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In recent years, we have witnessed the growth of the Internet of Things paradigm,
with its increased pervasiveness in our everyday lives. The possible applications
are diverse: from a smartwatch able to measure heartbeat and communicate it to
the cloud, to the device that triggers an event when we approach an exhibit in
a museum. Present in many of these applications is the Proximity Detection task:
for instance the heartbeat could be measured only when the wearer is near to a
well defined location for medical purposes or the touristic attraction must be trig-
gered only if someone is very close to it. Indeed, the ability of an IoT device to
sense the presence of other devices nearby and calculate the distance to them can
be considered the cornerstone of various applications, motivating research on this
fundamental topic. The energy constraints of the IoT devices are often in contrast
with the needs of continuous operations to sense the environment and to achieve
high accurate distance measurements from the neighbors, thus making the design
of Proximity Detection protocols a challenging task.

In this thesis, we addressed the challenges of proximity detection, showing
how we faced them through the design of two proximity detection protocols using
low-power radio technologies. With the Janus protocol we demonstrate that by
merging BLE and UWB, it is possible to develop a protocol that is both accurate
and energy efficient. Here the BLE radio is used for the neighbor discovery, while
the UWB is triggered on demand for ranging. By doing so, we illustrate through
several experiments how the protocols achieves high accuracy, while managing
consumption. We used Janus in a real scenario where the joint collaboration with
a data analysts research group and the high accuracy of the protocol enabled an
in-depth analysis, demonstrating the flexibility of Janus and the opportunities of-
fered by proximity detection. Subsequently, with the Hermes protocol we tackled
one of the limitations of Janus, namely the lag between discovery and ranging,
showing how we can achieve proximity detection using only the UWB radio and
simultaneously keeping in mind the low-power constraints of IoT. For this proto-
col we employ a custom simulator that helps rapidly testing different configura-
tions, showing the achievable performance. Furthermore, Hermes has been imple-
mented on real devices, and the experimental results we achieved are in line with
the simulator outcomes.
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Chapter 1

Proximity Detection: a Key
Application for IoT

Proximity detection is a fundamental building block of several mobile and Internet-
of-Things (IoT) applications.

In many contexts, the ability to detect when devices carried by users are close to
others deployed in the environment is exploited to enable interaction. For instance,
proximity beacons, made popular by Apple iBeacon [6] and Google Eddystone [38],
are typically deployed in designated places of interest, e.g., the exhibits of a mu-
seum, providing a simplified form of localization. When proximity to a user device
is detected, some situated user interaction is triggered, either application-specific
(e.g., visualization of content about the associated exhibit) or via standard means,
as envisioned by the Physical Web [101]. Proximity warning systems, which typ-
ically rely on different technologies [7], build upon similar concepts to improve
safety of the workplace and alert workers when they come too close to potential
hazards. These can be static, e.g., containers of dangerous material, but also mobile,
e.g., operating machinery such as forklifts and excavators in construction sites [48].

In several other contexts, proximity detection is instead exploited to acquire
data, enabling its analysis. Such logging of user proximity events enables analy-
sis and modeling user behavior, e.g., the time spent near an exhibit. Many other
applications focus on collecting solely data about proximity among users to study
social interaction. These include proxemics [40], the study of the space individu-
als set between themselves and others, and many others where quantifying social
contact is key, as in studying relationships [77], or the social behavior of people
at scale [93]. Similarly, biologging, a recent trend in biology, focuses on proximity
detection among animals to understand their interactions and behavior [104] [48].

Interestingly, the recent COVID-19 pandemic fueled a demand for systems along
both dimensions. The use of personal devices such as smartphones [3] or dedicated
“proximity tags” [16] has been recently proposed towards i) real-time enforcement
of social distancing, e.g., automatically alerting people when inadvertently com-
ing in close contact, and ii) monitoring and recording of distance and duration of a
social contact, enabling offline analysis, e.g., to trace the spread of infection from a
diagnosed individual or inform predictive models. [48]

Before detailing our contribution to proximity detection we take a step back to
precisely define proximity detection and to identify the challenges related to this
fundamental element of the IoT paradigm.

1.1 Who is Around and at Which Distance

Proximity detection can be defined as “The ability of an IoT device to sense the environ-
ment in search of similar devices and to know the distance to them.” From this definition,
we identify two primary functionalities: identifying the other devices nearby and
measuring the distances to them. The first functionality is accomplished by Contin-
uous Neighbor Discovery: a device should be continuously vigilant to discover other
devices, its neighbors. This operation is commonly achieved using radio technolo-
gies by alternating listening and transmitting on the radio channel. As mentioned
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previously, this feature alone can be exploited in many scenarios, making it fun-
damental for present and future IoT applications. In fact, in recent years many
continuous neighbor discovery protocols have been developed [67, 27, 100, 53].

The second building block of proximity detection is the capacity of the device
to gain knowledge of the distance from its neighbors, once discovered. This fea-
ture is called ranging and is the fundamental operation for all localization applica-
tions, not only those for proximity detection. In the literature several techniques
are present: many approaches are based on the Received Signal Strength Indica-
tor (RSSI), a value related to the received power of the signal. This approach can be
very practical, with this value easily available on signal reception in most wireless
IoT devices. However, the transformation into a distance value requires the defi-
nition of an electromagnetic model, with the Friis formula often being too generic,
and on the other side ray-tracing models being too specific for the environment.
Another well-known approach consist of using Time-Of-Flight (ToF), in which the
propagation delay between the transmission of the signal and the reception at the
receiver is exploited to compute the distance, given that the speed of the radio
waves can be considered equal to the speed of light (3 ∗ 108m/s). Even if with this
approach it is possible to achieve high accuracy, this way of calculating the dis-
tance is strictly related to precision of obtaining the timestamps of transmitted and
received signals, often low due to hardware limitations.

In general, there are many ways to achieve both the discovery and the ranging,
each providing a building block for proximity detection, and each with particular
trade-offs. In the following sections, we describe several of these technologies.

1.2 Technologies for Proximity Detection

Several technologies have been explored for detecting proximity, e.g., including
infrared [21], ultrasound [47] and IEEE 802.15.4 [65]. Bluetooth Low Energy (BLE)
devices are a common choice, thanks to its pervasiveness on personal devices and
a wide range of consumer electronics, low energy consumption, and availability of
a ready-to-use, standardized API simplifying development. Applications include
proxemics [40], social studies [70, 2], museums [106], and proximity warning sys-
tems [7]. Radio-Frequency Identification (RFID) is another popular choice [18, 77];
in particular, passive tags do not require a power supply enabling very cheap, dis-
posable designs.

Focusing on the radio technologies, RFID and BLE have shown potential of
proximity detection for the above classes of applications. Nevertheless, they do
not directly measure distance, which is instead inferred via the RSSI. This approach
typically yields only coarse estimates with errors of meters [110] severely limit-
ing the potential applicability. For instance, in museums their application is usu-
ally limited to detecting user presence at the room level [106, 65] or identifying
“hotspots”. The application in safety-critical settings like proximity warning sys-
tems is impaired by the presence of false positives and false negatives, induced
by the vagaries of wireless communication in complex environments. These sig-
nificantly affect also the exploitation of proximity detection for social studies, as
recently noted in the context of the COVID-19 pandemic [58]. Further, these social
studies typically require sub-meter accuracy [8], which exacerbates the problems
above [48].

A promising alternative is offered by Ultra-Wide Band (UWB)1 radios [16, 17,
10], recently at the center of research and market interest after a decade of oblivion,
thanks to small, cheap, and energy-savvy new UWB impulse radio chips. These
operate on fundamentally different PHY-level principles that enable distance es-
timates with an error <10 cm, i.e., 1–2 orders of magnitude less than narrow-
band radios like BLE, significantly enhancing ranging accuracy. UWB localization
systems are rapidly gaining traction and, by yielding accurate and timestamped
(x, y, z) positions, indirectly enable proximity detection. Nevertheless, they require

1In the remainder of the thesis we refer to High Rate PHY-UWB (HRP-UWB).
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an infrastructure of fixed reference nodes (anchors), implicitly delimiting the area
where detection can occur, posing conflicting trades of scale vs. effectiveness vs.
cost. While this may be acceptable in some contexts, it severely limits application
in many others where it is impossible or impractical to setup an infrastructure. For
instance, longitudinal sociological or epidemiological studies continuously moni-
toring the proximity of individuals as they spend their day across various places
(e.g., home, school or work, recreation) would become essentially impossible [48].

On the other hand, UWB systems can also be used in an infrastructure-less,
“peer-to-peer” modality where nodes range against each other. Unfortunately,
this is precisely where roles are reversed, and popular technologies like BLE shine
w.r.t. UWB. Indeed, BLE directly supports device discovery via its scan and adver-
tisement operations, at the core of all BLE-based proximity detection approaches;
further, it does so very efficiently from an energy standpoint. In contrast, not only
does UWB lack similar commonplace protocols, it also has significantly higher en-
ergy consumption. For instance, the popular DW1000 UWB transceiver consumes
∼80 mA in TX and ∼120 mA in RX; the BLE chip on the dual-radio module we
exploit consumes only ∼4 mA and ∼6 mA, respectively [48].

1.3 Challenges for Proximity Detection Protocols

As we have seen in the previous sections, proximity detection requires finding who
is around and their distance, dividing the problem into two components: contin-
uous neighbor discovery and ranging. Even if at first glance, proximity detection
seems a straightforward task, it carries with it several challenges that one must
take into account when designing a protocol.

Ranging, for instance, requires a certain accuracy in measurement. If the target
environment must identify when two people are within 2 m, an error of 30 cm
in the calculation is acceptable. However, if instead we must also collect data if
and only if the two people are at 2 m or less, those 30 cm matter and therefore the
high accuracy becomes fundamental. As mentioned previously, different ranging
techniques offer different accuracy levels. Moreover, the technologies here play an
important role, with UWB as one of the most accurate radios with an error<10 cm.

However, accuracy is not everything. In the IoT paradigm, devices are energy-
constrained “Things” that can not rely on bulky batteries, due to the their small
dimensions. Therefore, energy consumption represents a classical thorn in the side
of every IoT task, including proximity detection. While the battery lifetime is one
requirement of a specific application, it is generally difficult to predict many of the
factors that influence consumption. For example, how long a device will be alone,
without seeing any neighbor? How many devices on average will it meet per day?
Depending on the answers, the radio activity will change from zero ranging if al-
ways alone to a continuous ranging if always in the company of others. A concrete
example of this is illustrated in [88], where the authors test an IoT smart door lock
and the answers to the previous questions change, depending on the scenarios
considered. In general, decreasing as much as possible the energy consumption
allows a protocol to be more flexible so that it can be used for a wide spectrum
of applications. In this regard, UWB is not the best performer. The consumption
cited in the previous section demonstrates that designing a low-power proximity
detection protocol using UWB is challenging, while would be easier with BLE for
instance, thanks to its low-power radio module.

In the examples that we made before, there was always a mention of the ap-
plication in which the protocol is going to be used. We can distinguish the use
cases exploiting proximity detection in two broad classes: reactive ones focused
on exploiting proximity for run-time interaction and alerts, and logging ones fo-
cused on acquiring data for subsequent offline analysis and interpretation. These
are not mutually exclusive, and may appear together in a single application. For
instance, the recent pandemic fueled a market surge of “proximity tags”, geared
both towards real-time alarms and offline analysis. Similarly, applications in the
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healthcare domain may exploit logging functionality to quantify patient-caregiver
interactions, but also exploit alarms to protect specific patients from dangerous
situations (e.g., an Alzheimer’s patient near the ward exit door) [48]. That is the
moment in which the concept of latency comes into play. The examples before state
that, depending on the type of application, the proximity detection must occur
within defined time bounds. Therefore, in a reactive application, ideally, the la-
tency should be lower, permitting proximity detection as soon as possible while,
for a logging application, the time bound can be more relaxed.

To summarize, accuracy, energy consumption, and latency represent a triad of
variables that one must consider in designing a proximity detection protocol for
IoT. Clearly, they are often at odds with one another, posing different challenges
to the designer. For example, achieving a low latency protocol is fundamental
for a reactive application, however this turns into high consumption, with the ra-
dio triggered more often, thus draining faster the battery. Also finding the right
trade-off between accuracy and lifetime is tricky. If on the one hand, UWB is a
technology that allows one to achieve accurate measurements, on the other hand
its consumption is high, making BLE preferable at the cost of ranging accuracy.

1.4 Thesis Statement and Structure

This thesis sets out to strike a balance among accuracy, energy consumption and la-
tency in proximity detection. The core of the thesis revolves around the design and
implementation of two proximity detection protocols, in which understanding the
equilibrium of the aforementioned variables is at the core. The backbone support-
ing this thesis is UWB technology: the high accuracy guaranteed by its PHY layer,
allows “fixing” one of the variables, ranging accuracy, allowing us to concentrate
on energy consumption and latency. This choice is further motivated by the spread
of UWB modules in new smartphones [103], making this technology available also
to the smartphone application developer in the near future and drastically increas-
ing its ubiquity.

Proximity detection protocol development was not the only motivation for this
work. The idea of offering a complete treatment, in which the protocols are not “sim-
ply implemented”, but are also examined in real scenarios is also a fundamental
target of the thesis. Therefore, this thesis also demonstrates the real potential of
proximity detection, offering a thorough analysis that the protocols enabled.

The first step toward the thesis target is embodied in the Janus protocol [48]
described in Chapter 2, in which the three dimensions of the problem are ex-
plored with a dual-radio architecture. In Janus, the continuous neighbor discovery
and the ranging are split, with BLE being use for the former while the ranging is
achieved with UWB, guaranteeing accuracy. The described protocol is both accu-
rate and energy efficient, producing a flexible protocol useful in different environ-
ments as shown in the chapter. This protocol represented our first complete work
into proximity detection and into UWB technology, thus representing a fundamen-
tal experience for this thesis.

Importantly, we also had the opportunity to use Janus in a real experiment [60],
as depicted in Chapter 3. Here, we show the potential of Janus for monitoring ac-
tivities of children at indoor and outdoor summer camps held during the COVID-
19 pandemic. This study was conducted in collaboration with a research group
working on data analysis, allowing us to develop a complete work in which we
show several interesting results enabled by Janus. Indeed, thanks to the availabil-
ity of useful metadata on the children’s activities and to the high accuracy pro-
vided by Janus, we offer multiple insights on children’s interactions, from the defi-
nition of contagion risk levels, to the study of the efficacy of social bubbles between
groups. This work clearly shows the enormous potential of studies and analysis
that a well-developed proximity detection protocol can permit.
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Despite the successful use of Janus, we returned to the protocol, noting that the
architecture that splits discovery and ranging across two radios introduces funda-
mental drawbacks: first, it requires careful coordination between the radios, but
more importantly, it introduces latency that imposes a limit on the applicability
of the protocol for low-latency applications. Therefore, we decided to return to
a single-radio architecture, and design a novel protocol, with UWB as the main
technology as shown in Chapter 4. With this new protocol, Hermes, the challenge
moves from the coordination of the two radios to the design of the UWB transmis-
sion and reception scheduling that is reliable despite collisions, energy efficient
despite the use of UWB, and still flexible enough to be applied in a variety of set-
tings. Our contribution here is a low-latency protocol that, while it has higher
energy consumption than Janus, its advantages make it applicable in a variety of
novel applications. In the chapter we provide the results achieved with a custom
simulator, a fundamental tool to test different configurations and explore the trade-
offs of the protocol. Moreover, with the real implementation of Hermes, we show
that we can achieve reliability in line with the simulator and implement different
techniques to reduce the consumption.

Finally, Chapter 5 presents a project on localization with UWB technology, a
project not strictly in line with the thesis objectives of proximity detection, but
interesting in its practical use of UWB. The project was in collaboration with a
company2 and the target was to create a testing infrastructure to assess the qual-
ity of a Global Navigation Satellite System (GNSS) Vehicle-To-everything (V2X)
solution for indoor environments. In contrast to the rest of the thesis in which
novel protocols were developed and evaluated, here we used a commercial UWB
localization system, moving the challenge from protocol design to the validation
of the systems. The creation of a complete system to be used as the ground truth,
the installation of the system in the field and the data comparison to the tested
commercial GNSS solution represent the main contributions of this chapter.

The thesis concludes in Chapter 6 with a summary of the contributions brought
to the proximity detection, together with a brief outline of future work.

2All details of the collaboration, including the collaborator and the system under evaluation, have
been anonymized for contractual reasons.
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Chapter 2

Janus: Accurate and Energy
Efficient Proximity Detection
Protocol

A fundamental step toward a proximity detection protocol requires addressing the
trade-off between ranging accuracy and energy efficiency. Janus reconciles these
dimensions in a dual-radio protocol enabling accurate and energy-efficient prox-
imity detection, where the energy-savvy BLE is exploited to discover devices and
coordinate their distance measurements, acquired via the energy-hungry UWB. A
model supports domain experts in configuring Janus for their use cases with pre-
dictable performance. The latency, reliability, and accuracy of Janus are evaluated
experimentally, including realistic scenarios endowed with the mm-level ground
truth provided by a motion capture system. Energy measurements show that Janus
achieves weeks to months of autonomous operation, depending on the use case
configuration. Finally, several large-scale campaigns exemplify its practical use-
fulness in real-world contexts.

The work presented in this chapter has been published in [48].

2.1 Introduction

Named after the god with two faces in Roman mythology, Janus exploits a dual-
radio approach taking the best of BLE and UWB: the low-power consumption of
the former and the accurate distance estimation of the latter.

In Janus, continuous neighbor discovery is performed by the lower-energy BLE
radio, while the higher-energy UWB radio is triggered on-demand solely when a
device is discovered and a distance estimate is required. This yields the same
decimeter-level accuracy provided by UWB, but increases lifetime up to months.
However, the UWB distance estimates, obtained via two-way ranging [49] ex-
changes, face the possibility of collisions. Therefore, we double the responsibility
of BLE and use it both for discovery and to coordinate ranging exchanges, piggy-
backing their schedules in the BLE advertisements, increasing reliability and en-
suring a predictable behavior.

On the other hand, the accuracy of distance estimation and energy-efficiency
are not the only metrics of interest determining the practical usefulness of a prox-
imity detection system; the latency of first discovery, ranging update rate, and reli-
ability all play a key role. The configurability of the system is another fundamental
requirement; domain experts should be able to tailor the system behavior to their
specific needs with a small set of parameters whose effect is well understood.

2.1.1 Goals, Methodology, and Contributions

After elaborating on these requirements (§2.1.2) we present the design of Janus
(§2.2), reconciling accuracy with energy efficiency by combining the respective
strengths of BLE and UWB in a novel dual-radio protocol. Moreover, an analyt-
ical model (§2.3) is the cornerstone enabling domain experts to configure Janus by
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navigating the tradeoffs between latency, reliability, and scalability. Our design is
embodied in the implementation we concisely describe (§2.4) along with several
other hardware and software components enabling the practical use of our solu-
tion, notably including a custom tag with a slim, badge-like form factor (§2.5).

We characterize the performance of Janus in our system-centric evaluation (§2.6),
using different experimental methodologies. First, we exploit tabletop experi-
ments with up to 20 nodes to retain full control of the exact moment nodes come
within proximity—a ground truth very hard if not impossible to acquire in the
wild due to the vagaries of wireless communication. This enables us to report
accurate statistics about the latency of first contact and the reliability of discov-
ery and ranging with a varying number of neighbors, therefore also validating our
model. To ascertain the accuracy of distance estimation in realistic scenarios where
tags are both worn by people and placed in the environment, we perform a second
set of experiments in a motion capture facility providing mm-level ground truth.
These experiments also provide unique insights into the effects of body shielding
and antenna orientation, factors that affect UWB ranging in general and proximity
detection in particular, but are rarely ascertained in the literature [68, 76]. Finally,
we show energy measurements confirming that Janus achieves up to months of
uninterrupted operation, depending on how aggressively the discovery and rang-
ing latency are configured, and on assumptions about the number of neighbors in
range.

The system evaluation is complemented by in-field experiences (§2.7), con-
cretely highlighting the functionality and advantages enabled by Janus. We focus
on scenarios related to the recent COVID-19 pandemic as these reunite in a sin-
gle context the paradigmatic use cases above. A discussion (§2.8) summarizes the
key findings of our system and in-field experiments, along with the main tradeoffs
entailed in configuring Janus for a given application.

Dual-radio off-the-shelf modules are increasingly common, as exemplified by
the popular BLE-UWB Decawave DWM1001C [64] we use here. Interestingly, the
same trend is emerging on personal devices, with Apple and Samsung spearhead-
ing the use of UWB on their smartphones and smartwatches, amplifying the poten-
tial impact of the work described here. Nevertheless, in the context of proximity
detection, this dual-radio approach is largely novel, with only a few research and
commercial systems. We discuss the significant advantages that Janus brings w.r.t.
them and related work (§2.8) before offering brief concluding remarks and an out-
look on future work (§2.9).

2.1.2 Requirements

Our high-level goal with Janus is to support both reactive and logging use cases,
which demands fulfilling several requirements concerning both system perfor-
mance and ease of deployment.

Among the former, achieving an accurate distance estimation directly quan-
tifying proximity is a defining feature of Janus, enabled by UWB. In proximity
warning systems, inaccurate measurements may cause false positives, unnecessar-
ily raising alarms, or false negatives may expose the user to risk. Similar concerns
also arise in logging applications in which an error of meters (rather than decime-
ters) may undermine validity, with COVID-19 contact tracing applications offering
a concrete example.

Moreover, proximity detection must occur within well-defined time bounds
to ensure prompt user alerting or to correctly capture the time spent in proxim-
ity. Two quantities are typically important: i) the latency of first detection Λ, i.e.,
the interval between when two devices enter in proximity and when they are ac-
tually detected as such, and ii) the update interval U at which the system verifies
whether the nodes are still proximate and at what distance. Their relative impor-
tance largely depends on the application; further, “faster” is not always “better”.
For instance, keeping these values small is an obvious concern for applications
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that must trigger an action in real time, e.g., proximity warning systems or prox-
imity beacons. However, a highly reactive detection, desirable in dynamic sce-
narios with fast moving nodes, must be balanced against the energy consumption
caused by the frequent communication it induces; acceptable tradeoffs must be
determined by domain experts depending on the use case. On the other hand,
the requirements of several logging applications are generally more tolerant. For
instance, biologging studies often consider a contact only if two nodes remain in
proximity for at least one minute [79]. Moreover, the recent Google-Apple expo-
sure Notification (GAEN) [39] framework at the core of several COVID-19 contact
tracing smartphone apps detects proximity via a fixed period of 4 minutes.

The latter highlights a relevant aspect of BLE-based approaches: the discovery
latency and update rate are typically the same (Λ = U ), as the information used
for discovery (BLE advertisements) is also used to estimate distance. This is a very
reasonable setup also in Janus, used in the evaluation (§2.6.1) to retain general-
ity. Nevertheless, our dual-radio approach allows us to decouple discovery and
ranging, providing domain experts with extra degrees of freedom in determining
Λ and U independently. For instance, in interactive applications reaction is key,
motivating aggressive discovery; distance could be monitored at a slower rate. In
many logging applications, the opposite configuration may be preferable; Λ can
be large, to filter out transient contacts that would only pollute the dataset with a
small U providing fine-grained information for relevant ones.

Nevertheless, all the considerations above hinge on the fact that proximity de-
tection is reliable; again, our dual-radio approach meets this requirement along
with the intertwined perspectives of discovery and ranging. Indeed, reliability in
Janus is determined by the probability to successfully discover a device and sub-
sequently estimate its distance. The reliability of the former affects the latter; if a
device is not correctly discovered, the system is oblivious of its presence and its
distance cannot be estimated. Further, distance estimation has challenges of its
own in dynamic scenarios where globally scheduling ranging exchanges is expen-
sive or even impossible.

This bring us to a second set of requirements, less concerned with the perfor-
mance of proximity detection and more with the deployment and practical use of Janus
in terms of targeted scenarios and ease of applicability.

A key aspect of Janus is that it makes no assumptions about mobility pat-
terns for devices, whose proximity can therefore change in unpredictable ways;
after all, characterizing these patterns is precisely the goal in many applications.
However, this significantly complicates both timely and reliable discovery, as the
system must be assumed to be always in flux. Further, we cannot assume that
all nodes remain confined in a given area, which provides two additional require-
ments. First, an infrastructure-less approach is required. This is in direct op-
position to conventional localization systems [107] that track users only within a
limited area where reference nodes (anchors) are deployed. Second, the system
should be open, i.e., capable of supporting an arbitrarily large set of overall de-
ployed devices, well beyond the comparatively limited number of those actually
in proximity at any time. This is crucial to simplify management and liberate ap-
plications from co-location or even geographical concerns, therefore enabling the
use of Janus in large populations of, e.g., workers moving across areas of the same
large organization, or even individuals moving freely across a city to meet friends.

