf Lymphknotenmodellen beruhten, waren zudem weniger präzise als 

Primärtumormodelle. 

Die im Rahmen dieser Arbeit entwickelten radiomischen HPV-Biomarker und LRP-

Prognosemodelle sind vielversprechend. Zukünftig könnten nicht-invasive PET/CT-

Biomarker gewebebasierte HPV-Tests ergänzen oder ersetzen. Gleichermaßen könnten 

LRP-Prognosemodelle Therapieplanungen präzisieren und BehandlerInnen 

posttherapeutisch auf ein erhöhtes Progressrisiko bei PatientInnen hinweisen, die 

folglich von engmaschiger Surveillance besonders profitieren würden. Radiomics und 

ML könnten elementare Bestandteile der personalisierten „Präzisionsmedizin“ der 

Zukunft darstellen und Krebstherapien und -diagnostik entscheidend verbessern. Bevor 

eine routinemäßige klinische Anwendung in Betracht kommt, müssen höhere 

Modellpräzision erreicht und prospektive Validierungsstudien durchgeführt werden. 
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7. Contribution to Publications 

7.1 Publication 1 

7.1.1 Publication Reference 

Haider SP, Mahajan A, Zeevi T, Baumeister P, Reichel C, Sharaf K, Forghani R, 

Kucukkaya AS, Kann BH, Judson BL, Prasad ML, Burtness B, Payabvash S. PET/CT 

radiomics signature of human papilloma virus association in oropharyngeal 

squamous cell carcinoma. Eur J Nucl Med Mol Imaging. 2020;47(13):2978-91. 

7.1.2 Contribution 

Hypothesis and Plan: My contribution included optimizing the research hypotheses and 

methodological strategy, including researching literature, leading to adoption of radiomic 

analysis of metastatic cervical lymph nodes, “virtual” consensus volumes of interest 

(VOI), multiple delineation-analysis and -feature selection, a CT artifact handling 

strategy, and fully automated hyperparameter tuning using Bayesian optimization.  

Data Curation: I assumed responsibility for data acquisition from institutional archives 

and from a public repository (The Cancer Imaging Archive, TCIA), including acquisition 

of all PET/CT imaging data and of all clinical data. My contribution included selecting 

TCIA collections and individual subjects from TCIA and institutional repositories based 

on exclusion and inclusion criteria, downloading, archiving, integrating, and processing 

all imaging and clinical data.  

Methodology and Formal Analysis: To facilitate review and segmentation of PET/CT 

imagery in 3D-Slicer software, I developed standard operating procedures defining 

loading, segmenting, and saving PET/CT images and corresponding segmentations 

using 3D-Slicer modules and functions. I performed the bulk of image review and 

segmentation tasks, comprising exclusion of subjects or individual axial CT slices 

affected by CT artifacts, initial segmentation of all VOIs on PET and CT images, including 

one of two repeat segmentation rounds to enable multiple delineation-analysis, as well 

as preliminary TNM staging. Configuring the Pyradiomics pipeline required literature 

research and preliminary analyses to determine image preprocessing and radiomic 

feature extraction settings, which I conducted. I implemented all conventional statistical 

and ML analyses in R, which included radiomic and clinical data preprocessing, multiple 

delineation-based feature selection, data allocation to training and validation sets, 

feature standardization, generation of “virtual” consensus VOIs, feature dimensionality 

reduction, ML classifiers, a cross validation framework, Bayesian hyperparameter 
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optimization, independent and external validation, performance quantification and 

statistical comparison of the performance of different models, feature importance score 

quantification, visualization and archiving of pipeline outputs. These analyses relied upon 

custom written code, externally sourced packages and functions from The 

Comprehensive R Archive Network (CRAN) as well as R base functions. I designed, 

wrote, and validated all custom code, and integrated all externally sourced code in our 

custom pipeline, which included researching literature to facilitate selection, integration, 

and configuration of externally sourced CRAN packages and functions. In close 

collaboration with the principal investigator and a ML specialist, I made substantial 

contributions to the configuration and streamlining of the R analysis pipeline as a whole, 

which encompassed defining the data allocation strategy to training and validation sets, 

defining methodological approaches such as dimensionality reduction techniques and 

ML algorithms, setting of model hyperparameters or hyperparameter bounds, and 

researching literature to support the aforementioned. Finally, the statistical analysis of 

patients’ characteristics was my responsibility.  

Presentation of Results and Manuscript Preparation: My contribution encompassed 

preparation of the initial manuscript and supplement drafts in their entirety, including 

visualization of methodology and results in figures, diagrams, and tables, drafting all 

manuscript and supplemental text, and formatting the manuscript and supplement. I 

prepared the submission, formally submitted all material, and prepared the initial draft of 

all revisions based on co-authors’ and peer reviewers’ feedback. In addition, I presented 

the results at scientific conferences as oral abstracts (European Congress of Radiology, 

Annual Meeting of the German Society of Otorhinolaryngology, see section 3.3).  

7.2 Publication 2 

7.2.1 Publication Reference 

Haider SP, Sharaf K, Zeevi T, Baumeister P, Reichel C, Forghani R, Kann BH, 

Petukhova A, Judson BL, Prasad ML, Liu C, Burtness B, Mahajan A, Payabvash S. 

Prediction of post-radiotherapy locoregional progression in HPV-associated 

oropharyngeal squamous cell carcinoma using machine-learning analysis of 

baseline PET/CT radiomics. Transl Oncol. 2021;14(1):100906. 

7.2.2 Contribution 

Hypothesis and Plan: Adding to contributions for publication 1 which were adopted herein 

(see section 7.1.2), I defined several additional methodological aspects of the research 

plan and reviewed the pertinent literature. These included ascertainment of patient 



Contribution to Publications 24 

inclusion- and exclusion criteria, implementation of random survival forest models, and 

statistical approaches for quantification of random forest performance in the setting of 

right-censored survival data.  

Data Curation: I gathered all clinical data including oncologic treatment and outcome 

information required for analysis of LRP and for inclusion of appropriate patients. These 

data originated from the same institutional and TCIA archives; I assumed responsibility 

for downloading, archiving, integrating, and processing all data.  

Methodology and Formal Analysis: I implemented all conventional statistical and ML 

analyses in R, which included radiomic and clinical data preprocessing, multiple 

delineation-based feature selection, feature standardization, generation of “virtual” 

consensus VOIs, feature dimensionality reduction, random forest ML models, integration 

of clinical variables in ML models, a cross validation framework, model performance 

quantification in the setting of right-censored survival data, and visualization and 

archiving of pipeline outputs. These analyses relied upon custom written code, externally 

sourced packages and functions from CRAN as well as R base functions; some 

implementations were adopted from publication 1 (see section 7.1.2). I designed, wrote, 

and validated all custom code, and integrated all externally sourced code in our custom 

pipeline, which included researching literature to facilitate selection, integration, and 

configuration of externally sourced CRAN packages and functions. Under the 

supervision of the principal investigator and with inputs from a ML specialist, I designed, 

implemented, and finetuned the R analysis pipeline as a whole, which encompassed 

defining methodological approaches such as dimensionality reduction techniques and 

the use of random survival forest and random classification forest ML algorithms, setting 

of model hyperparameters, and researching literature to facilitate the aforementioned. 

Finally, the statistical analysis of patients’ characteristics was my responsibility.  

Presentation of Results and Manuscript Preparation: My contribution encompassed 

preparation of most of the initial manuscript draft and of the supplement draft in its 

entirety, including visualization of methodology and results in figures, diagrams, and 

tables, drafting most of the manuscript and all supplemental text, and formatting the 

manuscript and supplement. I prepared the submission, formally submitted all material, 

and prepared the initial draft of all revisions based on co-authors’ and peer reviewers’ 

feedback.  
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Abstract
Purpose To devise, validate, and externally test PET/CT radiomics signatures for human papillomavirus (HPV) association in
primary tumors and metastatic cervical lymph nodes of oropharyngeal squamous cell carcinoma (OPSCC).
Methods We analyzed 435 primary tumors (326 for training, 109 for validation) and 741 metastatic cervical lymph nodes (518
for training, 223 for validation) using FDG-PET and non-contrast CT from a multi-institutional and multi-national cohort.
Utilizing 1037 radiomics features per imaging modality and per lesion, we trained, optimized, and independently validated
machine-learning classifiers for prediction of HPVassociation in primary tumors, lymph nodes, and combined “virtual” volumes
of interest (VOI). PET-based models were additionally validated in an external cohort.
Results Single-modality PET and CT final models yielded similar classification performance without significant difference in
independent validation; however, models combining PET and CT features outperformed single-modality PET- or CT-based
models, with receiver operating characteristic area under the curve (AUC) of 0.78, and 0.77 for prediction of HPV association
using primary tumor lesion features, in cross-validation and independent validation, respectively. In the external PET-only
validation dataset, final models achieved an AUC of 0.83 for a virtual VOI combining primary tumor and lymph nodes, and
an AUC of 0.73 for a virtual VOI combining all lymph nodes.
Conclusion We found that PET-based radiomics signatures yielded similar classification performance to CT-based models, with
potential added value from combining PET- and CT-based radiomics for prediction of HPV status. While our results are
promising, radiomics signatures may not yet substitute tissue sampling for clinical decision-making.
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Introduction

The incidence of oropharyngeal squamous cell carcino-
mas (OPSCC) associated with high-risk human papillo-
mavirus (HPV) infection has dramatically increased over
the past few decades [1]. HPV-associated OPSCC has
distinct biologic and clinical characteristics compared
to the HPV-negative form—with longer overall survival,
more favorable outcome, and improved treatment re-
sponse [2, 3]. Both the Union for International Cancer
Control (UICC) and American Joint Committee on
Cancer (AJCC) adjusted their staging manuals accord-
ingly, and classified HPV-associated OPSCC as a dis-
tinct entity with separate staging rules, different from
HPV-negative carcinomas [4, 5]. In clinical practice,
HPV association is ascertained after tissue sampling by
means of p16 immunohistochemical staining of histolo-
gy slides or HPV-specific tests, such as high-risk HPV
DNA in situ hybridization (ISH), or polymerase chain
reaction (PCR) [6].

Radiomics—the latest addition to the “-omics”
concept—refers to high-throughput extraction of quanti-
tative “features” from medical images for biomarker de-
sign with a wide range of applications [7]. Recent stud-
ies have demonstrated the feasibility of quantitative
bioimaging features (i.e., radiomics) for prediction of
HPV status in OPSCC using contrast-enhanced comput-
e d t o m o g r a p h y ( C T ) s c a n s [ 8 – 1 1 ] .
[18F]fluorodeoxyglucose positron emission tomography
(PET) and simultaneous non-contrast CT scans are rou-
tinely used for diagnosis, staging, treatment planning,
and surveillance of head and neck squamous cell carci-
nomas (HNSCC), providing imaging biodata amenable
for quantitative data mining. However, there are few
reports suggesting that quantitative measures from PET
scans are associated with HPV status [12, 13].

In this study, we aimed to devise, optimize, and in-
dependently validate radiomics signatures for prediction
of HPV status in OPSCC based on radiomics features
extracted from primary tumor lesions and metastatic cer-
vical lymph nodes on PET and non-contrast CT scans
from multi-institutional and multi-national cohorts.
While combining PET and CT radiomics into holistic
machine-learning models may provide comprehensive
information regarding tissue heterogeneity, lesion mor-
phology, and metabolic characteristics, the application
of such models for prediction of OPSCC HPV status
has barely been studied before. We also used radiomics
signatures to predict HPV association in OPSCC metas-
tases in cervical lymph nodes. Finally, we expanded the
use of virtual volumes of interest (VOI) combining sev-
eral lesions in one given subject into a uniform predic-
tive radiomic feature set [9].

Material and methods

Acquisition of imaging and clinical data

Imaging and clinical data were retrospectively acquired from
(I) the patients’ registry of Yale’s Smilow Cancer Hospital
supplemented by a review of the electronic medical records
and imaging archive from 2009 through 2019 (“Yale” cohort)
and (II) four independent collections in The Cancer Imaging
Archive (TCIA) including [14] (II-a) the “Head-Neck-PET-
CT” collection from four Canadian institutions (“Canadian”
cohort) [15, 16]; (II-b) the “Data from Head and Neck Cancer
CTAtlas” collection fromMDAnderson Cancer Center (“MD
Anderson” cohort) [17, 18]; (II-c) the “TCGA-HNSC” collec-
tion from various institutions across America (“TCGA” co-
hort) [19]; and (II-d) the “Head-Neck-Radiomics-HN1” col-
lection from the Netherlands (“MAASTRO” cohort) [20, 21].
Institutional review board approval was obtained for Yale data
collection with informed consent waived. TCIA collections
host de-identified data and the providing institutions are re-
sponsible for consents and approvals.

Patients were included if they (1) had pretreatment PETand
non-contrast CT scans of the neck available, (2) biopsy-
proven OPSCC, and (3) HPV status ascertained by HPV-
specific testing [6] and/or p16 immunohistochemistry.
Patients were excluded if they had (1) recurrent OPSCC, (2)
unknown primary site, or (3) > 50% of the primary tumor
volume affected by artifacts on visual assessment of neck
CTs [22]. Biopsies or fine needle aspiration procedures of
the primary tumor and lymph nodes before PET/CT imaging
were permitted. Imaging and image reconstruction were per-
formed according to clinical protocols specific to the source
institution. HPV status ascertainment in the “Yale” dataset
was based on the Guideline from the College of American
Pathologists [6]. Institutional protocols were used for
MAASTRO and Canadian cohorts and an overall HPVanno-
tation is provided in TCIA. High-risk ISH results were avail-
able for the “MDAnderson” and p16 and/or high-risk ISH for
the “TCGA” cohort.

Lesion segmentation

Figure 1 summarizes the segmentation, preprocessing, and
feature extraction workflow. First, the co-registered PET/CT
scans were retrieved and reviewed and the gross demonstrable
extent and location of primary tumor and metastatic cervical
lymph nodes was assessed—i.e., gross tumor volume (GTV)
as defined by the “ICRU 83” report [23]. Next, hypermetabol-
ic areas of the primary tumor and every node GTV were sep-
arately delineated on PET axial slices using the “Paint” and
“Erase” tools of the “Segment Editor” module to define the
PET VOIs (i.e., manual “slice by slice” delineation); segmen-
tations were then overlaid onto co-registered CT scans and
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manually adapted to the GTVextent on CT to create CTVOIs,
accounting for bone, air, and surrounding fat planes, using the
“Paint” and “Erase” tools. Axial CT slices with substantial CT
streak artifact were excluded from analysis, and individual
lymph nodes with > 50% of volume affected by artifact were
entirely excluded [22]. All segmentations were verified and
adjusted by a neuroradiologist (SP) with greater than 8 years
of experience in head and neck radiology. All segmentations
were created using 3D-Slicer version 4.10.1 [24].

