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ABSTRACT

Imaging technologies are widely used in application fields such as natural sciences, engineering,

medicine, and life sciences. A broad class of imaging problems reduces to solve ill-posed inverse

problems (IPs). Traditional strategies to solve these ill-posed IPs rely on variational regularization

methods, which are based on minimization of suitable energies, and make use of knowledge about

the image formation model (forward operator) and prior knowledge on the solution, but lack in in-

corporating knowledge directly from data. On the other hand, the more recent learned approaches

can easily learn the intricate statistics of images depending on a large set of data, but do not have a

systematic method for incorporating prior knowledge about the image formation model. The main

purpose of this thesis is to discuss data-driven image reconstruction methods which combine the

benefits of these two different reconstruction strategies for the solution of highly nonlinear ill-posed

inverse problems. Mathematical formulation and numerical approaches for image IPs, including lin-

ear as well as strongly nonlinear problems are described. More specifically we address the Electrical

impedance Tomography (EIT) reconstruction problem by unrolling the regularized Gauss-Newton

method and integrating the regularization learned by a data-adaptive neural network. Furthermore

we investigate the solution of non-linear ill-posed IPs introducing a deep-PnP framework that inte-

grates the graph convolutional denoiser into the proximal Gauss-Newton method with a practical

application to the EIT, a recently introduced promising imaging technique. Efficient algorithms are

then applied to the solution of the limited electrods problem in EIT, combining compressive sensing

techniques and deep learning strategies. Finally, a transformer-based neural network architecture

is adapted to restore the noisy solution of the Computed Tomography problem recovered using the

filtered back-projection method.

Keywords: nonlinear inverse problems, variational models, learning models, MLP neural net-

work, graph neural network, transformer neural network, learning regularizer, image reconstruc-

tion, anisotropic total variation, compressive sensing, Electrical Impedance Tomography, Computed

Tomography
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Introduction

Inverse problems (IPs) in imaging are prevalent across a wide range of application fields in signal

and image processing, and computer vision, such as image denoising, deblurring, segmentation,

or including imaging reconstruction tasks. Computed tomography (CT), Electrical Impedance to-

mography (EIT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI)

are some examples of reconstruction imaging problems. Most of the IPs in imaging are ill-posed

and dealing with this issue is crucial in applications where decisions are made based on the re-

covered model parameters, such as in medical imaging for diagnosis. Traditional studies on IPs

have mainly concentrated on identifying conditions under which solutions to these ill-posed issues

can be found, as well as techniques for approximating solutions in a stable manner when noise

is given. The most popular imaging models and reconstruction methods are reformulated in an-

alytical manner using the variational framework which includes regularization term. Regularized

solutions are obtained through solving optimization methods for linear and non-linear functional.

Additionally, the presence of not differentiability, non-convexity, and constraints are considered.

This variational formulation is focused on the study of regularization techniques in order to pro-

mote properties of the solutions such as sparsity or its representation in appropriate spaces. The

goal of the regularization step is to overcome the ill-posedness of the problem since such problems

are extremely sensitive to perturbations (e.g. noise) in the data: small perturbation in the input

can cause an arbitrarily large perturbation of the solution. In the Bayesian framework, the image

prior serves as a regularizer in the computation of a maximum-a-posterior (MAP) estimation of

the reconstructed image. Developing efficient variational models is challenging, as it necessitates a

thorough understanding of the underlying physics of the acquisition process, and requires intricate

modeling of the statistics of the unknowns.

In the field of inverse problems in imaging, deep learning (DL) approaches that utilize neural net-

works with multiple internal layers have gained popularity in the past decade. DL methods have

demonstrated the ability to effectively use prior information from training data in order to address

the uncertainty of solutions to ill-posed inverse problems. However, there is a significant gap in

understanding the mathematical principles behind the exceptional performance of DL methods in

solving IPs. The main purpose of this thesis is to discuss data-driven approaches to regularize and

then solve inverse problems of image reconstruction. We introduce several new methods merging

the advantages of both variational and deep learning frameworks. Exploiting the capacity of DL

models to characterize the input data and we propose different approaches as effective ways to

incorporate domain knowledge into DL models.
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Contribution and Outline

This thesis is organized into seven chapters. In the first Chapter, we illustrate some preliminaries on

inverse problems, and numerical strategies to solve them in a model-based mathematical framework

considering linear and non-linear forward operators. In Chapter 2 data-driven approaches related to

deep-learning techniques are described with a particular focus on end-to-end models, hybrid models,

and learning regularization strategies. In Chapter 3 we describe the mathematical formulation of

the Electrical Impedance Tomography problem as the main use case purposed in the numerical

experiments. The last four chapters rely on the learning models applied to the image reconstruction

inverse problems:

• In Chapter 4 we investigate the solution to EIT inverse problem. The non-linear approach to

this challenging problem commonly relies on the iterative regularized Gauss-Newton method,

which, however, has several drawbacks: the critical choice of the regularization matrix and

parameter and the difficulty in reconstructing step changes, as smooth solutions are favored.

We address these problems by learning a data-adaptive neural network as the regularization

functional and integrating a local anisotropic total variation layer as an attention-like function

into an unrolled Gauss-Newton network. We finally show that the proposed learned non-linear

EIT approach strengthens the Gauss-Newton approach providing robust and qualitatively

superior reconstructions.

• In Chapter 5 we propose a proximal Gauss-Newton method for the penalized nonlinear least

squares optimization problem arising from the regularization of ill-posed nonlinear inverse

problems. By exploiting the modular structure that characterizes the proximal-type methods,

we plug in a pre-trained neural net denoiser in place of the standard proximal map. This allows

to mould the prior on the data. An encoder-decoder deep convolutional network is proposed

as a denoiser, which works on unstructured data; its mathematical formulation is derived to

analyse the Liptschitz condition. With the intent of showing the benefits of applying deep-

PnP reconstruction, we consider as an exemplar application, the nonlinear EIT, a promising

non-invasive imaging technique mathematically formulated as a highly nonlinear ill-posed

inverse problem.

• In Chapter 6 we state the Limited Electrode problem in EIT, and propose solutions inspired

by the application of compressive sensing techniques and deep learning strategies on the raw

boundary impedance data, in order to recover the target reconstruction quality while using

a relatively low number of nonlinear measurements.

• In Chapter 7 we investigate the potential of Transformer neural networks (Tnets), initially

proposed for sequence to sequence learning, by adapting them to image data. This question

sparked immense interest in the computer vision community and it is based on the scheme

for replacing convolution with self-attention. Given an image, without specific constraints

on patch size, Tnets extract patches from the input data and feed them into a Transformer

encoder to obtain a global representation, which will finally be transformed for a specific

task. In our case, we built Vformes, a Tnet-based architecture, as a deep learning-based



denoiser applied and post-processing in the Computed Tomography inverse problem. This

contribution will be further developed in future work.
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Chapter 1

Ill-posed inverse problems and

numerical optimization strategies

In this chapter, we give the main definitions of ill-posed inverse problems (IPs). We will consider

various related examples and then we report some optimization techniques for the solution of IPs.

A practical introduction to linear and non-linear IPs from both a theoretical and computational

perspective is given by [MS12]. In [SW12] non-linear IPs and their applications like electrical

impedance tomography (EIT), X-ray computed tomography (CT), magnetic resonance imaging

(MRI), and diffuse optical tomography (DOT) are dealt with by understanding the underlying

physical phenomena as well as the implementation details of image reconstruction algorithms.

1.1 Ill-posed inverse problems

Given two Hilbert spaces X and Y called data space and measurement space respectively, let

D(F ) ⊂ X the domain of interest, we consider a physical system where the variables and parameters

interact with each other. A mathematical formulation of the direct problem or forward problem of

this model is given by:

y = F (x) (1.1)

where F : D(F ) → Y is the linear or non-linear forward map and x ∈ X is the input data,

y ∈ Y the measurements data. We observe that if F is linear we have F (x) = Fx. In practice,

the measurements data y in (1.1) are almost never available precisely then these are only an

approximation yδ to y satisfying

∥yδ − y∥Y ≤ δ (1.2)

where δ > 0 is the noise level and ∥·∥Y is the norm induced by the inner product on Y . Informally

we can see a direct problem as the search for an effect from a cause. An example is knowing how

X-rays waves attenuate as they pass through a body in response to the size, shape, and material

composition of the body. Knowing the cause, we can determine the attenuation of the radiation.

Basically, in terms of input/output values, solve a forward problem means to find the output given

input. The inverse problem instead can be viewed as to recover the original input x in the data

space X from a measured output yδ ∈ Y . Considering the previous example, the inverse problem

5



6 1. Ill-posed inverse problems and numerical optimization strategies

is to reconstruct the inner structure of an unknown physical body from the knowledge of X-ray

images collected from different directions. Most inverse problems are complicated to solve: we may

not be able to control the input precisely because we have technical limitations and the measured

output will always contaminated by noise. In this thesis we will concentrate on ill-posed inverse

problems. First of all, we introduce the concept of well-posed problem proposed by Hadamard in

[Had02] according to which a well-posed problem has the three following properties:

• Existence: there should be at least one solution.

• Uniqueness: there should be at most one solution.

• Stability: the solution must depend continuously on data.

If at least one of these requirements is not met, the problem is ill-posed. The definition of well-

posedness above is equivalent to the request that F is surjective and injective and that the inverse

mapping F−1 is continuous. The non-linearity of the problem implies the failure of uniqueness,

continuous dependence on data, and the existence properties of the solution. The reason is the fact

that the inverse problems are highly sensitive to noisy measurements. More generally, every non-

degenerate compact operator between infinite-dimensional Hilbert spaces whose range is infinite

naturally leads to ill-posed inverse problems. Research on inverse problems has aimed to identify

the conditions under which solutions to these types of ill-posed problems exist and to develop

methods for approximating solutions in a stable manner when noise is present as in [EHN96],

[BB18], [K+11].

1.1.1 Analysis of non-linear ill-posedness

Uniqueness

In non-linear inverse problem if the uniqueness does not hold, the problem can be regarded by

studying the quotient space {[x]|x ∈ X]} related to the equivalence classes of objects yielding the

same data

[x] = {z ∈ X|F (z) = F (x)}.

Then the representative satisfies the minimal norm solution ∥ · ∥X of an equivalence class can be

considered as good approximation of the ideal solution. Otherwise, a good possibility is to measure

more data or enrich your knowledge of measurement using a-priori information. These strategies

is called regularization.

Continuous dependence on data

Given the uniqueness property, the problem of the continuous dependence on data depends on the

fact that the operator F might not have a continuous inverse on F (D(F )). We can enforce the

uniqueness analysis by adding conditional stability results given by:

∥x− z∥X ≤ Φ(∥F (x)− F (z)∥Y ) (1.3)
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where x and z are two solutions belonging to the same equivalence class, and Φ : R → R is a

non-negative continuous scalar function satisfying Φ(0) = 0. The inequality (1.3) estimates bound

the difference ∥x− z∥X by the difference ∥F (x)− F (z)∥Y in infinite-precision data. Basically the

conditional stability are rarely applicable because the measured data y /∈ F (D(F )).

Existence

The problem of existence relies on the fact that often y /∈ F (D(F )) where F (D(F )) ⊂ Y , Y in-

finite dimensional space. Then we have a problem with the existence of a preimage F−1(y). To

overcome this problem, a classical strategy is to model the measurement function y = F (x) using,

in the discrete formulation, a projection operator Pk : Y → Yk ⊂ Y where Yk satisfies the following

isometry Yk ≃ Rk. Then we can replace the non-linear problem with the following y = Pk(F (x))+ϵ.

1.1.2 Variational Regularization method

The first approach to tackle an inverse problem consists of applying the variational regularization

methods which impose certain regularity conditions on the desired solution to single out a useful

and stable result. Regularization methods give us a function from the data space to the model

space close to the inverse of the forward operator. In the discrete setting we consider as data space

X = Rn and Y = Rm then x ∈ Rn and yδ ∈ Rm and the forward operator F is a matrix of size

m×n. The regularization approach consists to reformulate the ill-posed problem with a weel-posed,

consisting of the minimization of a cost functional J : Rn → R+. This functional is the sum of two

terms which are determined by some statistical assumptions on the noise and the type of image we

are considering. In formula:

x∗ ∈ arg min
x∈Rn
{J (x;λ) = L(x; yδ, F ) + λR(x)} (1.4)

where:

• L(x; yδ, F ) : Rn → R is the fidelity term. It measures the prior information on the residue.

• R(x) : Rn → R is called regularization term which contains the prior information on the

image imposing e.g., regularity or sparsity.

• λ ∈ R+ is the regularization parameter. It allows setting the trade-off between fidelity and

the regularization terms. Its setting is usually a quite delicate issue.

1.1.3 The discrepancy principle

The choice of the regularization parameter in the iterative methods is crucial to obtain a good

solution of the problem. Substantial literature related to inverse problems in imaging has been

devoted to the derivation of methods for automatically tuning the regularization parameter λ.

In general, we do not know the exact solution of the problem then is more difficult to set the

regularization parameter. In [Han98] the authors propose the discrepancy Morozov principle. At
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the core of the discrepancy principle there is the idea that, typically, no benefit is expected when

the problem is solved more accurately than the accuracy of the data. Assuming the noisy data

as in (1.2), the discrepancy principle thus consists in looking for a solution x belonging to the

discrepancy set, defined as

Dmor := {x ∈ Rn s.t. τ1δ ≤ ∥F (x)− yδ∥2 ≤ τ2δ}, (1.5)

where τ2 ≈ 1 is a parameter avoiding the under-estimation for τ2 > 1 and the over-estimation for

τ2 < 1 of the noise. Theoretically, δ is the upper bound for the noise level, hence one should only

consider 1 < τ1 ≤ τ2.

1.2 Variational regularization models for linear problems

Given the discrete formulation of (1.1) we can determine the degree of ill-conditioning of the linear

inverse problems by studying the singular value decomposition (SVD).

Theorem 1.1. Let F ∈ Rm×n be a real matrix. Then the SVD factorization of F is given by

F = UΣV T =
n∑

i=1

uiσiv
T
i , (Σ = UTFV )

where U ∈ Rm×m, V ∈ Rn×n are orthogonal matrices and Σ ∈ Rm×n is a diagonal matrix in case

F being square, and as close as possibile to a diagonal matrix in case F being wide, with diagonal

entries satisfying

σ1 ≥ σ2 ≥ ... ≥ σr > σr+1 = ... = σmin(m,n) = 0,

r = rank(F ), σi are the singular values of F and U = [u1, u2, ..., um] ∈ Rm×m and V = [v1, v2, ..., vn] ∈
Rn×n columns uj and vj are left and right singular vectors of F respectively s. t. UTU = V TV = I.

When F is square and non-singular the inverse F−1 can be determined easily from whose SVD

is inherited from the SVD of F , namely:

F−1 = V Σ−1UT ,

where Σ−1 is the diagonal matrix with entries: 1/σ1, 1/σ2, ..., 1/σr, 1/σr+1 = ... = 1/σmin(m,n) = 0.

If any of the singular values σi = 0, then the Σ−1 does not exist. In practical situations, a matrix

may have singular values that are not exactly equal to zero but are so close to zero that it is not

possible to accurately compute them. In such cases, the matrix is what we call ill-conditioned

because dividing by the singular values (1/σi) for singular values σi that are arbitrarily close to

zero will result in numerical errors. The degree to which ill-conditioning prevents a matrix from

being inverted accurately depends on the ratio of its largest to smallest singular value, a quantity

known as the condition number defined as:

Cond(F ) =
σ1
σr

.

When the condition number may be large we have a problem related to the inversion of F since

the diagonal inverse matrix Σ−1 contains floating point numbers of very different sizes. Therefore
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the condition number is assumed to be large for ill-posed problems and it tends to infinity for

rank-deficient matrices F such that r = rank(F ) < min(m,n).

The concept of least-squares inversion is the most used method for solving inverse problems.

We want to find the minimum-norm solution defined as:

Definition 1.1. A vector x∗ ∈ Rn is called a least-squares solution of the linear system Fx = yδ if

∥Fx∗ − yδ∥ = min
x∈Rn
∥Fx− yδ∥.

Further, x∗ is called the minimum-norm solution if

∥x∗∥ = inf{∥x∥ : x is a least-squares solution of Fx = yδ}.

More in general, when F is not invertible, we can still consider the Moore-Penrose or pseudoin-

verse matrix F † and introduce its SVD.

Theorem 1.2. Let F ∈ Rm×n and denote by F = UΣV T the SVD of F . The minimum-norm

solution of the discretized problem Fx = yδ is given by F †yδ where

F †yδ = V Σ+UT yδ

and Σ† = diag(1/σ1, 1/σ2, ..., 1/σr, 0, ...0).

Then the theorem shows that applying SVD the solution of the linear invers problem is given

by:

x∗ =
n∑

i=1

⟨uTi , yδ⟩
σi

vi.

Typically the matrix F presents very small singular values which can lead to the amplification

of small perturbations in the data. We thus expect the condition number Cond(F ) to be very

large and F to be very ill-conditioned. As consequence, its inversion is not feasible and different

strategies must be proposed to address the solution of the far from harmless linear system:

• Truncated SVD (TSVD) Regularization

• Tikhonov Regularization

1.2.1 Truncated Singular Value Decomposition (TSVD) Regularization

Assume that the matrix is either square or overdetermined i.e. F ∈ Rm×n with m >> n ≥ r =

rank(F ). To reduce noise amplification and obtain an acceptable solution, we have to discard

the smallest singular values of matrix F thus using a low-rank but better-conditioned matrix.

We thus consider a threshold τ and set to zero all the singular values of Σ smaller than τ . τ is

called regularization parameter and it corresponds to considering only the first k singular values

s.t. σ1 ≥ · · · ≥ σk > τ , k < r. The minimum-norm solutions using the truncated singular values

decomposition (TSVD) [Han87] method is given by:

x∗TSV D = F †(yδ) ≈ VkΣ
†
kU

T
k (y

δ) =
k∑

i=1

⟨uTi , yδ⟩
σi

vi
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where the TSVD matrix is defined as:

Σ†
k = diag(1/σ1, 1/σ2, · · · , 1/σk, 0, · · · , 0) ∈ Rn×m.

We can equivalently write:

x∗TSV D =
n∑

i=1

w(σi)
⟨uTi , yδ⟩

σi
vi

where

w(σi) =

1 if σi ≤ τ

0 if σi < τ

w(σi) represents the filter function that eliminates the smallest singular values, whereas the singular

values above the truncation threshold are not modified. The truncation threshold τ determines the

number of SVD components be kept in the regularized solution and, hence, the choice of its value

is crucial for the TSVD method.

1.2.2 Tikhonov Regularization

Another common regularization method used to incorporate the regularity requirement in the

problem formulation is Tikhonov Regularization. The regularized solution is determined as the

solution x∗tik of the unconstrained minimization problem:

x∗tik = arg min
x∈Rn

{1
2
∥Fx− yδ∥22 +

λ

2
∥x∥22

}
.

The first term in the functional measures the data consistency, i.e. measure how well solution

x∗tik predicts data yδ; the second term instead measures the regularity of the solution. λ > 0

is the regularization parameter which balances the contribution of the regularization term. In

order to penalize different features of the final solution we can consider the generalized Tikhonov

regularization. In formula:

x∗tik = argmin
x

{1
2
∥Fx− yδ∥22 +

λ

2
∥Lx∥22

}
.

where L ∈ Rp×n, m ≥ n ≥ p represents the discretization matrix of some differential linear operator.

If the fidelity term is too large, the solution x∗tik cannot be considered a good solution because

it differs too much from the perturbed input. On the other hand, if the residue is too small,

the solution will be contaminated by noise. The regularization term is based on the knowledge

that the solution is dominated by the high-frequency components which are large in modulus.

Hopefully, by checking the x norm, most components with noise are suppressed. The regularization

parameter balances the two terms. The bigger it is, the more weight it gives after the regularization.

Conversely, if it is too small, the solution will be too irregular. The aim is to find a good balance

between the two terms through the regularization parameter. Under certain assumptions, the

Tikhonov formulation admits an unique solution as explained in [Tik43], [Tik63] [TA77].

Theorem 1.3. Let

x∗tik = arg min
x∈Rn

{1
2
∥Fx− yδ∥22 +

λ

2
∥Lx∥22

}
.
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the Tikhonov formulation with λ > 0. If Ker(F ) ∩Ker(L) = {0}, then the Tikhonov solution is

unique and is given by:

x∗tik = (F TF + λLTL)−1F T yδ. (1.6)

Given the SVD of F = UΣX−1 and L = VMX−1, then the generalized Tikhonov’s solution of

(1.6) is given by:

x∗tik =

rL∑
i=1

γi
γ2i + λ

⟨uTi , yδ⟩xi +
n∑

i=rL+1

⟨uTi , yδ⟩xi

where rL = rank(L) ≥ p and γi =
σi
mi

for i = 1, ..., rL. To better note the analogy between the

solution just found by Tikhonov regularization and the solution by TSVD, we can write

x∗tik =

n∑
i=1

σi
σ2
i + λ

⟨uTi , yδ⟩vi =
n∑

i=1

σ2
i

σ2
i + λ

⟨uTi , yδ⟩
σi

vi.

As in TSVD, we can introduce the filter factors w(σi) =
σ2
i

σ2
i +λ

which attenuate the components

σi < λ. For singular values σi >> λ, the filter factors are close to 1 and the corresponding

components contribute to the solution x∗tik with almost all their magnitude. If instead σi << λ the

solution components are filtered.

1.2.3 Total variation regularization

The most common regularization strategies impose (explicitly or implicitly) a penalty on nonsmooth

regions in a reconstructed image. Such methods confer stability to the reconstruction process

but limit the capability of describing sharp variations in the sought solution. One technique to

permit image regularization without imposing smoothing is the Total Variation (TV) formulation

of regularization introduced in [ROF92].

