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Abstract 

Hematological cancers are a heterogeneous family of diseases that can be divided into 

leukemias, lymphomas, and myelomas, often called “liquid tumors”. Since they cannot 

be surgically removable, chemotherapy represents the mainstay of their treatment. 

However, it still faces several challenges like drug resistance and low response rate, 

and the need for new anticancer agents is compelling. The drug discovery process is 

long-term, costly, and prone to high failure rates. With the rapid expansion of 

biological and chemical "big data", some computational techniques such as machine 

learning tools have been increasingly employed to speed up and economize the whole 

process. Machine learning algorithms can create complex models with the aim to 

determine the biological activity of compounds against several targets, based on their 

chemical properties. These models are defined as multi-target Quantitative Structure-

Activity Relationship (mt-QSAR) and can be used to virtually screen small and large 

chemical libraries for the identification of new molecules with anticancer activity.  

The aim of my Ph.D. project was to employ machine learning techniques to build an 

mt-QSAR classification model for the prediction of cytotoxic drugs simultaneously 

active against 43 hematological cancer cell lines. For this purpose, first, I constructed a 

large and diversified dataset of molecules extracted from the ChEMBL database. Then, 

I compared the performance of different ML classification algorithms, until Random 

Forest was identified as the one returning the best predictions. Finally, I used different 

approaches to maximize the performance of the model, which achieved an accuracy of 

88% by correctly classifying 93% of inactive molecules and 72% of active molecules in a 

validation set. This model was further applied to the virtual screening of a small 

dataset of molecules tested in our laboratory, where it showed 100% accuracy in 

correctly classifying all molecules. This result is confirmed by our previous in vitro 

experiments. 
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1. Introduction 

1.1 Cancer 

The term cancer, tumor, or neoplasm refers to a broad category of diseases that can 

affect any part of the body. More than 200 different cell types are present in the 

human body, and potentially each of them can become a cancer cell. Therefore, 

hundreds of cancers are known to date and are named according to the tissue, organ, 

or cell type where they originate. A fundamental characteristic of cancer is the rapid 

transformation, through a multi-stage process, of normal cells into cancer cells that 

grow beyond their limits and can invade parts of the body adjacent to the site of tumor 

formation and disseminate to other organs [1]. 

 

Cancer has a major social impact, it represents one of the leading causes of human 

morbidity and mortality, being second only to cardiovascular disease. In 2018, 18.1 

million new cases of cancer occurred worldwide, and deaths attributable to it were 9.6 

million. These statistics are expected to increase, estimated to occur annually by 2030 

22 million new cancer cases and 13 million cancer-related deaths [2]. 

In addition, cancer has also an important economic impact on public health costs, 

ranking first in terms of global spending according to therapeutic class ($91 billion in 

2013) [3]. 

 

1.2 Hematological cancers 

Hematological cancers are a heterogeneous group of malignancies so-called since 

originate from cells involved in the hematopoiesis process (Fig. 1), whereby the 

formation of blood cellular components takes place [4]. All blood cells arise from a 

common pluripotent hematopoietic stem cell, which can differentiate into a common 

myeloid precursor or a common lymphoid precursor.  Erythrocytes, 

polymorphonuclear lymphocytes, monocytes, platelets, eosinophils, and basophils 
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originate from the common myeloid precursor [5], whereas B plasma cells, T cells, or 

natural killer cells originate from the common lymphoid precursor [5].  

 

Figure 1. Schematic representation of the hematopoietic process [6].   

Hematological cancers are divided according to the cell type of origin into leukemias, 

lymphomas, or myelomas, each encompassing several subtypes. 

Leukemias arise as a result of abnormal proliferation of myeloid or lymphoid 

precursors and an aberrant accumulation in the bone marrow of cells called blasts. 

Leukemias can be classified according to the primary cell line of origin, myeloid or 

lymphoid, and the disease onset modality and progression, acute or chronic [5]. 

Consequently, four main types of leukemia can be identified: acute lymphoblastic 

leukemia (ALL), chronic lymphoblastic leukemia (CLL), acute myeloid leukemia (AML), 

chronic myeloid leukemia (CML) 

However, considering the less common forms of leukemia, hundreds of different types 

are known. [5]. 
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Lymphomas arise in lymphoid cells of lymph nodes or other lymphoid tissues and can 

be divided into Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL). [7].  

Although HL is the best-characterized lymphoma, it has a lower incidence than NHL. 

Macroscopically, HL can be divided into classical and non-classical types, and NHL into 

B-cell, T-cell, and natural killer cell types. In addition, lymphomas can be classified for 

clinical purposes according to their severity into high grade if they are aggressive, or 

low grade if they are indolent. [7]. 

Myelomas comprise several conditions resulting from aberrant proliferation in the 

bone marrow of plasma cells that produce a paraprotein, i.e. a single species of an 

immunoglobulin molecule, therefore defined as monoclonal, named M-protein. 

