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Abstract

The main topic of this thesis is confounding in linear regression models. It arises when a relationship

between an observed process, the covariate, and an outcome process, the response, is in�uenced by

an unmeasured process, the confounder, associated with both. Consequently, the estimators for the

regression coe�cients of the measured covariates might be severely biased, less e�cient and characterized

by misleading interpretations. In fact, confounding is an issue when the primary target of the work

is estimation of the regression parameters. The central point of the dissertation is the evaluation of

the sampling properties of parameter estimators. This work aims to extend the spatial confounding

framework, widely addressed in the literature, to general structured settings and to understand the

behaviour of confounding as a function of the data generating process structure parameters in several

scenarios focusing on the joint covariate-confounder structure. In line with the spatial statistics literature,

our purpose is to quantify the sampling properties of the regression coe�cient estimators and, in turn, to

identify the most prominent quantities depending on the generative mechanism impacting confounding.

Once the bias, variance and mean square error of the estimator conditionally on the covariate process

are derived as ratios of dependent quadratic forms in Gaussian random variables, we provide an analytic

expression of the marginal sampling properties of the estimator by means of Carlson's R function. This

allows the computation of the target quantities without simulation studies. In addition, we propose a

representative scalar quantity for the extent of confounding as a proxy of the bias, its �rst order Laplace

approximation. To conclude, we work under several frameworks that consider spatial and temporal

data with speci�c assumptions regarding the covariance and cross-covariance functions used to generate

the processes involved. This study allows us to claim that the variability of the confounder-covariate

interaction and of the covariate plays the most relevant role in determining the principal marker of the

magnitude of confounding, the estimator bias, and the other estimator sampling properties.
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Chapter 1

Introduction

1.1 Overview

Usually, in linear regression models, there are unobserved variables that contribute to

explain some of the variability of the response. The lack of knowledge of the latent

processes, that in�uence the predictor of such models, leads to biased estimates of the

parameters of interest. To overcome this problem in the attempt to account for the

unmeasured variables, it is common practice to use a linear regression model in which

a speci�c type of error structure matrix is assumed to be known. Otherwise, random

e�ects are included in the model to account for the variation of the correlation among

observations according to some unknown pattern. Often, neither being aware of residual

covariance matrix nor modeling the random e�ect variations is su�cient to obtain reliable

estimates.

Confounding arises when a relationship between an observed process, the covariate, and

an outcome process, the response, is a�ected by an unmeasured process, the confounder,

associated with both (see Figure 1.1). As a result, the estimates for the regression coef-

�cients of the measured covariates can be severely biased, less e�cient and characterized

by a misleading interpretation. Taking into account confounding e�ects in the parameter

estimation is a hard task. When the primary target is estimating the relationship between

the response and the covariates through regression coe�cients, it is critical to be aware

of the consequences of confounding. The central point of this thesis is the evaluation of

the sampling properties of parameter estimators under several scenarios and in a simple

setup with one covariate.

Confounding may occur in a wide variety of research areas, such as epidemiology, en-
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vironmental sciences, public health and physics. Frequently spatial models are employed

in these �elds because they are regression models that take into account the similarity of

spatially near observations. The existence of an unmeasured spatial variable introduces a

spatial structure into the residuals, which, in turn, requires inserting correlated random

e�ects into the model. This introduction acts as a local adjustment to the regression term

due to unmeasured covariates to avoid unobserved variable bias in the estimation of other

covariate e�ects. Unfortunately, as previously mentioned, this approach may not be able

to solve the bias issue. It does not �x the problem when the posited statistical model

tries to model data from a generative mechanism characterized by spatial confounding.

Confounder

CovariateResponse

Figure 1.1: Illustration of a confounded statistical relationship in a simple setup with one covariate.
The confounder in�uences, at the same time, the covariate and the response.

Over the past few decades, the statistical literature has dealt extensively with spatial

confounding. Clayton et al. (1993) is the �rst reference to the spatial confounding. They

point out that when "the pattern of variation of the covariate is similar to the disease risk,

the location may act as a confounder". Consequently, when a spatial e�ect is included in

the model, changes in the regression coe�cient estimates are not surprising. In addition,

the authors highlight the critical issue calling "confounding by location" the situation

where the estimates of a regression coe�cient associated with spatially structured covari-

ate are a�ected by the presence of a spatial random e�ect in the model. Bernardinelli

et al. (1995) give rise to the belief that adding a spatially correlated random e�ect adjusts

�xed e�ect estimates for spatially structured missing covariate. This idea is debunked in

presence of spatial confounding (Hodges and Reich, 2010). Reich et al. (2006) observe

that by introducing a spatially correlated random e�ect the change in the regression co-

e�cient estimates can be owed to collinearity between �xed e�ects and spatial random

e�ects. Believing this changeover in the estimation was erroneous, Reich et al. (2006) and

Hodges and Reich (2010) propose, as a possible redress, a method called restricted spatial

regression (RSR). They conjecture that the spatial random e�ects mask the association

between response and covariate when there is spatial confounding. For this reason they
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retain in the model only the random e�ects lying in the orthogonal space of �xed e�ects.

In the same period, Paciorek (2010) notes that controlling for spatial confounders in clas-

sical spatial models, for example through kriging, cannot reduce bias if the correlation is

strong, because the insertion of random e�ects may confound the e�ect of the covariates.

In other words, including spatial random e�ects in the regression model as a proxy of

unobserved spatial confounders does not succeed addressing the confounding problem. In

fact, it will be shown along the work that even assuming a suitable correlation structure

for the residuals, the bias still exists.

In light of the discussion above, it is well-reported that spatial confounding arises in the

presence of multicollinearity between the covariates and the spatial random e�ect (Hanks

et al., 2015; He�ey et al., 2017; Thaden and Kneib, 2018; Prates et al., 2019; Guan et al.,

2022). Actually, in these models, spatial confounding takes place when, in addition to the

response, spatially varying covariates modeling the mean of the response are correlated

with spatial latent variables involved in the generative model. This notion is consistent

with the standard causal de�nition of confounding (Papadogeorgou et al., 2018; Schnell

and Papadogeorgou, 2020; Gilbert et al., 2021). In this regard, Khan and Berrett (2023)

identify that there are at least two distinct phenomena currently con�ated with the term

spatial confounding: one about the multicollinearity characterizing the posited model and

one inherent the data from a generative mechanism featured by correlated observed co-

variates and unmeasured spatial variables.

From the econometric point of view, spatial confounding might be seen as a type of

endogeneity, with observed covariate the endogenous variable and the unmeasured com-

ponent, or some proxy of it, an exogenous variable. Thaden and Kneib (2018) and Khan

and Calder (2022) try to give a formal and strict de�nition of confounding and no con-

founding respectively, but still there is no unifying one in more general settings. At �rst

glance, it can be brie�y de�ned as the impossibility of disengaging marginal covariate

e�ect from spatial random one when they are dependent. In this case estimation methods

can lead to misleading results.

Spatial confounding is a contentious and active spatial statistics' area of research. The

relevant literature can be split into two strands. In the �rst one, the researchers try to

quantify, evaluate and understand the impact that spatial confounding has on regression

coe�cients (Paciorek, 2010; Page et al., 2017; Nobre et al., 2021). In the second one,

methods capable of accounting for spatial confounding are developed in order to obtain

accurate estimates of the target parameters (Reich et al., 2006; Hodges and Reich, 2010;

Hughes and Haran, 2013; Hanks et al., 2015; He�ey et al., 2017; Thaden and Kneib,

2018; Papadogeorgou et al., 2018; Guan et al., 2022; Dupont et al., 2021; Yang, 2021;

Reich et al., 2021; Marques et al., 2022; Hui and Bondell, 2022). Our work contributes to

the vein of the literature focusing on understanding spatial confounding, whereas future
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researches may consider the development of new methodologies.

In the recent literature, studies concerning spatial confounding focus on the strength

of spatial association characterizing the covariate and confounder, in order to evaluate

its impact on the sampling properties of the regression coe�cient estimators. To date,

what is evident from the previous studies is that the parameters in�uencing spatial auto-

correlation of the covariate and confounder are of major relevance. Moreover, the most

widespread idea is that a confounder smoother than the covariates leads to a lower bias,

e.g. less confounding (Paciorek, 2010). However, Page et al. (2017) note that this idea

cannot be pooled regardless the generative mechanism that drives the data.

The major aim of this dissertation is to extend the current literature on spatial con-

founding to general structured settings, e.g. to any generating process characterized

by autocorrelation structures. Besides, another goal of the work is understanding the

behavior of confounding as a function of the data generating process (DGP) structure

parameters in several scenarios depending on the possible di�erent ways in which the

joint covariate-confounder structure can be built. After discussing the di�erence between

smoothness and variability characterizing a structured random process, here we point out

that the bias mostly depends on the ratio of interaction's variability between confounder

and covariate, i.e. their expected sampling covariance, and the expected sampling vari-

ance of the covariate. Assuming a smoother confounder, in particular cases, leads to

smaller global variability and, thus, to lower bias.

1.2 Main contributions

We provide a clear statistical framework to understand confounding. Following the line

adopted by Paciorek (2010), Page et al. (2017) and Nobre et al. (2021), a stochastic gener-

ative model is assumed as data generating process along the thesis. This is useful because

allows us to obtain plausible values for the response, the covariate and the confounder

that may arise in real applications. In order to investigate in a more clear way the e�ects

of confounding in the estimation of regression coe�cients, all data generating process

parameters are posited to be known throughout the thesis except for the regression co-

e�cients. In line with the spatial statistics literature, we aim to quantify the sampling

properties of the regression coe�cient estimators, and in turn, identify the most relevant

quantities depending on DGP impacting confounding.

Assuming that the data generating process characterized by confounding has a speci�c

behaviour, we study the sampling properties of the generalized least square estimator

in the linear regression model with omitted variables and on the maximum likelihood
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estimator in the linear mixed regression model. The former model simply omits the

confounding variable, while the second accounts for it by considering a random e�ect

that attempts to represent its correlation structure. First of all, the estimators' sampling

properties, such as bias, variance and mean square error, conditionally on the covariate

process are derived. They are random variables giving rise to ratios of dependent quadratic

forms in Gaussian random variables (Provost and Mathai, 1992; Paolella, 2018). Using the

law of total expectation and variance and, following Sawa (1978) and Cressie (1993), it is

possible to obtain their expected value, providing an analytic expression of the marginal

sampling properties of the parameter estimator by means of the Carlson's R function

(Carlson, 1963; Lauricella, 1893).

Starting from the straightforward case in which spherical Gaussian processes generate

the covariate and confounder (unstructured DGP), the conditional bias of the estimator is

deterministic. It is function of the confounder-covariate covariance and covariate variance

parameters. This result suggests that the bias depends on the intensity of the relation-

ship between the confounder and covariate, and on the variability of the covariate process.

However, moving on the assumption of structured DGP, complications rise because the

variability of a process does not match the variance parameter. To overcome this problem,

we propose some quantities that synthesize such variability. Indeed, to summarize that of

a structured process, we specify the expected sampling variance and to consider the vari-

ability explained by the interaction of the two processes, we de�ne the expected sampling

covariance. As they are de�ned, such quantities allow us to note that the eigenvalues of

a covariance matrix are crucial to take into account the variability of a process in the

evaluation of the problem of confounding. Furthermore, given the literature's interest in

the smoothness of a process considered, we show how both the variability and smoothness

are captured in the speci�cation of a process. They can be quanti�ed through the process

covariance and correlation structure, respectively.

Since the primary goal of this dissertation is to understand the key issues of confounding

and derive informative analytic results for a wider setting, we work under several frame-

works with speci�c assumptions regarding the covariance and cross-covariance functions

used to generate the processes involved in the generative mechanism. In particular, we

consider di�erent scenarios in order to better understand how they a�ect the sampling

properties of the estimators. In a geostatistical framework, we consider an exponential

correlation function that depends on spatial range parameters to produce the covariate

and confounder processes. In an areal framework, we assume that the processes follow

a conditional autoregressive model depending on structure parameter and adjacency ma-

trix. In order to explore the temporal �eld, we assume that the covariate and confounder

follow an autoregressive process of order one. Then, in light of evidences supplied and

regarding the estimator bias as the principal marker for the magnitude of confounding, we
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point out that the confounder smoothness is not the most relevant measure in determin-

ing the bias. Rather, the covariate-confounder interaction and the variability of covariate,

play the most prominent role in determining the bias. Based on this fact, we propose a

representative scalar quantity for the confounding extent as a proxy of the marginal bias

of the estimator of the target parameter, its �rst order Laplace approximation.

The research reported in this dissertation contributes to the literature with an extensive

comprehension of confounding in linear regression models. Regarding future develop-

ments and work in progress we would examine the sources of confounding in more depth:

considering other kind of covariance and cross-covariance function for the design of the

data generating process, studying regression model with more than one covariate and

evaluating the predictions' uncertainty in presence of confounding. In addiction, aware

about the important role of the matrices' eigenvalues characterizing ratios of quadratic

forms that de�ne the estimator sampling properties, we deem to supply boundaries for

them. Finally, it would be desirable �nding a way to adjust for confounding in a Bayesian

framework.

The thesis is organized as follows: in Chapter 2 we de�ne the data generating process and

the posited model for parameter estimation putting forward our comprehensive notation

used along the work. In Chapter 3 we present the main features of confounding in terms

of quadratic forms: the marginal sampling properties of the estimator and the quantities

used to evaluate the issue. In Chapter 4 we provide a brief review of the main results of

the statistic literature regarding the assessment of spatial confounding adding our own

consideration on the matter and we implement an application study aimed at creating

scenarios similar to what we get in practice looking at geostatistical, areal and temporal

data.



Chapter 2

Analytic framework

One of the objectives of statistical modeling is to �gure out the in�uence of variables

(called covariates, regressors or independent variables) on a measure of interest (called

response or dependent variable). A general framework to perform this kind of analyses is

supplied by regression models. In particular, we focus on linear regression models.

The main topic of this thesis concerns the evaluation of the impact of unobserved rele-

vant information, related to the observed one, on the estimation of regression parameters,

an issue known in the literature as confounding. To provide a formal study of the sam-

pling properties of regression parameter estimators in presence of confounding, we start

by de�ning the Data Generating Process (Section 2.1) and a separate posited model for

parameter estimation (Section 2.2). This is intended to mimic the work�ow of statisti-

cal analysis where data are interpreted as realizations of a random mechanism that the

researcher tries to infer toward statistical modeling. In this spirit, confounding is about

the bias a�ecting the regression coe�cient estimates when the postulated model misses

some relevant feature of the DGP. Hypothesis underlying the posited model lead to dif-

ferent estimators of the regression coe�cients such as Ordinary Least Squares (OLS, in

regression with spherical disturbances), Generalized Least Squares (GLS, in regression

with structured disturbances) and more generally Maximum Likelihood (ML) estimators

in mixed linear regression models. As we point out in Section 2.2, these estimators can

be cast as the same linear function of the data with appropriate weighting matrices (in

particular, this is achievable in mixed models after marginalization of the random e�ects):

this allows a uni�ed treatment of the sampling distribution of all these estimators, which

is provided in Chapter 3.
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2.1 The Data Generating Process

To introduce the problem of confounding a stochastic generative model, i.e. the DGP,

is considered. Its speci�cation starts by explicitly stating the linear dependence of the

response variable on the covariates:

Y = By·0(xz)1n + By·x(z)X + By·z(x)Z + εy|x,z, εy|x,z ∼ Nn(0,Σy|x,z), (2.1)

where 1n is the n-dimensional vector of ones and Σy|x,z is the covariance matrix of the

error term that expresses the variability of the dependent variable Y not explained by the

regression on X and Z. Moreover, By·0(xz), By·x(z) and By·z(x) are the partial regression
coe�cients that determine the strength and direction of the corresponding covariate's

in�uence. The notation on subscript of the partial regression coe�cients is aimed at

pointing out that they quantify the relationship between the response (before the dot)

and the covariate which is referred to (after the dot), in the presence of another variable

(within the brackets) (for a schematic representation see Figure 2.2).

The treatment of X and Z as random processes has also been adopted by Paciorek

(2010) and Page et al. (2017). The stochastic approach allows for some analytic results

and is further justi�ed in that the variation that an unmeasured Z induces in Y is

necessarily treated stochastically as a part of the residual.

In our setting, the response, the covariate, and the confounder are multivariate Gaussian

random variables characterized by the following joint distribution:YX
Z

 ∼ N3n

µyµx
µz

 ,

Σy Σyx Σyz

Σxy Σx Σxz

Σzy Σzx Σz

 , (2.2)

where Σy,Σx,Σz ∈ Sn++
1 are the positive de�nite marginal covariance matrices de�ned

as

Σx = Cov(X,X) = E
[
(X − E[X])(X − E[X])⊤

]
,

and Σxz, such that Σxz = Σ⊤
zx, is the cross-covariance matrix de�nes as

Σxz = Cov(X,Z) = E
[
(X − E[X])(Z − E[Z])⊤

]
.

Equation (2.1) can be expressed through the conditional distribution of the response

1Let Sn denote the vector space of n × n real symmetric matrices. Recall that by the spectral theorem any matrix
A ∈ Sn is diagonalizable in an orthonormal basis and has real eigenvalues. Let Sn++ (Sn+) denote the set of positive
(semi)de�nite matrices, i.e. the set of real symmetric matrices having strictly positive (non-negative) eigenvalues. For a
matrix A ∈ Sn++ (A ∈ Sn+) we will use the notation A ≻ 0 (A ⪰ 0).
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process as follows:

Y |X,Z ∼ Nn

(
By·0(xz)1n + By·x(z)X + By·z(x)Z,Σy|x,z

)
. (2.3)

Recalling the results in Appendix B.2, valid joint distribution of (Y ⊤,X⊤,Z⊤)⊤ may

be obtained assuming any combination of two conditional covariance matrices and one

marginal positive de�nite covariance matrix, e.g. Σy|x,z ≻ 0, Σx|z ≻ 0 and Σz ≻ 0.

Otherwise, selecting all positive de�nite marginal covariance matrices and choosing valid

cross-covariance function leads to a valid joint distribution.

We are interested in the ensuing linear predictor, i.e. the mean of random vector

Y |X,Z ∈ Rn,

EY [Y |X,Z] = By·0(xz)1n + By·x(z)X + By·z(x)Z, (2.4)

obtained by integration on the domain of Y . A signi�cant aspect of Equation (2.4), as

emphasized by the notation, is that the expectation has to be taken with respect to the

distribution of Y . The following proposition is aimed at clarifying the notation adopted

for the expected value when the random vector Y is expressed as a function of X and Z.

Proposition 2.1.1. Let X and Z be continuous random vectors with joint probability
density function (pdf) fX,Z(x, z) and let Y be a continuous random vector with pdf fY (y).
Considering the transformation h(·) such that

Y = h(X,Z),

by a change of variables argument, it can be established that

EY [Y ] =

∫
Y
yfY (y) dy

=

∫
X

∫
Z
h(x, z)fX,Z(x, z) dxdz

= EX,Z [h(X,Z)],

under the condition ∫
X

∫
Z
|h(x, z)|fX,Z(x, z) dxdz < ∞,

is the expected value of the random vector Y with respect to the random vectors X and
Z on the product space X × Z.

To understand the consequences of lack of information concerning the variable Z on the

estimation of the regression coe�cient of Y on the measured variableX, we will consider

the conditional distribution Y |X marginalized over Z:

Y |X ∼ Nn(By·0(x)1n +Ay·xX, B2
y·z(x)Σz|x +Σy|x,z), (2.5)
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where

Ay·x = ΣyxΣ
−1
x

= By·x(z)In + By·z(x)Az·x (2.6)

is the regression matrix of Y on X.

WhenAx·z is not a scalar matrix2, that is the most stimulating case, also the coe�cients'

interpretation problem arises because they are not understandable as partial derivatives

anymore (LeSage, 2008; Golgher and Voss, 2015). This is an interesting topic that could

be the target of a future insights. More broadly, whether there were some relationships

between the multivariate components of the random vectors in a model, they certainly

would not want to be ignored. In that case, the regression matrices would no longer be

scalar but will have some sparse or full structure characterized by dependence they share.

Confounder
Z

Covariate
X

Response
Y

Ax·zAy·z

By·z(x)

Ay·x

By·x(z)

Figure 2.1: Formalization of the confounded simple regression model in (2.1) with scalar partial regres-
sion coe�cients (red) and regression matrices (black).

Under such setting, if Y and Z are conditionally independent given X, i.e.

By·z(x) = 0

and, X and Z are independent, i.e

Az·x = 0⇐⇒ Σzx = 0,

the simple regression matrix of Y on X coincides with the corresponding scalar matrix

containing the partial regression coe�cient related to X, i.e. Ay·x = By·x(z)In. It means

that there is no confounding in the model inasmuch as the presence of a latent process

2A scalar matrix is a diagonal matrix with equal diagonal entries.
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in DGP does not change the measurement of relationship between the response and the

covariate. Consequently, regression parameter estimates are unbiased.

2.1.1 Unstructured data generating process

We start considering an unstructured DGP. Assuming a scalar error covariance matrix

(assumed throughout the whole thesis), i.e.

Σy|x,z = σ2
y|x,zIn,

and treating the regressors as spherical3 random variables, such that

X ∼ Nn(µx, σ
2
xIn) and Z ∼ Nn(µz, σ

2
zIn),

the partial regression coe�cients can be expressed in term of the simple regression coef-

�cients as:

By·x(z) =
By·x − By·zBz·x
1− Bx·zBz·x

By·z(x) =
By·z − By·xBx·z
1− Bx·zBz·x

. (2.7)

where By·x is the simple regression coe�cient of Y on X.

Thus, By·x(z) can be interpreted as the regression coe�cient of Y on X modi�ed for the

presence of Z. Moreover, if the random variables X and Z are not correlated, one has

that Bz·x = Bx·z = 0, and hence, By·x(z) = By·x. The same is valid for By·z(x) (Anderson,
1984; Allen, 1997). In this spherical setup, given the pair of random vectors (Y ,X), the

i-th component of the vector Y , Yi, is a�ected exclusively by Xi, in a proportional way

through By·x, for all i = 1, . . . , n. Thereby, we have Ay·x = By·xIn, and so, in this case, the

regression coe�cient By·x can be expressed in terms of the partial regression coe�cients

of the full model using the Equations in (2.7) as follows

By·x = By·x(z) + By·z(x)Bz·x. (2.8)

Equation (2.8) shows that the estimation will be biased when By·x ̸= By·x(z), that is

the case in which there is confounding in the model, which is when the covariate and

confounder processes are correlated and the response and the confounder are conditionally

dependent given the covariate. This intuition will be formalized for a broader context in

Section 2.1.3.

3Spherical distributions are considered an extension of the standard multivariate normal distribution characterized by
no unit marginal variance and mean not necessarily zero.
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Confounder
Z

Covariate
X

Response
Y

Bx·zBy·z

By·z(x)

By·x

By·x(z)

Figure 2.2: Formalization of the confounded simple regression model in (2.1) considering an unstruc-
tured DGP characterized the simple (black) and partial (red) regression coe�cients quantifying the
relations between processes.

2.1.2 Structured data generating process

After tackling the most basic case, in this section we consider structured covariance and

cross-covariance matrices for the distributive assumption in (2.2). Subsequently, what has

been reported in Section 2.1.1 becomes more complex. In this regard we start by remarking

how the joint distribution for (2.2) can be expressed in dependence of regression matrices

since expressing the linear predictor in terms of partial regression coe�cients, as in (2.4),

is no longer possible. Particular attention is devoted to conditions that have to be met in

order to obtain a valid joint covariance matrix.

2.1.2.1 Joint distribution of Gaussian vectors through regression matrices

Consider a bivariate random vector (X⊤,Z⊤)⊤ ∼ N2n(µx,z,Σx,z), where µx,z =
(
µ⊤
x ,µ

⊤
z

)⊤
and

Σx,z =

[
Σx Σxz

Σzx Σz

]
. (2.9)

From standard multivariate normal theory (see Appendix B), this distribution can be

obtained starting from the marginal distribution of Z, Nn(µz,Σz), and the conditional

distribution X|Z ∼ Nn(µx|z,Σx|z) which has moments:

µx|z = µx +ΣxzΣ
−1
z (z − µz)

= µx +Ax·z(z − µz),

Σx|z = Σx −Ax·zΣzA
⊤
x·z. (2.10)



2.1 The Data Generating Process 13

By analogy, it is possible to do the same with the variables X and Z|X. Thus, the joint

distribution of X and Z can be expressed as follows:(
X

Z

)
∼ N2n

((
µx|z −Ax·z(z − µz)

µz

)
,

[
Σx|z +Ax·zΣzA

⊤
x·z Ax·zΣz

(Ax·zΣz)
⊤ Σz

])
. (2.11)

According to Harville (1997) and Zhang (2005), conditions ensuring the property of the

covariance matrix in (2.11) are Σz ≻ 0 and Σx|z ≻ 0. Hence, one needs to specify the

matrices Σz ≻ 0 and Σx|z ≻ 0 to get a valid covariance matrix, while no conditions need

to be met by the regression matrix Ax·z.

Considering the trivariate random vector (Y ⊤,X⊤,Z⊤)⊤, in a similar manner as previ-

ously done in Equation (2.6), we de�ne the regression matrixAy·xz ∈ Rn×2n that expresses

the structure of the regression of Y on X and Z, as

Ay·xz = Σy·xzΣ
−1
x,z. (2.12)

The conditional distribution Y |(X⊤,Z⊤)⊤ ∼ Nn(µy|x,z,Σy|x,z) is characterized by the

following moments:

µy|x,z = µy +Ay·xz

(
x− µx
z − µz

)
,

Σy|x,z = Σy −Ay·xzΣx,zA
⊤
y·xz. (2.13)

As for the bivariate case, we express the joint covariance matrix Σy,x,z as a function of

the regression matrices introduced above:

µy,x,z =

µy|x,z −Ay·xz

(
x− [µx|z −Ax·z(z − µz)]

z − µz

)
µx|z −Ax·z(z − µz)

µz



Σy,x,z =


Σy|x,z +Ay·xzΣx,zA

⊤
y·xz Ay·xΣx Ay·zΣz

Ax·yΣy Σx|z +Ax·zΣzA
⊤
x·z Ax·zΣz

Az·yΣy Az·xΣx Σz

 (2.14)

According to Theorem B.2.1, the su�cient conditions that ensure the property of Σy,x,z

are Σx,z ≻ 0 and Σy|x,z ≻ 0. Hence, regression matrices Ay·x, Ay·z, Ax·z, Ay·xz do not

impact positive de�niteness of Σy,x,z.