Image preprocessing and feature extraction

PET voxel intensities were normalized by dividing each
voxel’s raw value by the maximum intensity of the left
lentiform nucleus, which was shown to improve PET discrim-
inative ability as an internal, image-derived standardization
method [25]. To mitigate the effects of different slice thick-
nesses and voxel sizes on radiomics features [26], and guar-
antee rotational invariance of texture features [27], we applied
trilinear interpolation to generate isotropic 3 × 3 × 3 and 2 ×
2 × 2 mm voxels in PET and CT scans, respectively. CT seg-
mentation masks were restricted to a 1–300 Hounsfield unit
(HU) threshold range, limiting the analysis to soft tissue den-
sities. Derivative images were generated to enhance specific
imaging characteristics: A “coif-1” wavelet transform yielded
eight decompositions per original image by applying high-
pass and low-pass filtering in each spatial direction [21, 28].
Edge-enhancement Laplacian of Gaussian (LoG) filtering

with 3 and 6 mm for PET scans and 2 and 4 mm for CT scans
“sigma” settings generated two derivates per each imaging
modality [28, 29]. Computation of texture and certain first-
order features requires image grayscale discretization into
“bins” [27]. We applied a fixed bin width of 2 units [28],
which yielded homogenous numbers of bins in our cohort,
andmay bemore appropriate under certain circumstances than
a fixed bin number for comparative analysis [30]. Eighteen
first-order, fourteen volumetric shape, and 75 texture-matrix
radiomic features were extracted from each set of original
images. First-order and texture features were additionally ex-
tracted from eight wavelet- and two LoG-filtering derivatives
per imaging modality, yielding a total of 1037 PET and 1037
CT radiomics features per each primary tumor or node. A
customized Pyradiomics version 2.1.2 pipeline was applied
for preprocessing, generation of derivative images, and feature
extraction [28]. A comprehensive feature list is included in
Supplementary Table 1.

Assessment of radiomics feature stability

Prior studies demonstrated limited robustness of certain
radiomic features with manual segmentation inconsistencies
due to intra- and inter-observer variabilities [21, 26, 31, 32].
Applying multiple delineation analysis to select stable
radiomics features, we selected a random sample of 50 pa-
tients stratified by dataset from pooled TCIA cohorts—
excluding the MAASTRO cohort, which was reserved for

Fig. 1 Radiomics pipeline
depicting segmentation, image
preprocessing, and feature
extraction steps
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external validation. Observer #1 re-segmented all primary tu-
mors and two randomly selected metastatic nodes per patient
> 2 months after creating the original segmentations (valida-
tion by a neuroradiologist (SP)), and an additional, indepen-
dent observer #2 created a third set of segmentations validated
by another independent neuroradiologist (AM) with greater
than 12 years of experience in head and neck radiology. A
two-way random effects, absolute agreement, single rater/
measurement intra-class correlation coefficient (ICC) was cal-
culated for each feature to assess inter-rater agreement, and a
two-way mixed effects, absolute agreement, single rater ICC
to assess intra-rater agreement [33]. Features with an ICC 95%
confidence interval (CI) lower bound < 0.8 in intra-observer
or inter-observer assessment were excluded from analysis.
Our ICC cutoff was set at 0.8 based on prior publications
using this cutoff in analysis of feature stability and reproduc-
ibility [31, 32]. The ICC were separately calculated for prima-
ry tumors, lymph nodes, and the combined set of tumors and
nodes. Segmentation set #1 from observer #1 and segmenta-
tions from observer #2 were used to assess inter-rater agree-
ment, and segmentation sets #1 and #2 from observer #1 were
utilized for intra-rater assessment. All analyses in this study

were performed using various statistical packages in R version
3.6.0 in conjunction with custom-written code [34]. The R
“psych” package [35] was used for ICC calculation.

Data allocation

Figure 2 depicts the data allocation, feature selection, and
machine-learning classification pipeline. To avoid overfitting,
and improve model generalizability, we allocated separate
datasets for model development, independent, and external
validation. The MAASTRO dataset (n = 29) contains PET
and contrast-enhanced CTscans, and thus, only the PETscans
were used for external validation of final models. The remain-
ing cohorts were pooled, and a random sample of 80 patients
(approximately 20%)—stratified by HPV status—was select-
ed for independent validation. This set and the MAASTRO
cohort were kept fully isolated from model development. The
remaining subjects (n = 326) were used for model develop-
ment, hyperparameter optimization, cross-validation, and fi-
nal model training. The 50 multiple delineation cases were
assigned to the training set.

Fig. 2 Data allocation and
analysis pipeline—summarizing
the allocation strategy of Yale /
TCIA data into training, indepen-
dent validation, and external vali-
dation cohorts as well as the
model building process from
Bayesian optimization to final
model generation and validation
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Candidate HPV classification models

To develop optimized classification models, we compared all
combinations of six feature selection, and five machine-
learning classification algorithms (30 pairs). Feature selection
and machine-learning classification algorithms are listed in
Table 1, and a detailed description is provided in the supple-
mentary methods section. We defined four VOI sources of
radiomics input for classification models: (1) primary tumor
lesion, (2) each individual lymph node, (3) consensus of pri-
mary tumor and all metastatic nodes, and (4) consensus of all
metastatic nodes. The algorithmic approach for generation of
“virtual” consensus VOI combining primary tumors and nodal
lesions was described by Yu et al. [9]. Radiomics features
originated from three imaging modalities (i.e., PET, CT, PET
and CT). Subsequently, 360 candidate HPV classification
models were devised (6 feature selection methods × 5
machine-learning classification algorithms × 4 VOI sources
of radiomics input × 3 imaging modalities).

Cross-validation and Bayesian hyperparameter
optimization

A framework applying 20 repeats of stratified 5-fold cross-
validation (with HPV status as strata) was designed for
hyperparameter optimization and internal performance valida-
tion of candidate models (Supplementary Fig. 1) [36–39].
Classification performance was measured in the validation
folds and averaged across all 100 permutations to generate
stable outcome results. In each cross-validation round, feature
standardization and selection were performed on the training
folds, followed by machine-learning classifier training. This
approach avoids information leakage from training to valida-
tion folds, reduces overfitting, and therefore provides accurate
estimates of final model performance in independent valida-
tion sets. For models using radiomics of individual nodes as

the VOI source, all lymph nodes corresponding to each patient
were allocated to the same fold to avoid training and valida-
tion on the same scan.

Bayesian optimization [40] was implemented to feed sets
of hyperparameters to the cross-validation framework, evalu-
ate their performance, and iteratively optimize and feed new
hyperparameter sets. The machine-learning classifiers’ upper
and lower hyperparameter bounds and tuning repetition
counts are provided in Supplementary Table 2. The
“rBayesianOptimization” package for R was used [41].

After tuning, we applied the cross-validation framework
one last time per each candidate model with optimized
hyperparameters to measure the internally validated cross-
validation performance and to establish a prediction probabil-
ity cutoff for binary HPV classification: In each validation
fold, the cutoff closest to achieving balanced sensitivity and
specificity for detection of HPV positivity was determined,
and all validation fold cutoffs were averaged to determine a
model’s global cutoff.

Final model training and validation

For each combination of source VOI and imaging modality,
the highest performing candidate model (4 × 3 = 12 models)
was selected. Using the full training dataset, feature standard-
ization and feature selection were performed followed by
fitting of machine-learning classifiers with optimized
hyperparameters. Subsequently, final models were applied in
the independent validation set, and PET-only models were
additionally applied in theMAASTRO external validation set.

Performance metrics

The receiver operating characteristic (ROC) area under the curve
(AUC) was used to evaluate cross-validation and final model per-
formance. Mean and standard deviation (SD) of the AUC

Table 1 List of feature selection
methods and machine-learning
classifiers

Feature selection method Abbreviation

Hierarchical clustering HClust

Minimum redundancy maximum relevance filter MRMR

No feature selection applied noFS

PCA-based feature selection PCA

Pearson correlation-based redundancy reduction combined with a mutual information maxi-
mization filter

pMIM

Logistic regression with RIDGE regularization adapted for feature selection RIDGE

Machine-learning classifiers

Logistic regression with elastic net regularization ElNet

Naive Bayes classifier NBayes

Random forest RF

Support vector machine with radial kernel SVM

XGBoost XGB
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distribution over validation folds from repeated cross-
validation are reported. DeLong’s test was used to compare
paired AUCs, and to calculate p values and AUC 95% con-
fidence intervals (CI) [42]. We used the “pROC” package in
R to compute, compare, and analyze AUC metrics [43]. In
the independent validation set, confusion matrix parameters
(including recall, precision, F1-score, and geometric mean of
precision and recall) were additionally calculated based on
each model’s global cutoff. Finally, we calculated “impor-
tance scores” for all selected features or feature clusters to
assess their impact in final model predictions as detailed in
the supplementary methods.

Results

Characteristics of patients, primary tumor lesions,
and metastatic nodes

A total of 435 patients with OPSCC met our inclusion
criteria—291 (66.9%) from Yale and 144 (33.1%) from
TCIA. Of these, 315 (72.4%) were high-risk HPV-associated,
and 120 (27.6%) were HPV-negative. Table 2 depicts demo-
graphics and basic imaging characteristics of different
datasets. Detailed characteristics of Yale and TCIA datasets
are included in Supplementary Table 3, and prior publications
[15, 18, 19, 21], respectively. A total of 2248 segmentations
were generated, corresponding to PETand CT representations
of 435 primary tumors and 741 metastatic cervical lymph
nodes.

Radiomics feature stability

Following image preprocessing and feature extraction,
multiple delineation analysis was performed on 50 pri-
mary tumors, 65 randomly selected lymph nodes, and
the combined set of all lesions to assess feature robust-
ness and identify stable features. The ICC-based feature
stability assessment, including numbers of retained fea-
tures, is summarized in Table 3. PET features exhibited
greater stability in primary tumors, whereas CT features
were more robust in lymph nodes. All feature sets
showed similar reproducibility in inter- and intra-rater
testing.

Cross-validation and model optimization

Figure 3 depicts a heatmap summary of cross-validation
performance for all candidate models. Of 360 candidate
models, the top 12 models with the greatest averaged
AUC in cross-validation were selected as final models
and are listed in Table 4—one model for each combi-
nation of VOI source and imaging modality. Across all

candidates, those models using XGBoost classifiers were
most frequently selected for final validation (9/12
models). Final models most frequently utilized hierarchi-
cal clustering and logistic regression with RIDGE regu-
larization for feature selection (Table 4).

Independent and external validation of optimized
models

Table 4, Fig. 4, and Supplementary Fig. 2 depict final
models’ performance and ROC curves. Overall, models
combining PET and CT radiomics features achieved
higher classification performance compared to single-
modality PET- or CT-based models. Top performing op-
timized models generalized well to independent and ex-
ternal validation cohorts, with AUC performances well
within 2 SD of their respective averaged AUC in cross-
validation.

Overall, primary tumor radiomics signatures exhibited the
highest discriminative ability in both cross-validation and in-
dependent validation, with the XGBoost classifier using
RIDGE feature selection from combined PET/CT radiomics
predicting HPV status with an averaged AUC of 0.78 (SD =
0.06) in cross-validation, and AUC of 0.77 (95% CI = 0.65–
0.89) in independent validation.

Models using radiomics features from individual
nodes or consensus of all nodes per each patient yielded
lower performance than primary tumor models
(Table 4). Nevertheless, combining features from all
metastatic nodes in each patient appears to be advanta-
geous, given the performance superiority of models
using consensus VOI over individual node features. In
the external PET-only MAASTRO validation cohort, the
XGBoost classifier with hierarchical feature clustering
from consensus sets of all lymph nodes yielded an
AUC of 0.73 (95% CI = 0.47–0.94).

The consensus VOI model derived from primary tumor
lesions and metastatic lymph nodes yielded the highest clas-
sification performance in the external PET-only MAASTRO
cohort, with the XGBoost classifier achieving an AUC of 0.83
(95% CI = 0.68–0.98).

Of note, the AUC classification performance of
models utilizing different imaging modalities within
one VOI source, or utilizing different VOI in paired
radiomics datasets (primary tumor and consensus of tu-
mor and all nodes), was not significantly different in
independent validation (p > 0.05, DeLong’s test).