Myelomas embrace conditions of benign and malignant nature, the latter including 

multiple myelomas, Waldenström's macroglobulinemia, plasma cell leukemia, and 

plasmacytomas [4].  

Effective cancer treatment requires the elimination of all cancer cells, whether the 

tumor is confined to the primary site or if metastases are present in other regions of 

the body. For solid tumors, the main anticancer therapies are surgery and radiotherapy 

when the tumor is circumscribed, and chemotherapy, especially when the tumor has 

disseminated outside the primary site. Hematological cancers are often described as 

liquid tumors because they do not form nodules or masses surgically removable, in 

contrast to solid tumors. For this reason, chemotherapy represents the centerpiece of 

hematological cancer treatment [4]. 

 

1.3 Chemotherapy 

Chemotherapy is the most widely used therapeutic approach in the treatment of solid 

and hematological tumors and can be administered alone or in combination with other 

forms of therapy, such as surgery or radiotherapy. Combination therapy aims to 

reduce the risk of relapses. Conventional antineoplastic drugs are cytotoxic agents that 

induce cell damage and cause tumor cell death through a direct action on the genome 

or through the interference with the replicative processes of the proliferating cell [8]. 

No drug, among those available, is devoid of toxicity. All are characterized by a low 
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therapeutic index. Therefore, the selection of a drug is subject to a careful evaluation 

of the risk/benefit assessment [9]. Cytotoxic agents belong to different therapeutic 

classes and are classified according to their mechanism of action. 

 

DNA damaging agents 

- Polyfunctional alkylating agents, such as cisplatin and busulfan, covalently bind DNA 

by transferring an alkyl group [8]. This binding requires metabolic activation of the 

drug, which involves the formation of an electrophilic group (carbocation), interacting 

with electron-dense species such as sulphydryls, amines, phosphates, and other 

cellular nucleophiles. Alkylating agents preferentially bind the guanine 7 nitrogen of a 

DNA strand; if they possess two reactive groups, they simultaneously attack both DNA 

strands (cross-linking) [8]. They exert their maximal effect in replicating cells, when the 

DNA is partially unwound and more accessible. The interaction occurs during the S-

phase, blocking cells in the G2 phase [10]. 

 

- Anti-cancer antibiotics, such as bleomycin and mitomycin, bind to DNA by 

intercalating between bases and preventing the synthesis of RNA, DNA, or both nucleic 

acids. This results in the fragmentation of one or both strands and interference with 

cell replication [10]. 

 

Antimetabolites 

Antimetabolites such as methotrexate, 6-mercaptopurine, and 5-fluorouracil, interfere 

with metabolic processes essential for cancer cells’ survival and proliferation, such as 

the synthesis of nucleotides or nucleic acids, and thus with DNA replication[8]. They 

are synthetic molecules structurally analogous to physiological metabolites and act as 

false enzyme substrates (purine and pyrimidine analogues) or as reversible or 

irreversible inhibitors of key enzymes (folic acid antagonists, inhibitors of the enzyme 

dihydrofolate reductase) [8]. 
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Antimitotics 

- Microtubule-targeting drugs alter the functionality of the mitotic spindle by binding 

to specific sites on tubulin-β and preventing the polymerization and rupture of 

microtubules, such as vincristine, or hindering their depolymerization, such as 

paclitaxel. This blocks the cell cycle in metaphase and triggers apoptosis [8]. 

 

- Topoisomerase inhibitors inhibit the catalytic activity of topoisomerase I and II 

enzymes. They form a ternary complex with the DNA and the enzyme, stabilizing the 

'cleavage complex'. The cleaved DNA cannot be repaired and the fragmented strands 

trigger the apoptotic process. Topoisomerase I inhibitors, such as irinotecan, generate 

single-strand breaks that are not repaired; the cell cycle proceeds, and the damaged 

DNA 'collides' with the replication fork, producing double-strand breaks that arrest the 

cell cycle in the G2 phase. Topoisomerase II inhibitors, e.g. anthracyclines, can 

intercalate between DNA base pairs and prevent nucleic acid synthesis by inhibiting 

transcription and replication processes. The action is cell cycle-specific and directed at 

proliferating tumor cells [10]. 

 

Targeted therapy 

Targeted therapy arises from the increased understanding of the molecular 

pathobiological basis of tumors. Many oncogenes and oncosuppressor genes produce 

oncoproteins that are involved in signal transduction pathways and induce alterations 

promoting cellular proliferation, inhibition of apoptosis, invasiveness, and metastasis 

[11]. 

The most important family of oncoproteins activating oncogenic signal transduction 

are tyrosine kinases (TKs), which are located in the cytoplasm and can be classified into 

TKs, serine-threonine kinases, and tyrosine-threonine kinases. TKs are further 

subdivided into nonreceptor tyrosine kinases (NRTKs), such as ABL, FES, JAK, ACK, SYK, 

TEC, FAK, SRC, and CSK families [12,13], and receptor TKs (RTKs). RTKs include TKs 

associated with receptors for epidermal growth factor (EGF), platelet-derived growth 

factor (PDGF), vascular endothelial growth factor (VEGF), hepatocyte growth factor, 

insulin-like growth factor (IGF-1) [14], stem cell growth factor (SCF or c-Kit) [15]. NRTKs 
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and RTKs are currently the most important targets of innovative anticancer drugs [16].  