Furthermore, from Equation (2.12) it is possible to identify the sub-matrices Ay·x(z) ∈
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Rn×n and Ay·z(x) ∈ Rn×n, called partial regression matrices, such that:

Ay·xz =
[
Ay·x(z) : Ay·z(x)

]
, (2.15)

where Ay·x(z) is the matrix that describes the relationship between the variable Y and

X, holding Z constant. Matrices Ax·z, Ay·x and Ay·z are referred to as simple regression
matrices in what follows when we need to distinguish them from the partial ones.

2.1.2.2 Relationship between partial and simple regression matrices

In the following we focus on how simple and partial regression matrices are related to

each other (see Figure 2.1).

Proposition 2.1.2. The simple regression matrices that link Y to X and Z can be
expressed as a function of the partial regression matrices Ay·x(z), Ay·z(x) and the simple
regression matrices between X and Z as follows:

(i)
Ay·x = Ay·z(x)Az·x +Ay·x(z), (2.16)

(ii)
Ay·z = Ay·x(z)Ax·z +Ay·z(x). (2.17)

Proof. From (2.11), (2.12) and (2.15), one gets:

Σy·xz = Ay·xzΣx,z

=
[
Ay·x(z) : Ay·z(x)

] [ Σx Ax·zΣz

(Ax·zΣz)
⊤ Σz

]
=
[
(Ay·x(z) +Ay·z(x)Az·x)Σx : (Ay·x(z)Ax·z +Ay·z(x))Σz

]
.

Then, recalling how Σy·xz is built from (B.2) brings to (i) and (ii).

Proposition 2.1.3. The partial regression matrices can be expressed as a function of
the simple regression matrices of every possible pair of random vectors Y , X and Z, as
follows.

(i)
Ay·z(x) = (Ay·z −Ay·xAx·z) (In −Az·xAx·z)

−1 ; (2.18)

(ii)
Ay·x(z) = (Ay·x −Ay·zAz·x) (In −Ax·zAz·x)

−1 . (2.19)
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Proof. Concerning statement (i), starting from (2.17) and then using (2.16), one gets:

Ay·z(x) = Ay·z −Ay·x(z)Ax·z

= Ay·z − (Ay·x −Ay·z(x)Az·x)Ax·z

Ay·z(x) −Ay·z(x)Az·xAx·z = Ay·z −Ay·xAx·z

Ay·z(x)(In −Az·xAx·z) = Ay·z −Ay·xAx·z

Ay·z(x) = (Ay·z −Ay·xAx·z) (In −Az·xAx·z)
−1 .

Alternatively, we can provide the evidence of the statement (i) making use of the Schur-

Barachiewicz inverse formula (A.4) through the Schur complement Σx,z/Σx:

Ay·xz =
[
Ay·x(z) : Ay·z(x)

]
= Σy·xzΣ

−1
x,z

=
[
Σyx : Σyz

] [Σx Σxz

Σzx Σz

]−1

=
[
Σyx : Σyz

] [Σ−1
x +Σ−1

x Σxz(Σx,z/Σx)
−1ΣzxΣ

−1
x −Σ−1

x Σxz(Σx,z/Σx)
−1

−(Σx,z/Σx)
−1ΣzxΣ

−1
x (Σx,z/Σx)

−1

]

=

[
ΣyxΣ

−1
x Σxz(Σx,z/Σx)

−1ΣzxΣ
−1
x . −ΣyxΣ

−1
x Σxz(Σx,z/Σx)

−1+

+ΣyxΣ
−1
x −Σyz(Σx,z/Σx)

−1ΣzxΣ
−1
x ˙ +Σyz(Σx,z/Σx)

−1

]
.

According to the de�nitions of regression matrices and considering that

(Σx,z/Σx)
−1 = Σ−1

z (In −Az·xAx·z)
−1,

we get

Ay·xz =

[
Ay·xAx·z(In −Az·xAx·z)

−1Az·x+ . −Ay·xAx·z(In −Az·xAx·z)
−1+

+Ay·x −Ay·z(In −Az·xAx·z)
−1Az·x ˙ +Ay·z(In −Az·xAx·z)

−1

]
and then, the expected result

Ay·z(x) = (Ay·z −Ay·xAx·z)(In −Az·xAx·z)
−1.

In order to proof (ii) one can simply repeat the process above using (A.7) instead.

It is immediate to see that these last propositions are multivariate generalizations of

Formulas (2.7) and (2.8) expressing the relations between the simple and partial regression

coe�cients under unstructured DGP. In fact, when in the conditional mean the partial

regression matrices Ay·x(z) and Ay·z(x) are scalar matrices, such that
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Ay·x(z) = By·x(z)In and Ay·z(x) = By·z(x)In.

we get the base-line conditional mean in (2.4).

2.1.3 De�ning confounding

The mean of the Gaussian random vector (Y ⊤,X⊤,Z⊤)⊤ can be expressed as a function

of the regression matrices Ay·x(z), Ay·z(x) and Ax·z as follows

µy,x,z =

µy|x,z +Ay·x(z)µx +Ay·z(x)µz −Ay·x(z)x−Ay·z(x)z

µx|z +Ax·zµz −Ax·zz

µz

 .

The conditional mean of the random vector Y |X,Z con be expressed as:

EY [Y |X,Z] = µy −Ay·x(z)µx −Ay·z(x)µz +Ay·xz

(
x

z

)
= ay·0(xz) +Ay·x(z)x+Ay·z(x)z (2.20)

where ay·0(xz) is the intercept vector. In line with Paciorek (2010) and Page et al. (2017),

from now on we suppose µx = µz = 0 because µz = 0 is a common assumption in

random e�ects models and µx = 0 is analogous to centering the covariate, without loss

of generality. Applying Propositions 2.1.2 and 2.1.3, and recalling our goal to understand

the consequences of an unmeasured confounder, we show the conditional mean in (2.20)

marginalized with respect to Z:

EY [Y |X] = ay·0(x) +
(
Ay·x(z) +Ay·z(x)Az·x

)
x. (2.21)

Analogously to Section 2.1.1, it appears that confounding occurs when Ay·x(z) ̸= Ay·x.

Indeed, the conditional mean in Equation (2.21) shows how the product matrixAy·z(x)Az·x
contributes to in�uence the magnitude of confounding.

After the complete presentation of our overarching notation, hereunder the de�nition

of confounding is formalized. The representation of the regression matrix Ay·x in Equa-

tion (2.21) and Proposition 2.1.2 suggest our proposal. The de�nition of confounding is

coherent with the one proposed by Thaden and Kneib (2018), with adapted notation.

De�nition 2.1.1. Let Y be the response, X be the covariate and Z be the confounder

processes of a linear regression model characterized by the joint distribution expressed in

(2.2). Then, the regression of Y on X is de�ned confounded by Z if both the following

conditions are veri�ed:
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(i) Y and Z are conditionally dependent given X (Y ̸⊥ Z|X), i.e.

EY [Y |X = x,Z = z] ̸= EY [Y |X = x] ⇒ Ay·z(x) ̸= 0;

(ii) X and Z are dependent (X ̸⊥ Z), i.e.

EX [X|Z = z] ̸= EX [X] ⇒ Ax·z ̸= 0.

An alternative and equivalent way to de�ne confounding, explicitly related to the joint

covariance matrix of the distribution of Y ,X and Z follows.

De�nition 2.1.2. Let Y be the response, X be the covariate and Z be the confounder

processes of a linear regression model characterized by the joint distribution expressed in

(2.2). The regression of Y on X is confounded by Z if both Σyz ̸= 0 and Σxz ̸= 0.

Confounder
Z

Covariate
X

Response
Y

Ax·zAy·z

Ay·z(x)

Ay·x

Ay·x(z)

Figure 2.3: Formalization of the confounded simple regression model in (2.20) considering a structured
DGP characterized the simple (black) and partial (red) regression matrices.

In other words, confounding occurs, if the unobserved variable is related with both the

response and the covariate. As shown in Figure 2.3, the confounder Z in�uences the

response and covariate simultaneously via Ay·z(x) and Az·x, respectively. In an attempt

to de�ne confounding in a spatial setting, Thaden and Kneib (2018) describe the sepa-

ration of direct and indirect covariate e�ects via path analysis in case of discrete spatial

information (Weiber and Mühlhaus, 2014, Chapter 3). The overall spatial information is

written as a composition of the direct and indirect spatial e�ect. In the same spirit, we

highlight that the overall e�ect of the confounder can be expressed trough the regression

matrix Ay·z stated in Equation (2.17). The so called indirect e�ects is linked to the sim-

ple regression matrix Ax·z, while the direct one is linked to the partial regression matrix

Ay·z(x).
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In addition, the covariance matrix of Y |X in function of the other conditional ones and

the partial regression matrices is reported for future use along the thesis. It also justi�es

the form of the error covariance matrix of the marginalized DGP in (2.5).

Proposition 2.1.4. Considering the random vector Y |X,Z ∼ Nn

(
ay·0(xz) +Ay·z(x)x +

Ay·x(z)z, Σy|x,z
)
and marginalizing it over Z, the covariance matrix of Y |X is:

Σy|x = Σy|x,z +Ay·z(x)Σz|xA
⊤
y·z(x). (2.22)

Proof. From Equation (2.13) we express Σy as shown below:

Σy = Σy|x,z +
[
Ay·x(z) : Ay·z(x)

]
Σx,z

[
A⊤
y·x(z)

A⊤
y·z(x)

]
= Σy|x,z +Ay·x(z)ΣxA

⊤
y·x(z) + 2Ay·z(x)ΣzA

⊤
x·zA

⊤
y·x(z) +Ay·z(x)ΣzA

⊤
y·z(x).

Then, using Equation (2.10) and basic algebraic manipulations we get the result as follows

Σy|x = Σy −Ay·xΣxA
⊤
y·x

= Σy|x,z +Ay·x(z)ΣxA
⊤
y·x(z) + 2Ay·z(x)ΣzA

⊤
x·zA

⊤
y·x(z) +Ay·z(x)ΣzA

⊤
y·z(x)+

− (Ay·x(z) +Ay·z(x)Az·x)Σx(Ay·x(z) +Ay·z(x)Az·x)
⊤

= Σy|x,z + 2Ay·z(x)ΣzA
⊤
x·zA

⊤
y·x(z) +Ay·z(x)(Σz −Az·xΣxA

⊤
z·x)A

⊤
y·z(x)+

− 2Ay·z(x)Az·xΣxA
⊤
y·x(z)

= Σy|x,z +Ay·z(x)Σz|xA
⊤
y·z(x).

2.2 The statistical models and estimators

In practice, confounding is a problem because only the realizations y and x are observed

from the data generating process in (2.3), ignoring the presence ofZ. Given a phenomenon

of interest, di�erent speci�cations of the model can be proposed. The model speci�ed by

researchers, is based on their assumptions: in what follows we revise estimators of the

regression coe�cient of y on x arising from standard linear regression models and linear

mixed e�ect models noting that these estimators can be seen as the same linear function of

the data for an appropriate choice of the error covariance matrix. The marginal sampling

properties of such estimators will be studied in Chapter 3.
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2.2.1 Linear regression model

The simple linear regression model can be cast as

Y = β01n + βxX + u, u ∼ Nn(0,V),

where u is the zero-mean normal error term characterized by the error covariance matrix

V. This is equivalent to the following distributional assumption

Y |X = x ∼ Nn (β01n + βxx,V) . (2.23)

Comparing di�erent structures for V is useful to understand the dynamics of confound-

ing, given that the data generating process marginalized with respect to Z (2.5) has a

covariance matrix, Σy|x, whose structure also depends on Σz|x (see Proposition 2.1.4).

Regression parameters are estimated via generalized least squares estimators, with the

special case of ordinary least squares when V = σ2In. A number of assumptions about

the regressors, the response variables and their relationships characterize this model.

Essentially, the following are the most relevant:

1. linearity (*),(**);

2. no perfect multicollinearity (*),(**), i.e. rank[1n : X] = 2,

3. exogeneity (*),(**), i.e. Cov(X,u) = 0;

4. homoschedasticity and no autocorrelation (*), i.e. V = σ2In.

When the assumptions for OLS (*) or GLS (**) are met, both least square estimators are

the best linear unbiased ones (BLUE) (Hayashi, 2000; Wooldridge, 2019). If assumptions

are violated, the estimator will no longer be BLUE. In general, the dependent variable is

endogenous by de�nition because other variables in the model are assumed to explain its

variability. The least squares (LS) estimator of regression coe�cients β = (β0, βx)
⊤ is

β̂ LS = (X̃
⊤
V−1X̃)−1X̃

⊤
V−1Y , (2.24)

where X̃ = [1n : X] is the design matrix. Since the parameter of interest is βx, our

focal point in this thesis will be the studying of the sampling properties of the second

component of estimator vector in (2.24).

2.2.2 Linear mixed regression model

Mixed models are applied in many disciplines where multiple correlated measurements

are made on each unit of interest. This correlation characterizing the data are modeled
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through the random e�ects considered in the models. For detailed treatment of the topic

see Jiang and Nguyen (2021). In some cases the random e�ects themselves are of interest,

such as in small area estimation (e.g. Rao and Molina (2015)). In some other cases,

such as in the analysis of longitudinal data (e.g. Diggle et al. (2002), Pusponegoro et al.

(2017)), the random e�ects are mostly used to model the correlation among the data in

order to get correct measure of uncertainty. Sometimes, such as in genetic studies (e.g.

Yang et al. (2010), Dandine-Roulland and Perdry (2019)), the variances of random e�ects

are of major importance. In some cases, random e�ects are included with the aim of

capturing the e�ect of unobserved covariates. This is our case of interest.

A linear mixed model can be expressed as

Y = X̃β +Hγ + ε (2.25)

where X̃ ∈ Rn×p is the covariate matrix (in our case p = 2), β ∈ Rp is a vector of

unknown regression coe�cients which are called �xed e�ects, H ∈ Rn×q is the random

e�ects design matrix, γ ∈ Rq is a vector of random e�ects, and ε is the error term. Note

that both ε and γ are not observable. Compared with the linear regression model in

Section 2.2.1, it is assumed that some of the model's coe�cients are random. Moreover,

as previously mentioned, such introduction of random e�ects comes from the need to

accommodate more complex error structures such as those arising in hierarchical models

in order to take into account that observations are correlated. The random part, Hγ,

may take many di�erent forms, giving rise to a rich class of models characterized by some

assumptions. The staple ones for (2.25) are that the error vector and the random e�ects

are uncorrelated, mean zero and marked by �nite variance. There are di�erent types

of linear mixed models, depending on how these models are classi�ed. Here we assume

both random e�ects and error in (2.25) to be normally distributed, γ ∼ Nq(0,Σγ) and

ε ∼ Nn(0,Σε). Moreover, from the random e�ects viewpoint, when confounding occurs

a mistake is made by assuming that the random e�ect are independent of the covariate,

violating one of the basic assumptions of mixed models (Breslow and Clayton, 1993). This

leads to biased estimate of �xed e�ect on which our attention is concerned.

A standard method of estimation of �xed e�ects in Gaussian mixed models is the max-

imum likelihood brought in this framework by Hartley and Rao (1967). Marginalizing

with respect to the random e�ects, a mixed model can be expressed as

Y ∼ Nn

(
X̃β,V

)
with V = HΣγH

⊤ +Σε. (2.26)

By di�erentiating its log-likelihood function with respect to the unknown �xed e�ects and
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using the standard procedure of �nding the ML estimator we get:

β̂ML =
(
X̃

⊤
V−1X̃

)−1

X̃
⊤
V−1Y . (2.27)

2.3 Conditional sampling properties of the estimator

Since estimators (2.24) and (2.27) share the same functional form, the sampling properties

of the estimators of the regression coe�cients can be studied independently on the posited

model by de�ning the following general estimator:

β̂ = JY , (2.28)

where

J =
(
X̃

⊤
S−1X̃

)−1

X̃
⊤
S−1 (2.29)

in which the weighting matrix S varies with the assumed model. For example, S = In
delivers the OLS estimator.

Investigating the e�ect of confounding on the estimation of By·x(z), namely the partial

e�ect ofX on Y , means studying the sampling properties of the estimators β̂x, under the

models described above. In this task, the e�ect of Z on X and Y is crucial. In line with

the works of Paciorek (2010) and Page et al. (2017), we start presenting the sampling

distribution of the estimator (2.28) conditionally on X, and then, in the next chapter, we

will treat the obtained properties as random variables in order to obtain their expected

value.

As a �rst step, the following proposition introduces a well known result, i.e. the dis-

tribution of β̂|X, that is re-written under our notation and as a function of quantities

useful for further developments.

Proposition 2.3.1. The estimator β̂ in (2.28) conditional on X has the following sam-
pling distribution:

β̂|X ∼ N2

(
J(By·0(xz)1n +Ay·xX),JΣy|xJ

⊤) . (2.30)

Proof. Using the main properties of normal distribution, the moments of Z|X can be

obtained from Equation (2.10) and due to the result in Proposition 2.1.4, the following

conditional sampling properties of estimator β̂ de�ned in (2.28) are obtained as

EY
[
β̂|X

]
= EY [JY |X]
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= JEZ,ε
[
By·0(xz)1n + By·x(z)X + By·z(x)Z + εy|x,z

∣∣X]
= J

[
By·0(xz)1n + By·x(z)X + By·z(x)EZ [Z|X] + Eε[εy|x,z]

]
= J

[
By·0(xz)1n + (By·x(z) + By·z(x)Az·x)X

]
= J[By·0(xz)1n +Ay·xX]

VY

[
β̂|X

]
= VY [JY |X]

= J
(
B2
y·z(x)VZ [Z|X] + Vε

[
εy|x,z|X

])
J⊤

= J
(
B2
y·z(x)Σz − B2

y·z(x)ΣzxΣ
−1
x Σxz + σ2

y|x,zIn
)
J⊤

= JΣy|xJ
⊤

Since our target parameter is By·x(z), we are particularly interested in the sampling

properties of the second element of β̂, that is β̂x. From the result in Proposition 2.3.1, it

immediately follows that:

BiasY

[
β̂x|X

]
= By·z(x)J2•ΣzxΣ

−1
x X, (2.31)

and

VY

[
β̂x|X

]
= J2•Σy|xJ

⊤
2•, (2.32)

where J2• indicates the second row of the matrix J. We emphasize that the adopted

notation is aimed at stressing that we are evaluating moments in the sampling space with

respect to the response process Y , whereas we still consider X as a random variable.

Furthermore, a crucial aspect of these results is that they con�rm that when the response

and confounder are correlated given the covariate and the assumption of independence or

exogeneity in Item 3 is not met, i.e. Σxz ̸= 0, the estimator β̂x is biased, as previously

formalized in Section 2.1.3.

As anticipated, similar results are well-known in the widely studied spatial framework

and regarding particular assumptions about the cross-correlation structure between co-

variate and confounder (see Paciorek (2010), Page et al. (2017), Nobre et al. (2021),

Marques et al. (2022)). Due to the fact that our primary scope is evaluating the impact

of confounding of regression coe�cients more in depth and within general framework,

i.e. reporting results as unconstrained as possible from the restrictions coming from the

building assumptions regarding the structure of covariance matrices made in the DGP

(2.3), we consider Proposition 2.3.1 and considerations already present in literature to be

the starting point of this dissertation.



Chapter 3

Main features of confounding in terms

of quadratic forms

After the presentation of theoretical framework underlying this thesis, in this chapter we

provide exact formulas for the marginal sampling properties of the estimator de�ned in

(2.28). Using the law of total expectation and the law of total variance, these quantities

can be found noting that the conditional sampling properties reported in Section 2.3

can be expressed as ratios of dependent quadratic forms in Gaussian random variables.

In Section 3.1 some key concepts about quadratic forms in Gaussian variables are brie�y

outlined. In Section 3.2 we obtain the marginal sampling properties of the estimator of the

parameter of interest. In Section 3.3 some remarks on estimator variance and mean square

error are exhibited. In particular, we bring out how these quantities may be decomposed

onto a part confounding-dependent and the remaining unrelated with it. In Section 3.4

we focus on the unstructured DGP providing the exact marginal distribution of the OLS

estimator. Finally, in Section 3.5, some relevant features of structured DGPs in terms

of covariance and cross-covariance matrix's eigenvalues are described. In particular, we

study two relevant random variables, the sampling variance and the inverse smoothness

of a random vector, whose expected values quantify the variability and the inverse of the

smoothing level of a random process. The behaviour of these quantities when varying the

structure parameters characterizing the processes is also shown, assuming three di�erent

covariance functions. In this way, the fundamental role played by the eigenvalues of the

chosen covariance matrix is emphasized. Section 3.6 proposes some measures aimed at

quantifying confounding. Speci�cally, we put forward a proxy for the estimator bias, its

�rst order Laplace approximation, as a representative scalar quantity for the magnitude

of confounding.
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As a starting point, we proof that the sampling properties of β̂x|X reported in Propo-

sition 2.3.1 may be expressed in terms of QFs. Indeed, they are random variables giving

rise to ratios of dependent quadratic forms in Gaussian random variables. This fact is

formalized in the following Lemma.

Lemma 3.0.1. Considering the data generating process in (2.3) and the model in (2.23),
where X and Z are jointly distributed as is (2.11):

(i)

BiasY

[
β̂x|X

]
= By·z(x)

X⊤∆Az·xX

X⊤∆X
, (3.1)

(ii)

VY

[
β̂x|X

]
=
X⊤∆Σy|x∆X

(X⊤∆X)2
, (3.2)

where ∆ = S
−1 − S

−1
1n1

⊤
nS

−1

1
⊤
nS

−1
1n

is the weighted centering matrix in which S is the covari-

ance matrix depending upon the posited model.

Proof. We can rewrite the term J de�ned in Equation (2.29) as follows:

J =

[
1⊤nS

−11n 1⊤nS
−1X

X⊤S−11n X⊤S−1X

]−1

X̃
⊤
S−1

=
1

1⊤nS
−11n


1

1⊤nS
−1X

1⊤nS
−11n

X⊤S−11n

1⊤nS
−11n

X⊤S−1X

1⊤nS
−11n


−1

X̃
⊤
S−1.

De�ning δ̃ = 1⊤nS
−11n =

∑n
i=1 δij where δij is one element of the matrix S−1, we get

J =
1

δ̃

(
X⊤S−1X

δ̃
− X⊤S−11n1

⊤
nS

−1X

δ̃2

)−1


X⊤S−1X

1⊤nS
−11n

−1
⊤
nS

−1X

1⊤nS
−11n

−X
⊤S−11n

1⊤nS
−11n

1


 1⊤nS−1

X⊤S−1



=
1

X⊤S−1X − X⊤S−11n1
⊤
nS

−1X

δ̃


X⊤S−1X1⊤nS

−1 − 1⊤nS
−1XX⊤S−1

δ̃

X⊤S−1 − X⊤S−11n1
⊤
nS

−1

δ̃
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=
1

X⊤
(
S−1 − S

−1
1n1

⊤
n S

−1

δ̃

)
X


X⊤S−1X1⊤nS

−1 − 1⊤nS
−1XX⊤S−1

δ̃

X⊤
(
S−1 − S−11n1

⊤
nS

−1

δ̃

)
 .

The second row of J, denoted as J2•, is

J2• =

X⊤
(
S−1 − S−11n1

⊤
nS

−1

δ̃

)
X⊤

(
S−1 − S

−1
1n1

⊤
n S

−1

δ̃

)
X

=
X⊤∆

X⊤∆X
.

Plugging it into (2.31), we get

BiasY

[
β̂x|X

]
= By·z(x)

X⊤∆

X⊤∆X
ΣzxΣ

−1
x X,

which proofs point (i). In addition, since ∆ = ∆⊤, from (2.32) it is trivial to prove

(ii).

Regarding the weighted centering matrix, it is signi�cant to highlight that it is the

product of a symmetric and an idempotent matrices. In fact, through the following

representation

∆ = S−1

(
In −

1n1
⊤
nS

−1

1⊤nS
−11n

)
= S−1∆̃

it is possible to verify the idempotent condition for ∆̃:

∆̃∆̃ = In +
1n
(
1⊤nS

−11n
)
1⊤nS

−1(
1⊤nS

−11n
)2 − 2

1n1
⊤
nS

−1

1⊤nS
−11n

= In −
1n1

⊤
nS

−1

1⊤nS
−11n

= ∆̃.

An idempotent matrix has one zero eigenvalue: this means that ∆̃1n = 0 and since

the rank of a matrix does not change when we multiply it by a full-rank matrix, then,

assuming S ≻ 0, rank∆ = rank ∆̃ = n−1, with the minimum eigenvalue of the weighted

centering matrix equal to zero.

The marginal moments of β̂x can be retrieved using the law of iterated expectation and

the law of the total variance (Billingsley, 1995, Chapter 6). As noted by Aronow and Miller

(2019), these laws are relevant because of their ability to express unconditional expectation
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and variance in term of conditional ones, allowing us to make some calculations more

tractable. Indeed, we seek the following quantities:

EY,X

[
β̂x

]
= EX

[
EY

[
β̂x|X

]]
, (3.3)

VY,X

[
β̂x

]
= EX

[
VY

[
β̂x|X

]]
+ VX

[
EY

[
β̂x|X

]]
. (3.4)

The developments in what follows will be based on the theory of QF: some basic concepts

on the topic are reported in the next section.

3.1 Quadratic forms in Gaussian random variables

Considering the random process X ∼ Nn(0,Σx), it is possible to de�ne the quadratic

form (QF, see Provost and Mathai, 1992, for a comprehensive overview of the topic)

associated to a symmetric matrix A ∈ Sn as:

QA(X) =X⊤AX.

We remark that considering A as symmetric does not imply a loss of generality. Indeed,

if A is not symmetric, the quadratic form QA(X) is equivalent to the quadratic form

QAs(X) where As = A+A⊤

2
∈ Sn is the symmetric part of A. In fact, A can be written

as:

A =
A+A⊤

2
+
A−A⊤

2
,

and X⊤(A − A⊤)X = 0, getting QA(X) = QAs(X). Then, there is one-to-one corre-

spondence between quadratic forms and symmetric matrices that determine them.

Decomposing the covariance matrix as follows Σx = Σ
1/2
x Σ

1/2
x , we note that QA(X) can

be expressed as a function of a standard multivariate normal vector ν = Σ
−1/2
x X such

that:

QA(X) =X⊤Σ−1/2
x Σ1/2

x AΣ1/2
x Σ−1/2

x X⊤

= ν⊤Ãν

= QÃ(ν),

where Ã = Σ
1/2
x AΣ

1/2
x .