Definition 1.2. Given a 2-dimensional matrix u ∈ Rm×n, with N = mn, we define the discrete

isotropic total variation regularizer as:

TV I(u) =

N∑
j=1

∥(Lu)j∥2 =
N∑
j=1

√
(Lhu)

2
j + (Lvu)2j (1.7)

where (Lu)j =
(
(Lhu)j , (Lvu)j

)
is the discrete gradient operator.

Definition (1.7) can be slightly modified by considering the l1-norm instead of the euclidean

norm, thus getting to the anisotropic total variation

TV A(u) =

N∑
j=1

∥(Lu)j∥1 =
N∑
j=1

|(Lhu)j |+ |(Lvu)j |. (1.8)

TVA is a more suitable choice in presence of images presenting edges oriented only along the x and

the y axes. While the diffusion produced by TVI is the same in every direction of the xy cartesian

plane, the choice of TVA produces a more concentrated diffusion along the axes. This is mainly

due to the properties of the level curves of the two regularization terms, reported in Figure 1.1.
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Figure 1.1: Level curve of TVI (left) and TVA (right) regularization penalty.

Given the TVA penalty, the variational formulation of our optimization problem takes the form

of:

x∗tik,tv = arg min
x∈Rn

{1
2
∥Fx− yδ∥22 +

λ

2

N∑
i=1

∥(Lx)i∥2
}

(TV-L2)

Since the TV regularizer is not a differentiable term, we don’t compute the gradient-based min-

imization algorithms. One possible choice to solve this kind of non-differentiable optimization

problem is the Alternating Direction Method of Multipliers (ADMM) method [GM76]. At the core

of ADMM there is the idea of splitting the original problem into smaller ones that are easier to

handle. The solution of the smaller sub-problems thus coordinates in order to find a solution for

the large problem.

1.2.4 ADMM method for TV-L2

Introducing an auxiliary variable t ∈ R2, we can reformulate the problem (TV-L2) as constrained

minimum problem in two variables:

{x̂, t̂} = argmin
x,t

{
N∑
i=1

∥ti∥2 +
λ

2
∥Fx− yδ∥2; subject to ti = (Lx)i ∀ i = 1, ..., N

}
.

The associated Lagrangian function is:

L(x, t, ρ;β) =
∑
i

(
∥ti∥ − ρTi (ti − (Lx)i) +

β

2
∥ti − Lxi∥2

)
+

λ

2
∥Fx− yδ∥2 ,

where we refer to β as the penalty parameter. The ADMM iterative method give us the sequences

{tk}, {xk}, {ρk} defined via the following iterative scheme:

(primal)

tk+1 = argminy L(x
k, t, ρk;β)

xk+1 = argminx L(x, t
k+1, ρk;β)

(dual)
{
ρk+1 = ρk − β(tk+1 − Lxk+1) .

The minimization over t is splitted in N sub-problems as:

tk+1
i = arg min

ti∈R2

{
∥ti∥+

β

2

∥∥∥∥ti − ((Lxk)i + 1

β
(ρk)i

)∥∥∥∥2
}

, i = 1, ..., N ,
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which are as unique solution:

tk+1
i = max

{∥∥∥∥(Lxk)i + 1

β
(ρk)i

∥∥∥∥− 1

β
, 0

}
(Lxk)i +

1
β (ρ

k)i

∥(Lxk)i + 1
β (ρ

k)i∥
, i = 1, ..., d .

The x minimization is a least square problem that has as solution the solution of a the following

linear system: (
LTL+

µ

β
F TF

)
x = LT

(
tk+1 − 1

β
ρk
)
+

µ

β
F T b .

As stopping criterium for the ADMM iterative algorithm we can use the relative error between two

solution steps:
∥xk+1 − xk∥
max{∥xk∥, 1}

< ϵ .

1.3 Variational regularization models for non-linear problems

In this section, we will focus on non-linear forward operator.

1.3.1 Tikhonov regularization for non-linear inverse problems

In [EKN89] the authors consider non-linear ill-posed problems in a Hilbert space setting, they show

that Tikhonov regularization is a stable method for solving non-linear ill-posed problems and give

us conditions that guarantee the convergence for the regularised solutions.

Definition 1.3. A function F : X → Y is weakly closed if for any sequence {xn} ⊂ X, weak

convergence of xn to x in X and weak convergence of F (xn) to y ∈ Y implies x ∈ X and F (x) = y.

Similarly to the linear case, we define the concept of x∗ minimum-norm solution for the non-

linear forward operator:

∥F (x∗)− yδ∥ = min
x∈Rn
{∥F (x)− yδ∥ s.t. x ∈ D(F )}

and

∥x∗ − x0∥ = min
x∈Rn
{∥x− x0∥/∥F (x)− yδ∥ = ∥F (x∗)− yδ∥}.

Here x0 plays the role of a selection criterion, then its choice influences which solution we want to

approximate. Let F continuous and weakly closed function and recalling the fact that y in (1.1) is

an approximated measurement data which satisfies (1.2). For convenience here we will make this

fact explicity, then we consider the following Tikhonov regularized optimization problem:

min
x∈Rn
∥F (x)− yδ∥2 + λ∥x− x0∥2, (1.9)

x ∈ D(F ). Another required assumption for the following results is the attainability property

which means that exists an element x ∈ D(F ) such that:

F (x) = y.

Since F is non-linear, the solution will not be unique, in general. Concerning the study of the

stability in the sense of continuous dependence of the solution it is exhibited in the following

theorems:
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Theorem 1.4. Let λ > 0 and let {yk} and {xk} be sequences where yk → yδ and xk is a minimizer

of (1.9) with yδ replaced by yk. Then there exists a convergent subsequence of {xk} and the limit

of every convergent subsequence is a minimizer of (1.9).

Another question is if the solution of (1.9) converges towards a solution of (1.1) as λ→ 0 and

yδ → y. To solve this question the authors consider a slightly generalization of (1.9) and examine

the problem of finding an element xδ,ηλ ∈ Ω such that:

∥F (xδ,ηλ )− yδ∥2 + λ∥xδ,ηλ − x0∥2 ≤ ∥F (x)− yδ∥2 + λ∥x− x0∥2 + η (1.10)

where η ≥ 0 reflects computational reality, since the problem (1.9) can only be solved approximately.

Given the attainability assumption and since F is weakly closed the following theorem shows that

under certain conditions, solution of (1.10) converges towards an x∗ minimum-norm solution. We

observe that x∗ need not be unique.

Theorem 1.5. Let F (x) = y, let yδ ∈ Y with ∥y− yδ∥ ≤ δ and let λ(δ, η) be such that λ(δ, η)→ 0,

δ2/λ(δ, η) → 0 and η/λ(δ, η) → 0 as δ → 0, η → 0. Then every sequence {xδk,ηkλk
}, where δk → 0,

ηk → 0, λk := λ(δk, ηk) and xδk,ηkλk
is a solution of (1.10), has a convergent subsequence. The

limit of every convergent subsequence is a x∗ minimum-norm solution. If, in addition, the x∗

minimum-norm solution is unique, then

lim
δ→0,η→0

xδ,ηλ(δ,η) = x∗.

1.3.2 Morozov’s discrepancy for Tikhonov regularization

In this section we report some results regardless the Morozov’s discrepancy principle (1.5) as an a-

posteriori parameter choice rule for Tikhonov regularization functional using non-linear operators.

Given the problem (1.1) under the assumption (1.2), we consider a general Tikhonov regularization

functional i.e.

Jλ,q(x) = ∥F (x)− yδ∥q + λR(x),

λ > 0, q > 0, R a general convex penalty term. In [AR09] the authors analyze that under what

circumstances the discrepancy principle can be applied to the non-linear inverse problem (1.1)

namely they are interested in choosing λ = λ(δ, y) such that:

τ1δ ≤ ∥F (xδλ)− yδ∥ ≤ τ2δ, (1.11)

where τ1, τ2 > 0 and xδλ denotes the regularized solution. Define now the following condition:

Condition 1. Let R : D(R) ⊂ X → R+, with 0 ∈ D(R) be a convex functional such that

1. R(x) = 0 if and only if x = 0.

2. R is weakly lower semi-continuous.

3. R is weakly coercive, i.e. ∥xn∥ → ∞ implies R(xn)→∞.
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Definition 1.4. The regularized solution will be a minimizers xδλ of the Tikhonov functional

Jλ(x) =

∥F (x)− yδ∥q + λR(x) if x ∈ D(R) ∩D(F )

+∞ otherwise
(1.12)

Since the minimizer of (1.12) will in general not be unique for non linear operator given a fixed yδ,

we denote the set of all minimizers by Mλ:

Mλ = {xδλ ∈ X : Jλ(x
δ
λ) ≤ Jλ(x),∀x ∈ X}. (1.13)

A solution x∗ of (1.1) is called R-minimizing solution if

R(x∗) = min{R(x) : F (x) = y}

and denote the set of all R-minimizing solution by S. We assume that S ≠ ∅.

At this level, we show that the following conditions suffice to guarantee the existence of a

positive regularization parameter fulfilling the discrepancy principle.

Condition 2. Assume that yδ satisfies

∥y − yδ∥ ≤ δ ≤ τ2δ < ∥F (0)− τ δ∥,

and that there is no λ > 0 with minimizers x1, x2 ∈Mλ s.t.

∥F (x1)− yδ∥ < τ1δ ≤ τ2δ < ∥F (x2)− yδ∥.

Theorem 1.6. If Condition 2 is fulfilled, then there are λ = λ(δ, yδ) > 0 and xδλ ∈ Mλ(δ,yδ) such

that (1.11) holds.

The next paragraph contains a result that shows that for a suitable regularizer, the penalized

solution converges with respect to the penalty term as the noise level goes to zero.

Condition 3. Let {xn} ⊂ X be such that xn ⇀ x̄ ∈ X and R(xn)→ R(x̄) <∞; then xn converges

to x̄ with respect to R, i.e.

R(xn − x̄)→ 0.

In [GHS08] is shown that the choice of a penalty term defined as weighted lp-norm of the

coefficient with respect to some frame {ϕπ}π∈Π ⊂ X

Rp,w := ∥x∥w,p =
(∑

π∈Π
wπ|⟨x, ϕπ⟩|p

)1/p
, 1 ≤ p ≤ 2

with 0 < wmin ≤ wπ, satisfies the Conditions 3 and 1.

Theorem 1.7. Let δn → 0 and F , R satisfy Conditions 3 and 1. Assume that yδn fulfills Condition

2 and choose λn = λ(δn, y
δn), xn ∈Mλn such that (1.11) holds; then xn converges to S with respect

to R.
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1.4 Numerical Optimization Algorithms

Consider the following minimization problem:

min
x∈Rn

{J (x;λ) := f(x) + λg(x)} , (1.14)

where f : Rn → R is a convex, continuously differentiable fidelity function, and g : Rn → R ∪ {∞}
is a convex but not necessarily differentiable penalty function, λ > 0. All numerical methods for

the solution of non-linear and thus, in general, non-convex optimization problems are iterative:

from a starting point x0 the method produces a sequence of vectors x1, x2, . . ., which converges to

a stationary point x∗, which is (hopefully) a local minimizer for the given cost function. If x∗ ∈ Rn

is a local minimum of (1.14), then it is a stationary point of (1.14), i.e., one has

0 ∈ ∇f(x∗) + ∂g(x∗),

where ∂g(·) is the subdifferential of g.

1.4.1 First-order Methods

The most popular methods for minimizing composite functions are first-order methods that use

proximal mappings to handle the nonsmooth part g.

Proximal Gradient Method

Proximal methods approximate near a generic iterate xk the smooth part f of (1.14) with a local

quadratic model, thus considering as J approximant at a given y, the following model

J̄ (y; ) = f(xk) +∇f(xk)T (y − xk) +
1

2
(y − xk)

THk(xk)(y − xk) + λg(y), (1.15)

where Hk is a symmetric positive definite matrix which approximates the Hessian ∇2f(x).

The most popular methods for minimizing a composite function, formulated as in (1.14), are

the proximal gradient methods which are first-order methods that use proximal mappings to handle

the nonsmooth part g and consider an Hessian approximation in (1.15) equal to (a scaled version

of) the identity, i.e. Hk := 1
β I, β > 0.

zk+1 =xk − β∇f(xk)

xk+1 =proxβg (zk+1)

where the proximal mapping of a convex function g at z with parameter β is defined as

proxβg (z) := argmin
x

{
g(x) +

1

2β
∥x− z∥22

}
.

FISTA [BT09] corresponds to an optimized approach to accelerating the proximal gradient method.

Despite its simplicity, proximal gradient methods perform poorly, as they use only first-order infor-

mation, and hence each iteration is less expensive but typically exhibits much slower convergence

than a Newton-like method.
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1.4.2 Second-Order Methods

Gauss-Newton Method

The Gauss-Newton (GN) method is the most commonly used one for minimizing non-linear least

squares problems and performs a line search strategy with a specific choice of a descent direction.

Consider the second-order Taylor’s expansion approximation of the objective function function at

point xk:

f(xk + p) = f(xk) + pT∇f(xk) +
1

2
pT∇2f(xk) +O(p3). (1.16)

Given an initial guess x0, Newton’s method performs the next iteration

xk+1 = xk + pk

where the search direction p is computed by minimizing the function:

f∗(pk) = f(xk) + pTk∇f(xk) +
1

2
pTk∇2f(xk).

The search direction pk is a minimum of f∗ if the gradient of f∗ vanish on p i.e.

∇2f(xk)pk = −∇f(xk)

The Gauss-Newton method essentially approximates the Hessian matrix in (1.16) by ignoring all

the second order terms from ∇2f(xk), so that the search direction p is obtained by solving the

following linear system:

J(xk)
TJ(xk)p

GN
k = −J(xk)T r(xk). (GN)

Regularized Gauss-Newton method

The regularized Gauss-Newton method (RGN), using a generalized Tikhonov regularizer, consists

of applying GN to the minimization problem (1.14)

x∗ = argmin
x
{J (x;λ) = f(x) + λg(x)}, g(x) = ∥Lx∥22 (1.17)

where L is a matrix representing either a discrete first/second order differential operator, or a

positive diagonal matrix, or simply the identity matrix. The gradient and the approximated Hessian

matrix of the objective function in (1.17) are respectively given as follows:

∇J (x;λ) = J(x)T r(x) + λLTLx, (1.18)

∇2J (x;λ) = ∇2F (x)r(x) + J(x)TJ(x) + λLTL.

The search direction pk from the current iterate satisfies the linear system

(J(xk)
TJ(xk) + λLTL)pRGN-Tik

k = J(xk)
T r(xk) + λLTLxk. (RGN-Tik)

The Tikhonov-type regularization g(x) in (1.17), regardless of the choice of L, favors smooth

solutions and fails in reconstructing step conductivity changes. As we have previously seen, a
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popular alternative to the Tikhonov regularizer, is the l1-norm Total Variation regularizer defined

in (1.8). Replacing (1.8) in (1.17) enforces piecewise-constant conductivity reconstructions, and

well preserves sharp conductivity changes, at the cost of a non-smooth optimization problem to

solve. Following [BGAL09], the approximate solution of the problem (1.17) with a smoothed TV

regularizer reads as

(J(xk)
TJ(xk) + λLTE−1L)pRGN-TV

k = J(xk)
T r(xk) + λLTE−1Lxk, (RGN-TV)

where E is a diagonal matrix defined as E := diag(
√
(Lx)2 + γ), and γ > 0 is the smoothing

parameter.

Levenberg-Marquardt Method

The Levenberg-Marquardt method [Han97] is another algorithm directly regularizes the ill-conditioned

linear system (GN) adding a scaled identity matrix λI, or even λL, to the coefficient matrix, thus

improving its condition number. Then the approximate solution of (1.17) is then given by

(J(xk)
TJ(xk) + λLTL)pLM

k = J(xk)
T r(xk). (LM)

Proximal Newton-type methods

Proximal Newton-type methods are second-order methods which rely instead on more accurate ap-

proximations Hk of the Hessian ∇2f(xk) in (1.15). In particular, the proximal Newton method deals

directly with Hk := ∇2f(xk). Approximations to ∇2f(xk), according to quasi-Newton strategies,

lead to proximal quasi-Newton methods.

In general we can express the proximal Newton-type method using scaled proximal mapping,

thus revealing the connection with the proximal gradient method.

Definition 1.5. Let g : Rn → R ∪ {+∞} be a proper, lower semicontinuous, convex function and

Q be a positive definite matrix. Then the scaled proximal mapping of g at x is

proxQg (x) := arg min
y∈Rn

{
g(y) +

1

2
∥y − x∥2Q

}
,

where ∥z∥Q =
√

zTQz is the Q-norm.

As proved in [BFO19], the mapping proxQg (x) exists and is unique; moreover it is nonexpansive,

i.e., for all x, y ∈ Rn

∥ proxQg (y)− proxQg (x)∥2Q ≤ ∥y − x∥2Q,

and can be also implicitly defined as

proxQg (x) = (I +Q−1∂g)−1(x), (1.19)

where ∂ denotes the subdifferential of g.

The proximal Newton-type method can be written as composite steps using scaled proximal

mappings, where Hk plays the role of Q:

zk+1 = xk −H−1
k ∇f(xk) (1.20)
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xk+1 = proxHk
g (zk+1). (1.21)

In fact, by minimizing the local quadratic model (1.15) we get

xk+1 = argmin
y

{
∇f(xk)T (y − xk) +

1

2
(y − xk)

THk(y − xk) + g(y)

}
(1.22)

= argmin
y

{
1

2
∥Q̄(xk −H−1

k ∇f(xk)− y)∥22 + g(y)

}
, (1.23)

= argmin
y

{
1

2
∥xk −H−1

k ∇f(xk)− y∥2Hk
+ g(y)

}
, (1.24)

where in (1.23) we resort on the assumption that Hk is symmetric, positive definite hence is fac-

torized as Hk = Q̄T Q̄, and from (1.23) to (1.24) we apply

∥y − x∥2Hk
=< Hk(y − x), (y − x) >=< Q̄(y − x), Q̄(y − x) >= ∥Q̄(y − x)∥22. (1.25)

Due to the ill-posedness of the continuous problem, the approximation of the Hessian matrix

Hk is ill-conditioned and, in general, even not positive definite.

Solution of RGN methods

The linear systems (RGN-Tik), (RGN-TV), and (LM) can be described by the following unified

formulation

(J(xk)
TJ(xk) + λR)pk = bk, (RGN)

where bk is the associated right hand side and R is a generic regularizer operator. Then the linear

systems (RGN-Tik), (RGN-TV), and (LM) can be directly solved by

pk = VRΣ
−1
R UT

R bk, (1.26)

where UR, ΣR, and VR are given by the SVD of the coefficient matrix in (RGN-Tik), (RGN-TV)

or (LM).

Algorithm 1 RGN

Input: x0, λ > 0,

Output: x∗ % optimal solution

for k = 0, 1, . . ., do

compute direction pk by (1.26)

xk+1 = xk + pk

end for

σ∗ = σK

end

In Algorithm 1 we summarize the iterative steps of the regularized Gauss-Newton algorithm

where the convergence is satisfied when two successive iterates differ for a given threshold.

The success of all these approaches is based on the critical choice of the λ regularization pa-

rameter, that is, on a long and painful exhaustive research that in practical applications is not in

general sustainable.
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Chapter 2

Data driven techniques

Analyzing inverse problems through analytical methods (e.g. model-based) has been a longstanding

topic of research. The analytical approach involves clearly defining the forward model, establishing

criteria for a solution, and selecting a method to find the solution. With the advent of neural

networks, many computer vision tasks have motivated attempts at using deep-learning (e.g. data-

driven model) to achieve better performance in terms of efficacy and efficiency in many applications.

Hybrid models that combine analytical and deep learning techniques have been proposed to address

generalization issues while still maintaining the effectiveness of deep learning models. Fig. 2.1 shows

an illustration of the connections between model-based methods, data-driven methods and hybrid

method. In [OJM+20] the authors propose a taxonomy used to categorize different problems and

reconstruction methods based on the knowledge or not of the forward operator and the use of

this information in training and testing time. In [MHÖ+23] are studied the relevant notions of

convergence for data-driven image reconstruction, which forms the basis of a survey of learned

methods with mathematically rigorous reconstruction guarantees. A deep learning and hybrid

methods review for solving imaging inverse problems, focusing on image and video super-resolution

and image restoration is described in [LTMK21].

Figure 2.1: Illustration of the connections between model-based methods, data-driven methods and

hybrid method.

21
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2.1 Bayesian formulation

In the statistical formulation of inverse problems domain, knowledge is introduced into the problem

through the probabilistic models used to describe the unknown quantities. Reconstructions arising

from minimizing a variational functional can alternatively be interpreted as Bayes estimators. As

reported in [KS06], the measured data is a realization y of the Y -valued random variable

Y = F (X) + δ,

where δ is a random variable for the measurement noise and aims to estimate the posterior dis-

tribution of X conditioned on Y = y, denoted as πpost(X = x|Y = y). We can reformulate the

posterior distribution in terms of the data-likelihood and the prior using the Bayes rule:

πpost(X = x|Y = y) =
πdata(Y = y|X = x)πX(X = x)

Z(y)

where Z(y) is a normalizing quantity independent of x. The data likelihood πdata(Y = y|X = x)

gives the probability of measuring certain data given a reconstruction and this is typically well

known in terms of the physics of the problem.

For extracting a point-estimate from the posterior, we can compute its mode, leading to the so-

called maximum a-posteriori probability (MAP) estimate:

min
x∈X
−logπdata(Y = y|X = x)− logπX(X = x). (2.1)

If πdata(Y = y|X = x) and πX(X = x) are convex the problem can be reduced to a convex

optimization problem. Convex problems are nice since every local optimum is a global optimum

and there is a wealth of algorithms for solving them reasonably fast. The MAP estimation has

problem when:

• the statistics of the noise are not known;

• the distribution of the signal is not known or the log-likelihood does not have a closed form;

• the forward operator is not known or only partially known.