A related, important aspect is the number of devices simultaneously in proxim-
ity of another, determining the extent to which the system is scalable. An estimate
about the expected maximum, typically provided by domain experts, is necessary
to adapt the operation of the system to the application scenario at hand, avoiding
the under- or over-provisioning of resources in meeting all other requirements. On
the other hand, this estimate may be difficult to determine precisely; it is therefore
important that the system performance degrades gracefully when the actual number of
devices in proximity is higher than the expected maximum.

Finally, mobility implies that devices, typically carried by users, must be battery-
powered; proximity detection must also be energy-efficient—the other defining
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FIGURE 2.1: The Janus protocol. The illustration is a complete ac-
count only for node N1. Although N2 and N3 also discover each
other during their scans and schedule their own ranging windows,
the corresponding portions of the schedule are omitted here for

readability.

feature of Janus. The shorter the lifetime, the higher the maintenance overhead
and therefore the barrier to adoption. This is exacerbated in use cases where prox-
imity tags are used at scale, e.g., managed by a company to ensure safe working
conditions, or in large, city-scale experiments; the cost of frequently recharging
hundreds or even thousands of devices cannot be neglected.

Unfortunately, many of the requirements above are often at odds. A high-
rate detection yields fine-grained information but reduces reliability, scalability,
and battery lifetime. These system-level constraints must themselves be recon-
ciled with the target environment (e.g., construction sites vs. offices vs. wilderness)
and other application-specific concerns, sometimes of non-technical nature (e.g.,
the different duration and distance for “safe contacts” mandated by countries in
the COVID-19 pandemic). This demands reconciling system and deployment re-
quirements in a design appropriately balancing them, described next. Neverthe-
less, supporting domain experts in navigating and optimizing these constraints
requires also a simple configuration yielding predictable behavior, facilitated
in Janus by analytical models (§2.3) whose validity we ascertain experimentally
(§2.6.1).

2.2 Janus Protocol Description

2.2.1 Dual-radio Discovery and Ranging

Janus merges BLE-based neighbor discovery and UWB ranging into a single energy-
efficient protocol (Figure 2.1) coordinating these two core operations and harmo-
nizing them w.r.t. the requirements above.

2.2.2 Neighbor Discovery

Janus is built atop BLEnd [53], a state-of-the-art neighbor discovery protocol offer-
ing configurable, predictable performance. In any BLE-based discovery protocol,
a node must transmit advertisements to announce itself and scan (listen) for those
from other nodes, shown as the BLE timeline elements of Figure 2.1. BLEnd pro-
vides a periodic schedule for these two operations, therefore enabling continuous
neighbor discovery. The schedule repeats with period E (epoch, in BLEnd) and
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begins with a scan of duration L, followed by advertisements of duration b, de-
termined by the BLE radio, and separated by an interval L − b. The relationship
between scan duration and advertisement interval in principle guarantees bidirec-
tional discovery, i.e., two nodes in range discover each other within a single epoch
E. Nevertheless, when multiple nodes execute the schedule in the same neighbor-
hood, collisions may occur that prevent nodes scanning for advertisements from
receiving some of them, delaying discovery.

BLEnd takes this crucial aspect into account via a companion optimizer tool
that determines the protocol parameters to meet the user requirements in a given
setup. Domain experts input the desired latency of first discovery Λ and target
probability of discovery Pd, along with the expected maximum numberN of nodes
in range, which directly affects the collision probability. Based on these require-
ments, the optimizer relies on an analytical model to determine the values of E
and L guaranteeing Λ and Pd, while minimizing energy consumption. The result
is an energy-efficient protocol with well-defined discovery guarantees.

2.2.3 Ranging

Among the ranging techniques depicted in the introduction, we select the ToF ap-
proach. In particular, Two-way ranging (TWR) is commonly used to estimate dis-
tance between two UWB nodes. The simplest variant, single-sided TWR (SS-TWR)
is part of the IEEE 802.15.4 standard [49] and requires a 2-packet exchange between
an initiator and a responder. The initiator transmits a POLL packet to the respon-
der, which replies with a RESPONSE after a known delay. This packet includes
the timestamps marking the reception of POLL and transmission of RESPONSE that,
along with the TX/RX timestamps at the initiator, enable it to compute the time-of-
flight and estimate distance multiplying by the speed of light in air. Figure 2.1 rep-
resents schematically these TWR exchanges on the UWB radio timelines, showing
the pairwise messages between two initiators, N2 and N3, and the same respon-
der, N1.

Alternative schemes, e.g., double-sided TWR [49, 73], improve ranging accu-
racy by reducing the clock drift via additional messages. Instead, we improve
SS-TWR by compensating for the estimated clock drift at the initiator based on
the carrier frequency offset (CFO) measured during the response packet RX. This
technique, recently suggested by Decawave [26, 63], is known [24] to improve the
quality of ranging without extra messages.

2.2.4 Coordinating Discovery and Ranging

In Janus both discovery and ranging repeat periodically. Once a node has discov-
ered at least one neighbor, it schedules its own ranging window with a period
U , randomized by a small jitter to avoid long-lasting overlaps with those of other
nodes. The ranging window contains one slot per discovered neighbor, resulting
in a dynamic window duration, shown on the UWB timeline forN1 in Figure 2.1. In
each slot of its ranging window, a node serves as a responder for ranging requests
(POLL) initiated by the neighbors. By packing all slots in a single ranging window,
a node turns on the radio in listening mode only once per period, reducing the
overhead of switching radio states and enabling an efficient use of the deep sleep
radio state provided by the UWB transceiver, as described later (§2.4).

As a result, the ranging operation is asynchronous w.r.t. that of discovery; UWB
ranging windows are scheduled with an arbitrary (and varying) time shift w.r.t.
the BLEnd scans and advertisements. Nevertheless, the two procedures are coor-
dinated via BLEnd advertisements, which double as a means to inform neighbors
about when they should initiate ranging. To this end, a node adds in the adver-
tisement payload i) its node index, unique in the neighborhood (see §2.2.7); ii) the
time v to the beginning of the next ranging window, updated for each advertise-
ment; iii) a bitmap indicating the slot allocation for ranging, relying on the node
index. Figure 2.1 shows the content of N1’s advertisements arriving at N2 and
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N3. Based on this coordination information, both nodes initiate ranging by send-
ing POLL messages to N1 in the slots allocated to them in N1’s ranging window,
obtaining their distance to N1. Thanks to the bidirectional discovery of BLEnd,
the dual process occurs at N1 (not shown in Figure 2.1), providing N1 with the
distances to its neighbors.

Decoupling discovery and ranging allows Janus to place the overhead of con-
tinuous neighbor discovery on the energy-efficient BLEnd protocol, reducing the
use of UWB to the bare minimum required for ranging. This is key in scenarios
where a node is not always in range of some other, and continuous ranging at-
tempts would be wasted. At the same time, the necessary coordination between
discovery and ranging is achieved by piggybacking information on the BLE ad-
vertisements that would be sent anyway for discovery, therefore i) at no additional
communication and hence energy cost, and ii) with the latency and reliability guar-
antees provided by BLEnd.

Nevertheless, the price to pay for the above is a corresponding decoupling of
the times at which the discovery and ranging tasks complete, yielding an increased
latency of first ranging Λr > Λ w.r.t. that of discovery. Indeed, BLEnd guarantees
that a node A discovers a newly-appearing node B with latency Λ. However, to
perform ranging, B must learn its position in A’s schedule via A’s advertisements,
whose receipt is guaranteed to happen reliably within Λ. The same holds in the
opposite direction, yielding a latency of first ranging three times that of discovery,
Λr = 3Λ, in the worst case. Notably, this does not affect the timing of subsequent
ranging estimates, occurring with the desired update rate U ; these are typically the
crucial ones. Indeed, in many applications the first detection occurs at a distance
much larger than the one of interest, e.g., in the case of a person approaching a
group of other people. Anyway, in cases where the latency of first ranging must
remain below a desired value Λ r, one can exploit the bound above to set a tighter
discovery latency Λ = 1

3Λr, supporting a faster acquisition of the first ranging. In
this case, the inevitable increased energy consumption is nevertheless mitigated
by the corresponding optimal configuration output by the BLEnd optimizer.

Finally, slots are allocated for neighbors at the end of each ranging window and
de-allocated only after a given number of advertisements are no longer received,
indicating the neighbor has moved away.

2.2.5 Time Synchronization

Given the time-slotted coordination of ranging exchanges, time synchronization
is crucial to ensure that they complete successfully. Again, we achieve this func-
tionality by relying on advertisements that, according to the BLE standard [49],
consist of 3 identical packets sent sequentially on different channels (37→38→39).
As each scan occurs on a single channel, changed after each scan, the scanning
node receives only one of the packets at a fixed time offset depending on the po-
sition in the sequence. However, since i) we verified that the channel sequence is
invariant, ii) we measured the inter-packet interval in an advertisement, and iii) the
RX channel is known, the node can easily compute the original time at which the
first packet was sent and use it as the reference time to schedule ranging with the
sender.

2.2.6 Assigning the Node Index

The ranging window must schedule a slot for each neighbor; depending on the
deployment scenario, there may be tens of them. As the schedule must fit into a
single BLE advertisement payload (at most 24B), identifying nodes by their 6B
address is unfeasible. Instead, we identify nodes with a 1-byte index and advertise
bitmaps where a 1 in position x denotes a ranging slot allocated for the node with
index x. The slot number is defined as the ordinal number of the 1 in the bitmap.
Figure 2.1 shows the first 9 bits of N1’s neighbor schedule, specifying that nodes
with index 2 and 6 are expected to range in the first and second slot, respectively.
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This bitmap must accommodate the maximum expected number of neighbors
and minimize conflict among indexes, discussed next. In our implementation
(§2.4) the unused portion of the advertisement payload is 13B yielding an address
space of 104 bits, large enough to satisfy both concerns.

2.2.7 Open system: Resolving Index Conflicts

In large-scale settings, the nodes deployed may be many more than the avail-
able node indexes, which therefore cannot be globally unique. Still, the protocol
described above requires indexes to be locally unique, otherwise multiple nodes
would share the same slots and their ranging packets would collide. This is a
practical concern that arose in some of the real-world experiences described later
(§2.7), where hundreds of Janus tags were carried by workers in a large factory
plant to monitor their social distancing. Some of these workers travelled between
multiple plants on different days, making even the option of a closed-system with
site-specific addressing impractical. An open system is instead required, where
nodes in range interact opportunistically without global addressing.

We tackled the problem with a simple scheme that dynamically reassigns in-
dexes upon detecting conflicts. At bootstrap, nodes select their index randomly.
As advertisements include the sender index and BLE address, receivers can detect
conflicts with their index; the node with the lower BLE address picks a different
index, avoiding those already in use. In case two non-neighboring nodes with the
same index share a neighbor, the latter indicates the conflict in the advertisement
payload, forcing both neighbors to select a different index. Finally, the selection
of a new index among those available can be greatly improved w.r.t. purely ran-
dom with negligible computational overhead. In our system, each node caches the
bitmaps of all neighbors; the bit-wise OR of all these bitmaps and the node’s own
schedule yields a zero for all unused index values.

2.3 Mathematical Model

2.3.1 Modeling the Success of Proximity Detection

As we mentioned (§2.1), Janus makes no assumption about the mobility patterns of
the devices whose proximity it aims to detect. Nodes can come and go of their own
volition, continuously changing the neighborhood of each device. Given the dy-
namicity induced by this highly flexible and practically relevant scenario, globally
scheduling the communication required for discovery and ranging is not a viable
option. On the other hand, uncoordinated communications may undermine the
packet exchanges enabling device discovery and ranging, due to collisions. Their
presence is inevitable in an unscheduled setting; however, it is crucial that their
impact is predictable, presenting domain experts with a simple way to navigate the
tradeoffs between reliability and the other performance metrics when configuring
Janus for a specific use case.

To this end, we present in the next a model that estimates the probability of suc-
cessful detection based on the key user configuration parameters. We later show
(§2.6) that this model is in very good accordance with experimental results and can
therefore be used in practice to inform the configuration of Janus.

2.3.2 Overall Probability of Success

In Janus, the probability Pj of successfully acquiring the distance of a neighboring
device depends on the probability Pd that the neighbor is successfully discovered
and the probability Pr that the subsequent ranging exchange with it completes
successfully with a distance estimate. Therefore, Pj = Pd × Pr holds; the problem
then becomes estimating the individual probabilities.
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FIGURE 2.2: Modeling Janus: The TWR exchanges of four co-
located nodes fail due to a (partial) overlapping, indicated in gray.

Our reliance on BLEnd simplifies matters, as this protocol was expressly de-
signed to ensure predictable performance. The original paper [53] contains an an-
alytical model accurately estimating Pd based on i) user requirements: maximum
number of nodes N and maximum latency of first discovery Λ, ii) BLEnd configu-
ration: epoch durationE and listening interval L, and iii) system-level parameters:
duration b of a BLE advertisement. Experiments with our Janus implementation
(§2.6), based on different firmware and hardware w.r.t. the one used for validation
in [53], confirm the accuracy of the BLEnd model in estimating Pd. Therefore, the
problem reduces to estimating the probability Pr of successful ranging.

2.3.3 Probability of Successful Ranging

We assumed, without detriment to model accuracy (§2.6), that all N nodes in the
system are in range and have already discovered each other. A node performs
ranging by scheduling, with period U , a UWB ranging window containing a se-
quence of N − 1 slots, each dedicated to one of its neighbors acting as the rang-
ing initiator (§2.2.1). As mentioned, this provides an efficient means to coordi-
nate all ranging exchanges involving the device as a responder. Nevertheless, ex-
actly N ranging windows are contained within any arbitrary interval U . Further,
these windows may overlap, as their scheduling is not globally coordinated across
devices, potentially generating collisions between ranging exchanges on different
pairs of nodes. Our goal is therefore to derive the probability Pr that a given rang-
ing exchange R does not overlap with any other.

Figure 2.2 depicts the problem by focusing only on 4 nodes: 2 initiators and
2 responders. We first derive the probability of collision Pc,1 for a ranging ex-
change R1, initiated by I1 and targeting T1 within its window W1, to overlap with
a ranging exchange R2 scheduled within another window W2. We observe that
Pc,1 = Pw × Ps, where Pw is the probability for R1 to overlap with the window
W2 itself, and Ps is the conditional probability for R1 to overlap with a ranging ex-
change inside W2. These can be estimated by observing that the probability Pw of
a ranging exchange of duration r to (partially) overlap with a window of duration
w within the ranging period U can be equivalently modeled as the probability that
a randomly placed point falls inside a collision interval of duration w+r within U :

Pw =
w + r

U

Along the same lines, the probability Ps that a ranging exchange of duration r
overlaps with another in the interval w+ r is the same of a randomly placed point
falling inside a r + r = 2r interval within w + r. The chance of this happening for
any of theN−1 non-overlapping ranging intervals contained in a ranging window
is:

Ps =
2r(N − 1)

w + r
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yielding

Pc,1 = Pw × Ps =
2r(N − 1)

U

Thus far we considered the probability for a given ranging exchange R1 to col-
lide with another in one out of N − 1 competing windows. Since the windows are
placed randomly and independently within U , the probability for R1 to not col-
lide with any of them is equal to the probability that R1 does not collide with one
window in all of N − 1 independent random trials, or

Pr = (1− Pc,1)N−1 =

(
1− 2r(N − 1)

U

)N−1

2.4 Practical Implementation

2.4.1 Implementation Details

Janus runs atop ContikiOS on the popular DWM1001C module by Decawave,
combining a Nordic nRF52832 SoC for MCU and BLE and a DW1000 UWB radio.
The dual-radio design of Janus complicates its implementation as the activities per-
formed by both radios are time-sensitive and must be coordinated within a single
MCU. For the BLE stack, we rely on SoftDevice, a closed-source implementation
from Nordic. While convenient for managing BLE activities, it monopolizes all
high priority interrupts to guarantee BLE timeliness and does not provide access to
its internal schedule, making it impossible to implement a common, synchronous
scheduler for both radios. Therefore, we chose to decouple the two subsystems,
loosening the UWB timings, which remain under our control, to accommodate un-
predictable, overlapping BLE activity.

According to the SoftDevice documentation, its interrupt handlers may occupy
the MCU for up to 128 µs, and two consecutive interrupts may occur within as lit-
tle as 40 µs. For this reason, during the TWR exchange, we programmed the UWB
radio to transmit a response 650 µs after RX of the POLL packet, establishing ex-
perimentally that this is sufficient to process the POLL and prepare the RESPONSE
even if interrupted by BLE activity. We also exploited a DW1000 feature to trigger
packet preamble TX before the packet payload is uploaded to the UWB radio, par-
allelizing activities and giving the MCU an additional 128 µs to fill in and upload
the RESPONSE payload.

Providing the BLE advertisements with the interval to the next UWB window
presents another challenge. This value is calculated using a dedicated callback
(application-priority interrupt) generated by SoftDevice 5.5 ms prior to advertise-
ment transmission. This interrupt has a low priority and therefore may be delayed
(e.g., by UWB interrupts), causing errors in the advertised time interval and there-
fore in device synchronisation. The Contiki system clock, used to schedule Janus
protocol activities, is another error source. It is a tick-based clock with a tick of
∼1 ms leading to synchronization errors of up to 2 ms due to rounding.

We addressed both these concerns by adding guard times to ranging slots.
While the total duration of a ranging exchange is slightly less than 1 ms in our
configuration, we experimentally established that time slots of 4 ms are required to
ensure that a given ranging exchange does not cross the time slot boundaries. We
did consider the tickless RTimer of Contiki, whose higher frequency could achieve
smaller slot duration. Unfortunately, however, Contiki does not provide a mul-
tiplexing layer for RTimer, meaning that only one activity can be scheduled at a
time, a constraint we could not meet with the highly-dynamic Janus protocol.

Finally, we optimized the energy spent by the UWB radio by placing it in deep
sleep mode (∼50 nA) whenever possible. This, however, incurs a relatively long
delay (∼5.5 ms) to resume operation, as the radio needs time to stabilize its oscil-
lator, motivating the use of contiguous ranging slots to reduce the wake up over-
head.
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(A) MDEK1001 tag ready to be handed to
users.

(B) Our custom tag, complete with badge-like packaging.

FIGURE 2.3: Janus nodes used for testing and in commercial de-
ployments.

Moreover, Janus is designed as a stand-alone, reusable firmware module, whose
API sharply separates the core functionality of reporting neighbors and their dis-
tance from its use. For instance, this enables developers to define specific notions
of proximity or policies for filtering and storing data. Further, the API allows ap-
plications to independently (de)activate either radio sub-system and set its config-
uration.

2.5 From a Prototype to a Full-fledged System

Janus started as a research prototype that we progressively refined to industry-
grade level; it is currently integrated in a commercial offer targeting workplace
safety. Here we complement the description of Janus, our main focus, with a con-
cise account of other hardware and software components enabling its practical use.

2.5.1 A Versatile Firmware

Janus is designed as a stand-alone, reusable firmware module, whose API sharply
separates the core functionality of reporting neighbors and their distance from its
use. For instance, this enables developers to define specific notions of proximity
or policies for filtering and storing data. Further, the API allows applications to
independently (de)activate either radio sub-system and set its configuration.
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2.5.2 A Custom Tag

We tested Janus on the Decawave MDEK1001 evaluation kits (Figure 2.3a). These
boards are equipped with USB ports and a nice packaging, ideal for development
and experimentation. Nevertheless, their hardware is constrained; the integrated,
energy-hungry Segger debugger cannot be easily disabled, and LEDs provide the
only form of user feedback. These aspects, along with considerations about user
comfort when wearing the tag for prolonged periods, motivated the design of a
custom tag.

The current version (Figure 2.3b) has a badge form factor (106×64×13 mm) and
weighs 62 g. Inside the enclosure, the hardware board includes the DWM1001C, a
buzzer providing audible and vibration user feedback, 2 LEDs, a multi-functional
on/off controller, and an 8 Mbit Flash memory. A rechargeable 950 mAh Lithium-
Polymer battery powers the tag. About 2,000 of these tag units are currently de-
ployed at several industrial sites, as part of a commercial exploitation, whose en-
abling components are described next.

2.5.3 A Complete Solution

Additional elements support large-scale deployments. A gateway enables data col-
lection from the tags via the UWB link and upload to the cloud, where data is per-
sistently stored and can be queried and visualized via a graphical dashboard. From
a hardware standpoint, the gateway is simply a modified tag integrated with an
embedded Linux-based system providing Internet connectivity. The fixed gate-
ways also provide coarse localization near points of interest (e.g., a coffee machine),
as they can implicitly situate proximity detections in their neighborhood. Finally,
a simple, effective solution is provided for situations where nodes are not used
continuously and are amassed when not in use (e.g., at the concierge during non-
working hours). Proximity detection would be both useless and energy consum-
ing. Therefore, when nodes detect a special inhibitor node, they automatically enter
a stand-by state for a predefined time (e.g., 5 minutes), after which only BLE is ac-
tivated; normal operation resumes when the inhibitor node is no longer found.

2.6 In-Vitro Experiments

2.6.1 System Evaluation

We evaluate Janus along different performance dimensions. After discussing our
reference configurations (§2.6.2) we ascertain the latency of first discovery and
ranging, and the reliability of detection (§2.6.3) using a controlled setup enabling
precise control of the moment when a node becomes in proximity, and removing
the vagaries arising from motion and other aspects impacting wireless communi-
cation. We then analyze the ranging accuracy in a real environment, where we
compare the estimates acquired by Janus against the high-rate, mm-level ones ac-
quired via a motion capture system (§2.6.4). The representative proximity patterns
we experiment with enable us to quantify directly the threats to accuracy posed by
antenna orientation and body shielding. Finally, we confirm the energy efficiency
of Janus (§2.6.5) with real measurements, showing it achieves an extended lifetime
in configurations of practical interest.

2.6.2 Overall System Configuration and Application Scenarios

We illustrate the key configuration parameters used throughout the evaluation.

Application Requirements and Janus Configuration

Janus is designed to cater for both reactive and logging applications (§1.2). These
are differentiated mainly by their time bounds concerned with the latency of first
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TABLE 2.1: Janus configurations used in the system evaluation.

Reactive Intermediate Logging
Target properties

Latency of first discovery, Λ 2 s 15 s 30 sRanging update interval, U
Probability of successful discovery within Λ, Pd 95%
Expected maximum number of nodes, N 10

Optimal BLEnd configuration
Epoch duration, E 1 s 15 s 30 s
Scan duration, L 77 ms 341 ms 353 ms

discovery Λ and ranging update rate U , with reactive applications obviously ex-
ploiting tighter time bounds.

The Janus configurations we use (Table 2.1) arise directly from our in-field expe-
rience with several real-world applications, including those reported later (§2.7.1)
where latency values were determined in conjunction with (or sometimes even
mandated by) the application stakeholders. The reactive configuration shown is
the one in use by companies exploiting our custom tags (§2.5) in a factory environ-
ment to alert people when they are too close to each other (social distancing) or to
specific objects in the environment (proximity warning). The logging configura-
tion was similarly used in our in-field experience with tracing social contacts. The
intermediate configuration gives us the opportunity to explore a balance between
these two extremes. Alternative applications, such as biologging [104], commonly
exploit even longer latencies, further relaxing performance requirements. At the
other extreme, reactive applications with significantly shorter latencies incur very
high energy consumption and therefore are not the target of our work, as further
discussed later (§2.8).

For all these configurations, we set Λ = U , as this choice is simple, general,
and has proven practically useful in the experiences above. Alternative choices
decoupling the two values towards specific application or system requirements
are nonetheless possible. The value of Λ is also part of the input to the BLEnd op-
timizer, along with the target probability of discovery Pd, and the expected max-
imum of neighboring nodes, N . The corresponding values for the BLEnd epoch
and scan interval output by its optimizer are shown in Table 2.1.

Radio Configuration

The UWB radio uses channel 5, a pulse repetition frequency (PRF) of 64 MHz, a
preamble length of 128, and the fastest data rate available of 6.8 Mbps. The BLE
radio uses the maximum TX power of 4 dBm and the data rate of 1 Mbps. Alterna-
tive tradeoffs between range and energy-efficiency can be set via the firmware API
(§2.4), as we further discuss when reporting on our real-world experiences with
Janus (§2.7.1).

2.6.3 Latency and Reliability

We use a controlled setting to verify whether the target latency of first discovery
Λ in our configurations (Table 2.1) is met by our implementation, and quantify
the extra delay incurred by the first ranging. We show that our model of ranging
reliability (§2.3) is in very good agreement with our experiments. Moreover, we
show that both latency and reliability are affected only marginally even when the
number of nodes in range is twice the maximum one Janus is configured for.

Experimental Setup

Determining the latency of first discovery requires the ability to control precisely
the instant at which a node enters into range. Unfortunately, due to the vagaries
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of wireless communication, acquiring this ground truth is very hard, if not impos-
sible, to do in a real environment. Similarly, reliability could be impaired also by
application-dependent external factors. For these reasons, we exploit a setup in
which all Janus devices are statically placed on a table, well within their commu-
nication range and in line of sight. All nodes are connected to a computer via USB,
providing power and the ability to easily collect data logs. This setup allows us
to collect more information than by relying solely on the on-board memory, run
hours-long tests unattended, and accurately timestamp relevant events by using
the single time reference provided by the computer. The latter is crucial for mea-
suring the latency in discovering a node joining the system, an event we can easily
and accurately emulate in this setup by simply turning Janus on and off on a tag at
a designated, timestamped time. This setup also removes elements like mobility
and body shielding, which we return to in §2.6.4.