Many properties of QA(X), such as moments and distribution function, are strictly

related to the eigenvalues of the matrix Ã. We indicate them with

λ
(
Ã
)
=
(
λ
(
Ã
)
1
, . . . , λ

(
Ã
)
n

)⊤
,
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such that λ
(
Ã
)
1
≥ λ

(
Ã
)
2
≥ · · · ≥ λ

(
Ã
)
n
. Indeed, the expected value is

EX [QA(X)] =
n∑
i=1

λ(AΣx)i =
n∑
i=1

λ
(
Ã
)
i
= tr

(
Ã
)
, (3.5)

and the moment generating function is

ϕQA(X)(t) = EX

[
etQA(X)

]
= |In − 2tAΣx|−1/2 =

n∏
i=1

(
1− 2tλ

(
Ã
)
i

)−1/2

,

where | · | denotes the determinant. Furthermore, if Ã is symmetric and idempotent,

QA(X) has a Chi-square distribution with tr
(
Ã
)
degree of freedom indicated with χ2

tr
(
Ã
).

When Ã =M = In − 1n1
⊤
n

n
, where M is the centering matrix, QM(ν) ∼ χ2

n−1.

Once QFs are de�ned, our attention moves to ratios of powers of dependent QFs. Let us

consider a further positive semide�nite matrix B ∈ Rn×n, then we introduce the following

ratio of QFs

Rp,q
A,B(X) =

(X⊤AX)p

(X⊤BX)q

=
(ν⊤Ãν)p

(ν⊤B̃ν)q

= Rp,q

Ã,B̃
(ν), (3.6)

where p ≥ 0, q ≥ 0 are integer and B̃ = Σ
1/2
x BΣ

1/2
x .

Computing the expectation of such random variable is of primary interest for the de-

velopments in the chapter. It represents a well known problem of numerical probability

and it is faced in several works, such as Magnus (1986), Roberts (1995) and Bao and

Kan (2013). The latter provides an up-to-date review and includes most of the exploited

results. Firstly, EX

[
Rp,q
A,B(X)

]
exists if and only if rankB̃ > 2q, and it can be numerically

evaluated as

EX

[
Rp,q
A,B(X)

]
=

1

Γ(q)

∫ ∞

0

tq−1 ∂p

∂tp1
ϕ(t1, t2)

∣∣∣∣
t1=0,t2=−t

dt, (3.7)

where ϕ(t1, t2) = |In − 2t1Ã − 2t2B̃|−1/2 is the joint moment generating function (jmgf)

of X⊤AX and X⊤BX (Sawa, 1978).

Since many statistical quantities can be written as ratios of quadratic forms, the compu-

tation of the expected value has been of great interest to statisticians and econometricians.
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Bao and Kan (2013) remind us that there are two approaches for evaluating it: the �rst is

by integration and it starts with Sawa (1978). This method is by far the most popular one

in the literature and Xiao-Li (2005) provides a very good review of the literature on the

subject. The second approach relies on some in�nite series expansion of the ratio involv-

ing the invariant polynomials of matrix argument (Smith, 1989). We are concerned about

obtaining computationally e�cient expression of the expectation of the ratio of dependent

QFs de�ned in (3.6) using the �rst approach. Relatively straightforward expressions are

available for moments of a QF in normal variables in the case in which the variable is

spherical. These moments appear as simple integrals which can be evaluated numerically

in a straightforward manner. The most popular method for its numerical evaluation is to

make use of the results in Sawa (1978) and Cressie et al. (1981).

3.2 Marginal sampling properties of β̂x in terms of quadratic

forms

Concerning the expected bias of β̂x, note that Equation (3.1) can be cast in the form of

Equation (3.6) by posing A = ∆Az·x and B = ∆:

R1,1
A,B(X) =

X⊤∆Az·xX

X⊤∆X

=
(Σ

−1/2
x X)⊤Σ

1/2
x ∆ΣzxΣ

−1
x Σ

1/2
x (Σ

−1/2
x X)

(Σ
−1/2
x X)⊤Σ

1/2
x ∆Σ

1/2
x (Σ

−1/2
x X)

=
ν⊤Σ

1/2
x ∆ΣzxΣ

−1/2
x ν

ν⊤Σ
1/2
x ∆Σ

1/2
x ν

= R1,1

Ã,B̃
(ν) (3.8)

where Ã = Σ
1/2
x ∆ΣzxΣ

−1/2
x and B̃ = Σ

1/2
x ∆Σ

1/2
x . The joint moment generating function

of the numerator ν⊤Ãν and the denominator ν⊤B̃ν in (3.8) is given by

ϕ(t1, t2) = |In − 2t1Σ
1/2
x ∆ΣzxΣ

−1/2
x − 2t2Σ

1/2
x ∆Σ1/2

x |−1/2.

Let consider the following spectral decomposition

B̃ = Σ1/2
x ∆Σ1/2

x = PΛP⊤,

where

Λ = diag (λ) = diag (λ1, . . . , λn) (3.9)



3.2 Marginal sampling properties of β̂x in terms of quadratic forms 29

contains the eigenvalues of B̃ and P is the orthogonal eigenvectors matrix such that

PP⊤ = P⊤P = In. As a result, the jmgf takes the following form

ϕ(t1, t2) = |P⊤P|−1/2|In − 2t1Σ
1/2
x ∆ΣzxΣ

−1/2
x − 2t2Σ

1/2
x ∆Σ1/2

x |−1/2

= |In − 2t1P
⊤Σ1/2

x ∆ΣzxΣ
−1/2
x P− 2t2P

⊤Σ1/2
x ∆Σ1/2

x P|−1/2

= |In − 2t1C1 − 2t2Λ|−1/2

= |F|−1/2

in which

C1 = P⊤ÃP

= P⊤Σ1/2
x ∆ΣzxΣ

−1/2
x P,

with (i, j)-th element c1,ij. The expected value of (3.8) is now obtainable using Equation

(3.7) with p = q = 1:

EX
[
R1,1
A,B(X)

]
=

∫ ∞

0

∂

∂t1
ϕ(t1, t2)

∣∣∣∣
t1=0,t2=−t

dt. (3.10)

Since, ∂
∂t1
F = −2C1, for p = 1

∂

∂t1
ϕ(t1, t2) = −1

2
|F|−3/2

(
∂

∂t1
|F|
)

= |F|−1/2tr
(
F−1C1

)
,

and

∂

∂t1
ϕ(t1, t2)

∣∣∣∣
t1=0,t2=−t

= |In + 2tΛ|−1/2tr
[
(In + 2tΛ)−1C1

]
=

n∏
i=1

(1 + 2λit)
−1/2

n∑
j=1

c1,jj
1 + 2λjt

.

From Equation (3.3), the marginal expectation of the estimator β̂x is

EY,X

[
β̂x

]
= EX

[
EY

[
β̂x|X

]]
= By·x(z) + By·z(x)

∫ ∞

0

|In + 2tΛ|−1/2tr
[
(In + 2tΛ)−1C1

]
dt

= By·x(z) + By·z(x)
n∑
j=1

c1,jj

∫ ∞

0

n∏
i=1

(1 + 2λit)
−1/2 1

1 + 2λjt
dt
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= By·x(z) + BiasY,X

[
β̂x

]
, (3.11)

in which the estimator marginal bias is highlighted.

Concerning the sampling variance, it is possible to re-write Equation (3.4) as

VY,X

[
β̂x

]
= EX

[
VY

[
β̂x|X

]]
+ VX

[
BiasY

[
β̂x|X

]]
= EX

[
VY

[
β̂x|X

]]
+ EX

[
Bias2Y

[
β̂x|X

]]
− Bias2Y,X

[
β̂x

]
(3.12)

= EX

[
X⊤∆Σy|x∆X

(X⊤∆X)2

]
+

+ B2
y·z(x)EX

[(
X⊤∆Az·xX

X⊤∆X

)2
]
− Bias2Y,X

[
β̂x

]
(3.13)

in which using the Formula (3.7) with p = 1 and q = 2 allows to determine

EX

[
VY

[
β̂x|X

]]
= EX

[
X⊤∆Σy|x∆X

(X⊤∆X)2

]
=

n∑
j=1

c2,jj

∫ ∞

0

t
n∏
i=1

(1 + 2λit)
−1/2 1

1 + 2λjt
dt, (3.14)

where c2,ij is the(i, j)-th element of the matrix C2 = P⊤Σ
1/2
x ∆Σy|x∆Σ

1/2
x P.

The computation of the quantity EX

[
Bias2Y

[
β̂x|X

]]
requires p = 2 in Formula (3.7).

Following the line of Paolella (2018) and using the properties of the trace reported in

Theorem A.0.1, we �rst observe that

∂2|F|
∂t21

=
∂

∂t1

(
−2|F| tr(F−1C1)

)
=

∂ (−2|F|)
∂t1

tr(F−1C1)− 2|F| ∂

∂t1

(
tr(F−1C1)

)
= 4|F|tr2(F−1C1)− 2|F| tr

(
F−1∂C1

∂t1
+

∂F−1

∂t1
C1

)
= 4|F|

(
tr2(F−1C1)− tr(F−1C1)

2
)

and

∂2

∂t21
ϕ(t1, t2) =

∂

∂t1

(
−1

2
|F|−3/2∂|F|

∂t1

)
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=
3

4
|F|−5/2

(
∂|F|
∂t1

)2

− 1

2
|F|−3/2∂

2|F|
∂t21

=
3

4
|F|−5/2

(
4|F|2 tr2(F−1C1)

)
− 1

2
|F|−3/24|F|

[
tr2(F−1C1)− tr(F−1C1)

2
]

= |F|−1/2(tr2(F−1C1) + 2 tr(F−1C1)
2).

Thus,

∂2

∂t21
ϕ(t1, t2)

∣∣∣∣
t1=0,t2=−t

=
n∏
i=1

(1 + 2λit)
−1/2

n∑
i=1

n∑
j=1

c1,iic1,jj + 2c21,ij
(1 + 2λit)(1 + 2λjt)

.

Next, using the Formula (3.7) with p = q = 2, we obtain

EX

[
Bias2Y

[
β̂x|X

]]
= B2

y·z(x)

n∑
i=1

n∑
j=1

(c1,iic1,jj + 2c21,ij)·

·
∫ ∞

0

t
n∏
i=1

(1 + 2λit)
−1/2 1

(1 + 2λit)(1 + 2λjt)
dt. (3.15)

Finally, from Equation (3.13) we get the expression for the marginal variance of the

estimator β̂x as:

VY,X

[
β̂x

]
=

n∑
j=1

c2,jj

∫ ∞

0

t
n∏
i=1

(1 + 2λit)
−1/2 1

1 + 2λjt
dt+

+ B2
y·z(x)

n∑
i=1

n∑
j=1

(c1,iic1,jj + 2c21,ij)·

·
∫ ∞

0

t
n∏
i=1

(1 + 2λit)
−1/2 1

(1 + 2λit)(1 + 2λjt)
dt+

−

(
By·z(x)

n∑
j=1

c1,jj

∫ ∞

0

n∏
i=1

(1 + 2λit)
−1/2 1

1 + 2λjt
dt

)2

. (3.16)

The next statement formalizes what has been exposed so far regarding the expected value

and variance of the estimator β̂x expressed in terms of integrals.The mean square error

(MSE) is also obtained.

Theorem 3.2.1. The estimator β̂x de�ned in (2.28) has expected value and variance
provided in (3.11) and (3.16), respectively. Additionally, its mean square error may be
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expressed as:

MSEX,Y

[
β̂x

]
= EX

[
VY

[
β̂x|X

]]
+ EX

[
Bias2Y

[
β̂x|X

]]
(3.17)

Proof. The main results are derived along the section. Equation (3.17) is achieved follow-

ing the de�nition of mean square error and (3.12) as follows:

MSEX,Y

[
β̂x

]
= EX

[
VY

[
β̂x|X

]]
+ EX

[
Bias2Y

[
β̂x|X

]]
= VX,Y

[
β̂x

]
− VX

[
EY

[
β̂x|X

]]
+ EX

[
Bias2Y

[
β̂x|X

]]
= VX,Y

[
β̂x

]
− VX

[
BiasY

[
β̂x|X

]]
+ EX

[
Bias2Y

[
β̂x|X

]]
= VX,Y

[
β̂x

]
+ Bias2X,Y

[
β̂x

]

Results obtained so far on the marginal properties of β̂x need further explorations in

order to deliver customary computational tools for evaluating the involved integrals. To

this aim, we �nd it convenient to represent them in terms of an hypergeometric function:

the Carlson's R function, R(a; b, z) (see Carlson (1963) for more details). It is a natural

outcome of a procedure for generalizing the Gauss hypergeometric function. Moreover,

on m complex variables z1, . . . , zm and m + 1 complex parameters a, b1, . . . , bm it is the

same as Lauricella's FD (Lauricella, 1893) except for small important modi�cation. The

Carlson's R function is de�ned as follows

R(a; b1, . . . , bm; z1, . . . , zm) = FD(a; b1, . . . , bm; b1 + . . . bm; 1− z1, . . . , 1− zm).

with ||1−zi|| < 1, for i = 1, . . . ,m. The R function is often used to make uni�ed statement

of a property of several integrals (Olver et al., 2010). Its extensive use is justi�ed by two

distinctive properties, symmetry and homogeneity. The former means that it is invariant

under permutation of the subscript 1, . . . ,m and the latter implies:

R(a; b1, . . . , bm; sz1, . . . , szm) = s−aR(a; b1, . . . , bm; z1, . . . , zm).

For our purpose we deem the particular case in which∫ ∞

0

ta−1

m∏
i=1

(1 + szit)
−bi dt = s−aB(a, a′)R(a; b1, . . . , bm; z1, . . . , zm)

= B(a, a′)R(a; b, sz), (3.18)
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where B(a, a′) = Γ(a)Γ(a′)/Γ(a+a′) is the beta function, Γ(·) is the gamma function and

a′ is de�ned by

a+ a′ = b =
m∑
i=1

bi ∈ Q \ {0}.

Let consider the n-dimensional vector of eigenvalues λ de�ned in (3.9). Assuming sz =

2λ, bi =
1
2
∀ i = 1, . . . ,m, and posing:

a = q

a′ =
n

2
+ p− q

m = n+ 2p,

the right-hand side of Equation (3.18) can be re-written as follows:∫ ∞

0

tq−1

n+2p∏
i=1

(1 + 2λit)
−1/2 dt = B

(
q,

n

2
+ p− q

)
R

(
q;

1

2
1n+2p, 2λ

)
= Ip,q(λ), (3.19)

where Ip,q(λ) denotes the integral characterized by the powers of the QFs' ratio, p and q,

and the n-dimensional vector of denominator matrix eigenvalues.

Carlson (1963) states that the R function reduces to another function of the same type

with one less variable if one of its variables zi vanishes. Because of the symmetry property

of R and if Re(a′ − b−1:k) > 0 with b−1:k = bk+1 + · · ·+ bm we have:

B(a, a′)R(a; b1, . . . , bm; z1, . . . , zk,0b−1:k
) = B(a, a′ − b−1:k)R(a; b1, . . . , bk; z1, . . . , zk).

In this way, de�ning λ+ = diag (Λ+), the vector of positive eigenvalues, the Formula in

(3.19) may be express as:∫ ∞

0

tq−1

n+2p∏
i=1

(1 + 2λit)
−1/2 dt = B

(
q,

n

2
+ p− q − 1

2
h

)
R

(
q;

1

2
1n+2p−h, 2λ+

)
= Ip,qh (λ),

where h is the number of zero eigenvalues in λ.

Based on this, we can use the Carlson's R function for the evaluation of integrals in

(3.11), (3.14), (3.15) in order to use e�cient available algorithms to compute the marginal

sampling properties of estimator β̂x.
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Regarding Equation (3.11) in which p = q = 1 and exploiting the symmetric property

of R, for all j = 1, . . . , n we de�ne

Λ
′

j = diag (λ1, . . . , λn, λj, λj) = diag
(
λ

′

j

)
and observe that∫ ∞

0

n∏
i=1

(1 + 2λit)
−1/2 1

1 + 2λjt
dt = B

(
1,

n

2
− 1

2
hj

)
Rj

(
1;

1

2
1n+2p−hj , 2λ

′

j,+

)
= I1,1hj

(
λ

′
)
, (3.20)

where hj = 1 for j = 1, . . . , n − 1 and hn = 3. Similarly, referring to Equation (3.14) in

which p = 1, q = 2, and for all j = 1, . . . , n we get:∫ ∞

0

t
n∏
i=1

(1 + 2λit)
−1/2 1

1 + 2λjt
dt = B

(
2,

n

2
− 1− 1

2
hj

)
Rj

(
2;

1

2
1n+2p−hj , 2λ

′

j,+

)
= I1,2hj

(
λ

′
)
,

Finally, concerning Equation (3.15) in which p = q = 2 and, for all i, j = 1, . . . , n we

de�ne the following diagonal matrix

Λ
′′

ij = diag (λ1, . . . , λn, λj, λj, λi, λi) = diag
(
λ

′′

ij

)
and observe that∫ ∞

0

t

n∏
i=1

(1 + 2λit)
−1/2

(1 + 2λit)(1 + 2λjt)
dt = B

(
2,

n

2
− 1

2
hij

)
Rij

(
2;

1

2
1n+2p−hij , 2λ

′′

ij,+

)
= I2,2hij

(
λ

′′
)

where

hij =


1 i, j = 1, . . . , n− 1,

3 i = n, j = 1, . . . , n− 1 and j = n, i = 1, . . . , n− 1,

5 i = j = n.

(3.21)

The next statement collects and formalizes the above analytical results enabling to

compute the marginal sampling properties of estimator β̂x with no use of simulation study.

In practice, the computation of these quantities exploits a function from the R-package

QF (Gardini et al., 2022).

Theorem 3.2.2. The expected value and variance of the estimator de�ned in (2.28) may
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be expressed in terms of Carlson's R function as follows:

EY,X

[
β̂x

]
= By·x(z) + By·z(x)

n∑
j=1

c1,jjI
1,1
hj

(
λ

′
)

(3.22)

VY,X

[
β̂x

]
=

n∑
j=1

c2,jjI
1,2
hj

(
λ

′
)
+ B2

y·z(x)

n∑
i=1

n∑
j=1

(c1,iic1,jj + 2c21,ij)I
2,2
hij

(
λ

′′
)
+

−

(
By·z(x)

n∑
j=1

c1,jjI
1,1
hj

(
λ

′
))2

. (3.23)

where hj = 1 for j = 1, . . . , n− 1 and hn = 3 and hij as in (3.21).

Proof. The proof derives from the discussion along this section.

Afterwards, we discuss the results provided in the current section.

3.3 Some remarks on the variance and mean square error

Unlike the bias, the conditional variance of β̂x (3.2) depends on the structure of all pro-

cesses included in the DGP. About it we highlight two results. Firstly, from Proposition

2.1.4, Equation (3.2) can be re-written as

VY

[
β̂x|X

]
=

X⊤∆Σy|x,z∆X

(X⊤∆X)2︸ ︷︷ ︸
VY [β̂x|X,By·z(x)=0,Az·x=0]

+ B2
y·z(x)

X⊤∆Σz∆X

(X⊤∆X)2

︸ ︷︷ ︸
VY [β̂x|X,Az·x=0]

+ (3.24)

− B2
y·z(x)

X⊤∆
(
Az·xΣxA

⊤
z·x
)
∆X

(X⊤∆X)2
. (3.25)

The �rst line (3.24) expresses the conditional variance when the covariate and the con-

founder are independent, that is indicated with VY

[
β̂x|X,Az·x = 0

]
. It includes the

conditional variance VY

[
β̂x|X,By·z(x) = 0,Az·x = 0

]
when X⊥Z and Y ⊥Z|X. Sec-

ondly, next theorem shows that, regardless the choice of relationship characterizing the

joint distribution in (2.11), the conditional variance is always bigger compared to the case

in which X and Z are independent.

Theorem 3.3.1. The conditional variance of the estimator β̂x assumes the maximum
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value when X and Z are independent. In other words:

VY

[
β̂x|X

]
≥ VY

[
β̂x|X,Az·x = 0

]
. (3.26)

Proof. From Equation (3.25), we have

VY

[
β̂x|X

]
= VY

[
β̂x|X,Az·x = 0

]
− B2

y·z(x)
X⊤∆

(
Az·xΣxA

⊤
z·x
)
∆X

(X⊤∆X)2
.

Both QFs' ratios on the right-side are positive valued random variables sinceΣy|x,z,Σz and

Σx are positive de�nite (see (A.9)). Hence, VY

[
β̂x|X

]
− VY

[
β̂x|X,Az·x = 0

]
≥ 0.

This result implies that the conditional variance under the assumption of dependence

between X and Z, i.e. Ax·z ̸= 0, is always in�ated. Theorem 3.3.1 shows that greater

strength of dependence betweenX and Z leads to less variance. A similar result has been

already shown from Paciorek (2010) and Page et al. (2017) for some speci�c type of de-

pendence structure for the joint distribution of (X⊤,Z⊤)⊤. Therefore, the crucial aspect

of Theorems 3.0.1 and 3.3.1 is that the absence of confounding carries out the maximum

value for the variance and the minimum absolute bias. As the dependences characterizing

the confounding expressed via Ax·z and By·z(x) increases, the variance decreases and the

bias increases. These considerations made on conditionals sampling properties remain

valid marginally.

Regarding the marginal variance, Equation (3.12) can be re-written as

VY,X

[
β̂x

]
= EX

[
VY

[
β̂x|X,Az·x = 0

]]
︸ ︷︷ ︸

VY,X[β̂x|Az·x=0]

+

− B2
y·z(x)EX

[
X⊤∆Az·xΣxA

⊤
z·x∆X

(X⊤∆X)2

]
+ EX

[
Bias2Y

[
β̂x|X

]]
− Bias2Y,X

[
β̂x

]
.

Hence, the part of estimator variance that changes when confounding occurs is

Vcd
Y,X

[
β̂x

]
= VY,X

[
β̂x

]
− VY,X

[
β̂x|Az·x = 0

]
, (3.27)

where the superscript cd stays for confounding-dependent. The same rationale applies to

the the marginal mean square error: the confounding-dependent part is

MSEcdY,X

[
β̂x

]
= MSEY,X

[
β̂x

]
− VY,X

[
β̂x|Az·x = 0

]
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= VY,X

[
β̂x

]
− VY,X

[
β̂x|Az·x = 0

]
+ Bias2Y,X

[
β̂x

]
. (3.28)

Next result provides a condition on how structure of S need to be in order to minimize

the estimator variance. In fact, in the following statement we show that the estimator

conditionally on X has a lowest sampling variance if the errors in linear regression model

have the structure of the covariance matrix of the marginalized DGP in (2.5), Σy|x.

Theorem 3.3.2. Assuming a generic non-singular error covariance matrix S for the
estimator in (2.28) such that S = Σy|x, the estimator's conditional variance is minimal.

Proof. Let us consider a generic non-singular covariance matrix as a sum of two matrices,

S = Σy|x+C, C ∈ Sn. If we suppose that the covariance matrix in the estimator is Σy|x,

i.e. C is null matrix, then we can de�ne the estimator J0Y , otherwise, from Equation

(2.28) we specify it by JCY .

Below we express the matrix JC in dependence of J0. The following computations use

matrix inversion rules reported in (A.1) and (A.2):

JC =
[
X̃

⊤ (
Σy|x +C

)−1
X̃
]−1

X̃
⊤ (

Σy|x +C
)−1

=
[
X̃

⊤ (
Σ−1
y|x −Σ−1

y|xC
(
Σy|x +C

)−1
)
X̃
]−1

X̃
⊤ (

Σ−1
y|x −Σ−1

y|xC
(
Σy|x +C

)−1
)

=
(
X̃

⊤
Σ−1
y|xX̃− X̃

⊤
Σ−1
y|xC

(
Σy|x +C

)−1
X̃
)−1

X̃
⊤
Σ−1
y|x+

−
(
X̃

⊤
Σ−1
y|xX̃− X̃

⊤
Σ−1
y|xC

(
Σy|x +C

)−1
X̃
)−1

X̃
⊤
Σ−1
y|xC

(
Σy|x +C

)−1

= J0 +
(
X̃

⊤
Σ−1
y|xX̃

)−1

X̃
⊤
Σ−1
y|xC

(
Σy|x +C

)−1
X̃
[
X̃

⊤ (
Σy|x +C

)−1
X̃
]−1

·

X̃
⊤
Σ−1
y|x −

[
X̃

⊤ (
Σy|x +C

)−1
X̃
]−1

X̃
⊤
Σ−1
y|xC

(
Σy|x +C

)−1

= J0 +
(
X̃

⊤
Σ−1
y|xX̃

)−1

X̃
⊤ [

Σ−1
y|x −

(
Σy|x +C

)−1
]
X̃
[
X̃

⊤ (
Σy|x +C

)−1
X̃
]−1

·

· X̃⊤
Σ−1
y|x −

[
X̃

⊤ (
Σy|x +C

)−1
X̃
]−1

X̃
⊤ [

Σ−1
y|x −

(
Σy|x +C

)−1
]

= J0 +
[
X̃

⊤ (
Σy|x +C

)−1
X̃
]−1

X̃
⊤ (

Σy|x +C
)−1 −

(
X̃

⊤
Σ−1
y|xX̃

)−1

X̃
⊤
Σ−1
y|x.

Then, we get JC = J0 +D such that DX = 0 and BiasY [JCY |X] = By·z(x)(J0Az·xX +

DAz·xX).

The covariance matrix of the estimator JCY is

VY [JCY |X] =

[(
X̃

⊤
Σ−1
y|xX̃

)−1

X̃
⊤
Σ−1
y|x +D

]
Σy|x

[(
X̃

⊤
Σ−1
y|xX̃

)−1

X̃
⊤
Σ−1
y|x +D

]⊤
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=
(
X̃

⊤
Σ−1
y|xX̃

)−1

+
(
X̃

⊤
Σ−1
y|xX̃

)−1

(DX)⊤ +DX
(
X̃

⊤
Σ−1
y|xX̃

)−1

+DΣy|xD
⊤

=
(
X̃

⊤
Σ−1
y|xX̃

)−1

+DΣy|xD
⊤

Since DΣy|xD
⊤ is positive semide�nite, the variance of β̂x is minimal if C = 0, and

consequently D = 0.

Corollary 3.3.3. If S = Σy|x,

EX
[
VY

[
β̂x|X

]]
= I0,11 (λ). (3.29)

Proof. If S = Σy|x, following Provost and Mathai (1992), one has:

EX
[
X⊤∆Σy|x∆X

(X⊤∆X)2

]
= EX

[
X⊤S−1∆̃Σy|xS

−1∆̃X

(X⊤∆X)2

]

= EX [(X⊤∆X)−1] =

∫ ∞

0

n∏
i=1

(1 + 2λit)
−1/2 dt.

Thus, from plugging p = 0 and q = 1 in (3.19), we obtain the result

EX
[
VY

[
β̂x|X

]]
= B

(
1,

n− 3

2

)
R

(
1;

1

2
1n−1, 2λ1, . . . , 2λn−1

)
= I0,11 (λ).

3.4 Marginal distribution of β̂x under spherical DGP

In the next chapter we seek to describe confounding under several choices of data gen-

erating process focusing on the case in which all the covariance matrices of the random

processes are structured, but now we examine the basic case of an unstructured data

generating process.