Supplementary Tables 4.1 to 4.4 list feature impor-
tance scores for 12 final models. Radiomics features
representing histogram metrics of CT attenuation and
heterogeneity in CT and PET intensities were ranked
first among different models.
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Discussion

In many institutions, whole body PET/CT is the mainstay of
initial staging in patients with HNSCC, delineating the extent
of primary tumors, identifying metastatic cervical nodes, and
screening for distant metastasis. Hidden bioimaging patterns

related to tumor shape, texture, and hypermetabolism can pro-
vide additional information regarding the tumor molecular
subtype, such as HPV status in OPSCC. In this study, we
devised, validated, and comparatively analyzed PET and CT
radiomics signatures for prediction of HPV status in OPSCC
primary tumors and metastatic cervical lymph nodes. We

Table 2 Patients’ characteristics

Training/cross-validation
cohort

Independent
validation cohort

External validation cohort
(MAASTRO—PET only)

p value
training vs.
independent

p value
training vs.
external

Number of patients 326 80 29

Number of lymph nodes 518 148 75

Sex, n (%) 0.76 1.00

M 272 (83.4%) 65 (81.3%) 24 (82.8%)
F 54 (16.6%) 15 (18.8%) 5 (17.2%)

Age [years], mean (SD) 60.59 (9.32) 60.53 (9.06) 60.86 (7.06) 0.78 0.79

HPV status, n (%) 1.00 < 0.001b

Positive 244 (74.8%) 60 (75.0%) 11 (37.9%)
Negative 82 (25.2%) 20 (25.0%) 18 (62.1%)

T stagea, n (%) 0.54 0.99

T1 46 (14.1%) 6 (7.5%) 5 (17.2%)
T2 120 (36.8%) 35 (43.8%) 10 (34.5%)

T3 106 (32.5%) 24 (30.0%) 8 (27.6%)

T4 54 (16.6%) 15 (18.8%) 6 (20.7%)

N stagea, n (%) 0.64 0.23

N0 64 (19.6%) 14 (17.5%) 5 (17.2%)
N1 143 (43.9%) 41 (51.3%) 9 (31.0%)

N2 111 (34.0%) 24 (30.0%) 15 (51.7%)

N3 8 (2.5%) 1 (1.3%) 0 (0.0%)

M stagea, n (%) 0.68 0.52

M0 312 (95.7%) 78 (97.5%) 29 (100.0%)
M1 14 (4.3%) 2 (2.5%) 0 (0.0%)

Overall stagea, n (%) 0.48 0.009b

I 110 (33.7%) 31 (38.8%) 6 (20.7%)
II 100 (30.7%) 23 (28.8%) 6 (20.7%)

III 53 (16.3%) 11 (13.8%) 4 (13.8%)

IV 63 (19.3%) 15 (18.8%) 13 (44.8%)

Included lymph nodes/patient, range 0–8 0–7 0–9

PETc, mean (SD)

Slice thickness [mm] 3.36 (0.38) 3.35 (0.37) 3d

In-plane pixel spacing [mm] 4.33 (0.92) 4.34 (0.93) 2.67d

In-plane image matrix [n x n] 150.56 (60.58) x idem 150.78 (61.63) x idem 256 × 256d

CTc, mean (SD) n/a
Slice thickness [mm] 3.15 (0.53) 3.20 (0.46)

In-plane pixel spacing [mm] 1.11 (0.19) 1.12 (0.19)

In-plane image matrix [n x n] 512 × 512 512 × 512

aUICC/AJCC 8th edition staging manuals TNM/overall stage [4, 5]
b The external validation cohort (MAASTRO with PET scans only) had a larger proportion of HPV-negative and thus stage IV patients compared to
training/cross-validation cohort
c Values are from original pretreatment images before preprocessing
d Identical imaging characteristics in entire dataset
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showed that PET-based radiomics signatures yielded similar
classification performance to CT-based models, with a trend
suggesting improved predictive performance when combining
PET and CT radiomics features. However, paired models´

performance was not significantly different in independent
validation. Overall, radiomics signatures based on primary
tumor lesions had higher predictive performance compared
to those based on metastatic cervical lymph nodes; however,

Fig. 3 Candidate model performance heatmap. The values represent the
averaged AUC across 100 permutations from 20 repeats of (HPV status
stratified) 5-fold cross-validation. A total of 360 candidate classification
models were devised: 6 feature selection methods × 5 machine-learning

classification algorithms × 4 VOI sources of radiomics input × 3 imaging
modalities. The 12 highest performing candidate models (one per 4 VOI
sources of radiomics input × 3 imaging modalities) were used for inde-
pendent and external validation (Table 4)

Table 3 Inter- and intra-class correlation coefficient (ICC) for feature stability assessment

Multiple delineation
lesions (n)

Averaged Inter-rater
ICC (SD)

Averaged Intra-rater
ICC (SD)

n (%) retained features
(intra- and inter-rater
ICC lower CI bound ≥ 0.8)

Primary tumors 50 PET: 0.92 (0.12) PET: 0.91 (0.11) PET: 751 (72.4%)

CT: 0.86 (0.16) CT: 0.89 (0.13) CT: 586 (54.7%)

Lymph nodes 65 PET: 0.86 (0.17) PET: 0.85 (0.18) PET: 582 (56.1%)

CT: 0.90 (0.17) CT: 0.90 (0.17) CT: 770 (74.3%)

All lesions 115 PET: 0.88 (0.15) PET: 0.87 (0.16) PET: 651 (62.8%)

CT: 0.91 (0.13) CT: 0.93 (0.11) CT: 854 (82.4%)

Mean (SD) ICC of PETand CT radiomics feature sets in primary tumor, lymph node, and combined sets in inter- and intra-rater analysis, and number of
retained features in each feature set
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models using consensus VOI of all nodes had better
classification performance than individual nodes.
Nevertheless, in the external validation cohort
(MAASTRO), the PET-based radiomics signature from
the consensus VOI of primary tumor and metastatic
nodes achieved the highest AUC of 0.83 (95% CI
0.68–0.98) in prediction of HPV status, suggesting a
potential benefit from combining tumoral and nodal
radiomics features.

Assessment of HPV status in OPSCC plays a crucial role in
cancer staging and treatment planning [44]. The Guideline
from the College of American Pathologists recommends
HPV-specific tests—such as DNA ISH or PCR—in certain
p16 positive cervical nodes and multisite primary tumors
[6]. Radiomics-based HPV biomarkers could substitute such
confirmatory second-line tests. In addition, PET/CT bio-
markers suggestive of HPV-associated cervical lymphadenop-
athy in patients presenting with cancer of unknown primary
origin can initiate endoscopic examinations and rigorous tis-
sue sampling for identification of potential OPSCC origin. In

the future, our approach should be refined and validated using
larger cohorts, with strict standardization of image acquisition
techniques. Quantitative imaging biomarkers must conform to
the same requirements as the conventional biomarkers, which
they are designed to substitute or supplement before transla-
tion to clinical application can be considered.

In this study, we applied PET-guided segmentation of pri-
mary tumors and metastatic nodes, wherein all lesions were
first segmented on PET images, and segmentations were then
overlaid and adapted onto the co-registered non-contrast CT
scans. Identification and delineation of HNSCC lesions on CT
scans—especially in the absence of contrast administration—
can be challenging. Indeed, prior studies demonstrated bene-
fits of PET-guided radiotherapy planning over CT-guidance
[45, 46]. On the other hand, non-contrast CT scans provide
standardized tissue density values for evaluation of tumor tex-
ture heterogeneity, devoid of variability inherent to contrast-
enhanced CT scan acquisition with variable contrast accumu-
lation which can affect radiomics feature measurement [47].
PET-guided segmentation may enable precise non-contrast

Fig. 3 (continued)
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CTradiomics analysis, overcoming inherent segmentation dif-
ficulties in the absence of contrast administration.

Our methodology may also guide future research in devis-
ing PET/CT radiomics biomarkers for HNSCC. Testing an
array of feature selection methods and machine-learning clas-
sifiers using cross-validation is an effective and easily inter-
pretable approach to determine the most promising models for
subsequent validation in independent and external datasets.
Particularly, this is the first radiomics-based HPV classifica-
tion study to apply state-of-the-art machine-learning classi-
fiers in a comparative analysis, where 9 out of 12 selected
models utilized the Extreme Gradient Boosting (“XGBoost”)
algorithm [48], outperforming similar algorithms in recent
machine-learning competitions [49]. In addition, we applied
automated hyperparameter optimization of machine-learning
classifiers to avoid bias introduced by manual tuning, and
augment model comparability across imaging modalities,
VOIs, and algorithmic approaches. Tuning of machine-
learning classifiers resembles optimization of “black box”
functions and may be approached with purpose-built

algorithms like Bayesian Optimization [40]. Future studies
may similarly automate tuning when seeking to compare
models in an unbiased fashion. In addition, similar averaged
performance in cross-validation (20 repetitions of 5-fold
cross-validation—i.e., 100 test folds), independent, and exter-
nal validation cohorts confirms the stability of our results.

A shortcoming of previous radiomics studies, including
HPV classification studies, was relying on homogeneous
single center imaging data and/or absence of external vali-
dation [8–11, 50]. Such study design limits generalizability
and applicability [50]. Our results based on a multi-
institutional cohort confirmed the generalizability of our
radiomics signatures and their potential as universal non-
invasive biomarkers for molecular phenotyping. We ac-
quired a multi-institutional and multi-national cohort from
four different TCIA collections and our own center, and
applied a three-dataset approach for model building and
validation. The bulk of data was pooled and divided into
training and independent validation datasets, and the PET-
onlyMAASTRO cohort was held out for additional external

Fig. 3 (continued)
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validation. All PET and CT models yielded similar perfor-
mance in cross-validation, independent, and external vali-
dation, confirming model generalizability and suggesting
robustness across institutions, heterogenous imaging proto-
cols, and scanning equipment. Our three-dataset-approach
may serve as a paradigm for future radiomics studies seek-
ing to expand their scope beyond exploratory investigation.
Finally, this approach may pave the way for application of
PET radiomics in treatment response prediction and molec-
ular pattern detection beyond HPV.

The feature importance scores in Supplementary Tables 4.1
to 4.4 provide insight about PET/CT radiomics markers with
the highest impact on model predictions. Notably, features
representative of heterogeneity in tumor soft tissue on CT
and metabolic activity on PET, as well as high histogram
percentile CT density—which may represent tissue
hypercellularity—had the highest impact on model decisions.
These may be reflective of histological differences between
the (commonly) keratinizing HPV-negative OPSCC, versus
the HPV-associated subtype, which is usually associated with
poorly differentiated histologic morphology, minimal intersti-
tial space, and basaloid cells with scant cytoplasm [44, 51].

To address the class imbalance in our cohort—given the
4:1 ratio of HPV-associated to HPV-negative OPSCC
subjects—we used the AUC of ROC as our primary perfor-
mance metric, which in contrary to classification accuracy is
not inherently susceptible to class imbalance.

One limitation of our study is the lack of uniform testing for
HPV association, which was ascertained using institutional
protocols in TCIA cohorts. Ideally, a full set of p16 and select
HPV-specific tests would be available for comparative analy-
sis. Also, the external validation cohort was small (n = 29
patients and n = 75 lymph nodes) and lacked CT scans; thus,
future validation in larger external PET/CT cohorts is crucial.

Metastatic involvement of cervical lymph nodes was deter-
mined by expert read of PET/CT studies, but without patho-
logic correlation in all involved nodes. Finally, inclusion of
demographic information can improve the discriminative ac-
curacy of radiomics models for prediction of HPV status in
OPSCC, as Ravanelli et al. [52] showed that addition of
smoking status to MRI diffusion metrics increased model per-
formance. However, some demographic information may not
be reliably available in all patients, and some are prone to
cultural and geographical variations, which may impose lim-
itations to the generalizability and applicability of models;
thus, we limited the scope of our study to develop an objective
biomarker solely using quantitative radiomics features extract-
ed from clinical PET/CT scans.

Conclusion

Using independent and external datasets, we devised and val-
idated non-invasive HPV biomarkers for molecular OPSCC
subtyping. We demonstrate discriminative ability of both PET
and CT classifiers, with the highest predictive performance
achievedwhen PETand CT radiomic features were combined.
Furthermore, in our external validation, we found potential
added predictive performance when PET radiomic markers
derived from the primary tumor and metastatic cervical nodes
were combined. Applying a rigorous test to identify stable
radiomics features, comparative analysis of different feature
selection methods, and machine-learning classifiers, and
benefitting from a multi-institutional cohort, our models dem-
onstrate reliable generalizability in scans obtained at different
institutions. Of note, the performance of radiomics models for
distinction of HPV association remains too low to substitute
tissue sampling; however, pending validation in larger cohorts

Fig. 4 ROC curve analysis depicting independent validation of HPV classifiers using radiomics features from primary tumor lesions (Table 4—primary
tumor source VOI)
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and attainment of sufficient diagnostic accuracy in the future,
such non-invasive HPV biomarkers may potentially supple-
ment tissue sampling in equivocal instances, or provide pre-
liminary assessment before the biopsy.

Code availability Our code is publicly available from our “OPSCC-
Radiomics” GitHub-repository (https://github.com/nafets200/OPSCC-
Radiomics).
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1. Supplementary methods 
 

1.1 Dimensionality reduction techniques 
 

1.1.1 HClust – Hierarchical clustering 

First, a “euclidean” feature distance matrix of all radiomics features was computed using the R “stats” 
package (version 3.6.0) [1] “dist” function, followed by hierarchical clustering by means of the “stats” 
“hclust” function using Ward clustering with Ward’s clustering criterion implemented (i.e. “ward.D2” 
package option) [2]. The dendrogram was cut until 20 clusters remained. We extracted “meta-
features” by averaging all features in any remaining cluster. Hierarchical clustering was performed with 
(cross-validation) training data, and only the averaging operations were applied to all cases. The 20 
resulting meta features were used for training and classification.  
 

1.1.2 MRMR – Maximum relevance minimum redundancy filter 

We used the “mRMRe” package (version 2.0.9) [3] for R to perform “classical” MRMR feature selection, 
and the n most predictive feature were selected. n was treated as a model hyperparameter and tuned 
in Bayesian optimization.  
 

1.1.3 noFS – No feature selection 

Feature selection was not performed, and the classifiers were fitted on the entire feature set.  
 

1.1.4 PCA – Principal component analysis  

Singular value decomposition based principal component analysis was performed on the (cross-
validation) training data using the R “stats” package (version 3.6.0) [1] “prcomp” function. We used 
“scheme 1” of a method proposed by Song et al. [4] to adapt principal component analysis for feature 
selection. 30 eigenvectors were used to perform step 2 and features were sorted according to their 
contribution to the feature extraction result in step 4 of the Song et al. method. Based on the ranking 
created in step 4, the n features contributing the most to the feature extraction result were used for 
classifier fitting, and n was treated as a model hyperparameter and tuned in Bayesian optimization.  
 

1.1.5 pMIM – Pearson correlation-based redundancy reduction with mutual information filter 

We applied the R “stats” package (version 3.6.0) [1] “cor” function to compute Pearson’s correlation 
coefficient (r) for all possible radiomics feature pairs. To exclude highly correlated, “redundant” 
features, we at random excluded one feature from every pair exhibiting r > 0.9 or r < -0.9.  
Thereafter, we applied a mutual information maximization filter to the non-redundant feature set 
using the “MIM” function of the “praznik” package (version 6.0.0) for R [5]. The n most predictive 
features were selected, and n was treated as a model hyperparameter and tuned in Bayesian 
optimization.  
 

1.1.6 RIDGE – RIDGE regularized logistic regression for feature selection 

Using the R “glmnet” package (version 2.0-18) [6] “cv.glmnet” function, we fit a ridge regularized 
logistic regression model on the (cross-validation) training data. The function’s internal 10-fold cross-
validation mode was used to determine the “lambda” parameter. Each feature’s regression coefficient 
was queried from the fitted “glmnet” object at the “lambda” value maximizing the mean cross-
validated area under the curve. All features were subsequently sorted in descending order of their 
absolute regression coefficient value, and the n highest ranked features were selected. n was treated 
as a model hyperparameter and tuned in Bayesian optimization.   
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1.2 Machine-learning classifiers 
 

1.2.1 ElNet – Elastic net regularized logistic regression 

We used the R “glmnet” package (version 2.0-18) [6] “cv.glmnet” function to fit elastic net regularized 
logistic regression models. The function’s internal 10-fold cross-validation mode was used to 
determine the “lambda” parameter. New predictions were made at the “lambda” value maximizing 
the mean cross-validated area under the curve. The elastic net mixing parameter “alpha” was tuned in 
Bayesian optimization.  
 