Pharmacological intervention consists of chemical compounds that penetrate the 

cytoplasmic membrane and inhibit NRTKs and RTKs or monoclonal antibodies directed 

against RTKs or their receptors.  

 

- Signal transduction inhibitors 

The first selective TKs inhibitor approved for clinic use was imatinib. Imatinib acts by 

competitively inhibiting ATP binding to its binding site in the TK domain and blocking 

cell proliferation [17]. This drug has been shown to be a potent inhibitor of Bcr-Abl, 

constitutively present in leukemias expressing the Philadelphia chromosome. The 

Philadelphia chromosome is a shortened chromosome 22 resulting from a reciprocal 

translocation of parts of chromosomes 22 and 9, which replaces the first exon of ABL 

gene with sequences of the BCR gene, producing the BCR-ABL oncogene. This 

oncogene expresses an enzyme that has a constitutive, abnormal tyrosine kinase 

activity. The chromosome is the hallmark of CML and is found in more than 95% of 

CML patients [18]. Accordingly, imatinib currently represent the first line treatment for 

CML [19]. Imatinib is also capable of binding PDGF and c-Kit [20]. Despite its potent 

activity, tumors treated with imatinib can develop resistance, mainly induced by 

mutations at Bcr-Abl kinase, PDGF receptor, and c-Kit [21]. The occurrence of these 

mutations led to the development of new TKs inhibitors, such as dasatinib and 

nilotinib, which can also be used to treat tumors with mutated forms of Bcr-Abl [22].  

Other TKs inhibitors are gefitinib, erlotinib, and lapatinib, which inhibit the EGF 

receptor, and sunitinib and sorafenib, which inhibit the VEGF receptor [23].  Since the 

VEGF receptor has important functions in the regulation of angiogenesis, sunitinib and 

sorafenib inhibit angiogenesis and tumor growth. Also belonging to the signal 

transduction inhibitor drugs are the serine/threonine kinase mTor (mammalian 

receptor of rapamycin) inhibitors, temsirolimus and everolimus, and the proteasome 

inhibitor bortezomib [10]. 

 

- Monoclonal antibodies 
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Monoclonal antibodies (mAbs) are humanized or chimeric antibodies produced by 

clones of a unique B cell, which can selectively bind specific target either unique to or 

overexpressed by cancer cells, such as RTKs and their receptors [24]. Their therapeutic 

effect may depend on several mechanisms. However, it is believed that mAb can act 

through more than one of the following mechanisms: preventing ligand-receptor 

interaction by binding to the ligand or to the receptor, disrupting receptor 

internalization, promoting receptor internalization or release of the extracellular 

portion of the receptor, blocking receptor dimerization and activation, and inducing 

apoptosis [21]. The induction of apoptosis can occur through several mechanisms, such 

as complement-dependent cytotoxicity (CDC), antibody-dependent cell cytotoxicity 

(ADCC), antibody-dependent cell phagocytosis (ADCP) or by altering the signal 

transduction of cancer cells [25]. MAbs are advantageous since they allow to both 

directly kill tumor cells while simultaneously develop long-lasting immune responses 

against the tumor [24]. The first mAbs approved was rituximab in 1997 for the 

treatment of NHL. Rituximab binds to the surface antigen CD20, a protein 

overexpressed on cancerous B cells of NHL, but absent on healthy immature B cells, 

[24]. Since the approval of rituximab, more than 30 cytotoxic antibodies targeting 

antigens identified as overexpressed on tumor cells have entered clinical development 

[25]. Trastuzumab is an mAbs targeting Human Epidermal Grow factor 2 (HER2), a 

transmembrane receptor of the EGFR family, resulting in inhibition of cell growth. 

HER2 is overexpressed in 20% of breast cancer [26] and is associated with aggressive 

tumors. Cetuximab and panitumumab are antibodies targeting EGFR, involved in the 

processes of tumor cell proliferation, migration, and invasion and overexpressed in 

many cancers. These two mAbs block ligand binding and receptor dimerization, 

inducing apoptosis in cancer cells [24]. Bevacizumab targets VEGF, which is found over-

expressed in many types of human cancers. Bevacizumab acts by preventing VEGF 

from interacting with its receptor. Recently, the approach involving the use of mAb is 

no longer based solely on targeting tumor antigens, but also includes stimulating T cell 

antitumor immunity. For this purpose, bispecific T Cell Engager (BiTE) antibodies have 

been developed that both target a tumor antigen and activate receptor on T cells [24].  