Considering unstructured DGP means assuming Σy|x,z = σ2
y|x,zIn and

Σx,z =

 σ2
xIn ρxzσxσzIn

ρxzσxσzIn σ2
zIn

 , (3.30)

where σ2
x and σ2

z are the marginal variances of the spherical processes X and Z, respec-
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tively, and ρxz (along this section also simply denoted ρ) is the correlation parameter used

to quantify the strength of association between the covariate and confounder.

In line with De�nition 2.1.1, if both By·z(x) and ρxz are not null the regression of Y on

X is confounded by Z. For any choice of S, the variance of β̂x|X is always stochastic,

instead the bias is deterministic, since it does not depend on X. The next result follows

immediately from Lemma 3.0.1.

BiasY,X

[
β̂x

]
= BiasY

[
β̂x|X

]
= By·z(x)Bz·x
= By·z(x)

σzx
σ2
x

= By·z(x)ρxz
σz
σx

. (3.31)

As expected, there is no bias when either ρxz or By·z(x) are null. From the previous formula

and as illustrated in Figure 3.1, it is evident that the correlation and variability of the

covariate and confounder contribute to the intensity of the bias. Such estimator bias

rises as the correlation parameter or the confounder marginal variance increases. Small

σz and ρxz means that the confounder slightly disturbs the relationship between Y and

X. Here, the estimator expected value is simply the regression coe�cient, By·x, of Y on

X. Equation (3.31) is a baseline well-known result found also by Paciorek (2010) and

Page et al. (2017) but for di�erent setting. In order to obtain (3.31), the authors do

not consider an unstructured DGP but assume speci�c choices of cross-covariance and

covariance function that lead to a scalar Az·x. In both works, (3.31) is derived assuming

the same covariance function and structure parameters for the processes.

According to the bias formula in Theorem 3.0.1, it is clear that such simpli�cation of the

regression matrix is the key point that enables the deterministic bias in (3.31). However,

as it will be shown later, even assuming a structured data generating mechanism may

get (3.31). In the remaining cases, when such simpli�cation does not occur, it is not

immediate to measure the sources of confounding. Certainly the kind of marginal and

cross structure that binds the two covariates plays a principal role.

In this trivial setting, assuming an OLS estimator β̂x, i.e. taking S = In, or more in

general a scalar matrix S, we provide the marginal sampling distribution of estimator β̂x in

closed-form. It follows a non-centered and scaled Student-t obtained as a normal-inverse

gamma mixture.

Theorem 3.4.1. Under an unstructured data generating process as in (3.30), the marginal
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Figure 3.1: Under the model assumption S = Σy|x, di�erent behaviour of sampling distributions of
estimator bias as the correlation parameter (bottom) and confounder marginal variance parameter (top)
vary.

sampling distribution of the OLS estimator is

β̂x ∼ tn−1

(
By·x(z) + By·z(x)ρxz

σz
σx

,
σ2
y|x

(n− 1)σ2
x

)
. (3.32)

Proof. Under spherical DGP, from Proposition 2.1.4 one gets

Σy|x = Σy|x,z +Ay·z(x)Σz|xA
⊤
y·z(x)

=
[
σ2
y|x,z + B2

y·z(x)(1− ρ2xz)σ
2
z

]
In = σ2

y|xIn, (3.33)

since Σz|x = (1 − ρ2xz)σ
2
zIn and Ay·z(x) = By·z(x)In. Moreover, the weighted centering
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matrix ∆ coincides with the centering matrix M. This leads to the following estimator's

conditional sampling variance

VY [β̂x|X] =
(
X⊤MX

)−1

= σ2
y|xQ

−1
M (X)

=
σ2
y|x

σ2
x

Q−1
M (ν),

where ν is distributed as a standard multivariate normal. As introduced in Section 3.1,

QM(ν) follows a Chi-square distribution with n − 1 degree of freedom. Hence, for the

properties of Gamma distributions, W = VY [β̂x|X] is distributed as an Inverse Gamma

with shape α = (n− 1)/2 and scale β = σ2
y|x/(2σ

2
x).

De�ning

m = EY

[
β̂x|X

]
= EX,Y

[
β̂x

]
= By·x(z) + By·z(x)ρxz

σz
σx

,

and having

β̂x|W ∼ N (m,W ),

W ∼ IG(α, β),

the marginal distribution of β̂x is obtained as

fβ̂x(b) =

∫
W
fβ̂x|W (b)fW (w) dw

=

∫
W

1
√
2πw

1
2

exp

(
−(b−m)2

2w

)
· βα

Γ(α)
exp

(
−β

w

)
w−(α+1) dw

=
βα

Γ(α)

1√
2π

∫
W
exp

(
−(b−m)2/2 + β

w

)
w−(α+ 1

2
+1) dw

=
βα

Γ(α)

1√
2π

Γ
(
α + 1

2

)
[(b−m)2/2 + β]α+

1
2

.

Recalling that the Student-t distribution with k > 0 degree of freedom, location param-

eter l and scale parameter s of a generic random variable X has the following density

fX(x; k, l, s) =
1√

ksB(k
2
, 1
2
)

(
1 +

(x− l)2

ks

)− k+1
2

,
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the above marginal density can be expressed as

fβ̂x(b) =
1√
π

1√
2β

Γ
(
α + 1

2

)
Γ(α)

[
1 +

(b−m)2

2β

]−α− 1
2

.

This is a Student-t distribution with k = 2α = n− 1, l = m and s = β
α
=

σ2
y|x

(n−1)σ2
x
.

Summarizing the main points of this section are that, under a spherical DGP:

� the bias is deterministic (i.e. it does not depend on X), and it is an increasing func-

tion of By·z(x) and the covariance σxz: it is important to note that the variance of the

confounder σ2
z and the correlation parameter ρxz contribute to the covariance through

their product, so that their e�ect cannot be identi�ed separately. In our opinion, a

customary procedure aimed at understanding the marginal sampling properties of βx
consists in keeping σ2

x and σ2
z �xed and letting σxz vary in the interval (−σxσz;σxσz):

by doing this, we are actually varying the strength of the correlation between X and

Z in a controlled setting that clearly separate the marginal variances of the covariate

and confounder from the relationship between them;

� the variance depends on X (i.e. it is a random variable) and its marginal expected

value is an increasing function of By·z(x), σz and a decreasing function of ρxz: thus,

in this case, the e�ect of σz and ρxz can be identi�ed separately.

All the considerations above are based on the interpretation of parameters σ2
x and σ2

z as

marginal variances. This is a clear-cut interpretation of these parameters only under a

spherical DGP. To see this, we introduce the random variable

Vx =
X⊤MX

n− 1
=

1

n− 1

n∑
i=1

(Xi − X̄)2 (3.34)

i.e. the sampling variance of X. Vx is a quadratic form in Gaussian random variables

whose expected value, that we dub the expected sampling variance, is

EVx = EX [Vx]

=
1

n− 1

n∑
i=1

λ(MΣx)i = λ̄MΣx

= σ2
xλ̄+(MRx), (3.35)

where λ̄+(MRx) is the mean of positive eigenvalues of matrix MRx. The matrix Rx

re�ects the covariance structure of the random vector X, while the term σ2
x acts as scaler

of the marginal variability of the process. When Rx = In, i.e. when the process is



3.5 Marginal distribution of β̂x under spherical DGP 43

spherical, λ̄+(MRx) = 1 and EX [Vx] = σ2
x. When Rx ̸= In, EX [Vx] ̸= σ2

x: this must

be taken into account when studying the e�ect of confounding under non-spherical (or

structured) DGPs.

Moreover, the same logic holds for the covariance between two processes X and Z,

trough the expected value of their sampling covariance, that we call also co-variability,

de�ned as:

EVxz = EVzx

= EX,Z [Vxz] = EX,Z

[
X⊤MZ

n− 1

]
=

1

n− 1

n∑
i=1

λ(MΣxz)i = λ̄MΣxz

= σxzλ̄+(MRxz). (3.36)

This expected value equals σxz only when Rxz = In. These de�nitions allow us to note

that the eigenvalues of a covariance matrix are decisive to take into account the variability

of a processes in the evaluation of confounding.

In addition, the relevance of these QFs can be emphasized by noting that, in a linear

regression model, the variability of the response variable Y is decomposed as follows:

EVy = EY

[
Y ⊤MY

n− 1

]
= EY

[
[By·x(z)X + By·z(x)Z + εy|x,z]

⊤M[By·x(z)X + By·z(x)Z + εy|x,z]

n− 1

]
=

1

n− 1

(
B2
y·x(z)EX

(
X⊤MX

)
+ B2

y·z(x)EX

(
Z⊤MZ

)
+

+ 2By·x(z)By·z(x)EX,Z

(
X⊤MZ

))
+ σ2

y|x,z

= B2
y·x(z)λ̄MΣx + B2

y·z(x)λ̄MΣz + 2By·x(z)By·z(x)λ̄MΣxz + σ2
y|x,z.

In the next section, we outline some relevant features of structured DGPs in terms of

covariance matrix eigenvalues, while Section 3.6 proposes some measures aimed at quan-

tifying confounding.
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3.5 Marginal variability and smoothness of a structured DGP

Another distinctive property of a random vector is its smoothness. It is important to

remark that the relation between smoothness and marginal variability needs to be taken

into account in order to avoid misleading conclusion about confounding. Smoothness of

a random process depends upon the correlation structure of the covariance matrix. For

this reason, we recall that the correlation matrix Cx of a process X is obtained from the

covariance or the structure matrix as follows:

Cx = diag (Σx)
−1/2Σx diag (Σx)

−1/2

∝ diag (Rx)
−1/2Rx diag (Rx)

−1/2 .

To inspect the smoothness of a random process X, we de�ne the random vector s =

diag (Σx)
−1/2X and the random variable

ISx =
s⊤Ms

n− 1
, (3.37)

i.e. the sampling inverse smoothness of X. It is a quadratic form in Gaussian random

variables too and accordingly with the previous lines, we provide its expected value as

the mean of the positive eigenvalues of the matrix MCx. That means

↓ λ̄MCx ⇐⇒ ↑ smoothness.

To illustrate how the marginal variability and the smoothness of a random process change

with respect to the choice of the covariance function, we consider three representative type

of functions generating the covariance matrices of the covariate and confounder processes

in (2.3): in a spatial framework, we consider the Matérn covariance function, widely used

in geostatistical data analysis and the conditional autoregressive process, widely used in

areal data analysis. The autoregressive process of order 1 is presented as a relevant

example in time series analysis.

3.5.1 Matérn covariance function

For the spatial setup, we adopt a class of isotropic covariance functions, the Matérn family

(MF) (Matérn, 1986; Guttorp and Gneiting, 2006), which speci�es the covariance function

for Σ as σ2 ·Mν(d; r), where σ2 > 0 is the marginal variance and

M(θ) = Mν(d; r) =
21−ν

Γ(ν)

(
2d
√
ν

r

)ν
Kν

(
2d
√
ν

r

)
(3.38)
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is the spatial correlation at Euclidean distance d between two locations. In this case, by

construction, the structure matrix corresponds to the correlation matrix, namely

Σ = σ2R = σ2C = σ2Mν(d; r).

In addition, θ = (ν, r)⊤ is the vector of structure parameters with ν > 0 de�ning the

order of di�erentiability of the function, r being the range parameter, and Kν(·) is the
modi�ed Bessel function of the second kind of order ν. As a special case, if ν equals 0.5

the exponential function arises. We denote with d0 the distance at which the correlation

is negligible, conventionally taken as having dropped to only 0, 05 (Banerjee et al., 2014).

It is obtained setting exp(−d0/r) = 0.05, getting d0 ≈ 3r, since log(0.05) ≈ −3. Thus,

this remark will be used in Chapter 4 for the choice of r's range on a unit square grid.

Figure 3.2: Decay of variability/inverse smoothness trend of X generated as Gaussian process with
Matérn spatial correlation function Mνx(dx, rx), as a function of rx.

Considering a random vector X, a space in the form of regular square grid and ν ∈
{0.2, 0.5, 1, 2} in (3.38), Figure 3.2 shows that the range parameter rx is inversely propor-

tional to the mean of the positive eigenvalues of the matrix MRx. Hence, for di�erent

value of ν it is shown the decay (monotonic behaviour) of sampling variability as rx
increase. This means that the smoothness of the process grows with the range parameter.

The curves' monotonicity displayed in Figure 3.2 may be demonstrated by determining

that the sign of the �rst derivative of the sampling variance function with respect to the

range parameter remains unchanged. The following theorem states that in the case of

exponential correlation function there is a decreasing monotony shown by the negativity

of the �rst derivative over the entire domain of the range parameter.

Theorem 3.5.1. Considering a n-dimensional Gaussian process generated with exponen-
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tial covariance function, the sampling variance of the process is strictly decreasing function
of the range parameter r.

Proof. Let denote with Σ the covariance matrix characterizing the process. From some

properties of the trace reported in Theorem A.0.1, we may observe that

d λ̄MΣ(r)

dr
=

1

n− 1

d tr(MΣ(r))

dr

=
1

n− 1
tr

(
dMΣ(r)

dr

)
=

1

n− 1
tr

(
M

dΣ(r)

dr

)
=

1

n− 1

[
tr

(
dΣ(r)

dr

)
− tr

(
11⊤

n

dΣ(r)

dr

)]
,

where λ̄MΣ(r) = λ̄MΣ. This notation is used to stress the dependence of the value on r.

In addition, (
dΣ(r)

dr

)
ij

= exp

{
−dij

r

}
dij
r2

is always zero when i = j because the Euclidean distance dii is zero. Thus, we obtain:

d tr(MΣ(r))

dr
= − 1

n− 1
tr

(
11⊤

n

dΣ(r)

dr

)
= − 1

n(n− 1)r2

n∑
i=1

n∑
j=1

exp

{
−dij

r

}
dij < 0, ∀r.

Generally, regarding MF class, the larger ν, the smoother the process (Gneiting et al.,

2010). Moreover, we bring to mind that the MF covariance function provides a marginally

speci�ed distribution of the process. In this case, the marginal variance σ2 does not depend

upon the parameters involved in the function. As being so, the equality

λ̄MΣ = λ̄MC

is veri�ed. For this reason Figure 3.2 shows simultaneously the trend of the variability

and the inverse smoothness of the stochastic vector leading to the following scheme:

↑ r ⇐⇒ ↓ variability ⇐⇒ ↑ smoothness.
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3.5.2 First order autoregressive process

For the temporal setup, we consider a random vector X to be a zero-mean autoregressive

process of order one (AR1) (See appendix C for more details about the process and for a

new proposal of good approximation of eigenvalues of its precision matrix) with normal

errors that can be expressed in conditional form

Xt|X1, . . . , Xt−1 ∼ N (ϕXt−1, σ
2), (3.39)

where the index t ∈ {1, . . . , n} represents time, σ2 is the conditional variance and ϕ, the

autocorrelation, is the structure parameter. This requires |ϕ| < 1 for stationary to hold.

The covariance matrix of an AR1 process is characterized by the following entries

Σij = σ2Rij

= σ2 1

1− ϕ2
ϕ|i−j| = σ2 1

1− ϕ2
Cij ∀i, j = 1, . . . , n, (3.40)

where Cij = ϕ|i−j| is the correlation function of the process and the remaining part is

the marginal variance expressed in function of the conditional and structure parameters.

For di�erent values of n ∈ {5, 50, 100, 300}, Figure 3.3 shows the di�erent trend of the

process' sampling variance (bottom) and inverse smoothness (top).

The covariance function in (3.40) arises from a conditionally speci�ed model (see equa-

tion (3.39)). As a result, the marginal variance varies with structure parameter. This is

the reason why, in Figure 3.3, trends of curves regarding variability and smoothness are

di�erent, unlike in the Matérn case. Indeed, for di�erent values of n, Figure 3.3 (bottom)

shows that the variability increases when the absolute value of ϕx increases. Actually, the

trend of the sampling variance varies not only with the autocorrelation parameter but also

with n. In the limiting case of n → ∞, considering the covariance matrix characterizing

an AR(1) process reported in (C.2) and in order to �nd out the trend of the sampling

variance, we compute the following derivative of tr(MΣ) with respect to the ϕ:

d λ̄MΣ(ϕ)

dϕ
=

n

n− 1
σ2 d

dϕ

1

1− ϕ2

=
n

n− 1
σ2 2ϕ

(1− ϕ2)2
.

This demonstrates the result illustrated for large n in Figure 3.3 (bottom): the sampling

variance of the process in function of ϕ is increasing for positive values of ϕ, decreasing

otherwise.

With regard to the smoothness of the AR(1) process, it can be shown that the inverse

smoothness characterizing such process is strictly decreasing function of the autocorre-
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Figure 3.3: Decay of inverse smoothness (top) and variability (bottom) trends of X generated as
Gaussian process with AR(1) covariance function, as the autocorrelation parameter increases.

lation parameter ϕ. Indeed, as highlighted in Figure 3.3, for an AR(1) process only the

previous term in the process and the noise term contribute to the realization. Increasing ϕ

from 0 toward 1 makes the process smoother because the output gets a larger contribution

from the previous term relative to the noise. This results in a "smoothing" of the output

(Siegel and Wagner, 2022). If ϕ is close to 0, then the process still looks like white noise,

but as ϕ approaches −1 from 0, process is more jagged than a white noise process.

3.5.3 Conditional autoregressive process

The case of AR1 shows that when the marginal variance depends on the structure pa-

rameters, the variability and smoothness of the process have di�erent patterns. It is

interesting to show what happens to the trends of the variability and smoothness of the
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process when considering another type of covariance function that provide a marginal

variance depending upon the structure parameters, in particular in the spatial domain.

For this purpose, we assume X follows a conditionally speci�ed process in the spatial

setup, the conditional autoregressive (CAR) process. It is de�ned by a full set of site

speci�c univariate Gaussian conditionals (Besag, 1974; Rue and Held, 2005) with mean

E[Xi|X−i] =
n∑
k=1

κwikXk =
∑
k∼i

κwikXk,

where X−i is the (n− 1)-vector such that X−i = (X1, . . . , Xi−1, Xi+1, . . . , Xn)
⊤ and κ is

the structure parameter that can also be interpreted as a spatial smoothness parameter

(local interaction) because its value determines the spatial smoothness of the process (see

Figure 3.4 (top)). The above expression de�nes a unique joint multivariate Gaussian

distribution with zero mean and covariance matrix

Σ = σ2(In − κW )−1

such that

V[Xi|X−i] = Σii i = 1, . . . , n.

Here, a spatial lattice structure is accompanied by the n× n adjacency or neighborhood

matrixW , with elements wii = 0, wik = 1 if the site k is neighbor to site i (denoted k ∼ i

hereafter) and wik = 0 otherwise. The su�cient condition ensuring positive de�niteness

of the covariance matrix is κ ∈ (κmin, κmax), where κmin = λ(W )−1
n and κmax = λ(W )−1

1 .

Moreover, κ is a direct measure of (conditional) spatial autocorrelation.

We now explore two geographical regions: the �rst contains the boundaries of Missouri's

115 counties and the second comprises the borders of Texas' 255 counties. To guarantee

that both covariance matrices are positive de�nite, we restrict κ to be in the interval

(−0.3467, 0.1702) and (−0.3169, 0.1503), respectively. Figure 3.4 (bottom) con�rms, as

for the AR1 case, a decreasing trend of the sampling variance as κx varies from κmin to 0,

and an increasing trend of the sampling variance when κx varies from 0 to κmax. Moreover,

Figure 3.4 exhibits a monotonic decreasing trend of sampling inverse smoothness as a

function of the structure parameter, less steep for negative values ok κx and rapidly

descending otherwise. This highlights that smoothness is an increasing function of κx.

The di�erences observed for Missouri and Texas show that smoothness and variability are

in�uenced by the spatial layout of the lattice.
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Figure 3.4: Decay of inverse smoothness (top) and variability (bottom) trends of X generated as
Gaussian CAR spatial process as function of the structure parameter.

3.6 Quanti�cation of confounding

In this section we provide some measures aimed at approximating the expected bias and at

highlighting how the structure of the DGP impacts the regression of Y on the covariates.

The latter point deserves some investigation: the structure of the DGP impacts the

variance explained by the covariates in a non-trivial way, but the theory concerning the

distribution of Gaussian QFs is exploited to give some useful insights about this topic.

3.6.1 Laplace approximation

Although in Theorem (3.2.2) we provided the exact formula for calculating the estimator

bias, in this section we suggest an approximation in order to underline how the structure
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of the DGP impacts the regression of Y on the covariates.

The Laplace method for approximating integrals is applied to give a general approximation

for the �rst moment of a ratio of quadratic forms in random variables (Lieberman, 1994).

This simple approximation, which only entails basic algebraic operations, has evident

practical appeal for the evaluation of confounding. Actually, it is a Taylor approxima-

tion at the point (tr (∆Σzx) , tr (∆Σx)). Then, the Laplace expansion up to O (n−2) for

EX

[
R1,1

∆Az.x,∆
(X)

]
is:

EX

[
R1,1

∆Az.x,∆
(X)

]
= EL + e1 +O(n−2), (3.41)

where

EL =
EX

[
X⊤∆Az·xX

]
EX [X⊤∆X]

=
tr (∆Σzx)

tr (∆Σx)
=

λ̄∆Σzx

λ̄∆Σx

. (3.42)

e1 =
EX

[
X⊤∆Az·xX

]
E3
X [X⊤∆X]

VX

[
X⊤∆X

]
+

−
CovX

(
X⊤∆Az·xX,X⊤∆X

)
E2
X [X⊤∆X]

= 2

[
tr (∆Σzx) tr (∆Σx)− tr (∆Σzx ·∆Σx)

tr2 (∆Σx)

]
= O(n−1).

In some special case, the approximate mean collapses to the exact formula. The su�cient

conditions to achieve it are established in Lieberman (1994). Indeed, in the case of

spherical DGP, EL is the exact value for the bias. Moreover it happens also when a

spherical process is assumed only for the covariate.

When a OLS model is posited, i.e. when ∆ = M, the approximation of the marginal

expectation of the estimator bias depends upon the cross-covariance between X and Z

and the covariance matrix of the covariate. This shows that the estimator bias is larger

when the variability of the expected sampling covariance of confounder and the covariate,

the co-variability EVxz, is large with respect to the variability of the covariate, i.e.

>> Bias ⇐⇒ λ̄MΣzx >> λ̄MΣx ,

while the marginal variability of the confounder, λ̄MΣz , has no direct impact on bias, with

the only caveat that Σz must satisfy the conditions that guarantee positive de�niteness

of the DGP joint covariance matrix.
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3.6.2 Portion of explained variability

In line with Paciorek (2010), the magnitude of confounding also depends on two further

quantities suggested by De�nition 2.1.1 and Lemma 3.0.1: the portion of covariate and

response variability explained by the confounder process. To capture these contributions,

we introduce the random variables denoted by PVx(z) and PVy(z), respectively. These

quantities are a sort of coe�cient of determination.

In order to determine PVx(z), we consider the following regression model:

X = ax·0(z) +Ax·zZ + εx|z, (3.43)

where the normally distributed error term, εx|z, is characterized by the covariance matrix

Σx|z introduced in Equation (2.10). The sampling variance of the covariate X can be

re-written as follows:

Vx =
X⊤MX

n− 1

=
1

n− 1

(
Z⊤A⊤

x·zMAx·zZ + ε⊤x|zMεx|z + 2ε⊤x|zMAx·zZ
)

=
1

n− 1

(
Z

X|Z

)⊤ [
A⊤
x·zMAx·z A⊤

x·zM

MAx·z M

](
Z

X|Z

)
.

The expected value is:

EVx =
tr(MΣx)

n− 1
= λ̄M(Ax·zΣzA⊤

x·z)
+ λ̄MΣx|z .

Thus, posing

A =

[
A⊤
x·zMAx·z 0

0 0

]
and B =

[
A⊤
x·zMAx·z A⊤

x·zM

MAx·z M

]
,

the portion of the covariate variability explained by the confounder process PVx(z) is

de�ned by the following ratio of quadratic forms in Gaussian random variables

PVx(z) =

(
Z

X|Z

)⊤ [
A⊤
x·zMAx·z 0

0 0

](
Z

X|Z

)
(
Z

X|Z

)⊤ [
A⊤
x·zMAx·z A⊤

x·zM

MAx·z M

](
Z

X|Z

)
= R1,1

A,B

(
(Z⊤, (X|Z)⊤)⊤

)
.

We obtain the matrix Σ
1/2
z,x|z ≻ 0 such that the block diagonal covariance matrix of the two
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independent processes Z and X|Z, Σz,x|z ∈ S2n
++, can be decomposed as Σ

1/2
z,x|zΣ

1/2
z,x|z =

Σz,x|z, so that PVx(z) can be written as a function of a standard normal vector ν, that is

PVx(z) = R1,1

Ã,B̃
(ν),

where Ã = Σ
1/2
z,x|zAΣ

1/2
z,x|z and B̃ = Σ

1/2
z,x|zBΣ

1/2
z,x|z. With the aim to provide the expected

PVx(z), let us consider the following spectral decomposition

B̃ = PΛP⊤ = P diag (λ)P⊤,

and de�ne Cx = P⊤ÃP. From Equations (3.10) and (3.20), we obtain the expected value

of PVx(z) in term of Carlson's R function

EX
[
PVx(z)

]
=

2n∑
j=1

cx,jj

∫ ∞

0

2n∏
i=1

(1 + 2λit)
−1/2 1

1 + 2λjt
dt

=
2n∑
j=1

cx,jjB

(
1, n− 1

2
hj

)
Rj

(
1;

1

2
12n+2−hj , 2λ

′

j,+

)
= I1,1hj

(
λ

′
)
, (3.44)

where λ
′
j = (λ1, . . . , λ2n, λj, λj) and hj = rankdef B̃1 for j = 1, . . . , rank B̃ and hj =

rankdef B̃+ 2 for j = 1, . . . , n.

Applying Theorem 3.3.1, the variance is supposed to assume the maximum value when

PVx(z) approaches 0 and the minimum when it is close to 1. It is immediate to see that the

quantity in (3.44) is a sort of multivariate version of a linear coe�cient of determination

R2 of the regression of X on Z, that is the proportion of the variation of the dependent

variable X explained by Z. In our opinion, this is a possible alternative to R2-like

measure of association proposed in the literature. For example, Rencher (2002), in order

to re�ect the amount of association between the variables, proposes the largest squared

canonical correlation, i..e. the maximum eigenvalue of the matrix Az·xAx·z. Another

alternative measure proposed in this framework is the RV coe�cient suggested by Robert

and Escou�er (1976):

RV =
tr(Σxz)√

tr(Σx)tr(Σz)
.