1.2.2 NBayes – Naïve Bayes classifier 

The “naive_bayes” function of the “naivebayes” package (version 0.9.6) [7] for R was used to create 
the models. Laplace smoothing was not applied, the kernel was not used, and the Gaussian distribution 
was applied for all features. Naïve Bayes candidate models had no tunable hyperparameters, and 
Bayesian optimization was only used to tune the feature count, if applicable.  
 

1.2.3 RF – Random forest classifier 

We used the “randomForest” package (version 4.6-14) [8] in R to build random forest models. The 
“randomForest” function was configured to grow 1000 trees and perform sampling of cases with 
replacement. The “mtry” (number of features randomly sampled as candidates at each split) and 
“maxnodes” (maximum number of terminal nodes in a tree) parameters were tuned in Bayesian 
optimization. All other function parameters were kept in default.  
 

1.2.4 SVM – Support vector machine classifier 

The “gamma” and “cost” parameters were optimized in Bayesian optimization and a radial kernel was 
applied. We used the “e1071” (version 1.7-2) package [9] to implement support vector machines in R 
and class weights were specified to be inversely proportional to the class distribution in the training 
data; all other parameters were set to the default options.  
 

1.2.5 XGB – XGBoost 

We implemented extreme gradient boosting based on the “xgboost” package [10, 11] for R in tree-
booster mode (“gbtree” option) and tuned the following hyperparameters using Bayesian 
optimization: “eta”, “gamma”, “max_depth”, “min_child_weight”, “subsample”, “colsample_bytree” 
and “lambda”. One parameter (“nrounds”) was fine-tuned: While fitting the classifier on cross-
validation training data, cross-validation test set class probabilities were iteratively predicted after 
completing each boosting round, and a test set classification area under the curve measurement was 
computed and stored to represent each boosting round count. Following completion of the 20x 
repeated 5-fold cross-validation framework, we averaged all area under the curve measurements 
pertaining to one boosting round count across all 100 cross-validation test set permutations. The 
“nrounds” setting yielding the highest mean area under the curve performance was saved as the final 
parameter setting. The rest of parameters were set by the default package recommendation.  
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1.3 Calculation of radiomics feature importance  
 
Feature importance scores were calculated for all selected features or feature clusters utilized for final 
model classifier fitting on the training cohort. Each feature´s importance rank and score are reported 
in supplementary table 4. Importance score quantification relies on methodology specific to the 
classification algorithm applied; hence, importance scores are comparable only among models utilizing 
identical feature selection and classification methodology.  
 
Feature importance scores for models utilizing the XGBoost classifier (XGB) were obtained through a 
package [10, 11] function: The “xgb.importance” function returns a score quantifying the total gain of 
each given feature´s splits (“Gain”), expressed as a fraction. I.e. higher fractions indicate higher feature 
importance.  
 
Models using elastic net regularized logistic regression (ElNet) by default produce a feature importance 
score during model fitting: Each feature’s regression coefficient was queried from the fitted 
“glmnet” [6] object at the “lambda” value maximizing the mean cross-validated area under the curve. 
All features were subsequently sorted in descending order of their absolute regression coefficient 
value to generate the feature importance rank; and each feature´s regression coefficient is used as the 
importance score. I.e. higher absolute values indicate higher feature importance.  
 
One final model utilized the Naïve Bayes classifier (NBayes), combined with RIDGE feature selection. 
In this case, we report feature regression coefficients derived from RIDGE feature selection as 
importance scores, and sorted features in descending order of their absolute regression coefficient to 
generate the importance rank. Please refer to the dimensionality reduction techniques section of the 
supplementary methods for details.  
 
Several final models relied on hierarchical clustering (HClust) to reduce feature dimensionality. One 
meta feature was calculated to represent each cluster (see dimensionality reduction techniques 
section of the supplementary methods). Supplementary table 4 reports importance rank and score for 
each meta feature (denoted as “Cluster_#”). For those models which did not apply feature selection 
(“noFS”) we reported the ranks and scores of the 20 highest ranked radiomics features.  
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2. Supplementary tables 
 

Supplementary table 1 List of extracted radiomics features 

Feature Family Feature name 

First-order 1 10th percentile 

2 90th percentile 

3 Energy 

4 Entropy 

5 Interquartile Range 

6 Kurtosis 

7 Maximum 

8 Mean 

9 Mean Absolute Deviation 

10 Median 

11 Minimum 

12 Range 

13 Robust Mean Absolute Deviation 

14 Root Mean Squared 

15 Skewness 

16 Total Energy 

17 Uniformity 

18 Variance 

Shape 1 Elongation 

2 Flatness 

3 Least Axis Length 

4 Major Axis Length 

5 Maximum 2D Diameter (Column) 

6 Maximum 2D Diameter (Row) 

7 Maximum 2D Diameter (Slice) 

8 Maximum 3D Diameter 

9 Mesh Volume 

10 Minor Axis Length 

11 Sphericity 

12 Surface Area 

13 Surface Area to Volume Ratio 

14 Voxel Volume 

Texture - Gray Level Cooccurrence 
Matrix Features (glcm) 

1 Autocorrelation 

2 Cluster Prominence 

3 Cluster Shade 

4 Cluster Tendency 

5 Contrast 

6 Correlation 

7 Difference Average 

8 Difference Entropy 

9 Difference Variance 
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10 Informational Measure of Correlation 1 

11 Informational Measure of Correlation 2 

12 Inverse Difference 

13 Inverse Difference Moment 

14 Inverse Difference Moment Normalized 

15 Inverse Difference Normalized 

16 Inverse Variance 

17 Joint Average 

18 Joint Energy 

19 Joint Entropy 

20 Maximal Correlation Coefficient 

21 Maximum Probability 

22 Sum Average 

23 Sum Entropy 

24 Sum of Squares 

Texture - Gray Level Size Zone Matrix 
Features (glszm) 

1 Gray Level Non-Uniformity 

2 Gray Level Non-Uniformity Normalized 

3 Gray Level Variance 

4 High Gray Level Zone Emphasis 

5 Large Area Emphasis 

6 Large Area High Gray Level Emphasis 

7 Large Area Low Gray Level Emphasis 

8 Low Gray Level Zone Emphasis 

9 Size Zone Non-Uniformity 

10 Size Zone Non-Uniformity Normalized 

11 Small Area Emphasis 

12 Small Area High Gray Level Emphasis 

13 Small Area Low Gray Level Emphasis 

14 Zone Entropy 

15 Zone Percentage 

16 Zone Variance 

Texture - Gray Level Run Length Matrix 
Features (glrlm) 

1 Gray Level Non-Uniformity 

2 Gray Level Non-Uniformity Normalized 

3 Gray Level Variance 

4 High Gray Level Run Emphasis 

5 Long Run Emphasis 

6 Long Run High Gray Level Emphasis 

7 Long Run Low Gray Level Emphasis 

8 Low Gray Level Run Emphasis 

9 Run Entropy 

10 Run Length Non-Uniformity 

11 Run Length Non-Uniformity Normalized 

12 Run Percentage 

13 Run Variance 
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14 Short Run Emphasis 

15 Short Run High Gray Level Emphasis 

16 Short Run Low Gray Level Emphasis 

Texture - Neighboring Gray Tone 
Difference Matrix Features (ngtdm) 

1 Busyness 

2 Coarseness 

3 Complexity 

4 Contrast 

5 Strength 

Texture - Gray Level Dependence 
Matrix Features (gldm) 

1 Dependence Entropy 

2 Dependence Non-Uniformity 

3 Dependence Non-Uniformity Normalized 

4 Dependence Variance 

5 Gray Level Non-Uniformity 

6 Gray Level Variance 

7 High Gray Level Emphasis 

8 Large Dependence Emphasis 

9 Large Dependence High Gray Level Emphasis 

10 Large Dependence Low Gray Level Emphasis 

11 Low Gray Level Emphasis 

12 Small Dependence Emphasis 

13 Small Dependence High Gray Level Emphasis 

14 Small Dependence Low Gray Level Emphasis 

 

 

Complete list of Pyradiomics [12] features used in this study. Exact feature definitions are provided in 

ref. [13].  
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Supplementary table 2 Bayesian optimization parameter bounds 

Machine-learning classifier Rounds (n) a Hyperparameter b Lower bound Upper bound 

ElNet [6] 100 Features (n) c 2 30 

alpha 0 1 

NBayes [7] 50 Features (n) c 2 30 

RF [8] 150 Features (n) c 2 30 

mtry 2 30 d 

maxnodes 2 32768 e 

SVM [9] 150 Features (K) c 2 30 

gamma 0 0.5 

cost 0.5 10 

XGB [10, 11] 200 Features (n) c 2 30 

eta 0 1 

gamma 0 10 

max_depth 3 15 

min_child_weight 0 20 

subsample 0.4 1 

colsample_bytree 0.4 1 

lambda 0.5 1 

a Per each tuned hyperparameter, 50 rounds of tuning were performed, or a maximum of 200 rounds 
per model.  
b Refer to refs. in column 1 for parameter definitions 
c Feature count was not tuned for every feature selection method. Refer to the supplementary 
methods for details.  
d This bound was increased to 40 for the RF model combined with noFS (no feature selection 
performed) to adjust for higher data dimensionality. 
e As a general rule, the maximum possible number of terminal nodes in a decision tree is 2 to the power 
of the depth. The depth was limited to 15, resulting in a maximum of 32768 terminal nodes.  
 

 

The “rBayesianOptimization” package [14] for R was used to tune machine-learning classifier 

hyperparameters in candidate HPV classification models. The table summarizes the number of 

performed optimization rounds as well as the lower and upper preset parameter bounds for each 

hyperparameter.  
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Supplementary table 3 Yale cohort patients’ characteristics 

Variables Yale cohort 

Patients – n 291 

Sex – n (%) 
M 
F 

 
245 (84.2 %) 
46 (15.8 %) 

Age [years] – mean (SD) 60.58 (9.55) 

Race / ethnicity – n (%) 
white 
black or African American 
Hispanic or Latino 
other / unknown 

 
246 (84.5 %) 
24 (8.2 %) 
16 (5.5 %) 
5 (1.7 %) 

HPV status – n (%) 
positive 
negative 

 
218 (74.9 %) 
73 (25.1 %) 

T stage a – n (%) 
T1 
T2 
T3 
T4 

 
40 (13.7 %) 
111 (38.1 %) 
91 (31.3 %) 
49 (16.8 %) 

N stage a – n (%) 
N0 
N1 
N2 
N3 

 
56 (19.2 %) 
128 (44.0 %) 
100 (34.4 %) 
7 (2.4 %) 

M stage a – n (%) 

M0 
M1 

 
275 (94.5 %) 
16 (5.5 %) 

Overall stage a – n (%) 

I 
II 
III 
IV 

 
99 (34.0 %) 
91 (31.3 %) 
44 (15.1 %) 
57 (19.6 %) 

Included lymph nodes – n 486 

Included lymph nodes / patient – range 0 – 8 

Smoking – n (%) 
never-smoker 
smoker 

pack-years – median (IQR) 
pack-years unknown – (n) 

unknown 

 
96 (33.0 %) 
193 (66.3 %) 

20 (10-40) 
20 

2 (0.7 %) 

PET b – mean (SD) 
slice thickness [mm] 
in-plane pixel spacing [mm] 
in-plane image matrix [n x n] 
administered [18F]FDG activity [MBq] 
time from [18F]FDG administration to scan [min] 

 
3.28 (0.36) 
4.46 (0.97) 
155.71 (70.04) x 155.71 (70.04) 
449.72 (100.42) 
64.20 (10.21) 

CT b – mean (SD) 
slice thickness [mm] 
in-plane pixel spacing [mm] 
in-plane image matrix [n x n] 

 
3.27 (0.41) 
1.14 (0.20) 
512 x 512 
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CT tube current [mA] 
CT tube peak voltage [kV] 

124.97 (64.80) 
122.16 (11.13) 

Scanner manufacturer – n (%) 
GE Medical Systems 
Siemens 

 
183 (62.9 %) 
108 (37.1 %) 

a UICC/AJCC 8th edition staging manuals TNM / overall stage [15, 16] 
b Values are from original images before pre-processing 

 

 

[18F]FDG = [18F]fluorodeoxyglucose; MBq = Megabecquerel; kV = Kilovolt; mA = Milliampere  

  



Supplementary table 4 Feature importance in final models 

Supplementary table 4.1 Source VOI: Primary tumors 

Imaging modality PET/CT 

Machine-learning classifier XGB 

Feature selection method RIDGE 

Feature identifier a Feature Importance b 

Modality Pre-processing Family Feature name Rank Score 

CT LoG 4mm firstorder 90Percentile 1 0.156 

PET wavelet HLL ngtdm Complexity 2 0.152 

PET wavelet HLL firstorder Minimum 3 0.098 

PET wavelet HLL glszm HighGrayLevelZoneEmphasis 4 0.088 

CT wavelet LLL firstorder Skewness 5 0.073 

CT wavelet LHL glcm Correlation 6 0.061 

CT wavelet LLH firstorder Mean 7 0.044 

CT LoG 2mm firstorder 90Percentile 8 0.041 

PET wavelet HHH gldm LowGrayLevelEmphasis 9 0.037 

CT wavelet LLH glcm DifferenceAverage 10 0.034 

CT wavelet LLH firstorder MeanAbsoluteDeviation 11 0.034 

CT LoG 4mm ngtdm Strength 12 0.033 

CT wavelet LLH firstorder 10Percentile 13 0.028 

PET wavelet HLL glcm Contrast 14 0.027 

PET wavelet LHL gldm 
LargeDependenceLowGrayLevel 
Emphasis 15 

0.020 

CT wavelet HLL firstorder 90Percentile 16 0.018 

CT LoG 2mm firstorder Maximum 17 0.016 

CT wavelet HLL firstorder Mean 18 0.015 

PET wavelet HLH glrlm LongRunLowGrayLevelEmphasis 19 0.014 

CT wavelet HHL firstorder Maximum 20 0.012 

CT wavelet LLH firstorder Median 21 0.000 

PET wavelet HLH gldm 
LargeDependenceLowGrayLevel 
Emphasis 22 

0.000 

CT wavelet LLH gldm 
DependenceNonUniformity 
Normalized 23 

0.000 

PET wavelet HLL glrlm LongRunHighGrayLevelEmphasis 24 0.000 

CT wavelet LLH ngtdm Contrast 25 0.000 

PET wavelet HLL glrlm HighGrayLevelRunEmphasis 26 0.000 

PET wavelet HLL gldm HighGrayLevelEmphasis 27 0.000 

PET wavelet HLL glrlm ShortRunHighGrayLevelEmphasis 28 0.000 

CT LoG 4mm glcm ClusterShade 29 0.000 

PET wavelet HLL glcm Autocorrelation 30 0.000 
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Imaging modality PET 