We explore all configurations in Table 2.1, and study the performance of Janus
when the number of nodes is lower than the maximum expected one of N = 10,
but also when it is twice this scale. The latter experiments allow us to ascertain the
performance of Janus beyond the worst-case it is configured for, where latency and
reliability guarantees no longer hold, therefore investigating an important dimen-
sion of scalability.

Finally, to avoid biasing the communication schedules of discovery and rang-
ing performed by the two radios, we randomize the node start time within the
ranging update interval, U .

Latency

We want to understand the time required by a node approaching a group of other
nodes to discover and range with them (node→ group) and vice versa (group→
node), i.e., the time it takes the others to discover and range with the approaching
node. We mimic this dynamic scenario by modifying the behavior of one of the
nodes in our setup to enable and disable Janus periodically, effectively joining and
leaving the group formed by the remaining nodes. We ensure that the time with
Janus active is long enough for the joining node to discover and range with all its
neighbors, and vice versa. We also ensure that the inactive gaps, emulating leaving
the group, are long enough to allow all other nodes to remove the departing one
from their neighbor tables and ranging schedules. We run the tests long enough to
allow at least 100 join events to happen; this is a relatively large number, yielding
reliable averages of the relevant metrics, yet manageable in terms of experiment
time, considering the several configurations examined. In post-processing, we cal-
culate the difference between the Janus activation time of the “joining” node and
the subsequent discovery and ranging events of all nodes.

We run tests for all the configurations in Table 2.1 and show results in Fig-
ure 2.4–2.5. The boxplots (Figure 2.4a, 2.5a) show statistics for the time it takes the
joining node to discover and range with all its neighbors, as well as the opposite,
the time it takes all the neighbors to discover and range with the joining node. We
also show how the ratio of the discovered/ranged neighbors grows over time since
joining (Figure 2.4b–2.4e, Figure 2.5b, 2.5c).

We see that discovery always meets, and in many cases exceeds, the target prob-
ability (95%) within the target latency (Λ = {2 s, 15 s, 30 s}) for each configuration.
This confirms published results [53], of interest given the significant differences
in the BLE platforms employed. This result holds both from the perspective of a
node discovering the others and vice versa, with the former being only marginally
slower. Moreover, Figure 2.4 shows that, as the number of nodes increases, the
average discovery time gradually approaches the target discovery latency due to
collisions among BLE advertisements, whose effect is nonetheless accounted for
in the BLEnd configuration (Table 2.1); the discovery latency meets the target 2 s
latency for 95% of the nodes, and never performs worse. Interestingly, this holds
even when the system operates outside the guaranteed worst-case, with twice the
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FIGURE 2.4: Latency of first discovery and first ranging for the
reactive configuration (Λ = 2 s for 95% of nodes) in Table 2.1 for
different numbers of nodes. These include N = 10 (Figure 2.4d),
the expected maximum Janus is configured for, and N = 20 (Fig-
ure 2.4e), showing that performance only marginally degrades de-

spite a system scale twice the expected maximum one.

nodes w.r.t. the expected maximum scale it is configured for, confirming the scala-
bility of Janus.

As for ranging exchanges, we recall from the Janus protocol description (§2.2.1)
that they are coordinated via BLE advertisements; bidirectional discovery is re-
quired before ranging can be scheduled. The charts confirm that, in the best case,
the first ranging involving a joining node begins after a single U interval, during
which coordination occurs and the ranging window is scheduled. However, the
charts confirm also that, in the worst case, this first ranging estimate may become
available at some nodes only within 3Λ. On the other hand, the CDFs show that
∼50% of the rangings occur within 2Λ. Therefore, assuming a random distribution
of the ranging success, at least one node in each pair obtains the distance of the
other within 2Λ, on average.

Finally, we observe that, as the number of nodes increases, the average latency
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FIGURE 2.5: Latency of first discovery and first ranging for the
intermediate (Λ = 15 s for 95% of nodes) and logging (Λ = 30 s for
95% of nodes) configurations in Table 2.1 and maximum expected

nodes, N = 10.

to range also increases due to failed exchanges induced by collisions among the
ranging windows. This is expected and quantified by the model (§2.3), whose
validity is show next.

Reliability

The controlled setup also enables to accurately estimate the probability that rang-
ing exchanges successfully complete. We elused the same three configurations
considered thus far, and analyze the impact of different numbers of nodes, both
smaller and larger than the maximum expected, N = 10. We evaluated the steady-
state performance by allowing enough time for nodes to discover each other be-
fore collecting metrics. We ran each test for a duration of at least 120 × U , which
effectively enabled to measure reliability with a resolution <1%, reasonable in our
context; we further report average over 4 repetitions, which nonetheless exhibited
only minor variations.

The experimental results (Figure 2.6) show that the intermediate and logging
configurations achieve a probability of successful ranging Pr ≥ 95% even with
N = 20 nodes, i.e., twice the maximum Janus is configured for (Table 2.1). In these
cases, the relatively long ranging update interval U can accommodate all 20 × 19
ranging exchanges with only few collisions. In contrast, the shorter U interval
set for the reactive configuration increases the likelihood of collisions, therefore
decreasing the success rate, which nevertheless yields Pr ≥ 90% up to the expected
maximum of 10 nodes.

The key point, however, is that the impact of collisions can be predicted and
therefore, if and when needed, compensated for with an alternative configuration
that can be explored analytically. Indeed, Figure 2.6 also plots the corresponding
values of Pr estimated by our model (§2.3). We can observe that experimental and
analytical data are in very good agreement, with the difference generally within
1%. Interestingly, the only exception to this is for the more challenging reactive
case and with the highest number of 20 nodes tested, where the model slightly
deviates (∼ 8%) from experiments by underestimating the probability of success.
This is a result of the conservative model assumption that any overlap between
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FIGURE 2.6: Janus ranging reliability estimated by the model
(§2.3) and measured in our experiments.

two ranging exchanges results in a failure. In the implementation, however: i) ac-
tual transmission does not occupy the whole 1-ms ranging exchange and POLL or
RESPONSE packets belonging to one exchange may “sneak” in between those of
another without causing a collision, and ii) the UWB radio can often decode one of
the overlapping transmissions [99]. These effects, all beneficial, are more likely to
cause a difference in scenarios where the likelihood of collisions is very high, as in
the case where we observe the discrepancy between model and experiments.

2.6.4 Ranging Accuracy

We now describe the evaluation of the accuracy of the distance measurements ob-
tained by Janus by comparing them against those obtained via an OptiTrack mo-
tion capture facility recording the ground-truth (mm-level) locations of Janus tags
over time. This represents also the opportunity to investigate the effects of an-
tenna orientation and body shielding, which degrade the decimeter-level accuracy
commonly associated with UWB.

Experimental Setup

In all experiments, we used the reactive configuration in Table 2.1. The tags were
continuously in BLE communication range, all discovered before the start of the
experiment.
Tags and motion capture. The motion capture facility (Figure 2.7a) offers a 10× 8 m2

area covered by 14 cameras connected via a dedicated Ethernet network. In this
space, the OptiTrack Motive system provides millimeter-level accuracy tracking
for objects marked with appropriate ball-shaped markers.

We performed experiments with stationary and mobile tags, both encompassed
by our requirements (§2.1). Stationary tags were mounted at chest height on plastic
or wooden poles, and equipped with markers (Figure 2.7b). Mobile tags were in-
stead worn on lanyards around the neck of researchers in our group (Figure 2.7c).
Attaching the markers to the tags proved difficult; the OptiTrack system frequently
lost track of them, resulting in unacceptable gaps in the measurement trace used as
ground truth. Therefore, we attached two markers to the person’s shoulders. This
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(A) The motion capture area showing six
stationary Janus nodes used for compensa-

tion calculation and in MULTIPLE.

(B) A single stationary node with motion
capture markers.

(C) Tester with markers on the shoulders
and a node on a lanyard.

(D) Side view showing the marked Janus
node for offset calculation.

FIGURE 2.7: Motion capture setup.

improved tracking, but introduced an offset between the position automatically
identified by OptiTrack (the center of the segment connecting the markers) and the
actual position of the tag. Therefore, we used OptiTrack itself to accurately mea-
sure the offset for each tester (Figure 2.7d) and exploited an OptiTrack software
option to output each position with a fixed, rigid offset w.r.t. the markers, account-
ing for orientation. This automatically-compensated position trace is the one used
in all experiments.
Mobility scenarios. We structure our experiments around three scenarios of increas-
ing complexity, each illustrated in Figure 2.8 with one of the actual Optitrack traces.
In LINE, our first scenario, a tag is worn by a user moving back and forth on a line,
approaching and retreating from a single stationary node. This very simple setup
offers a baseline for analyzing the quality of proximity detection and to ascertain
the impact of changes in antenna orientation and body shielding, both occurring
when the user walks away from the stationary node. The second scenario, RAN-
DOM, analyzes these effects at scale with a user moving along random, uncon-
strained paths around the fixed node. Finally, our last scenario, MULTIPLE, further
increases complexity with 3 users moving around 6 stationary nodes in patterns
mimicking real-world situations, described later.
Measuring distances. In all scenarios above, the (x, y, z) coordinates for all marked
objects, captured at 120 Hz, are used to calculate over time the pairwise, 3D dis-
tance between all pairs of tags. The pairwise distances measured on the Janus tags
were saved in RAM. The tags were time-synchronized to the computer running the
OptiTrack software, enabling correlation between the timestamped measurements
on the tags and those from the motion capture system.

We calculate the error of each Janus measurement between two tags w.r.t. the
OptiTrack ground truth as follows. Based on the Janus timestamp, we identify the
corresponding OptiTrack positions for the same tags at the timestamp closest to the
Janus one, usually within ±4 ms. On rare occasions, e.g., when the markers on ei-
ther or both tags are occluded, the timestamp difference may be higher; if the value
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(A) LINE. (B) RANDOM.

(C) MULTIPLE.

FIGURE 2.8: Experimental scenarios and corresponding sample
motion traces exported from Optitrack. M and S in the legend

stand for Mobile and Stationary node, respectively.
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FIGURE 2.9: Distribution of the errors between Janus and Opti-
Track distances among 6 fixed nodes. The mean, −39 cm, is ap-
plied to all Janus measurement to compensate for arbitrary an-

tenna orientations during testing.

exceeds ±16 ms, we do not report it for the corresponding Janus measurement. In
MULTIPLE, our most complex scenario, only 71 out of 15833 Janus measurements
(0,44%) are dropped, and even fewer in the other, simpler scenarios.

The UWB ranging measurements themselves pose a challenge. Indeed, in the
absence of specific assumptions, the tags in proximity will have an arbitrary rel-
ative antenna orientation, an aspect known to significantly affect ranging accu-
racy [10]. As such, the usual calibration methods with both UWB tags nicely fac-
ing each other are inappropriate. This holds in real-world settings and therefore
also in our experiments, which try to reproduce common patterns in a realistic
way. To account for this, and provide a reliable accuracy baseline for our experi-
ments, we proceed as follows. We performed a single, 2-minute experiment collect-
ing all pairwise distances among 6 stationary nodes spread unevenly throughout
the area, pointing in random directions. This yields the distribution in Figure 2.9,
whose average error w.r.t. ground truth is −39 cm. We directly apply this value in
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post-processing to all Janus UWB measurements, effectively re-centering (on av-
erage) their distributions around this baseline. Alternative methods may be used
depending on the application, e.g., when the majority of detections occur along a
predefined path with the antennas facing each other, as in our LINE experiment.

Results

Before reporting the ranging performance in our experiments, we note that they
enable us to evaluate the overall Janus reliability Pj = Pd × Pr in a realistic envi-
ronment, yet with all tags always in BLE and UWB range, similar to the tabletop
experiments (§2.6.3). In that case, a direct, wired connection towards all nodes en-
abled us to report the ratio between successful and scheduled rangings; instead,
here we must rely solely on the on-board storage, limiting the detail of logged in-
formation. Therefore, we report the ratio between the measurements recorded by
Janus w.r.t. the maximum possible that could take place in the same time interval.

In the simpler experiments, LINE and RANDOM, we observe Pj = 97.5% and
Pj = 97.1%, respectively. Interestingly, the lost measurements are unlikely to be
attributable to collisions, given that only 2 nodes are present in these experiments.
Instead, they are due to the fact that the radio environment is more complex than
in the previous tabletop setting, especially due to body shielding. This affects not
only the ranging accuracy, as discussed next, but also the overall reliability, either
i) directly due to a failed ranging exchange, or ii) indirectly due to lost BLE ad-
vertisements, which prevent the correct scheduling of ranging windows. On the
other hand, in the more complex, 9-node MULTIPLE, we observe Pj = 88.2% that,
once corrected for the minor losses above, is in line with the product of the ranging
reliability Pr = 93% estimated by our model and the target discovery probability
Pd = 95%.
Dissecting proximity: LINE. We began our exploration of the ranging performance
with a simple, controlled scenario with a tester walking back and forth. We placed
one stationary node (S6) near the edge of the area. The tester (M1) began ∼10 m
away and walked toward the fixed node, pausing at a distance of∼1.5 m for∼15 s.
He then turned around, walked back to the starting position, turned back to face
the node, paused for 15 s, then repeated the process, for a total of 10 minutes (Fig-
ure 2.8a). The experiment was repeated 3 times.

The top of Figure 2.10a shows part of the trace, with large green and orange
dots denoting Janus measurements (e.g., M1–S6 indicates those saved at mobile
node M1) and blue points denoting the distances computed from OptiTrack posi-
tions, our ground truth; these occur at higher frequency (120 Hz) and appear as a
continuous line.

We immediately observe that Janus is quite accurate, with most measurements
coinciding with ground truth. Notably, there are a few exceptions; in this brief
trace, we see two outliers at >11 m. Interestingly, they both occur when the tester
is turning around, likely due to an unfortunate combination of antenna orientation
and body shielding. These spurious, unreasonable measurements are easy to iden-
tify and remove, either online or in post-processing. Indeed, in the data reported
here, we filter all values >11 m, as these were unreasonable for the area being
studied. Similar arguments can be made on a per deployment basis, removing
such impossible measurements either in post-processing or at run-time. In total,
in LINE, we removed 2.7% of the Janus measurements exceeding 11 m, a relatively
high percentage due to the fact that the tester was often near 11 m. In our later
experiments, we removed fewer, 1.5% and 0.4%, as the scenarios measured fewer
distances near the 11 m mark.

We next consider the absolute error ε = dj − dg between the measured distance
dj and the ground truth one dg , shown for the same trace portion in the bottom of
Figure 2.10a; the error of the two spurious measurements above are removed, as
they are beyond the scale. We note two trends. When the tester has his back to the
node, walking away, ε is larger and positive, i.e., Janus measurements overestimate
w.r.t. ground truth. This is explained by the presence of the body between the two
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FIGURE 2.10: Dissecting proximity: LINE.

nodes, which slows down the UWB signals, increasing the estimated distances.
Instead, when the tester is facing the fixed node, ε is slightly negative, between
−20 cm and −5 cm, underestimating w.r.t. ground truth. This is a consequence
of the procedure we described to establish the accuracy baseline by accounting
for antenna orientation (§2.6.4), which accounts for the case (common to all the
experiments) of arbitrary orientation, but leads to underestimation in this case with
tags in the ideal position.

These two trends are clearly shown in the histogram1 of Figure 2.10b in which
all points were manually annotated to reflect orientation. As the majority of points
are recorded with the tester facing the node, shown in green, the overall mean
(3.6 cm) and median (−7.2 cm) values of ε are shifted negatively, while the errors
clustered around 50 cm, shown in red, are those occurring when the tester is walk-
ing away. The CDF, which reports only the magnitude |ε| of the error, shows very
good results; despite the long tail, the 75th percentile is 16 cm and the 90th is 54 cm.
The former is in line with prior validations of UWB ranging, and the later dilution
of error is a clear result of body shielding. Indeed, as shown in [68], the body
shielding can lead to notable errors. The slight knee in the CDF is due to the high
fraction of points with the nodes facing one another.
Arbitrary paths: RANDOM. The previous experiment is intentionally simple to iden-
tify threats to ranging performance, specifically the combination of antenna orien-
tation and body shielding. In the next experiment, we analyzed the effect at scale of
these perturbations. We still employed only one stationary and one mobile tag, but
this time the tester carrying the latter moved along an unconstrained, randomly
chosen path throughout the monitored space. The test lasted 15 minutes and was
repeated 2 times, covering a large portion of the area (Figure 2.8b) and effectively
exploring at once several combinations of distance, relative antenna orientation,
and body occlusion between the two tags. As such, it can be regarded as captur-
ing the average performance one can expect in the absence of specific assumptions
about these aspects.

The trace snippet (Figure 2.11a) shows a pattern similar to the one in LINE (Fig-
ure 2.10a). Overall, the Janus measurements closely follow the ground truth, but
larger errors occur when moving away from the fixed node, with a few outliers

1For readability, all histograms are cropped to ±1 m, with the CDFs used to report percentiles.
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FIGURE 2.11: Arbitrary paths: RANDOM.

often corresponding to changes in direction. Nevertheless, by comparing the his-
tograms of this RANDOM experiment (Figure 2.11b) vs. the LINE one (Figure 2.10b)
we see that the errors are significantly more spread in this case due to the arbitrary
movement and orientation vs. the rigid and limited ones in LINE. The CDF shows
a similar, rapidly increasing distribution, with the 50th percentile at 15 cm and the
90th at 75 cm. This slight degradation is expected, again due to the larger pro-
portion of measurements influenced by body shielding in combination with the
random antenna orientations.
Many tags: MULTIPLE. The final experiment involved 9 tags. It both enabled to as-
sess the reliability and performance of Janus when several detections occur and
is representative of multiple real-world situations. We stationed 6 fixed nodes
throughout the area, at the same locations used in Figure 2.9; these nodes may
represent office workers sitting at desks or designated objects of interest. The re-
maining 3 tags are carried by testers; they started near the corners of the room,
moved over to cluster around node S1, and paused at ∼1.5 m from one another
for 15 s, as if to have a conversation. Finally, they departed in an unconstrained
way (Figure 2.8c). The entire experiment lasted about 1 minute and was repeated
5 times.

In this complex scenario, the trace snippets are not very informative. Instead,
we focus on the cumulative errors, by analyzing different combinations of fixed
and mobile tags. We first focus on the subset of measurements among fixed nodes
only (Figure 2.12a) and observe that the results are well aligned with those in Fig-
ure 2.9, except for the appearance of a few, significantly overestimated distances.
This is due to the body shielding randomly induced by the 3 testers, causing an
effect akin to that observed in LINE. As seen in the CDF, the data is exceptionally
accurate, with the 90th percentile showing only 11 cm.

At the other extreme is the subset of measurements entirely among mobile tags,
representative of social distancing among individuals, or proximity warning w.r.t.
moving machinery. In this case (Figure 2.12b) the distribution of errors is wider,
akin to that in RANDOM but more irregular, as a consequence of the relative move-
ments among tags, mixed with periods in which they are stopped. Further, in
many cases the testers are back to back, with the two bodies shielding the UWB
signals and increasing measurement errors. Although the accuracy drops in these
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FIGURE 2.12: Many tags: MULTIPLE.

conditions, the 50th percentile is 25 cm, the 75th is 46 cm, and the 90th remains at
91 cm, i.e., sub-meter.

Finally, we consider the subset of measurements involving one fixed tag and
one mobile tag (Figure 2.12c) representative, e.g., of scenarios where a proximity
alarm could be raised upon approach to a given location. Unsurprisingly, the re-
sults are a mix of the two previous ones. Distances are slightly overestimated, with
a better median and mean error than in the mobile-only case. Similarly, the CDF at
the 50th percentile is 16 cm, while the 75th and 90th are 35 cm and 64 cm, respec-
tively. This slightly better performance emerges because one of the tags is fixed,
which both induces a less irregular error pattern and reduces the impact of body
shielding.

Overall, this last, realistic experiment, validated against ground truth, confirms
that Janus delivers accurate sub-meter estimates. We now turn our attention to its
other defining feature, energy efficiency.

2.6.5 Energy Consumption

We investigate energy consumption, and therefore the lifetime achieved by Janus,
by acquiring current draw measurements with a Keithley SourceMeter 2450. We
used the custom tags (§2.5), as they do not suffer from the power limitations of the
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MDEK1001 devices. We remind the reader that the battery’s capacity of the custom
tag was 950 mAh.

This also provides us the opportunity to peek at the actual behavior of a Janus
tag executing the protocol schedule (§2.2.1) for which we show a trace segment
(Figure 2.13) acquired at a sampling rate of∼2 kHz. The protocol phases are clearly
distinguishable: BLE advertisements (low, periodic peaks), UWB ranging sessions
(high, aperiodic peaks), BLE scan (low interval) and UWB ranging window (high,
shorter interval). The trace concretely shows the significantly lower consumption
of the BLE radio w.r.t. the UWB one, as well as their interplay.

We compare the three representative configurations in Table 2.1. To estimate
battery lifetime we observe that real-world scenarios are a mix of periods where
the user is alone and others in contact; however, the exact proportions of the mix
are typically application-dependent and unknown a priori. To account for this, we
explored the configurations in three scenarios: when a tag is alone and when in
contact with exactly 1 and 9 others. The first scenario serves as an upper bound
for lifetime; combined, the three scenarios enable us to investigate different pro-
portions of alone vs. in-proximity times, spanning several operational conditions
at once.

Figure 2.14 shows the results, based on averages over several 15-minute traces.
When a tag is alone, only BLE is active, performing neighbor discovery via the
BLEnd protocol. As this contribution is invariant w.r.t. the number of neighbors
present, this enables us to characterize the energy consumption due only to BLE
in the various configurations: the average current draw ranges from 1.1 mA (reac-
tive) to 0.61 mA (logging), yielding a lifetime from 36 to 65 days. When neighbors
are present, the triggering of UWB increases consumption, with a significantly dif-
ferent impact depending on the use cases. With our logging configuration, the
current draw increases only to 0.65 mA for 1 neighbor and 0.81 mA for 9 neigh-
bors; instead, the reactive configuration increases current draw to 1.58 mA and
4.07 mA, respectively. These trends are reflected in the slopes of lifetime curves
(Figure 2.14), which can be easily estimated based on these real-world measure-
ments and the periodic schedule. Results confirm the energy-efficiency of Janus;
even with 9 neighbors continuously in proximity, the extreme case in our scenario
whose maximum expected number of nodes is 10, our tag lasts 9.7 days in a re-
active configuration and 48 days with a logging one. Further, these estimates as-
sume 24-hour operation. In contexts where tags are worn only during working
hours and switched off otherwise, lifetime obviously increases significantly, e.g.,
threefold for an 8-hour workday.

2.7 In-Field Experiments

2.7.1 Janus in Action: Experiences with COVID-19 Social Dis-
tancing

The previous sections offered a qualitative evaluation of Janus while in the next
we depict the results achieved through experimentation in a practical context. The
outcome of thesis experiments is twofold: first, they demonstrated the flexibility
of Janus for several applications, from reactive to logging ones. Second, the data
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collected and then analyzed provided the basis to use Janus in a less controlled
complete study, as detailed in the next Chapter (3).

The COVID-19 pandemic offered several opportunities for experiments focused
on social distancing, as workers in Italy were slowly returning to their duties with
new safety rules in place. As mentioned (1) these social distancing scenarios com-
bine both reactive and logging use cases, with the former specifically supported in
our custom tag (§2.5) by audible alarms triggered when a safe distance is violated
between two users.

In comparison to the previous experiments, here we did not have the possibil-
ity to gather detailed logs as in our tabletop experiments or have accurate ground
truth as in our motion capture ones, due to the lack of infrastructure and memory
limitations. Therefore, the goal is not to provide another in-depth system eval-
uation, rather to distill additional lessons learned from the in-field use of Janus,
including practical aspects concerned with its configuration for different system
scales and application requirements.

In all experiments described here, proper procedures were followed to recruit
participants, compliant with GDPR and host organization regulations.

2.7.2 Before the Experiments: Configuring the BLE TX Power

The real-world experiences we report here are also the opportunity to comment
about another configuration knob available that, although not specific to Janus, is
of practical relevance in determining its performance: the BLE transmission power.
A low-power setting reduces energy consumption; further, it may be preferable in
dense scenarios with several people. In contrast, a longer range would discover
many far-away neighbors whose irrelevant presence would trigger unnecessary
distance exchanges, wasting both energy and memory resources. On the other
hand, a low-power setting may yield insufficient reliability in scenarios where the
wireless signal is likely hampered by obstacles, e.g., an industrial environment.
Ultimately, the BLE TX power must be set by considering not only the tradeoffs
between range and energy consumption but also the target application and its en-
vironment.