One way to overcome ill-posedness is to incorporate regularization in order to stabilize the recon-

struction. In Bayesian inversion, regularization is commonly achieved by choosing a prior distri-

bution on images, which assigns a low probability to images with undesired characteristics. Reg-

ularization involves using a manually created model that includes prior knowledge and expected

properties of the solution.

2.2 Data-driven methods

Within artificial intelligence and machine learning, there are two basic approaches: supervised

learning and unsupervised learning. The main difference is one uses labeled data to help predict

outcomes, while the other does not. In supervised learning we have pairs of ground-truth images

x with their corresponding measurements y. This match is done by using the forward operator on
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clean data. Training a network in a supervised fashion in an inverse problem task means learning a

function that, given a sample y of measurement and desired outputs, best approximates the inverse

mapping between input and output observable in the data. Unsupervised learning instead works on

an unmatched dataset of images x and measurements y so its goal is to infer the natural structure

present within a set of data points.

2.2.1 End-to-end Models

The goal of end-to-end models is to estimate the function fθ(·) which maps the measurements y

directly to reconstructed images x. The universal approximation theorem in [HSW90] states that a

fully connected neural network with a large number of neurons in its hidden layer may represent any

function we want to learn, as long as our activation functions meet some minor constraints. If the

forward operator F is known, a common practice is to use a neural network as post-processing after

the reconstruction. To map the measurements back to the image domain you use an approximate

inverse of F , denoted as F̃−1. The selection of F̃−1 is specific to the inverse problem, but common

options include using the adjoint of F⊤ or the pseudo-inverse F †. Several inverse problems benefit

of residual connection in the reconstruction networks: the residual strategy first applies identity

mapping to x, then it performs element-wise addition fθ(x)+x. Mathematically the overall pipeline

is defined as:

fθ(y) = hθ(F̃
−1y) + F̃−1y. (2.2)

For this approach the training is computed in the supervised fashion. Fig.2.2 shows this learning

strategy. In [JMFU17] the authors suggest utilizing a U-net to clean up the estimation obtained

Figure 2.2: Given the reconstruction obtained by applying F̃−1, the network is used as image post-

processing step. Skip connection is implemented.

through filtered back projection in medical imaging issues.

When the forward operator is unknown or the forward model may be completely known but nu-

merically complex to evaluate, the most straightforward approach is to consider the reconstruction

map as a ”black box” that can be closely approximated by a selected neural network by matching

directly the input y and output x. In other words, this task can be viewed as learning an inversion

model. An example of this approach is reported in[ZLC+18] where the authors present a com-

prehensive framework for image reconstruction that transforms it into a supervised learning task

driven by data, enabling the mapping from sensor data to image domain to be learned from a suit-

able training dataset. In the super-resolution taks, the same approach is investigated in [ZLL+18].
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A different way in the class of end-to-end methods related to unsupervised learning task is the use

of generative adversarial networks (GANs) as reported in [GPAM+20]. In contrast to the previous

approach which model the MAP formulation, GANs work on the data distribution πX(X = x).

The training process of GANs enables the model to learn the intricate patterns present in natural

data distributions without explicitly defining them. Given the distribution over x and y, GANs

consists of two networks: a generator gθ1 and a discriminator dθ2 ; samples are generated by gθ1 by

mapping a random vector z ∼ N (0, 1) to the data distribution. Under the unsupervised assump-

tion, considering gθ1 and dθ2 the inverse approximation of each other, realize the joint distribution

between x and y modeled by the nets gθ1 and dθ2 . The training minimizes the two loss functions

defined as: Ld(θ2; θ1) = −Ex∼X [log dθ2(x)]− Ey∼Y [log(1− dθ2(gθ1(y)))]

Lg(θ1; θ2) = −Ey∼Y

[
log

dθ2 (gθ1 (y))

1−dθ2 (gθ1 (y))

]
The purpose of the discriminator in a GANs is to differentiate between real data and fake data

generated by the generator, and the generator’s goal is to produce data that can trick the dis-

criminator into thinking it is real. After the training, the discriminator is discarded and only the

generator is used. The GANs strategy is depicted in Fig.2.3. Given unpaired samples of images

Figure 2.3: IP GANs framework. Given an observed image, the generator produces a prediction

for the output image, and the discriminator decides if its input was generated by the generator or

came from the training data.

and measurements the approach of cycleGANs (cGANs) is investigated in [ZPIE17] where the nets

learn the forward and backward mappings between the image and the measurement domain. To

promote the approximation of the data distribution, the cGANs approach for the generator takes

into account the random vector z and the observation y. The cGANs used in imaging inverse

problems optimize an additional loss besides the traditional adversarial loss. This is due to the

fact that cGANs exhibit a tendency to converge towards specific patterns that appear frequently
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as artifacts. An examples of cGANS in a super-resolution task is treated in [LLTMK19].

A similar approach to GANs is called AmbientGAN [BPD18] where the adversarial training proce-

dure is investigated. The difference is that in conventional GANs, the discriminator dθ2 is trained

to differentiate between the distribution πX and the generated distribution πgθ1 (z), while in Ambi-

entGAN, the discriminator is trained to distinguish between the distribution πY and the ambient

generated distribution πF (gθ1 )(z)
. This procedure is applied to learn an implicit generative model

given only lossy measurements of samples from the distribution of interest. AmbientGAN learns

the distribution πY by optimizing the following functional:

min
gθ1

max
dθ2

Ey[log(dθ2(y))]− Ez,F [log(1− dθ2(F (gθ1(z))))],

where gθ1 and dθ2(y) are the generator and discriminator networks respectively and z the random

latent variable. After the training, for inference the reconstruction x∗ = G(z∗) is computed by

solving the least squares problems:

z∗ := arg min
z∈Rk
∥F (dθ2(z))− y∥2. (2.3)

Therefore, DL methods have an advantage over traditional methods as they can learn and

optimize the entire mapping process, including feature extraction, resulting in an increase in per-

formance. However, this advantage comes at the cost of requiring large amounts of data for training.

Despite this requirement, DL methods have been successfully applied to solving inverse problems

due to the availability of large simulated datasets generated by applying the forward model (when

it is given).

2.3 Hybrid methods

We examined in the previous section the use of end-to-end neural networks to solve image inverse

problems. Incorporating the domain knowledge into these class models is harder and they lack

robustness when it comes to handling unseen samples of degradation during training. For this

reason, the class of hybrid models began to be studied which means combining both deep-learning

and model-based methods to solve imaging inverse problems. Exist several different approaches to

combine both methods.

2.3.1 Learned Iterative Scheme

The first class of hybrid method is the unfolding or unrolling algorithms. Iterative methods are

typically ended based on a stopping criterion that guarantees certain convergence properties. The

unrolling algorithm, consists of executing a fixed number of iterations K, or unrolling the optimiza-

tion algorithm. The layers of the network are used to implement the steps of an iterative algorithm:

the network parameters take the place of the respective algorithm’s parameters. Fig.2.4 shows an

illustration of the unrolling framework.

This approach is supervised and utilizes the forward operator within the learning model to

improve data efficiency. The selection of the optimization algorithm to unroll is crucial but not
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Figure 2.4: Illustration of unrolling algorithm: a deep network can be created by cascading the

iterations of a corresponding iterative algorithm f(·, θi) for a fixed number of iterations K. Some

components of the algorithm are learned at each step during the training phase.

well understood, in terms of its impact on the performance of unrolled optimization networks. The

only requirement is that each iteration of the unrolled algorithm is almost everywhere differen-

tiable. Learned iterative methods were proposed for the first time in [GL10] to develop network

approximations for sparse coding task via unfolding the iterative soft-thresholding algorithm. In

[AÖ17] the authors derive a partially learned gradient decent scheme for solving an inverse problem

in the functional analytic setting. The method results in a gradient-like iterative scheme, where

the ”gradient” component is learned using a convolutional network that includes the gradients of

the data discrepancy and regularizer as input in each iteration. In [AÖ18] is presented a learned

primal-dual scheme that also uses the dual space. This unrolled architecture is then trained using

data pairs from measurements and ground truth reconstructions. In [LTG+20] is proposed an un-

rolling net which gives us a generalization of the traditional iterative total-variation regularization

method in the gradient domain.

Expressing and acquiring knowledge about more parts of the update process increases the potential

solutions, but without limitations, it may lead to a loss of certainty in comparison to traditional

methods. A different group of methods use nets as data priors and integrates them directly into the

optimization process of the proximal analytical methods. In [DSHW17] and [LCM+19] the authors

propose an unrolled version of the proximal gradient descent scheme. Replace the proximal oper-

ator of the regularization used in many convex energy minimization algorithms with a denoising

neural network is a strategy used in [MMHC17]. More generally the variable splitting technique is

used to separate the original problem into two subproblems: a regularized recovery method (sub-

problem 1) is used which penalizes using the squared Euclidean distance to an image. This image

is then estimated using a suitable denoising technique (subproblem 2), which in these methods is

a neural network. Some popular iterative splitting techniques are the alternating direction method

of multipliers (ADMM) shown in [SLX+16] and the half-quadratic splitting (HQS) investigate in

[GY95], or in [ZG18] if based on ISTA.

The general class of reconstruction methods that allow us to replace the proximal operator with

a pre-trained neural network is called a Plug-and-Play (PnP) strategy. Originally the PnP is pro-

posed in [VBW13] where the proxy is replaced with an off-the-shelf denoiser. The idea to replace

the proxy with a denoising neural network implies that the regularization functional R(x) in (1.4)

is not explicitly, as defined [GJN+18]. A close-related approach is given in [REM17] where, instead,
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the regularization functional is explicitly defined as

R(d) := ⟨x, x− Λ(x)⟩

where Λ : X → X is a trained denoising net operator.

2.3.2 Learning the Regularizer

In this subsection we will focus on the different approaches to use deep learning to train a regularizer

R(x) : X → R. A first idea is proposed in [LSAH20] where the regularizer is learned by a CNN

which is trained in a supervised setting using an encoder-decoder setup. Here the solved variational

formulation is quite different from (1.4) in fact the reconstruction operator is given by:

x∗ ∈ arg min
x∈Rn
{J (x : λ) = L(x; y, F ) + λR(Λθ(x))},

where Λ : X → Θ is a pre-trained neural network and R : Θ→ [0,∞] is the lp-norm regularization

functional. In order to apply the functional analytic regularization theory of Grasmair et al. (2008),

the authors enforce the properties of weakly lower semicontinuous and coercive of the regularization

term. One extension of NETT is presented in [ONSH21] where the required coercitivity properties of

the network are overcome with an additional term without losing the coercive regularizer property.

With the same idea of replacing the typically hand-crafted regularization functional with a neural

network in the variational formulation, in [LÖS18] the framework is inspired by how discriminative

networks are trained using the GAN architectures. To overcome the problem that the classical

learning methods for regularization functionals do not scale to the high dimensional parameter

spaces the proposed framework consists to compute a new training algorithm based on the ideas in

Wasserstein generative adversarial models, i.e training the network as a critic to tell apart ground

truth images from unregularized reconstructions.

The regularizer R is parametrized by the network architecture of Λθ for some choice of parameters θ.

Mathematical formalization of the regularization functionals is: denote x ∈ X independent samples

from the distribution of ground truth images Pr, y ∈ Y independent samples from the distribution

of measurements PY . Given F̃−1 the pseudo-inverse, it is used to map the measurement distribution

PY to a distribution on image space. Let Pn = (F̃−1)#PY the distribution generated by the pseudo-

inverse reconstruction (# is the push-forward of measures); then the samples of Pn is corrupted

with noise that both depend on the noise model e as well as on the operator F .

The goal of the regularization functional Λθ is to tell apart the distribution Pr and Pn-taking high

values on typical samples of Pn and low values typical samples of Pr. The loss function, inspired

by the Wasserstein- flavored loss functional, used for learning the regularizer is:

EX∼Pr [Λθ(X)]− EX∼Pn [Λθ(X)] + λ · E
[
(||∇xΛθ(tX)|| − 1)2+

]
.

The last term in the loss functional serves to enforce the trained network Λθ to be Lipschitz

continuous with constant one. Then apply the learned regularization functional to the variational

problem and solve it via the (sub) gradient descent method.

An alternative approach that has gained attention in learning the regularizer, is to create a prior
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distribution by utilizing recent advancements in deep generative modeling, such as Variational

Autoencoders (VAEs), GANs, and normalizing flows. Given a neural network gθ1 : Rk → X,

the following generative model x = gθ1(z) where z ∼ N (0, Ik) is the latent random variable, is

trained by solving the optimization problem (2.3). In [HPZ22] the authors apply the previous

strategy using VAEs networks: ∀k ∈ N, starting from a random initialization z0 ∈ Rk, we define

z∗ ∼ N (
√
1− δ2zk, Ik) and performing the preconditioned Crank-Nicolson algorithm to define the

next step by setting zk+1 = zk.

Hence since each layer performs a more complex operation with respect to the end-to-end layers,

the number of layers used is fewer. This translates into models with far fewer parameters. Those

results in models that have fewer parameters and require less data for training, and also have better

generalization capabilities. In addition, each layer performs a known step, as a result, the model

can be easily interpreted.



Chapter 3

Electrical Impedance Tomography

problem

Electrical Impedance Tomography (EIT) is a nondestructive imaging technique that aims to re-

construct the inner conductivity distribution of a medium starting from a set of measured voltages

registered by a series of electrodes that are positioned on the surface of the medium.

This technique was developed in the early 1900s in geological studies but since then it has been

adopted in a variety of fields, from medical imaging and industrial process monitoring to structural

health monitoring and tissue engineering.

EIT can be divided into two parts: the forward problem, and the inverse problem. The forward

problem is the process of solving the potential distribution or boundary voltage distribution with

known excitation current and conductivity distribution. The model for the forward problem, known

as Complete Electrode Model introduced in [CING89], is based on an elliptic partial differential

equation subject to a set of constraints and Neumann boundary conditions that account for the

setting with real data, discreteness of the electrodes, and the extra parameters designed by the

measuring devices. The traditional methods for solving forward problem are the finite element

method [ÖM19], the finite element difference method [AAL+07] and the boundary element method

[dMFH00]. The inverse problem of EIT is to solve the conductivity distribution in the field by using

the voltage value obtained from the forward problem and the boundary voltage measurement. The

problem itself is ill-posed.

3.1 EIT forward problem

Given a bounded simply connected C∞ domain Ω ⊂ Rd, d = 2, 3, the corresponding forward

EIT problem one wants to find the electric potential u in the interior of the object Ω and at the

electrodes EL = {E1, ..., EL}, given some applied current and inner conductivity σ : Ω → R. The

29
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forward EIT problem can be formulated as follows:

∇ · (σ(x)∇u(x)) = 0 in Ω,

u+ ziσ
∂u
∂n = Vi on Ei, i = 1, .., L,∫

Ei
σ ∂u
∂nds = Ii on Γ,

σ ∂u
∂n = 0 on Γ̃,

(3.1)

where Γ =
⋃L

i=1Ei ⊂ Ω is the boundary with electrodes and Γ̃ = ∂Ω \
⋃L

i=1Ei is the boundary

without electrodes. Vi is the unknown voltage to be measured by i-th electrode Ei when the currents

Ii are applied. zi are the effective contact impedances for the i-th electrode which which justifies

that there is an extra resistance between the electrode and the tank. In [SCI92] the authors proved

that the CEM model (3.1) for the EIT forward problem has a unique solution and the solution

depends continuously on the input current I.

3.1.1 Forward Operator

The Forward Operator F̃ , which operates between the Hilbert spaces X and Y , maps the conduc-

tivity σ to the solution of the forward problem:

F̃ = F2 ◦ F1 : S ⊂ X → Y (3.2)

σ 7→ (u, V ) (3.3)

where S = {σ ∈ L∞ | σ∇u = 0} denotes the domain of definition of F . F1 maps the conductivity

σ to the potential u

F1 : X → Y (3.4)

σ 7→ u (3.5)

F2 maps the potential u to the voltage differences V

F2 : Y → Y

u 7→ V.

From now on we restrict the conductivities σ to a finite dimensional space of piecewise polynomials.

We consider the object domain Ω discretized into nT subdomains {τj}nT
j=1 and σ constant over each

of them. In particular we discretize Ω with a triangular mesh. Given a Finite Elements Model

(FEM) of an EIT medium, we calculate the vector of voltages, V , for each FEM degree of freedom.

For a given stimulation pattern a vector of nM measurements is acquired, obtained by injecting

current through an electrodes pair and then measuring the corresponding voltage V induced on

another pair of electrodes. Then F : RnT → RnM represents the discrete version of the Forward

Operator (3.3) as a nonlinear vector map. Since F̃ is Fréchet differentiable, F ′ is a matrix, called

the Jacobian of F and denoted by J ; each element of J ∈ RnM×nT is defined as

{J(ud, um)}i,j =
∫
τj

∇ud · ∇umdΩ , (3.6)
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where the row index i corresponds to the ith measurement, associated with the dth driving potential

ud and mth measurement potential um, while the column index j corresponds to the subdomain

τj .

Considering measured data corrupted by additive noise, we can assume the following noisy

non-linear observation model

V = F (σ) + η, (3.7)

where V ∈ RnM represents the vector of all the measured electrode potentials whose dimension nM

depends on the choice of a measurement protocol, and η ∈ RnM is a zero-mean Gaussian distributed

measurement noise vector.

3.2 EIT inverse problem

The nverse problem refers to the process of calculating the information of the object or the system

according to the measurement results. The inverse problem is a highly ill-conditioned non-linear

problem. Given the measured value V of finite edge voltage and the operator F of the forward

problem, we can solve the case which is closest to the real conductivity distribution. The simplest

way to fit the data is to consider the so called least squares approach:

σ∗ = argmin
σ

f(σ), f(σ) =

∫
Ω
(F (σ)− V )2dΩ. (3.8)

3.3 EIT stimulation pattern

The data acquisition method is directly related to the quantity of information collected and used

for reconstruction, it is critical to obtain a good accuracy. The quality of the reconstruction will

depend on the quantity and quality of the acquired measurements (injection and measurement

strategies, the quality of the measurements, etc). The stimulation pattern is the strategy that

chooses which electrodes current injection and voltage measurements are performed in order to

define the boundary conditions of (3.1). Different current injection and measurement methods

exist in multi-pole measurement. This involves defining certain electrode configurations that will

be used for current injection, and other configurations that will be used for measurement. The

most popular is called the pair-wise injection strategy, whereby only two injection electrodes are

used. The pairs of electrodes in which current is injected are defined as driving or injection pairs

and the ones on which the voltages are measured are defined as measurement pairs. When a pair

of electrodes is chosen as the driving pair, it is usually excluded from the available measuring pairs.

Aimed to provide as much information as possible for the retrieval conductivity distribution, among

these methods, the most commonly used are:

• adjacent injection when current is injected among two neighbouring electrodes;

• opposite injection when current is injected among two opposite electrodes.

The same choices of electrode pairs can be applied in the process of acquisition of voltage mea-

surements, yielding the so-called adjacent and opposite measurement protocols. In [HCW01] the
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authors show that the current density is higher in the center of the domain using opposite injection

otherwise adjacent injection favors detection near the electrodes. Fig. 3.1 shows an illustration of

adjacent injection - adjacent measurement protocol. In our works the collected measurements are

Figure 3.1: Illustration of classic data collection strategies in EIT. (a) Adjacent pair drive. (b)

Opposite pair drive.

given using adjacent acquisition protocol: we use adjacent electrodes for the injections and adjacent

electrodes for the measurements: given a set of electrodes EL = {E0, E1, ..., EL}, for each i = 1, ..., L

we drive a current of Ii = 1 and Ii+1 = −1 through the i-th pair of electrodes (Ei, Ei+1) ∈ EL while

all other electrodes are kept insulated. Given this configuration, we consider the electrode index

always modulo L, namely the index 0 refers to the L-th electrode and the index L+1 refers to the

first electrode. The resulting electric potential u(i) solves (3.5) with:

Il := δi,l − δi+1,l for l = 1, ..., L.

Assuming the electric current between the i-th electrode pair, we measure the voltage between the

j-th pair of electrodes, i.e.

Vji(σ) := u(i)|Ej − u(i)|Ej+1 .

The measurement matrix is given by iterating this algorithm for all j, i = 1, ..., L.
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Learning the regularizer for EIT

inverse problem

The solution to the inverse EIT problem can be obtained by inverting the forward operator, the

non-linear mapping that characterizes the forward problem. Despite the improvements that have

followed over the years, the ill-posed nature of the EIT inverse problem still posed many challenges,

and meaningful reconstructions could often not be obtained, especially in the most common case of

limited and noisy data. Regularization strategies proved to be essential to address this issue. Regu-

larization methods constrain the space of possible reconstructions by embedding prior information

about the expected structure of the domain. Among them, Total Variation (TV) promotes spar-

sity in the reconstructed distribution, thus favor piecewise constant (step changes) conductivities,

while, Tikhonov regularization favours smooth solutions. Generalized Tikhonov methods make use

of a smoothing penalty term that can include approximations of differential operators [Lio04] or

structural priors [VVK+98] to further improve reconstruction quality.

In addition to these model-based approaches, deep learning has recently become a new frontier of

EIT and in general of inverse problems in imaging. Recent works for solving EIT inverse problems

with deep learning focused on fully learned (end-to-end) and post-processing learned approaches.