Machine-learning classifier NBayes 

Feature selection method RIDGE 

Feature identifier a Feature Importance b 

Modality Pre-processing Family Feature name Rank Score 

PET 
wavelet HLH gldm 

LargeDependenceLowGrayLevel 
Emphasis 1 

0.023 

PET wavelet LHL gldm 
LargeDependenceLowGrayLevel 
Emphasis 2 

-0.022 

PET wavelet HLH glrlm LongRunLowGrayLevelEmphasis 3 0.021 

PET wavelet HLL glcm Contrast 4 -0.019 

PET wavelet HLL glrlm LongRunHighGrayLevelEmphasis 5 -0.018 

PET wavelet HHH gldm LowGrayLevelEmphasis 6 -0.018 

PET wavelet HLL gldm HighGrayLevelEmphasis 7 -0.017 

PET wavelet HLL glrlm HighGrayLevelRunEmphasis 8 -0.017 

PET 
wavelet HHH gldm 

LargeDependenceLowGrayLevel 
Emphasis 9 

-0.017 

PET wavelet HLL glrlm ShortRunHighGrayLevelEmphasis 10 -0.017 

PET wavelet HLL glszm HighGrayLevelZoneEmphasis 11 -0.017 

PET wavelet HLL glcm Autocorrelation 12 -0.017 

PET wavelet HHH glrlm LongRunLowGrayLevelEmphasis 13 -0.016 

PET wavelet HLL firstorder Minimum 14 0.016 

PET wavelet HLL glszm GrayLevelVariance 15 -0.016 

PET wavelet HLL ngtdm Complexity 16 -0.016 

PET wavelet HLL glcm JointAverage 17 -0.016 

PET wavelet HLL glcm SumAverage 18 -0.016 

PET wavelet HHH glrlm LowGrayLevelRunEmphasis 19 -0.016 

PET wavelet LHL firstorder Kurtosis 20 -0.016 

PET wavelet HLL glcm DifferenceAverage 21 -0.015 

 

Imaging modality CT 

Machine-learning classifier XGB 

Feature selection method RIDGE 

Feature identifier a Feature Importance b 

Modality Pre-processing Family Feature name Rank Score 

CT LoG 4mm firstorder 90Percentile 1 0.261 

CT wavelet LHL glcm Correlation 2 0.140 

CT LoG 2mm firstorder 90Percentile 3 0.135 

CT wavelet LLH firstorder 10Percentile 4 0.132 

CT wavelet LLL firstorder Skewness 5 0.125 

CT wavelet LLH firstorder Median 6 0.066 

CT LoG 2mm firstorder Maximum 7 0.063 

CT wavelet HLL firstorder 90Percentile 8 0.046 

CT wavelet HHL firstorder Maximum 9 0.031 
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Supplementary table 4.2 Source VOI: Individual metastatic lymph nodes 

Imaging modality PET/CT 

Machine-learning classifier ElNet 

Feature selection method HClust 

Feature identifier a 

Feature Importance b 

Rank Score 

Cluster_10 1 -0.612 

Cluster_19 2 0.489 

Cluster_8 3 0.369 

Cluster_13 4 -0.350 

Cluster_11 5 0.301 

Cluster_18 6 -0.295 

Cluster_20 7 0.291 

Cluster_14 8 -0.271 

Cluster_6 9 -0.258 

Cluster_7 10 -0.166 

Cluster_16 11 -0.159 

Cluster_4 12 0.143 

Cluster_1 13 0.121 

Cluster_2 14 0.102 

Cluster_9 15 -0.079 

Cluster_12 16 -0.068 

Cluster_5 17 -0.062 

Cluster_3 18 0.046 

Cluster_17 19 0.038 

Cluster_15 20 -0.010 

 

Imaging modality PET 

Machine-learning classifier XGB 

Feature selection method HClust 

Feature identifier a 

Feature Importance b 

Rank Score 

Cluster_8 1 0.180 

Cluster_3 2 0.164 

Cluster_13 3 0.133 

Cluster_19 4 0.122 

Cluster_6 5 0.114 

Cluster_20 6 0.097 

Cluster_15 7 0.082 

Cluster_17 8 0.070 

Cluster_10 9 0.022 

Cluster_14 10 0.016 

Cluster_1 11 0.000 

Cluster_2 12 0.000 

Cluster_4 13 0.000 

Cluster_5 14 0.000 
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Cluster_7 15 0.000 

Cluster_9 16 0.000 

Cluster_11 17 0.000 

Cluster_12 18 0.000 

Cluster_16 19 0.000 

Cluster_18 20 0.000 

 

Imaging modality CT 

Machine-learning classifier ElNet 

Feature selection method HClust 

Feature identifier a 

Feature Importance b 

Rank Score 

Cluster_15 1 0.569 

Cluster_17 2 0.516 

Cluster_7 3 0.494 

Cluster_10 4 -0.472 

Cluster_2 5 -0.347 

Cluster_14 6 -0.296 

Cluster_8 7 0.234 

Cluster_9 8 -0.227 

Cluster_16 9 -0.214 

Cluster_19 10 -0.197 

Cluster_20 11 0.153 

Cluster_4 12 -0.149 

Cluster_11 13 -0.146 

Cluster_13 14 0.119 

Cluster_5 15 -0.099 

Cluster_18 16 0.067 

Cluster_12 17 0.052 

Cluster_1 18 -0.043 

Cluster_3 19 -0.033 

Cluster_6 20 -0.033 

 

Supplementary table 4.3 Source VOI: Consensus of tumor and nodes 

Imaging modality PET/CT 

Machine-learning classifier XGB 

Feature selection method noFS c 

Feature identifier a Feature Importance b 

Modality Pre-processing Family Feature name Rank Score 

CT LoG 2mm firstorder 90Percentile 1 0.091 

PET wavelet HLL firstorder Minimum 2 0.085 

CT LoG 4mm firstorder 90Percentile 3 0.083 

CT wavelet LLL glcm Idn 4 0.052 

PET wavelet HLL ngtdm Complexity 5 0.047 

PET wavelet HLL glszm SmallAreaHighGrayLevelEmphasis 6 0.047 

CT wavelet LLL firstorder Mean 7 0.041 
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CT LoG 4mm glrlm RunPercentage 8 0.040 

PET wavelet HHL glrlm LongRunHighGrayLevelEmphasis 9 0.035 

CT wavelet LLH glrlm RunEntropy 10 0.032 

PET wavelet LLL glszm GrayLevelNonUniformity 11 0.029 

PET wavelet LHH glszm ZoneEntropy 12 0.028 

CT LoG 4mm glrlm ShortRunEmphasis 13 0.028 

CT wavelet HLH glszm ZoneEntropy 14 0.025 

CT LoG 4mm gldm 
LargeDependenceHighGrayLevel 
Emphasis 

15 0.021 

CT wavelet HHH glszm LargeAreaHighGrayLevelEmphasis 16 0.020 

CT wavelet LLH firstorder Uniformity 17 0.019 

CT wavelet LLH glszm ZoneEntropy 18 0.018 

PET LoG 3mm glcm SumAverage 19 0.017 

PET wavelet LLH glcm Contrast 20 0.017 

 

Imaging modality PET 

Machine-learning classifier XGB 

Feature selection method noFS c 

Feature identifier a Feature Importance b 

Modality Pre-processing Family Feature name Rank Score 

PET wavelet HHL glrlm LongRunHighGrayLevelEmphasis 1 0.078 

PET LoG 3mm glcm SumAverage 2 0.050 

PET wavelet HLL glszm HighGrayLevelZoneEmphasis 3 0.048 

PET wavelet HLL glszm SmallAreaHighGrayLevelEmphasis 4 0.045 

PET wavelet LLH glcm SumSquares 5 0.041 

PET original  glrlm GrayLevelNonUniformity 6 0.040 

PET wavelet HLL ngtdm Complexity 7 0.038 

PET wavelet HLL glszm SizeZoneNonUniformity 8 0.035 

PET wavelet HHH glrlm LowGrayLevelRunEmphasis 9 0.031 

PET wavelet LHH glcm ClusterShade 10 0.027 

PET LoG 3mm glrlm ShortRunHighGrayLevelEmphasis 11 0.026 

PET wavelet HLL glcm ClusterShade 12 0.025 

PET wavelet HLH glrlm GrayLevelVariance 13 0.024 

PET wavelet LHL glszm HighGrayLevelZoneEmphasis 14 0.023 

PET wavelet HHH glrlm HighGrayLevelRunEmphasis 15 0.022 

PET wavelet LHH firstorder Kurtosis 16 0.022 

PET wavelet LHL glcm Autocorrelation 17 0.018 

PET wavelet HHH gldm HighGrayLevelEmphasis 18 0.018 

PET wavelet HLL glrlm HighGrayLevelRunEmphasis 19 0.017 

PET wavelet HLH glcm ClusterTendency 20 0.016 
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Imaging modality CT 

Machine-learning classifier XGB 

Feature selection method noFS c 

Feature identifier a Feature Importance b 

Modality Pre-processing Family Feature name Rank Score 

CT LoG 4mm firstorder 90Percentile 1 0.104 

CT LoG 2mm firstorder 90Percentile 2 0.101 

CT LoG 4mm glrlm ShortRunEmphasis 3 0.082 

CT wavelet LLH glszm ZoneEntropy 4 0.053 

CT wavelet HHH glszm LargeAreaHighGrayLevelEmphasis 5 0.037 

CT wavelet LLL firstorder Skewness 6 0.036 

CT wavelet HLL glcm Idn 7 0.034 

CT wavelet LLH firstorder Range 8 0.033 

CT original  glszm SmallAreaLowGrayLevelEmphasis 9 0.032 

CT wavelet LLH glrlm RunEntropy 10 0.032 

CT LoG 4mm glszm GrayLevelVariance 11 0.025 

CT LoG 4mm glrlm RunPercentage 12 0.022 

CT wavelet LHL glcm Correlation 13 0.019 

CT wavelet HLH gldm DependenceEntropy 14 0.018 

CT wavelet LLL glcm Idn 15 0.018 

CT LoG 4mm glrlm 
RunLengthNonUniformity 
Normalized 16 

0.017 

CT LoG 4mm glcm Correlation 17 0.017 

CT wavelet HHL glszm ZoneEntropy 18 0.017 

CT wavelet HLL firstorder 10Percentile 19 0.016 

CT wavelet LLH glcm SumEntropy 20 0.013 

 

Supplementary table 4.4 Source VOI: Consensus of all lymph nodes 

Imaging modality PET/CT 

Machine-learning classifier XGB 

Feature selection method pMIM 

Feature identifier a Feature Importance b 

Modality Pre-processing Family Feature name Rank Score 

CT wavelet LLH glszm ZoneEntropy 1 0.329 

CT wavelet HHL glcm JointEntropy 2 0.276 

CT wavelet HHL gldm 
LargeDependenceHighGrayLevel 
Emphasis 3 

0.169 

CT wavelet HHL glcm Idn 4 0.116 

CT wavelet HHH gldm DependenceEntropy 5 0.027 

CT LoG 2mm glcm DifferenceAverage 6 0.025 

CT wavelet HHL gldm DependenceEntropy 7 0.022 

CT LoG 4mm glszm ZoneEntropy 8 0.020 

CT wavelet LLL glszm ZoneEntropy 9 0.007 

CT wavelet LLH glcm JointEntropy 10 0.004 

CT wavelet LHH gldm DependenceEntropy 11 0.004 

CT wavelet LHL glcm JointEntropy 12 0.000 
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Imaging modality PET 

Machine-learning classifier XGB 

Feature selection method HClust 

Feature identifier a 

Feature Importance b 

Rank Score 

Cluster_15 1 0.123 

Cluster_1 2 0.109 

Cluster_16 3 0.102 

Cluster_3 4 0.087 

Cluster_13 5 0.067 

Cluster_5 6 0.066 

Cluster_20 7 0.062 

Cluster_9 8 0.062 

Cluster_4 9 0.062 

Cluster_18 10 0.059 

Cluster_19 11 0.046 

Cluster_2 12 0.040 

Cluster_11 13 0.037 

Cluster_10 14 0.035 

Cluster_7 15 0.022 

Cluster_12 16 0.022 

Cluster_6 17 0.000 

Cluster_8 18 0.000 

Cluster_14 19 0.000 

Cluster_17 20 0.000 

 

Imaging modality CT 

Machine-learning classifier XGB 

Feature selection method pMIM 

Feature identifier a Feature Importance b 

Modality Pre-processing Family Feature name Rank Score 

CT wavelet HHL glcm JointEntropy 1 0.223 

CT wavelet LLH glszm ZoneEntropy 2 0.219 

CT wavelet HHL gldm 
LargeDependenceHighGrayLevel 
Emphasis 3 

0.159 

CT original  glszm SmallAreaLowGrayLevelEmphasis 4 0.078 

CT wavelet HLL glcm JointEntropy 5 0.076 

CT wavelet HHL glcm Idn 6 0.069 

CT wavelet LHL glcm Idn 7 0.046 

CT wavelet LHH ngtdm Contrast 8 0.044 

CT LoG 2mm glcm DifferenceAverage 9 0.033 

CT LoG 4mm glszm ZoneEntropy 10 0.023 

CT wavelet HHH gldm DependenceEntropy 11 0.018 

CT LoG 2mm firstorder RootMeanSquared 12 0.012 

CT wavelet LLH glcm JointEntropy 13 0.000 

CT wavelet LHH gldm DependenceEntropy 14 0.000 

CT wavelet LHL glcm SumEntropy 15 0.000 
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CT wavelet LLL glcm JointEntropy 16 0.000 

CT original  shape LeastAxisLength 17 0.000 

a Feature identifiers are composed of an imaging modality abbreviation (PET or CT), a pre-processing specification 

(left column: type of pre-processing, i.e. wavelet- or LoG-filtering or original; right column: 3-letter directional 

specification of wavelet [13, 17], or LoG sigma setting), and the feature family and feature name (supplementary 

table 1) 
b Refer to the supplementary methods (section 1.3) for details regarding importance rank/score calculations.  
c Feature selection was omitted – the listed features reflect the 20 highest-ranked features in term of feature 

importance.  