To this end, prior to the experiments reported here we analyzed the reliabil-
ity of our BLE hardware with dedicated experiments spanning all TX power lev-
els (−40 dBm to 4 dBm) across distances relevant for our application domain (1
to 10 m). We performed this analysis in an office corridor, representing a good
balance among the target environments described next, and determined the ra-
tio between the number of BLEnd advertisements collected during the experiment
duration vs. those expected based on the configuration. We ascertained that all TX
power levels > −16 dBm enabled correct reception of >90% of the advertisements
at distances <2 m, relevant for our domain of social distancing. Nevertheless,
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FIGURE 2.15: Cafeteria: Raw data from one individual. The
zoomed-in area shows detail of BLE data.

hereafter we use different TX powers (−16, 0, and 4 dBm) precisely to cater for the
different application and environment requirements, described next.

2.7.3 Cafeteria: Comparing BLE vs. UWB Raw Data

We begin with a campaign in a company cafeteria where, over a 2-hour period,
we handed 90 workers a tag to carry during lunch. This dense setting is chal-
lenging both to discovery and ranging. However, the inherent flexibility of Janus
allowed us to accommodate its scale, which is significantly higher than the one
explored in the system evaluation (§2.6.1), by using the logging configuration with
the same target parameters in Table 2.1 except for N = 96 and the consequently
different and optimized BLEnd parameters. Moreover, considering that the wide
open cafeteria area offers good radio signal, we used a BLE TX power of−16 dBm,
the lowest among the acceptable ones we identified above, to reduce the number
of discoveries far beyond the distance of interest, therefore improving energy and
memory consumption.

Overall, 148,768 samples 〈userID, RSSI, distance, timestamp〉 were collected.
Figure 2.15 shows the raw data of a single tag; each point denotes a measurement
with a nearby tag, itself distinguished by color.

The data clearly shows three phases: when the tag is ready to be handed to
the volunteer (Pre), when the latter is waiting to be served (In Line), and when the
volunteer is eating (Seated). Nevertheless, while the distances between seated users
are easily discerned in the raw UWB data (top), this is not the case in the BLE data
(bottom), even when zoomed in to reveal detail; the latter vary significantly and
continuously, while the former exhibit very clear and stable trends. Additional
processing of RSSI values could improve matters, as done by many BLE-based
approaches; however, this observation emphasizes that the raw, yet accurate data
provided by UWB is already immediately useful.

2.7.4 Same-office Co-workers: Exploiting Raw Data

We report data gathered from a typical office area where the 7 members of a re-
search group are physically co-located. We used the exact same intermediate con-
figuration in Table 2.1. Further, we used a BLE TX power of 0 dBm, as this provides
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FIGURE 2.17: Company-wide: Contacts of 90 individuals over
3 days.

a good balance in this scenario with few people but several obstacles. Figure 2.16
shows the cumulative time one member spent near others during one day, and high-
lights a potential problematic situation: a significant amount of time (>45 minutes)
was spent very near (<2 m) two other members, and only slightly less (30–45 min-
utes) very near two others. These times are derived straight from raw data, by
simply summing the 15 s periods where a detection occurred. As such, they do
not necessarily represent a (dangerous) continuous contact, whose definition we
explore next. Nevertheless, this further emphasizes that the accurate raw data
provided by Janus already offers actionable insights.

Interestingly, when we shared our analysis and raw traces with the volunteers
they easily and promptly identified and recalled elements of their workday, e.g.,
meetings, lunches, and working as a pair on a project.

2.7.5 Company-wide: Using a Higher-level Contact Definition

We now show results from an aggregation of the raw Janus data into a higher-level
notion of continuous contact, often used to characterize the risk of infection. We use
the common definition of risky contact as one occurring for at least 15 minutes
between individuals within 2 m. We process raw data sequentially, looking at all
distance measurements between two individuals. We open a contact when we first
find a value within threshold, plus a small tolerance (20 cm) accounting for mea-
surement inaccuracies. We close the contact when this condition becomes continu-
ously false for a given time period (90 s); the last value within threshold remains
part of the contact. The overall duration t and average distance d of the contact
is then computed, enabling a classification of contacts based on their risk: i) high
when d < 2 m for t > 15 minutes, ii) medium when 2 ≤ d ≤ 4 m for t > 15 minutes
or d < 4m for 5 minutes < t < 15 minutes, iii) low, otherwise. Although somewhat
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arbitrary, this classification is a realistic example of how contact data could help
prioritize action.

To illustrate its power, enabled by Janus, we report 3 days of data collected with
the intermediate configuration (Table 2.1) and N = 90 workers in a large company
building. The office buildings were sparsely populated, therefore we chose the
same BLE TX power of 0 dBm used in the previous experiment. Figure 2.17 shows
the duration vs. distance of contacts, color-coded according to risk, providing a
highly informative bird’s-eye view. Overall, a total of 5,899 minutes were recorded
in high-risk contacts over the 3 days. Although this seems large in absolute, on av-
erage it is only 21.8 minutes per person per day, about the same time users in the
cafeteria scenario spent seated at lunch, potentially at high-risk distances. Longer
accrued times were recorded at medium (14, 936 minutes) and low (77, 659 min-
utes) risk.

One can easily imagine follow-up analysis of this data, e.g., identifying the
high-risk individuals, or analyzing the trends of risky contacts throughout the day.
Fixed tags throughout the building (e.g., at coffee machines) could also provide
approximate locations for some contacts.

2.7.6 Factory Floor: Real-time Alerting and Contact Tracing

We conclude by presenting data from 30 tags used by a company on a factory floor.
In this case, we used the highest BLE TX power of 4 dBm, to cater for relatively few
workers over a rather large area with several obstacles to communication, due to
the industrial environment.

The focus here was real-time alerting; tags used the corresponding reactive con-
figuration (Table 2.1), although some amount of logging was also supported for
later analysis. Specifically, tags were programmed, as part of full-fledged product
integrating Janus via its API (§2.5), to record only high-risk contacts and offload
them opportunistically on-the-fly to nearby gateways connected to the cloud, an-
other functionality enabled by accurate and energy-efficient proximity detection.

We focus our attention on pairs (dyads) of individuals, and their total contact
time in a day (Figure 2.18). If tags A and B were within 2 m for 6 minutes in the
morning and 9 minutes in the afternoon, the chart shows a point for dyad A–B
at 15 minutes, with the corresponding histogram showing the average distance of
the dyad. For 30 individuals, there are 435 possible dyads; however, only 92 (21%)
were reported in contact. Of these, only 9 dyads exceed 15 minutes of total contact
time. Further, these involve only 13 distinct tags, suggesting that long contacts
are concentrated in few individuals; this is expected based on their duties in the
factory, e.g., cooperatively moving heavy objects.
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2.8 Discussion

The combination of system evaluation (§2.6.1) and real-world experiences (§2.7.1)
allowed us to evaluate Janus with increasing degrees of complexity, covering all
the requirements and design goals (§2.1) while simultaneously grounding them in
the needs of real-world applications. For instance, although the scale of our system
evaluation is limited to 10 nodes for logistical reasons, our experiences bear wit-
ness to both the scalability and flexibility of Janus: our first reported experience in
the cafeteria was configured for a setting with an order of magnitude more nodes
than used in our system evaluation.

On the other hand, our analytical model (§2.3), validated through system eval-
uation, also shows an inherent tension between scale and latency. Our reactive
configuration, with a discovery latency of Λ = 2 s, was used on over 2,000 tags
across several factories for social distancing and proximity warning applications,
showing that Janus can be used successfully in large, dynamic environments. Nev-
ertheless, a combined increase in scale and decrease in latency may prove infeasi-
ble beyond a given point, because i) accommodating many ranging targets requires
long epochs, while a low latency requires short ones, and ii) the increased density
of competing ranging windows increases the likelihood of collisions.

For similar reasons, greatly reducing the value of Λ, even at a small scale, be-
comes problematic beyond a given point, e.g., if sub-second latency is required
to detect proximity with very fast moving targets. While decoupling discovery
and ranging latency (§2.2.1) may help, scenarios with very low latency were not
considered as part of those motivating Janus (§2.1) given that frequent ranging is
inherently at odds with energy efficiency. These types of scenarios are explored in
the work of Chapter 4, with the Hermes protocol.

Ultimately, not only is there no one-size-fits-all configuration, but also the vari-
ous performance dimensions are intertwined, making it difficult to determine how
much Janus scales or how fast detection can be in purely abstract terms. Instead,
we put forth a contribution of practical relevance by relying on the predictable op-
eration of Janus to provide domain experts with a small number of knobs to iden-
tify a good configuration meeting their application and system requirements. We
concretely exemplified this flexibility and configurability in several paradigmatic
applications.

In this respect, we have also shown that the impact of a misconfiguration of
the maximum expected number of nodes (e.g., twice the size in our system evalua-
tion) is far from dramatic. From a system standpoint, this confirms one dimension
of scalability. From a practical standpoint, this is important because, unlike the de-
tection latency Λ or the probability of discovery Pd which are often clearly defined
by the application, the domain expert may have only an educated guess about
the worst-case system scale N , especially when targeting contexts with humans or
wildlife whose social interaction characteristics are precisely the unknown to be
investigated.

While Janus offers additional opportunities for customization to application
needs, they remain beyond what we could address here. For instance, the decou-
pling between neighbor discovery and ranging latency offers different tradeoffs
from those required by our target applications, notably improving reactivity when
needed.

Moreover, other opportunities come directly from the underlying BLE layer.
We have touched upon the need to properly configure BLE range when discussing
our real-world experiences (§2.7.1). Interestingly, the BLE range can also be ex-
ploited to improve detection of fast-moving objects; a long range enables their
detection when still far away, guaranteeing subsequent timely distance estima-
tion. The improved communication range of the recent Bluetooth 5 (up to 4x w.r.t.
BLE [23]) may be an asset in this respect. Moreover, the BLE scan-response, in which
the scanning node can reply immediately to the advertising one, could also in
principle be exploited to significantly decrease the latency of bidirectional discov-
ery. Nevertheless, this would increase both collisions and energy consumption in
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BLEnd, due to the increase in transmissions and receptions, and ultimately invali-
date the predictable (and validated) performance guarantees we rely on. Instead,
the Janus API already provides developers options to exploit PHY-level informa-
tion for application-specific needs. For instance, the RSSI of advertisements can be
exploited as a coarse estimate of distance. This can either be used by the applica-
tion before the accurate UWB range is determined, or used inside Janus to limit
ranging only to “near-by” neighbors, providing an additional knob to navigate the
tradeoffs between communication range and scalability.

Dual Radio Architectures - A Comparison

This dual-radio approach is largely novel in both research and commercial devices.
Among the latter, a few [81, 97] use BLE only as an out-of-band channel to collect
data and set configurations. Research works instead exploit the two radios in the
very mechanics of proximity detection.

The work in [55] describes a system for monitoring the elderly exploiting both
the RSSI information in BLE advertisements and the accurate distance returned by
UWB. This enables a design where UWB ranging is exploited at lower rate than
normal, saving energy, and accuracy is improved w.r.t. BLE alone, albeit lower
than pure UWB. Therefore, although the two are used in synergy, the goals and
outcome are different w.r.t. Janus, which achieves high energy efficiency without
sacrificing accuracy. Further, the proposed system is infrastructure-based, as it re-
lies on constant communication against anchors with both radios. Nevertheless, a
similar technique in principle could be a valid complement to the current design of
Janus, unlocking new tradeoffs between energy, accuracy, and other requirements
(§2.1). For instance, the advertisements sent by BLEnd could help estimating dis-
tance when a UWB-based one is not available, as in between the first discovery
and first ranging, or upon collisions.

Instead, the very recent SociTrack system [10] exploits BLE for neighbor discov-
ery, via the BLEnd protocol also incorporated in Janus. This is however exploited
only as a sort of “trigger” for the UWB layer, which is therefore responsible not only
for ranging exchanges, but also for their coordination; this is achieved with a cen-
tralized, network-wide flooding, which further increases the energy burden. Like
Janus, SociTrack decouples in time the operation of BLE and UWB, but activation
of the latter is further delayed by global schedule dissemination. Unfortunately,
its effect on latency of first ranging is not evaluated in [10], unlike the analysis we
provided (§2.6.1).

On the other hand, a higher accuracy is reported for SociTrack, thanks to a spe-
cialized triple-antenna tag design exploiting spatial diversity. However, its accu-
racy is not evaluated in-depth in mobile scenarios, let apart with accurate ground
truth (§2.6.4). Instead, we are limited by the popular off-the-shelf, single-antenna,
dual-radio DWM1001C module, which nevertheless makes our firmware design
immediately applicable to the many research and commercial systems based on it.

Moreover, the multiple packets necessary in SociTrack to exploit spatial di-
versity, combined with their global UWB-based coordination, yield significantly
higher energy consumption w.r.t. Janus. Indeed, the authors highlight a 12-day
lifetime on a 2000 mAh battery. This is obtained with an update interval U = 300 s
and a “network” of onlyN = 2 nodes; with U = 2 s andN = 10, lifetime decreases
to∼4 days. In these latter conditions, Janus achieves 10 days (Figure 2.14) and with
a battery of only 950 mAh—i.e., a 2.5x lifetime with a battery half the size. With a
longer update rate of U = 30 s Janus achieves 50 days, i.e., 4x more than the best
result of SociTrack, with an update rate 10 times higher and 5 times more nodes in
continuous range.

2.9 Concluding Remarks

In this chapter we described Janus, a novel dual-radio network protocol enabling
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accurate and energy-efficient proximity detection. Janus embodies a novel design
exploiting BLE for discovery devices in range and coordinating their ranging ex-
changes, performed via the UWB radio without the need for infrastructure. We
proved that this scheme can be implemented efficiently, modeled its reliability,
evaluated experimentally its performance in reference configurations for paradig-
matic use cases, and reported about in-field experiences concretely showing its
practical relevance. More importantly, we confirmed that Janus is accurate and
energy-efficient, achieving a mean error of at most ∼30 cm while enabling weeks
to months of uninterrupted operation depending on the use case.

On the other hand, our realistic experiments with people wearing tags in a mo-
tion capture facility offering mm-level ground truth also evidenced that the relative
antenna orientation between devices and the signal occlusions caused by the hu-
man body significantly affect ranging accuracy, generating errors well above the
decimeter-level ones typically associated with UWB. As the latter has been used
mostly for localization these issues have been largely neglected, but are crucial for
proximity detection, where devices are typically worn by people.
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Chapter 3

Measuring Close Proximity
Interactions with Janus

Policy makers have implemented multiple non-pharmaceutical strategies to miti-
gate the worldwide COVID-19 crisis. Interventions had the aim of reducing close
proximity interactions, which drive the spread of the disease. Deeper knowledge
of such physical, human interactions has become necessary, especially in settings
involving children whose education and extra-curricular activities should be main-
tained as much as possible at pre-pandemic levels. Despite their relevance, almost
no data are available on close proximity contacts among children in schools or
other educational settings during the pandemic.

After an introduction on close proximity interactions with a review of related
works, this chapter describes how the Janus protocol has been used to collect real
contact data of children and educators in three summer camps during summer
2020 in the province of Trento, Italy. In these scenarios, the wide variety of daily
activities induced multiple individual behaviors, allowing a rich investigation of
social environments from the contagion risk perspective. We considered risk based
on duration and proximity of contacts and classified interactions according to dif-
ferent risk levels.

We then used the collected data to evaluate the summer camps’ organization,
observe the effect of choice to partition the children into small groups, or social
bubbles, and identify the organized activities that mitigate the riskier behaviors.

The results presented here demonstrate the potential of proximity detection
protocol, highlighting the importance of research on this field.

The work presented in this chapter has been published in [60].

3.1 Introduction

Close proximity interactions (CPIs) drive the spread of any disease that is transmit-
ted predominantly by respiratory droplets and saliva, such as influenza, common
colds, and severe acute respiratory syndromes (i.e., Severe Acute Respiratory Syn-
drome (SARS), Middle East Respiratory Syndrome (MERS), Coronavirus Disease
2019 (COVID-19)) [12, 87, 35, 92, 46, 61]. An improved characterization of CPIs
should thus lead to a better understanding of the spread dynamics and possibly
inform public health experts and policy makers to design more effective interven-
tions [102].

For this reason, some research efforts have used wearable devices and RFID
or infrared (IR) sensors to measure and analyze high-resolution proximity interac-
tions in different settings such as schools [92, 94], workplaces [18, 4], hospitals [50,
98, 43, 29, 28], households [77], and conferences [cattuto20:plosoneisella2011j, 95].

During the COVID-19 pandemic, social contacts and in particular CPIs were
significantly modified [51, 108, 33, 109] by several non-pharmaceutical interven-
tions such as physical distancing measures (i.e., 1 m or more), mobility restrictions,
closings of schools, universities, and selected businesses (e.g., restaurants, bars,
coffee shops, gyms), promotion of teleworking, cancellations or limits on the size
of events (e.g., sports events, weddings, funerals), limits on the number of people
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in small family, educational and social gatherings (i.e., social bubbles), etc. [42, 45,
13].

However, despite their relevance, almost no data are available on how CPIs
occur among children in contexts such as schools or summer camps during the
COVID-19 pandemic, thus making it difficult to evaluate and model the effects
of physical distancing measures, small group strategies, preferences for outdoor
activities, masks, etc., on CPIs, as well as identifying the situations and activities
during school and summer camp days where the risk of transmission is elevated.

The collection of reliable data in these environments (e.g., schools, summer
camps) is itself a nontrivial task. During the pandemic, several local and national
governments have launched smartphone digital contact tracing (DCT) apps based
on the BLE technology [37] and the GAEN (Google and Apple Exposure Notifica-
tion) interface [39], and several studies have shown the effectiveness of Bluetooth-
based DCT using real-world contact patterns [19, 72] and in pilot and country-wide
studies conducted in Switzerland, the United Kingdom (the Isle of Wight and the
whole country), and Spain (Gomera island) [91, 54, 89, 105].

In addition to the challenge that most children do not carry personal smart-
phones, this technology has at least two shortcomings for capturing CPIs in schools
and summer camps: (i) low temporal resolution (e.g., GAEN detects neighbors every
4 minutes [39]), and (ii) low spatial resolution, which directly descends from limita-
tions of BLE and leads to significant estimation errors [58]. The first issue can be
tackled by the use of an alternative to GAEN, while the second can be addressed
by changing the technology used for estimating distances, e.g., to ultra-wideband
(UWB), which brings the spatial error down from meters to decimeters [107].

In this chapter, we show how we address these issues using the Janus protocol
described in the previous chapter. In our experiments, we configured Janus to ac-
quire distance measurements every 30 s and installed it on a wearable device that
children can easily carry. We have collected real-world CPIs with Janus at three
summer camps in the province of Trento (Italy). These camps offer interesting set-
tings because of the rich variety of daily activities that induce different CPIs among
children and between children and the summer camps’ educators. Moreover, the
summer camps took place during the summer of 2020, in the middle of the pan-
demic and just after the local easing of lockdown measures. As such, it is possible
to investigate the effect of the guidelines and regulations enforcing physical dis-
tancing, mask-wearing, outdoor activities, and the formation of small groups (i.e.,
social bubbles).

The accurate and fine-grained contact data uniquely enabled by Janus, comple-
mented by the metadata about summer camps, results in the rich data set that is the
basis of the presented multi-level analysis. First, we describe the definition of close
contact as the aggregation of multiple raw measurements captured by the sensors
and discuss the modeling choices implied by this operation. After this aggrega-
tion phase, the resulting contacts are enriched with metadata. For example, social
bubbles [11, 59] were enforced as a contagion containment measure, and thus we
assigned to each contact the groups of the two involved individuals. Further, each
contact is associated with the activity being performed during the contact time.

By considering the metadata in the analysis along with the raw contact data,
we offer novel insights into both educator-child and child-child social interactions
during the pandemic. In particular, we study the distribution of the level of con-
tagion risk among individuals depending on the proximity and duration of their
contacts, finding that a vast majority of CPIs are classified as low risk. Moreover,
we aggregated the contacts as intra-group (i.e., within the social bubble) and inter-
group (i.e., between different bubbles), and observed changes in the distribution
of contact risk levels in the two cases, offering evidence of the effectiveness of the
social bubble strategy [11, 59]. Finally, a thorough analysis of the different activi-
ties provides insights into their inherent risks of contagion, which can be further
interpreted in view of the features of the activity itself (indoor or outdoor, static or
dynamic, etc.).
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TABLE 3.1: Description of the three summer camps investigated
in our study.

ID Short Description Ages Children Educators Groups
AM-PRI Morning camp with

a large indoor space,
nearby a public park.

6-11 21 5 3

DAY-PRI All day camp in an alpine
region with only outdoor
space.

6-11 13 5 2

DAY-INT All day camp in an alpine
region with additional in-
door space.

11-14 9 2 1

3.1.1 Modeling the spread of infectious diseases from proximity
data

The usage of close proximity data in the state of the art is crucial to understand
the novelty of the work presented in this chapter. Therefore this section presents
various works on modelling the spread of infectious diseases with proximity data.

The analysis of proximity contact data includes multiple works that focus on
modeling the spread of infectious diseases. For instance, [92] have used sensors
with a proximity resolution up to 3 meters in a high school to obtain a dataset in
which they have simulated the spread of an influenza-like disease. Doing this, they
have found results in agreement with absentee data during the influenza season.

Another line of studies has exploited data collected in different environments
within the SocioPatterns project. In particular, the estimation of face-to-face inter-
actions was used to correct theoretical epidemiological infectiousness parameters
and thus to obtain a better risk estimation for generic spreading processes [34, 9,
36, 66, 98], or to identify specific individual roles in workplaces, hospitals, schools
that would be more responsible for the spread of a disease [77].

Other face-to-face interaction data have been collected by [29] to understand
how hospital-acquired infections spread and to possibly design control strategies.
Similarly, [75] collected CPIs and data about a staphylococcus transmission in a
hospital, finding that collected CPIs were able to correctly reproduce transmissions
and thus demonstrating the importance of this tool to trace disease spread.

Additional studies have also focused on contact tracing strategies, such as the
work by [32] and more recently, for COVID-19, the ones of [19] and [72].

The study presented here describes the collection of real-world daily educator-
child and child-child close proximity interactions at three summer camps during
the COVID-19 pandemic. This unique dataset allowed us to characterize contagion
risks based on duration and proximity of contacts and classify interactions accord-
ing to different risk levels. We then investigated the effect of the guidelines and
regulations enforcing physical distancing, observe the effect of partition in small
groups (i.e., social bubbles), and identify the summer camp activities that mitigate
the riskier behaviors in terms of contagion.

3.2 Materials and Methods

Here, we offer details about the summer camps where the in-field experiments
were performed and the mechanics of data acquisition, and state the definition of
close proximity contact used throughout the chapter.

3.2.1 Data acquisition

The data used in our analyses results from a study conducted from August to
September 2020 in three different summer camps, summarized in Table 3.1, in



40 Chapter 3. Measuring Close Proximity Interactions with Janus

TABLE 3.2: Daily activities at the summer camps, each with a brief
description, the location and the duration in minutes for each sum-

mer camp that offered the activity.

Activity Description Location AM-PRI DAY-PRI DAY-INT

Woods Playing in a wooded
area

outdoor 90 min

Soccer Playing in a soccer
field

outdoor 90 min

Board
games

Playing tabletop
games

indoor 90 min

Newspaper Pairs work at com-
puters

indoor 90 min

Theater Singing and acting indoor 90 min
Snack Short food break indoor 15 min
Team
games

Organized group
games

indoor 90 min 120 min 120 min

Crafts Arts and craft indoor 90 min 180 min
Hiking Group walk outdoor 240 min
Round table Greetings, planning,

etc
indoor 180 min

Day closing Free play pre pick-up outdoor 30 min 60 min
Outdoor
lunch

Eating outdoor 60 min

Indoor
lunch

Eating indoor 60 min

Free play No organized activi-
ties

indoor 60 min

Free play No organized activi-
ties

outdoor 60 min

Trentino, Italy. The study design was approved by the Agency for Family, Birth,
and Youth Policies (Agenzia Provinciale per la Famiglia, la Natalità, e le Politiche
Giovanili) of the Autonomous Province of Trento1, the provincial government body
responsible for the organization of the summer camp programs, and by the two so-
cial cooperatives directly responsible for camp management and activities.

In preparation for the study, parents and educators were provided with de-
tailed information about the purpose of the study, the data treatment and privacy
enforcement strategies, the devices the children and educators would be using,
and the measurements they provide. Following Italian regulations, all parents and
educators signed an informed consent form. Special attention was given to privacy
and data protection: no personal information was associated with the identifier of
the corresponding Janus device. We did note the group (i.e., social bubble) the indi-
vidual belonged to and, in some cases, the identity of devices carried by others for
whom physical distancing rules were waived (e.g., among siblings and between
children with special needs and the educators assigned to assist them).

The first summer camp, AM-PRI, operated for half days (mornings) with 21 pri-
mary school-age children and 5 adult educators, all of whom agreed to participate
in the study. The children were divided into 3 groups, each with one or two ed-
ucators. Each activity during the day was restricted to a single group at a time to
maintain separation and leverage the concept of social bubbles [11, 59].