In a similar manner we provide the expression for PVy(z). Considering the DGP de�ned

in (2.3), the covariate X and the residual structure expressd via the latent variable Z

participate to explicate the variability of the outcome (Waller and Gotway, 2004). Because

1A matrix is said to be rank-de�cient if it does not have full rank. The rank de�ciency of a matrix A, denoted by
rankdefA, is the di�erence between the lesser of the number of rows and columns, and the rank.
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of this, now let us consider the sampling variance of Y decomposed as follows:

Vy =
Y ⊤MY

n− 1

=
B2
y·x(z)X

⊤MX + B2
y·z(x)Z

⊤MZ + 2By·x(z)By·z(x)X⊤MZ

n− 1
+

+
ε⊤y|x,zMεy|x,z + 2By·x(z)X⊤Mεy|x,z + 2By·z(x)Z⊤Mεy|x,z

n− 1

=
1

n− 1

 X

Z

Y |X,Z

⊤  By·x(z)M By·x(z)By·z(x)M By·x(z)M
By·x(z)By·z(x)M B2

y·z(x)M By·z(x)M
By·x(z)M By·z(x)M M

 X

Z

Y |X,Z

 ,

(3.45)

in which we call B the matrix characterizing the quadratic form expressed in the last line.

The expected value of Vy is

EVy =
tr(MΣy)

n− 1

=
tr(M

[
By·x(z)In : By·z(x)In

]
Σx,z

[
By·x(z)In : By·z(x)In

]
)

n− 1
+

tr(MΣy|x,z)

n− 1

= B2
y·x(z)λ̄MΣx + B2

y·z(x)λ̄MΣz + 2By·x(z)By·z(x)λ̄MΣxz + σ2
y|x,z.

Because of the covariates dependence we need to take into account also the bilinear

term X⊤MZ, that is proportional to the sampling covariance of the covariate and the

confounder. It depends on the regression coe�cients, the variance parameters and the

structure matrices Rx and Rz through their respective eigenvalues: di�erent structure

matrices lead to di�erent expected values of Vy.

Let

A =

 0 By·x(z)By·z(x)M 0

By·x(z)By·z(x)M B2
y·z(x)M 0

0 0 0

 ,

the portion of the response variability explained by confounder process, PVy(z), can be

expressed as the following ratio of quadratic forms in Gaussian random variables

PVy(z) = R1,1
A,B

(
(X⊤,Z⊤, (Y |X,Z)⊤)⊤

)
. (3.46)
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Along the line that leads to the Formula (3.44), the expected value of PVy(z) is

EY
[
PVy(z)

]
=

3n∑
j=1

cy,jjB

(
1,

3n

2
− 1

2
hj

)
Rj

(
1;

1

2
13n+2−hj , 2λ

′

j,+

)
= I1,1hj

(
λ

′
)
,

where λ
′
j = (λ1, . . . , λ3n, λj, λj) contains the eigenvalues of B̃ = Σ

1/2
x,z,y|x,zBΣ

1/2
x,z,y|x,z =

P⊤ΛP in which Σx,z,y|x,z is the block diagonal covariance matrix of the two independent

vectors (X⊤,Z⊤)⊤ and Y |X,Z. In addition, Cy = P⊤ÃP and hj = rankdef B̃ for

j = 1, . . . , rank B̃ and hj = rankdef B̃+ 2 for j = 1, . . . , n.

In the next chapter we will provide a discussion of the e�ect of the portion of explained

variability on confounding, taking also into account the variability and smoothness of X

and Z.



Chapter 4

Applications

In this chapter we present a brief review of the main results of the spatial statistics litera-

ture regarding the evaluation of spatial confounding. Subsequently, we study the marginal

sampling properties of β̂x for DGPs employed in geostatistical , areal and temporal frame-

works.

In the following we indicate how all scenarios of data generating process posited in the

study will be speci�ed. We undertake several type of covariance functions to construct

valid covariance matrices of the underlying processes ξ ∼ Nn(0,Σξ) and ψ ∼ Nn(0,Σψ)

in order to depict di�erent dependence structures of the random vector (X⊤,Z⊤)⊤. The

three kinds of covariance function used along the dissertation have been presented in

Section 3.5, and these are the Matérn correlation function (geostatistical data, Section

3.5.1), the conditional autoregressive covariance function (areal data, Section 3.5.3) and

the autoregressive of order one covariance function (temporal data, Section 3.5.2).

A critical step is to identify a suitable dependence structure not only within each variable,

but between variables as well. In the multivariate literature, several di�erent approaches

have been developed for modeling cross-covariance among the variables of interest, such

as the linear coregionalization model (LMC) (Matheron, 1982; Goulard and Voltz, 1992;

Grzebyk and Wackernagel, 1994; Wackernagel, 2003) and its generalization, the modeling

techniques based on the latent dimensions, the convolution methods and the copula-based

model. It is di�cult to specify non-trivial, valid parametric models for cross-covariance

functions, because of the notorious requirement of positive de�niteness. In this work,

we use the linear model of coregionalization, where each component is represented as

a linear combination of a set of independent underlying variables, ξ and ψ, because

under a certain condition it guarantees a valid joint covariance matrix for the vector of

main processes, (X⊤,Z⊤)⊤. Gelfand et al. (2004) propose to construct a multivariate

process by linear transformation of independent processes, giving rise to the most basic

coregionalization model. In order to express a complete joint distribution for the vector
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of main processes, we need to model not only the dependence of measurements across

units but also the dependence of the two variables at each unit. The latter is modeled by

the coregionalization matrix T = FF⊤ which needs to be positive de�nite to guarantee

validity of joint covariance matrix. Aware of it, we consider

T =

[
σ2
ξ σξψ

σψξ σ2
ψ

]
, (4.1)

where σ2
ξ > 0 and σ2

ψ > 0 are the marginal variance of the variables on subscript and

σξψ = ρσψσξ is the covariance that can be expressed also in term of correlation parameter

ρ, subject to |ρ| < 1, describing the strength of dependence between variables. Then, the

LMC takes the following form: (
X

Z

)
= (F⊗ In)

(
ξ∗

ψ∗

)
,

where ξ∗ ∼ Nn(0,Rξ) and ψ
∗ ∼ Nn(0,Rψ) are independent processes speci�ed by some

covariance function and ⊗ denotes the Kronecker product. We indicate with Rξ the

structure matrix that re�ects the structure of the random vector ξ such that Σξ = σ2
ξRξ.

If ξ and ψ are identically distributed with covariance matrix Σ = Σξ = Σψ, one obtains

a separable cross-covariance function that allows to express the joint covariance matrix as

Σx,z = T⊗Σ. (4.2)

A more general LMC for stationary processes arises when the underlying variables are

independent but not identically distributed, giving rise to the following joint covariance

matrix

Σx,z = f1f
⊤
1 ⊗Σξ + f2f

⊤
2 ⊗Σψ

where fk indicates the k-th column vector of F, with k = {1, 2}.
The LCM implies symmetric cross-covariances by construction. We consider a further

approach able to build valid asymmetric cross-covariance structures that we de�ne "re-

vised" linear model of coregionalization (rLMC) represented as(
X

Z

)
=

[
R

1/2
ξ 0

0 R
1/2
ψ

] [[
1

√
ρ
xz√

ρ
xz

1

]
⊗ In

](
ν1
ν2

)
,

where R
1/2
ξ is such that Σξ = R

1/2
ξ

(
R

1/2
ξ

)⊤
. In particular, when R

1/2
ξ is the lower

triangular matrix obtained through the Cholesky decomposition, we denote it by Lξ. The

rLMC has been employed by Page et al. (2017) for the �rst time, and later by Nobre et al.

(2021) and Marques et al. (2022). Additionally, ρxz is the correlation parameter such that
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|ρxz| < 1 and ν1, ν2 are standard multivariate Gaussian processes. Then, the covariance

matrix that characterizes the joint distribution of (X⊤,Z⊤)⊤ is always positive de�nite

by construction and it is

Σx,z =

 Σξ ρxzσξσψR
1/2
ξ

(
R

1/2
ψ

)⊤
ρxzσξσψR

1/2
ψ

(
R

1/2
ξ

)⊤
Σψ

 . (4.3)

Under the rLMC Σx = Σξ and Σz = Σψ.

4.1 Main literature results in our perspective

Throughout the thesis, several references have already been made to the three papers

that most inspired and led this work: Paciorek (2010), Page et al. (2017) and Nobre et al.

(2021). In this section we provide a brief review of these papers set out in our notation,

in which we will point out the assumptions made, the aims and the conclusions deduced

by authors adding our own considerations.

In each work the authors suppose a stochastic data generative mechanism and study the

properties of the estimator de�ned in (2.28) for the parameters of interest. By proposing

their application settings we wish to corroborate our thesis, i.e. that the bias is closely

related to the variability of the covariate and the co-variability between the covariate and

the confounder rather than to the smoothness of these main processes.

4.1.1 Paciorek (2010)

Paciorek (2010) aims to investigate how the "spatial scales", what may be called smooth-

ness in a broader scope of application, of the residual and the covariate a�ects inference.

Consequently, a smaller (or local) spatial scale is associated to less smoothness character-

izing a process.

The analytic and simulation results of Paciorek (2010) illustrate how the bias depends on

the structure parameters characterizing the covariate and residual processes. The Matérn

correlation function introduced in (3.38) is adopted. It is characterized by the fact that

correlation parameters are directly related to the smoothness of the processes. As it will

be discussed later, this can lead to a misleading link between the processes smoothness

and the bias of the estimator.

The starting result concerns the situation where the covariate and the unmeasured con-

founder are characterized by the same level of smoothness. It means assuming that they

share the same structure parameters, i.e. θ = θx = θz, for the construction of the marginal
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covariance matrices, Σx andΣz. In turn, a single structure matrixR(θ) = R(θx) = R(θz)

is obtained. In order to get a valid joint distribution for the bivariate vector of covariate

and confounder, a separable LMC as de�ned in (4.2) is considered. It brings the joint

covariance matrix

Σx,z = T⊗R(θ)

=

[
σ2
x ρxzσxσz

ρxzσxσz σz

]
⊗R(θ).

In this setting, the bias for the estimator β̂x conditionally on X reported in Equation

(5) of the paper is the same deterministic value we have presented in Section 3.4 under

the unstructured DGP assumption in Equation (3.31). Thus, whenever a separable cross-

correlation model is assumed, this is equivalent to posit the same structure parameters,

leading to a deterministic conditional bias of β̂x that is function of marginal variance and

covariance parameters. Another setup that leads to the same result consists in assuming

a linear model of coregionalization in which the F matrix in (4.1) is a lower Cholesky

triangle with the following structure

F =

[
σξ 0

ρxzσψ
√

1− ρ2xzσψ

]
,

such that the joint covariance matrix of (X⊤,Z⊤)⊤ is obtained as follows

Σx,z =

[
σ2
ξΣξ ρxzσξσψΣξ

ρxzσξσψΣξ ρ2xzσ
2
ψΣξ + (1− ρ2xz)σ

2
ψΣψ

]
.

Thereby, in order to explore the situation in which the covariate varies "at two scales",

meaning the covariate and the confounder has two di�erent covariance structure where

the covariate one is partially characterized by the confounder one, Paciorek (2010) uses

a sort of LMC with F upper triangle Cholesky of T matrix in (4.1). He considers two

underlying processes, ξ ∼ Nn(0, σ
2
ξR(θξ)) and ψ ∼ Nn(0, σ

2
ψR(θψ)), such that X =

ψ+ ξ is decomposed into a component, ψ, that has the same structure parameters of the

confounder Z, and a component ξ, which is independent of ψ and Z. Speci�cally, this

leads to the following joint covariance matrix

Σx,z =

[
σ2
ψR(θψ) + σ2

ξR(θξ) ρxzσψσzR(θψ)

ρxzσψσzR(θψ) σ2
zR(θψ)

]
. (4.4)

According with Lemma 3.0.1, we reproduce Equation (6) of the paper expressed in our
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notation:

EY
[
β̂x|X

]
= By·x(z) + By·z(x)ρxzσψσz

XT∆R(θψ)
(
σ2
ψR(θψ) + σ2

ξR(θξ)
)−1

X

XT∆X

= By·x(z) + By·z(x)ρxz
σz
σψ

XT∆
(
In +

σ2
ξ

σ2
ψ
R(θξ)R(θψ)

−1
)−1

X

XT∆X
, (4.5)

where the QF is denoted by the author with k(X), that is what he calls "bias modi�cation

term". Besides, Paciorek (2010) focuses the attention on the following ratios detectable

within the bias Formula (4.5) via trivial algebra and matrix manipulation

pc =
σ2
ψ

σ2
ψ + σ2

ξ

,

pz =
B2
y·z(x)σ

2
z

B2
y·z(x)σ

2
z + σ2

y|x,z
,

where pz should be the portion of the residual variation being the contribution of the

confounder and pc should quantify the magnitude of the confounded component of X

relative to its total variation. This interpretation is legitimate only when X and Z

are spherical. In this regard, in Section 3.6, the two quantities that succeed in this

respect were presented considering the structure of the processes, PVy(z) and PVx(z),

respectively. About that, Figure 4.2 shows the relation between the expected value of the

bias modi�cation term and the two aforementioned portions.

Under the same structure parameters setting, i.e. for θξ = θψ, EX [k(X)] = pc and the

resulting bias is equal to the previous case, that is

By·z(x)ρxz
σzσψ

σ2
ψ + σ2

ξ

= By·z(x)
σxz
σ2
x

.

In the �gures reported in what follows, the values relative to the marginal sampling

properties of estimator β̂x are computed using the formulas expressed in Theorem 3.2.2.

Values reported in these �gures match with the ones obtained through the simulation

study implemented by Paciorek (2010).

For a regular grid of n = 100 locations on the unit square and using an exponential

correlation function for the processes, i.e. θ = (0.5, r)⊤, Figure 4.1 shows the expected

value of k(X). Since it is proportional to the bias, it is possible to deduce that when

rξ << rψ there is less bias than under the same structure parameter setting. Above the

diagonal, for rξ >> rψ, there is more bias. The patterns in Figure 4.1 are similar regardless

of the values of pc and pz. For larger values of pc the bias is larger, while for larger values

of pz the e�ects of the structure parameters are weaker.
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Figure 4.1: The expected value of the bias modi�cation term as a function of the structure parameters
of two underlying processes generating the covariate and confounder structure for a selection of values of
pc and pz. Regarding the model assumption, it is posited S = Σy|x.

From the above, Paciorek (2010) concludes that the inclusion of the spatial residual term

in the model accounts for spatial correlation reducing the bias from spatial confounder

only "when there is unconfounded variability in the exposure at a scale smaller than the

scale of confounding". It means that there is less confounding when the confounder is

smoother than the covariate.

As mentioned in Section 3.5, the expected inverse smoothness of a process, and so the

smoothness, is related to the eigenvalues of the correlation matrix of a process. In particu-

lar as in this case, when one posits a covariance function that actually is also a correlation

function, e.g. the Matérn function, it can be ensured that the estimator bias depends

upon them and consequently on the smoothness of processes involved. More broadly, it is

function of the covariance matrix eigenvalues. In fact, our theoretical explanation to what

is illustrated in Figures 4.1 is linked to that. Using the �rst order Laplace approximation
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for the bias de�ned in Equation (3.42), we state that a lower bias occurs when

λ̄MΣxz << λ̄MΣx ,

that is

ρxzσzσψλ̄MRψ << σ2
ξ λ̄MRξ + σ2

ψλ̄MRψ

(ρxzσzσψ − σ2
ψ)λ̄MRψ << σ2

ξ λ̄MRξ . (4.6)

Hence, holding constant all the variance and correlation parameters in (4.6) and since

Paciorek (2010) uses the Matérn correlation function characterized by the following rela-

tion

rξ << rψ ⇐⇒ λ̄MRψ << λ̄MRξ

(see Figure 3.2), our idea coincides with what has been gathered by the author.

Figure 4.2: On the right (left) the expected value of the bias modi�cation term as a function of the
portion of the response (covariate) variability explained by the confounder processes is shown with respect
to rψ. Regarding the model assumption, it is posited S = Σy|x.

In our view, the estimator bias in Formula (3.22) may not be regulated only by what

Paciorek (2010), Page et al. (2017) and Guan et al. (2022) call the "spatial scale" expressed

through the range parameter but it depends on the variability of processes involved. In

this regard it will be interesting to study the e�ect that di�erent choices of covariance

functions has on confounding.
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4.1.2 Page et al. (2017)

This paper provides a more detailed study of regression coe�cient estimation from spatial

models when covariate X and unmeasured confounder Z are correlated and, in addition,

it contains a formal study regarding spatial prediction.

The data generating process is speci�ed asX ∼ Nn(0, σ
2
xRx(θx)) andZ ∼ Nn(0, σ

2
zRz(θz))

jointly normal with cross-covariance structure determined from rLMC (see Equation

(4.3)). The authors derive the analytic formulas of conditional expected value of bias,

variance and mean square error of the estimator de�ned in (2.28) in which it is assumed

S = Σy|x. Hence, denoting Ω = σ2
y|x,zIn +Σz yields to the following sampling properties:

EY
[
β̂|X

]
=

(
By·0(xz)
By·x(z)

)
+ ρxz

σz
σx
JLzL

−1
x X, (4.7)

VY

[
β̂|X

]
= JΩJ⊤ − JΣzxΣ

−1
x ΣxzJ

⊤

=
(
X̃⊤Ω−1X̃

)−1

− σ2
zρ

2
xzJRzJ

⊤, (4.8)

MSEY

[
β̂|X

]
= ρ2xz

σ2
z

σ2
x

tr
(
JLzL

−1
x XX

⊤L−⊤
x L⊤

z J
⊤)

+ σ2
y|x,ztr

(
X̃⊤Ω−1X̃

)−1

− σ2
zρ

2
xztr

(
JRzJ

⊤) . (4.9)

They are a particular case of the result in Proposition 2.3.1, where

Az·x = ρxz
σz
σx
LzL

−1
x ,

Σy|x = σ2
y|x,zIn + σ2

z(1− ρ2xz)Rz.

Moreover, regarding the coe�cient related to the covariate, the previous assumptions

allows the matching also with the result in Lemma 3.0.1.

In this paper two kind of data are employed: point-referenced or geostatistical data using

the exponential correlation function belonging to MF class and areal data using a condi-

tional autoregressive covariance function to model X and Z. The values relative to the

marginal sampling properties of estimator β̂x are computed using the formulas expressed

in Theorem 3.2.2. The values match with the ones obtained through the simulation study

implemented by Page et al. (2017).

Regarding the geostatistical data, Figure 4.3 shows that increasing ρxz impacts the all

sampling properties of β̂x. As expected by theoretical result in (3.25) and as noted by

the authors, the in�uence that rz and rx have on the estimator bias does not vary when
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Figure 4.3: Bias, variance and MSE values associated with β̂x. They are evaluated for values of range
parameter rx = rz ∈ (0, 2). Additionally, ρ ∈ {0.5, 0.9} while all other variance components are �xed at
σ2
y|x,z = σ2

x = σ2
z = 1. Regarding the model assumption, it is posited S = Σy|x.
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ρxz increases, while that for the variance, and consequently for MSE, seems to change.

That because the correlation parameter is proportional to the bias, unlike the others.

The explanation for the patterns its the crucial point. In our opinion, there is no reason

to bind it to the range parameters of X and Z, but rather on their variability and co-

variability. It seems that it may depend upon the portion of the response or covariate

variability explained by the confounder.

Figure 4.4: Estimator bias evaluated for values of the structure parameters κx, κz ∈ {−0.3, 0, 0.165}
and ρxz ∈ {0, 0.5, 0.9}. Regarding the model assumption, it is posited S = Σy|x.

However, what is apparent when considering the results obtained by Paciorek (2010)

and Page et al. (2017) for the same geostatistical setting in which the only di�erence is

the assumption regarding the cross-covariance function that gives Σx,z is that it possible

to identify a similar pattern for the estimator bias but the explanation cannot be related

to the smoothness of the processes for both cases. That because also the co-variability of

the main processes plays an important role.

Concerning the areal data, Figure 4.4 shows the same result illustrated by the authors
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and the consequent di�culty in interpreting the results concerning the estimator bias as

the structure parameters vary. What is clear is the relationship between ρxz and the bias.

4.1.3 Nobre et al. (2021)

The authors investigate the e�ects of spatial confounding in hierarchical spatial models

(Gelfand et al., 2007). In particular, in a random intercept model considering unit and

cluster-level covariates, respectively X1 = X1∗ + Cκ and X2 = CW , where C is a

n ×m matrix of 0's and 1's connecting the cluster with each of its units and X1∗ is the

part of X1 assumed to be known. They de�ne locations as clusters and observations

within clusters as units. Observations are accessible over m spatial locations, and at

each location i = 1, . . . ,m, ni units are observed. Indicating with Z = Cν the spatially

structured latent process, the study considers the following data generating process

Y = By·0(x1x2z)1n + By·x1(z)X1 + By·x2(z)X2 +Z + ε, ε ∼ Nn(0,Σy|x1,x2,z),

where Y is the n-dimensional response process, with n =
∑m

i=1 ni. Here the two target

parameters are By·x1(z) and By·x2(z). Then, the conditional distribution marginalized with

respect to Z is given by

Y |X1,X2 ∼ Nn(By·0(x1x2)1n +Ay·x1X1 +Ay·x2X2, B2
y·z(x1x2)Σz|x1,x2 +Σy|x1,x2,z).

Regarding the statistical model assumed, the authors consider the estimator de�ned in

(2.28) in which S = Σy|x. To settle the formalization of DGP, they assume further that

(ν⊤,κ⊤,W⊤)⊤, and consequently (Z⊤,X⊤
1 ,X

⊤
2 )

⊤, follows a LMC such that: ν

κ

W

 =

f11 0 0

f21 f22 0

f31 f32 f33

ω1

ω2

ω3

 ,

and so  ZX1

X2

 =

 0

X1∗
0

+

f11 0 0

f21 f22 0

f31 f32 f33

Cω1

Cω2

Cω3

 ,

where ωk, k = 1, 2, 3, are independent, each following a zero mean Gaussian process with

unit marginal variance and covariance matrix Rk. This leads to the following covariance

matrix

Σν,κ,W =


f 2
11R1 f11f21R1 f11f31R1

f11f21R1

∑2
i=1 f

2
2iRi

∑2
i=1 f2if3iRi

f11f31R1

∑2
i=1 f2if3iRi

∑3
i=1 f

2
3iRi

 .



4.2 Several scenarios for structured DGP 67

In order to express the sampling distribution of the estimator β̂ reported in Proposition 1

of the paper in our notation and following the Formula (2.12), we compute the conditional

mean µz|x1x2 as:

EZ [Z|X1,X2] = Az·x1 x2

(
X1

X2

)
−Az·x1(x2)X1∗

= Az·x1(x2)Cκ+Az·x2(x1)CW

=
[
Σzx1 : Σzx2

] [ Σx1 Σx1x2

Σx2x1 Σx2

]−1(
Cκ

CW

)
= C

[
Σνκ : ΣνW

] [C⊤ 0

0 C⊤

] [
CΣκC

⊤ CΣκWC
⊤

CΣWκC
⊤ CΣWC

⊤

]−1 [
C 0

0 C

](
κ

W

)
.

Considering that there is at least one observation per location (n ≥ m), the pseudo

inverse1 of the diagonal block matrices allows to get the simpli�cation:

EZ [Z|X1,X2] = C

[[
C 0

0 C

]−1 [
CΣκC

⊤ CΣκWC
⊤

CΣWκC
⊤ CΣWC

⊤

] [
C⊤ 0

0 C⊤

]−1
]−1(

κ

W

)
= CAν·κW

(
κ

W

)
= CEν [ν|κ,W ] .

Thus, the mean and the variance of the estimator conditionally on X1 and X2 are:

EY
[
β̂|X1,X2

]
, =

By·0(x1xzz)
By·x1(z)
By·x2(z)

+Cµν|κW

VY

[
β̂|X1,X2

]
=
(
X̃⊤Ω−1X̃

)−1

− JCΣν·κWΣ−1
κ,WΣ⊤

ν·κWC
⊤J⊤,

where Ω = Σz + σ2
y|x1,x2,zIn.

Unfortunately, working with two covariates setting does not allow to compute the

marginal sampling properties of the estimator with the expressions provided in Theo-

rem 3.2.1. This may be a natural extension for a future work.

4.2 Several scenarios for structured DGP

After a brief review of the literature, we focus on the main aim of the thesis: the evaluation

of confounding under di�erent kind of structured generative mechanism. To this end,

1Let a matrix A ∈ Rm×n be any matrix with rank n ≤ m, the generalized inverse is A− ∈ Rn×m such that A− =
(A⊤

A)−1A
⊤.
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we �x the variance parameters σx and σz, and we let the structure vector parameter θ

setting up the covariance matrices and the correlation parameter ρxz di�er. We focus on

the study of the sampling properties of the ordinary least square estimator obtained by

setting S = In in (2.28). We have also employed the generalized least square implementing

the optimal choice S = Σy|x. Since this did not lead to substantially di�erent results, they

were not reported.

Let us build up the structured DGP. Fixing the inferential target parameter By·x(z) = 1

and Σy|x,z = σ2
y|x,zIn with σ2

y|x,z = 1, we address situations in which confounding takes

place. Thus, we assume By·z(x) = 1 and non-null cross-covariance between the covariate

and confounder, i.e. Σxz ̸= 0 (see De�nition 2.1.2). To explore how the choice concerning

DGP changes the impact that confounding has on inference, we consider the following

three cases which di�er from each other by the type of joint covariance matrix Σx,z

expressing the correlation structure of the main processes.

Case A: The following joint covariance matrix of X and Z is assumed:

Σx,z =

[
R(θx) ρxzR(θxz)

ρxzR(θxz)
⊤ R(θz)

]
, (4.10)

which is positive de�nite when R(θx) − ρ2xzR(θxz)R(θz)
−1R(θxz) ≻ 0. From

a consequence of De�nition A.0.1, this is equivalent to requiring

v⊤R(θx)v

v⊤R(θxz)R(θz)−1R(θzx)v
≥ ρ2xz ∀v ̸= 0

ṽ⊤R(θxz)
−1R(θx)R(θzx)

−1R(θz)ṽ

ṽ⊤ṽ
≥ ρ2xz ∀ṽ ̸= 0,

where ṽ = R(θz)
−1/2R(θzx)v. Since the left-hand term in the last inequality

is a Rayleigh quotient, it can be observed that

λmin

(
R(θxz)

−1R(θx)R(θzx)
−1R(θz)

)
≤ ṽ⊤R(θxz)

−1R(θx)R(θzx)
−1R(θz)ṽ

ṽ⊤ṽ
.

Hence, the su�cient condition to ensure the positive de�niteness of (4.10) is

λmin

(
R(θxz)

−1R(θx)R(θzx)
−1R(θz)

)
≥ ρ2xz. (4.11)

In this case, the cross-covariance matrix is parameterized independently on

the parameters characterizing the marginal covariance matrices of X and Z.