The former utilizes conventional neural networks as ’black-box’ by feeding sufficiently large amount

of training samples to learn the linear/non-linear mapping from the measured data to the target

image without explicitly modeling the domain knowledge, i.e. the forward operator

In this chapter we present a learning regularizer strategy which aims at combining the advantages

of model-based and data-driven paradigms. The key idea of the model-based data-learning pro-

posal, inspired by many works on inverse imaging, consists in embedding a variational model in

an unrolled iterative optimization algorithm which learns all the parameters for the prior model

during the training procedure.

We unroll the iterative Gauss-Newton method, well assessed for optimizing a general non-linear

smooth model, to solve the inverse EIT non-linear problem. This allows us to incorporate knowledge

on the forward model into the neural network as well as directly optimize conductivity reconstruc-

tion quality based on training examples.

In addition, we introduce an attention-like strategy that can both sparsify the output of each itera-
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tion, driven by the structural anisotropic properties of the input. This feature has been inspired by

Total-Variation Sparse Attention (TVMAX), a recently introduced attention mechanism to select

visual attention over features generated by a CNN which further encourages the joint selection

of adjacent spatial locations [MNMM20]. We named the proposed mechanism Anisotropic Total

Variation (ATV). Unlike TVMAX, ATV does not map all the probability mass onto a probability

simplex, and does not rely on iterative forward computations. Although non-linear, ATV can be

solved with a non-iterative algorithm, and we provide a closed-form expression for its Jacobian.

This leads to an efficient implementation of its forward and backward steps. ATV is then incor-

porated in each block of our unrolled Gauss-Newton EIT network as to transform non-linearly the

output of the block and encourage structured and sparse attention over contiguous regions.

4.1 Regularized Gauss-Newton for EITNL

Given the EIT problem explained in chapter 3, we consider the measured data corrupted by additive

noise . Assuming the non-linear degradation model (3.7) and the given measurements V , we aimed

to solve the non-linear least square problem (3.8). The underlying optimization problem is hard

to solve, as the boundary currents depend non-linearly on the conductivity. This means that

the optimization problem is nonconvex. We consider a two-dimensional convex domain Ω, where

some inclusions with conductivity σ are embedded in a background material with conductivity σ0.

In difference imaging the unknown conductivity to be reconstructed in the inversion model is the

contrast σ - σ0 , i.e., conductivity change when the measurement data before the change is available;

here σ0 is the background conductivity. The proposed approach allows to reconstruct the absolute

conductivity distribution when only the data after the change is available (σ0 is not known).

We can reformulate the Gauss-Newton method 1.4.2 under the EIT description. Given the the

second-order Taylor’s expansion approximation of the function f(σ) as in (1.16), the gradient and

the Hessian of f(σ) are given respectively by

∇f(σ) = J(σ)T (F (σ)− V ), ∇2f(σ) = J(σ)TJ(σ) +
∑
k

rk(σ)∇2rk(σ), (4.1)

with J(σ) the Jacobian matrix of r(σ) := F (σ)− V . Then according to (GN), the search direction

p is obtained by solving the following linear system

JT (σ)J(σ)pGN = −JT (σ)(F (σ)− V ). (GN-EIT)

Gauss-Newton method starts from an initial guess σ0 and performs a line search along the direction

pGN
k to obtain the new conductivity iterate σk+1 as

σk+1 = σk + pGN
k . (4.2)

In (GN-EIT), V is the measurement vector, and the coefficient matrix, which involves the Jacobian

matrix, is a linear operator. However, due to its compact nature, the operator has an unbounded

(discontinuous) inverse. This causes the solution to be unstable against variations in the data,

hence violating Hadamard’s third criterion for well posedness. Therefore, applying the Gauss-

Newton method to problem (3.8) yields inaccurate solutions; one could instead employ some form
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of regularization on the sought solution σ. This iussue can be addressed by applying the regularized

Gauss-Newton method by adding an additional regularizer term in the variational formulation as

reported in (1.17). Given differents type of regularizer as reported in Section 1.4.2, the linear

systems (RGN-Tik), (RGN-TV), and (LM) is solved directly using the SVD decomposition as

described in (1.26).

4.1.1 Learning the regularization matrix

The a priori choice of the regularization operator g(σ) in (RGN-Tik), (RGN-TV), and (LM), and

the crucial selection of the regularization parameter λ can be avoided by learning automatically

the regularizer from data, and simply setting λ = 1.

Let J(σk) = UΣV T denote the SVD of J(σk), where U ∈ RnM×nM , and V ∈ RnT×nM are

orthogonal matrices and Σ ∈ RnM×nM is the diagonal matrix which contains non-increasing singular

values on the main diagonal. We construct the regularizer operator Rθ as:

Rθ := V ΣθV
T , (4.3)

where Σθ, the diagonal matrix of singular values, will be learned by the network, as will be described

in Section 4.2.2. Considering Rθ in (4.3), and the decomposition JTJ = V Σ2V T , then the linear

system (RGN) can be rewritten as follows

(V Σ2V T + V ΣθV
T )pk = J(σk)

T (V − F (σk)) +Rθσk. (4.4)

This choice for Rθ allowed us to exploit the low-dimensional SVD for J ∈ RnM×nT instead of

a more expensive SVD decomposition for the coefficient matrix in (RGN) of dimension nT × nT

(nT >> nM ). Moreover, the solution pk of the linear system reduces to the following matrix-vector

product:

pk = V (Σ2 +ΣΘ)
−1V T (J(σk)

T (V − F (σk)) +Rθσk). (4.5)

4.2 Unrolled Iterative Regularized Gauss-Newton

Our goal is to iteratively solve (4.2)-(4.5) by executing a pre-determined number of iterations K of

the regularized Gauss-Newton Algorithm 1, where the regularization operator g(σ) is learned across

a fully connected network. Moreover, the regularization parameter λ is avoided, so that to provide

a parameter-free algorithmic approach to the non-linear EIT problem. The resulting unrolled

iterative architecture, named EITGN-NET, is depicted in Figure 4.1, and can be interpreted as a

neural network which generates a sequence of approximated solutions σk, for k = 1, . . . ,K, with

σ∗ = σK .

Starting with an initial guess σ0, the update mapping at a given iteration k ∈ {0, . . . ,K − 1}
reads as σk+1 ← G(σk; J, V,Σθ), where

G(σk; J, V,Σθ) := σk − (J(σk)
TJ(σk) +Rθ)

−1r(σk) = σk − pk (4.6)

where r(σk) = J(σk)
T (V − F (σk)) +Rθσk, and pk is computed by solving (4.5).

The regularization operator Rθ is a prior defined in (4.3) and computed by a Fully Connected
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Figure 4.1: EITGN-NET architecture

Neural Network (FCNN). To encompass a large family of priors, we advocate a fully connected-

based estimator Rθ with weights θ, described in Section 4.2.2, that can be learned from historical

(training) data.

The k-th iterative block Lk corresponds to one iteration in algorithm RGN: first updates G according

to (4.6), and then combines the result with the ATV attention-like function to encourage piece-wise

structures over contiguous regions on the intermediate reconstructions. In formulas, given an initial

σ0, for k = 1, . . . ,K each block performs the following stepsσ̄k = G(σk−1; J, V,Σθ)

σk = ATV (σ̄k)
(4.7)

The unrolled data flow is sketched in Algorithm 2. In the experiments reported in Section 4.3 we

used K = 10, which provided a sufficiently good compromise between efficiency and accuracy in

the reconstruction.

Algorithm 2 EITGN-NET

Input: σ0, V ,

Output: σ∗ % conductivity distribution

Σθ ← FCNN(V )

for k = 0, . . .K do

σ̄k ← G(σk−1; J, V,Σθ)

σk ← ATV (σ̄k)

end for

σ∗ = σK

end

The loss function used during the network training is defined in Section 4.2.1, while the regular-

ization network to construct Rθ, and the ATV layer will be described in Section 4.2.2 and Section

4.2.3, respectively.

4.2.1 Loss function design

In the network training process, EITGN-NET is applied on Ns training samples {V (i), σGT
i }

Ns
i=1 to

obtain Ns reconstruction results σ∗
i . This allows for tuning the unknown parameters Θ of EITGN-
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NET defined in (4.11), by minimizing a loss function. Specifically, the loss function encodes both

reconstruction and regularization costs and can be formulated as follows:

Ltot(Θ) = Lrec + Lreg

=
1

Ns

Ns∑
i=1

∥σ∗
i − σGT

i ∥22 +
1

Ns

Ns∑
i=1

∥Rθσ
∗
i ∥22.

The loss function Lrec measures how well the estimated conductivity distributions σ∗
i by the EITGN-

NET matches the ground-truth ones σGT
i . The second term Lreg penalizes the network when the

regularization contribution is too large, which could deviate from the original linear system to be

solved. Given the training samples, the network EITGN-NET learns a parameter set Θ minimizing

the loss function Ltot(Θ) by applying a gradient descent algorithm. Then the derivatives ∂Ltot

∂Θk can

be calculated by back-propagation technique using chain-rule

∂Ltot

∂Θk
=

∂Ltot

∂σ̄k
· ∂GΘk

∂Θk
=

∂Ltot

∂σ̄k
· ∂σ̄k
∂Θk

. (4.8)

Considering the functional operator on a generic block k given by (4.7), we have

∂Ltot

∂σ̄k
=

K∑
k=1

∂Ltot

∂ATVk
· ∂ATVk

∂σ̄k
, (4.9)

where ∂Ltot
∂ATVk

is in the backward propagation stage, and ∂ATVk
∂σ̄k

will be defined in (4.17).

4.2.2 Regularizer network

The regularization matrix Rθ is constructed starting from its singular values Σθ following (4.3), by

learning Σθ across a fully connected regression network FCNN(V ) consisting of four hidden layers

each composed of nM neurons The input layer is initialized with the nM measurement values V ,

and the output layer has nM nodes that represent the sorted singular value vector Σθ.

In a fully connected network each neuron of a given layer has a connection (or synapse) towards

each neuron of the next layer. For a given artificial neural node i, let there be m inputs, x1 through

xm, and weights θi,1 through θi,m. The output of the ith neuron is:

yi = ϕ1(

m∑
j=1

θi,jxj + bi)

where ϕ1 is the LeakyReLU activation function, defined as LeakyReLU(z) = max(α1z, z), with a

negative region slope of α1 = 0.5. For the output layer the function ϕ1 is replaced by ϕ2 which is

the Rectified Linear Unit (ReLU) activation function

ReLU(z) = max(α2, z + α2), (4.10)

with translation factor α2 = 1× 10−9. The output vector of each layer ℓ can be represented as

y[ℓ] = ϕ1(W
[ℓ]x+ b[ℓ]),
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where the matrix W [ℓ] ∈ RnM×nM and the vector b[ℓ] ∈ RnM , are the weights and the bias of the

ℓth layer. Hence the FCNN output is a vector

Σθ(θ;V ) =ϕ2(ϕ1(W
[5](ϕ1(W

[4]ϕ1(W
[3]ϕ1(W

[2]ϕ1(W
[1]V + b[1])

+ b[2]) + b[3]) + b[4]) + b[5]),

where the set of weights and bias is denoted by

Θ = {W [1],W [2],W [3],W [4],W [5], b[1], b[2], b[3], b[4], b[5]}. (4.11)

The choice of ϕ2 as defined in (4.10) guarantees the non-singularity of Σθ and of the associated

coefficient matrix in (4.4).

4.2.3 2D-Mesh anisotropic TV attention-like mechanism

The proposed attention-like mechanism, named ATV, acts inbetween the blocks of the EITGN-

NET. It is derived by extending the total variation image denoising algorithm introduced in [LO09]

to an arbitrary 2D triangular mesh domain.

The ATV mechanism operates on a 2D domain represented by a triangular mesh. Before

discussing the proposed ATV operator, we introduce some notations and we formulate the total

variation operator on a 2D mesh. Let us assume a planar domain Ω ⊂ R2 which is approximated

by a triangulated mesh (Vtr, T, E), where Vtr ∈ RnV ×2 , Vtr = {vi}nV
i=1 represents the set of vertices,

T ∈ RnT×3 , T = {τm}nT
m=1 is the set of triangles and E ∈ RnE×2 , E = {ej}nE

j=1 is the set of edges.

We denote by N (τi) = {τj ∈ T : τj ∩ τi ∈ Vtr} the set of the triangles τj ∈ T which share

one of their vertices or edges with the triangle τi. A basic N (τi) could simply consider the edge

intersection, thus reducing the cardinality of N (τi) to 3 for inner triangles and 2 for boundary

triangles.

We assume a piece-wise constant strictly bounded measurable function σ : Ω→ R over the mesh

triangles, thus the gradient operator vanishes to zero everywhere but the mesh edges along which

it is constant. In particular, the discrete anisotropic gradient magnitude ∥(∇σ)i∥1 on a triangle τi

is defined as a weighted sum over the neighborhood triangles in N (τi) as follows

∥(∇σ)i∥1 :=
∑

k∈N (τi)

wk|σi − σk|, i = 1, . . . , nT , (4.12)

where each weight wk is associated to the triangle neighbor τk ∈ N (τi), and is defined as:

wk =
1

∥barycentre(τk)− barycentre(τi)∥2
. (4.13)

We notice that (4.12) approximates the local variation of σ as sum of the weighted variations in

each neighbors direction, thus discretizing an anisotropic total variation operator.

For a given triangle τi, we assume to know the values σ̄k for all the neighbors in N (τi), then

the unknown value σ at τi is obtained as solution of the following local minimization problem:

σ∗ = ATV (σ) := argmin
σ∈R
F(σ), (4.14)
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F(σ) :=
∑

k∈N (τi)

wk|σ − σ̄k|+ µ|σ − σ̄i|2, i = 1, . . . , nT .

The proposed ATV carries out the triangle-wise anisotropic TV, by solving the optimization prob-

lem (4.14) for any triangle τi. In Proposition 4.1, following [LO09], we report the explicit solution

of the local optimization problem (4.14).

Proposition 4.1. Let τ be a generic triangle with n the cardinality of N (τ). Assuming wk > 0 be

the weight defined in (4.13) and associated to τk ∈ N (τ), the values σ̄k on τk ∈ N (τ) be sorted as

σ̄1 ≤ σ̄2 ≤ . . . ≤ σ̄n. Then the minimizer of problem (4.14) is given by σ∗ ∈ R which is the unique

minimizer of the anisotropic total variation problem

σ∗ = argmin
σ∈R
F(σ) = median{σ̄1, . . . , σ̄n, σ̄i +

1

2µ
W0, σ̄i +

1

2µ
W1 . . . , σ̄i +

1

2µ
Wn}, (4.15)

where

Wj = −
j∑

k=1

wk +

n∑
k=j+1

wk, j = 0, .., n. (4.16)

The ATV optimization problem (4.14) is solved by applying the closed formula (4.15) on the 2D-

mesh, as outlined in Algorithm 3. The median value computation in the algorithm could represent

a computational bottleneck. However, this computation becomes cheap by using the smart strategy

proposed in [LO09].

Algorithm 3 ATV

Input: σ̄ ∈ RnT , µ > 0,

Output: σ∗ ∈ RnT

Initialize σ = σ̄

for each τi ∈ T do

compute W ∈ Rn+1 as in (4.16)

set u = (σ0, . . . , σi−1, σi+1, . . . , σn) ∈ Rn

u← sort(u) in ascending order

compute p ∈ Rn+1, with pk = σi +
1
µWk, k = 0, .., n

σ∗
i ← median(u1, u2, ..., un, p0, p1, p2, ..., pn)

end for

end

Note that Algorithm 3 realizes a local anisotropic total variation. The result in Proposition

4.2 guarantees instead that, by iterating Algorithm 3, the convergence to the global anisotropic

total variation is guaranteed. The attention module here proposed applies local ATV using only

Algorithm 3, and thus does not need any iterative procedure to converge.

Proposition 4.2. The algorithm ATV repeated until convergence, defines the vector σ∗ = (σ∗
1, . . . , σ

∗
nT

) ∈
RnT which is the global minimizer of the anisotropic total variation problem

σ∗ = arg min
σ∈RnT

∥∇σ∥1 + µ∥σ − σ̄∥22.
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Proof. By iterating (4.14) j times for the ℓth component σ
(j)
ℓ , we get σ

(j+1)
ℓ = argminσℓ∈RF (j)(σℓ)

Hence

F (j)(σ
(j+1)
ℓ ) ≤ F (j)(σ

(j)
ℓ ).

This implies that the energy over all triangles decreases, that is

F(σ(j+1)) ≤ F(σ(j)),

and since it is also bounded from below, the sequence F(σ(j)) converges.

From Lemma 3.1 in [LO09], we have

|σ(j) − σ(j+1)| ≤

√
F(σ(j))−F(σ(j+1))

µ
.

Therefore σ(j) converges to the vector σ∗ ∈ RnT .

In order to apply the ATV (σ) attention-like mechanism in a neural network trained by back-

propagation, two problems must be addressed. The first is the forward computation: how to

evaluate ATV (σ), i.e., how to solve the optimization problem in (4.14). The second is the back-

ward computation: how to evaluate the Jacobian of ATV (σ). The forward computation is solved

by the closed-form (4.15). For the backward computation the main challenge is how to compute

the derivatives of ATV (σ). Note that ATV is smooth everywhere except on the (zero-measure)

set of non-differentiable points. In particular, on a triangle τi, the partial derivative of ATV are

defined as
∂ATV

∂σ̄i
=

∑
k∈N (τi)

wksign(σ − σ̄k) + 2µ(σ − σ̄i), (4.17)

which simplifies as follows
∂ATV

∂σ̄i
= (4.18)

=

2k − n+ 2µ(σ∗ − σ̄k) if σ̄k < σ∗ < σ̄k+1

ℓ+ (m− ℓ)ϵ− (n−m) + 2µ(σ∗ − σ̄i) if σ̄ℓ < σ̄ℓ+1 = . . . = σ̄m = σ∗ < σ̄m+1

.

The bottom condition in (4.18) corresponds to the case σ∗ coincides with one of the σ̄k. In this

case ϵ satisfies

ϵ =


1 if i ≤ ℓ,

p ∈ [−1, 1] if ℓ+ 1 ≤ i ≤ m,

−1 if i > m.

.

The backpropagation task in (4.8) is then completed by using (4.18).

4.3 Simulations and Numerical Experiments

To evaluate the performance of the proposed network, a series of numerical and experimental tests

was conducted on a set of synthetic 2D experiments. All examples simulate a circular tank slice

of unitary radius represented by a mesh grid of 660 triangles. In the circular boundary ring 16
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electrodes are equally spaced located. The conductivity of the background liquid is set to be

σ0 = 1.0Ωm−1. Measurements are simulated through opposite injection - adjacent measurement

protocol via pyEIT [LYX+18] a python based framework for Electrical Impedance Tomography. In

all the examples the setup is considered blind, that is no a priori information about the sizes or

locations of the inclusions is considered.

In the examples illustrated in Section 4.3.4-4.3.6 we compare the performance of the proposed

EITGN-NET with the iterative Regularized Gauss Newton method (RGN), and the Levemberg

Marquardt (LM) implemented using pyEIT library, and the D-bar method [MS12], with code kindly

provided by the authors. The D-bar output is provided and visualized in image form, suitably

handled for comparisons. The comparisons are conducted qualitatively by visually inspecting the

artifacts and quantitatively by calculating the metrics described in Section 4.3.2 such as mean-

square error (MSE), structural similarity (SSIM), dynamic range (DR), and the evaluation index

for EIT images (EIEI). In all the experiments with RGN and LM algorithms, we hand-tuned the

regularization parameter λ so as to fairly achieve the best performance in terms of MSE values.

The learning rate is set to 10−3. The learning is performed for 20 epochs. The network is

implemented on a PC with Intel i7 CPU and 32-GB RAM with Pytorch and AdamW has been

used for optimization. The training process took nearly 30min each epoch of the training.

4.3.1 Training and Testing Data Sets

In the training process, we employed 250 randomly generated test cases, where 200 of them were

used as training dataset and the other 50 test cases were used as testing dataset. Experimentally,

we found that 20 epochs were enough to sufficiently decrease the total loss function. The collected

weights Θ at epoch 20 have been used in EITGN-NET in the testing phase.

A training dataset contains a total number of 200 pairs of the ground-truth conductivity σGT

and their corresponding collected voltages, V . Each test case consists of a random number from

1 to 4 of anomalies inside a circular tank, localized randomly and characterized by random radius

in the range [0.15− 0.25] and magnitude in the range [0.2, 2]. Here it is assumed that each actual

anomaly approximately consists of the same material, while the background consists of another

homogeneous material. Consequently, a preferable EIT reconstruction meets the following condi-

tions: C1) Anomalies of homogeneous material must have the same intensity. C2) Anomalies and

backgrounds have higher and lower intensities than those of artifacts, respectively. C3) The number

of triangles partitioned into the cluster of artifacts should be as small as possible.

4.3.2 Figures of merit

The performance is assessed both qualitatively and quantitatively. The quantitative analysis is

performed on the mesh elements, via the Mean Squared Error (MSE) defined as

MSEσ =
∥σGT − σ∗∥22

nT
,

which measures how well the original conductivity distribution is reconstructed in case a ground

truth conductivity distribution σGT is known.
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Another metric commonly used for measuring the similarity between two images is the Struc-

tural SIMilarity (SSIM) Index, which has been suitably modified to act directly on a mesh. In

particular, local SSIMτi measures are computed on local neighborhoods N (τi), which move trian-

gle by triangle on the entire mesh Ω. In other words, for each triangle τi, the SSIMτi is calculated

on its neighborhood. The global structural similarity measure SSIM between a reconstructed con-

ductivity σ∗ and the corresponding ground truth σGT is defined as follows

SSIM(σGT , σ∗) :=
1

nT

nT∑
i=1

SSIMτi(σ
GT
i , σ∗

i ), (4.19)

where for each triangle ith,

SSIMτi(σ
GT
i , σ∗

i ) =
(2µGT

i µ∗
i + c1)(2s

GT∗
i + c2)

((µGT
i )2 + (µ∗

i )
2 + c1)((sGT

i )2 + (s∗i )
2)
,

with µi denotes the mean of the σ values in the neighbors N (τi) of the triangle τi, si represents its

associated standard deviation

sGT∗
i :=

1

|N (τi)|
∑

k∈N (τi)

(σGT
k − µGT

k )(σ∗
k − µ∗

k)

and finally c1 = max(σGT ) ∗ 0.012 and c2 = max(σGT ) ∗ 0.032.
Analogously to the use in image processing, SSIM(X,Y ) in (4.19) quantifies how much X and

Y are different, with SSIM = 1 if X and Y are identical and SSIM tends toward 0 when X and

Y are very different.