The second and third camps were organized the same week by the same coop-
erative, but took place at different locations; therefore, we treat them separately.
Both were all-day camps from 8:00 to 16:30. DAY-PRI applied the social bubble
with two groups of primary school children. The third camp, DAY-INT, involved 9

1https://www.trentinofamiglia.it/

https://www.trentinofamiglia.it/
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FIGURE 3.1: Janus device management at the AM-PRI camp. Left:
An educator fitting the waist bag containing the device on a child,
on the first camp day. Right: Devices in waist bags sitting on a
storage bench overnight; the inhibitor device is inside the red bag

in the center.

intermediate school children with two educators. The overall participation rate in
these two camps was 94%.

The summer camps engaged the children in different educational and playing
activities, as summarized in Table 3.2. For each activity, we indicate the approxi-
mate duration in minutes for each camp.

Device setup and experimental setting

To make carrying the device comfortable for the children, we inserted it inside a
waterproof waist bag, as shown on the left of Figure 3.1. We received positive
feedback from the educators, who said that the children immediately forgot they
were wearing the device. The Janus device was configured to sample distances
every 30 s when devices are in proximity. Measurements greater than 10 m are
discarded to save memory on the device and because these large distances are not
considered relevant for the transmission of SARS-CoV-2 [52, 22].

After programming the devices and inserting new batteries, the waist bags
were delivered to camp organizers at the beginning of each week. The educa-
tors were responsible for handing out the bags to the same children each morning
and collecting them at the end of the day. At the end of the week, the devices were
collected and the data offloaded via Universal Serial Bus (USB).

As the devices do not have an on/off switch, to avoid the collection of mean-
ingless data at night, when devices were stored on a bench (Figure 3.1), we im-
plemented an inhibitor device. This special device was turned on at the end of the
day by connecting it to a USB power bank. When the regular devices detected the
BLE advertisement of the inhibitor, they went to sleep for 5 min. Upon restarting,
if the inhibitor was detected again, they returned to sleep; otherwise, they started
functioning normally, ranging with all neighboring devices. Each morning, the
inhibitor device was detached from its power supply. This inhibition mechanism
saved battery as well as memory and, most important, required no technical skills
from the educators; even using the USB power bank was much easier than re-
moving the battery from all Janus devices, which was the only other alternative
available.

Pre-processing of the data

Prior to analysis, the data collected during each summer camp were cleaned of
spurious samples recorded by the devices. We describe the process here and report
a summary of the collected data for each setting.

The Janus devices do not have an on/off switch as mentioned in the previous
section, and as a result, are active 24 hours per day, not only when the summer
camps are in session. Although we used the inhibitor device to limit the measure-
ments taken after the daily close of the summer camp, some additional measure-
ments are still stored.
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TABLE 3.3: Statistics of the raw data sets, including the number of
measures before and after the pre-processing step.

ID Initial
day

Final day Unique
users

Raw
measures

Filtered
measures

AM-PRI 2020-08-
17

2020-08-
21

24 222222
48739

DAY-PRI + DAY-
INT

2020-08-
24

2020-08-
30

25 213219 146576
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FIGURE 3.2: Filtering of the spurious measures. Distribution of the
measurements over the entire sampling period, either with Active

or Inactive status for AM-PRI.

For example, if the BLE signal to the inhibitor was weak, the devices may have
been briefly activated. Additionally, the inhibitor node was often disabled sev-
eral minutes before children arrival and devices distribution, resulting in measure-
ments among the devices still on the storage bench. Finally, some children were
absent for entire days or arrived late while their device was still taking measure-
ments.

Identifying all these cases was a largely manual effort based on information
from the educators about absences and observations in the data itself. For exam-
ple, when a sequence of constant distance measurements is seen at the beginning
of the day, it is likely that the devices are still in storage, as children are rarely so
still. The data cleaning step filters all these spurious measures. Table 3.3 shows for
each summer camp the data collection time frame, the number of unique partici-
pants that have been involved, the number of overall measures, and the number
of measures after the filtering step.

Figure 3.2 shows the distribution of the entire measurement set for AM-PRI. The
time intervals during which the activities took place (Active) are separated from
the time between the activities (Inactive). The peaks of data close to the morning
camp start time correspond to the phase when the inhibitor node is off, but the
devices have not yet been distributed to the children. In this case, all devices are
immobile, near one another on a bench (Figure 3.1) and thus save many distance
measurements.

3.2.2 Definition of close proximity contacts

After downloading the measurements from all devices and pre-processing them,
we aggregated these raw samples into contacts characterized by two device IDs,
the timestamp marking the beginning of the contact, the contact duration, and a
distance, as described next.
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FIGURE 3.3: Measurement splitting and contact aggregation pro-
cess. The figure shows the measurements collected in the first
20 min of August 8th, 2020, between node 26 and 27 at the AM-
PRI camp. The measurements (light colors) are colored accord-
ing to the division into contact characterized by τtime = 90 s and
τspace = 2 m. Each contact is depicted as a horizontal bar from
its beginning to its end, where the height of the bar represents the

median distance.

To identify a contact, we focus on a pair of IDs, collecting all measurements cap-
tured by either device, and sorting them in time. This sequence is then processed
sequentially to divide the time into multiple, meaningful contacts. Intuitively, a
contact should contain measurements that are all temporally and spatially close to
one another, which we define via time and distance thresholds.

We begin with the temporal dimension, splitting the sequence into sub-sequences
whenever a gap of τtime = 90 s exists between two consecutive measurements.
This step accounts for interruptions in the interaction between the pair of devices,
e.g., when they move away from one another.

Second, we check each of the distances inside each sub-sequence, ensuring that
a single contact contains only measurements with similar distances, and ensuring
that the single distance attribute assigned to a contact has a reasonable spatial vari-
ation. Therefore, we sequentially process the measurements of a sub-sequence in
temporal order, and retain them in a single sub-sequence as long as all the mea-
sured distances are within τspace = 2 m from each other; a new sub-sequence is
started upon the first measurement outside this range.

In this way, we obtain a set of sub-sequences, each containing measurements
without large temporal gaps and with similar distances. After discarding sub-
sequences with fewer than τlen = 2 measurements, we aggregate each cluster into
a contact. Each contact is tagged with the timestamp of the first measurement in
the sub-sequence, a duration given by the time span of the measurements in it, and
a distance given by the median value of the measurements. Using the median (i.e.,
the central value of the distribution) yields a more robust value compared to the
mean, which is more sensitive to extreme values and outliers.

An example of this splitting and aggregation process is shown in Figure 3.3,
which depicts a sequence of measurements in a 20 min period grouped into sub-
sequences (identified by colors) and aggregated into contacts (identified by the
horizontal lines). The different splitting strategies can be observed. For example,
the orange and green sequences are separated due to the gap of more than τtime

between them. On the other hand, the blue and orange sequences are separated
because the first measurement in the orange cluster is outside the range of τspace
with respect to the previous measurements.
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TABLE 3.4: Description of the contacts resulting from the aggre-
gation procedure. For each camp, we report the total number of
contacts, the average number of the measurements for each con-
tact, the number of groups and activities in the camp, and the
number and percentage of the contacts that are uniquely associ-
ated with an activity. For DAY-PRI and DAY-INT, we report both
the number of activities, and the number of activities considered

for the analysis (in parenthesis).

ID Num.
Con-
tacts

Average
Measure-
ments
per Con-
tact

Num.
Groups

Num.
Activities

Activity-
tagged contacts

AM-PRI 7259 5.80 3 8 6833 ( 94.13 %)
DAY-PRI 7561 8.48 2 5 (4) 6774 ( 89.59 %)
DAY-INT 3485 16.40 1 9 (7) 3485 (100.00 %)

The resulting contacts model the high-level notion of CPI that we use in our
analyses in the next sections, and enables the general contagion risk assessment of
the different environments. Further, we also associate to each contact the groups
of the involved IDs and an activity when both IDs are in the same group.

Some of the contacts can be removed a posteriori to account for risk-modelling
choices. For instance, we discard contacts between siblings (who were not required
to respect physical distancing rules) or between children with special needs and
their support teacher. Additionally, in DAY-PRI and DAY-INT, the two activities
“welcoming activity” and “swimming pool” have been discarded because the de-
vices had not all been distributed and were piled up in the same place, resulting in
many spurious measurements.

The resulting numbers of contacts for each summer camp setting are reported
in Table 3.4. For each data set, we also report the number and percentage of con-
tacts where both users belong to the same group, and thus to which we are able to
assign an activity.

3.3 Results

Leveraging the previous definition of contacts and additional metadata, we can
now delve into the analysis of the complex daily CPI patterns within the summer
camps.

3.3.1 Identification of contagion risk levels

To build a general model for risk analysis, we define four different categories of
contagion risk for contacts based on proximity and duration. We then classify all
contacts into these categories.

In a meta-analysis and systematic review of observational studies on Severe
Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory
Syndrome-related Coronavirus (MERS-CoV), and SARS-CoV-2 (Severe Acute Res-
piratory Syndrome Coronavirus 2) person-to-person transmission [22], a physical
distancing of less than 1 m was reported to result in a significantly higher trans-
mission risk than distances higher than 1 m (12.8% vs. 2.6%), thus supporting a
minimum physical distance of 1 m, as in the rule enforced in schools and sum-
mer camps in Italy. However, as pointed out by [52], physical distancing rules
would be more appropriate and effective if they offer graded levels of risk. Simi-
larly, although contact tracing guidelines in several countries, various digital trac-
ing contact apps, and some studies [20] assume that the duration of exposure to a
person with COVID-19 influences the transmission risk (e.g., defining a threshold



3.3. Results 45

TABLE 3.5: Risk levels of contagion defined on the basis of dura-
tion of exposure and physical distance.

Duration Distance
• High risk ≥ 15 min ≤ 1 m
•Medium high risk ≥ 10 min ≤ 2 m
•Medium low risk ≥ 5 min ≤ 4 m
• Low risk < 5 min > 4 m

of 15 min beyond which transmission risk increases), a precise quantification of
the duration of exposure is still missing [52].

Following these considerations, we define the risk categorization summarized
in Table 3.5. The first category is associated with a high risk of contagion and in-
cludes all contacts with duration above 15 min and distance less than 1 m. The
second category, medium-high risk, includes all contacts with duration above 10 min
and distance below 2 m that are not included in the high-risk category. The third
category, medium-low risk, includes contacts with duration above 5 min and dis-
tance below 4 m not included in the previous categories. The fourth category con-
tains all remaining contacts, therefore associated to a low risk level.

Notably, this granularity in discriminating risk levels is enabled by the fine-
grained spatio-temporal resolution offered by Janus. The high accuracy of UWB
ranging, in contrast to the coarse, RSSI based distance estimation [110] with errors
on the order of meters, enables spatial discrimination at the granularity of a me-
ter. Similarly, our configuration of Janus captures distances every 30 s, while the
popular GAEN interface collects a single sample in each 4 minute window.

It is worth noting that while our data is rich in terms of accuracy, the Janus
platform does not capture whether interactions are face-to-face. However, while
face-to-face interactions provide a good approximation of conversations and are
useful for social interaction analysis [74, 18], when studying SARS-CoV-2 trans-
mission this aspect is less critical. Indeed, several researchers are highlighting that
SARS-CoV-2 can spread among people occupying the same space, whether or not
they are facing one another [71, 41].

Further, while our definition of risk level is context-agnostic, based only on
proximity and duration in line with the national and international policy recom-
mendations [31, 30], our analysis in the following sections is context-aware as it
takes into account metadata that notably includes whether or not the contacts oc-
curred indoor or outdoor. This two-step strategy allows for an in-depth risk assess-
ment and effective definition of the risk levels without requiring possibly intrusive
and privacy-critical contextual information.

3.3.2 Contagion risk analysis

Figure 3.4 shows a scatter plot for each summer camp dataset, reporting the recorded
contacts as a function of duration and proximity. Each dot represents a contact, as
defined in Section §3.2.2, with colors describing the associated risk according to
the color code in Table 3.5. The percentages reported inside the figures, and as-
sociated with the different risk levels, represent the percentage of time spent by
the population in the corresponding risk category. Interestingly, we see that, even
if different summer camps imply different levels of risk, there is a non-negligible
percentage of contacts at high risk of contagion in all summer camps.

In the representation in Figure 3.4, each dot represents a single contact between
two individuals, but it ignores information about the corresponding IDs. There-
fore, it is possible that the analyzed population has heterogeneous behaviors, e.g.,
with only a few participants involved in more risky close proximity interactions
and the majority of individuals interacting safely, or vice-versa. To understand
how the risk is distributed among the summer camp population we consider three
additional views, shown in Figure 3.5, where we examine the behavior for pairs
of individuals. We report only the case of AM-PRI, since the other camps yielded
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FIGURE 3.4: Summer camp contacts and contagion risk. The fig-
ure reports, for each summer camp, the corresponding contacts
classified according to their risk of contagion as a function of the
duration of exposure and proximity, following the risk categories
in Table 3.5. The values in parentheses denote the percentage of

time spent in a contact with the corresponding risk category.
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FIGURE 3.5: Unique contacts and risk levels. Contacts from AM-
PRI, aggregated into a single point (one per device pair) according

to different criteria.

analogous results. First, in Figure 3.5a, we compute for each pair the average dis-
tance and duration across all the contacts, resulting in a single dot per pair. We
observe that each pair interacts, on average, in low-risk social interactions. A sim-
ilar result is observed in Figure 3.5b, where we select the single contact per pair
with the smallest proximity distance. Finally, Figure 3.5c shows the single contact
per pair with the longest duration. Here, we see that ∼23% of the pairs of individ-
uals are involved in very high-risk interactions. From this, we conclude that the
risk of contagion is distributed quite homogeneously among the different pairs of
individuals, except for some for which the longest interactions are also the most
dangerous ones.

These graphical representations give a first, general idea of the contact risk lev-
els and offer an understanding of how the risk is distributed among the individu-
als. We note that these analyses depend on our definition of contact and, particu-
larly, on the thresholds defined in Section §3.2.2.

In addition, the proposed contact definition allows us to perform two types of
meta-analysis based on the risk levels related to: (i) group dynamics (e.g., CPIs
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TABLE 3.6: Summary of the number and duration of the contacts
in the three camps according to the social bubble strategy. For
each camp AM-PRI, DAY-PRI, and DAY-INT, we report for the dif-
ferent bubbles the total time of contact and the number of contacts

organized by the role of the participants.

Intra-group Inter-group
child
child

child
educator

educator
educator

child
child

child
educator

educator
educator

AM-PRI Time [min] 10362.40 2285.28 77.82 462.12 181.77 11.75
Number 5484 1297 52 295 121 10

DAY-PRI Time [min] 12075.02 5250.60 290.32 538.95 383.93 72.33
Number 4388 2064 145 341 195 49

DAY-INT Time [min] 7732.58 2229.58 4.22 - - -
Number 2004 613 2 - - -

among group members, among members of different groups, educator-child inter-
actions, child-child interactions), and (ii) the type of educational and recreational
activities planned during the summer camp.

As described in Section §3.2.1, each summer camp setting organized partici-
pants in small groups and in specific roles (educator, child). Groups are intended
to keep participants separated into disjoint bubbles [11, 59] so that any contagion
event would remain localized. On the other hand, roles reflect the internal orga-
nization of the summer camps, where both users (children) and educators (adults)
were present. The results are graphically reported in Figure 3.6, where the col-
ored bars show the relative percentages of contacts for each risk level that can be
attributed to child-child, educator-child, and educator-educator interactions, re-
spectively. Moreover, these can be divided into interactions involving two peo-
ple belonging to the same group (“intra-group”) and those bridging two different
groups (“inter-group”). Instead, the large grey bars in the background report the
total percentages of contacts for each specific type of interaction, independently
on the associated risk. To facilitate the quantitative comparison of the results, Ta-
ble 3.6 reports, for each summer camp, the number and the total duration of the
contacts in the six groups.

When a contact occurs between two members of the same group, we assign
to it the activity being performed at that moment by that group. In this way, we
add another layer of analysis that allows us to study the relationship between the
activity type, the number, and the contagion risk level of the contacts. The results
are shown in Figure 3.7, where we report four bars for each activity, representing
the four risk levels. The height of the bars represents the sum of the duration
of all contacts during each activity divided by the total duration of the activity.
Hence, each bar reports the risk per unit time of each activity. This normalization
allows comparison across the different activities, independent of their duration.
The percentages show the fraction of contact time within each risk level, for each
activity.

3.4 Discussion

We already observed that in all summer camps there is a non-negligible percentage
of contacts at high risk of contagion and that this is in general not due to some
specific individuals or couples of individuals but the risk is quite homogeneously
distributed among all the participants (Figures 3.4–3.5). We now discuss more in
detail the results and their implications.
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3.4.1 Social bubbles and roles

To analyze the effectiveness of the social bubble policies, we look at Figure 3.6,
which reports the percentages of contacts taking place inter- and intra- groups and
between children and children, educator and educator, and educator and children
for the three summer camps. Note that in DAY-INT there was only a single group.
We observe, as expected, that intra-group contacts are more numerous, but they are
also interpreted as less risky since they are foreseen and permitted within the social
bubble policies. On the other hand, inter-group contacts happen across different
groups and are generally more risky; however, their limited number is a good in-
dication of the effectiveness of the application of the social bubble policies. The
collected data thus confirm that in case of an epidemic spreading in these settings,
most of the possible contagions would likely be restricted to a single group, and
transmission to other groups would be avoided or limited. Focusing on the interac-
tions within each group, we observe that the highest percentages of contacts with
high or medium-high risk of contagion involve children (i.e., children-children or
educator-children CPIs), while the educators tend to have low-risk interactions
among them.

3.4.2 Activity Type

For summer camp AM-PRI shown in Figure 3.7a, it is evident that the activity in-
volving the highest number of interactions per unit time is “snack”; however, it is
also the only activity where none of the CPIs was at high risk. This is actually by
design as the activity duration is less than 15 min (Table 3.2), which is the mini-
mum duration required to mark a contact as high risk (Table 3.5). We observe a
similar finding in the other two data sets, DAY-PRI and DAY-INT (Figures 3.7b and
3.7c), where “lunch” is the activity with the fewest risky contacts. This is probably
because, during meal times, the children were not wearing their face masks; thus,
the educators were paying more attention to the compliance to physical distancing
rules. Moreover, the children were seated during lunch, so there was a reduced
probability of accidental CPIs.

Other low-risk activities in AM-PRI were “crafts”, “theater” and “team games”,
all meticulously organized activities where the educators established precise rules
for physical distancing to avoid CPIs. The risk rises instead with “soccer” and
“woods”, where no precise rules were established, and the children were free to
move in a large space. Moreover, these activities took place outdoor, and there is
evidence for a reduced transmission risk during outdoor activities as compared to
indoor ones [56, 57, 15, 90].

The riskiest activities, still with a limited total duration of high-risk close prox-
imity contacts, are represented by “newspaper” and “board games”, two indoor
activities with specific constraints: the first consisted of collaborating in pairs in
front of a computer, working on the summer camp’s newspaper, and the second
one consisted of playing board games around a table. Since the activities required
being close to each other watching the same screen or table, the physical distance
clearly could not be very large. However, it is worth highlighting that children
wore face masks during the activities, thus reducing the transmission risks [62, 14,
86].

Moving to DAY-PRI, a different summer camp with a different organization
(Figure 3.7b), we observe a high number of contacts during the activity “team
games”, even if most of these contacts are at low risk of contagion. Interestingly, in
this summer camp the organized games imply many more contacts per unit time
with respect to “free play”. However, the activity with the highest percentage of
high-risk CPIs is “day closing”, which was the final part of the day, when children
were waiting for pick up and entertained themselves by playing table tennis or
table football, in rather unstructured way.

An additional and final scenario can be observed in DAY-INT, showing different
typical behaviors, possibly due to a higher age range of the participants, namely
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FIGURE 3.6: Social bubble policy and roles. Distribution of risk
levels by group and type of interaction for each summer camp.
The color bars, which refer to the right-hand scale, report the per-
centage of time of contact within each risk level. The grey back-
ground bars, which refer to the left-hand scale, report the total

time of contact for each of the six categories.
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FIGURE 3.7: Activities and risk levels. The figure shows the distri-
bution of the risk levels by activity, sorted according to a decreas-
ing percentage of high-risk contacts for AM-PRI (Figure 3.7a), DAY-
PRI age range 6-11 (Figure 3.7b) and DAY-INT 11-14 (Figure 3.7c).
The percentages show the fraction of contact time within each risk

level, for each activity.
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11-14 years old, and different adherence to physical distancing rules. Figure 3.7c
shows a general lowering of the time spent interacting with each other and, at
the same time, a higher percentage of high-risk CPIs. Differently from AM-PRI
but similarly to DAY-PRI, we observe that the activities with the highest risk are
exactly the most organized ones: “team games” and “craft”, followed by the ones
where children were more free to move around: “day closing”, “hiking”, and “free
play”. The activities that provide less high-risk CPIs are instead “round table” and
“lunch”, where participants were sitting to talk or eat, all together but keeping a
well-defined physical distance from one another.

All together, this analysis of the activities shows the different ways in which
different settings have been addressed. In particular, it seems that the combination
of mask-wearing in the close-interaction static activities and a precise organization
of the dynamic activities results into an overall effective strategy to contain the
risk.

3.4.3 Limitations

As with any experimental data collection, we acknowledge the limitations of our
study. First, the gathered data sets are limited in time by the duration of the sum-
mer camps (one week, and half or whole days only) and by the number of partici-
pants (61 individuals in total). While the high temporal and spatial resolution en-
abled by Janus allow interesting analyses, the sample size and length limits make
it impractical to simulate an epidemic spreading model based on this population.
Further, all the summer camps were located in the Trentino area, and do not neces-
sarily directly translate to other cities, regions, or countries, perhaps with different
distancing rules.

Finally, a comparison to similar studies in the summer camp setting is not pos-
sible, as none are available in the literature. Moreover, we do not have hard ground
truth to compare against; this would have required either cameras or manual an-
notations, which would have greatly interfered with the children privacy and the
camps’ activities. Nevertheless, the results and findings we outlined have been
shared with the educators, who confirmed them based on their knowledge and
recollection of the activity organization, and the observed general behavior of the
children and educators.

Despite these limitations, we reassert that the data collected by the Janus de-
vices is, to the best of our knowledge, the only example of physical distance data
for child interactions with high spatio-temporal resolution collected during the
COVID-19 pandemic.

3.5 Concluding Remarks

Tracking and measuring CPIs in a real setting is a challenging task that, however,
plays a crucial role in understanding the dynamics of social interactions during the
pandemic and their effect on the spread of the disease.

This work shows that the Janus system is well-suited to provide high temporal
and spatial resolution data to capture CPIs in complex settings like summer camps.

In particular, we have analyzed three summer camps’ daily activities and so-
cial interactions in the Autonomous Province of Trento (Italy). The captured CPIs
allowed us to derive several key insights into the duration and proximity patterns
characterizing the child-child and the educator-child interactions.

Specifically, we verified the effectiveness of the social bubble strategy, which is
easy to implement in the summer camp setting and offers an effective mechanism
to balance control of the epidemic against light restrictions on the children during
educational and recreational experiences.

Moreover, we analyzed the risk levels of a series of activities performed dur-
ing the summer camps. We obtained key information into their safety in terms of
number of contacts, duration of the contacts, and level of contagion risk. When
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combined with other metadata such as the location (indoor vs. outdoor) and the
possibility to adopt personal protective equipment (i.e., face masks), this informa-
tion can be exploited towards actionable policies to design safer environments for
interactions among children in the summer camp setting but also at schools.
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Chapter 4

Hermes: Low-Latency
Proximity Detection

While Janus has been clearly shown to be a viable and flexible solution for proxim-
ity detection for a variety of applications, its separation of discovery and ranging
across the two radios causes Janus to incur a non-negligible delay between these
two elements of proximity detection. Put another way, while Janus is configured
to know the existence of another node within the discovery latency epoch, the
distance to this node will not be known until the coordination process between
the BLE and UWB radios concludes, a process that takes between two and three
epochs.

In this chapter, we explore an option that allows triggering ranging immedi-
ately after discovery. In brief, we remove the BLE radio, performing all operations
over UWB. We return to the original BLEnd neighbor discovery protocol, exploring
the implications of switching from BLE to UWB and the opportunities to extend
the protocol to naturally incorporate ranging.

One of the primary benefits of using BLE for continuous neighbor discovery in
Janus is its energy efficiency. Therefore, in the development of Hermes1 we pay
close attention to the energy trade-offs associated with our choices.

4.1 Hermes In a Nutshell

The core of Hermes is a continuous neighbor discovery protocol using UWB in-
stead of BLE and thus able to exploit the transmitted messages both for discovery
and as the initiation of two way ranging. On the surface, the protocol takes inspi-
ration from U-BLEnd [53]: w.r.t. F-BLEnd, used in Chapter 1, in U-BLEnd the node
is active only in the first half of the epoch, and idle for the other half to save energy.
Hermes, as seen in Figure 4.1 schedules two key elements: a train and a series of
scans. The train itself is a sequence of trainslots, each composed of a trans-
mission and a scan. The transmission serves both as a beacon that advertises the
presence of the transmitter, and, if received, it also serves as the first poll message
in a TWR operation.