This construction is intended to show that, as expected form Theorem 3.0.1,

the bias relies on the structure of Z only when the cross-covariance matrix is

obtained as function of Σz by construction. Under this setting, we obtain a
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deterministic conditional bias as in (3.31), when θx = θzx.

Case B: In order to explore the situation in which the covariate varies with two di�erent

structure parameters, letX = ξ+ψ be decomposed into a component, ψ, that

has the same structure parameters of the confounder Z, and a component with

di�erent structure, ξ, which is independent from ψ and Z. In this way, using

a LMC, we consider the setting implemented by Paciorek (2010) expressed in

(4.4) in which σ2
ξ = σ2

ψ = σ2
z/2. This leads to the joint covariance matrix:

Σx,z = σ2
z

R(θψ) +R(θξ)

2

ρxz√
2
R(θψ)

ρxz√
2
R(θψ) R(θψ)

 (4.12)

which is positive de�nite ∀ρxz ∈ (−1, 1). In this setup, the regression matrix

is:

Az·x =
ρxz√
2

[
R(θξ)R(θψ)

−1 + In
]−1

. (4.13)

Note that also in this case a deterministic conditional bias expressed as in

(3.31) is provided when θξ = θψ (in agreement with Paciorek (2010)).

Case C: This case refers to the revised LMC in which σ2
x = σ2

z = 1, that can generate

asymmetric cross-covariance. The joint covariance matrix is[
R(θx) ρxzR(θx)

1/2
(
R(θz)

1/2
)⊤

ρxzR(θz)
1/2
(
R(θx)

1/2
)⊤

R(θz)

]
, (4.14)

and regression matrix Az·x = ρxzR(θz)
1/2R(θx)

−1/2. The matrix R1/2 is the

lower triangle from Cholesky decomposition, thus R1/2 can be indicated with

L. For future studies it might be interesting to use R1/2 = UΛ1/2 provided by

the spectral decomposition Σ = UΛU⊤. This assumption allows to relate the

eigenvalues of Σ and R1/2 simplifying, for example, the computation of bias

bounds planned for future research work. Besides, according to Page et al.

(2017), we get the deterministic bias expressed in (3.31) when the structure

parameters of the main processes are the same.

We remark that in each case all R marginal covariance matrices in the Σx,z are derived

under the same covariance function. Next, for Case A-C, we build marginal matrices

adopting the Matérn covariance function, the �rst order autoregressive process and the

conditional autoregressive process. In every framework and for each combination of pa-

rameters θξ, θψ, ρxz, we compute the marginal sampling properties of the estimator β̂x
using the fundamental analytic results obtained in Chapter 3.
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4.2.1 Matérn covariance function

The point-referenced analysis is carried out by considering a regular grid of 100 spatial

units that are located on the unit square. We employ the Matérn covariance function

introduced in Section 3.5.1 with ν = 0.5 i.e. the exponential correlation function charac-

terized by the structure vector parameter θ = (0.5, r)⊤. We adopt a sequence of values

r ∈ (0, 1) for both underlying processes, ξ and ψ, that contributes to construct Σx,z (see

Section 2.1.2.1).

Case A: LetX = ξ and Z = ψ be the main processes in DGP. Free from restriction due

to the choice of cross-covariance function depending on the structure param-

eters of the main processes, we adopt a cross-covariance matrix deriving from

exponential function with structure parameter rzx. As already anticipated, this

case can generate non-positive de�nite Σx,z if inequality (4.11) does not hold.

Figure 4.5: Marginal bias of β̂x decay as the range parameter of the cross-covariance matrix rzx increases
respect to rx (left) and rz (right) (geostatistical data, case A).

Figure 4.5 (left) shows that increasing the range parameter of the cross-covariance

matrix while holding the one of X constant produces a reduction in the bias.

In particular, the decrease becomes steeper for higher rx values. It seems to

be the consequence of the product matrix characterizing the quadratic form

of conditional bias in Theorem 3.0.1, ΣzxΣ
−1
x . According to the theory, the

bias increases when the expected sampling covariance of X and Z raises or the

variability (smoothness) of the covariate decreases (increases). Indeed, consid-

ering the �rst order of Laplace approximation of the estimator bias EL de�ned
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Figure 4.6: Linear relationship between the Laplace approximation of the estimator bias EL and its
exact value respect to rx ∈ (0, 1) and rzx ∈ {0, 0.5, 1}. The green line is the intercept used to underline
the strong relation between quantities.

Figure 4.7: Marginal variance trends of β̂x under positive de�nite conditions for Σx,z and for ρxz ∈
{0.1, 0.5}.
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in (3.42) a meaningful proxy of the bias, Figure 4.6 illustrates the linear rela-

tionship between it and the exact bias as rzx and rx vary. In addition, it is

interesting to underline that the confounding appears to depend upon the co-

variate smoothness and not that of confounder. Indeed, as it is evident from

Figure 4.5 (right), it is crucial to highlight that the structure of confounder does

not a�ect the bias. To our knowledge, it is a result that is in contrast with what

has been claimed in the literature. These misguided conclusions are caused by

the fact that to date the cross-covariance function usually has been assumed

in dependence of the structure parameters de�ning the main processes in the

DGP.

Figure 4.8: Marginal mean square error of β̂x under positive de�nite conditions for Σx,z and ρxz ∈
{0.1, 0.5}.

On the other hand, as expected from Formula (3.24), the estimator variance

and mean square error are also in�uenced by the confounder structure. Figures

4.7 and 4.8 show the estimator variance and MSE considering only the range

parameter values that lead to positive de�nite joint covariance of the covariate
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and confounder when ρxz ∈ {0.1, 0.5}. It is no surprising that as the correla-

tion parameter increases there are less combinations of range parameters that

produce valid Σx,z. The red curve in Figure 4.7 (4.8) represents the trend of

EX
[
VY

[
β̂x|X,By·z(x) = 0,Az·x = 0

]]
, i.e. the estimator variance (MSE) when

there is no omitted variable Z in the model, denoted in (3.24) and exclusively

dependent on the covariate process. Additionally, as axpected from (3.24), Fig-

ure 4.7 highlights that the variance is always in�ated when there is an omitted

variable correlated with the observed one. How it rises is mainly related to the

type and strength of correlation (rzx and ρxz) that links the main processes.

Furthermore, it might seems that the magnitude of the variance and the MSE

increases as ρxz decreases but in a di�erent way to the variation of rzx. About

the variance in Figure 4.7, we note that as ρxz decreases rzx loses its relevance.

Instead, the bias is proportional to the correlation parameter, thus it increases

as ρxz increases regardless of other parameters (not shown because it follows

by Formula (3.1)). Moreover, �xing rz whose changing seems minor matter,

Figure 4.9 compares the part of the estimator sampling properties that are

confounding-dependent (see Equations (3.27) and (3.28)) showing their trend

as the other range parameters increase. It comes into view that for all quanti-

ties the values rise considerably faster when the main processes' co-variability

is higher.

Figure 4.9: Comparison of the part of marginal bias, mean square error and variance varying when
confounding occurs in geostatistical setting, case A. Note that the whole bias is confounding-dependent.

Finally, Table 4.1 emphasizes that the estimator sampling properties change

also in dependence of the expected variability of all processes, Y ,X and Z (see

Section 3.5). In particular, since the process variability is inversely proportional

to the level of smoothness in the MF case, such investigated quantities depend

also on the processes smoothness. To date this fact has not been taken into
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account, but we would like to study the behavior of the target quantities, for

example, �xing the sampling variance of the response process.

rx rz rzx BiasY,X

[
β̂x

]
VY,X

[
β̂x

]
MSEY,X

[
β̂x

]
EVx EVz EVy

0 0 0 0.10 0.03 0.04 1.00 1.00 5.00
0.5 0 0 0.18 0.06 0.10 0.61 1.00 4.61
1 0 0 0.30 0.11 0.20 0.39 1.00 4.39
0 0.5 0 0.10 0.03 0.04 1.00 0.61 4.61
0.5 0.5 0 0.18 0.12 0.15 0.61 0.61 4.22
1 0.5 0 0.30 0.21 0.31 0.39 0.61 4.00
0 1 0 0.10 0.02 0.03 1.00 0.39 4.39
0.5 1 0 0.18 0.09 0.13 0.61 0.39 4.00
1 1 0 0.30 0.18 0.27 0.39 0.39 3.78
0 0 0.5 0.06 0.03 0.04 1.00 1.00 4.22
0.5 0 0.5 0.10 0.06 0.07 0.61 1.00 3.83
1 0 0.5 0.16 0.10 0.12 0.39 1.00 3.61
0 0.5 0.5 0.06 0.03 0.03 1.00 0.61 3.83
0.5 0.5 0.5 0.10 0.11 0.12 0.61 0.61 3.44
1 0.5 0.5 0.16 0.20 0.23 0.39 0.61 3.22
0 1 0.5 0.06 0.02 0.03 1.00 0.39 3.61
0.5 1 0.5 0.10 0.09 0.10 0.61 0.39 3.22
1 1 0.5 0.16 0.16 0.19 0.39 0.39 3.00
0 0 1 0.04 0.03 0.03 1.00 1.00 3.78
0.5 0 1 0.06 0.06 0.06 0.61 1.00 3.39
1 0 1 0.10 0.10 0.11 0.39 1.00 3.18
0 0.5 1 0.04 0.03 0.03 1.00 0.61 3.39
0.5 0.5 1 0.06 0.11 0.12 0.61 0.61 3.00
1 0.5 1 0.10 0.20 0.21 0.39 0.61 2.78
0 1 1 0.04 0.02 0.02 1.00 0.39 3.18
0.5 1 1 0.06 0.09 0.09 0.61 0.39 2.78
1 1 1 0.10 0.16 0.17 0.39 0.39 2.57

Table 4.1: Marginal sampling properties of β̂x and variability of processes Y , X and Z for a subset of
scenarios in which rx, rz, rzx ∈ {0, 0.5, 1} and ρxz = 0.1 (geostatistical data, case A).

Case B: Since in this case the covariate process is the sum of two underlying processes,

ξ and ψ, it is interesting to note how the expected sampling variance of X,

EVx, varies with respect to the range parameters rξ and rψ. In this regard,

Figure 4.10 (left panel) displays how the covariate variability depends on both

structure parameters of the underlying processes: it decreases as both increase.

In this case, the expected sampling covariance, EVzx, is equivalent to the

confounder variability that is function of the sole rψ whose distinctive trend is

shown in Figure 3.2. Since we are using an OLS estimator, these two quanti-

ties identify the Laplace approximation of the bias EL presented in Figure 4.10
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Figure 4.10: On the left it is shown the decay of the covariate variability, EVx, as a function of the range
parameter rξ and rψ and, on the right, the relationship between the �rst order Laplace approximation of
the estimator bias and its exact value with respect to confounder range parameter (geostatistical data,
case B).

Figure 4.11: Estimator bias from two di�erent perspectives as the range parameter rξ and rψ vary.

which con�rms to be a good proxy. Furthermore, Figures 4.11 and 4.12 show

the pattern of the estimator bias and variance, respectively, from two di�erent

perspectives. In particular, from both plots in Figure 4.11 it is evident that the

bias increases as rξ increases and rψ decreases. According to Paciorek (2010),
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Figure 4.12: Estimator variance from two di�erent perspectives as the range parameter rξ and rψ vary.

Figure 4.13: Comparison of the part of mean square error and variance varying when confounding
occurs in geostatistical setting, case B.

when rψ << rξ do we see more bias than in the case in which rψ = rξ (deter-

ministic bias (3.31)). In this case of MF covariance function it is equivalent

to request EVξ << EVψ as seen in (4.6). In turn, it means EVx << EVzx.
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Additionally, Figure 4.12 allows to notice that the estimator variance increases

when both range parameters increase. Then, concerning the part of sampling

properties that depends on confounding, Figure 4.13 shows how the variance is

negligible but still has its decreasing pattern as both range parameters increase

and the MSE, increases as ρxz increases regardless of other parameters values.

Case C: In line with Page et al. (2017), plots in Figure 4.14 show from two di�erent

point of view that the bias increases as the covariate range parameter increases

and the confounder range parameter decreases.

Figure 4.14: Estimator bias from two di�erent perspectives as the range parameter rx and rz vary .

As above, an explanation for this might be related the regression matrix Az·x
employed in DGP featured the case (4.14). Indeed, it supports our idea about

the fact that the estimator bias is very closely related to the eigenvalues of Σzx

and Σx. Hence, it is linked to the spectrum of triangle matrices obtained

by Cholesky decomposition used to achieve matrix de�ned in (4.14). In Figure

4.15 it is shown the relation between the approximated bias EL and its exact

value that takes into account the eigenvalues of the matrices in Az·x. This

time, the match is less noticeable, especially for smaller value of confounder

parameter. Lastly, Figure 4.16 displays how the MSE and variance depending

on confounding change over ρxz ∈ {0.1, 0.5, 0.9}.
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Figure 4.15: The relationship between the Laplace approximation and the exact estimator bias respect
to rz.

Figure 4.16: Comparison of the part of mean square error and variance varying when confounding takes
place in geostatistical setting, case C.

4.2.2 Conditional Autoregressive process

In an areal spatial framework, to see how di�erent neighborhood structures might in�u-

ence the estimator sampling properties, we examine also the areal data modeling setup

introduced in Section 3.5.3 and used by Page et al. (2017) and Nobre et al. (2021). We
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assume that the underlying processes ξ and ψ follow a conditional autoregressive model.

Our geographical region contains the boundaries of Missouri's 115 counties. To ensure

that the covariance matrices are positive de�nite we restrict the structure parameter

κ ∈ [−0.34, 0.16] where W is the neighbouring matrix of Missouri. Also this time, the

results are presented divided for cases listed at the beginning of the current section.

Case A: Figure 4.17 presents the trend of the estimator bias of β̂x as the correlation

parameter of the cross-covariance matrix κzx increases respect to the range of

κx from two perspectives. The 3D version, on the right side, clarify the bias

pattern on the left. Here the curves are justi�ed by the variability trend that

characterizes the CAR process (see Figure 3.4) used to build the main processes.

Figure 4.17: Marginal bias of β̂x as the range parameter of the cross-covariance matrix κzx increases
respect to κx from two perspectives in areal setting, case A.

Figure 4.18: Laplace approximation of the estimator bias vs its exact value respect to κx and κzx ∈
{−0.34, 0, 0.16}.
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Figure 4.19: Marginal estimator variance under positive de�nite conditions forΣx,z and ρxz ∈ {0.1, 0.5}.
The red curve indicates the variance when there is no omitted variable Z in the model.

By looking at Figure 4.18, it emerges the accuracy of �rst order Laplace ap-

proximation to the bias. It con�rms what ensured above, the trend that can be

seen in Figure 4.17 relies on the expected sampling covariance of the covariate

and confounder modi�ed for the e�ect of covariate variability. With respect to

the estimator variance, it seems that κx and κz produce large changes. As ρxz
decreases the impact of κzx on the variance decreases, instead for higher ρxz the

variance seems to reduce drastically (Figure 4.19). Regarding the mean square

error (not shown), it is dominated by the bias, especially for high values of the

correlation parameter.

Case B: From Figure 4.20 we can see how the estimator bias depends on both structure

parameters of the underlying processes however it is not so clear how the be-

haviour of X and Z in�uences the confounding if we focus on such structure

parameters. For this reason, we display Figure 4.21. Through the bias approx-

imation EL it illustrates that the co-variability of the main processes and the

variability of the covariate are the most relevant quantities that allow to explain

confounding.
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Figure 4.20: Estimator bias from two di�erent perspectives as the range parameter κξ and κψ vary.

Figure 4.21: The accuracy of �rst order Laplace approximation to the bias respect to confounder range
parameter.

Case C: Plots in Figure 4.22 illustrate the bias trend as the range parameters κx and

κz vary. It appears to be smaller when the variability of X is higher (namely

to the extremes of the κx range) and the one of Z is lower. This is a�ne with

what it is shown in Figure 4.23 via bias approximation EL. In the regard of

a generic case C independently from the kind of covariance function used, it is

important to emphasize that the confounder structure parameter in�uences the
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Figure 4.22: Estimator bias from two di�erent angles as the range parameter κx and κz vary.

Figure 4.23: The accuracy of �rst order Laplace approximation to the bias respect to κz.

bias just because, in this speci�c case, it contributes to the construction of the

cross-covariance matrix of X and Z. In addition, Figure 4.24 displays how the

MSE and variance depending on confounding changes over ρxz ∈ {0.1, 0.5, 0.9}.
Regarding the mean square error, it increases with the correlation parameter,

instead the variance decreases. In particular, as ρxz increases both quantities

are more a�ected by the variation of κz.
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Figure 4.24: Comparison of the part of mean square error and variance varying when confounding
occurs assuming case C for areal data as the correlation parameter ρxz ∈ {0.1, 0.5, 0.9} changes.

4.2.3 Autoregressive process of order 1

The previous two sections have revealed that it is possible to get an overall insight about

confounding focusing on the variability and co-variability characterizing the main pro-

cesses even facing with di�erent kind of data in the spatial �eld. Now, having in mind the

idea that the confounding issue it is not related just to the spatial setting but it can be gen-

eralized to every �eld, we discuss a case relevant to temporal data. Hence, we consider the

case where the processes building up the DGP are temporally auto-correlated (see Section

3.5.2) assuming that the underlying random vectors ξ and ψ are autoregressive processes

of order one. Fixing n = 50, we consider the structure parameter ϕ ∈ [−0.98, 0.98] for all

processes.

Case A: Figure 4.25 presents the trend of the estimator bias of β̂x as the autocorrelation

parameter of the cross-covariance matrix ϕzx increases with respect to ϕx. As

for the previous application, it appears to follow the co-variability of X and Z

amended for the e�ect of the covariate variability (see Figure 3.3).

In this regard, Figure 4.26 shows the relation between the exact estimator bias

and its Laplace approximation up to the �rst order. It is not a linear association,

however it is impressive how the values are close to the bisector (green line).

Additionally, the division into the di�erent values of ϕzx highlights that the bias
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Figure 4.25: Marginal bias of β̂x as the autocorrelation parameter of the cross-covariance matrix ϕzx
increases respect to ϕx from two perspectives under temporal framework (case A).

Figure 4.26: The accuracy of �rst order Laplace approximation to the bias respect to ϕx and ϕzx ∈
{−0.99, 0, 0.99}.

takes the minimum values when the cross-correlation structure is simpli�ed to

be the identity matrix and it con�rms that as the cross-covariance structure

gets more complex (or stronger) the bias increases. Concerning the estimator

variance and mean square error (see Figure 4.27,), it seems that ϕx and ϕz
produce notable changes. While ρxz and ϕzx have little signi�cant in�uence on

the variance (except for the positive de�niteness condition), as opposed to what
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happens for MSE in Figure 4.28. In addition, the values of ϕz change drastically

their pattern, in particular for ϕz ≈ 0 the variance is quite stable.

Figure 4.27: Marginal variance trends of β̂x when Σx,z ≻ 0 and ρxz ∈ {0.1, 0.5}. The red curve stands
for the estimator variance when there is no omitted variable Z in the model.

Case B: From Figure 4.29 (left) it is evident how EVx is the sum of the underlying

processes variability. The plot on the right shows also in this case that EL is an

accurate approximation of the bias. In order to see the variation bias in function

of the structure parameters we present Figure 4.29. It reveals higher bias

when EVξ << EVψ, namely |ϕξ| << |ϕψ|, con�rming the strong relationship that

the estimator bias has with the variability quantities. Eventually, Figure 4.31

shows how the confounding-dependent part of MSE and variance changes over

ρxz ∈ {0.1, 0.5, 0.9}. Regarding the mean square error, its magnitude increases

with the correlation parameter, instead the variance decreases. In particular,

as ρxz increases both quantities are more a�ected by the variation of ϕψ.

Case C: Panels in Figure 4.32 present the bias trend as the range parameters ϕx and

ϕz vary. As for the areal data case, the bias appears to be smaller when the
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Figure 4.28: Marginal mean square error trends of β̂x when Σx,z ≻ 0 and ρxz ∈ {0.1, 0.5}. The red
curve stands for the estimator MSE when there is no omitted variable Z in the model (case A).

Figure 4.29: The accuracy of �rst order Laplace approximation to the bias respect to the confounder
parameter (case B).
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Figure 4.30: Estimator bias from two di�erent perspectives as the range parameter ϕξ and ϕψ vary
(case B).

Figure 4.31: Comparison of the part of mean square error and variance varying when confounding
occurs as the correlation parameter ρxz ∈ {0.1, 0.5, 0.9} changes (case B).

covariate variability is higher (on the edge of the ϕx range) and the one of con-

founder is lower. This is in line with what it is shown in Figure 4.33 exhibiting
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Figure 4.32: Estimator bias from two di�erent perspectives as the range parameter ϕx and ϕz vary
(case C).

Figure 4.33: The accuracy of �rst order Laplace approximation to the bias respect to confounder
parameter (case C).

an association between EL and estimator bias next to the linearity. Further-

more, Figure 4.34 displays how the MSE and variance depend on confounding.

With respect to the mean square error, its scale increases with the correlation

parameter. In particular, as ρxz increases, the variation of ϕz has more impact

on the confounding-dependent part of the estimator sampling properties.
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Figure 4.34: Comparison of the part of mean square error and variance varying when confounding
occurs as the correlation parameter ρxz ∈ {0.1, 0.5, 0.9} changes.

Finally, extending the spatial confounding framework to general structured setting char-

acterized by speci�c auto-correlation structures allow us to reach interesting conclusions.

Indeed, through the results achieved in this section we have shown how the issue of con-

founding does not depend upon the application �eld of the linear regression model in which

it occurs and not even by the structural parameters that characterize the data generating

process, at least not directly. Focusing on the estimator bias as the principal marker of

confounding, it is evident how the relationship between the structure parameters of the

DGP and the bias changes upon the kind of covariance and cross-covariance function used

to build up the generative mechanism. This makes it di�cult to outline a global picture

that correctly understands and explains the relationships in�uencing the confounding.

What remains unchanged is the connection that the ratio of the confounder-covariate

co-variability and the covariate variability, i.e. λ̄MΣxz/λ̄MΣx , has with the estimator bias.

It has been suggested by the �rst order Laplace approximation of such estimator sam-

pling property. Despite the literature asserts that the level of covariate and confounder

processes' smoothness is strictly linked to the estimator bias, in our opinion such sam-

pling property is directly connected with the variability of the covariate process and the

expected sampling covariance of the covariate and confounder processes. The link with

the smoothness arise only when the cross-correlation function depends on the parameter

of the marginal distribution of Z.
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In particular, the results show that the Laplace approximation of the estimator bias up

to the �rst order EL is accurate under the di�erent scenarios. When an OLS estimator

is posited, this approximation matches with the ratio λ̄MΣxz/λ̄MΣx . Moreover, with the

objective to understand confounding, another relevant insight concerns the fact that, as

expected from theory developed in Chapter 3, the confounder structure does not a�ect

the distortion of the estimator β̂x, rather it in�uences its further sampling properties, the

variance and mean square error, that depends on it because the confounder is an omitted

variable by de�nition. Of course, if one assumes a data generative mechanism in which

the cross-covariance of confounder and covariate is function of the confounder structure

(e.g. cases B and C), unavoidably all sampling properties are depending on it.



Conclusions

Summary and conclusion

In this thesis, the problem of confounding in linear regression models is addressed. In

particular, we study, through the evaluation of estimator sampling properties, how con-

founding a�ects the estimate of the inferential target, i.e. the regression parameter of the

covariate on the outcome.

The spatial literature has extensively dealt with this issue. To assess the impact of con-

founding on the sampling properties of the regression coe�cient estimators, the research

focused on the strength of the auto-correlation characterizing covariate and confounder,

both spatially varying. To date, what is clear from the previous studies is that the param-

eters in�uencing the spatial auto-correlation of the covariate and confounder processes are

undoubtedly of great importance. This consideration remains true also for a wide range

of applications. Since extending the spatial confounding framework to general structured

settings is one of the objectives of the thesis, we consider what has been asserted by the

spatial literature as our starting point in order to move towards broader settings.

We provide more awareness regarding the e�ect of confounding on coe�cient estimates

by generalizing the theory initialized by Paciorek (2010). According to him and Page et al.

(2017), our main references along the dissertation, the increasingly accepted idea is that

the smoothness of covariate and confounder processes is an important factor that produces

relevant changes in estimator sampling properties. In particular, Paciorek (2010) a�rms

that a confounder smoother than the covariate leads to a lower bias, and subsequently to

less confounding. Actually, one may agree only in speci�c situations, when the parameters

governing the confounder covariance matrix contribute to the cross-covariance matrix,

e.g. assuming a Matérn correlation function and an LMC or rLMC model for the cross-

covariance structure. Besides, moving away from particular cases, the connection to

smoothness would not hold. In this regard, we introduce the expected sampling variance

and covariance, expressing the variability of a process and the variability of the interaction

between two processes. In situations other than those just described, the smoothness and

the variability of a random vector do not match. For example, when an autoregressive
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of order one or a conditional autoregressive process is posited for the data generating

process.

Being in the one-covariate setting allows us to compute the marginal sampling properties

of the estimator without carrying out any simulation study. This is possible because bias,

variance and mean square error conditionally on the covariate process are derived as

ratios of dependent quadratic forms in Gaussian random variables. It is then achievable

to provide marginal analytic results by means of Carlson's R function. This development

enables us to work nimbly under several work�ows that consider spatial and temporal

data with speci�c assumptions regarding the covariance and cross-covariance functions

used in the generative mechanism.

To conclude, in our opinion and in light of the evidence coming from the application

study, the estimator sampling properties depend upon the aforementioned variability

quantities and on the portion of the response and covariate variability expressed by the

confounder. Considering the estimator bias as the principal marker of confounding, we

point out that the confounder smoothness is not the most relevant measure determining

bias. Indeed, the cross-covariance matrix characterizing the covariate-confounder inter-

action plays the most prominent role in detecting it. Speci�cally, the bias mainly hinges

on the covariate variability and on the expected sampling covariance of covariate and

confounder. Based on this fact, we propose a representative quantity for the extent

of confounding as a proxy of the estimator bias, its �rst order Laplace approximation

EL, de�ned as the ratio of the expected sampling covariance and the expected sampling

variance of the covariate. Moreover, we show theoretically and empirically that the con-

founder structure does not a�ect the estimator bias, rather it in�uences the variance of

the estimator.

Future developments

The research reported in this thesis contributes to the literature with a wider under-

standing of confounding in linear regression models. In particular, it allows to manage

several framework featured by di�erent �elds of application and all kinds of data generat-

ing mechanisms based on the stochastic relation between the response, the covariate and

the confounder. Future studies may consider other work�ows to examine the sources and

consequences of confounding in more depth.