BiTEs directly target tumor cells and at the same time recruit cytotoxic T cells into the 

tumor microenvironment. These drugs have been shown to be highly effective in 
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inducing tumor regression and can be administered at doses three orders of 

magnitude lower than classical mAbs. One of these mAbs is blinatumomab, which was 

approved in 2017 by the FDA for the treatment of ALL [24]. 

 

1.4 Problems in the use of anticancer drugs 

The main issue of chemotherapy is still toxicity: cytotoxic drugs are not selective for 

cancer cells but affect also normal tissues highly proliferating, such as mucous 

membranes and bone marrow [8]. For many drugs, there is a need to establish dose 

limits that must not be exceeded because they are associated with an unacceptable 

risk of toxicity. The toxicity of chemotherapeutic drugs can be acute or chronic. Acute 

toxic reactions, such as gastrointestinal toxicity, myelotoxicity, and alopecia, may be 

frequently observed but are often reversible and can be managed with the 

administration of antiemetic drugs, bone marrow growth factors, and hydration. 

Chronic toxic reactions occur late as a result of the cumulative effects of multiple 

administrations. These reactions are the most dangerous since they are irreversible or 

only partially reversible [8].  

Another frequent consequence that can occur using chemotherapeutic agents with a 

wide range of action, is the development of secondary malignancies, despite the 

treatment of primary cancer. Moreover, it may happen that some neoplastic cells can 

survive cancer chemotherapy [8]. Resistance is another important limitation to the 

therapeutic efficacy of chemotherapeutic drugs. To date, resistance to anticancer 

therapy can occur through many molecular mechanisms, such as decreased drug 

uptake, increased drug inactivation, alterations in drug targets, increased ability to 

repair DNA, and cell death escape. However, changes in stroma and tumor 

microenvironment and local immunity can also contribute to the development of 

resistance. These molecular mechanisms of resistance are the result of somatic 

mutations that make cancer cells less sensitive to the drug. Given the ability to develop 

different mutations, cancers consist of heterogeneous cells that give them the 

possibility of multiple resistance to different drugs. Consequently, the ideal treatment 

should be based on a combination of different drugs (polychemotherapy) that are not 

cross-resistant [8]. 
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2. The drug discovery process 

The introduction of a new drug into the market may essentially begin in three ways: 

serendipity, the me-too method, and drug discovery. 

Serendipity refers to the accidental discovery of a drug, such as the observation of a 

drug biological activity when that specific activity was not being investigated. An 

example is the discovery of sildenafil (Viagra), a drug developed for the treatment of 

angina that was instead approved for the treatment of erectile dysfunction and was 

later shown to be cytotoxic to cancer cells [27].  

Conversely, me-too is a method aimed at producing compounds with the same 

mechanism of action and structurally related to first-in-class compounds but 

chemically different enough to assure a more favorable pharmacokinetic and 

pharmacodynamic profile [28]. For years, this method has been the most used by 

pharmaceutical companies.   

Lastly, drug discovery is the most rational among these methods. Indeed, it relies on 

solid knowledge of the cellular and molecular events that characterize a disease to 

create or find new drugs capable of modulating the altered processes underlying the 

disease [29]. 

The drug discovery process is very long and complex. From more than 10000 

molecules that enter the first preclinical phases, only 1 or 2 reach the clinical trials and 

even less the marketing authorization [30]. 

It consists of several steps which aim to guarantee drug efficacy and safety. This is the 

reason why it is time-consuming and expensive. 
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Figure 2. The various stages of the drug discovery process. For each stage, the time required to 
complete the stage and the success rate of drug candidates are illustrated [30].  

 

The drug discovery process can be divided into two main stages: preclinical (stages 

one, two, three, and four) where molecules are tested in vitro on cell lines or in vivo on 

animals, and clinical (stages five, six, seven and eight) where molecules are tested on 

humans (Fig. 2). 

The first stage of drug discovery regards target identification. Here, the target on 

which the drug in development should act to fight the disease is decided.  

The second stage is target validation, whereby an assay is developed to test if a small 

molecule interacts with the designated target. The assay is conducted on a large scale 

by high throughput screening (HTS). HTS is a brute-force automated technology-driven 

approach that employs miniaturized assay systems and robotics to test large amounts 

of small molecules against single or multiple targets in a limited time. HTS aims to 

identify large subsets of molecules capable of eliciting the desired activity, known as 

hits, from large collections of compounds (105 - 106) [31]. Since the number of small 

molecules tested can range from thousands to millions, the volume of experimental 

data produced by HTS can be enormous. 
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The third stage is the lead generation, also called the hit-to-lead phase. Leads are drug-

like molecules that are derived from hits after optimization at the end of which they 

have acceptable specificity, affinity, and selectivity for the target.  

The fourth stage is the lead optimization. Here, drug candidates are generated by 

optimizing the lead structure through chemical modifications [32]. At the end of this 

stage, the lead candidate should possess a better pharmacokinetic and 

pharmacodynamic profile, and a lower toxicity than the starting lead. 