 

 

Importance ranks and scores reflecting each selected feature´s or feature cluster´s contribution to the 

classification result were calculated for all features utilized in each final model.  
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3. Supplementary figures 
 

 

 

Supplementary fig. 1 Cross-validation framework 
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Supplementary fig. 2 Final model validation ROC curves 
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a b s t r a c t 

Locoregional failure remains a therapeutic challenge in oropharyngeal squamous cell carcinoma (OPSCC). We 

aimed to devise novel objective imaging biomarkers for prediction of locoregional progression in HPV-associated 

OPSCC. Following manual lesion delineation, 1037 PET and 1037 CT radiomic features were extracted from 

each primary tumor and metastatic cervical lymph node on baseline PET/CT scans. Applying random forest 

machine-learning algorithms, we generated radiomic models for censoring-aware locoregional progression prog- 

nostication (evaluated by Harrell’s C-index) and risk stratification (evaluated in Kaplan-Meier analysis). A total 

of 190 patients were included; an optimized model yielded a median (interquartile range) C-index of 0.76 (0.66- 

0.81; p = 0.01) in prognostication of locoregional progression, using combined PET/CT radiomic features from 

primary tumors. Radiomics-based risk stratification reliably identified patients at risk for locoregional progres- 

sion within 2-, 3-, 4-, and 5-year follow-up intervals, with log-rank p-values of p = 0.003, p = 0.001, p = 0.02, 

p = 0.006 in Kaplan-Meier analysis, respectively. Our results suggest PET/CT radiomic biomarkers can predict 

post-radiotherapy locoregional progression in HPV-associated OPSCC. Pending validation in large, independent 

cohorts, such objective biomarkers may improve patient selection for treatment de-intensification trials in this 

prognostically favorable OPSCC entity, and eventually facilitate personalized therapy. 
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merican Joint Committee on Cancer (AJCC) adopted separate staging

chemes for HPV-associated and HPV-negative OPSCC in the 8th edition

taging manual [ 4 , 5 ]. 

Improved responsiveness to treatment and more indolent natural his-

ory of HPV-associated OPSCC may potentially render this prognosti-

ally favorable subtype amenable to treatment de-intensification with

educed treatment-related toxicity [ 6 , 7 ]. Nevertheless, treatment fail-

re with locoregional disease progression (LRP) is a negative prognos-

ic factor in HPV-associated OPSCC, often entailing salvage resection

r irradiation which are commonly associated with increased morbidity

nd impaired functionality, and ultimately resulting in reduced over-

ll survival [8–10] . Thus, there is a pressing need for novel biomarkers

o identify patients amenable for safe treatment de-escalation and ulti-

ately personalized clinical decision-making. 

The notion that quantitative characterization of increasingly larger

ets of biomedical data may pave the way for precision diagnosis, prog-

ostication and treatment decision-making has shaped the “-omics ” con-

ept – e.g. genomics, metabolomics, proteomics. Radiomics analysis has

xpanded the scope of “-omics ” to quantitative characterization of med-

cal images by extracting high-dimensional sets of “features ” from vol-

mes of interest (VOI) such as primary tumor lesions, which capture le-

ion shape, image intensity and texture patterns. The resulting imaging

iomarkers may be correlated with treatment outcome, tumor microen-

ironment, tissue heterogeneity and pathophysiology; and may enable

evelopment of prognostic tools substituting or supplementing tradi-

ional outcome predictors such as cancer staging [11–15] . Depending

n the imaging modality used, radiomic features can represent a vari-

ty of tumor characteristics; [ 18 F]fluorodeoxyglucose positron emission

omography (PET) radiomics may provide wholistic quantification of tu-

or metabolic activity and activity distribution; whereas computed to-

ography (CT) radiomics can describe structural properties and tissue

ensity. In many centers, PET/CT imaging is an integral part of cancer

taging and work-up. 

Prior studies have demonstrated the predictive value of radiomic

iomarkers for LRP in HNSCC, but HPV status was rarely available in

ll studied OPSCC patients, and subgroup analysis of HPV-associated

PSCC was not reported [16–19] . Radiomics analysis can predict HPV

tatus, and thus the results of prior studies may in part reflect the differ-

nces between HPV-associated and HPV-negative subgroups [ 20 , 21 ]. In

his study, we aim to apply machine-learning algorithms using combined

ET and non-contrast CT radiomic features extracted from baseline clin-

cal scans for prediction and risk stratification of post-radiotherapy LRP

n an HPV-associated OPSCC cohort. We acquired a multi-institutional

ohort, and devised prognostic biomarkers using radiomic features from

he primary tumor as well as metastatic cervical lymph nodes in addition

o clinical variables. 

aterial and methods 

maging and clinical data 

Imaging data and corresponding clinical information were retro-

pectively acquired from (1) Yale’s Smilow Hospital cancer registry

rom 2009 to 2019; and (2) public collections in The Cancer Imaging

rchive (TCIA) [22] : (2a) the “Head-Neck-PET-CT ” collection provides

ata from four institutions in Canada ( “Canadian ” cohort) [23] ; and

2b) the “Data from Head and Neck Cancer CT Atlas ” collection holds

n MD Anderson Cancer Center dataset ( “MD Anderson ” cohort) [24] .

ur institutional review board approved this study under IRB proto-

ol #2,000,024,295 and waived informed consent; TCIA provides de-

dentified data with consents obtained and ethical compliance ensured

y source institutions. 

We included cases of histopathologically confirmed OPSCC with

1) confirmed HPV-association, (2) pre-treatment PET and non-contrast

T scans of the neck, (3) LRP events or ≥ 18 months of adequate

ollow-up documentation, and (4) patients who received radiotherapy
s part of definitive or adjuvant treatment after surgery, with or with-

ut concurrent platinum-based chemotherapy or targeted therapy with

etuximab. 

We excluded (1) HPV-negative subjects, (2) patients receiving pallia-

ion only and/or denying treatment, (3) patients with recurrent OPSCC,

4) with M1 disease at initial staging, (5) with > 50% of the primary

ross tumor volume affected by artifacts on visual evaluation of CT

cans [25] , and (6) with < 60 Gray (Gy) in the adjuvant, and < 66 Gy

n the definitive radiotherapy setting delivered to the gross tumor

olume [26] . 

Post-treatment cancer surveillance at our institution included regu-

ar physical examinations, endoscopy and imaging, with additional tis-

ue sampling performed at specialists’ discretion. Locoregional disease

rogression was ascertained by tissue sampling or unequivocal imag-

ng evidence; the latter was confirmed in retrospective data review by

ocumented response to therapy or additional histopathological exam-

nation. Study endpoints in TCIA cohorts were based on annotations

rovided in the datasets. 

esion segmentation and staging 

The segmentation, radiomic feature extraction and disease progres-

ion modelling pipeline employed in our study is illustrated in Fig. 1 .

eparate PET and CT VOI corresponding to the primary tumor lesion

nd each individual metastatic cervical lymph node were generated as

 first step in our radiomics pipeline. Regional metastatic spread was

etermined based on tissue sampling or unequivocal PET scan findings.

e utilized 3D-Slicer version 4.10.1 [27] for image review and segmen-

ation. 

The co-registered pre-treatment PET/CT scans were retrieved and re-

iewed in 3D-Slicer, and the gross tumor volume (GTV) as defined by

he “ICRU 83 ” report [28] was assessed. Using the “Paint ” and “Erase ”

ools in the 3D-Slicer “Segment Editor ” module, hypermetabolic areas of

he primary tumor and every metastatic lymph node were manually de-

ineated (i.e. slice-by-slice segmentation on axial PET reconstructions).

ET segmentations were then copied onto the co-registered CT and man-

ally adjusted to the GTV outline on CT using the “Paint ” and “Erase ”

ools to generate the CT VOI, excluding air, adjacent uninvolved bone,

nd preserved fat planes. Axial CT slices with streak artifacts involv-

ng the lesion upon visual assessment were excluded from analysis; and

etastatic lymph nodes with > 50% of the GTV involved were entirely

xcluded [25] . 

A trained research associate (SPH) initially segmented all lesions; fol-

owed by VOI verification and adaption by a neuroradiologist (SP) with

reater than 8 years of experience in head and neck cancer imaging. SP

nd AM (neuroradiologist with greater than 12 years of experience) per-

ormed OPSCC staging in accordance with the AJCC 8th edition staging

anual [5] . 

re-processing, feature extraction and stability-based feature pre-selection 

PET/CT imaging and image reconstruction were performed at the

can source institutions utilizing standard clinical protocols. PET and CT

re-processing was applied before radiomic feature extraction to homog-

nize the imaging data: PET grey scale normalization, PET and CT voxel

ize interpolation to isotropic dimensions, CT re-segmentation, genera-

ion of ten image derivates per original PET or CT enhancing certain im-

ge characteristics, and grey scale discretization were consecutively per-

ormed – a detailed description of our automated pre-processing pipeline

s included in the supplementary methods [20] . 

A set of 1037 PET and 1037 CT radiomic features was subse-

uently extracted from each primary tumor and metastatic node VOI;

omprised of volumetric shape features ( n = 14 features) extracted

rom only the original image ( n = 1 image); and first-order ( n = 18

eatures) and texture-matrix features ( n = 75 features) extracted from
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Fig. 1. Radiomics pipeline: (a) VOI delineation – af- 

ter reviewing the co-registered scans, all lesions were 

manually delineated on PET axial images, and seg- 

mentations were transferred and adapted to the cor- 

responding CT; (b) image pre-processing – details 

are included in the supplementary methods; (c) ra- 

diomics features extraction – 1037 PET and 1037 

CT features corresponding to three categories (first- 

order, volumetric shape, texture) were extracted 

from each lesion, a comprehensive feature list is in- 

cluded in the supplement; (d) LRP analysis – prognos- 

tication and risk stratification was based on random 

forest machine-learning models with 1000 decision 

trees internally validated in 20-repeat 5-fold cross- 

validation, wherein models were iteratively trained 

on 4 folds, and evaluated in the 5th fold. 
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oth the originals ( n = 1 image) and image derivates ( n = 10 im-

ges) generated in pre-processing. This approach yielded a total of

14 ×1 + 18 ×11 + 75 ×11 = ) 1037 PET and 1037 CT features per lesion.

 complete list of radiomic features utilized in this study is included in

upplementary Table 1. A Pyradiomics version 2.1.2 pipeline was cus-

omized and applied for radiomics analysis [ 20 , 29 ]. 

We investigated radiomic feature stability in an inter-rater and intra-

ater setting to pre-select features prior to disease progression mod-

lling, given the volatile robustness of individual features to delineation

ariability reported in previous studies [30–32] . Unstable features were

xcluded; the methodology and results are reported in the supplemen-

ary methods and supplementary Table 2, respectively [20] . 
isease progression modelling and prognostication 

We defined locoregional progression (LRP) as the event of interest,

ith time-to-LRP defined as the time interval from OPSCC initial diag-

osis to progression. Right-censoring was applied for loss to follow-up,

eath, or diagnosis of distant metastases. Subsequently, patients without

n LRP event and < 18 months of follow-up from diagnosis to censoring

ere excluded. 

We devised and compared three types of LRP models [15] : (1) “Ra-

iomics ” models used radiomic signatures, (2) the “clinical ” model in-

orporated AJCC staging (T-, N- and overall-stage), patient age at ini-

ial diagnosis, and the treatment modality, and (3) “combined ” mod-
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ls utilized the combined set of radiomics and above-mentioned clin-

cal predictors for LRP prognostication. AJCC T-, N- and overall-stage

ere included as ordinal variables with four (T1-T4), four (N0-N3) and

hree (overall stages I-III) levels, respectively. No overall-stage IV can-

ers were present, since subjects with distant metastases were excluded.

adiomic features, feature clusters and patient age were numeric vari-

bles, and the treatment modality was included as a categorical variable.

An array of different approaches was implemented and compared to

enerate and select features for prognostically optimized radiomic sig-

atures in combined and radiomic models: (1) Radiomic features from

hree imaging modalities (PET, CT, PET and CT) were used for LRP

odelling; (2) we derived radiomic features from two VOI sources: the

rimary tumor and a “virtual ” VOI combining the primary tumor and

ll metastatic nodes in a given subject as described by Yu et al. [21] ;

nd (3) the prognostic ability of unreduced feature sets was compared

o three dimensionality reduction techniques (abbreviations in Fig. 2 ,

etails in the supplementary methods). We applied and compared all

ethodological approaches (3 imaging modalities x 2 VOI sources x 4

imensionality reduction techniques) for LRP modelling. 

The generic model types ( “radiomics ”, “clinical ”, “combined ”) intro-

uced above were implemented applying random survival forest (RSF)

33] machine-learning algorithms for prognostication, which were con-

gured to grow 1000 decision trees using a C-index split rule [34] with

he remaining parameters in default. Statistical analysis was performed

n R version 3.6.0 [35] using extension packages, R base functions and

ustom-written code. We used the “ranger ” package (version 0.12.1)

33] for RSF modelling. 

To limit overfitting and enhance generalizability, all models were

nternally validated in a framework applying 20 repeats of stratified 5-

old cross-validation (i.e. 100 permutations) using the event/non-event

roups and follow-up duration as strata. Consensus VOI generation (if

pplicable), radiomic feature standardization, dimensionality reduction

if applicable), and RSF fitting were consecutively performed on the

raining folds, and RSF performance was quantified in the validation

old of each cross-validation iteration. This approach avoids “informa-

ion leakage ” from training to validation data and generates realistic

stimates of RSF performance in new datasets. 

We quantified models’ prognostic abilities in each validation fold

ith a right-censoring adjusted concordance index (Harrell’s C-index

34] ), and the median score was calculated across 20 cross-validation

terations to represent models’ overall performance. 

We further investigated the performance of three select models: the

linical model, and the best – in terms of C-index score – radiomic and

ombined model, respectively. Models’ validation fold C-index distri-

ution across 20-repeat 5-fold cross validation was compared against

andom predictions (i.e. C-index calculated with the same model pre-

ictions but randomly resampled validation fold LRP outcome) using

 corrected paired t -test ( “corrected repeated k-fold cv test ” [36] ). P-

alues < 0.05 ascertained significance. 