According to conditions C1)-C2)-C3) the quality of any EIT reconstruction will increase as the

number of artifact values decreases. In [WYS+18] an ad hoc evaluation index for EIT (Evaluation

Index Electrical Impedence - EIEI-) has been introduced, which measures the homogeneity of the

anomalies. Let n1 be the number of triangles of backgrounds, with associated values denoted by

σ(1), n2 the number of triangles classified as artifacts, with associated values σ(2), and n3 the

number of triangles containing anomalies, with associated values σ(3). Unlike in [WYS+18], in our

work the anomalies can have different values, thus we adapted the clusterization phase, accordingly.

The variances of these clusters are given by

δj =

nj∑
i=1

|σ(j)
i − σ̄(j)|/nj , j = 1, 2, 3.

The values of variances reflect the homogeneity of backgrounds, anomalies and artifacts. Then the

EIEI measure is defined as follows

EIEI := w1T1 + w2T2 (4.20)

with T1 := 1−n2/nT the quantity of artifact triangles, T2 := 1−(δ1n1/nT +δ3n3/nT ), the quantity

of background and anomalies, the weighting values w1 and w2 represent the certainty of T1 and T2,

which is evaluated as

w1 :=

n2∑
i=1

σ
(2)
i /n2, w2 :=

(
n1∑
i=1

σ
(1)
i +

n3∑
i=1

σ
(3)
i

)
/(n1 + n3).
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Together with the quantitative EIEI measure defined in (4.20), this figure of merit allows for a

qualitative insight provided by a structure maps (EIEI map) where yellow color identifies the

artefacts, red color the anomalies and blue color the background. Finally, another significant

metric to assess the quality of the reconstructed conductivity is the dynamic range defined as

DR =
maxσ∗ −minσ∗

maxσGT −minσGT
× 100%.

A DR value which widely differs from 100, indicates that the conductivity contrast was not well

preserved in the numerical optimization process.

4.3.3 Effect of the number of blocks and benefit of the ATV mechanism

To evaluate the effect of the number of blocks K used by the proposed EITGN-NET, we evaluated

the performance for varying K values. In particular, we report in 4.1 the quantitative measures

MSE and SSIM, averaging the results on the testing set, with K = {8, 10, 12}. We noticed that the

performance is gradually improved for increasing K values and tends to remain stable when K is

larger than 10. Therefore the choice K = 10 configuration is a preferable setting which represents a

good compromise between the result quality and the computational cost. The conductivity recon-

Blocks (K) 8 10 12

MSE 0.0039 0.0037 0.0038

SSIM 0.87 0.89 0.89

Table 4.1: Effect of a different numbers of blocks K in the unrolled iterative EITGN-NET.

struction quality obtained by EITGN-NET is affected by the new ATV mechanism introduced. To

highlight how much this mechanism influences the results, in Fig.4.2 we illustrate the reconstruc-

tions produced by the EITGN-NET with ATV (top row) and without activating the ATV stage

(bottom row). From a visual inspection we can observe sharper and more artifact-free results when

ATV is applied.

(0.013,0.80) (0.0054,0.88) (0.0007,0.91)

(0.013, 0.67) (0.0090,0.66) (0.0009,0.84)

Figure 4.2: First row: EITGN-NET with ATV. Second row: EITGN-NET without ATV. (MSE,

SSIM) values are reported for each test cases GT 225, GT 226, GT 232.
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GT EITGN-NET LM RGN-TV D-bar

Figure 4.3: Performance in terms of MSE, DR, EIEI metrics of the reconstructions by EITGN-

NET, LM, RGN-TV, and D-bar for test case GT 211, GT 225 and GT 221 (from top to bottom).

4.3.4 Example 1 - Performance comparisons

In Fig.4.3 we illustrate the performance of EITGN-NET with respect to RGN-TV, LM and D-bar

when applied to the reconstruction of three test cases. In Fig.4.3 (right panel) we plot the graphs

corresponding to MSE and DR, while the maps on the left panel visualize the GT, EITGN-NET,

RGN-TV, LM and D-bar reconstructions with their associated EIEI maps (bottom row). We recall

that, for MSE the lower, the better, while for DR the values closest to 100 are preferred. A

qualitative inspection in Fig. 4.3 (left panel) highlights the superior quality of EITGN-NET which

better recovers sharper structures, presents a lower number of artifacts, and in general improves

the separation between the anomalies. By a visual inspection of Fig.5.3, we can compare σGT with

the reconstructed results obtained by EITGN-NET (σ∗, first column), RGN-TV (second column)

and D-bar (third column). The associated EIEI structure maps are illustrated in the bottom rows,

yellow for artefacts, red for anomalies and blue for background; the EIEI values are reported for

each test case. The test case GT 237 contains 4 anomalies, two of which present intensity values

very close to the background value. Nevertheless all the methods are able to detect them properly.

The well known contrast reduction effect of the TV regularizer is slightly visible everywhere. In

particular, in the test case GT 208, the intensity of the anomalies is significantly reduced by the

other methods, while accurately recovered by our network. In general, the EITGN-NET is able to

automatically detect all the anomalies with the minimum artifacts, as confirmed by the EIEI values

reported below each structure map, while preserving faithfully the anomalies shape and piecewise-

constant amplitudes. Performance on averaged MSE, SSIM, and DR metrics on the entire set of

test cases are reported in Table 4.2. The proposed EITGN-NET has been trained on datasets with

circular anomalies. To verify the robustness to other shaped anomalies, we tested different shaped
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GT 202 GT 208

EITGN-NET RGN-TV D-bar

1.68 1.72 1.60

EITGN-NET RGN-TV D-bar

2.21 2.16 2.01

GT heart and lungs GT 223

EITGN-NET RGN-TV D-bar

1.88 1.83 1.76

EITGN-NET RGN-TV D-bar

2.10 2.11 1.97

GT 237 GT 238

EITGN-NET RGN-TV D-bar

2.12 2.16 2.04

EITGN-NET RGN-TV D-bar

1.71 1.67 1.66

Figure 4.4: Comparisons between σGT (top rows) and conductivity results reconstructed by EITGN-

NET (first column), RGN-TV (second column) and D-bar (third column) with the associated

structure maps (EIEI metric) on the bottom. EIEI values are reported for each test case.
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conductivities. By the way of illustration in Fig.5.3 (case labelled by heart and lungs) we report the

results of a phantom image representing heart and lungs anomalies which are effectively detected

by the proposed network. As expected, the RGN-TV behaves slightly better in this case since

the network was trained with different shaped anomalies. This confirms the well-know drawback

of the learning-based approaches when the testing dataset is different from what they have been

trained with. We trust that, with a suitable training, EITGN-NET will provide more accurate

reconstructions even in case of similar anomalies.

EITGN-NET LM DBar RGN-TV

MSE 0.0037 0.0072 0.0060 0.0038

SSIM 0.89 0.77 0.82 0.93

DR 110 119 107 89

Table 4.2: Performance on averaged MSE, SSIM, DR metrics on the entire set of test cases.

4.3.5 Example 2 - robustness to the noise

The measured voltages are easily contaminated in practical EIT measurements. In order to evaluate

the robustness of the proposed method to noisy measurements we corrupted the voltage measure-

ments generated from the solution of the forward model by additive white Gaussian noise. In

particular, we generated the noisy measurement vector V by adding a vector n̄ ∼ N (0, s2) of Gaus-

sian noise characterized by zero-mean and standard deviation ηV̄ , with V̄ the average value. The

corresponding degradation model is the following:

V = V + η V̄ rand(nM ).

We trained the network using 50% samples corresponding to corrupted V and 50% samples corre-

sponding to noise-free V measurements. During the training phase we used η = 5 × 10−3 which

corresponds to a quality SNR = 48dB, while we validated the network with two different noise

levels η = 2.5× 10−3 (SNR=54dB) and the more severe η = 5× 10−3 (SNR=48dB).

The conductivities obtained by the EITGN-NET with noisy measurements (SNR=48dB) are

illustrated in Fig.5.5 for the test cases reported in Fig.4.3. The results in Fig.5.5 show the robustness

of the proposed neural network to noise levels up to SNR=48dB. The results with degradations

less severe than SNR=48dB are not reported. From a visual comparison of the associated EIEI

results we can observe how the noise affects the quality of the reconstructions, slightly corrupting

the identification of the different anomalies. We recall that for EIEI metric, the higher, the better.

Hence, more severe noise levels demand for new training of the proposed EITGN-NET with a

tuning of the α2 parameter in (4.10).

To summarize the performance, in Table 5.2 we report the averaged values on 50 test samples,

both for the noise-free test cases, using the network trained without noisy samples, and for the two

different degraded input, corresponding to a SNR of 48dB and 54dB. We do not report the results

from noisy measures for RGN-TV and LM since for each test case we should have tuned manually
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GT EITGN-NET D-bar

1.61 1.55

GT EITGN-NET D-bar

1.96 1.77

1.97 1.93 1.99 1.85

2.02 1.82 1.67 1.62

Figure 4.5: Robustness to the noise: comparison between σGT and reconstructions from noisy mea-

surements obtained by EITGN-NET (first column) and D-bar (second column): the reconstructed

conductivities σ∗ (first row) and associated structure maps for EIEI metric (second row). EIEI

values are reported for each test case.
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EITGN-NET D-bar

noise 54dB

MSE 0.0078 0.0107

SSIM 0.75 0.75

DR 102 88

noise 48dB

MSE 0.0085 0.0111

SSIM 0.67 0.62

DR 110 84

Table 4.3: Noisy measurements: performance on averaged MSE, SSIM, and DR metrics on the

entire set of test cases.

the regularization parameter. The reported metrics confirm the overall better performance of the

proposed network.

4.3.6 Example 3 - Regularizer efficacy

We illustrate the effectiveness of the learned regularizer by checking the behaviours of different

popular regularizers with respect to the proposed Rθ obtained by the network described in Section

4.2.2. Specifically, we denote by R1 = LTL the Laplace regularizer, by R2 =
√
diag(JTJ) the pop-

ular regularizer proposed in NOSER [CIN+90], and by R3 the TV regularizer defined in (1.8). The

averaged condition number of the linear systems (4.4) during the testing phase is reduced through

the network blocks from 1021 to 107, thus confirming the benefit of the network regularizer Rθ.

By the way of illustration we report in Figs.4.6, 4.7 four test cases of conductivity reconstructions

produced by the Gauss Newton method using as regularizer R1, R2 and R3 for different regular-

ization parameters λ, together with the EITGN-NET results obtained with the learned regularizer

Rθ. The fully variational RGN method with R1, R2 and R3 requires the critical selection of the

optimal regularization parameter λ to get the best result, which is obtained by manually tuning λ

in order to improve the accuracy of the results. We report only three λ values for each regularizer,

between them the optimal ones. Unlike, the learned regularizer Rθ automatically varies itself since

it is driven by the data, and thus it is completely parameter free. The learned regularizers, starting

from different settings of initial weights in the FCNN, for the same data set Vm, lead to conductivity

reconstructions of the same quality and to a significant improvement of the condition number of

the linear system (4.4) preserving the same order of magnitude. This allows to produce a quasi

optimal reconstruction.
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GT 206 Rθ

(0.00257,100)

R1 10−4 10−6 10−8

(0.0062,48) (0.0039,80) (0.0028,99)

R2 10−1 10−2 10−4

(0.0069,37) (0.0051,61) (0.0029,99)

R3 10−5 10−6 10−8

(0.010,79) (0.0078,26) (0.0028,99)

GT 232 Rθ

(0.0007,99)

R1 10−4 10−6 10−8

(0.0122,1) (0.0013,81) (0.0009,104)

R2 10−1 10−2 10−4

(0.0021,43) (0.0017,63) (0.0010,94)

R3 10−5 10−6 10−8

(0.0031,9) (0.0024,33) (0.001,72)

Figure 4.6: Regularized Gauss-Newton reconstruction results for samples 206 and 232 with associated (MSE,DR)

values for different regularizers and different λ values together with our learned regularizer Rθ.
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GT 225 Rθ

(0.013,101)

R1 10−4 10−6 10−8

(0.029,59) (0.018,89) (0.0134,111)

R2 10−1 10−2 10−4

(0.033,52) (0.023,75) (0.014,110)

R3 10−5 10−6 10−8

(0.045,25) (0.038,40) (0.016,75)

GT 226 Rθ

(0.0054,102)

R1 10−4 10−6 10−8

(0.0110,73) (0.007,101) (0.0058,115)

R2 10−1 10−2 10−4

(0.0248,1) (0.009,84) (0.011,73)

R3 10−5 10−6 10−8

(0.018,34) (0.0103,62) (0.0048,93)

Figure 4.7: Regularized Gauss-Newton reconstruction results for samples 225 and 226 with associated (MSE,DR)

values for different regularizers and different λ values together with our learned regularizer Rθ.



Chapter 5

PnP strategy for EIT inverse problem

This section is devoted to the solution of non-linear ill-posed inverse problems formulated as an

operator equation. For convenience we rewrite the problem:

given y ∈ R(F ), find x so that F (x) = y, (5.1)

where F : D(F ) ⊂ X → Y is a Fréchet differentiable non-linear operator, mapping the Hilbert

spaces X and Y with domain D(F ) and range R(F ). We propose a proximal Gauss-Newton

method for the optimization problem (5.1) arising from regularization of ill-posed non-linear inverse

problems. Proximal Newton-type methods, generalizing Newton-type methods, minimize the sum

of a Lipschitz differentiable function and a non-smooth function handled using a proximal step

[LSS14]. The difficulties that we want to face in this way are twofold. First, the ill-posedness

of the problem which leads to the necessary adoption of proper strategies for handling indefinite

Hessian approximations. The simplest strategy consists in adding a multiple of the identity to

the Hessian approximation. In our formulation, this is overcome by incorporating a Tikhonov-like

regularization term. Moreover, the proximity operator might not be computable, either efficiently,

or at all. To overcome this difficulty, following the successful Plug-and-Play strategy, we propose

to replace at each iteration k ∈ N, the proximity step with an efficient denoiser algorithm. We

propose a deep-PnP proximal Gauss-Newton method which incorporates a deep learning denoiser

tailored to the data. The suggested denoiser for unstructured data, extends the standard case of

data defined on regular grids, which is commonly considered in the imaging contexts. The proposed

deep-PnP denoiser is based on a graph convolutional network, proposed in [GJ19], instead of the

more popular Convolutional Neural Networks (CNN), thus widening the fields of applications.

With the intent of showing the benefits of applying the deep-PnP proximal Gauss-Newton

method to a highly non-linear and ill-posed problem, we focus on the EIT inverse problem for the

reconstruction of conductivity distributions. The main contributions of the section are summarized

below:

• On the algorithmic side, we introduce a proximal Gauss-Newton method with a scaled prox-

imal mapping, which is addressed to the solution of non-linear ill-posed inverse problems.

• We propose, and mathematically formalize, a deep denoiser based on a graph convolutional

network which, under mild assumptions, satisfies the Lipschitz condition.

51
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• We introduce a deep-PnP framework which integrates the graph convolutional denoiser into

the proximal Gauss-Newton method, thus avoiding the crucial parameter tuning phase and

naturally learning the best fitting prior to the data. This is shown to perform greatly for the

non-linear EIT problems.

5.1 Regularizing non-linear ill-posed inverse problems

Givend the Tikhonov regularization, i.e., to seek an approximation xδλ to the solution of (5.1) as a

minimizer of the quadratic functional

J (x;λ) := 1

2

∥∥∥F (x)− yδ
∥∥∥2
Y
+

λ

2
∥L(x− x0)∥2X , (5.2)

where λ > 0 is the regularization parameter and L is a linear differential operator. The second term

in the functional (5.2), so-called regularizer, favours minimal norm and smoothness properties of

the solution, and the initial guess x0 in (5.2) plays the role of a selection criterion. In case available

a priori information this can be used in the selection, or, if possible, even a rough reconstruction

x0 = F−1(yδ) can be applied.

For a linear operator F , the Tikhonov functional (5.2) is a global convex function. But this

property is lost as soon as the operator is non-linear. As a consequence, the nonconvex functional

(5.2) might have several local minima, and it is not clear to which minimum a minimization process

will converge. Moreover, a different choice of x0 can lead to a different local minimum.

The differentiability of the cost function in (5.2) allows us to apply Gauss-Newton method to

determine a minimizer. The downside, however, is that the l2-norm regularizer can cause consider-

able over-smoothing on the solution and therefore do not favor sparse or spatially inhomogeneous

(containing discontinuities) solutions, which are instead sought by many applications.

Motivated by the success of the wide class of sparsity-inducing penalty functions in the regu-

larisation of ill-posed linear problems [LMS15, SLMS20], we propose to extend the function in

(5.2) by incorporating an eventually non-convex and not necessarily differentiable penalty function

h : X → R ∪ {+∞}, as follows

J (x) := 1

2

∥∥∥F (x)− yδ
∥∥∥2
Y
+

λ

2
∥L(x− x0)∥2X︸ ︷︷ ︸

fλ(x)

+h(x), (5.3)

where fλ(x) is continuous and differentiable.

For the purpose of developing a numerical solution of the optimization problem, we assume the

vector function F : Rn → Rm, m ≤ n to be Fréchet differentiable, and we define the gradient and

Hessian of fλ : Rn → R, as follows

∇fλ(x) = JT (x)(F (x)− yδ) + λLTL(x− x0) (5.4)

∇2fλ(x) = ∇2F (x)(F (x)− yδ) + JT (x)J(x) + λLTL, (5.5)

with J ∈ Rm×n, J = F ′(x), the Jacobian matrix with components (J(x))ij =
∂Fi
∂xj

(x).

Our task can be formulated as the minimization problem (1.14) where we consider f(x) = fλ(x)

and g(x) = h(x). The minimization is computed by apply the proximal Newton-type method as

explained in Section 1.4.2.
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5.2 Characterisation of proximal Newton-type methods

In the following result, in order to face the ill-posedness, we characterize the proximal Newton-type

method for a specific choice of the matrix Hk, fλ(x) and h(x) a lower semi-continuous, convex,

eventually non-smooth function. Moreover, we will easily show that the proximal Newton-type

method approximates the solution of the non-linear ill-posed problem by iteratively solving opti-

mization sub-problems where f̃λ(x) contains a good linear approximation of the non-linear operator

F (x).

Proposition 5.1. Let fλ be defined in (5.3), with F be a non-linear, Frechét differentiable operator,

and using for the Hessian in (5.5) the following approximation

∇2fλ(x) ≈ H = JT (x)J(x) + λLTL. (5.6)

The iterative step kth, with k = 1, 2, . . ., of the proximal Gauss-Newton method (1.20)-(1.21) reads

as

zk+1 = xk −H−1
k (JT (xk)(F (xk)− yδ) + λLTL(xk − x0)) (5.7)

xk+1 = arg min
x∈Rn

{
1

2
∥J(xk)(x− zk+1)∥22 +

λ

2
∥L(x− zk+1)∥22 + h(x)

}
(5.8)

which is equivalent to

xk+1 = arg min
x∈Rn

{
f̃λ(x) + h(x)

}
, (5.9)

where f̃λ(x) =
1
2∥F (xk)− yδ + J(xk)(x− xk)∥22 + 1

2λ∥L(x− x0)∥22.

Proof By simply replacing ∇fλ defined as in (5.4), in (1.20), we get (5.7). As concerns (5.8),

starting from (1.21) and applying (1.25) and (5.6), we get

∥y−x∥2H =< H(y−x), (y−x) >=< (JTJ +λLTL)(y−x), (y−x) >= ∥J(y−x)∥22+λ∥L(y−x)∥22.

Equations (5.7)-(5.8) are equivalent to the scaled proximal map

xk+1 = proxHk
h (xk −H−1

k (JT (xk)(F (xk)− yδ) + λLTL(xk − x0))). (5.10)

In order to prove the equivalence between (5.7)-(5.8) and (5.9), we prove the equivalence between

(5.10) and (5.9). At this aim, we consider the first-order necessary conditions for (5.9), satisfied

for x∗, which read as

0 ∈ ∇f̃λ(x∗) + ∂h(x∗),

with

∇f̃λ(x) = JT (xk)
(
F (xk)− yδ + J(xk)(x− xk)

)
+ λLTL(xk − x0).

For any fixed positive definite matrix H the followings are equivalent:

0 ∈ H−1∇f̃λ(x∗) +H−1∂h(x∗)

0 ∈ H−1∇f̃λ(x∗)− x∗ + x∗ +H−1∂h(x∗)
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(I + H−1∂h)(x∗) ∈ (I −H−1∇f̃λ)(x∗)

x∗ ∈ (I +H−1∂g)−1(I −H−1∇f̃λ)(x∗). (5.11)

According to (1.19), equation (5.11) can be interpreted as fixed point scheme that generates a

sequence {xk+1} by iterating:

xk+1 ∈ (I +H−1
k ∂h)−1(I −H−1

k ∇f̃λ)(xk)

namely,

xk+1 ∈ (I +H−1
k ∂h)−1

(
xk −H−1

k (JT (xk)(F (xk)− yδ) + λLTL(xk − x0)
)

which can be rewritten as the proximal map (5.10).