Stages five, six, seven, and eight represent clinical trials. Phase I trial is conducted on a 

few healthy volunteers (10-100) to assess the safety and tolerability of the candidate 

drug. Phase II trial is conducted on patients (50-500) to assess for the first time clinical 

efficacy. Furthermore, dosage regimens are determined and safety confirmed. Phase 

III clinical trials evaluate the treatment on a large scale, with thousands of patients, to 

confirm the efficacy and tolerability of the drug. Phase IV trials begin after approval 

and commercialization of the drug. The aim of this phase, also called post-marketing 

surveillance, is to detect rare or long-term adverse effects, and drug-drug or drug-

disease interactions that could not be found during the early stages of clinical trials 

[32].  

Notwithstanding impressive technological advances and further understanding of 

cancer biology, the discovery and development of new anticancer drugs is still a 

challenging, time-consuming, and expensive process: the average time to develop a 

new anticancer drug is 7.3 years (range: 5.8-15.2 years) and the average cost is $648.0 

million (range: $157.3 million to $1950.8 million) [3].  In addition to time and cost 

issues, anticancer drugs are subject to high failure rates. Indeed, their success rate in 

clinical development is less than 10% [33]. The reasons for this failure are complex and 

can involve every stage of the drug discovery process. The identification of a specific 

target for a lead compound remains a challenge. Due to the limited and incomplete 

knowledge of cancer-related proteins involved in the development of human 

malignancies, the identification of validated anticancer drug targets is difficult [34].  

Target identification could be the result of intensive HTS, which is mainly hypothesis 

driven. However, it is difficult to predict whether the interaction between the 

proposed target and the lead compound will induce the expected therapeutic effect 
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before investing in a complete drug-discovery program, and this could result in failure 

in the later stages of drug discovery [34]. Another key challenge for preclinical 

development of anticancer drugs is the limited ability of in vitro and in vivo models to 

mimic all the characteristics of a patient's tumor [34]. Indeed, HTS assays are cell based 

and most of them are performed on bi-dimensional (2D) cell cultures. 2D cell cultures 

fail to reproduce tumor complexity and thus to predict drug efficacy. Therefore, 

compounds with clear antitumor activity in 2D cell models often demonstrate lack of 

activity once the drug is tested on in vivo models or in clinical trials [35].  

Another key point in drug discovery failure is the screening of new anticancer agents 

on rodents. Mice are the most commonly used animal models; however, they have a 

limited ability to accurately mimic most human diseases. Therefore, safety and efficacy 

identified in animal models fail to become translated through clinical trials [36].  

For the reasons outlined so far, the adoption of approaches making the drug-discovery 

process more rational, rapid, and cost-effective is crucial. 

 

2.1 Computer-aided drug discovery 

With the development of computer science, it has become increasingly popular and 

simple to apply computational techniques to the field of chemistry, leading to the 

coining of the term chemoinformatics. Computer-aided drug discovery (CADD) or in 

silico drug discovery is a set of techniques that can be utilized to optimize all phases of 

the drug discovery process. 

Specifically, through CADD it is possible to perform hit-to-lead selection, optimize the 

absorption, distribution, metabolism, excretion, and toxicity profile, and limit safety 

issues [37]. However, these stages are computationally performed and candidate 

compounds must be subjected to in vitro/in vivo experiments for confirmation [38].  

CADD tools are increasingly appreciated because they can reduce the number of small 

molecules to be experimentally evaluated while increasing the success rate by early 

detection of inactive or potentially toxic compounds [38]. Several approved drugs were 

discovered using CADD. Some examples include saquinavir, indinavir, ritonavir (HIV 
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protease inhibitors) [39] and tirofiban (fibrinogen receptor antagonist) [40]. CADD 

methods can be broadly classified as structure-based (SBDD) or ligand-based (LBDD). 

SBDD technique is based on knowledge of the 3D structure of the target obtained by X-

ray crystallography or NMR spectroscopy. SBDD techniques are used to identify or 

draw a ligand based on a specific target. The most used is molecular docking, where 

molecules can be drawn based on complementarity with the structure of the target 

protein. 

In contrast, LBDD is based on the similarity between ligands. Ligand-based techniques 

are used when the target is unknown or when it is known but its 3D structure is not 

available. Prior knowledge of active drugs, such as structural, physical, and chemical 

properties is employed in LBDD methods to predict new molecules with similar 

biological effects. Part of the LBDD methods is pharmacophore modeling, similarity 

search, and quantitative structure-activity relationship (QSAR) models [41]. 

 

2.1.1 QSAR models 

First suggested by Hansch and Fujita in 1964, QSAR modeling is a method based on the 

assumption that the chemical structure of compounds determines their physical, 

chemical, and biological properties. This theory has two consequences: 1) it is possible 

to describe the mathematical relationship between molecular structure and a specific 

property (bioactivity, toxicity, etc.) of a set of molecules, and 2) different molecular 

structures have different chemical properties while similar molecular structures have 

similar molecular properties [42].  