The series of scans are separated by no more than the length of the train,
reduced by the length of one train slot to ensure that at least one transmission is
detected. If a scan does not receive a message, the node returns to a sleep state
to save energy. Instead, if it receives the beacon of another node, it replies with
the TWR response, then listens for the response in the subsequent trainslot,
enabling its own calculation of the distance between the two nodes.

Certain elements of Hermes are fixed while others depend on the scenario. The
length of a single trainslot is lower bound by the choice of UWB technology
(see details in Section §4.3.1). The time between scan slots must be less than the
length of the train. The number of scheduled scan slots must be such that the

1The protocol is named after the Greek messenger god, Hermes, known for his speed, reflecting the
low latency goal of the protocol.
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FIGURE 4.1: Hermes protocol overview. Details of a single discov-
ery/ranging are shown.

last scan falls just after the halfway mark of the epoch:

numberScans = ceiling(epochLength/2/(trainDuration− trainslotLength)) (4.1)

The first parameter we consider in depth is the epoch length itself, or the period
at which the node repeats the discovery and ranging procedure. Short epochs al-
low the protocol to be more reactive, as discovery is guaranteed within the epoch,
as in Janus. Nevertheless, small epochs utilize fewer scans, increasing the proba-
bility of collisions and thus reducing protocol reliability. Longer epochs, instead,
include more scan operations, decreasing collisions and increasing reliability, but
they target logging-style applications.

It should be stated that in the presence of message collisions, discovery is not
guaranteed. In fact, the impact of collisions on the discovery rate is one of the pri-
mary points of focus for this exploration.

Epoch No. No. Epoch No. No.
Length (s) Trainslots Scan slots Length (s) Trainslots Scan slots

1 10 43 15 10 642
1 50 8 15 50 118
1 70 6 15 70 84
1 100 4 15 100 59
2 10 86 30 10 1283
2 50 16 30 50 236
2 70 12 30 70 168
2 100 8 30 100 117

TABLE 4.1: Sample parameter configurations for Hermes.

The number of trainslots in the train is also variable. Fewer trainslots
consume less energy as part of the train, however, they require more scans to be
scheduled. More trainslots increase the length of the train and correspond-
ingly its consumption, but they also decrease the number of required scan slots.
Table 4.1 offers some sample configurations. Given that the UWB radio will be re-
quired to ramp up and down before and after each scan slot, we can immediately
see that some of these configurations are practically unrealistic.
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FIGURE 4.2: Illustration of Hermes in simulation showing two
devices. The red bar shows an instant of time T in which one
trainslot and one scan slot are simultaneously active, leading

to discovery.

4.2 Simulation

To study the protocol operation, we designed and built a custom discrete event
simulator in Python. It focuses on the discovery element of Hermes, considering
the overlap of the trainslot transmission with a scan slot, identifying successful
discovery as well as collisions that inhibit discovery. The simulator allows rapid
study of the protocol parameters in scenarios with different node densities.

In addition to rapid protocol evaluation, the simulator also serves to validate
the mathematical model and as a point of comparison for experiments.

4.2.1 Simulator Description

The simulator is a discrete-event simulator, where the outputs are triggered with
the geometric overlapping of scans slots and trainslots. The possible events
identified by the simulator are discoveries and collisions of messages exchanged
among the nodes. In the simulator, device behavior is described within a Python
class node and a Python generator class uses iterations to schedule trainslots
and scan slots according to the provided protocol parameters. As the focus of
the simulator is on discoveries between devices, the trainslot and scan slot are
monolithic slots, with no distinction between transmission and reception. In other
words, the simulator has no definition of the radio channel, but the shared medium
is represented by the active slots, either trainslot or scan slot, present at a certain
moment. Each slot has a start time and end time, identifying when they are active
on the shared medium.

Figure 4.2 offers a graphical representation the protocol with two devices. The
train, as defined in §4.1, is composed of trainslots, each of which is repre-
sented in the simulator as a single slot, not divided into transmission and recep-
tion. Note that the simulator does not simulate the TWR exchange of Hermes. Each
slot, has a start time and end time allowing the simulator to identify when two (or
more) slots overlap, i.e., are active at the same instant in time. For instance, at time
T shown in the figure, the scan slot of Node 1 and the trainslot of Node 2 are
active at the same time, leading to a discovery between the two devices: Node 1
discovers Node 2 and vice versa.

In the case when more than two nodes have a slot active in the same instant in
time, the simulator must consider how to handle the situation, specifically regard-
ing message collisions. Our choices are summarized in Figure 4.3, which shows
on the left the standard overlap resulting in discovery when a trainslot over-
laps with a scan. When two or more trainslots overlap with the same scan slot
and their start times are greater than the start time of the scan (the beginning of
the trainslots are detected), we consider this shadowing. In this case, Node 1
discovers Node 2 and vice versa, while Node 3 is shadowed by Node 2 and is not
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FIGURE 4.3: Concurrent interactions of slots for more than two
nodes. Green arrows represent successful message exchanges,

while the red arrows depict a failed exchange.

discovered by Node 1. The intuition is that when two or more devices transmit at
the same time, i.e., when two ore more trainslots overlap, thanks to the UWB
PHY layer they will not completely collide and instead one of them will be cor-
rectly received. Specifically, the first detected preamble is correctly received, while
the other is discarded.

A response collision, shown on the right of Figure 4.3, occurs when multiple
scan slots overlap with a single trainslot and the trainslot has a start time
greater than the scans. In this case, both Node 1 and Node 3 discover Node 2, since
they both receive its transmission. However, since the replies are sent at the same
time, only one among them is captured by Node 2. Therefore, Node 1 and Node 3
discover Node 2, while Node 2 discovers only Node 1.

Inside the simulator, we track the following:

• Discovery: number of nodes discovered per epoch, either with the train or
with the scan. In Figure 4.3 on the left, Node 1 adds Node 2 to its discoveries
and vice versa.

• Missed Trainslots: number of nodes missed per epoch due to shadowing. In
the middle of Figure 4.3, Node 1 adds Node 3 to its missed trainslots.

• Missed Scans: number of nodes missed per epoch due to response collision.
In the right of Figure 4.3, Node 2 adds Node 3 to its missed scans.

• Discovery WITH train: number of nodes discovered per epoch during the
train phase. In the right of Figure 4.3, Node 2 discovers Node 1 during
the train of Node 2.

• Discover WITH scan: number of nodes discovered per epoch during the scan
phase. In the left of Figure 4.3, Node 1 discovers Node 2 during the scan of
Node 1.

These five simulator outputs are used to evaluate the protocol in the following.
In addition to the basic protocol implementation described in §4.1, the simu-

lator and the practical implementation include a random jitter at the beginning
of each epoch. This feature is shown in Figure 4.4 and is fundamental to avoid
continuous collisions between overlapping trains. In fact without jitter, if two
trainslots or two scan slots from two different node overlap, they will continu-
ously do so across all epochs. The jitter is a uniformly distributed variable from λ1
to 0, with λ1 < 0. We use a negative jitter, shifting the start of the epoch earlier to
prevent a “void” before the epoch starts: the presence of a scan slot immediately
after the epoch half guarantees that, without collisions, there is always discovery
between two devices. A positive jitter, instead, would shift the beginning of the
subsequent epoch forward, “breaking” this important assumption and decreasing
the discovery rate. The impact of the jitter is evaluated in Section §4.2.2.
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EpochHalf epoch Epoch start
λ=0

Epoch start
λ=λ1

λ~U(λ1,0)

FIGURE 4.4: Hermes jitter. λ is the jitter, and is a uniformly dis-
tributed random variable from λ1 to 0, where λ1 is a negative

value.

4.2.2 Simulation Results

As stated previously, the simulator provides a valuable tool for understanding
Hermes. We focus most of our exploration on the discovery rate, first using the
simulator to understand the impediments to discovery, then pushing the protocol
in a variety of settings. We then use the simulator to explore in detail the impact of
jitter and its effect on latency.

In all simulations, unless otherwise specified, each node starts at a random time
within the first epoch. The simulation runs for 10 epochs and all simulations are
repeated 1000 times. We set the maximum jitter equal to the train length.

Understanding Discovery Rate

We begin our evaluation with a scenario with a 2 s epoch and 10 neighboring de-
vices. Before looking at the Hermes results, we remind the reader that in the origi-
nal Janus protocol, one key parameter of neighbor discovery is the minimum discov-
ery probability, typically set at 95%. This takes into account collisions that prevent
discovery within the target latency. Notably, due to the jitter added to the proto-
col, most of these missed discovery events are recovered in later epochs, allowing
Janus to eventually discovery and range with all neighbors. Hermes does not ex-
plicitly consider the minimum discovery probability, but collisions do negatively
affect the discovery rate, as described previously with shadowing and response
collisions.

Figure 4.5 shows in yellow the overall system discovery rate as we vary the
number of trainslots. We immediately see a knee in the plot, indicating that
the highest discovery rate of 90.65% is achieved with 20 trainslots.

To understand this, we recall that each node will discover on average half of
the nodes during its train. The other half will be discovered during scan slots.
With only 5 slots in the train, nearly every one of these slots must be used to
successfully discovery one of the other 9 nodes in the system. Due to the ran-
dom nature of the protocol, it is very likely that response collisions will occur,
reducing the discovery rate. Indeed, the blue plot of Figure 4.5 shows that with
5 trainslots, approximately 30% of the scan responses collide. Instead, as the
number of trainslots increases, the probability of response collisions decreases,
shown as the decrease in the blue line, and the discovery rate increases, shown as
the increase in the yellow line.

However, as the train length increases, the number of scan slots decreases as
the interval between them increases. Therefore, each scan has a higher probability
that it will be required to hear more than one of trainslots- a situation that
results in Shadowing of one of the nodes during its train.

The knee of the discovery rate curve occurs when the combined impact of Shad-
owing and Response Collisions is minimized.
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FIGURE 4.5: Simulations with 10 nodes and 2 s epoch length to un-
derstand the impact of collisions (Shadowing and Response colli-

sions on the discovery rate as the train length increases).

Evaluating Discovery Rates

We next exploit our simulator to explore a wide range of Hermes parameters. In all
cases, we vary the number of trainslots, as in the previous section, examining
the principal objective of the protocol, discovery rate, for varying epochs. Unlike
with Janus, where the epoch length typically corresponds to the discovery latency,
in Hermes, the epoch length corresponds to both discovery and ranging latency.
We also show the behavior with differing numbers of neighbors, as this affects the
number of messages on the shared UWB communication channel, and thus the
possibility for collisions.

Examining simulation results across the plots in Figure 4.6, we first notice that
as we increase the number of nodes, the discovery rate decreases. This is due to
the increased message collisions. While this implies that Hermes performs poorly
for crowded settings, scenarios for proximity warning typically have few nodes
and are expected to perform well.

We also see that discovery rates are quite high for long epochs. As noted in Sec-
tion §4.2.2, once the train is long enough to accommodate half of the discoveries
without collision, the long epoch results in the placement of relatively many scans,
which are therefore unlikely to result in Response Collisions.

Evaluating Energy Trade-off

While our goal with Hermes is to have a low latency protocol with a high discovery
rate, we need to balance this with the energy cost of the protocol configuration.
Figure 4.7 models the lifetime of a Hermes node performing discovery-only. As
with the other curves, we clearly see a knee in the curve, showing that as the train
length increases the consumption increases to a point, then begins to decrease. This
is due to the relationship between the length of the train and the spacing between
the scan slots. As the train increases, the number of scans required decreases.

Notably, the point that minimizes the consumption does not correspond to the
point in the previous figures with the highest reliability. This discrepancy forces
application designers to consider the trade-offs as appropriate for their application,
e.g., sacrificing lifetime to improve discovery rates, or vice versa, accepting a lower
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FIGURE 4.6: Discovery rates VS. train lengths for varying epoch
lengths.

discovery rate to save lifetime. The simulator offers a valuable tool to explore these
trade-offs.
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FIGURE 4.7: Lifetime of Hermes vs train length for a 2 s epoch.

Evaluating Discovery across Multiple Epochs

Due to the formulation of the Hermes protocol, without communication errors
such as those arising from collision, all nodes will either directly discover one an-
other or be discovered by another node within one epoch. In practice, collisions
reduce the discovery rates, as seen in the previous sections.

To combat these errors, Hermes incorporates an intentional jitter, to allow the
communications among pairs of nodes to shift w.r.t. one another across epochs.
The driving motivation is to avoid communications that constantly collide across
epochs due to unfortunate alignment.

In this section, we analyze the positive effect of jitter, considering the effect on
the discovery rate across multiple epochs. As our goal is to discover and range
with all neighboring nodes, the ability of the protocol to reach this goal within
multiple epochs is of great, practical importance.

Figure 4.8 shows the discovery rate for 3, 5 and 15 nodes. In all cases, we
configured a 2 s epoch with 20 trainslots, a configuration that maximizes the
discovery rate in a single epoch. Within each plot, we show four different configu-
rations for the jitter:

• Low: maximum jitter is equal to the train duration

• Medium: maximum jitter is 5 times the train duration

• High: maximum jitter is 10 times the train duration

• Extreme: maximum jitter is 20 times the train duration

In all figures, we see the CDF of the nodes discovered per epoch, hence the step-
wise nature of the plots. After the first epoch, the curve with the lowest jitter meets
the discovery rate shown in Section §4.2.2. Changing the jitter affects the discovery
probability. Larger jitter notably allows the trains to shift more within the epoch,
therefore, if the trains were colliding in one epoch, they will be less likely to overlap
in subsequent epochs. Instead, keeping the jitter below the train length performs
the worst, resulting in the lowest discovery probability.

Notably, however, Hermes achieves more than 96% discovery within two epochs,
even in the most challenging scenario with 15 neighbors. This value should be
taken in comparison to the discovery rates of Janus, which were guaranteed to be
up to 95% within the defined latency, and ranging would be scheduled up to two
epochs later. Instead, in Hermes, ranging occurs at the same moment as discovery,
therefore 96% or more of the ranging will occur withing the first two epochs.
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FIGURE 4.8: Discovery rates VS. Latency for varying jitter.
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4.3 Implementation

Thanks to the positive results achieved through simulation we decided to shift our
focus to the real implementation of Hermes. We target the DWM1001 board from
DecaWave, now QORVO, as done for Janus, a choice that allows us to directly
compare the two protocols on the same grounds. While with the Janus imple-
mentation, one of the primary challenges was synchronization between the BLE
and the UWB radios, in Hermes the precise timings and the energy consumption
represent the central challenges. In fact, to limit consumption of the UWB radio,
the transmission and reception timings must be reduced as much as possible, but
without disrupting the correct functionality of the implementation. Nevertheless,
even with the timings set correctly, consumption can still be unacceptably high,
forcing us to explore other reduction techniques such as deep sleep and preamble
sniffing.

This section describes our implementation of Hermes focusing on the UWB
configuration details. We then move on to showing results, comparing them to
simulation.

4.3.1 Hermes Configuration Details

The goal behind our choices for the transmission and reception times in Hermes
was to minimize consumption and packet on-air time.

First, we choose the minimum possible UWB preamble guaranteed by De-
caWave, 64 symbols (around 64 us), resulting in a TX slot of 225 us. Therefore,
the train is composed of alternating TX of 225 us and RX of around 40 us. This
RX duration is sufficient to detect UWB preamble symbols, verified experimen-
tally. Between each TX and the subsequent RX in the train there is a fixed delay,
a fundamental value for the TWR distance calculation. In our case this value de-
pends on the type of message transmitted. For the train TX, this delay is 537 us,
and represents the interval between the end of the transmission of the RMARKER
and the start of the RX phase. Therefore, the interval between the RX and the con-
secutive TX must be greater, accounting for the time needed to complete the packet
reception, around 113 us. This represents the minimum packet duration possible,
since we used the preamble of 64 symbols and 6.81 Mbps data rate, the highest
available. Thus, between two consecutive TXs, there are 1300 us, fixing the scan
time to the same amount. This choice is mandatory to ensure that at least one TX
among the two is detected by the scan.

4.3.2 Energy Saving Techniques: Deep Sleep and
Preamble Sniffing

The use of techniques to save energy in a UWB-only protocol is vital. As shown
in the QORVO documentation [82], the current profiles of both transmission and
reception can reach peak values one magnitude higher than BLE.

The deep sleep mode of the microcontroller offers a well-known mechanism
to reduce consumption. In Hermes, the device enters the deep sleep mode twice
during the epoch schedule:

• Second half of the epoch: after the last scan slot, completed after the end of the
first half of the epoch, the microcontroller goes to sleep. The wake up occurs
8 ms before the beginning of the subsequent epoch.

• Between the scans: between each scan slot, the device goes to sleep, with the
wake up 8 ms before the subsequent scan.

The time needed for the radio to re-start is approximately 5.5 ms (§2.4), but
with Hermes implementation any delay can lead to incorrect protocol operation.
Therefore, we added a 2.5 ms guard time. This value was calculated empirically,
and we hope to reduce it in future protocol iterations.
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Deep sleep allows drastic reductions in protocol consumption. For instance,
with 20 trainslots and 2 s epoch, the mean current consumed per epoch is
i) 17.7305 mA without deep sleep ii) 6.2497 mA with deep sleep concretely showing
the importance of this feature.

On the other hand, preamble sniffing, described in the DW1000 user manual [83],
permits changes in the behavior of the radio listening state (RX state). The standard
reception state of the DW1000 UWB radio is called preamble hunting: the radio is
on, waiting to “capture” any UWB preambles. To do so, the radio remains active
for the entire reception duration, forming a monolithic scan phase. Instead, using
preamble sniffing, the on state of the radio is alternated with off periods during
which the radio enters the IDLE state. In IDLE, the radio consumes approximately
12 mA and does not require any wake-up time to return to RX state. However, the
introduction of off periods during the listening can affect the discovery rate, due
to the “holes” inserted in the scan. The trade-off between the energy saved and the
decrease in reliability is explored in Section §4.3.3, where we show the results of
tabletop experiments.

4.3.3 Experimental Results

To conclude the discussion of Hermes, we show results with the real implementa-
tion. In the following, we first illustrate the reliability performance of the protocol,
together with a comparison with the simulation results. Next, the energy con-
sumption of the protocol is evaluated, using the same experimental configuration
as used with Janus (§2.6.5). Finally, we activate preamble sniffing, showing its
effect on reliability and energy consumption

Reliability

The goal of these experiments was to explore the discovery rate and compare it
with the simulator. We show the experiments carried out with 3, 5 and 15 devices,
evaluating the discovery rate against the number of trainslots. Considering the
practical limitations of experimentation vs. simulation, we fixed the epoch length
to 2 s to test the reliability with a reactive configuration, the typical application
targeted by this protocol.

All experiments were conducted in the CLOVES testbed [69], a UWB network
infrastructure developed at the University of Trento. The testbed consists of 275
UWB devices, installed below the ceiling tiles of the university buildings. Figure
4.9 shows the experiment area with 7 ceiling-nodes and 8 “fly-nodes”: additional
nodes placed on the floor and raised on wooden sticks, extending number of nodes
in the restricted experimental area to 15. The experiments with 3 and 5 devices are
conducted using only devices attached to the ceiling tiles. For each train length
we repeated the experiment 12 times, recording 40 epochs each time for a total of
16 minutes per configuration.

We begin our analysis in Figure 4.10, showing experiments with 3 devices. As
shown previously in simulation, with a 2 s epoch and 3 nodes (Figure 4.6a), for the
train lengths considered, the discovery rate ranges from 95% to 98%. This range
is confirmed in experimentation, with the discovery rate always above 95%, with
the peak at 97.5%. Interestingly, the trend from 10 to 30 trainslots, follows
that seen in simulation, with a monotonically increasing discovery rate. However,
higher discovery rates occur around 30 and 40 trainslots, rather than at 20
slots seen in the simulator. In experimentation, a clear peak is not visible, instead
a plateau of “higher rates” is seen between 30 and 40 trainslots. It should be
noted that the drop in the discovery rate from 10 to 100 trainslots is only 2-3
percentage points in the simulator, making it difficult to demonstrate the change
in the rate with real experiments. Further, the blue lines show the minimum and
maximum values of the 12 experiments executed per train length. The high vari-
ance indicates that more experiments should be carried out to refine the results,
nevertheless the trends are clear.
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Fly-node

Ceiling-node

FIGURE 4.9: Photo of the experiment area in the CLOVES [69]
testbed. 7 devices are installed on the ceiling and 8 temporary,

fly-nodes are placed with wood sticks.

The trend in comparison to simulation is also confirmed in Figure 4.11 where
results with 5 nodes are depicted. Indeed, in the first part the rate increases until
it reaches a plateau. However, the plot also shows a shift of the curve with the
“peak” around 40 trainslot with a 94.8% discovery rate, and the plateau rang-
ing from 40 to 70 trainslots. In the simulator, instead, the rates are 2% higher,
and the plateau occurs between 10 and 40 trainslots. These discrepancies can
be considered acceptable considering the variance of the experimental data and the
fact that the the simulator is an estimate and does not include a realistic channel
model.

This is also evident in Figure 4.12 where the discovery rate with 15 devices is
shown. Notably, the trend here is the same as in the simulator, with a clear decrease
for more than 30 trainslots. These results illustrate on the one hand that the
predictions made by the simulator are of value even with more devices, while on
the other hand, the drop in reliability w.r.t. the simulator arising from collisions
is notable. Indeed, if the simulator with 30 trainslots achieves a discovery
rate of 85%, the corresponding value in testbed experiments is 75%. We presume
that the greater number of transmissions produces a greater number of disruptive
collisions, which are not accounted for in the simulator at this time.

Overall, the simulator correctly predicts the reliability of the protocol, espe-
cially with a low number of devices. The high variance of the real experiments fur-
ther impedes the reproduction of the simulator curves, suggesting that a more in-
tensive experimental campaign is needed to achieve a more precise results. How-
ever, the trend of the plots is already visible, especially with 15 devices, demon-
strating that the simulator is in line with the protocol implementation.

Energy Consumption

The current consumption of Hermes has been evaluated using a Keithley SourceMe-
ter 2450 and the Janus custom tag described in Chapter 2, Section §2.5. Regarding
reliability, we fixed the epoch length to 2 s and used two trainslot lengths: one



4.3. Implementation 67

FIGURE 4.10: Discovery rates VS. train length with 3 nodes.

FIGURE 4.11: Discovery rates VS. train length with 5 nodes.

maximizing the discovery rate according to the simulator and one minimizing con-
sumption according to the energy model shown previously (4.7). The results are
shown in Table 4.2. For each trainslot we tested the custom tag alone, with
4 neighbors and with 9 neighbors. The neighboring devices were at most 2 m
from the tag connected to the SourceMeter. To allow the connection between the
SourceMeter and the costum tag, these experiments have been conducted in our
lab, with the devices on the desks.

While 20 trainslots is one of the values that maximize the discovery rate,
the current draw of Hermes is quite high, above 6.6 mA. This is particularly high
when seen in comparison to an isolated Janus device, which, thanks to the low-
power BLE radio, consumes 1.1 mA in the reactive configuration, i.e., 2 s epoch
length. The situation improves with 80 trainslots, where the consumption falls
to 3.2183 mA, which is still higher than Janus. Note, however, that the reactive
scenario in Hermes not only achieves discovery, but also ranging within the 2 s
time limit. Thus Hermes is approximately 2-3 times more reactive than Janus. We
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FIGURE 4.12: Discovery rates VS. train length with 15 nodes.

TABLE 4.2: Current consumption of Hermes protocol.

TS = 20
(Max Discovery Rate)

TS = 80
(Min Consumption)

Alone 6.2497 mA 3.2183 mA
4 Neighbors 6.1909 mA 3.1903 mA
9 Neighbors 6.1041 mA 3.1453 mA

also recall that in Hermes, we fully expected to increase consumption w.r.t. Janus,
thus higher consumption values are acceptable. Nevertheless, we note that while
the consumption with 80 trainslots seems a reasonable value, the discovery
rate at this train length drops to 92% with 5 nodes, a value only slightly below
the 95% discovery probability established for Janus.

Interestingly, while for Janus consumption increases with an increasing number
of neighbors due to the addition of UWB slots for ranging, in Hermes we actually
see that the consumption decreases with an increase of neighbors. While this be-
havior is counter intuitive, it is likely due to the difference in scan slot management
when neighbors are present or not. Specifically, without preamble sniffing, a scan
keeps the UWB radio active for 1.3 ms in RX mode. Considering that TX has lower
consumption than RX, when a scan detects another node and starts to participate
in TWR, the RX is interrupted and instead the actual reception is followed by a TX
and finally by a brief RX. This results in a scan phase with shorter active duration,
reducing consumption. Indeed, this effect increases with the increase of neighbors,
with more scan slots triggering discovery and thus ranging.