A standard choice for the regularization term is h(x) := ∥∇x∥1 which leads to the minimization

sub-problem:

xk+1 = arg min
x∈Rn

{
∥∇x∥1 +

1

2
∥J(x− zk+1)∥22 +

λ

2
∥L(x− zk+1)∥22

}
. (5.12)

An approximate solution of (5.12) can be obtained by a simple proximal gradient method, which,

starting from x̃0 = zk+1, iterates for i = 0, ..., until convergence to x̃∗, as

z̃i+1 = x̃i − β̃Hk(x̃i − zk+1) (5.13)

x̃i+1 = proxh(z̃i+1) (5.14)

where the step-size is required to satisfy β̃ ∈ (0, 1
ρ(HT

k Hk)
), and Hk is defined in (5.6). Finally

xk+1 = x̃∗.

The convex optimization problem (5.12) is a typical TV-L2 model which can be efficiently solved

for structured data. However, in this work we consider a general 2-dimensional spatial domain

discretized by an unstructured triangular mesh, so dealing with unstructured data. In this case,

an efficient way to solve (5.12) is to apply the anisotropic TV algorithm proposed in [CLMS22] as

a generalization of the original proposal in [LO09] for structured data.

The specific choice of the Hessian approximation given in (5.6) characterizes the proximal

Newton-type algorithm for the solution of the optimization problem (1.14) as proximal Gauss-

Newton algorithm. The overall sketch is provided in Algorithm 4 for the ℓ1-norm penalty h(x).

Algorithm 4 Proximal Gauss-Newton-TV (PGN-TV)

Input: x0, λ > 0,

Output: x∗ % conductivity distribution

for k = 0, . . . do

Update metric Hk from (5.6)

zk+1 = xk −H−1
k ∇fλ(xk)

xk+1 ← proxHk
h (zk+1) solved by (5.13)-(5.14)

end for

end
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5.3 Scaled Plug-and-Play algorithm

An important feature of the proximal Gauss-Newton method (5.7)-(5.8) is its modular structure.

In particular, (5.7) can be regarded as an updating step as it involves the forward model fλ(x),

whereas (5.8) can be regarded as a variable metric denoising step as it involves the prior h(x). In

particular, (5.8) can be rewritten as

xk+1 =arg min
x∈Rn

{
1

2
∥x− zk+1∥2Hk

+ h(x)

}
. (5.15)

In case of image restoration, the variational model (5.15) is a typical Maximum A Posteriori (MAP)

denoiser where zk+1 represents the noisy observation. With a little abuse of notation, since we are

dealing with the more challenging task of image reconstruction, zk+1 in (5.15) is the gradient step

result, i.e. an intermediate reconstruction of x.

The mathematical equivalence of the proximal operator to the MAP denoising has inspired

Venkatakrishnan [VBW13] to introduce the plug-and-play priors framework for image reconstruc-

tion. This method exhibited great empirical success, and encouraged much follow-up work. Thus,

taking the iterative proximal Gauss-Newton method sketched in Algorithm 4 and replacing the

proximal operator with a off-the-shelf denoiser DH , we get

xk+1 ← DH(zk+1). (5.16)

The overall method can thus be called proximal PnP- Gauss-Newton algorithm. PnP strategies

leverage both successful denoiser algorithms and deep learning-based denoiser. In the following

section we introduce our learned PnP denoiser DH based on graph convolutional neural network.

5.4 The learned GU-Net-denoiser

With the development of deep learning techniques in image processing, CNN-based denoisers have

shown promising performance in terms of effectiveness and efficiency. However, they can be applied

only to data defined on regular grid domains, typically derived from imaging problems [JWZ21].

Here, we consider instead a more general neural network which works on unstructured data, as

for all the problems derived from FEM models. This allows us to overcome the inaccuracy that

inevitably arises if you work on a grid-based approximation of a domain originally represented by

a triangular mesh. The denoising problem on meshes is here conceived for a function defined over

a 2-manifold discretized by a mesh.

In the following we describe the proposed GU-Net-denoiser which extends the CNN-based de-

noiser to non-Euclidian manifold domain and relies on the encoder-decoder Graph-U-Net archi-

tecture [GJ19]. Graph-U-Net is a U-Net-like architecture for graph data which allows high-level

feature encoding and decoding for network embedding. It is based on a convolution graph kernel

and gPool and gUnpool layers. The pool (gPool) operation samples some nodes to form a smaller

graph based on their scalar projection values on a trainable projection vector. As an inverse oper-

ation of gPool, the unpooling (gUnpool) operation restores the graph to its original structure with

the help of locations of nodes selected in the corresponding gPool layer [GJ19].
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Figure 5.1: GU-Net denoiser structure.

The GU-Net-denoiser as well as the Graph-U-Net can be formalized as a composition of func-

tions. At this aim, let us define an input mesh with n vertices characterized by an adjacent matrix

A ∈ Rn×n, with non-zero entries aij = 1 for directly connected mesh nodes i and j and aii = 1

to incorporate connections from vertex i to itself. A Graph-U-Net with M layers is defined as the

following composite function

G = TM ◦ · · · ◦ T1, (5.17)

with (Tℓ)1≤ℓ≤M being the layers of the network. Each layer is characterized by the composition

of a graph convolution, named GCN [WK16], a ReLU activation function σ and a gPool/gUnpool

operator, here denoted by a generic p, and is applied to the nc-dimensional input feature array

X ∈ Rn×nc , namely

Tℓ : X 7→ σ(GCN(p(X); Θℓ)), (5.18)

where Θℓ ∈ Rnc×nf denotes the trainable weight matrix of layer ℓ, and nf is the number of output

features of the layer ℓ.

Let Ā := D−1/2AD−1/2, where D is the diagonal node degree matrix to normalise A with entries

Dii =
∑n

j=1 aij , and Yℓ = p(Xℓ).

The layer-wise forward-propagation operation Tℓ, for each ℓ = 1, . . . ,M applied to the input

feature array of layer ℓ, Xℓ, is defined as follows

Xℓ+1 = Tℓ(Xℓ) := σ((D−1/2AD−1/2)p(Xℓ)Θℓ),

where σ(·) is applied point-wise, and we used

GCN(p(X); Θℓ) := Āp(Xℓ)Θℓ. (5.19)

Hence, the linear convolutional operator GCN, maps a feature matrix Y into a convolved data

matrix Z = ĀYΘ. Note that D−1/2AD−1/2 has eigenvalues in the range [0, 1].

We denote by θ = {Θℓ}Mℓ=1 the set of all the trainable weights of the GU-Net-denoiser. If we

consider as the complexity of the network the number of trainable weights, then it is given by

2(nc × nf ) +Mn2
f . Since the weights do not depend on the number of vertices of the mesh n, the

trainable weights can be easily used for any dimension of the input mesh. This is an important

aspect of our GU-Net denoiser proposal.

We now rewrite the gPool and gUnpool operators described in [GJ19] as mathematical opera-

tors. At this aim, we incorporate these operators into (5.17), so that the encoder-decoder network
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reads as follows:

G = T gU
2P ◦ · · · ◦ T

gU
P+1︸ ︷︷ ︸

decoder

◦T gP
P ◦ · · · ◦ T gP

1︸ ︷︷ ︸
encoder

, (5.20)

where in T gP
ℓ , p : X 7→ gPool(X), for ℓ = 1, . . . , P , and T gU

ℓ , p : X 7→ gUnpool(X), for ℓ =

P + 1, . . . , 2P , with M = 2P . Let ν ∈ RN be a normalized trainable vector, and S ∈ Rk×N be the

matrix obtained by eliminating from the identity matrix IN the rows corresponding to the nodes

selected by a vector.At each gPool layer ℓ, (encoder of level ℓ) with ℓ = 1, . . . , P , corresponds a

gUnpool layer ℓu = ℓ+P (decoder of level ℓu) which shares the same sampling matrix S defined by

the vector of the indices of the first k maximum values of the vector Xℓν
ℓ . Specifically, we have

• gPool, defined as

Xℓ+1 = (SXℓ)⊙ s(S(Xℓν
ℓ))1Tnc

(5.21)

where s is a sigmoid function applied point-wise, the symbol⊙ denotes the Hadamard product,

1nc ∈ Rnc is a vector with all components being 1.

Update of the Adjacent matrix: Aℓ+1 = SAℓS
T .

• gUnpool defined as

Xℓu+1 = STXℓu . (5.22)

Update of the Adjacent matrix: Aℓu+1 = STAℓuS.

Note that the value of k for the gPool operator is predefined and fixed for all the levels; it

defines the percentage of down-sampling (and corresponding up-sampling in gUnpool) on graph

data.

The overall structure of the GU-Net-denoiser is illustrated in Fig.5.1.

5.4.1 On the nonexpansiveness of the GU-Net-denoiser

Building nonexapansive network appears to be the key to obtain convergent Plug-and-Play algo-

rithms. It is indeed shown that a sufficient condition to get the convergence of PnP iterates is to

ensure the firm nonexpansiveness of the denoiser [RLW+19].

A method to build such nonexpansive network relies on an accurate control of the Lipschitz

constant of the convolutional layers. In particular, by tightly constraining the Lipschitz constant

of feedforward graph convolutional network to be smaller than 1.

We recall that an operator T : X → X is Lipschitzian with constant contraction factor δ ∈
]0,+∞[ if (∀x ∈ X)(∀y ∈ X)

∥Tx− Ty∥ ≤ δ∥x− y∥. (5.23)

If δ < 1 above, then T is a strict contraction. If δ = 1 then T is nonexpansive.

The following result easily derives from [GFPC21].

Lemma 5.2. The upper bound on the Lipschitz constant for the entire G network defined in (5.17),

assuming that each layer Tℓ, ℓ = 1, ..,M , defined in (5.18) is represented by the same composition

of functions, is given by:

L(G) ≤ (L(Tℓ))
M , (5.24)



58 5. PnP strategy for EIT inverse problem

where L(Tℓ) is the Lipschitz constant of the generic layer ℓ.

Next we aim to prove a sufficient condition to ensure the nonexpansiveness of the GU-Net

convolutional network, that is to ensure that, for every layer ℓ, the operator Tℓ defined in (5.4) has

a Lipschitz constant L(Tℓ) lower than 1, under mild assumptions on Pool and Unpool operators.

Proposition 5.3. Let G be the GU-Net defined in (5.20), with M layers Tℓ : X 7→ σ(GCN(p(X); Θ)),

defined in (5.18), ℓ = 1, . . . ,M , where GCN(X; Θ) is the graph convolutional operator with nc ∈ N
input channels and nf ∈ N output channels, σ is a ReLU function, and p(Xℓ) is a Pool or Unpool

operator defined as SXℓ and STXℓ, respectively. Assuming each layer-wise weight matrix Θℓ has

∥Θℓ∥ ≤ 1, then, G is nonexpansive.

Proof Since for Lemma 5.2 the Lipschitz constant of the full network G is bounded by Lipschitz

constant L(Tℓ) of the generic layer Tℓ, we now determine L(Tℓ). Let X(1), X(2) be two different

input feature arrays, then from definition (5.23), and (5.19), we have

∥GCN(p(X(1)); Θℓ)− (GCN(p(X(2)); Θℓ)∥ = ∥(ĀSX(1)Θℓ)− (ĀSX(2)Θℓ))∥

= ∥ĀS(X(1) −X(2))Θℓ∥

≤ ∥Ā∥∥S∥∥X(1) −X(2)∥∥Θℓ∥

≤ ∥X(1) −X(2)∥.

Here we neglected the activation function σ as the ReLU function used has Lipschitz constant of 1

[GFPC21], then we considered that the spectral norm of Ā is 1, and S for pool - and analogously

ST for unpool - derived from eliminating some rows of the identity matrix. Finally, under the

hypothesis on ∥Θℓ∥, the Lipschitz constant is 1, and thus G is nonexpansive.

5.4.2 Deep-PnP proximal Gauss-Newton method

In our proposal the pre-trained GU-Net denoiser DH is incorporated into a proximal Gauss-Newton

method giving raise to the deep-PnP proximal Gauss-Newton method which iterates over the fol-

lowing steps:

zk+1 = xk −H−1
k ∇fλ(xk) (5.25)

xk+1 = DH(zk+1). (5.26)

Regarding the forward step (5.25), the gradient is computed as in (5.4), where the operator F and

its Fréchet derivative J are given by the forward generation model, and the metric Hk is given

in (5.6), with matrix L corresponding to either the identity matrix or the discretization of the

first-order derivatives. We will named the proposed method, shortly, PnP-PGN.

5.5 Application to the Inverse EIT Problem

In this section we consider the solution of the inverse EIT problem formulated in Chapter 3. To

reduce the ill-posedness while keeping high accuracy reconstructions, the non-linear least squares
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EIT problem is usually regularized by adding a penalty term, and reads as

x∗ ∈ arg min
x∈RnT

fλ(x), fλ(x) = ∥F (x)− yδ∥22 +
λ

2
∥L(x− xo)∥22, (5.27)

with fλ defined as in (5.3), F : RnT → RnM represents the discrete version of the Forward Operator

defined by (3.1) which is a non-linear vector map. Since the continuous forward operator is Fréchet

differentiable, F ′ is a matrix, called the Jacobian of F and here denoted by J . The functional in

(5.27) is the classical generalized non-linear Tikhonov model, a standard choice in EIT [BGAL09].

With this regularizer choice, the approximated solution of the optimization problem (5.27) applying

the iterative RGN is given by select the search direction pk by solving the linear system

(J(xk)
TJ(xk) + λLTL)pRGN-Tik

k = J(xk)
T (yδ − F (xk))− λLTL(xk − x0). (RGN-Tik)

The regularizing Levenberg-Marquardt (LM) algorithm simplifies the RGN algorithm, by com-

puting the search direction as

(J(xk)
TJ(xk) + λLTL)pLM

k = J(xk)
T (yδ − F (xk)). (LM)

5.6 Applying PnP-PGN to the inverse non-linear EIT problem

The experiments in this section aim to evaluate the proposed method PnP-PGN on a set of syn-

thetic 2D data related to inverse EIT problems. Each sample represents the synthetic ground-truth

conductivity xGT and consists of a random number from 1 to 4 of anomalies inside a circular tank

of unitary radius, localized randomly and characterized by random radius in the range [0.15−0.25]

and magnitude in the range [0.2, 2]. The circular tank is tessellated by a mesh grid of 660 trian-

gles. In the circular boundary ring, 16 electrodes are equally-spaced located. The homogeneous

conductivity of the background liquid is set to be x0 = 1.0Ωm−1, and it is assumed that each

actual anomaly approximately consists of the same material. This choice for x0 can be far from

the solution. Nevertheless, it has guaranteed convergence for all the experiments.

Measurements yδ are simulated through opposite injection - adjacent measurement protocol via

pyEIT, a python-based framework for Electrical Impedance Tomography [LYX+18]. The compar-

isons are conducted qualitatively by visually inspecting the artifacts and quantitatively on the mesh

elements, by calculating the metrics mean-square error (MSE), and structural similarity (SSIM).

5.6.1 Training Data for the GU-Net-denoiser

When the GU-Net-denoiser is trained on the training dataset, it is initialised with a set of random

weights. These weights are then optimised during the training period and the optimum set of

weights θ are produced and used in DH , the step (5.26) of the deep-PnP proximal Gauss-Newton

method.

The pre-trained GU-Net-denoiser has a network depth M = 12 (number of layers) for encoder

and decoder, which corresponds to P = 6 in (5.20), and 0.6 for the down-sampling (up-sampling)

factor. A ReLU activation function σ and a GCN convolution are applied to all layers in (5.4).
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The GU-Net denoiser is characterized by an initial nc = 1 which is then transformed to nc = 64 by

the first GCN (see Fig.5.1) and nf = 64. Therefore, the complexity is O(104).

The training data set consists of 18000 samples, (xGT , x̂j), composed by 3000 different con-

ductivity configurations, each provided with 6 different reconstructions: the xGT itself (j = 0)

and x̂j , j = 1, . . . , 5, which characterize a decreasing level of accuracy, or, better, an increasing

level of noise. The training sample x̂j , j = 1, . . . , 5 is an approximated solution of the inverse EIT

problem obtained by applying the LM algorithm for 1,2,3,4,5 iterations, respectively, starting from

corresponding collected voltages y.

The training is carried out by minimizing at each epoch k, over the training set of cardinality

nS , the following loss function

θ∗k ← argmin
θk

1

nS

L(θk) := (1− γ)

nS∑
i=1

5∑
j=0

∥G(x̂ji ; θk)− xGT
i ∥22 + γ

nS∑
i=1

5∑
j=0

∥G(x̂ji ; θk)− xGT
i ∥1


(5.28)

with γ ∈ (0, 1), and G(·; θk) the deep GU-Net denoiser defined in (5.20). In particular, the training

phase for the reported examples used γ = 0.25. Through empirical observations we found that 150

epochs were enough to sufficiently decrease the total loss function (5.28). Hence the weights θ150

at epoch 150 feed the GU-Net-denoiser at the inference phase.

In a similar way, a noisy training data set of 18000 noisy samples (xGT , x̂δj) has been cre-

ated where the approximated solutions x̂δj have been obtained starting from corrupted voltage

measurements yδ, according to the degradation model

yδ = y + η, (5.29)

with η ∼ N (0, s2) Gaussian distributed noise characterized by zero-mean and standard deviation

s = δȳ, with ȳ the average value. (6.2) acts as equation (3.7) in the EIT degradation model.

In the training, the learning rate is set to 2.5 × 10−3 and the standard Adam optimizer has

been used. The network is implemented using PyTorch [PGM+19] and PyTorch Geometric [FL19],

and it is tested on a PC with Intel i7 CPU and 32-GB RAM with an NVIDIA Quadro P620 (2 GB

graphics memory). The training process took nearly 7 hours for both data sets.

5.6.2 Performance comparisons

We show the performance of the proposed framework PnP-PGN, for the reconstruction of 50

test cases, and we compare it with iterative methods such as RGN, and the proximal Gauss-

Newton method (Algorithm 4, labelled as PGN-TV), as well as the variational network proposed

in [CLMS22], named EITGN-NET.

The parameter λ in the function fλ defined in (5.3) is set to 10−8 for the methods PnP-PGN,

PGN-TV and RGN-Tik. This choice corresponds to a sufficiently low λ value that allows to handle

well-conditioned matrices without any undesired over-regularization effect.

In our implementation, PGN-TV incorporates a total variation penalty, and the RGN method a

regularization matrix L which is a second-order high-pass filter (Laplace prior) with homogeneous

Neumann boundary conditions. Due to the triangular discretization of the domain Ω, each row of
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PnP-PGN (L= I) PnP-PGN (L=D) EITGN-NET RGN-Tik PGN-TV

MSE 0.0042 0.0036 0.0049 0.0067 0.0055

SSIM 0.91 0.91 0.87 0.80 0.86

Table 5.1: Performance on averaged MSE, SSIM metrics on the entire set of test cases.

the graph Laplacian L has only 4 non-zero elements: it has value −1 for each adjacent triangle,

and 3 for the triangle itself.

For all the tests, the iterations of the algorithms were stopped as soon as either of the two

following conditions is fulfilled:

k > 200 , errk :=
∥∥xk+1 − xk

∥∥
2
/
∥∥xk∥∥2 < 5 · 10−4. (5.30)

In Table 5.1 we show the compared performance based on averaged MSE and SSIM metrics, on

a set of 50 test cases. The first two columns allow to compare the proposed PnP-PGN using L = I

and L = D in (5.6). We note the significant improvement of PnP-PGN with L = D under the

same computational framework. Compared with the other optimization algorithms, tuned with the

optimal regularization parameters, the proposed PnP-PGN leads to more accurate reconstructions

without any parameter set-up.

In Fig.5.3 we show the conductivity reconstructions obtained by applying PnP-PGN (with

L = D), RGN-Tik and PGN-TV, to six representative test cases; together with the associated

(MSE,SSIM) values. In Fig.5.3 (first column) is reported the ground truth (GT) image xGT for

a qualitative inspection. In the last row of Fig.5.3 we validated the behavior of the PnP-PGN

method when applied to test cases with anomalies having a different shape with respect to the

training data set used to pre-train the GU-Net-denoiser which included only circular anomalies. In

particular, the case labeled by heart and lungs is a phantom image representing heart and lungs

anomalies which, according to the MSE measure, are slightly better detected by the other methods

in the comparison. This confirms the well-known drawback of the learning-based approaches when

the testing dataset is different from what they have been trained with. We trust that, with suitable

training, PnP-PGN will provide more accurate reconstructions even in case of similar anomalies.

In Fig. 5.2 we give empirical evidence on the convergence of the sequence {xk} generated by

the different iterative optimization methods to the optimal solution xGT , for each of the three

representative test cases. In particular, the plots report the relative errors err
(GT )
k , in terms of the

number k of iterations

err
(GT )
k :=

∥∥x∗k − xGT
∥∥
2
/
∥∥xGT

∥∥
2
. (5.31)

The solution obtained by the proposed PnP-PGM, with a prior learned by the data, outperforms

the other results. In particular, it is more accurate with respect to its variational counterpart

(PGN-TV) where the prior is pre-determined as total variation and the regularization parameter

is specifically tuned. Moreover, PnP-PGN is much more efficient in terms of computational time,

as reported in the right corner of each plot. The RGN-Tik is the fastest but the results show low

accuracy.
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Figure 5.2: Relative error with respect to xGT , obtained by the compared algorithms PnP-PGN,

PGN-TV, RGN-Tik, LM for three different test cases.

5.6.3 Robustness to noise

We validated our PnP-PGN algorithm starting with acquisitions yδ corrupted as in (6.2), using two

different noise levels δ = 2.5× 10−3 (SNR=54dB) and the more severe δ = 5× 10−3 (SNR=48dB).