Regarding our application study in Chapter 4, it has been developed under the model

assumption S = In, namely by considering β̂x to be the OLS estimator. Nonetheless, such

analysis has been reproduced also positing S = Σy|x. That choice corresponds to the best

option concerning the error covariance matrix, because in this way we suppose to know
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the variance structure that characterizes the latent part of the phenomenon. However, as

remarked along the dissertation, this assumption yields the minimum variance estimator,

but does not remove the bias. In fact, the results are not included since they were not so

di�erent from the ones gathered under the OLS assumption.

Additionally, it is recommended to put the attention also to the response variability. We

could go back over our analysis, �x the response variability in each scenario and look into

the relationship between the estimator sampling properties and the portion of response

and covariate variability explained by the confounder processes.

In our work, we present the �rst order Laplace approximation EL as a signi�cant proxy

for the bias of β̂x. Besides, one of the future goals of the research is to investigate more

deeply the key aspects of all estimator sampling properties. Starting with the estimator

bias and aware about the important role of the eigenvalues of the matrices appearing in

the ratio of quadratic forms that de�nes it, we supply boundaries for the bias.

It is possible to revise the estimator bias conditionally on X as follows

Bias
[
β̂x|X

]
= By·z(x)λ̃u

X⊤λ̃−1
u ∆Az·xX

X⊤∆X
,

namely in dependence of an upper bound λ̃u such that

X⊤λ̃−1
u ∆Az·xX

X⊤∆X
< 1.

To �nd out such bound, we observe that

Pr

(
X⊤∆Az·xX

X⊤∆X
< t

)
= Pr

(
X⊤∆ (Az·x − tIn)X < 0

)
(4.15)

implies that t = t∗ is an upper bound if (4.15) is equal to 1. Letting Formula (4.15)

take the value 1 means that the QF X⊤∆ (Az·x − tIn)X ≤ 0 for all X ̸= 0, i.e. that is

negative de�nite. Then,

λ [∆ (Az·x − tIn)]max ≤ λ(∆)maxλ (Az·x − tIn)max .

Since it is guaranteed that λ(∆)max > 0 and that

λ (Az·x − tI) = λ (Az·x)− t1,

we get

λ [∆ (Az·x − tIn)]i < 0 ∀i = 1, . . . , n,
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if an only if t > λ(Az·x)max. Consequently, t∗ = λ(Az·x)max is an upper bound of

Bias
[
β̂x|X

]
that enables us to denote By·z(x)λ(Az.x)max as an upper bound for the bias.

A similar direction could also be pursued for the estimator variance and mean square error.

Moreover, when the �nal objective is to obtain a point prediction for the response, it

may be su�cient to just estimate the model, since the potential bias in estimating the

target parameter will be compensated by estimating random e�ects (Page et al., 2017).

This does not hold for the quanti�cation of prediction uncertainty. It could be interesting

to focus our study on predictions, although it could be considered a second order problem.

In this dissertation, the assessment of the impact that confounding has on regression

coe�cients is faced but, regarding spatial framework, the statistics literature dealt also

with the development of methods to account for spatial confounding. As possible future

outgrowth, it would be desirable �nding a way to adjust for confounding in a Bayesian

framework. A brief review of this topic follows.

First of all, Reich et al. (2006) and Hodges and Reich (2010) propose a method called

restricted spatial regression (RSR). It provides �tting a model in which the random e�ects

are constrained to a subspace orthogonal to the column space of the �xed e�ects design

matrix heeding the spatial correlation without changing the estimates of the �xed e�ects.

Its target is deconfounding the two types of e�ects reducing the variance rise and improv-

ing the inference of the �xed e�ect. One of the weakness is that this solution assigns all

the variability explained by measured and unmeasured covariates to the observed ones.

Hefty discussion about the worthiness of restricted spatial regression has been produced

since it was �rst proposed, and several alternatives to the original idea have been reported

(Hughes and Haran, 2013; Hanks et al., 2015; Hughes, 2017; Guan and Haran, 2018; Prates

et al., 2019; Dupont et al., 2021; Adin et al., 2021). In this regard, Khan and Calder (2022)

and Zimmerman and Hoef (2021) debunk the RSR approach in the two statistical con-

text, Bayesian and frequentist, respectively. Then, several alternatives to it have been

brought forward but other methods for avoiding the problem in object are limited, and

with theoretical bases often intractable since methodology tends to rely on simulations

alone. In the causal inference font there are some interesting results (Osama et al., 2019;

Davis et al., 2019, 2021). Papadogeorgou et al. (2018) and Schnell and Papadogeorgou

(2020) consider a joint model for response and covariate based on Gaussian Markov ran-

dom �eld developing a new method, termed distance adjusted propensity score matching
(DAPSm) that incorporates informations on proximity of spatial units into a propensity

score matching procedure (Rosenbaum and Rubin, 1983). In addition, Thaden and Kneib

(2018) propose a geoadditive structural equation model (gSEM) consists of three stages

to regress away the spatial structure from both the response and the covariate leading to
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unbiased estimates provided by simulation study. It not so clear how this method work

and it seems unpreferable to eliminate all spatial information from the model. Aware of

this limit, Dupont et al. (2021) suggest a novel approach, the Spatial+ model, that is a

simple modi�cation of the spatial model where the covariates are replaced by their resid-

uals after spatial dependence has been regressed away using a thin spline formulation. A

practical advantage over gSEM is that, as the response variable is unchanged from the

spatial model, standard model selection criteria can be used for comparisons with the

spatial and no spatial models.

Therefore, proper adjustment for spatial confounding is a important and open issue as

evidenced by many context in which it is being tackled (Lee and Sarran, 2015; Bradley

et al., 2015; Murakami and Gri�th, 2015; He�ey et al., 2017; Pereira et al., 2020; Azevedo

et al., 2020; Reich et al., 2021; Azevedo et al., 2022; Hui and Bondell, 2022). Donegan

et al. (2020) propose a Bayesian method for spatial regression using eigenvector spatial

�ltering and regularized horseshoe prior. Likewise Paciorek (2010), Page et al. (2017) and

Keller and Szpiro (2020), Guan et al. (2022) address the importance of spatial scale of the

treatments and missing confounder variable developing a model in the spectral domain

and studying their correlations at di�erent scales. They show that the optimal adjust-

ment for confounding is not possible without further assumption, and so they assume

that the correlation at di�erent spatial scales dissipates at high frequencies of spectral

domain. Recently, Marques et al. (2022) develop a new prior structure able to deal with

spatial confounding managing to increase computational e�ciency of it by exploring the

sparsity of GMRF's in SPDE approach (Lindgren et al., 2011). They also extend the

prior structure to the case of multiple covariates being correlated with the spatial random

e�ect.

In conclusion, facing the issue of confounding from a Bayesian point of view means won-

dering what conjectures about the confounder (latent) variable must be done in order

to learn about the target parameter By·x(z) and, in turn, also about bias, starting from

the knowledge of Y and X (Eberly and Carlin, 2000). That means �nding out a reli-

able posterior distribution of the parameter. The shortcoming lies in the fact that one

cannot learn about the bias without observing Z. Nonetheless, it would be desirable to

develop a Bayesian framework capable to adjust the biased estimates due to confounding

in Gaussian models and to elaborate a novel prior structure to deal with such problem.

Allocating informative priors to the observed confounder-response association may reduce

the bias in that parameter.
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Linear algebra tools

In this appendix we include a few algebra tools that are used to provide some results of

the thesis. Most of them can be read in Gentle (2007), Banerjee and Roy (2014) and Horn

and Johnson (2013).

The trace of square matrix A ∈ Rn×n of dimension n is de�ned as tr(A) =
∑n

i=1Aii. In

the ensuing theorem we report its main properties (Searle and Khuri, 2017)[Chapter 12].

Theorem A.0.1. Let A,B ∈ Rn×n. Then, the following holds:

(i) tr(A) =
∑n

i=1 λi(A);

(ii) tr(A) = tr(A⊤);

(iii) tr(AB) = tr(BA);

(iv) If A is a square matrix whose diagonal elements are di�erentiable functions of x,
then

∂tr(A)

∂x
= tr

(
∂A

∂x

)
;

(v) If A and B are matrices whose elements are di�erentiable functions of x and such
that the product AB is de�ned, then

∂AB

∂x
=

∂A

∂x
B+A

∂B

∂x
;

(vi) If A is a symmetric matrix whose elements are di�erentiable functions of x, then

∂|A(x)|
∂x

= |A| tr
(
A

−1∂A

∂x

)
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and
∂A−1(x)

∂x
= −A−1

(
∂A

∂x

)
A

−1.

Given that a covariance matrix to be valid needs to be symmetric and positive de�nite,

we discuss the de�niteness of a matrix and some of its properties.

De�nition A.0.1. Let A ∈ Rn×n. Then A is positive de�nite i.e. xTAx > 0 (positive

semide�nite i.e xTAx ≥ 0) for all non-zero x ∈ Rn if and only if every eigenvalue of A is

positive (non-negative).

Regarding the inverse of the sum of two matrices, Henderson and Searle (1981) report

an interesting result. Considering a non-singular matrix A and U, B and V that may be

rectangular. It is known that

(A+UBV)−1 = A−1 −A−1U(B−1 +VA−1U)−1VA−1, (A.1)

= A−1 −A−1U(I+BVA−1U)−1BVA−1. (A.2)

The identity (A.1) is called Woodbury matrix identity and the (A.2) is its simple form.

The authors also discuss about the inverse of a generic block matrix ensuring further

versions. A square matrix A that can be partitioned as

A =

[
A11 A12

A21 A22

]
(A.3)

where A11 is non-singular, has interesting properties that depend on the matrix

A/A11 = A22 −A21A
−1
11A12

which is called the Schur complement of A11 in A.

Proposition A.0.2 (Schur-Barachiewicz inverse formula). Suppose A is non-singular
and can be partitioned as above with A11 non-singular. The inverse of A is given by

A
−1 =

A−1
11 +A

−1
11A12(A/A11)

−1
A21A

−1
11 −A−1

11A12(A/A11)
−1

−(A/A11)
−1
A21 A

−1
11 (A/A11)

−1

 (A.4)

and if A11 is also square, the determinant of A is the product of the determinant of the
principal submatrix and the determinant of its Schur complement:

|A| = |A11| · |A22 −A21A
−1
11A12|
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and for the properties of the determinant we have that:

|A| = |A22| · |A11 −A12A
−1
22A21|. (A.5)

Moreover, if A22 is non-singular the Schur complement of A22 in A is

A/A22 = A11 −A12A
−1
22A21 (A.6)

the inverse is given by

A
−1 =

 (A/A22)
−1 −(A/A22)

−1
A12A

−1
22

−A−1
22A21(A/A22)

−1
A

−1
22 +A

−1
22A21(A/A22)

−1
A12A

−1
22

 . (A.7)

The Schur complement arises when performing a block Gaussian elimination on matrix

A that leads to lower-upper decomposition. If A11 is invertible, then it is possible to use

the Schur complement A/A11 to obtain the following factorization of A:[
A11 A12

A21 A22

]
=

[
I 0

A21A
−1
11 I

] [
A11 0

0 A/A11

] [
I A−1

11A12

0 I

]
.

This factorization gives us useful ways to express positive semide�niteness of matrices

with a block structure (Horn and Johnson, 2013). Moreover, if we assume that A is

symmetric, so that A11, A22 are symmetric and A21 = A⊤
12, then we can express A as[

A11 A12

A⊤
12 A22

]
=

[
I 0

A21A
−1
11 I

] [
A11 0

0 A/A11

] [
I A−1

11A12

0 I

]

=

[
I 0

A21A
−1
11 I

] [
A11 0

0 A/A11

] [
I 0

A21A
−1
11 I

]⊤
and also, [

A11 A12

A⊤
12 A22

]
=

[
I A12A

−1
22

0 I

] [
A/A22 0

0 A22

] [
I A12A

−1
22

0 I

]⊤
(A.8)

which shows that A is similar to a block-diagonal matrix, and so, they have the same

spectrum, i.e. the same eigenvalues. As a consequence, we have the following version of

"Schur's trick" to check if a symmetric matrix A is positive de�nite (Zhang, 2005):

Theorem A.0.3. For any symmetric matrix A ∈ Sn that has the form as in (A.3), if
A22 is invertible then the coming properties hold:

(i) A ≻ 0 ⇐⇒ A22 ≻ 0 and A/A22 ≻ 0.
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(ii) If A22 ≻ 0, then A ⪰ 0 ⇐⇒ A/A22 ⪰ 0.

Instead, if A22 is invertible then the following properties hold:

(i) A ≻ 0 ⇐⇒ A11 ≻ 0 and A/A11 ≻ 0.

(ii) If A11 ≻ 0, then A ⪰ 0 ⇐⇒ A/A11 ⪰ 0.

As intermediate consequence of De�nition A.0.1 we have that

A ⪰ 0 ⇐⇒ BAB⊤ ⪰ 0, (A.9)

for any given non-singular B ∈ Rn×n. Another implication is that a block diagonal matrix

is positive (semi)de�nite if and only if each of its diagonal blocks is positive (semi)de�nite.

From Theorem A.0.3 and its consequence (A.9), it is possible to state that every positive

(semi)de�nite symmetric matrix A ∈ Sn can be represented as

A =

(
A11 A12

A⊤
12 A22

)
(A.10)

=

(
A/A22 +A12A

−1
22A21 A12

A⊤
12 A22

)

=

(
A/A22 +A12A

−1
22A22A

−1
22A22A

−1
22A21 A12A

−1
22A22

(A12A
−1
22A22)

⊤ A22

)
. (A.11)

De�ning A1·2 = A12A
−1
22 , the matrix can be expressed as

A =

(
A/A22 +A1·2A22A

⊤
1·2 A1·2A22

(A1·2A22)
⊤ A22

)
, (A.12)

where A22 ≻ 0 (A22 ⪰ 0) and A/A22 ≻ 0 (A/A22 ⪰ 0). Furthermore if A22 ≻ 0

(A22 ⪰ 0) and A/A22 ≻ 0 (A/A22 ⪰ 0), then A ≻ 0 (A ⪰ 0).

The positive de�niteness of the matrices on the principal diagonal is not a su�cient

condition for the positive de�niteness of the matrix. For this reason we are interested to

�nd some additional conditions to achieve it. For that purpose, �rst of all let us introduce

the Gershgorin's Theorem, useful to �gure out what range the eigenvalues of a certain

matrix would be in (Horn and Johnson, 2013):

Theorem A.0.4. Let A ∈ Cn×n and let di =
∑

i ̸=j |Aij|, i = 1, . . . , n. The set Di = {z ∈
C : |z − Aii| ≤ di} is called an Gershgorin disk of the matrix A and the union of disks
G(A) = ∪ni=1Di is called Gershgorin domain. Every eigenvalue λA of matrix A belongs
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to G(A) and satis�es:

|λA − Aii| ≤ di for i = 1, . . . , n. (A.13)

Furthermore the following properties hold:

(i) If A is strictly row diagonally dominant, that is

|Aii| >
n∑
j ̸=i

|Aij|, for i = 1, . . . , n,

then A is invertible.

(ii) If A is strictly row diagonally dominant and Aii > 0 for i = 1, . . . , n, then every
eigenvalue of A has a strictly positive real part.

In particular, Theorem A.0.4 implies the following statements:

Corollary A.0.5. A matrix A ∈ Sn is called (strictly) diagonally dominat if

|Aii| −
∑
i ̸=j

|Aij| ≥ 0 (> 0) for i or j ∈ {1, . . . , n}. (A.14)

If A is (strictly) diagonally dominant with all diagonal entries positive , then A ∈ Sn+
(A ∈ Sn++)

Being interested to the positive de�niteness of di�erence between two matrices we state

what follows

Theorem A.0.6. Given A,B ∈ Sn, a su�cient condition for the di�erence matrix B−A
to be positive (semi)de�nite is that

Bii > Aii +
n∑
i ̸=j

|Bij − Aij|

(
Bii ≥ Aii +

n∑
i ̸=j

|Bij − Aij|

)
, for i = 1, . . . , n.

Proof. In analyzing the theorem A.0.4 we see that every eigenvalues of a matrix lies

within one of its Gershgorin disk. Thus, if we consider the symmetric di�erence matrix

C = B−A, each disk is centered at Cii = Bii − Aii and the eigenvalues of C lies in the

disk (
Cii,

∑
i ̸=j

|Cij|

)
=

(
Bii − Aii,

∑
i ̸=j

|Bij − Aij|

)
for i = 1, . . . , n.
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From (A.13), we can say that each eigenvalue λC of the matrix C verify the following

inequality:

Cii −
∑
i ̸=j

|Cij| ≤ λC ≤ Cii +
∑
i ̸=j

|Cij| for i = 1, . . . , n

and, thus, if we want to request the matrix C to be positive (semi)de�nite it is su�cient

to require λC > 0 (≥ 0), i.e.:

Cii −
∑
i ̸=j

|Cij| > 0 (≥ 0), (A.15)

that is

Bii > Aii +
n∑
i ̸=j

|Bij − Aij|

(
Bii ≥ Aii +

n∑
i ̸=j

|Bij − Aij|

)
, for i = 1, . . . , n.

Equation (A.15) is the de�nition of diagonally dominant with positive diagonal entries for

matrix C ∈ Sn, and so, as a result of Corollary A.0.5, B−A ∈ Sn++ (B−A ∈ Sn+).
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Properties of multivariate normal

distribution

In the initial part of this appendix we report the main properties of the multivariate

normal distribution. For a review on the topic see Rencher (2002) and Rencher and

Schaalje (2007). Afterwards, we report some remarkable results that allow to specify

valid covariance matrices through the speci�cation of simpler conditional and marginal

forms.

B.1 Multivariate normal distributions

The density of a normal random vector X = (X1, . . . , Xn)
⊤ with mean µ ∈ Rn and

covariance matrix Σ ∈ Sn++, is

fX(x) = (2π)n/2|Σ|−1/2 exp

{
−1

2
(x− µ)⊤Σ−1(x− µ)

}
Here, µi = E[Xi], Σij = Cov(Xi, Xj), Σii = V ar(Xi) and Corr(Xi, Xj) = Σij/(ΣiiΣjj)

−1/2.

This is analogous to write X ∼ Nn(µ,Σ). We now divide the vector X into three parts,

X = (X⊤
A ,X

⊤
B ,X

⊤
C )

⊤, and split µ and Σ accordingly:

µ =

µAµB
µC

 and Σ =

 ΣA ΣAB ΣAC

ΣBA ΣB ΣBC

ΣCA ΣCB ΣC

 .

Then for one of the main property of the normal distribution we have:

XA ∼ NnA(µA,ΣA), XB ∼ NnB(µB,ΣB) and XC ∼ NnC (µC ,ΣC).
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We can consider three normal random vectors Y ∈ Rny ,X ∈ Rnx and Z ∈ Rnz such

that Y ∼ Nny(µy,Σy), X ∼ Nnx(µx,Σx), Z ∼ Nnz(µz,Σz) and, we assume that the

random vector (Y ⊤,X⊤,Z⊤)⊤ is normally distributed such that

(Y ⊤,X⊤,Z⊤)⊤ ∼ Nny+nx+nz (µy,x,z,Σy,x,z) ,

where

µy,x,z =

µyµx
µz

 and Σy,x,z =

Σy Σyx Σyz

Σxy Σx Σxz

Σzy Σzx Σz

 . (B.1)

Positing that also every couple of random vector is characterized by the Gaussian dis-

tributions

(Y ⊤,X⊤)⊤ ∼ Nny+nx (µy,x,Σy,x) ,

(X⊤,Z⊤)⊤ ∼ Nnx+nz (µx,z,Σx,z) ,

(Y ⊤,Z⊤)⊤ ∼ Nny+nz (µy,z,Σy,z) ,

we specify some vectors and matrices that are the moments of them:

µy,x =

(
µy
µx

)
, µx,z =

(
µx
µz

)
, µy,z =

(
µy
µz

)
,

Σy,x =

(
Σy Σyx

Σxy Σx

)
, Σx,z =

(
Σx Σxz

Σzx Σz

)
, Σy,z =

(
Σy Σyz

Σzy Σz

)
.

Furthermore, we de�ne the following matrices:

Σy·xz =
(
Σyx Σyz

)
, Σx·yz =

(
Σxy Σxz

)
, Σz·yx =

(
Σzy Σzx

)
(B.2)

and, in general, Σxz·y = Σ⊤
y·xz. According to this notation, we want to recall how to �nd

the conditional distributions of the di�erent combinations of the random vectors Y ,X

and Z.

Using some notion of normal distribution theory stated in Casella and Berger (2002) we

show the following known results using the notation adopted for the thesis.

Proposition B.1.1. Let (Y ⊤,X⊤)⊤ ∈ Rny×nx be a normally distributed random vec-
tor, (Y ⊤,X⊤)⊤ ∼ Nny+nx (µy,x,Σy,x), then the conditional random vector Y |X is also
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normal,
Y |X ∼ Nny

(
µy|x,Σy|x

)
(B.3)

where

µy|x = µy +ΣyxΣ
−1
x (x− µx)

Σy|x = Σy −ΣyxΣ
−1
x Σxy.

Proof.

fY |X(y|x) =
fY,X(x,y)

fX(x)

=

(
1√
2π

)ny+nx
1

|Σy,x|1/2
exp

{
−1

2

(
y − µy
x− µx

)⊤

Σ−1
y,x

(
y − µy
x− µx

)}
(

1√
2π

)nx
1

|Σx|1/2
exp

{
−1

2
(x− µx)⊤Σ−1

x (x− µx)
} .

Using the Schur's formula (A.5) for the determinant of Σy,x, the Schur-Barachiewicz

inverse formula (A.7) we get:

Σ−1
y,x =

[
(Σy,x/Σx)

−1 −(Σy,x/Σx)
−1ΣyxΣ

−1
x

−Σ−1
x Σxy(Σy,x/Σx)

−1 Σ−1
x +Σ−1

x Σxy(Σy,x/Σx)
−1ΣyxΣ

−1
x

]

where the Schur complement (A.6) is Σy,x/Σx = Σy −ΣyxΣ
−1
x Σxy, symmetric, then we

get:

fY |X(y|x) =
(

1√
2π

)ny 1

|Σy,x/Σx|
exp

{
− 1

2

[
(y − µy)⊤(Σy,x/Σx)

−1(y − µy)(x− µx)⊤·

·Σ−1
x Σxy(Σy,x/Σx)

−1ΣyxΣ
−1
x (x− µx)+

− 2(y − µy)⊤(Σy,x/Σx)
−1ΣyxΣ

−1
x (x− µx)

]}
∝ exp

{
− 1

2

[
(y − µy)⊤(Σy,x/Σx)

−1(y − µy)+

− 2(y − µy)⊤(Σy,x/Σx)
−1ΣyxΣ

−1
x (x− µx)

]}
∝ exp

{
− 1

2

[
(y − µy −ΣyxΣ

−1
x (x− µx))⊤(Σy,x/Σx)

−1(y − µy −ΣyxΣ
−1
x ·

· (x− µx))− (x− µx)⊤Σ−1
x Σxy(Σy,x/Σx)

−1ΣyxΣ
−1
x (x− µx)

]}
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∝ exp

{
− 1

2

[
(y − µy −ΣyxΣ

−1
x (x− µx))⊤(Σy,x/Σx)

−1·

· (y − µy −ΣyxΣ
−1
x (x− µx))

]}
.

This is the kernel of a multivariate Gaussian distribution of mean

µy|x = µy +ΣyxΣ
−1
x (x− µx)

and covariance matrix

Σy|x = Σy,x/Σx,

and so, the conditional distribution fY |X(y|x) is Nny(µy|x,Σy|x).

Consequently,

X|Y ∼ Nnx

(
µx +ΣxyΣ

−1
y (y − µy),Σy,x/Σx

)
with the covariance matrix Σx|y = Σy,x/Σy = Σx −ΣxyΣ

−1
y Σyx.

Proposition B.1.2. Let (Y ⊤,X⊤,Z⊤)⊤ ∈ Rny+nx+nz be a normally distributed random
vector, (Y ⊤,X⊤,Z⊤)⊤ ∼ Nny+nx+nz (µy,x,z,Σy,x,z), then the conditional random vectors
Y |(X⊤,Z⊤)⊤ and (X⊤,Z⊤)⊤|Y are also Gaussian:

(i) Y |(X⊤,Z⊤)⊤ ∼ Nny

(
µy|x,z,Σy|x,z

)
, where

µy|x,z = µy +Σy·xzΣ
−1
x,z

(
x− µx
z − µz

)
,

Σy|x,z = Σy −Σy·xzΣ
−1
x,zΣ

⊤
y·xz;

(ii) (X⊤,Z⊤)⊤|Y ∼ Nnx+nz

(
µx,z|y,Σx,z|y

)
, where

µx,z|y =

(
µx
µz

)
+Σ⊤

y·xzΣ
−1
y (y − µy),

Σx,z|y = Σx,z −Σ⊤
y·xzΣ

−1
y Σy·xz.

Proof. (i)

fY |X,Z(y|x, z) =
fY,X,Z(y,x, z)

fX,Z(x, z)
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=

(
1√
2π

)ny+nx+nz
1

|Σy,x,z |1/2
exp

−1
2

y − µy
x− µx
z − µz

⊤

Σ−1
y,x,z

y − µy
x− µx
z − µz


(

1√
2π

)nx+nz
1

|Σx,z |1/2
exp

{
−1

2

(
x− µx
z − µz

)⊤

Σ−1
x,z

(
x− µx
z − µz

)}

Using the Schur's formula (A.5) for the determinant ofΣy,x,z and the Schur-Barachiewicz

inverse formula (A.7) we gain:

Σ−1
y,x,z =

[
(Σy,x,z/Σx,z)

−1 −(Σy,x,z/Σx,z)
−1Σy·xzΣ

−1
x,z

−Σ−1
x,zΣ

⊤
y·xz(Σy,x,z/Σx,z)

−1 Σ−1
x,z +Σ−1

x,zΣ
⊤
y·xz(Σy,x,z/Σx,z)

−1Σy·xzΣ
−1
x,z

]

where Σy,x,z/Σx,z = Σy −Σy·xzΣ
−1
x,zΣ

⊤
y·xz is the Schur component of the block Σx,z,

like in (A.6), we obtain:

fY |X,Z(y|x, z) =
(

1√
2π

)ny 1

|Σy,x,z/Σx,z|
exp

{
− 1

2

[
(y − µy)⊤(Σy,x,z/Σx,z)

−1(y − µy)+

+

(
x− µx
z − µz

)⊤

Σ−1
x,zΣ

⊤
y·xz(Σy,x,z/Σx,z)

−1Σy·xzΣ
−1
x,z

(
x− µx
z − µz

)
+

− 2(y − µy)⊤(Σy,x,z/Σx,z)
−1Σy·xzΣ

−1
x,z

(
x− µx
z − µz

)]}
∝ exp

{
− 1

2

[
(y − µy)⊤(Σy,x,z/Σx,z)

−1(y − µy)+

− 2
[
Σ−1
x,zΣ

⊤
y·xz(Σy,x,z/Σy)

−T (y − µy)
]⊤(x− µx

z − µz

)]}
.