QSAR modeling relies on data analysis and statistical methods to build models that 

could predict biological activities or chemical properties of unknown compounds based 

on their molecular structure [43]. In order to build a QSAR model, it is necessary to 

represent the properties of a molecule in a certain way. This can be done using 

molecular descriptors, which are quantities that numerically quantify molecular 

properties. The objective of QSAR models is to find a trend in the descriptor values 

that explain the trend in biological activity [43]. Initially, molecular descriptors were 

determined experimentally, so they were few in number and encoded chemical-
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physical properties. As knowledge and computational methods have progressed, 

hundreds of molecular descriptors capable of encoding even the biological properties 

of molecules have been calculated using algorithms [44]. Molecular descriptors can be 

classified according to the dimensionality of molecular representation required to 

depict them as 0-dimensional (0D), 1-dimensional (1D), 2-dimensional (2D), 3-

dimensional (3D), and 4-dimensional (4D) (they are described in detail in section 4.1.4). 

Accordingly, the resulting type of QSAR model will be called 0D, 1D, 2D, 3D, or 4D [45]. 

Two different types of QSAR models exist: regression models and classification models. 

Regression models aim to estimate the relationship between a set of independent 

variables (X, the molecular descriptors) and the dependent variable (Y, the outcome), 

to predict a continuous value, i.e. numeric value that have an infinite number of values 

between any two values. Classification models define the relationship between 

independent variables (X) and the discrete dependent variable (Y) to predict the class 

(or label) for a given input data [46].  

QSAR models have been employed in drug discovery for a long time. However, in the 

early days of QSAR modeling, experimental data to construct a model, the database, 

were difficult to obtain. Thus, QSAR models were generated from small and congeneric 

sets of molecules, active against a single target in order to investigate and improve 

their chemical and physical properties through mechanistic interpretation. 

Consequently, the statistical methods used to create these models were simple and 

unsophisticated [47].  However, the increasing use of HTS in drug discovery has 

resulted in an explosion of experimental biological and chemical "big data," which have 

been digitized and are freely available in public online datasets, such as ChEMBL, 

Pubchem, ZINC, etc., some of which are updated daily. The availability of large volumes 

of data makes it easy to create extremely complex datasets that can be used in QSAR 

modeling. However, to handle such complexity, QSAR models abandoned simple 

statistical methods and adopted computational tools that include more complex and 

sophisticated statistical methods, such as machine learning (ML) algorithms.  
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2.2 ML 

ML is a branch of artificial intelligence that uses computational algorithms to parse 

data and learn complex patterns from them, with the aim to make a determination or 

prediction on a new dataset without being directly programmed [48]. For this reason, 

ML is applied to solve problems for which a large amount of data and variables are 

available but the way to relate them is unknown. ML techniques have been introduced 

in the field of drug discovery where they have the opportunity to be applied in every 

stage of the process [48]. 

ML algorithms can be divided into three major types: supervised, unsupervised, and 

reinforcement learning [49].  

In supervised learning methods, data are provided to the model in the form of labeled 

inputs with the respective desired outputs. Supervised algorithms aim to extract a 

general rule that associates the input with the correct output. Depending on the 

independent variables, supervised learning can be used to solve two types of 

problems: classification or regression. In classification, the outputs are divided into two 

(binary classification) or more (multi-class classification) classes and the learning 

algorithm must create a model that assigns unseen inputs to one or more classes. In 

regression, the model aims to predict a continuous value. Supervised learning 

algorithms, such as Random Forest (RF), K-Nearest Neighbors (K-NN), Gradient 

Boosting (GB), and Multilayer Perceptron (MLP) are typically employed for 

classification or regression problems [49]. 

Unsupervised learning methods identify hidden patterns or intrinsic structures among 

unknown input data that allow clustering them according to common characteristics 

not specified by the user. Unsupervised algorithms, such as clustering algorithms, 

association rules, or dimensionality reduction are used for explanatory purposes [48].  

Reinforcement learning is a hybrid of the previous approaches. Here the model 

interacts with a dynamic environment in which it tries to achieve a goal without the 

intervention of a supervisor to guide it. Thus, the model learns by trying and failing 

[50].  
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Moreover, a further approach can be placed between supervised and unsupervised 

learning: semi-supervised learning. Here, an incomplete dataset is provided to train 

the model, where only for part of the data the desired output is specified [51].  

 

The above-mentioned methods vary in the task they can perform, computational 

speed, and number of variables they can handle. It is important to choose the 

appropriate algorithm suitable for the problem and the amount and type of data 

available to construct reliable ML models. [48]. Despite the variety, supervised learning 

algorithms are commonly employed in the field of drug discovery, and have also been 

employed to construct QSAR models [52].     

Since a QSAR classification model has been built in this study, the following explains 

how the construction of an ML-based QSAR model for classification is accomplished.  