In both cases, the collected weights θ were obtained by minimizing the loss function (5.28) with

x̄δj obtained starting from the noisy training data set corresponding to δ = 5× 10−3.

In Fig.5.4 and Fig.5.5 we show the conductivities obtained by the methods PnP-PGN, RGN-Tik

and PGN-TV with both type of noisy measurements for four test cases. From a visual inspection the

proposed PnP-PGN method tends to better preserve sharper structures, presents a lower number

of artifacts, and in general improves the separation between the anomalies, even in case of strong

noise degradations, see Fig.5.5.

To summarize the performance in the noisy experiments, in Table 5.2 we report the averaged

values on 50 test samples, for the two different degraded inputs, corresponding to a SNR of 48dB and

55dB, which confirm for both the metrics MSE and SSIM the benefits of a data-driven regularization

approach in a variational well performing optimization method.

PnP-PGN RGN-Tik PGN-TV

noise 55dB

MSE 0.0043 0.0088 0.0083

SSIM 0.90 0.76 0.78

noise 48dB

MSE 0.0049 0.0092 0.0088

SSIM 0.89 0.71 0.73

Table 5.2: Noisy measurements: performance on averaged MSE and SSIM metrics on the entire

set of test cases.
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xGT PnP-PGN EITGN-NET RGN-Tik PGN-TV

xGT
0 (0.0081,0.86 ) (0.011,0.75) (0.011,0.71) (0.0092,0.76)

xGT
20 (0.0037,0.90) (0.0070,0.81) (0.0098,0.75) (0.0087,0.80)

xGT
26 (0.0039,0.86) (0.040,0.81) ( 0.0053,0.73) ( 0.0047,0.79)

xGT
31 (0.0098,0.83) (0.015,0.72) (0.016,0,67 ) (0.016,0.73)

xGT
41 (0.0044,0.86) (0.0060,0.75) (0.0077,0.69) (0.0068,0.76 )

xGT
49 (0.0054,0.90) (0.0092,0.79) (0.013,0.73) (0.011,0.78)

Heart&Lungs (0.0055,0.72 ) (0.0030,0.76) (0.0039,0.68) (0.0036,0.72)

Figure 5.3: Reconstructions obtained by (column-wise from 2-5) PnP-PGN, RGN-Tik, EITGN-

NET and PGN-TV; xGT (first column) is the ground truth conductivity; (MSE,SSIM) values are

reported for each test case.
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xGT PnP-PGN RGN-Tik PGN-TV

xGT
18 (0.0023,0.90 ) (0.0036,0.78) (0.0035,0.80)

xGT
29 (0.0043,0.92 ) (0.014,0.71) (0.013,0.74)

xGT
34 (0.013,0.85) (0.024,0.70) (0.024,0.73)

xGT
45 (0.098,0.81 ) (0.012,0.67) (0.012,0.68)

Figure 5.4: Robustness to the noise: comparison between xGT and reconstructed conductivities

from noisy measurements (SNR=55 db) obtained by PnP-PGN (first column), RGN-Tik (second

column) and PGN-TV (third column).

5.6.4 Performance with experimental data

We tested our PnP-PGN algorithm on the open 2D electrical impedance tomography dataset

[HKM+18] described in detail in [HKM+17].

The setup consists of a circular tank containing an electrically conductive solution and 16

uniformly spaced electrodes along the boundary. Electrodes span the whole depth of the tank, thus

resulting in a 2D EIT configuration. Either plastic (low conductivity), metal (high conductivity)

or, both kinds of objects are placed inside the tank, then measurements are acquired following

an adjacent current injection - adjacent voltage measurement protocol. A total of 16 adjacent

current injections were performed for each example, and for each current injection 13 adjacent
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xGT PnP-PGN RGN-Tik PGN-TV

xGT
18 (0.0024,0.89) (0.0037,0.75) (0.0036,0.76)

xGT
29 (0.0051,0.91 ) (0.014,0.69) (0.013,0.71)

xGT
34 (0.016,0.84 ) (0.024,0.69) (0.024,0.70)

xGT
45 (0.097,0.81 ) (0.014,0.64) (0.013,0.64)

Figure 5.5: Robustness to the noise: comparison between xGT and reconstructed conductivities

from noisy measurements (SNR=48db) obtained by PnP-PGN (first column), RGN-Tik (second

column) and PGN-TV (third column).
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voltage measurements were recorded, excluding current-injecting electrodes. This results in 208

measured voltages which were then used for EIT reconstruction with the PnP-PGN and RGN-Tik

algorithms for comparison. Reconstruction results are illustrated in Fig. 5.6. It is clear that the

reconstructions obtained with the proposed PnP-PGN are of higher quality with respect to the

RGN-Tik approach. PnP-PGN reconstructions contain very few background artifacts and also

perform remarkably well even in the difficult case of hollow metal objects. In fact, with PnP-PGN

the hole is visible in the reconstruction while it is completely filled in the RGN-Tik solution.

Shapes cannot be recovered by either algorithm. However, it should be noted that the training

of the neural network part of PnP-PGN involved only circular anomalies. It is therefore expected

that a training dataset containing other geometrically or irregularly shaped objects would further

improve reconstruction performance.
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Case PnP-PGN RGN-Tik

Case 1.2

Case 1.3

Case 2.3

Case 3.3

Case 3.4

Case 5.1

Figure 5.6: Reconstructions with experimental data from the 2D electrical impedance tomography

dataset [HKM+18]. Picture of the setup (left), reconstruction with the proposed PnP-PGN (centre),

reconstruction with RGN-Tik for comparison (right).
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Chapter 6

Limited electrodes EIT reconstruction

In Electrical Impedance Tomography (EIT), the electrical conductivity σ inside a domain Ω is

estimated from current and voltage measurements (I, V ) at its boundary ∂Ω. The voltage and

current values are measured through a finite number n of electrodes attached to the boundary of

the object. Having more electrodes should result in higher reconstruction quality. The number

of electrodes used is a trade-off between accuracy, measurement time, and processing time. We

expect, in general, that having more electrodes and thus more measurements, results in a higher

reconstruction quality. However, increasing their number is not straightforward due to the added

complexities and costs involved both in the instrumentation and in the time required to set up the

system. Also, increasing the number of electrodes can lead to reduce their size, and thus increase

contact impedance. Moreover, the more components are present in a system, the easier it is to

have a few of them malfunctioning, especially electrodes, thus reducing reliability. It is thus clear

that obtaining high quality EIT reconstructions with a reduced number of electrodes (and thus of

measurements) would be of great help to reduce the costs and increase the reliability of EIT in

practical applications. It would be even more useful to know the sufficient number of measurements

to recover an optimal σ, under sparsity conditions on the unknown conductivity.

In this chapter, we formulate this problem by naming it Limited Electrodes (LE) problem and

denoting with LE Model (LEM) the numerical methods proposed for its solution. There seems to be

a natural connection with the basic ideas of Compressed Sensing (CS) theory which deals with the

recovery of a sparse signal from a small number of linear measurements. In a well-posed context, the

CS theory, under appropriate hypotheses, identifies a relationship between the minimum number

of measurements necessary to obtain a ”good reconstruction” of the signal, its size and its sparsity

in some domains. In this section, we instead address the compressed sensing recovery problem in a

setting where the observations are non-linear and we are concerned with sparse recovery principles

for non-linear ill-posed inverse problems. Suppose we know the minimum number of measurements

required to obtain an optimal σ∗ reconstruction, but we are under the more realistic assumption of

having fewer measurements (electrodes) available. It would be desirable to apply a method (LEM)

which nevertheless allows us to obtain a reconstruction of quality comparable to σ∗.

In this work, we investigate two different LEMs to the EIT-LE problem. The first approach

involves the applicability of CS techniques by exploiting the gradient sparsity of the conductivity

distribution, which leads to a non-linear variational problem. The second proposal is a learned

69



70 6. Limited electrodes EIT reconstruction

residual approach on raw boundary impedance data. Both strategies will recover a reconstruction

quality obtainable with a high number of electrodes (and thus measurements) while using for

acquisitions a relatively low number of electrodes.

6.1 Preliminaries on EIT reconstructions

Following the formulation in Section 3.1, one can fully describe the behavior of the voltages in

the electrodes Ei at the object/domain boundary ∂ΩEi , given the conductivity of the medium σ

and a set of injected currents IF = [I1, . . . , In]. This process constitutes the EIT Forward model

and is described by a non-linear forward operator denoted by F (σ; IF ). Since the continuous

forward operator is Fréchet differentiable, F ′ is a matrix, called the Jacobian of F and in the

following denoted by J . The numerical computation of the EIT forward model can be obtained

by employing Finite Element (FE) techniques using a discrete approximation Ωh of the domain Ω,

represented by a triangulated mesh composed of nT triangles.

Given a set of voltage and current measurements, the goal of the EIT inverse problem is to

compute the approximate conductivity σ∗ such that the voltage potentials predicted through the

forward problem are as close to the actual measurements V as possible, which reads as

σ∗ ∈ arg min
σ∈RnT

∥r(σ)∥22, r(σ) := F (σ; IF )− V. (6.1)

The underlying optimization problem is hard to solve, not only as the boundary currents de-

pend non-linearly on the conductivity which makes the optimization problem non-convex, but

also for the well-known sensitivity of the solutions to small voltage perturbations. To reduce the

ill-posedness while keeping high accuracy reconstructions, the non-linear least squares EIT prob-

lem (6.1) is usually regularized by adding a penalty term and solving the regularized non-linear

minimization problem by the Gauss-Newton iterative method, reported in 1.4.2 to the intended

purpose of use in the proposed numerical solution of the EIT-LE problem. We investigate how

to suit these regularization methods to deal with the challenge EIT-LE problem with a low num-

ber of data/measurements. The quality of the conductivity reconstruction σ∗ is strictly related

to the quantity and the quality of the acquired measurements V . The quality of the conductivity

reconstruction σ∗ is strictly related to the quantity and the quality of the acquired measurements

V . In this simplified context we are aware of neglecting many other factors which could affect

the reconstruction accuracy, i.e., the mismodeling of the domain and misplacement of electrodes.

The data acquisition depends on the stimulation pattern. In our work, the collected measurements

V are obtained using the adjacent acquisition protocol: adjacent electrodes for the injections and

adjacent electrodes for the measurements. When a pair of electrodes is chosen as driving pair,

it is usually excluded from the available measuring pairs. Each measurement of V ∈ RnM , with

nM = n × (n − 3), is characterized by the pair (Ik, Vℓ), k = 1, . . . , n, ℓ = 1, . . . , n − 3, where Ik

indicates the current injection at a couple of electrodes (Ek, Ek+1), and Vℓ ∈ V represents the

potential measure between the electrodes (Eℓ, Eℓ+1). As the measured data is unavoidably noisy,

we assume the following noisy forward observation model

F (σ; IF ) = V + η, (6.2)
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where η ∈ RnM is a vector η ∼ N (0, n̄V̄ ) of Gaussian distributed measurements characterized by

zero-mean, with V̄ the voltage average value.

6.2 EIT-Limited Electrodes Problem Setup

Let σL ∈ RnT be the conductivity obtained by an EIT setup with nL electrodes and stimulation

pattern (ILF , V
L). A more accurate reconstruction σH ∈ RnT is expected to be obtained with nH

electrodes, and stimulation pattern (IHF , V H), with nH > nL, and, consequently, a larger number

of measurements |V H | >> |V L|.

Limited Electrods Model (LEM)

Under the assumption of gradient-sparsity of σ ∈ RnT , given a limited number of measurements

nL
M collected from a low-resource EIT configuration (ILF , V

L) with nL electrodes, the objective of a

Limited Electrode Model is to recover a reconstruction σ∗ ∈ RnT from V L ∈ RnL
M measures even if

nL
M << nT , with an error bounded by:

∥σ∗ − σ∥ ≤ C(∥η∥, ∥∇σ∥0, nT , n
L
M ), (6.3)

where C > 0 is a small constant, and the ℓ0 pseudonorm ∥x∥0 measures the gradient sparsity

counting the nonzero value in x.

The LEM will be considered successful if it reconstructs σ∗ of better quality with respect to

σL obtained by solving the inverse optimization problem (6.1), from measurements V = V L and

injections IF = ILF . Furthermore, the LEM will be considered optimal, in case it reconstructs a

distribution σ∗ close to σH .

We finally remark that, due to the ill-posedness of the EIT inverse problem, the straightforward

interpolation of nL
M on the boundary ∂Ω to obtain interpolated nH

M measurements for solving (6.1),

produces unacceptable reconstructions.

6.3 A Compressed Sensing approach to EIT-LE problem

Compressed sensing allow signals to be sampled far below the rate traditionally prescribed [CRT06].

Most of the theory developed for compressed sensing signal recovery assumes that samples are taken

using linear measurements in a well-posed context. In this work, we instead address the compressed

sensing recovery problem in a setting where the observations are non-linear and we are concerned

with sparse recovery principles for non-linear ill-posed inverse problems.

In the linear case, CS theory relies on the sufficient restricted isometry property (RIP) of the

linear measurement operator, that can be interpreted in terms of the Lipschitz property of the

operator itself and its inverse. The classical CS theory has been extended in [AS21] to arbitrary

linear operators with bounded inverse considering in particular the linearized EIT problem. In

[AS21] the authors show that the electrical conductivity maybe stably recovered from a number of

linearized EIT measurements proportional to the sparsity of the signal with respect to a wavelet
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basis, up to a log factor. Preliminary theoretical results in [Har19, AS19, Blu13] paved the way for

addressing EIT using CS strategies even in the more complex non-linear setup.

In this section we address a preliminary proposal in this direction. In addition we show experi-

mentally that the number of measurements nM needed for an optimal recovery are proportional to

the sparsity of the unknown, with respect to the gradient of the conductivity distribution.

Let σ ∈ RnT be defined in Ωh ⊂ R2. The data of the reconstruction problem are represented

in spatial domain by the potential measurements V L obtained by a limited EIT configuration

with nL electrodes. Let nL
M be the number of measurements using an nL-electrodes configuration,

and nH
M be the ones obtained by the nH -electrodes configuration, with nL

M << nH
M . Considering

S ∈ RnL
M×nH

M to be an acquisition-dependent projection matrix which allows to select a restricted

number of potential measurements, then the compressed measurement model, named in this context

LE acquisition model FS : RnH
M → RnL

M , reads as

FS(σ; I
H
F ) = V L, (6.4)

with FS(σ; I
H
F ) = S(F (σ; IHF )). In a more realistic scenario in which the measurements V L ∈ RnL

M

are corrupted by noise according to (6.2), the CS reconstruction problem can be stated in this case

as the following constrained minimization:

σ∗ ∈ arg min
σ∈RnT

R(σ) subject to ∥S(F (σ; IHF ))− V L∥22 ≤ η2, (6.5)

where R(σ) is a sparsifying function. In the present context, we have assumed that the conduc-

tivity distribution, reconstructed from each set of measurements, varies only in spatially localized

small subregions of Ω, which consequently leads to imposing the sparsity of the gradient of the

distribution. Therefore our reconstruction method chooses the convex, sparsity inducing function

as R(σ) := ∥∇σ∥1, namely, it minimizes the total variation of the conductivity distribution. Sparse

reconstruction can be performed by converting problem (6.5) into an unconstrained minimization

problem and then solving it by applying the Regularized Gauss-Newton (RGN) method illustrated

in Section 1.4.2 with residual r(σ) = S(F (σ; IHF )) − V L. The matrix S has a block rectangular

structure with nL × nH blocks, each block is either an Identity matrix of dimension nL − 3, in

case the injection is part of the acquired measurements, either a zero block 0nL−3, otherwise. The

position of the nonzero blocks in a row depends on the selected acquisition protocol.

The relation between the sparsity factor ∥∇σ∥0 and the number of non-linear measurements nM ,

a well-known result for linear CS, will be the subject of future investigation. By the way of il-

lustration, we plot in Fig. 6.1, for four conductivity samples, the relative reconstruction errors

err := ∥σ − σ∗∥/∥σ∥, as the number of electrodes n (and thus the number of measurements

nM ) varies. Each sample is representative of a different gradient-sparsity level, characterized by

||∇σ||0 = {10, 21, 29, 44}. Using n = {4, 6, 8, 12, 24} electrodes, then the corresponding measure-

ments are nM = {4, 18, 40, 108, 504}, respectively. The horizontal blue line indicates the error

threshold below which the reconstruction can be considered exact (corresponding to a PSNR=70).

As expected, as the gradient-sparsity decreases, which corresponds to increasing values of ||∇σ||0,
the number of measurements necessary to obtain a perfect reconstruction increases. It is also im-

portant to note that, after a certain threshold, the reconstruction improvement in the face of an

increase the number of measurements is no longer significant.
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Figure 6.1: Plot of the error reconstruction for an increasing number of electrodes n (and measure-

ments nM ) for four samples σ with different gradient-sparsity.

6.4 A Learned Approach to EIT-LE problem

Figure 6.2: Learned LEM

A schematic of the EIT-LE framework is shown in Fig. 6.2. Given the voltage measurements V L

collected using nL electrodes according to the stimulation pattern (ILF , V
L), the reconstructed σL is

computed by solving (6.1) using RGN-TV or RGN-TIK algorithm. Then by applying the forward

EIT process F (σL; I
H
F ), with IHF virtual current injections, we get nH

M virtual measurements V̄ H .

These measurements differ from V H obtained by an EIT configuration (IHF , V H) with nH actual

electrodes settings. We propose a residual network named VNet which learns a correction factor

Vδ to recover a set of measurements V net:

V net = Vδ + V̄ H . (6.6)

This residual strategy estimates the quantization noise caused by the acquisition using a limited

number of measurements. The improved conductivity reconstruction σnet
H is finally computed by

solving the inverse problem (6.1).

6.4.1 VNet architecture

VNet is a deep fully-connected neural network (FCNN) built to provide an ad hoc efficient solution

to the EIT-LE problem. In particular, VNet is an autoencoder network with an encoder stack to
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learn high-level features, a latent space which is composed of the higher dimensional hidden layers,

and a decoder module to reconstruct high-resolution voltage measurements.

Following a supervised learning-based approach, we denominate fΘ, with parameters Θ, a

predefined function that, given the input measurements V̄ H , computes the updated measurement

vector V net, according to the proposed architecture VNet. We aim at learning the optimal vector Θ

by minimizing a loss function L on a training data set containing N measures-reconstructions pairs

(V H
i , σi

H), i = 1, . . . , N , where V H
i are the potential differences obtained by a configuration with

nH electrodes. In particular, the learning-based method is modeled as the following optimization

problem

min
Θ

1

N

N∑
i=1

L(σ∗
i , σ

i
H) subject to σ∗

i = fΘ(V
H
i ),

L(σ∗
i , σ

i
H) = ∥V net

i (Θ)− V H
i ∥22 + ∥σ∗

i − σi
H∥22.

The considered autoencoder is composed of fully connected layers, dropout layers to improve gen-

eralization capabilities, and residuals to both avoid the disappearing gradients effect and allow the

learning of the correction term. In a standard encoder-decoder structure, the number of nodes

per layer decreases with each subsequent layer of the encoder, and increases back in the decoder.

As a result of extensive numerical experimentations, we decided instead to increase the number of

neurons in each hidden layer in the encoder, and compress it in the decoder. The final hyperparam-

eters (neurons and layers) configuration is tuned by optimizing the model capacity via the pruning

technique: the neurons which have no impact on the performance of the network are trimmed

during the training. The encoder module consists of three layers, initialized with nH
M values, which

learn an array of upsampling weights by increasing them up to a certain number m. Then the

latent space module has four layers each of the same size and finally, the decoder has three layers

with the last of dimension down to nH
M . Each layer i is a standard linear operator, with weight

coefficients θi,j , which transforms the input features xj into output features yi, and reads as

yi = ϕ(
m∑
j=1

θi,jxj + bi), ϕ(z) = PReLU(z) :=

z, ifz ≥ 0

βz, otherwise

where ϕ is the Parametric Rectified Liner Unit (PReLU) activation function for each layer, with

learnable parameter β, except for the last layer where ϕ is the Hyperbolic Tangent (Tanh) function.

Since PReLU has a learnable coefficient for the negative part of features, it can avoid the “dead

features” caused by zero gradients in ReLU. The Tanh activation function is used to limit the values

in Vδ ∈ [−1, 1], and improve the stability of training. Since the correction factor for each voltage

is expected to be very small, it is important to have an activation function that is continuous and

differentiable near the origin.

A dropout operator with probability p = 0.2 is inserted in the latent block to randomly zero

some of the elements of the input layer using samples from a Bernoulli distribution. The idea is

that instead of letting layers learn the underlying mapping, we let the network fit the residual

mapping.
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σGT

GT 591 GT 596 GT 598 GT 599

σ8

PSNR = 27.70 PSNR = 18.28 PSNR = 20.16 PSNR = 26.57

σV

PSNR = 30.39 PSNR = 19.27 PSNR = 21.00 PSNR = 27.57

σnet
16

PSNR = 30.91 PSNR = 22.35 PSNR = 21.91 PSNR = 28.12

σ16

PSNR = 31.75 PSNR = 26.81 PSNR = 24.59 PSNR = 29.55

Figure 6.3: Example 1: (first row) σGT , samples 591, 596, 598, 599 of the Data-PC dataset;

(second row) reconstructions using RGN-TV from V 8 measurements; (third row) results of CS-

based LEM; (fourth row) results of learned LEM; (fifth row) reconstruction using RGN-TV from

V 16 measurements.
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PSNR SSIM

σ6 20.30 0.694

σnet
12 21.05 0.676

σ24 26.10 0.836

PSNR SSIM

σ8 22.07 0.741

σnet
16 23.16 0.765

σ16 25.25 0.848

(a) (b)

PSNR SSIM

σ6 24.35 0.668

σnet
12 25.16 0.697

σ12 27.81 0.763

PSNR SSIM

σ12 27.81 0.763

σnet
24 28.90 0.777

σ24 32.27 0.890

(c) (d)

Table 6.1: Average results on the entire testing set: (a)-(b) Data-PC; (c)-(d) Data-S.