Preamble Sniffing Evaluation

To evaluate the effectiveness of preamble sniffing, energy consumption and dis-
covery rate must be considered as the introduction of “off periods” during the
scan can negatively impact discovery rate. In Table 4.3 we explore this trade-off,
with multiple preamble sniffing configurations. In this case, the experiments have
been conducted in the testbed, considering only two devices. As before we fixed
the epoch length to 2 s and the number of trainslots to 20.

In Table 4.3, Ton represents the duration of the “on” time of the radio in scan
mode in microseconds (µs). Toff is the “off” duration. The duty cycle, DC, is given
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TABLE 4.3: Preamble Sniffing evaluation: considering discovery
rate and current consumption for various duty cycle configura-

tions.

Ton Toff DC Discovery rate Consumption Relative consumption
(µs) (µs) (%) (%) (mA) (%)
- - 100 100 6.2497 100
48 32 60 93.3 5.6588 90.5451
32 32 50 90.83 5.2689 84.3064
16 32 33.33 87.91 4.8971 78.3574

by the ratio between Ton and the sum of Ton and Toff. We tested four DC values,
using a configuration with preamble sniffing disabled as the baseline.

We begin our analysis by setting the DC to 60%. The amount of energy saved
is shown in the last column, where “Relative consumption” represents the ratio
between the current consumed with and without preamble sniffing. While we
save approximately 10% in energy consumption, we lose approximately 6% of the
discovery rate. We note that even if the duty cycle is reduced by 40%, we only save
10% overall. This is due to the fact that only the scan elements of the protocol are
subject to the savings due to preamble sniffing. Further, during the off periods, the
radio switches to the IDLE state, with a current draw of 12 mA, not zero.

The situation is slightly worse at a duty cycle of 50%, with the discovery rate
dropping to almost 91%. However, the consumption decreases more than the dis-
covery rate, with energy savings of 16%. Finally, with a duty cycle of 33.33%,
consumption drops significantly, saving almost 1.5 mA. However, we also see a
significant drop in discovery rate, with a value well below 90%. This could be un-
acceptable, especially for applications such as proximity warning system in which
the reliability is crucial. Overall, a Toff of 32 µs, although it may allow for energy
savings, creates a non-negligible reliability loss. Indeed, being equal to half the
duration of the considered preamble (∼ 64 µs), the gap that is created between two
listenings could potentially risk losing the correct reception of the preamble. Fu-
ture analysis will focus on the test of different configurations, with lower values of
Toff.

4.3.4 An Eye to the Future: From the DW1000 to the DW3000

Since its release around 2010, the DW1000 module by Decawave (now QORVO) [82],
has contributed significantly to the design and development of multiple IoT appli-
cations based on UWB. Nevertheless, it does present several limitations, which are
inherited by all results in this thesis. Importantly, however, the results presented
here can also benefit from hardware improvements.

For example, in 2020, the new QORVO DW3000 UWB module [85] entered in
the market, promising to drastically enhance performance w.r.t. the DW1000. A
recent comparison [80] between the two modules considers both ranging quality
and energy consumption. Through experimentation, the authors demonstrate a
30% reduction in energy consumption from the DW1000 to the DW3000 during
ranging. Specifically, the radio RX phase, the highest consuming element of rang-
ing, decreases from ∼ 240 mW to ∼ 120 mW.

By shifting the protocols of this thesis to the new module, we can directly ben-
efit from these improvements. Notably, for Janus, the “high consumption“ of the
DW1000 is less relevant due to its use of the BLE radio for continuous ranging.
Instead, Hermes should see larger improvements as all operations use the UWB
radio. In general, shifting to the DW3000 radio would allow us to revisit the de-
sign trade-offs, e.g., the use of preamble sniffing to save energy, but at the price of
a loss in reliability.
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4.4 Concluding Remarks

In this chapter we introduced Hermes, a low-latency proximity detection protocol
built atop only the UWB radio. Hermes fuses continuous neighbor discovery with
ranging, drastically reducing the latency between the two operations in the Janus
protocol. This merge incurs a reasonable cost in energy consumption and produces
acceptable reliability.

We showed through simulation that the protocol can achieve good performance
and used this tool to provide insights on the reliability and the latency of Hermes
in different configurations. With the simulator we were able to show that the pro-
tocol can easily guarantee discovery rates above 95% with increasing numbers of
neighbors. Moreover, we have shown that, thanks to the low-latency achieved by
the protocol, more than 98% of the neighbors are discovered within two epochs
with the possibility to achieve ranging at the same time.

Finally, we implemented the protocol for the DWM1000 UWB radio, and we
showed that our results are in line with those seen in simulation. Further, to re-
duce the energy consumption induced by the energy-hungry UWB radio, we in-
vestigated two energy saving techniques: deep sleep and preamble sniffing. In
particular, we explored the trade-off between current draw and discovery rate in-
troduced by the preamble sniffing, showing that this technique must be configured
carefully to identify an acceptable balance for the target application.
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Chapter 5

Validation of Indoor
Positioning Solution for
Automotive

This chapter presents the results of a project with the objective to validate a com-
mercial localization solution for indoor automotive applications. The project was
undertaken in collaboration with an external company, which provided the com-
mercial localization system to be evaluated. While not directly related to the pri-
mary topic of proximity detection, it uses the same technology exploited in the
early sections of this thesis, UWB, as the basis for the validation.

After an introduction in which the scenario and the evaluation system are de-
scribed, we outline the results, comparing the UWB-based localization to GPS in an
outdoor environment and to the commercial system under evaluation in an indoor
garage.

The work described in this chapter is in press and will be presented at the 9th
IEEE International Workshop on Advances in Sensors and Interfaces (IWASI) in
June 2023.

5.1 Introduction

The goal in this project is to define a validation methodology to assess the perfor-
mance of an absolute positioning system for vehicles, referred to in this chapter as
the “commercial V2X system”, in GNSS denied environments.

In aid in selecting the proper validation technology and methodology, the ex-
ternal company outlined several requirements, including:

• Less than 1 meter horizontal accuracy in the XY plane (2D localization)

• Sampling rate of 10 Hz, analogous to that of the commercial V2X solution

• Rapid deployment and coverage of critical areas of the test environment

• Avoid interference with 2.4 GHz, for security motivations in the test area

In outdoor scenarios these requirements can be fullfilled with an highly-accurate
GPS, e.g., Real-Time Kinematic (RTK), that provides an accuracy of less than 10 cm,
depending on conditions [44]. In indoor settings, however, such technologies are
unusable due to limitations of satellite coverage, requiring alternative technolo-
gies to be considered. An immediate, low-cost solution is to install visual markers
on the ground, make a video recording of the vehicle movement and manually
identify when the vehicle arrives at each marker. While simple, this technique is
open to human error, making it unsuitable as a validation technique. An alternate
solution can be formed by using a motion capture system, similar to the one pre-
sented in Chapter 2. However, this technology does not satisfy the requirement
on the rapid deployment in the testing area, with its lighting requirements and
inherit time-consuming installation and calibration. Radio technologies multiple
alternatives for localization, e.g., based on BLE [5, 78] or WI-FI [1]. Nevertheless,
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these approaches often have accuracy errors greater than 1 m and can generate
interference in the 2.4 GHz band, which is strictly forbidden in our project as it
represents the working frequency of security system in the testing garage. RFID
offers a promising radio technology that may offer accuracy at the level of a few
centimeters [96]. Unfortunately, such systems require a large equipment invest-
ment. Also significant, some RSSI systems require complex installation, which is
not feasible in the target garage environment.

Given our multi-year experience with the UWB radio, and the fact that it meets
all the aforementioned requirements, we chose to pursue this technology for the
validation system. This choice allowed us to improve our knowledge about this
important technology and demonstrate its ranging performance in a different ap-
plication and scenario.

In this chapter, after a description of the scenario (§5.1.1) and the UWB vali-
dation system (§5.2), we evaluate the accuracy of UWB-based localization in an
indoor environment (§5.2.3). We then move to an open-air setting where we com-
pare the results of our system to a highly accurate GPS (§5.3.1). Subsequently, we
show the final results achieved in the garage, with comparisons between the UWB
and the commercial localization systems (§5.3.3).

5.1.1 Considered Scenario

As the target evaluation is for GNSS denied environment, the setting identified
for experiment is the ground-level garage at our institution, the map of which is
shown in Figure 5.1. The parking lot is composed of two areas, identified by the
numbers 1 and 2 in the figure. These two areas are connected by a corridor, while
between them a lift area is present. The entrance and the exits are shown with
green arrows. Area 1, is wider than Area 2, allowing us to perform several types
of maneuvers with the car. It also represents the area with the greater number
of parked vehicles during working hours. The lift and stairs areas shown in the
picture are highlighted because they represent possible sources of interference for
the radio communication technologies used both by the testing system as well as
the commercial system to be validated. Specifically, the lift areas are formed by
largely metallic elements which are known to induce significant electromagnetic
shielding between area 1 and area 2, bringing into question the utility of anchors
placed in one area to provide valuable readings for tracking a vehicle in the other
area.

In addition, several other aspects make the parking garage a particularly harsh
environment for evaluation. Figure 5.2 shows part of area 1, with critical elements
highlighted in red. The presence of parked cars, especially during working hours
creates reflective waves that can change the electromagnetic propagation proper-
ties, making it more difficult to correctly receive the transmitted signal. Moreover,
since the number of cars changes during the day, these effects are not constant. Pil-
lars and in general reinforced concrete structures introduce significant signal atten-
uation and reflections due to the presence of metal inside the structures. The park-
ing lot also has metal pipes in the ceiling that may affect the signal propagation,
creating undesired electromagnetic reflections. Overall, the aforementioned ele-
ments increase the complexity of the target environment, both for the commercial
system as well as for the validation technology. Therefore, as shown later in this
chapter, to increase the accuracy of the ground truth system, we performed several
experiments to ensure the UWB anchors were deployed specifically to compensate
for the challenges posed by environment.

5.2 System Description

This section describes the architecture of the UWB validation system. We illustrate
tests performed to evaluate the error of the UWB system in the garage environment
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FIGURE 5.1: CAD map of the indoor testing area.

1

2

3

FIGURE 5.2: Photo of test garage highlighting possible sources of
interference (1. Parked cars, 2. Concrete pillars, 3. Metal pipes).

and the steps taken to enable comparison between the outputs of the validation
system and the commercial V2X system.

5.2.1 System Architecture Overview

The V2X system, provided by an external company, is composed of infrastruc-
ture and in-vehicle components. Specifically, multiple anchors must be installed
within the indoor environment while an antenna is installed on the roof of the car.
An on-board unit inside the vehicle collects data for evaluation. Since the system
works with World Geodetic System 1984 (WGS84) coordinates, each anchor is as-
sociated to GNSS coordinates in latitude and longitude. As this system was not
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under our control, we do not provide further information1, except to note that the
system is advertised specifically for indoor and outdoor environments. As previ-
ously stated, our project focused on the indoor evaluation.

The UWB-based localization system was composed by:

• Fixed anchors (minimum: 3. maximum: 30)

• Active tag, installed on top of the car

• Tablet with the QORVO DWM1001 Two-Way-Ranging Real Time Location
System (DRTLS) management application

• Computer, to collect logs.

This system is based on hardware and software provided by QORVO [84], for
use with the DecaWave DWM1001 platform. This platform contains both the UWB
and BLE radio. The firmware considered for this application is the DWM1001 fac-
tory firmware version 2, released by the same company. Using this firmware, the
maximum data rate is 10 samples per second, where the samples are XYZ loca-
tions.

Figure 5.3 shows the overall architecture of the UWB system: the DWM1001
devices must be programmed using the QORVO DRTLS Manager application, in
particular defining the role (active tag, anchor, passive tag) and setting the po-
sitions in XYZ coordinates for the anchors. The DRTLS application exploits the
Bluetooth connection between the tablet/smartphone and the devices to modify
the parameters of each single device. In particular, the anchors are fixed devices
that allow the active tag to compute its position using a location engine based on
triangulation. More details on the protocol can be found in Section §5.2.2. Once
the anchors and the tag are programmed, they can be deployed on the field and
the XYZ positions measured at the active tag are sent via Universal Asynchronous
Receiver-Transmitter (UART) to a PC, where the logs are saved.

FIGURE 5.3: Architecture overview of the UWB test system.

5.2.2 UWB Evaluation System Setup

In the following subsections, the setup of the UWB system is detailed, from the
anchor installation to the description of the firmware used.

1The name of the company involved and the information about the commercial V2X system are
anonymized for explicit request from the company itself.
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UWB Anchor Installation

To guide the anchor installation, we relied on a computer-aided design (CAD) map
of the garage area. An evaluation using a laser range finder of the CAD map
revealed an accuracy of approximately 5 cm in the location of structural elements
such as pillars and walls. Therefore, we chose to locate UWB anchors at identifiable
points on the CAD map. e.g., on the support columns, deriving their XY location
directly from the CAD. To reduce interference caused by the presence of vehicles,
anchors were positioned as close as possible to the height of the antenna on the
test vehicle, approximately 2 meters.

Figure 5.4 shows an example of an UWB anchor, deployed on a pillar using
an elastic band from a waist bag that offers a stable support without damaging
the pillars. When anchors were placed “freely” in the environment or when it
was impossible to exploit elements in the environment such as pillars, we use a
microphone stand with an UWB anchor mounted at a height of approximately
2 meters, as shown in Figure 5.5.

FIGURE 5.4: Mounting mechanism for UWB anchors on pillars in
the garage environment. Different from the figure, the height was

approximately 2 m.

Time Synchronization

The computer collecting data from the UWB evaluation system must be time-
synchronized to the commercial V2X system to allow the logged location data to
be correlated. This is accomplished via NTP, using the commercial V2X on-board
unit as the NTP server and running the client on the computer supporting the UWB
data collection. The on-board unit of the commercial V2X synchronizes its inter-
nal clock using the GNSS signals when they are available. The client application,
running on a dedicated PC, is configured to synchronize its system time to that of
the on-board unit using the Ubuntu systemd-timesyncd service via Ethernet. This
PC also collects the UWB logs by means of the UART connection. The data items
collected on the PC are time stamped on arrival, with the timestamp coherent with
the common time defined by the on-board unit.

Antenna Offset

For practical reasons, the antenna of the commercial V2X system and the UWB de-
vice (used for measuring the UWB locations) cannot be at the same, exact position
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FIGURE 5.5: UWB anchor on a movable microphone stand at ap-
proximately 2 m height.

on the roof of the car. The GNSS/V2X antenna is located along the central, length-
wise axis of the test vehicle and we choose to mount the UWB device along the
same axis.

Figure 5.6 shows the UWB device on the car, attached using a box mounted on
a magnetic anchor. The distance between the two antennas is measured manually.
This offset is used to adjust the UWB traces. This is done calculating an average
direction of the test vehicle over a variable size set of locations. For each measured
location, the measured offset is applied along the model. The number of points
used to calculate the model depends on the speed of the vehicle. We experimen-
tally determined that a set of size 5 points is reasonable for the speeds expected
during experiments. It should be noted that this procedure correctly applies the
antenna offset only when the car is in motion.

Coordinate Conversion

Once the V2X data and the UWB data are collected, several transformations are
required to allow them to be directly compared. With reference to Figure 5.7: The
V2X system logs are converted from Latitude and Longitude coordinates to Carte-
sian coordinates in the CAD reference system; The UWB logs, referred to the UWB
reference system defined by the DRTLS manager app, are first modified to account
for the antenna offset described in the previous section. Subsequently, we convert
the location from the UWB reference system to the CAD reference system.

Once both the logs are in the same coordinate system, they can be compared.
The conversion from the V2X system (or the UWB system) to the CAD reference
system is done using a triangulation script. In particular, three reference points
identified with WGS84 (latitude and longitude), UWB and CAD coordinates have
been selected during the initial inspection of the garage.

Finally, the data are compared using the analysis as described in §5.3
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FIGURE 5.6: UWB antenna and V2X antenna mounted on a test
vehicle. The antenna offset is shown. Values of 5 to 9 cm were

typical during experiments.
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FIGURE 5.7: Data processing pipeline enabling comparison be-
tween V2X latitude/longitude logs and the UWB XY logs.

Protocol Details

For completeness, we offer a brief description of the DRTLS. In particular, we focus
on the localization component, ignoring other aspects of the protocol, e.g., chan-
nel access, collision avoidance, etc. All the information included here are taken
from [25] .

The nodes (tags and anchors) operate using a repeating “super frame” structure
of 100 ms duration. This structure is shown in Figure 5.8. The super frame starts
with 30 Beacon Message (BCN) slots, in which each anchor transmits a packet
containing its XYZ position (positions are constant in our scenario), followed by
two Service slots (SVC). There are additionally 15 TWR slots used for the (mobile)
tags to initiate TWR exchanges with the anchors (details below). Each TWR slot
can be associated with a specific tag, which uses the slot to perform ranging with 3
or 4 anchors. Both the anchors and the tag are synchronized; therefore the tag will
listen during the BCN phase to receive information from all the anchors in range.
For the remainder of the super frame the tag is in idle mode, while the anchors
perform other operations such as synchronization.

During each super frame period:

• Each anchor is associated with a unique BCN ID, and during each BCN the
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FIGURE 5.8: Super frame of the DRLTS system [25].

FIGURE 5.9: Details of a single two-way ranging slot in the DRLTS
application [25].

associated anchor transmits its position in the UWB coordinate system. The
position is defined during the deployment phase using the DecaWave DRTLS
Manager application as mentioned above;

• The tag listens for all the BCN from all the anchors in range and saves the
received information;

• During the TWR phase (shown in Figure 5.9), the tag chooses 4 anchors based
on the positions received during the BCN phase. The algorithm chooses three
or four anchors that are both close and that define a polygon around the tag
with one anchor per quadrant. The tag is initialized with 0,0,0 as the default
position. With reference to Figure 5.9, the TWR exchange is as follows:

– The tag sends a group POLL message, with the 4 IDs of the selected
anchors and the order in which the anchors must reply.

– Each anchor will reply with the RESPONSE message;

– Once the tag receives at least 3 non-corrupted ranging messages, it cal-
culates the distance from each anchor;

– The tag uses the 3 or 4 calculated distance values to compute the XYZ
position using its proprietary localization algorithm.

– Note that a vehicle travelling at 20km/h will travel approximately 1.7 cm
during the 3 ms required to collect the ranging information from the an-
chors.

• The tag sends the computed XY position to the tablet/smartphone and/or to
PC via UART where the locations are stored.

5.2.3 UWB Accuracy Evaluation in the Garage

To evaluate the accuracy of the UWB system in the garage environment, we per-
formed six experiments with different size areas (denoted Large, Medium and
Small). All experiments were conducted during the daytime and therefore with
multiple parked cars in the garage. In half of the cases, we designed the test area
such that it did not include any parked cars and there was direct line of sight
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between the anchors and the test device, with the objective to reduce the multi-
path effects caused by the parked vehicles. The result, however, is a more narrow
rectangular test area, as seen in the leftmost image of Figure 5.10. In this setup, all
anchors, installed at the corners of the test areas, were mounted on the microphone
stand. The second set of experiments, shown on the right of Figure 5.10, enlarged
the width of the rectangle by placing two of the anchors on pillars behind a row of
parked vehicles. The other two anchors were placed using the microphone stands.

For each test, we identified 3 locations inside the areas (Corner, Center, Side),
and precisely measured these locations with a laser range finder. These locations
were modified for each test area to evaluate the three general zones (corner, center
and side) of the rectangular test area. Tests were performed using a portable UWB
node mounted on the microphone stand, placed at each location. At each location,
XY location measurements were collected using the UWB localization tool, collect-
ing data for three minutes at each location. An example area with the three points
is depicted in Figure 5.11.

UWB Anchor
Large
Medium
Small

Legend

FIGURE 5.10: Left: narrow test, small (orange), medium (green)
and large (blue) areas. Right: wide test, small, medium and large
area. In all cases, anchors are placed at the corners with the an-

tenna facing the vertical axis.

FIGURE 5.11: Wide test, small area, showing the three sample
points (corner, center and side).

Evaluation

We separately evaluate the root mean square (RMS) error on the X and Y axes as
well as the RMS of a combined measurement of the distance-error, obtained by
calculating the straight line distance between the ground truth location and the
measured (X,Y) location.

In most cases, the error is within 30 cm. We note that the x-axis error is in
general larger than the y-axis error as the x-dimension of the rectangle is larger
than the y. Interestingly, the difference in error across the different size test areas is
not significantly different. Further, the inclusion or not of cars in the test area does
not have a significant effect, most likely because the anchors and test antenna are
above the level of the vehicles, reducing the vehicle occlusion.
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TABLE 5.1: Wide test area, with cars inside rectangle defined by
the anchors. Root Mean Square error in meters reported as the
difference between ground truth and measured values across all

experiments.

Small Area Medium Area Large Area
Corner Center Side Corner Center Side Corner Center Side

RMS - X
axis

0.21 0.29 0.26 0.27 0.12 0.63 0.24 0.09 0.48

RMS - Y
axis

0.02 0.11 0.09 0.10 0.22 0.24 0.01 0.15 0.21

RMS - dis-
tance

0.22 0.31 0.28 0.29 0.25 0.67 0.24 0.18 0.53

TABLE 5.2: Narrow test area, with no cars inside rectangle defined
by the anchors. Root Mean Square error in meters reported as the
difference between ground truth and measured values across all

experiments.

Small Area Medium Area Large Area
Corner Center Side Corner Center Side Corner Center Side

RMS - X
axis

0.20 0.24 0.15 0.30 0.29 0.22 0.24 0.40 0.28

RMS - Y
axis

0.04 0.12 0.06 0.03 0.07 0.11 0.12 0.20 0.10

RMS - dis-
tance

0.20 0.27 0.16 0.30 0.30 0.24 0.27 0.45 0.30

These tests, even if quite simple, demonstrated that the UWB system provides
the necessary accuracy for the requirements of this project, despite the harsh in-
door environment.

5.2.4 Final UWB Anchor Locations in Garage

Based on the results above and some additional tests performed with larger areas
of varying shapes, we identified two sets of anchor locations to use for the final ex-
perimentation. These locations and the areas they cover are shown in Figures 5.12
and 5.13. Note that the orange arrows indicate the orientation of the anchors (more
specifically the antenna orientation) and the blue arrow indicates the direction of
the car’s movement. The green lines instead represent the path that the car covers,
depending on the experiment. Figure 5.12 represents the case in which the car goes
straight through the main path of the garage. Figure 5.13 shows a more complex
path, with 18 anchors installed.

UWB anchor

Covered area

Anchor 
pointing 
direction

FIGURE 5.12: Test area 1 showing 6 anchor locations. Orange ar-
rows indicate antenna orientation.
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UWB anchor

Covered area

Anchor 
pointing 
direction

FIGURE 5.13: Test area 2 showing 18 anchor locations. Orange
arrows indicate antenna orientation.

5.3 Experiments and Results

This section outlines the set of experiments performed to evaluate the commercial
V2X system against the UWB validation system. In addition to the final indoor
traces, we detail additional experiments performed to demonstrate the quality of
UWB system and provide evidence for why this technology can be used as a valid
comparison against the commercial system, we divided the experiments into three
different trials, each with a different goal:

• Section §5.3.1 shows experiments conducted in an outdoor environment in
which UWB and a GPS system have been used to record locations. The scope
was to compare the results of the UWB system with the GPS, considering the
second as the ground truth. This offers quantitative accuracy measurements
for the UWB localization system.

• Section §5.3.2 shows experiments involving only UWB. The scope was to
understand whether the UWB traces were coherent with respect to the CAD
map.

• Section §5.3.3 details the final experiments in which the UWB and the V2X
technologies are compared. The aim was to assess the quality of the commer-
cial V2X system, taking into account the accuracy of UWB demonstrated by
the previous experiments.

5.3.1 Outdoor Experiments

UWB System Setting

The experiments were conducted on the terrace in front of the north building at
our institution. Figure 5.14 shows the environment, together with markers that
identify the position of UWB anchors.

The UWB anchors were attached to the lampposts labeled from 1 to 8, except
for number 5, mounted on a microphone stand. Each position was identified by
a WGS84, UWB and CAD coordinates, making it possible to calculate the CAD
coordinates of the UWB tag with trilateration as explained in Section §5.2.2, using
as reference points 2, 3 and 6. In each position, the UWB anchor was attached at
approximately 2 m height as depicted in Figure 5.15a and 5.15b.
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FIGURE 5.14: Google Earth view of the experiment site. The red
arrows indicate the UWB anchors positions, while the two red cars
with the colored squares around, the starting positions of the two
experiments. (during the experiments fewer cars were parked on

the terrace).

(A) Example of an UWB anchor at-
tached to a lamppost.

(B) Close up image of UWB anchor
attached to a lamppost.

FIGURE 5.15: Example of UWB anchor installed on a lamppost.
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Experiment Description and Results

The goal of these experiments was to demonstrate the quality of the UWB technol-
ogy by comparing it to a GPS system that provides a WGS84 position at 10Hz with
an error of approximately 10 cm. Each experiment was conducted 5 times (trials).
For each experiment, 8 UWB anchors were installed. On the roof of the car the
UWB tag was positioned on the central axis of the car, 6 cm in front of the GPS
antenna. The following describes the experiments and results.