A QSAR classification model is generally outlined in four parts. First, a dataset of 

molecules labeled as active or inactive is created and molecular descriptors are 

generated. Second, different ML models are constructed to establish the relationship 

between the descriptors and the biological activity of interest. Third, models are 

validated and their predictive performance is compared to select those that show the 

best ones. Finally, the model is applied to an external data set to verify the ability to 

correctly classify new samples.  

Once this model has been created and validated, it can be used to search for new 

drugs with the desired activity in small or large chemical databases. This procedure can 

be seen as a computational method to perform HTS, since both find new hits, and it is 

called virtual screening (VS) [53]. In particular, searching for new compounds with 

similar activity to known molecules is called ligand based VS [54]. Although HTS and VS 

have the same purpose, the philosophy behind their approach is different [55].  

Actually, HTS aims to test every single compound of a large collection using an 

automated plate-based experimental assay. On the other hand, VS is a computational 

knowledge-based approach that rationalizes the identification of new compounds with 

desired activity to reduce the number of drug candidates to be tested experimentally. 

VS based on QSAR models allows predicting the biological activity of compounds not 

yet synthesized, and this offers substantial advantages. Since the time to perform VS of 
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large databases of molecules is much less than that which would be required to 

synthesize and test them, VS allows the drug discovery process to be speeded up [56].  

In addition, since laboratory instruments, chemical reagents, and biological materials 

are not employed, VS economizes the drug discovery process [56]. 

As already anticipated, ML algorithms enable QSAR models to solve increasingly 

complex problems. As one of the most advantageous properties of these powerful 

algorithms is their high predictive capacity. Initially, QSAR models were able to handle 

a small homogeneous dataset of molecules with a single target, using relatively simple 

algorithms to identify only linear relationships between variables. With the adoption of 

ML algorithms, QSAR models became capable of handling complex datasets, capturing 

non-linear relationships between molecular descriptors and biological properties. A 

complex dataset could include thousands of molecules tested again multiple targets. 

QSAR model that can predict the activity of molecules against multiple targets is 

defined as multi-target QSAR (mt-QSAR) [57]. 

Mt-QSAR models have been successfully applied in anticancer drug discovery relying 

on two main approaches [58]. The first approach performs large-scale prediction of 

growth inhibition patterns employing hundreds to thousands of molecules against tens 

to hundreds of cancer cell lines belonging to many different cancers [59–65]. This 

complex problem requires either chemical information and/or cell line profiling data.  

The second approach is based on mt-QSAR models in which the multiple targets are 

represented by different cell lines belonging to the same type of cancer [58]. This 

approach is leading to the identification of new compounds active against one type of 

cancer. Consequently, new drugs identified on the basis of these mt-QSAR models 

could prove to be highly active against a tumor type. Several of these models have 

been developed since the 2010s to predict trough VS and/or to allow the design of 

compounds active against several cancer cell lines belonging to connective tissue [66],  

prostate [67], breast [68], brain [69], colorectal tract [70], and bladder [71].  

These above-mentioned models rely on ML algorithms and statistical approaches that 

make it possible to perform transformations of the molecular descriptors so that they 

can encode the biological activity of molecules not only on the basis of their molecular 
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structures but also in relation to the target for which they have been found to be 

active. One of these approaches, the Box-Jenkins moving average approach, was used 

in the present study and is discussed in detail in section 4.2.2.  
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3. Aim of the study 

The extremely expensive cost and time of drug discovery have increased the need for 

methods to identify new anticancer drugs more rapidly and inexpensively. Thanks to 

the development of computer science and the rapid development of biological and 

chemical “big data” obtained from HTS, ML methods emerged as effective tools for all 

phases of drug discovery to speed up and economize the process. One of the most 

interesting applications of ML is in QSAR modeling, allowing the creation of predictive 

models based on complex libraries of compounds tested against multiple targets. Such 

mt-QSAR models can correlate the chemical structure of compounds dataset with a 

complex biological endpoint such as cytotoxicity against cancer cells. By using them as 

VS technique, it is possible to identify whether new unknown molecules are cytotoxic 

towards cancer cells based on their structural similarity to the compounds dataset that 

generated the model. 

 

The aim of my Ph.D. project was to employ ML techniques to generate and optimize an 

mt-QSAR classification model that can be used for VS purposes and to identify new 

drugs potentially effective against several cancer cell lines belonging to leukemias, 

lymphomas, and myelomas. This model could represent the first mt-QSAR model for 

the prediction of molecules active against several hematological cancer cell lines. 

Indeed, to the best of our knowledge, there are no mt-QSAR models for the prediction 

of cytotoxic compounds for hematological cancers reported in the literature. 

 

To accomplish this aim, I built a dataset of cytotoxic molecules tested on 43 different 

hematological cancer cell lines, extracted from the database ChEMBL. In order to 

describe the activity of the molecules, molecular descriptors were calculated for each 

molecule. Then, a transformation of the molecular descriptors was operated through 

the Box-Jenkins approach to enable the model to discriminate the activity of molecules 

according to their target. 