6.5 Numerical Experiments

The following numerical experiments show the performance of the proposed EIT-LE frameworks for

computing gradient-sparse reconstructions of synthetically built 2D EIT samples. All the examples

simulate a circular tank slice of unitary radius with a boundary ring with n equally-spaced elec-

trodes. We built two different datasets, the first, named Data-PC, with a few separated anomalies

characterized by constant conductivity, and a second dataset, named Data-S, with much smooth

anomalies, occasionally overlapped.

In Data-PC each ground-truth sample σGT has a random number from 1 to 4 of anomalies local-

ized randomly inside the domain with random radius in [0.15, 0.25] and magnitude in [0.2, 2]Ωm−1.

This dataset, being characterized by a strong gradient sparsity, lends itself to being almost per-

fectly reconstructed by a few measurements. In Data-S each sample σGT has a random number

between 10 and 20 anomalies localized randomly inside the domain, eventually overlapped, radius

in [0.10, 0.15] and magnitude in [1, 2]. This dataset presents a lower but still well-pronounced

level of sparsity with respect to Data-PC, hence more measurements will be required to reach an

acceptable reconstruction accuracy.

For both datasets, the homogeneous conductivity of the background liquid is set to be σ0 =

1.0Ωm−1. The regularization parameter λ in (RGN-Tik) and (RGN-TV) has been hand-tuned to

obtain the best approximation to the solution of the ill-posed inverse reconstruction problem.

Example 1: CS-based Variational LEM vs Learned LEM Network

Given a set of nL
M = 40 voltage measurements (V L, ILF ), with nL = 8 electrodes, we compare the

reconstructions obtained by solving the CS-based model (6.5), with those computed by the learned

LEM, using RGN-TV for the inverse EIT, on the Data-PC training set of 500 samples, a validation

set with 100 samples, and a test set with 10 samples. Fig. 6.3 illustrates the reconstructions starting

from noise-free measurements (in the first two columns) and two reconstructions obtained from

noisy measurements according to the degradation model (6.2) with η = 5× 10−3 V̄ rand(nM ), (in

the third and fourth columns), corresponding to SNR=46dB of the measurements. The higher the

gradient sparsity in the conductivity distribution, the more significant the gain in reconstruction

accuracy, measured with the Peak SNR metric. Results from the learned LEM show a better
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σ6 σnet
12 σ12

σGT 74 PSNR = 17.73 PSNR = 18.65 PSNR = 23.39

σGT 91 PSNR = 16.90 PSNR = 18.28 PSNR = 22.84

Figure 6.4: Example 2: Reconstructions of samples 74 and 91 from Data-PC dataset, obtained

using n6
M measurements (second column), the Learned LEM framework (third column), and n12

M

measurements (fourth column)

separability of the anomalies and less artifacts with respect to the ones from the CS-based LEM.

Despite the ill-posedness of the involved EIT inverse problems, both approaches allow to reconstruct

the conductivity distributions from very few measurements under gradient-sparsity conditions, even

in presence of noise.

Example 2: Learned LEM applied to Data-PC

In this example we consider the application of the learned LEM to the Data-PC dataset, using

RGN-TV algorithm to solve (6.1). We tested this approach in two different settings: using nL = 6

and nL = 8 electrodes to obtain results qualitatively comparable with those obtained by nH = 12

and nH = 16 electrodes, respectively. In both cases the initial measurements were perturbed to

obtain an average SNR of 46 dB. Fig. 6.4 illustrates, for two different samples of the dataset, the

reconstructions σnet
12 , results of the learned LEM framework, compared with σ6 (second column),

obtained by a voltage measurement (I6F , V
6), and σ12 (fourth column), obtained by (I12F , V 12). The

corresponding average metrics over the testing dataset are summarized in Table 6.1 (a). A similar

comparison has been performed for reconstructions σnet
16 compared to those obtained by (I8F , V

8)

and by (I16F , V 16), and the corresponding average results are summarized in Table 6.1 (b).

Example 3: Learned EIT-LE applied to Data-S

We applied the learned LEM to the Data-S dataset, using RGN-Tik algorithm to solve (6.1).

The complexity of the dataset Data-S demands more measurements nM to obtain acceptable results.

We tested two settings: using nL = 6 electrodes (corresponding to n6
M = 18 measurements) and

nL = 12 electrodes (n12
M = 108 measurements) to obtain results qualitatively comparable with those

obtained by nH = 12 and nH = 24 electrodes, respectively. In both cases the initial measurements

were perturbed to obtain an average SNR of 46dB.

In Fig. 6.5 the reconstructions for two different samples of the dataset Data-S are shown: the

reconstructions σnet
12 , results of the learned EIT-LE framework, compared with σ6, obtained by a
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σGT σ6 σnet
12 σ12

GT 54 PSNR = 22.21 PSNR = 23.27 PSNR = 26.11

GT 89 PSNR = 22.50 PSNR = 24.12 PSNR = 31.92

Figure 6.5: Example 3: Reconstructions of samples 54 and 89 in the Data-S dataset obtained

using n6
M measurements (second column), the Learned LEM (third column), and n12

M measurements

(fourth column).

σGT σ12 σnet
24 σ24

GT 57 PSNR = 26.75 PSNR = 27.40 PSNR = 32.51

GT 78 PSNR = 30.23 PSNR = 31.61 PSNR = 34.69

Figure 6.6: Example 3: Reconstructions of samples 57 and 78 in Data-S dataset obtained using

n12
M measurements (second column), the Learned LEM framework (third column), and n24

M mea-

surements (fourth column).
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voltage measurement (I6M , V 6) and σ12, obtained by (I12M , V 12), in the second and fourth columns,

respectively. The corresponding average metrics PSNR and SSIM over the testing dataset are

summarized in Table 6.1 (c). In a similar settings, Fig. 6.6 compares the reconstructions for σ12,

σnet
24 , and σ24, and Table 6.1 (d) summarizes the associated average PSNR and SSIM values.
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Chapter 7

Post-Processing Transformer Network

for CT inverse problem

Transformers have achieved great success in many artificial intelligence fields, such as natural

language processing, computer vision, audio and video processing. Scientists proposed a great vari-

ety of Transformer variants, in [KNH+22] and [TDBM22] there is a systematic and comprehensive

literature review on these architectures. The Transformer was initially introduced as a sequence-to-

sequence model [SVL14] for machine translation. The success of Transformers in the NLP domain

also inspires computer vision researchers which have shown better model performance than tradi-

tional Convolutional Neural Networks (CNNs) in vision applications while requiring significantly

fewer parameters and training time. Vision Transformers (ViTs) [DBK+20] have been successfully

used for image classification, object detection [CMS+20], image recognition [TCD+21], semantic

segmentation [SGLS21] and image super-resolution [YYF+20]. Different from convolutional net-

works, transformers require minimal inductive biases for their design and are naturally suited as

set functions. An important feature of these models is their scalability to very high-complexity

models and large-scale datasets. As compared to their convolutional and recurrent counterparts in

deep learning, Transformers assume minimal prior knowledge about the structure of the problem,

Therefore, they are typically pre-trained using pretext tasks on large-scale unlabelled datasets.

Transformer-based network structures are naturally good at capturing long-range dependencies in

the data by global self-attention. For this reason, we investigate the performance obtained using

a transformer architecture as a post-processing network after the image reconstruction in the 2D

Computed Tomography (CT) problem. One of the main problems of CT is in fact the insufficient

quality of reconstructed images. Typically, many systems use limitations during the scanning phase

in order to speed up the process. Therefore, some errors and artifacts may reduce the quality of

reconstructed images. The aim of this research is to develop methods in order to reduce the noise

in tomographic images, which are obtained through limited-range angles, exploiting transformer

network technology.

81
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7.1 Background on Transformers

Transformer architectures are built on a self-attention mechanism that learns the connections be-

tween elements of a sequence.

7.1.1 Self-Attention

The self-attention mechanism models the interactions between all items of a sequence for structured

prediction tasks. Let us denote a sequence of n entities (x1, x2, ..., xn) by X ∈ Rn×d, where d is the

embedding dimension to represent each entity. The goal of self-attention is to capture the interac-

tion amongst all n entities by encoding each entity in terms of global contextual information. The

main components used by the Transformer attention are the following learnable weight matrices:

queries WQ ∈ Rd×dq , keys WK ∈ Rd×dk and values Wv ∈ Rd×dv , where dq = dk. The input

sequence X is first projected onto these weight matrices used in generating different subspace rep-

resentations Q = XWQ, K = XWKand V = XWV . The output Z ∈ Rn×dv of the self attention

layer is then given by,

Z = softmax
(QKT√

dq

)
V.

For a given entity in the sequence, the self-attention implements the dot-product of the query with

all keys. It subsequently divides each result by
√

dq and proceeds to normalize it using the softmax

operator to get the attention scores. Each entity then becomes the weighted sum of all entities in

the sequence, where weights are given by the attention scores. The standard self-attention layer

attends to all entities. Self-attention differs from convolution in that the filters used are determined

by the input, whereas in convolution they are fixed. Additionally, self-attention is not affected by

the order of elements or changes in the number of elements, allowing it to handle irregular inputs

easily, unlike convolution which is limited by its requirement for a grid structure.

7.1.2 Masked Self-Attention

The Transformer model, which is designed to predict the next element in a sequence, employs self-

attention blocks in its decoder that are masked to prevent the model from taking into account future

elements. The masked attention operator extracts localized features by constraining self attention

to within the foreground region of the predicted mask for each query, instead of attending to the

full feature map. This is done by an element-wise multiplication operation with a mask M ∈ Rn×n,

where M is an upper-triangular matrix. The masked self-attention is defined by,

softmax
(QKT√

dq
◦M

)
,

where ◦ denotes Hadamard product. In summary, when predicting an element in a sequence, the

attention scores of future elements are set to zero in the masked self-attention mechanism of the

transformer model.
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7.1.3 Multi-Head Attention

Having multiple attention heads enables the model to focus on different parts of the sequence in

a more intuitive way. Therefore multi-head attention is a module for attention mechanisms that

runs through an attention mechanism several times in parallel. In order to this the multi-head

attention comprises multiple self-attention blocks h. Each block in the model has its own set of

weight matrices that are learned during training: {WQi ,WKi ,WVi}, where i = 0, ..., (h−1). Given

an input X, the output of the h self-attention blocks in multi-head attention is concatenated into

a single matrix [Z0,Z1, ...,Zh−1] ∈ Rn×h·dv and projected onto a weight matrix X ∈ Rh·dv×d.

7.2 The Computed Tomography problem

The objective of computed tomography is to reconstruct two-dimensional (2D) or three-dimensional

(3D) images of internal structures from collected signals through an object. In x-ray CT, a re-

constructed image represents a distribution of radiation-ray linear attenuation coefficients. Data

recorded on an x-ray detector array are actually x-ray intensity values after an x-ray beam pen-

etrates an object. The attenuation of the x-ray intensity follows the Lambert–Beer’s law. After

applying the negative logarithmic operation of the ratio between the output x-ray intensity and the

input x-ray intensity, we obtain the line integral of the attenuation coefficient distribution along

an x-ray path. The presentation of line integrals is typically associated with x-ray projections.

Projection data are the immediate input to an image reconstruction algorithm. If we denote the

attenuation (units: reciprocal length) by x, the measured data by y and we let l denote a line from

the source to the detector then they are related through

y(l) =

∫
l
xds (7.1)

Mathematically, CT image reconstruction is a linear inverse problem where (7.1) is typically sim-

plified by gathering the physics into a forward operator F : X → Y , allowing us to rewrite the

above equation as:

y = Fx (7.2)

where the forward operator in (7.1) is called the Radon transform in 2D and the ray transform in

3D. In some applications, CT data cannot be acquired over the full angular range which is known

as limited-angle CT. As consequence, the projection data is incomplete which results in intensity

inhomogeneities as well as streaking artifacts in the image domain. Further sources for streaking

artifacts are the non-linear attenuation of polychromatic x-rays or inelastic scattering of photons.

One of the widely used methods in tomographic image reconstruction is Filtered Back Projection

(FBP) algorithm. [FDK84].

7.2.1 Motivation

FBP type of method does not handle the noise statistics of measured data optimally. They regu-

larise by recovering the bandlimited part of the image, an approach that is not sufficient to suppress

noise and artifacts that degrade image quality in low-dose CT. Hence, the FBP-type of methods



84 7. Post-Processing Transformer Network for CT inverse problem

renders images in low-dose CT that are sub-optimal for diagnostic interpretation. To overcome this

issue, we investigated the use of transformer neural networks, called Vformer, as a post-processing

image denoising technique. The goal of post-processing methods is to improve a pre-computed

reconstruction. The framework consists to incorporate knowledge of the forward operator F into

the reconstruction network by applying a pseudo-inverse of F , denoted by F̃−1, to first map the

measurements back to the image domain and then apply the Vformer net to remove artifacts from

the resulting images. In our case F̃−1 : Y → X is given by the FBP algorithm. This approach

structures the reconstruction map F̃−1
θ : Y → X as:

F̃−1
θ (y) = gθ(F̃

−1y)

where gθ : X → X is the trained Vformer net depending on parameters θ and it is interpreted as

predicting the residual between the approximate inverse and the reconstructed image. This strategy

is relatively easy to implement, given that the pseudo-inverse can be applied off-line, before the

learning is performed, which reduces the learning to inferring an X → X transformation. The

overall pipeline is depicted in Fig. 7.1.

Figure 7.1: Vformer framework.

7.3 Implementation details and Results

7.3.1 Vformer Architecture

Inspired by the state of the art for image classification task performed by Vit net in [DBK+20] and a

novel denoising transformer network Uformer explained in [WCB+22], the proposed Vformer net is a

combination of the two previous networks. Given the 2D input image x ∈ RH×W×C , where (H,W )is

the image resolution and C is the number of channels, we reshape it into a sequence of flattened

2D patches xp ∈ RN×(P 2·C), (P, P ) is the resolution of each image patch, and N = HW = P 2

is the resulting number of patches. Defined as D the latent vector size as the input transformer,

each patche is flattened and mapped to the D dimensions with a trainable linear projection. Then

position embeddings are included with the patch embeddings to maintain information about the

position of the patches. The transformer block, depicted in Fig.7.2, consists of an alternating layer

of multiheaded self attention and LeFF module. Layer normalization is applied before each block

and residual connections are added after every block. In order to overcome the problem connected

to the limited capability to leverage local context, we replace the multi-layer-perceptron of Vit with

the locally-enhanced feed forward (LeFF) block inspired by [WCB+22]. This module is composed
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by a linear projection layer on each token to expand its feature dimension. The tokens are then

reshaped into 2D feature maps and a 3 × 3 depth-wise convolution is applied to capture local

information. The features are then converted back into tokens through flattening and the number

of channels is reduced through another linear layer to match the input channels. After each linear

or convolution layer is applied GeLU activation fuction. After the transformer block, we reshape

the flattened feature to the original 2D input image size using einops [Rog22] rearrange function

for reordering multidimensional tensors alternating by linear sequential layer. A depth stage of

3×3 2D convolutional layer is added to smooth the image on the boundary of each patch. Fig. 7.3

shows the effects of the convolutional layer on the sheep-logan sample at the same iteration during

the training. At these level the post-processing net is ViT without the classification block.

Figure 7.2: Transformer block (left). LeFF module (right).

7.3.2 Training

The data generation is done using the ODL [AKÖ17] framework with ASTRA [vAPC+16] as back-

end for computing the ray-transform and back-projections. The training and validation sets are

generated ”on the fly”, giving an effectively infinite dataset. The labeled dataset is randomly

generated ellipses on a 512× 512 pixel domain. The projection geometry is selected as a sparse 30

view parallel beam geometry adding to the projection 0.1% additive Gaussian noise. Each iteration

of the training scans 96000 images with a batch size of 10 samples. The training is performed by

setting the patch size 16 in Vformer net. The evaluation is computed after 2400 iterations on 1280



Figure 7.3: Influence of the last convolutional layer: Vit without convolutional tail block (left), Vit

with convolutional tail block (right). At this level the Leff block is not implemented.

random ellipses samples. In addition, we tested the model on the Sheep Logan phantom. Vformer

net tuning the unknown parameter Θ by minimizing the Charbonnier loss defined as:

l(I ′, Ī) =
√
∥I ′ − Ī∥2 + ϵ2,

where Ī is the ground-truth image and ϵ = 10−3. The selected optimizer is AdamW with learning

rate γ = 1e− 4 and wight decay λ = 0.02. The method described above is implemented in Python

using Pytorch.

7.3.3 Numerical Results

We evaluate the perfomance on the validation set measuring the PSNR value. We compare our

results with state of the art of denoising network Unet [JMFU17], Uformer [WCB+22] and ResV-

former which is the proposed Vformer with the learning of the residual image R, then the restored

image is obtained by I ′ = I+R. Fig. 7.4 shows the results of the Sheep Logan test image. We note

that the FBP algorithm performs very poorly under noise assumption while the post-processing

learned methods give comparable results. Vformer outperforms the other competitive networks:

it removes streak artifacts that typically arise from limited angle tomography data and provides

a good shape reconstruction of the ellipses especially around the edges of the phantom and struc-

tures spuriously created from noise. From a visual inspection, we can see that Vformer is capable

to remove the cross in top/bottom center of FBP image with respect to CNN network. The main

reason is that the transformer is a useful tool for capturing global information by utilizing the long

range dependencies of pixels.



GT FBP

Vformer Uformer

PSNR=19.97 PSNR=19.15

ResVformer Unet

PSNR=18.95 PSNR=18.07

Figure 7.4: Sheep Logan Reconstruction. Comparison between Vformer, Uformer, ResVformer and

Unet denoising network.





Conclusions

This Ph.D. thesis has addressed the image ill-posed inverse problem reconstruction by using hybrid

iterative methods. In the first part of the thesis, a general overview of inverse problems and nu-

merical and learning approaches has been shown: optimization methods with particular focus on

regularization formulation for linear and non-linear IP are described. A data driven classification

and survey are reported for the solution of IPs. The second part of the thesis is devoted to inves-

tigating the advantages of merging both variational and deep learning frameworks with practical

applications in EIT and CT.

In Chapter 4 according to the learning regularizer strategy, we have proposed a hybrid model-

based and data-based method for solving non-linear EIT inverse problems which exploits a fully

connected neural network to learn the regularizer of the Gauss-Newton method from data. More-

over, we proposed an attention-like mechanism, based on anisotropic total variation, which efficacy

in piece-wise conductivity reconstructions is demonstrated in the numerical section. This approach

was shown to yield higher accuracy with respect to other state-of-the-art approaches for absolute

EIT reconstruction (i.e. RGN, D-bar). The extensive testing presented in the dedicated sections

supports this conclusion, which was verified in a number of different configurations: (i) different

number of anomalies, (ii) noisy conditions, (iii) heart and lung model, potentially useful for res-

piration monitoring. While manual hyperparameter tuning and regularizer operator choice are

often critical to obtain good reconstruction, in EITGN-NET the regularizer operator is intrinsi-

cally tuned, as the training procedure automatically optimizes it for the chosen dataset. Overall,

EITGN-NET holds great potential for the integration of model and data-based methods for non-

linear EIT reconstruction, providing a framework for the automation of lengthy, error-prone steps

while maintaining explicit modeling constraints that allow for greater interpretability of the recon-

struction with respect to end-to-end approaches, a crucial feature for mission-critical fields such as

medical imaging.

In Chapter 5 we addressed the PnP regularization methods. They belong to the class of vari-

ational networks, which exploit the knowledge of the forward model combined with a powerful

denoiser to obtain data-driven solutions to challenging optimization problems, thus offering im-

plicit regularization and parameter-free solutions. The proposed deep-PnP proximal Gauss-Newton

method solves ill-posed inverse non-linear problems on unstructured data, which generalize the

uniform grids (images) typically used with state-of-the-art PnP denoisers. We showed the perfor-

mance of our proposal in the reconstruction of conductivity distributions and solutions to inverse

EIT problems. The results outperform those of classical state-of-the-art variational methods. The

proposed PnP-PGN benefits from a powerful pre-trained graph network that performs the entire
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denoising process on the mesh, thus paving the way for the usage of convolutional network solutions

on FEM problems. Future work will address the optimization of the deep denoiser network model

for deployment on a resource-constrained EIT embedded system and will further investigate the

theoretical analysis of the convergence of the PnP framework.

In Chapter 6 we focused on obtaining accurate EIT reconstruction. It is generally dependent

on the amount of data available and therefore on the number of electrodes present in the acqui-

sition system. The increase in the number of these stimulation/acquisition elements is however

associated with non-negligible technical difficulties and high costs. This work introduces the EIT-

Limited Electrodes Model for the recovery of high-quality reconstructions from a limited number

of measurements. Under the assumption of gradient-sparsity, we propose a variational LEM and

a neural network-based LEM. Numerical results show a significant improvement in the quality of

the reconstructed conductivity distribution both for the simulated datasets Data-PC , and Data-S,

which present a different level of gradient-sparsity. This paves the way to LEM approaches which

approximate reconstructions of high quality even if starting from a low profile setup with a few

electrodes; thus reducing costs and widening the applicability of this imaging technique. The ob-

tained results can be easily applied to any stimulation pattern. Future developments will include

a theoretical investigation of the CS non-linear measurements.

In Chapter 7 we proposed Vformer, a neural network for a learned Post-Processing reconstruc-

tion algorithm in CT. Vformer is a transformer-based architecture that combines two different

neural networks: Vit which is an image classification network and Uformer used for the image

restoration task. Given Experimental results show that our proposed Vformer net can outperform

the CNN-based method on the sheep-logan test image.
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