Timestamp Offset Evaluation

Before the description of the experiments, we illustrate a problem common
across all experiments.

Upon evaluation of preliminary data collected in the outdoor areas, we noticed
that, despite the time-synchronization between the commercial V2X system and
logging PC, there was still a time offset between locations.

In Figure 5.16 two examples of the same trace are shown, to depict the effect of
the index offset. In both figures, the data are downsampled, i.e., there are few sam-
ples than the originals tracks in order to have a clearer visualization. The black
circles are GPS data, while red circles are UWB data. In Figure 5.16a each GPS
sample is associated to the closest (in time) UWB sample. This association at first
instance is reasonable since the GPS and the UWB systems are time-synchronized.
In this case, we consider to have a index offset equal to zero, i.e., to each GPS sample
we associate the closet (in time) UWB sample. However, between the two samples
there is a non-negligible distance (green line), suggesting a possible disalignment
in time between the systems. Therefore, in Figure 5.16b, we substituted the closest
UWB samples in time, with the samples that minimize the mean arithmetic dis-
tance, w.r.t. the GPS data. Doing so, each GPS sample is then associated to a closer
(in distance) UWB sample, showing that a difference in time between the UWB and
GPS system exists, even if are time-synchronized. To do so, in post processing we
tried different index offsets, to find the one that minimized the distance difference.
We reference to an index offset, since the samples are discrete values sampled each
100 ms by both the systems: for instance an index offset of 2 indicates that the point
at index=1 of the GPS trace is compared to the UWB trace at index=3. Therefore,
in calculating the mean arithmetic distance between the two systems, each GPS
sample is associated to the UWB sample around 200 ms later.

Practically to determine the time offset between the recorded WGS84 locations
and the recorded UWB locations, for each trial, we time-aligned the traces accord-
ing to the recorded timestamps, then calculated the distance error between the
index-aligned points. We then calculated the same distance error with index offset
values between -10 and 10, corresponding to time-offsets of -1 second to +1 second
(-1000 ms to 1000 ms). Across all traces, the index with the minimum error is 3,
corresponding to 300 ms. The calculated error for multiple offsets for a single trace
is reported in the tables for each experiment.

Eight Shape

Description: In our first experiment, the entire length of the terrace is covered by
the path of the car, taking care to stay within the UWB coverage area, i.e., without
driving past the borders defined by anchor 1 and anchor 8. The car started between
anchor 3 and 1, in the position and direction shown with the red car and the green
square in Figure 5.14. The car traveled the terrace and closed the loop near the
starting position. The speed of the car was approximately constant at 10 km/h: a
reasonable parking lot speed.

Target: evaluating the accuracy of the UWB in a relatively large area, consider-
ing also the handover between the anchors while the tag moves inside the area.

Results: One sample trace is shown in Figure 5.17. For each trial, we apply in
pre-processing the antenna offset to the collected UWB data, effectively shifting all
UWB points 6 cm “backward” with respect to the direction of the vehicle.
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x [m]

y 
[m

]

With time offset
compensation

(A) GPS (black) and UWB (red) samples
from a 8-shape track, without the index

offset compensation.

x [m]

y 
[m

]

With time offset
compensation

(B) GPS (black) and UWB (red) samples
from a 8-shape track, with the index off-

set compensation.

FIGURE 5.16: Same part of the same experiment, with and with-
out the index offset compensation. For visualization purposes, the

tracks are downsampled.

TABLE 5.3: 8-Shape experiment result summary.

Sampling rate 10Hz Artificially increased
sampling rate

Trial Index
(No.)

Index Offset
(No. of
samples)

Mean Dis-
tance (m)

Index offset
(No. of
samples)
minimiz-
ing mean
distance

Mean Dis-
tance (m)

1 -3 0.113 -35 0.104
2 -3 0.102 -34 0.097
3 -3 0.097 -34 0.092
4 -3 0.099 -34 0.093
5 -3 0.109 -34 0.105

Table 5.3 reports the index offset between the UWB and GPS traces that mini-
mizes the average distance between the GPS and UWB points over the entire trace.
It also shows the mean difference for the entire trace when this offset is applied.
This index offset primarily accounts for the delays introduced during the UWB
sample acquisition pipeline. Nevertheless, the sampling time of the UWB and GPS
traces are not synchronized in time. With a car traveling at a speed of 10 km/h and
sampling every 100 ms, the distance between two samples in a single system is
28 cm. To compensate for this, we artificially increase the sampling rate of the GPS
trace, adding 10 equi-distant points along a line connecting each pair of points in
the original trace. We then identify the index offset for this artificially upsampled
GPS dataset with respect to the UWB dataset and report this new index and the
corresponding mean distance in the table.

Table 5.3 shows that for the outdoor experiments, the difference between the
GPS and the UWB locations is very small, on the order of 10 cm. We note that the
mean distance reported with the upsampled GPS data is smaller than the 10 Hz
data.

It is important to note that while most of the time the two traces, GPS and UWB,
are very close to one another, at one point the UWB data deviates significantly from
the GPS. As seen in Figure 5.18, the UWB trace changes trajectory, increasing the
distance between the two traces in that area. In this area, the car was driving very
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FIGURE 5.17: A full trial of the 8-shape experiment. White and red
dots are RTK and UWB data, respectively.

FIGURE 5.18: Detail with UWB deviation in one 8-shape trial.
White and red dots are RTK and UWB data, respectively.

close to the parked cars, which likely creates interference in the UWB measure-
ments. This is further exacerbated by the fact that one of the UWB anchors was
behind those cars (marked with 2 in Figure 5.14).

We conclude this section with a plot that shows the measured difference over
time between the GPS and the UWB values. The plot of Figure 5.19 shows a single
trace with most differences well below 0.2 m. Analysis of the data reveals that
the spikes seen here around indices 100 and 200 occur when the car is turning the
corner at the edges of the two traces. This area is nearest to the edges of the UWB
coverage area and likely has larger error. In other traces, e.g., Trace 05, we see an
even larger spike just before index 200. In this case, the problem arises because
the original UWB dataset has a gap in the data of multiple (3) samples. Although
we applied a mechanism to interpolate between these gaps, this mechanism is by
definition an approximation and thus generates the larger differences seen in the
plots. Despite these larger errors, the difference is quite reasonable throughout the
experiments.

Small Circle

Description: In our second experiment, a restricted area of the northern portion
of the terrace is traversed by the car, with the start at the stop between 7 and 5, as
depicted with the red car and the yellow square in Figure 5.14. The car traveled
from the start to the stop moving in a circle, at a speed less than 10 km/h, due to
the relatively small area available for the manoeuvre. There were no cars parked in
that area of the terrace. As the area was small, the UWB positioning system always
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FIGURE 5.19: Distance difference in meters between the GPS and
UWB traces for the duration of trace 1. The index corresponds to

the 10Hz samples of the UWB trace.
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FIGURE 5.20: A full trial of the small circle experiment. White and
red dots are RTK and UWB data, respectively.

used the same four anchors for the location computation: 5,6,7,8 (Figure 5.14).

TABLE 5.4: Circle experiment result summary.

Sampling rate 10Hz Artificially increased
sampling rate

Trial Index
(No.)

Index Offset
(No. of
samples)

Mean Dis-
tance (m)

Index offset
(No. of
samples)
minimiz-
ing mean
distance

Mean Dis-
tance (m)

1 -3 0.083 -32 0.082
2 -3 0.084 -31 0.080
3 -3 0.087 -31 0.085
4 -3 0.088 -32 0.086
5 -3 0.084 -31 0.079

Target: Testing the UWB system in a smaller without any other vehicles.
Results: The plots in Figure 5.20 depict the traces with both the GPS and the

UWB data with the 6 cm offset applied, in white and red respectively. As in the pre-
vious experiments, the results demonstrate that UWB achieves good localisation
performance, with a distance in mean under 20 cm with respect to the GPS data.
Table 5.4 shows both the time offset and the mean distance difference achieved in
this case: the time offset is around 3 samples as in the previous experiments. Over-
all, the performance is better when compared to the previous experiment, probably
because of the smaller testing area and the reduced speed.

As in the previous 8-shape experiment, traces in this experiment also show
deviations between the RTK and UWB. In Figure 5.21 the deviation GPS becomes
significant only during the curve when around 10 UWB samples are more distant
from the GPS trace. While in the previous case, the problem was likely due to the
presence of the parked cars near one of the UWB anchors, this issue likely arises
as the car was near the border of the coverage area. As the antennas were pointed



88 Chapter 5. Validation of Indoor Positioning Solution for Automotive

FIGURE 5.21: Detail with UWB deviation in one small circle trial.
White and red dots are RTK and UWB data, respectively.

toward the center of the terrace, the errors in the measured distances in these areas
have larger errors. This is also visible in Figure 5.22 where the difference over time
is shown. Around index 130, the car is near the north side of the terrace while
at the beginning and end the car was near the top of the terrace (nearest to the
building). In any case, we note that the error is below 0.2 m in all cases.

FIGURE 5.22: Distance difference in meters between GPS and
UWB for the first circle experiment.

5.3.2 Preliminary Indoor Experiments

Before experimenting with the vehicle in the garage, we performed a set of exper-
iments with individuals walking in the covered area.
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Experiment Description and Results

The preliminary experiments in the garage were completed by an individual carry-
ing a device at nearly 2 m height and walking in the garage. Only UWB data were
collected as the scope of the experiment was to confirm the coherence of the UWB
coordinates and the position conversion scripts with respect to the CAD map. For
this reason we walked close to the lines delimiting the parking spaces to evaluate
whether the collected traces were coherent with the CAD map. It is important to
mention that these experiments were carried out before the definition of the final
configuration of the UWB anchors, and some anchor positions were modified after
evaluating the traces collected in these experiments. Information regarding these
changes is detailed in the experiment results section below.

Finally, in these walking experiments we use a BLE connection, with a listener
device between the UWB tag and the UART connection to the PC. This configu-
ration was changed for all the other experiments, with the UWB tag directly con-
nected to the PC as explained before.

Full Walk

Description: the full coverage anchor configuration was used and the user walked
from the start to the stop points moving along the borders of the parking spaces,
without stopping. This experiment used only 16 anchors and one anchor was at a
90 degree angle w.r.t. Figure 5.13.

Target: Verify that the border of the parking spaces were respected and confirm
the functioning of the UWB system and the CAD position conversion scripts.

Results: Figure 5.23 shows a sample trace. The recording started on the right
side of the figure and continuously recorded until the stop position at the left of
the picture. From the figure it can be seen that, even if the tracks are slightly noisy
due to the UWB technology and the irregular movement of the person carrying the
node, the recorded track respects the borders of the parking spaces, showing that
the conversion script used to transform UWB coordinates into CAD coordinate is
working as expected. It is also important to note the noisier portions of the path,
highlighted with the red circles. To compensate for the problems manifested, we
modified the configuration to that shown in Figure 5.24, adding two anchors and
changing the direction of a third. Additional experiments performed in the trouble
spots confirmed that our changes improved the results.

Snake Walk

Description: Using the anchor configuration shown in Figure 5.12, the user with
the tag walked from the start to the end without stopping and traveled the main
path of the garage, trying to walk as close as possible to the borders of the parking
spaces.

Target: As in the previous experiment, the target was to demonstrate the correct
functioning of the CAD position conversion scripts.

Results: Figure 5.25 shows the results. In this case, the resulting track is smooth,
with no noisy areas, showing that the position conversion scripts work correctly
and the straight path anchor configuration was reasonable. Therefore, no anchors
were added, moved, or rotated.

5.3.3 Final Indoor Experiments

We next move on to the final experiments, comparing the commercial V2X system
to the UWB positioning system.
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FIGURE 5.23: Trace recorded during the full walk experiment.

FIGURE 5.24: Old configuration, zoomed view. Two fewer an-
chors (red crosses) and one anchor pointing in a different direction

(blue arrow).

FIGURE 5.25: Track recorded during the snake walk experiment.
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UWB System Setting

The UWB system settings are those depicted in Figures 5.12 and 5.13 depending
on the type of experiment. The UWB tag used for positioning was installed on the
roof of the car as described before with an offset of 6 cm.

Experiment Description and Results

The target of the final experiment was to compare the UWB and the V2X system.
At the time of the experiments, the parking lot was full. Before each experiment,
the test vehicle was driven outside the garage for sufficient time that the GPS sig-
nal was acquired. Upon entering the garage, the car turned left, then paused for
approximately from 5 to 10 seconds to allow the UWB system to initialize.

Simple Path

Description: The car started at the right side of Figure 5.26 and stopped near the
point at the the middle of the final two UWB anchors, positioned at the left side of
the image. The car traveled at a mean speed of approximately 10 km/h. The UWB
anchor configuration was that shown in Figure 5.12.

TABLE 5.5: Index offset and error for the indoor Simple Path with-
out Stop.

Sampling rate 10Hz Artificially increased sampling rate
Trial
Index
(No.)

Index
Offset
(No. of
sam-
ples)

Mean
Dis-
tance
(m)

Index
offset
(No. of
sam-
ples)
mini-
mizing
mean
dis-
tance

Mean
Dis-
tance
(m)

Index
offset -3

Mean
Dis-
tance
(m)

1 14 0.805 158 0.799 -31 3.834
2 -5 0.674 -57 0.662 -31 1.167
3 2 2.635 20 2.629 -31 3.072
4 -1 1.802 -12 1.800 -31 1.921
5 3 3.264 31 3.262 -31 3.869

Target: Comparison of the two systems in a simple scenario.
Results: Figure 5.26 shows an example of the UWB and V2X traces in red and

green respectively. Despite the simplicity of the experiment, we see clearly that the
traces deviate, in particular at the beginning where the starting points are more
than 2 meters apart. The difference reduces during the experiment as the V2X
trace moves closer to the UWB. This behavior suggests the presence of a systematic
offset in the commercial V2X system, however, by evaluating multiple V2X traces,
this hypothesis is not confirmed.

Figure 5.27 shows all five V2X traces for the Simple Path without Stop. Here we
see that the traces are widely different from one another, with approximately four
meters difference between them in the worst cases. On the other hand, the UWB
traces shown for the same experiments at the bottom of Figure 5.28 are coher-
ent, showing the car moving consistently down the middle of the aisle. The small
differences between the UWB traces are well within the tolerances expected with
a human driver, especially considering that the start and stop positions changed
slightly on each iteration.

To complete the evaluation of these traces, we performed the same evaluation
as the preliminary terrace experiments, comparing the positions reported by the
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FIGURE 5.26: Single trace of the simple path with V2X in green
and UWB in red.

FIGURE 5.27: In green, all the V2X traces.

UWB system to those reported by the commercial V2X system. As before, we ap-
ply the antenna offset to the UWB traces and perform the evaluation using the
coordinates converted to the CAD coordinate system. To compensate for the time
difference between the measurement of the data points, we calculate and apply
the index offset that minimizes the difference between the traces for both the orig-
inal UWB and V2X traces. We then artificially up-sample the V2X trace, adding 10
points between each pair of points, then calculate the new index (time) offset.

As expected based on the visual observation of the traces, the differences be-
tween the corresponding traces is much larger than we observed on the terrace
between the GPS and UWB, and in one case, above 3 m. In Table 5.5 we see that
while the calculated time index of the terrace experiments was consistent at -3, the
calculated index offsets that minimize the difference vary widely on this dataset.
While this offset minimizes the distance between the points, placing the commer-
cial V2X system in the best light, it is unlikely that the traces were as different as
the index values indicate, given that we had time synchronized the devices collect-
ing the traces, just as in the terrace experiments. Therefore, we also show the mean
distance between the traces, assuming an index offset of -31, as we saw on the ter-
race. Even in this case, however the differences remain quite large, as depicted in
Figure 5.29.

Simple Path with Curve

Description: The path is represented by the green line in Figure 5.13. The full
coverage UWB anchor configuration was used.

Target: Compare the two systems in a realistic parking lot scenario, in which a
car enters the lot, searches for a parking spot, then drives to the exit.

Results: Figure 5.30 shows the commercial V2X and UWB traces of one trial
of this experiment. As previously shown, the V2X trace has some points that
are unreasonable, e.g., at one point the trace overlaps with the parking spaces
(which were filled with vehicles at the time of the experiment). Moreover, in these
traces the V2X system was inconsistent across experiments, while the UWB system
was, again, quite consistent despite the challenges of the garage environment. The
traces of all iterations for a single technology are shown in Figures 5.31 and 5.32.

FIGURE 5.28: In red, all the UWB traces.
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FIGURE 5.29: The difference measurement in meters over time be-
tween the V2X trace and the UWB, applying the index that mini-

mizes the average difference.

FIGURE 5.30: Single trace of the curve path with V2X in green and
UWB in red.
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FIGURE 5.31: In green, all the V2X traces.

FIGURE 5.32: In red, all the UWB traces.
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FIGURE 5.33: The difference in meters between the V2X and UWB
over a single trace with the index that minimizes the average dif-

ference.
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TABLE 5.6: Index offset and error for the indoor Simple Path with
curve.

Sampling rate 10Hz Artificially increased sampling rate
Trial
Index
(No.)

Index
Offset
(No. of
sam-
ples)

Mean
Dis-
tance
(m)

Index
offset
(No. of
sam-
ples)
mini-
mizing
mean
dis-
tance

Mean
Dis-
tance
(m)

Index
offset -3

Mean
Dis-
tance
(m)

2 1 2.466 5 2.465 -31 2.554
3 -1 0.967 -9 0.966 -31 1.105
4 4 3.338 43 3.33 -31 3.570
5 0 1.069 4 1.066 -31 1.261

As before, we calculate the index offset that minimizes the average distance
between each pair of traces for both the original 10Hz data, the artificially upsam-
pled V2X data, and with the index offset of -31. In all cases, the average distance is
greater than 1 m.

By evaluating the distance over time in Figure 5.33, we first note that the Y-
axis showing the distance has a minimum of 1.5 m, meaning that the difference
between the traces was never less than 1.5 m. We see that initially the difference
grows, then over time improves, then deteriorates again at the end. The best be-
havior is actually around the curve of the parking lot, while the straight portions
and the moments when the car is driving around the curve are the worst. Even
if the UWB system had visually reasonable performance during the experiments,
some trials highlight minor problems. For instance, Figure 5.34 shows a deviation
of the data present in 2 of the 5 repetitions. This problem likely arises either due
to the multipath or from a poor anchor selection for calculating the position. We
presume that increasing the number of anchors would reduce the problem. No-
tably, this deviation is present at the end of the experiment, demonstrating that the
other issues shown in the previous section were correctly mitigated by changing
the anchor configuration.

5.4 Concluding Remarks

The table below offers a summary of the data presented above. For each experi-
ment, we present the average, minimum, and maximum difference values for the
index offset shown in the final column.

TABLE 5.7: Index offset and error for the indoor Simple Path with-
out Stop.

Experiment Average
Difference
(m)

Minimum
Difference
(m)

Maximum
Difference
(m)

index offset

Outdoor:
GPS/UWB

8-shape 0.098 0.092 0.105 -34
Circle 0.082 0.079 0.086 -31

Garage:
V2X/UWB

Simple 2.773 1.167 3.869 -31
Curve 2.122 1.105 3.570 -31
Parking 3.077 1.840 4.897 -31
Wave 4.529 2.145 10.378 -31

It can clearly be seen from the outdoor experiments with GPS and UWB that the
UWB system produces locations with a small difference w.r.t. GPS, less than 10 cm.



5.4. Concluding Remarks 97

FIGURE 5.34: An anomalous area of the UWB data trace.

As detailed above, the threats to accuracy arise when the vehicle is near the edge
of the covered area or when there are obstacles near the path such as other parked
vehicles. The average values presented in this summary are shown compared to
an up-sampled GPS trace, minimizing the error arising from the unsynchronized
sampling of the two systems.

For the experiments in the garage, where UWB is compared to the commercial
V2X system, we see that the difference between the measurements of the two sys-
tems increases dramatically, on average 2.2 to 4.5 m, but in some trials up to 10 m.
As the ground truth is difficult to obtain in the garage environment for a moving
vehicle, our work presented above demonstrates that the UWB system as installed
produces errors no greater than 30 cm, and often much less. Therefore, we have
confidence that it provides a reasonable point for comparison. As in the outdoor
trials, we chose to up-sample the V2X trace before comparing it to the UWB trace.
Further, we show results in this summary for the offset of -31, which corresponds
to the offset observed on the terrace, even though this offset does not minimize the
difference between the traces. Values for this minimization can be seen in the doc-
ument above. Analysis of the V2X traces show large variation across the trials, but
no systematic error is observed. For example, we did not observe that the first trial
was better than later trials, nor did we see a consistent offset between the traces.
In general, based on our experiments during the setup phase of the UWB system,
we observed that the threats to the accuracy of the system are much the same as on
the terrace, namely parked cars and obstacles such as concrete pillars. Further, as
the area under consideration is less regular than on the terrace, the algorithm used
to select the anchors does not always choose “the best” anchors, resulting in larger
errors in some areas. Nevertheless, by placing multiple anchors, and carefully ori-
enting their antenna to account for these challenges, the resulting system is quite
accurate.
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Chapter 6

Conclusions

Proximity Detection is a fundamental task of the IoT paradigm. “The ability of an
IoT device to sense the environment in search of similar devices and to know the distance
to them” represents the beating heart of a plethora of applications: from proximity
warning systems to data logging in wildlife environments for research purpose,
each application presents different requirements and challenges. Indeed, even if
such protocols can seem straightforward to design, we have shown that finding an
equilibrium among accuracy, energy consumption and latency is a complex task.

In this thesis, we faced this trade-off during the definition of two novel prox-
imity detection protocols, Janus and Hermes, each of which provides promising
results. We have also concretely demonstrated the use of Janus in a real appli-
cation, offering a complete research study from the data collection to sociological
analysis and impact. Serving as the backbone of this thesis, the UWB radio has
been successfully used in both protocols, demonstrating its applicability in prox-
imity detection. The quality of the UWB ranging has also been illustrated even in
harsh environment in Chapter 5, where the radio showed to be reliable in presence
of strong multipath components.

More in detail, with Janus we have shown that the use of a dual-radio architec-
ture, with BLE and UWB allowed the development of a protocol that is both accu-
rate and energy efficient. We illustrated how the two radios can be used in synergy,
using BLE for continuous neighbor discovery and to coordinate the UWB radio
that is exploited only for ranging on-demand. We demonstrated the reliability of
Janus with controlled experiments and confirmed our results with a mathematical
model. Moreover, we tested the protocol in a motion capture facility, demonstrat-
ing its accuracy, with mean ranging errors of approximately 30 cm. Furthermore,
the energy efficiency of the protocol has been shown, illustrating that Janus can
achieve weeks of operation depending on the configuration.

Janus was then at the center of a complete research study in which we used
the protocol in the context of measuring close proximity interactions among chil-
dren at camps during the summer 2020, when the COVID-19 pandemic was still
an international focus. Here the combination of accuracy and energy efficiency
was crucial to the successful application of the protocol. In this experience, our
collaboration with data analysis researchers led to an in-depth analysis of the data,
enabled also by the accurate measurements collected from the devices. The main
target of this study was to understand the dynamics of social interactions during
the pandemic and their possible effect on the spread of the disease. The collected
data allowed us to derive several key insights into the duration and proximity
patterns characterizing the child-child and the educator-child interactions. Inter-
estingly, the precise data enabled by our device, allowed us to define accurate risk
levels, that together with meta-data such as the type of activity being performed,
allowed us to understand fundamental information about the proximity patterns.

While we successfully demonstrated the positive qualities of Janus we also con-
sider its drawbacks. Specifically, splitting of the neighbor discovery and ranging
across two different radios introduced a latency of up to three epochs between dis-
covery and ranging. This problem represented the starting point for Hermes, the
second proximity detection protocol presented in this thesis. We have illustrated
that, by using only the UWB radio, it is possible to design a low-latency protocol
while still maintaining reasonably energy consumption for IoT devices. We have
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demonstrated this through a custom simulator, a flexible tool that, by simulating
the discovery between the nodes, showed the reliability and low-latency enabled
by Hermes. Indeed, we have seen that, even with 15 nodes in the same area, it
is possible to discover 96% of them within 2 epochs. Moreover, we have imple-
mented the protocol on real devices and demonstrated that the results achieved
with the simulator are close to what we see in practice. Finally, we illustrated
two methods for increasing the energy savings, deep sleep and preamble sniffing,
showing their benefits as well as drawbacks.

Overall this thesis provided a complete exploration for proximity detection and
the aforementioned challenges it poses. However, the work is continuing and we
have several future goals. In particular, in Hermes we are developing a mathemat-
ical model, to make our work more robust and verify the simulation and imple-
mentation results. Further, we plan to realize an extensive experiments campaign
in the CLOVES [69] testbed, to evaluate both discovery and ranging of the proto-
col. In fact, in the near future we plan to demonstrate that also Hermes allows high
ranging accuracy. Moreover, we will plan to exploit Hermes for a novel research
study, moving beyond our laboratory to have real world impact with our research
results.
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