We generated time-dependent performance curves to track and com-

are model performance throughout follow-up by calculating Uno’s es-

imator of cumulative/dynamic area under the curve (AUC) for right-

ensored survival data [37] in each validation fold ( “survAUC ” package

38] for R), and averaging AUC scores across 20 ×5-fold cross valida-

ion. The resulting performance curves were plotted for the first five

ears of follow-up. 

isk stratification and Kaplan-Meier analysis 

The potential role of radiomics for LRP risk stratification was inves-

igated by generating radiomics risk groups (high-risk vs. low-risk) in

inary classification analysis [15] . We subsequently conducted Kaplan-

eier analysis with radiomics risk groups. For comparison, AJCC-

taging (T-, N- overall-stage), patient age (age ≥ cohort median vs. < co-

ort median), and treatment modality variables served as Kaplan-Meier
isk groups. A log-rank test generated p-values with p < 0.05 considered

ignificant. 

To generate radiomics risk groups, our framework applying 20-

epeat stratified 5-fold cross-validation was adapted for binary classifi-

ation, using event/non-event groups as strata, and a random classifica-

ion forest (RCF) algorithm ( “ranger ” package version 0.12.1) [33] con-

gured to grow 1000 decision trees for risk score computation (i.e. prob-

bility of experiencing an event). RCF case weights in a given outcome

lass (event or non-event) were specified to be inversely proportional to

he class distribution in the training data to account for imbalance, with

he remaining RCF parameters in default. 

Patients’ RCF risk scores were averaged across validation folds,

nd a risk cutoff was calculated by maximizing Youden’s statistic in

eceiver operating characteristic-analysis. Patients with averaged risk

cores greater than the cutoff were allocated to the radiomics high-risk

roup. RCF models were trained on the radiomics-only dataset of the ra-

iomic LRP model selected for further evaluation (previous subsection)

ithout feature selection applied. 

Patients were labelled for Kaplan-Meier analysis using 2-, 3-, 4- and

-year follow-up cutoffs; subjects diagnosed with LRP before a given

utoff were labelled positive, subjects lost to follow-up before a cutoff

ere excluded, and the remainder was labelled negative and censored

t the cutoff. Separate RCF models were generated for each cutoff, and

he resulting radiomics risk groups and were investigated in separate

aplan-Meier plots. Equivalently, Kaplan-Meier analysis with clinical

ariables was conducted separately for each follow-up cutoff. This strat-

gy avoids censoring before a cutoff (i.e. “dense ” survival data) and thus

nables RCF performance maximization, while allowing both exploring

he majority of the documented follow-up period as well as comparing

adiomics risk stratification with clinical variables in an easily inter-

retable fashion. 

esults 

ohort characteristics 

A total of 190 patients with HPV-associated OPSCC met inclusion

riteria; thereof, 15 ( ∼8%) had LRP events at a median (interquartile

ange, IQR) of 14.5 (11.0–21.6) months after initial diagnosis. Patients

ere followed-up for a median (IQR) of 40.7 (30.7–53.5) months after

nitial diagnosis. Table 1 summarizes demographics, treatment, imaging

nd staging characteristics of our study cohort. 

In addition to 190 OPSCC primary tumors, 266 metastatic lymph

odes were segmented. Thereof, 422 (19.2%) out of 2193 primary tumor

esion axial slices, and 155 (5.6%) out of 2778 lymph node lesion axial

lices were affected by streak artifact on CT, and were excluded (details

n supplementary Table 3). 

rognostication of locoregional disease progression 

The best radiomics LRP model in our study yielded a median (IQR) C-

ndex of 0.76 (0.66-0.81; p = 0.01) using the full set of PET/CT primary

umor radiomic features ( Fig. 2 ). The model using clinical variables

id not exhibit prognostic value in cross validation, yielding a C-index

IQR) of 0.49 (0.39-0.58; p = 0.46), and combined models achieved me-

ian scores similar to those of corresponding radiomic models ( Fig. 2 ).

ombined PET/CT radiomic models achieved higher prognostic perfor-

ance than single imaging modality models in the majority of permuta-

ions. Models combining radiomic features from primary tumors and

etastatic cervical lymph nodes ( “virtual ” consensus VOI) improved

ET-based LRP prognostication, with the best combined model yielding

 median C-index (IQR) of 0.65 (0.52–0.76) using random forest-based

eature selection ( “pRF ”); whereas the corresponding PET primary tu-

or model yielded a median C-index of 0.64 (0.50–0.71). 

Select models subjected to further evaluation are highlighted

n Fig. 2 . Performance curve plotting ( Fig. 3 ) again revealed similar
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Table 1 

Cohort characteristics. 

Number of OPSCC patients – n 190 

Included metastatic lymph nodes – n 266 

LRP events – n (%) 15 (7.9%) 

Follow-up [months] – median (IQR) 40.7 (30.7–53.5) 

Time-to-event [months] – median (IQR) 14.5 (11.0–21.6) 

Data source – n (%) 

Yale 112 (58.9%) 

TCIA 78 (41.1%) 

Sex – n (%) 

male 154 (81.1%) 

female 36 (18.9%) 

Age [years] – mean (SD) 59.83 (8.51) 

HPV status – n (%) 

positive 190 (100%) 

Smoking – n (%) 

never-smoker 48 (25.3%) 

smoker 77 (40.5%) 

pack-years – median (IQR) 15 (7.75–30) 

pack-years unknown – n 15 

unknown 65 (34.2%) 

T stage a – n (%) 

T1 26 (13.7%) 

T2 77 (40.5%) 

T3 64 (33.7%) 

T4 23 (12.1%) 

N stage a – n (%) 

N0 35 (18.4%) 

N1 108 (56.8%) 

N2 43 (22.6%) 

N3 4 (2.1%) 

Overall stage a – n (%) 

I 85 (44.7%) 

II 78 (41.1%) 

III 27 (14.2%) 

Included lymph nodes / patient – range 0 – 6 

Primary treatment – n (%) 

CCRT or CBRT 135 (71.1%) 

Surgery with adjuvant RT, CCRT or CBRT 34 (17.9%) 

RT alone 21 (11.1%) 

PET b – mean (SD) 

slice thickness [mm] 3.44 (0.40) 

in-plane pixel spacing [mm] 4.28 (0.90) 

in-plane image matrix [n x n] 148.25 (60.17) x idem 

CT b – mean (SD) 

slice thickness [mm] 3.06 (0.60) 

in-plane pixel spacing [mm] 1.12 (0.18) 

in-plane image matrix [n x n] 512 × 512 

a AJCC 8th edition staging manual T/N/overall stage [5] . 
b Values from image originals before preprocessing. 

CBRT = concurrent bioradiotherapy with cetuximab; CCRT = con- 

current platinum-based chemoradiotherapy; RT = radiotherapy alone; 

SD = standard deviation. 

Fig. 2. Heatmap summary of LRP model performance quantified by the median 

(IQR) validation fold Harrell´s C-index across 20-repeat 5-fold cross-validation. 

The radiomics and combined models selected for further evaluation are high- 

lighted (blue frame). All methodological combinations to generate radiomics 

signatures for radiomics and combined models were applied (3 imaging modali- 

ties x 2 VOI sources x 4 dimensionality reduction techniques (HClust, none, pRF, 

RIDGE)). 

Clinical = clinical model; Combined = combined model; HClust = hierarchical 

clustering; none = no dimensionality reduction applied; pRF = Pearson 

correlation-based redundancy reduction with random survival forest variable 

importance; Radiomics = radiomics model; RIDGE = Cox regression with RIDGE 

regularization adapted for feature selection. 
Fig. 3. Time-dependent performance curves depict selected models’ 

(highlighted in Fig. 2 ) prognostic performance throughout 5-years of 

follow-up. The corresponding clinical model is presented for compar- 

ison. 
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Fig. 4. Kaplan-Meier plots and log-rank test p-values depicting risk stratification based on radiomics analysis and clinical variables. 
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uperiority of the radiomic model and the combined model over the

linical model. Notably, while radiomic modelling exhibited high prog-

ostic performance in follow-up years 1 through 4, model performance

as moderate in the fifth year. 

isk stratification of locoregional disease progression 

In Kaplan-Meier analysis, radiomics high-risk groups exhibited sig-

ificantly higher rates of LRP than corresponding low-risk groups

n analysis of all follow-up cutoffs, achieving log-rank p-values of

 = 0.003, p = 0.001, p = 0.02, p = 0.006 for the 2-, 3-, 4-, and 5-year
ollow-up intervals, respectively ( Fig. 4 ). Risk groups derived from clin-

cal variables (AJCC staging, age, treatment) did not differ significantly

 p > 0.05, Fig. 4 ). 

iscussion 

Improved responsiveness to treatment and more indolent natural

istory of HPV-associated OPSCC – as compared to HPV-negative can-

ers – may render this prognostically favorable subtype amenable to

e-intensified therapy with reduced treatment-related toxicity and mor-

idity [ 6 , 7 ]. Accurate prognostication and risk stratification are, how-
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ver, the first steps in personalized treatment decision-making. Using a

ulti-institutional cohort, we investigated the prognostic value of base-

ine PET/CT radiomics in prediction of LRP. Applying machine-learning

nalysis, we devised prognostic models utilizing PET/CT features from

rimary tumor lesions (with and without metastatic cervical nodes).

ending validation in larger cohorts, these novel objective biomarkers

an provide decision assistance tools for precision treatment planning

n patients with HPV-associated OPSCC. 

LRP represents treatment failure of definite therapy in curative in-

ent, with few remaining satisfactory options: Salvage surgery and irra-

iation are commonly associated with increased morbidity and impaired

unctionality; and while new immune checkpoint inhibitors alone or in

ddition to conventional systemic treatment improved outcome in pa-

ients not amenable to localized therapy, long-term control of relapsed

NSCC often remains fairly poor [39–41] . Locoregional relapse is also

trongly tied to poor overall survival in HPV-associated OPSCC [ 8 , 10 ],

ubstantiating the importance of this endpoint for therapeutic decision

aking in OPSCC. 

While pre-treatment PET/CT imaging is a mainstay of disease work-

p and cancer staging, human visual interpretation cannot seize the

ull prognostic utility encoded in metabolic and structural bioimag-

ng patterns [11–14] . By capturing such bioimaging features, radiomic

iomarkers may help identify patients who are at increased risk for LRP,

nd may potentially improve patient selection in future trials of treat-

ent de-intensification for HPV-associated OPSCC, and guide personal-

zed clinical treatment planning. 

In this study, we showed the merits of radiomic features quantifying

umor intensity, volumetric shape and texture for LRP prognostication

nd risk stratification. Employing a pre-processing pipeline designed to

itigate heterogeneity in imaging data, a multiple-delineation feature

re-selection approach retaining only stable radiomic features, and a

igorous cross-validation scheme avoiding data leakage from training

o test sets, our results depict the prognostic potentials of machine-

earning-generated radiomic biomarkers for LRP in a realistic fashion. A

odel utilizing the full set of combined PET/CT primary tumor radiomic

eatures was reliably prognostic of LRP in cross validation, yielding a

edian (IQR) C-index of 0.76 (0.66-0.81; p = 0.01); whereas a clinical

odel combining AJCC overall-, T- and N-stage as well as treatment

odality and patient age did not exhibit prognostic abilities. This re-

ult may be linked to the low event rate of ∼8% and the relatively

mall cohort size. Models combining clinical variables and radiomic

ignatures performed similarly to the corresponding radiomic models.

dditionally, radiomics-based risk-stratification biomarkers identified

atients at increased risk of LRP in different follow-up cutoffs (2-, 3-,

- and 5-year follow-up with p < 0.05); whereas clinical variables could

ot significantly stratify LRP risk ( p > 0.05). These findings suggest ra-

iomics analysis may be a more powerful means for LRP risk strat-

fication and prognostication than the tested set of potential clinical

redictors. 

Notably, models integrating PET and CT radiomics outperformed sin-

le modality models in most permutations in both primary tumor and

ombined tumor/lymph node analysis, suggesting complementary prog-

ostic value of “metabolic ” and “structural ” features derived from PET

nd CT imaging, respectively. Additionally, consensus VOI combining

ET radiomics information from primary tumors and metastatic cervi-

al lymph nodes yielded performance improvements over most corre-

ponding PET primary tumor models. This finding may suggest added

rognostic value from PET lymph node features. 

Performance curves ( Fig. 3 ) are a valuable tool to investigate model

rognostic accuracy throughout a relevant follow-up period, providing

 more granular understanding of model performance than summary

easures such as Harrell´s C index. We plotted performance curves for

elect radiomic and combined models as well as the clinical model,

gain revealing superiority of radiomics-based prognostication. While

adiomic models achieved high prognostic performance in follow-up

ears 1 through 4, model performance was moderate in the fifth year,
hich could be related to data sparsity in model training secondary to

ight censoring. 

Accurate contouring of head-and-neck cancer lesions on CT is chal-

enging – especially on pre-contrast images. In this study, we applied

anual PET-guided segmentation, allowing full utilization of both ac-

urate PET-guided lesion contouring and standardized CT tissue densi-

ies devoid of contrast-induced variability. Notably, analysis of contrast-

nhanced CT scans may be limited due to variabilities in contrast ac-

umulation, affecting radiomic feature extraction and reproducibility

14] . Additionally, combined PET and non-contrast CT radiomics anal-

sis extracts both “metabolic ” and “structural ” tissue density features,

llowing comprehensive assessment of primary tumor and metastatic

odes. 

Methodologically, our modelling approach relied on random for-

st machine-learning algorithms: we applied RSF algorithms designed

o handle right-censored survival data as well as “classical ” RCF mod-

ls for binary classification [33] . Machine-learning has proven effec-

ive in handling the high variable dimensionality commonly associ-

ted with radiomics analysis, with random forest models in particu-

ar often outperforming other approaches due to superior robustness

 11 , 14 , 19 ]. 

We acquired a multi-national and multi-institutional cohort incorpo-

ating data from our institution and several additional centers in Canada

nd in the United States to increase the cohort size. Additionally, us-

ng multi-center data may help augment model robustness to variations

mong imaging protocols, scanner hardware and image reconstruction

nd ultimately lead to more generalizable models and model perfor-

ance estimates. 

LRP in HPV-associated OPSCC treated with radiotherapy is rare – in

ur cohort of 190 subjects, ∼8% experienced events – making alloca-

ion of independent validation sets in our study challenging. Thus, we

pplied a rigorous cross validation framework, with particular attention

iven to avoiding data leakage from training to validation folds; i.e. con-

ensus VOI generation, feature standardization, dimensionality reduc-

ion, and RSF fitting were performed on the training folds, and model

erformance was quantified in the corresponding validation folds. This

pproach is expected to yield realistic quantification of model perfor-

ance in new datasets. Nevertheless, future prospective studies with

arger study cohorts and higher absolute event counts are required to

onfirm the prognostic value of quantitative imaging models for LRP

rediction. Additionally, our models require independent validation in

xternal cohorts before translation to clinical application may be con-

idered. 