Now, using Σy,x,z/Σy = Σx,z − Σ⊤
y·x,zΣ

−1
y Σy·x,z, the Schur component of the block

Σy, and recalling the Woodbury matrix identity in (A.1), we just keep the part

depending on y:

fY |X,Z(y|x, z) = exp

{
− 1

2

[(
y − µy −

(
Σ−1
y +Σ−1

y Σy·xz(Σy,x,z/Σy)
−1Σ⊤

y·xzΣ
−1
y

)−1 ·

·Σ−1
y Σy·xz(Σy,x,z/Σy)

−1

(
x− µx
z − µz

))⊤

·

·
[
Σ−1
y +Σ−1

y Σy·x,z(Σy,x,z/Σy)
−1Σ⊤

y·x,zΣ
−1
y

]
·

·
(
y − µy −

(
Σ−1
y +Σ−1

y Σy·xz(Σy,x,z/Σy)
−1Σ⊤

y·xzΣ
−1
y

)−1 ·
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·Σ−1
y Σy·x,z(Σy,x,z/Σy)

−1

(
x− µx
z − µz

))]}
.

In addition, noting that[
Σ−1
y +Σ−1

y Σy·xz(Σy,x,z/Σy)
−1Σ⊤

y·xzΣ
−1
y

]−1
Σ−1
y Σy·xz(Σy,x,z/Σy)

−1 =

=
(
Σy −Σy·x,zΣ

−1
x,zΣ

⊤
y·xz
)
Σ−1
y Σy·xz(Σy,x,z/Σy)

−1

= Σy·x,z(Σy,x,z/Σy)
−1 −Σy·xzΣ

−1
x,zΣ

⊤
y·x,zΣ

−1
y Σy·xz(Σy,x,z/Σy)

−1

= Σy·xz
(
Iny −Σ−1

x,zΣ
⊤
y·xzΣ

−1
y Σy·xz

)
(Σy,x,z/Σy)

−1

= Σy·xzΣ
−1
x,z

(
Σx,z −Σ⊤

y·xzΣ
−1
y Σy·xz

)
(Σy,x,z/Σy)

−1

= Σy·xzΣ
−1
x,z,

the conditional distribution takes the following form:

fY |X,Z(y|x, z) ∝ exp

{
− 1

2

[(
y − µy −Σy·xzΣ

−1
x,z

(
x− µx
z − µz

))⊤[
Σy+

−Σy·xzΣ
−1
x,zΣ

⊤
y·xz
]−1
(
y − µy −Σy·xzΣ

−1
x,z

(
x− µx
z − µz

))]}
,

that is the kernel of multivariate normal distribution of mean

µy|x,z = µy +Σy·xzΣ
−1
x,z

(
x− µx
z − µz

)
and covariance matrix

Σy|x,z = Σy −Σy·xzΣ
−1
x,zΣ

⊤
y·xz,

and so, the conditional distribution fY |X,Z(y|x, z) is Nny(µy|x,z,Σy|x,z).

(ii) through a similar manner, it is possible to proof also this point.

Accordingly, it can be expressed the distributions of the remaining combinations of

conditional vectors:

Z|(X⊤,Y ⊤)⊤ ∼ Nnz

(
µz +Σz·xyΣ

−1
x,y

(
x− µx
y − µy

)
,Σz −Σz·xyΣ

−1
x,yΣ

⊤
z·xy

)
,

X|(Y ⊤,Z⊤)⊤ ∼ Nnx

(
µx +Σx·yzΣ

−1
y,z

(
y − µy
z − µz

)
,Σx −Σx·yzΣ

−1
y,zΣ

⊤
x·yz

)
;
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(Y ⊤,X⊤)⊤|Z ∼ Nny+nx

((
µy
µx

)
+Σ⊤

z·yxΣ
−1
z (z − µz),Σy,x −Σ⊤

z·yxΣ
−1
z Σz·yx

)
,

(Y ⊤,Z⊤)⊤|X ∼ Nny+nz

((
µy
µz

)
+Σ⊤

x·yzΣ
−1
x (z − µx),Σy,z −Σ⊤

x·yzΣ
−1
x Σx·yz

)
.

B.2 Conditions for positive de�niteness of a covariance matrix

It is often di�cult specifying a valid joint covariance matrix for multivariate random

vectors. To avoid this di�culty, we introduce an approach in which we directly specify

the joint distribution for a process through the speci�cation of simpler conditional and

marginals forms. Having in mind the essential features of the normal distribution from the

Section B.1, the novel notation introduced in the thesis allows to clearly express valid joint

distribution of a random vector consisting of two and three normal sub-vectors depending

on the regression, marginal covariance and conditional covariance matrices.

In this section, we are interested to �nd the conditions for which the matrix Σy,x,z ∈
R3n×3n de�ned in (2.14) is a variance matrix, i.e. symmetric and positive de�nite, and

so Σy,x,z ∈ S3n
++. We state the ensuing Theorem to achieve the positive de�niteness of

covariance matrix of joint normal distribution of the vector (Y ⊤,X⊤,Z⊤)⊤ ∈ R3n.

Theorem B.2.1. Let Σy,x,z ∈ S3n expressed as in (2.14). If Σz ≻ 0, Σx|z ≻ 0 and
Σy|x,z ≻ 0, then, for all possible simple regression matrices Ax·z, Ay·x, Ay·z,

Σy,x,z ≻ 0.

Proof. Considering the covariance matrix Σx,z, Σx|z is the Schur complement of the block

Σz. Hence, according to Theorem A.0.3, Σx,z ≻ 0.

Now, considering the matrix Σy,x,z as the form suggested in (A.12), we get(
Σy Σy·xz

Σ⊤
y·xz Σx,z

)
=

(
Σy|x,z +Ay·xzΣx,zA

⊤
y·xz Σy·xz

Σ⊤
y·xz Σx,z

)
,

and, given that Σy|x,z, that is the Schur complement of Σx,z, is positive de�nite, in the

light of the aforementioned theorem, Σy,x,z ≻ 0.

From what has been said so far, if we have a matrix A ∈ Sn expressed in block form

like in (A.10) in which A11 ≻ 0 and A22 ≻ 0, it is not obvious that it is positive de�nite

unless the Schur complement is. However, assuming the principal block matrices positive

de�nite, thanks to the Gershgorin's Theorem (A.13) and Theorem A.0.6, it is su�cient to
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require additionally the condition of strictly diagonally dominant for symmetric matrices

in (A.14) veri�ed for the Schur complement A/A11 or A/A22.

As a result, we propose a further theorem that yields to obtain the positive de�nite-

ness of covariance matrix characterizing the joint Gaussian distribution of the vector

(Y ⊤,X⊤,Z⊤)⊤.

Theorem B.2.2. Let Σy,x,z ∈ S3n expressed as in (2.14). If Σy ≻ 0, Σx ≻ 0 and Σz ≻ 0,
then, for all possible simple regression matrices Ax·z, Ay·x, Ay·z,

Σy,x,z ≻ 0,

if the following conditions are veri�ed:

(i) (Σx)ii >
(
Ax·zΣzA

⊤
x·z
)
ii
+
∑

i ̸=j

∣∣∣(Σx −Ax·zΣzA
⊤
x·z
)
ij

∣∣∣ ∀i = 1, . . . , n

(ii) (Σy)ii >
(
Ay·xzΣx,zA

⊤
y·xz
)
ii
+
∑

i ̸=j

∣∣∣(Σy −Ay·xzΣx,zA
⊤
y·xz
)
ij

∣∣∣ ∀i = 1, . . . , n.

Proof. Given that for hypothesis Σz ≻ 0, from Theorem B.2.1 Σy,x,z will be positive

de�nite if Σx|z ≻ 0 and Σy|x,z ≻ 0. Writing the matrix Σx|z in the following form

Σx −Ax·zΣzA
⊤
x·z,

we can see that both matrices are symmetric and positive de�nite, the �rst one by as-

sumption and the second because of the result in Equation (A.9). In turn, according to

Theorem A.0.6, if condition (i) is true, then Σx|z ≻ 0. In the same way is possible to show

that verify condition (ii) in the theorem's setting is equivalent to assume Σy|x,z ≻ 0.

By using an alternative representation of joint covariance matrix expressed on the form

(B.1), we can provide the following corollary:

Corollary B.2.3. Let Σy,x,z ∈ S3n expressed as in (2.14). If Σy ≻ 0, Σx ≻ 0 and
Σz ≻ 0, then, for all possible cross-covariance matrices Σyx, Σyz and Σxz,

Σy,x,z ≻ 0,

if the following conditions are veri�ed

(i) Σx −ΣxzΣ
−1
z Σ⊤

xz ≻ 0,

(ii) Σy −Σy·xzΣ
−1
x,zΣ

⊤
y·xz ≻ 0.

Proof. The results follow from Theorem B.2.1 and Theorem A.0.3.
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Afterwards, the next lemma gives a tool to build a valid joint covariance matrix of

(Y ⊤,X⊤,Z⊤)⊤ assuming scalar cross-correlation matrix of X and Z.

Lemma B.2.4. Let A,B be two positive de�nite matrices, i.e. A,B ∈ Sn+. Every
eigenvalue of A−B is contained in the interval

[λ(A)1 − λ(B)n, λ(A)n − λ(B)1],

where λ(A)1 is the minimum eigenvalue of the matrix A and λ(B)n is the maximum
eigenvalue of the matrix B.

Proof. Recalling one of the Weyl Inequalities (Weyl, 1912):

λ(A)i + λ(B)j−i+1 ≤ λ(A+B)j ≤ λ(A)k + λ(B)j−k+n,

for every integer 1 ≤ i ≤ j ≤ k ≤ n. A conseguence of this inequalities is the following:

λ(A)1 + λ(B)1 ≤ λ(A+B)j ≤ λ(A)n + λ(B)n for j = 1, . . . , n.

Thanks to the positive de�niteness of the matrices, if we consider the sum of A and −B,
the expected result arises:

λ(A)1 − λ(A)n ≤ λ(A−B)j ≤ λ(A)n − λ(B)1 for j = 1, . . . , n.

Corollary B.2.5. Let Σy,x,z ∈ S3n expressed as in (2.14). If Σx ≻ 0, Σz ≻ 0 and
Σy|x,z ≻ 0, then, for all possible cross-covariance matrices Σyx, Σyz and

Σxz = ρxzIn,

Σy,x,z ≻ 0, if

−
√

min
(
λ(Σx) ◦ λ(Σz)

)
< ρxz <

√
min

(
λ(Σx) ◦ λ(Σz)),

where ◦ represents the Hadamard product1.

Proof. According to Theorem B.2.1 Σy,x,z ≻ 0 if Σx,z ≻ 0. From Theorem A.0.3, it is

positive de�nite if Σx|z ≻ 0. In this setting, Σx|z = Σx − ρ2xzΣ
−1
z . From Lemma B.2.4 we

gain:

λ(Σx)1 − ρ2xzλ(Σ
−1
z )n ≤ λ(Σx|z)j ≤ λ(Σx)n − ρ2xzλ(Σ

−1
z )1.

1Also known as the element-wise product.
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Hence, Σx,z ≻ 0 if λ(Σx)1 − ρ2xzλ(Σ
−1
z )n > 0, that is:

ρ2xz < λ(Σx)1λ(Σz)1,

and then it emerges that

−
√

λ(Σx)1λ(Σz)1 < ρxz <
√

λ(Σx)1λ(Σz)1.

Considering that min
(
λ(Σx) ◦ λ(Σz)

)
= λ(Σx)1λ(Σz)1, we get the statement.

In order to consider di�erent kind of structured cross-covariance matrices, in the fol-

lowing theorem we provide a su�cient condition to build a valid joint covariance matrix

Σy,x,z by �xing the ones of the marginal random vectors, Σy, Σx and Σz and using the

Cholesky decomposed matrices to construct the cross-correlation matrices.

Theorem B.2.6. Let Σy, Σx, Σz ∈ Sn++ be the covariance matrices of the random vectors
Y , X and Z and let ρyx, ρyz and ρxz the simple correlations parameters.

Fixing ρyx, ρxz ∈ (−1, 1) and considering the Cholesky factorization of the marginal
covariance matrices such that Σ = LL

⊤. The cross-covariance matrices Σyx, Σyz and
Σxz are build as follows

Σyx = ρyxLyL
⊤
x , Σyz = ρyzLyL

⊤
z and Σxz = ρxzLxL

⊤
z .

Then
Σy,x,z ≻ 0,

if

ρyz ∈
(
ρyxρxz −

√
(1− ρ2xz)(1− ρ2yx), ρyxρxz +

√
(1− ρ2xz)(1− ρ2yx)

)
(B.4)

Proof. Given that, for assumption Σy, Σx, Σz are positive de�nite, they have unique

Cholesky decompositions as follow:

Σy = LyL
⊤
y , Σx = LxL

⊤
x and Σz = LzL

⊤
z .

We obtain that the last two conditions in Corollary B.2.3 are veri�ed if ρxz ∈ (−1, 1)

(for assumption) and (B.4) holds:

(i) Σx −ΣxzΣ
−1
z Σ⊤

xz = Σx − ρ2xzLxL
⊤
z L

−T
z L−1

z LzL
⊤
x = (1− ρ2xz)Σx ≻ 0;

(ii) Noting that (1−ρ2xz)Σx is the Schur complement of the block Σz of the matrix Σx,z,
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we verify the second condition.

Σy −Σy·xzΣ
−1
x,zΣ

⊤
y·xz =

= Σy −
[
Σyx : Σyz

]  1
1−ρ2xz

Σ−1
x − 1

1−ρ2xz
Σ−1
x ΣxzΣ

−1
z

− 1
1−ρ2xz

Σ−1
z ΣzxΣ

−1
x Σ−1

z + 1
1−ρ2xz

Σ−1
z ΣzxΣ

−1
x ΣxzΣ

−1
z

[Σ⊤
yx

Σ⊤
yz

]

= Σy −
[
ρyxLyL

⊤
x : ρyzLyL

⊤
z

]
·

·

 1
1−ρ2xz

L−T
x L−1

x − ρxz
1−ρ2xz

L−T
x L−1

x LxL
⊤
z L

−T
z L−1

z

− ρxz
1−ρ2xz

L−T
z L−1

z LzL
⊤
xL

−T
x L−1

x L−T
z L−1

z + ρ2xz
1−ρ2xz

L−T
z L−1

z LzL
⊤
xL

−T
x L−1

x LxL
⊤
z L

−T
z L−1

z

 ·

·

[
ρyxLxL

⊤
y

ρyzLzL
⊤
y

]

= Σy −
[
ρyxLyL

⊤
x : ρyzLyL

⊤
z

]  1
1−ρ2xz

L−T
x L−1

x − ρxz
1−ρ2xz

L−T
x L−1

z

− ρxz
1−ρ2xz

L−T
z L−1

x

(
1 + ρ2xz

1−ρ2xz

)
L−T
z L−1

z

[ρyxLxL⊤
y

ρyzLzL
⊤
y

]

= Σy −
[(

ρyx−ρyzρxz
1−ρ2xz

)
LyL

−1
x

(
ρyz +

ρyzρ2xz−ρyxρxz
1−ρ2xz

)
LyL

−1
z

] [ρyxLxL⊤
y

ρyzLzL
⊤
y

]

= Σy −
[(

ρ2yx−ρyxρyzρxz
1−ρ2xz

)
LyL

T
y +

(
ρ2yz +

ρ2yzρ
2
xz−ρyzρyxρxz
1−ρ2xz

)
LyL

T
y

]
=

[
1−

ρ2yz − ρ2yzρ
2
xz

1− ρ2xz
−

ρ2yx − 2ρyxρyzρxz + ρ2yzρ
2
xz

1− ρ2xz

]
Σy

=

[
1−

(
ρ2yz +

(ρyx − ρyzρxz)
2

1− ρ2xz

)]
Σy.

Hence, Σy|xz = Σy −Σy·xzΣ
−1
x,zΣ

⊤
y·xz ≻ 0 if

[
1−

(
ρ2yz +

(ρyx−ρyzρxz)2
1−ρ2xz

)]
> 0, that is:

Σy|xz ≻ 0 ⇐⇒1−
ρ2yx − 2ρyxρyzρxz + ρ2yz

1− ρ2xz
> 0

ρ2yx − 2ρyxρyzρxz + ρ2yz < 1− ρ2xz

ρyxρxz −
√

(1− ρ2xz)(1− ρ2yx) < ρyz < ρyxρxz +
√

(1− ρ2xz)(1− ρ2yx).
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Moreover, it is trivial to proof that

ρyz ∈
(
ρyxρxz −

√
(1− ρ2xz)(1− ρ2yx), ρyxρxz +

√
(1− ρ2xz)(1− ρ2yx)

)
⊆ (−1, 1).

In fact, it is su�cient to show that the inequality ρyxρxz −
√

(1− ρ2xz)(1− ρ2yx) ≥ 0

is always true: √
(1− ρ2xz)(1− ρ2yx) ≤ 1 + ρyxρxz

(1− ρ2xz)(1− ρ2yx) ≤ 1 + 2ρyxρxz + ρ2yxρ
2
xz

(ρyx + ρxz)
2 ≥ 0.

Among the assumptions of the theorem there is the requirement that the de�nition interval

of ρyx is open to avoid degenerate covariance matrices.

A more simpli�ed version of this theorem as a way to build a valid cross covariance matrix

is used for the �st time by Page et al. (2017) in spatial literature regarding confounding, in

order to work in a solid set up to study the problem. That is what we have indicated with

rLMC model. Moreover, it is interesting to note that, in a regression model as in (2.1),

the quantity ρ2yz +
(ρyx−ρyzρxz)2

1−ρ2xz
is the coe�cient of determination R2 of a linear regression

model with regressors X and Z. It can be express trough the semipartial correlation ρyz|x:

R2 = ρ2yz +
(ρyx − ρyzρxz)

2

1− ρ2xz
= ρ2yx +

(ρyz − ρyxρxz)
2

1− ρ2xz
= ρ2yz + ρ2yx|z = ρ2yx + ρ2yz|x.

Thus, requesting the positive de�niteness of Σy is equivalent to ask for R2 ∈ [0, 1] and

this means that ρ2yx + ρ2yz|x ∈ [0, 1].

Remark B.2.1. If Σy,x,z is positive de�nite, then equivalently Σ̂y,x,z = Π⊤Σy,x,zΠ is pos-

itive de�nite for Π being a permutation matrix. Therefore, according to the chosen

permutation, everything we said for the sub-matrices Σz,Σx|z and Σy|x,z can be modi�ed

for other sub-matrix combinations.
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Eigenvalue of autoregressive process of

�rst order

In this appendix, according to the work of Yueh (2005), an alternative proposal to Stroeker

(1983) for the approximation of precision matrix eigenvalues of an autoregressive of order

one process are provided.

A zero-mean autoregressive process of order one with normal errors can be expressed as

Xt = ϕXt−1 + εt εt
iid∼ N (0, σ2), (C.1)

where the index t ∈ {1, . . . , n} represents time. We consider the zero-mean AR1 process

here because a mean term can be added in any time. With these assumptions, the

distribution of the process is normal with mean 0 and variance σ2/(1 − ϕ2), where σ2 is

the conditional variance and ϕ the autocorrelation. This implies the importance of ϕ to

be less than 1 (in absolute value) in order that the process be stable (Siegel and Wagner,

2022). We can express (C.1) in the direct conditional form

Xt|X1, . . . , Xt−1 ∼ N (ϕXt−1, σ
2)

for t ∈ {2, . . . , n}. As shown in Lindsey (2004) and Rue and Held (2005), if stationarity

is assumed, an alternative speci�cation of an AR1 can also be used: direct construction

of a multivariate Gaussian distribution. The joint distribution of X = (X1, . . . , Xn)
T has
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zero mean and a covariance matrix given by

Σ =
σ2

1− ϕ2


1 ϕ . . . ϕn−2 ϕn−1

ϕ 1 . . . ϕn−3 ϕn−2

...
...

. . .
...

...

ϕn−2 ϕn−3 . . . 1 ϕ

ϕn−1 ϕn−2 . . . ϕ 1

 . (C.2)

It is a dense matrix with entries

Σij =
σ2

1− ϕ2
ϕ|i−j|,

where ϕ|i−j| is the correlation function of the AR1 process. The precision matrix has a

special form, with zeros everywhere except on the main and �rst minor diagonals:

Σ−1 =
1

σ2


1 −ϕ . . . 0 0

−ϕ 1 + ϕ2 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 + ϕ2 −ϕ

0 0 . . . −ϕ 1

 . (C.3)

The tridiagonal form is due to the fact thatXs andXt with 1 ≤ s < t ≤ n are conditionally

independent given {Xs+1, . . . , Xt−1} if |t−s| > 1 (Rue and Held, 2005). The autoregressive

process of order 1 is a special case of a Gaussian Markov random �eld in which, in general,

it is possible notice the relationship between conditional independence and the sparse

structure of the precision matrix.

Aware about the important role of covariate matrix eigenvalues in the evaluation of

confounding, it might be useful to have information on the eigenvalues of Σ−1 in (C.3)

in explicit form. This matrix is "nearly" a tridiagonal Toeplitz matrix for which the

eigenvalues and eigenvectors are known in closed form (Grenander and Szegö, 1958). In

fact, considering Σ̃−1 = Σ−1 + ϕ2En where En = diag (1, 0, . . . , 0, 1) is a n × n diagonal

matrix, Σ̃−1 is a Toeplitz matrix of �nite order and then, by Stroeker (1983) and Yang

(2021), we obtain an explicit form for the entire set of eigenvalues

λk(Σ̃
−1) = 1 + ϕ2 − 2ϕ cos

(
kπ

n+ 1

)
k = 1, . . . , n,

and the corresponding normalized eigenvector ũk = (ũ1k, . . . , ũnk) is

ũjk =

√
2

n+ 1
sin

(
kjπ

n+ 1

)
j, k = 1, . . . , n.
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The above expression is for ϕ > 0, and when ϕ < 0, the eigenstructure has the same

expressions but is arranged in the reverse order.

For example, the precision matrix of a Random Walk process of order one, i.e. autore-

gressive process of order 1 with ϕ = 1, is a Toeplitz matrix with 2 and -1 on main and

�rst minor diagonals, respectively. Consequently, and as also previously demonstrated by

Elliott (1953) and Gregory and Karney (1969), its eigenvalues are

λk = 2− 2ϕ cos

(
kπ

n+ 1

)
k = 1, . . . , n.

Moreover Stroeker (1983) gives certain approximations of eigenvalues of Σ−1, which are

expecially useful for large n, that are:

λk(Σ
−1) = 1 + ϕ2 − 2ϕ cos

(
kπ

n+ 1

)
− 4ϕ2

n+ 1
sin2

(
kπ

n+ 1

)
k = 1, . . . , n.

The following error bounds for each λk

ϵk = ϕ2

√
4

n+ 1
sin

(
kπ

n+ 1

)
k = 1, . . . , n

show that for increasing n the approximations improve.

In order to �nd more precise approximations for such eigenvalues, we follow Yueh (2005)

deriving the eigenvalues of a generic tridiagonal matrix of the form

M =



−α + b c 0 . . . 0 0

a b c 0 . . . 0

0 a b c . . . 0
...

...
...

. . .
...

...

0 . . . 0 a b c

0 0 . . . 0 a −β + b


.

The author determines them by the method of symbolic calculus in Cheng (2003), pro-

viding the necessary condition to obtain them. In this article the author deal with the

eigenvalue problem Mu = λu, where a, b, c and α, β are number in C, instead, we con-
sider the real domain in which a = c = −ϕ, b = ϕ2 + 1 and α = β = ϕ2, in order to work

on the precision matrix of AR1 process (C.3).

Theorem C.0.1. Considering an autoregressive process of the �rst order, a good approx-
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imation of each precision matrix Σ−1 eigenvalues and σ2 = 1 is:

λk(Σ
−1) = 1 + ϕ2 + 2ϕ cos

(
kπ

n− ϕ−1
ϕ+1

)
k = 1, . . . , n.

Proof. According to Yueh (2005), we consider the quantity

γ± =
−(b− λ)±

√
(b− λ)2 − 4ac

2a
.

Let γ± = p± iq where p, q ∈ C and q ̸= 0. It becomes

γ± =
−(ϕ2 + 1− λ)±

√
(ϕ2 + 1− λ)2 − 4ϕ2

−2ϕ

=
λ− (ϕ2 + 1)

−2ϕ
± i2

√
(ϕ2 + 1− λ)2 − 4ϕ2

2ϕ
.

Since, γ+ + γ− = 2p = [λ− (ϕ2 + 1)]/(−ϕ) and

γ+γ− = p2 + q2

=

(
λ− (ϕ2 + 1)

−2ϕ

)2

+

(
i

√
(ϕ2 + 1− λ)2 − 4ϕ2

2ϕ

)2

= 1 =
c

a
,

we may write

γ± =
√

p2 + q2(cos θ ± i sin θ)

where

cos θ =
p√

p2 + q2
=

λ− (ϕ2 + 1)

2ϕ
, θ ∈ R. (C.4)

Given that γ+ ̸= γ−, using the Chebyshev polynomials of the second kind for θ, it is

achieved the necessary condition to gain the eigenvalues of the precision matrix:

ϕ2 sin [(n+ 1)θ] + 2ϕ3 sin (nθ) + ϕ4 sin [(n− 1)θ] = 0.

Using the arbitrary phase shift for more than two sinusoids from the Harmonic Addition

Theorem (Oo and Gan, 2012) yields to the following equality√
1 + 2ϕ2 + ϕ4 + 2ϕ[ϕ cos θ − 2(1 + ϕ2)cosθ] sin

(
nθ + tan−1

(
sin θ(1− ϕ2)

(1 + ϕ2) cos θ + 2ϕ

))
= 0.
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Assuming ϕ ̸= 0, since on the contrary case is easy, the last becomes

sin

(
nθ + tan−1

(
sin θ(1− ϕ2)

(1 + ϕ2) cos θ + 2ϕ

))
= 0.

Through the Maclaurin series of tan−1(·) up to the second order, we �nd the solution

θ =
kπ

n− ϕ−1
ϕ+1

,

solving the coming equation

nθ − θ

(
ϕ− 1

ϕ+ 1

)
= kπ.

Then, by (C.4) we have the formula for the k-th eigenvalue:

λk = 1 + ϕ2 + 2ϕ cos θ θ ̸= mπ, m ∈ Z.
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