Our cohort of 190 patients with HPV-associated OPSCC was ac-

uired from Yale’s Smilow Hospital (2009 to 2019) and two public

ollections in The Cancer Imaging Archive. PET/CT acquisition and

mage reconstruction protocols varied over the years and between

ifferent cancer centers. This limitation was addressed by adopting

 comprehensive image pre-processing pipeline designed to reduce

eterogeneity, denoise our dataset, and homogenize PET/CT scans.

onetheless, standardization of both PET and CT image acquisition

cross centers and scanner manufacturers may harbor potential for im-

roved radiomics capabilities in OPSCC outcome prognostication and

hould be pursued as a long-term goal in the field of quantitative

maging. 

Manual lesion segmentation is inherently prone to inter- and intra-

ater variability as well as limited reproducibility. Despite our efforts to

re-select a subset of robust radiomics features in multiple delineation

nalysis, fully or partially automating the lesion delineation process may

elp reduce the aforementioned limitations and ultimately contribute to

mproved LRP prognostic performance. 

Future studies should also incorporate further established LRP pre-

ictors into clinical and combined models – e.g. smoking status was

navailable in a considerable portion of our dataset. Finally, metastatic

nvolvement of cervical lymph nodes was determined by expert radiolo-

ist assessment, but without histopathological examination of all nodes.
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onclusion 

Radiomics analysis decoding metabolic and structural bioimag-

ng patterns of the primary tumor lesion and metastatic nodes in

re-treatment PET/CT scans can provide novel quantitative imaging

iomarkers for risk stratification and prediction of post-radiotherapy

RP in HPV-associated OPSCC. Pending independent validation in large

xternal cohorts, such biomarkers may supplement patient selection

or trials of treatment de-intensification for prognostically favorable

PV-associated OPSCC, and ultimately guide personalized treatment

ecision-making. 
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1. Supplementary methods 
 

1.1 Image pre-processing pipeline 

 

For normalization of PET scan voxel values, we divided each voxel’s intensity by the left 
lentiform nucleus’ maximum intensity to improve the inter-scanner and inter-institutional 
generalizability of PET-based quantitative metrics [1]. To ensure texture feature rotational 
invariance [2] and even out voxel size and slice thickness dissimilarities [3-6], we generated 
isotropic 3x3x3 and 2x2x2 mm PET and CT voxels, respectively, using trilinear image 
interpolation [7]. A re-segmentation process of CT VOIs only retaining voxels within a 1-300 
Hounsfield unit (HU) range was applied to restrict radiomics analysis to soft tissue densities. 
We generated ten image derivates per original PET or CT scan to refine radiomics analysis of 
specific characteristics. High and low frequency analysis was enhanced using a “coif-1” 
wavelet transform to generate eight decompositions per original [7, 8]. Laplacian of Gaussian 
(LoG) filtering for edge-enhancement with “sigma” settings of 3 and 6 mm for PET, and 2 and 
4 mm for CT images yielded two additional derivates per original [7, 9]. To enable extraction 
of texture and first-order features [2], voxel intensities were discretized using a fixed-bin-width 
method [7, 10] with a 2 unit width for PET and CT scans. We customized a Pyradiomics version 
2.1.2 pipeline to facilitate image pre-processing [7, 11].  
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1.2 Ancillary study to determine feature robustness 

 

Given the variable robustness of individual radiomic features to segmentation inconsistencies, 
we conducted a multiple delineation-based feature pre-selection study to exclude features with 
low inter- and intra-observer stability from the feature set utilized in this study. Imaging data 
was acquired from three collections provided by a public imaging repository (“The Cancer 
Imaging Archive”, TCIA) [12] – including (1) the “Head-Neck-PET-CT” collection from four 
Canadian centers [13, 14]; (2) the “Head and Neck Cancer CT Atlas” collection from MD 
Anderson Cancer Center dataset [15, 16]; and (3) the “TCGA-HNSC” collection from various 
institutions across America [17].  
Subjects with (1) pre-treatment PET and non-contrast CT scans of the neck, (2) biopsy-
confirmed OPSCC, and (3) known p16 or high-risk HPV status were included. Patients with (1) 
recurrent OPSCC, or (2) >50% of the primary tumor VOI affected by CT artifacts [18] were 
excluded.  
A randomly sampled cohort of 50 patients from the pooled TCIA cohorts (stratified by dataset) 
was selected. Observer 1 segmented all primary tumors and two randomly selected metastatic 
nodes in each patient; and re-segmented the same set of lesions >2 months after initial review 
and segmentation. A second observer created a third set of segmentations. After feature 
extraction, two intraclass correlation coefficient (ICC) statistics were calculated for each 
radiomic feature: To assess inter-rater agreement, a two-way random effects, absolute 
agreement, single rater/measurement ICC was applied; and the two-way mixed effects, 
absolute agreement, single rater/measurement ICC was used to quantify intra-rater agreement 
[19, 20]. Features with a lower 95% confidence interval bound ≥0.8 in both inter-and intra-rater 
assessments were considered stable and retained for further analysis. ICC metrics were 
separately calculated for primary tumors and the combined set of tumors and nodes. The R 
“psych” package [21] “ICC” function was used for ICC calculations.  
Supplementary table 2 summarizes the results – feature sets exhibited similar inter- and intra-
rater ICC scores. PET feature reproducibility was superior to CT in primary tumors, but inferior 
in the combined set of all lesions. Prior studies reported similar PET and CT primary tumor 
feature reproducibility scores and ratios [3, 22, 23]. For example, Leijenaar et al. [23] reported 
71% of all assessed PET features were highly reproducible (defined as ICC ≥ 0.8). The number 
and ratio of stable features retained for further analysis in each subset are reported in 
supplementary table 2.  
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1.3 Dimensionality reduction techniques 
 

1.3.1 HClust – Hierarchical clustering 

The R “stats” package (version 3.6.0) [24] “dist” function was used to generate a “euclidean” 
radiomic feature distance matrix. Next, the “stats” “hclust” function performed hierarchical 
clustering, applying Ward clustering with Ward’s clustering criterion implemented (i.e. 
“ward.D2” package option) [25]. We cut the dendrogram and retained 30 clusters (“stats” 
“cutree” function). One “meta-feature” was extracted from each cluster by averaging all 
radiomic features. Clustering was performed with cross-validation training data only, and meta-
feature computation was subsequently applied in all subjects.  
 

1.3.2 none – No feature selection 

Feature dimensionality reduction was omitted, and the random survival forest models were fit 
on the unreduced feature set.  
 

1.3.3 pRF – Pearson correlation-based redundancy reduction with random forest variable 

importance 

The R “stats” package (version 3.6.0) [24] “cor” function was configured to compute a radiomic 
feature correlation matrix utilizing Pearson’s correlation coefficient (r) based on the cross-
validation training set. To reduce pair-wise feature correlation, we excluded the feature with 
higher mean absolute correlation from any given feature pair with r > 0.9 or r < -0.9 
(“findCorrelation” function of “caret” package [26]).  
Thereafter, a random survival forest model was fit on the dimensionality-reduced cross-
validation training data (“ranger” package version 0.12.1 [27]). A C-index based split rule [28] 
was applied to grow 1000 decision trees with the remaining function arguments kept in default. 
Radiomic feature variable importance scores were queried from the random forest object, and 
features were ranked in descending order of their respective importance score. The 30 highest-
ranked features were selected for survival modelling.  
 

1.3.4 RIDGE – RIDGE regularized Cox regression for feature selection 

Ridge-regularized Cox survival regression models were trained using the cross-validation 
training folds (“glmnet” package version 2.0-18 [29] “cv.glmnet” function). The “lambda” 
parameter was automatically determined in 10-fold cross validation within the “cv.glmnet” fitting 
process, and each feature’s regression coefficient was derived from the fit model at the 
“lambda” value minimizing the mean cross-validated error. Features were ranked in 
descending order of their respective absolute regression coefficient value, and the 30 highest-
ranked features were selected for survival modelling.   
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2. Supplementary tables 
 

Supplementary table 1 List of extracted radiomic features 

 
Feature Family Feature name 

First-order 1 10th percentile 

2 90th percentile 

3 Energy 

4 Entropy 

5 Interquartile Range 

6 Kurtosis 

7 Maximum 

8 Mean 

9 Mean Absolute Deviation 

10 Median 

11 Minimum 

12 Range 

13 Robust Mean Absolute Deviation 

14 Root Mean Squared 

15 Skewness 

16 Total Energy 

17 Uniformity 

18 Variance 

Shape 1 Elongation 

2 Flatness 

3 Least Axis Length 

4 Major Axis Length 

5 Maximum 2D Diameter (Column) 

6 Maximum 2D Diameter (Row) 

7 Maximum 2D Diameter (Slice) 

8 Maximum 3D Diameter 

9 Mesh Volume 

10 Minor Axis Length 

11 Sphericity 

12 Surface Area 

13 Surface Area to Volume Ratio 

14 Voxel Volume 

Texture - Gray Level 
Cooccurrence Matrix Features 

1 Autocorrelation 

2 Cluster Prominence 

3 Cluster Shade 

4 Cluster Tendency 

5 Contrast 

6 Correlation 

7 Difference Average 

8 Difference Entropy 

9 Difference Variance 

10 Informational Measure of Correlation 1 
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Feature Family Feature name 

11 Informational Measure of Correlation 2 

12 Inverse Difference 

13 Inverse Difference Moment 

14 Inverse Difference Moment Normalized 

15 Inverse Difference Normalized 

16 Inverse Variance 

17 Joint Average 

18 Joint Energy 

19 Joint Entropy 

20 Maximal Correlation Coefficient 

21 Maximum Probability 

22 Sum Average 

23 Sum Entropy 

24 Sum of Squares 

Texture - Gray Level Size Zone 
Matrix Features 

1 Gray Level Non-Uniformity 

2 Gray Level Non-Uniformity Normalized 

3 Gray Level Variance 

4 High Gray Level Zone Emphasis 

5 Large Area Emphasis 

6 Large Area High Gray Level Emphasis 

7 Large Area Low Gray Level Emphasis 

8 Low Gray Level Zone Emphasis 

9 Size Zone Non-Uniformity 

10 Size Zone Non-Uniformity Normalized 

11 Small Area Emphasis 

12 Small Area High Gray Level Emphasis 

13 Small Area Low Gray Level Emphasis 

14 Zone Entropy 

15 Zone Percentage 

16 Zone Variance 

Texture - Gray Level Run Length 
Matrix Features 

1 Gray Level Non-Uniformity 

2 Gray Level Non-Uniformity Normalized 

3 Gray Level Variance 

4 High Gray Level Run Emphasis 

5 Long Run Emphasis 

6 Long Run High Gray Level Emphasis 

7 Long Run Low Gray Level Emphasis 

8 Low Gray Level Run Emphasis 

9 Run Entropy 

10 Run Length Non-Uniformity 

11 Run Length Non-Uniformity Normalized 

12 Run Percentage 

13 Run Variance 

14 Short Run Emphasis 

15 Short Run High Gray Level Emphasis 

16 Short Run Low Gray Level Emphasis 

1 Busyness 
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Feature Family Feature name 

Texture - Neighboring Gray Tone 
Difference Matrix Features 

2 Coarseness 

3 Complexity 

4 Contrast 

5 Strength 

Texture - Gray Level Dependence 
Matrix Features 

1 Dependence Entropy 

2 Dependence Non-Uniformity 

3 Dependence Non-Uniformity Normalized 

4 Dependence Variance 

5 Gray Level Non-Uniformity 

6 Gray Level Variance 

7 High Gray Level Emphasis 

8 Large Dependence Emphasis 

9 
Large Dependence High Gray Level 
Emphasis 

10 Large Dependence Low Gray Level Emphasis 

11 Low Gray Level Emphasis 

12 Small Dependence Emphasis 

13 
Small Dependence High Gray Level 
Emphasis 

14 Small Dependence Low Gray Level Emphasis 

 

 

Complete list of Pyradiomics [11] features used in this study. Exact feature definitions are 
provided in ref. [7].   
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Supplementary table 2 Multiple delineation-based feature stability assessment 

 

Radiomics 
source VOI 

Number of 
lesions (n) 

Mean inter-
rater ICC (SD) 

Mean intra-
rater ICC (SD) 

Number 
(percentage) of 
stable features 

Primary 
tumors 

50 
PET: 0.92 (0.12)  
CT: 0.86 (0.16) 

PET: 0.91 (0.11)  
CT: 0.89 (0.13) 

PET: 751 (72.4 %)  
CT: 586 (54.7 %) 

Primary 
tumors and 
lymph nodes 

50 (tumor lesions)  
65 (lymph nodes) 

PET: 0.88 (0.15)  
CT: 0.91 (0.13) 

PET: 0.87 (0.16)  
CT: 0.93 (0.11) 

PET: 651 (62.8 %)  
CT: 854 (82.4 %) 

 

 

Based on three VOI sets created by two observers, inter- and intra-rater ICC were calculated 
for each feature for primary tumor lesions and a combined set of tumor and lymph node VOI. 
The mean (standard deviation, SD) ICC in PET and CT feature subsets is reported as well as 
the numbers and percentages of stable features retained for analysis (lower 95% confidence 
interval bound of inter- and intra-rater ICC ≥0.8). Unstable features were excluded from any 
further analysis.  
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Supplementary table 3 Streak artifact related exclusion of axial CT slices 

 

Radiomics 
source VOI 

Number of 
lesions (n) 

Number 
(percentage) 
of lesions with 
artifacts a 

Total 
number of 
slices (n) b 

Total number 
(percentage) 
of slices with 
artifacts c 

Average number 
(percentage) of 
slices with 
artifacts per 
artifact-positive 
lesion 

Primary 
tumors 

190 91 (47.9 %) 2193 422 (19.2 %) 4.64 (37.1 %) 

Lymph 
nodes 

266 38 (14.3 %) 2778 155 (5.6 %) 4.08 (31.0 %) 

 
a Number and percentage of lesions with at least one axial CT slice excluded from analysis 

due to streak artifacts 
b Total number of axial CT slices across study cohort with visible tumor tissue – including slices 

with artifacts 
c Total number and percentage of axial CT slices across study cohort which were excluded 

from analysis due to streak artifacts 

 

 

Axial CT slices with streak artifacts involving the OPSCC lesion upon visual assessment of 
scans were excluded from analysis; and metastatic lymph nodes with >50% of the lesion 
volume involved were entirely excluded. Patients with >50% of the primary gross tumor volume 
affected by artifacts were not included in this study.   
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