Furthermore, I applied different ML classification algorithms to generate a predictive 

model, including RF, k-NN, Support Vector Classifier (SVC), GB, and MLP.  
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Once the mt-QSAR model has been built, I investigated different approaches to 

enhance the predictive ability, among which dimensionality reduction techniques and 

the variation of some properties of the dataset such as the cutoff value and the 

number of experimental conditions.  

Finally, in order to validate the reliability of the model, I applied the best predictive 

model for the VS of a small dataset of molecules tested in our laboratory, to compare 

the outcome with the experimentally obtained results.  
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4. Research methods and instruments 

4.1 Data Acquisition and Dataset Construction 

The chemical and biological data necessary for the construction of the dataset were 

retrieved from two public online databases: Cellosaurus and ChEMBL.  

Cellosaurus [72] is a knowledge resource on cell lines available on the ExPASy server 

(https://web.expasy.org/cellosaurus/) used to search for leukemia, lymphoma and 

myeloma cell lines employed in biomedical research. This search resulted in a list of 71 

hematological cancer cell lines. Subsequently, the ChEMBL database 

(https://www.ebi.ac.uk/chembldb) was sought for molecules with cytotoxic activity 

assayed against those cell lines. ChEMBL is a publicly available database of compounds 

and bioactivities from multiple sources, curated by the European Molecular Biology 

Laboratory – European Bioinformatics Institute (EMBL-EBI).  ChEMBL version 31 

contains more than 19 million bioactivity values, over 2.3 million unique compounds, 

and 15000 targets. The majority of the information is retrieved from more than 85000 

scientific publications, but also both nonprofit and commercial organizations’ 

deposited data sets [73]. The research was performed by inserting the name of each 

cell line found on Cellosaurus as a target in the ChEMBL query toolbar. When 

information on molecules active against that target is available, a section called 

'Activity Charts' appears in the menu. Here the molecules are listed with their 

bioactivity indices (IC50, GI50, EC50, CC50, etc.). Since cytotoxic activity is usually reported 

in terms of IC50 (concentration capable of inhibiting 50% of cell viability), only 

molecules with a corresponding IC50 value were selected and downloaded in comma-

separated values (.csv) format. This resulted in 71 separate datasets, each comprising a 

single cell line, their respective bioactive compounds, and information.  

Utilizing Python version 3.9, an open-source programming language popular for 

scientific computing, and Jupyter Notebook (https://docs.anaconda.com/ae-

notebooks/user-guide/basic-tasks/apps/jupyter/index.html), a Python-based web 

interactive computing platform for big data processing and ML, the 71 individual 

datasets were fused to build a single one consisting of 66787 molecules and 19 

columns containing information about each molecule.  

https://web.expasy.org/cellosaurus/
https://www.ebi.ac.uk/chembldb
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Subsequently, the number of columns was reduced to 10, retaining only information 

essential to finalize the construction of the dataset. The dataset can be visualized as a 

matrix of rows and columns. The columns contain information about the molecules, 

and the rows represent each molecule with all the information about it and are 

defined as samples. The columns of this initial dataset are listed below and a brief 

description is provided for each one. 

 

• Molecule ChEMBL ID: is a univocal alphanumeric code used to identify 

molecules within the ChEMBL database. 

• SMILES: Simplified Molecular Input Line Entry System (SMILES) format, is the 

2D notation through which the structure of the molecules is represented [74]. 

• Standard Type: is the index indicating the bioactivity of the molecule, such as 

IC50. 

• Standard Relation: mathematical symbol determining the relationship between 

Standard Type and Standard Value, such as “=, <, >” etc. 

• Standard Value: numerical value corresponding to the concentration of 

substance required to reach the IC50. 

• Standard Units: the concentration unit 

• Assay Description: text string describing the conditions of the assay which 

determined the bioactivity of the molecule 

• Assay Cell Type: the tumor cell line on which the molecule was assayed  

• Target Name: target name of the molecule 

• Target Type: target type of the molecule 

 

On the dataset thus composed, the data curation process was undertaken. 

 

4.1.1 Data Curation 

The successful predictive performance of a ML model depends on at least 80% of data 

quality and 20% of the algorithm applied [48]. Therefore, a higher volume of data does 

not always correspond to better predictions. To achieve this, the data must be high 
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quality, meaning it must be curated to be as much accurate and complete as possible. 

An ideal training set should contain data systematically generated, that are complete 

and contain good annotations [75]. In real cases, very often happens that data are 

obtained from multiple sources and are highly variable and with inhomogeneous 

quality. The dataset used in my research project belongs to the latter case. As the data 

reported on ChEMBL are manually extracted from the scientific literature, they could 

be prone to the aforementioned issues. Therefore, before applying any ML algorithm, 

it is necessary to pre-process the data and maximize its usability. This process is called 

data curation and represents a crucial step in dataset construction. 

There are no absolute rules for increasing the data quality of a dataset; the actions 

performed for data curation depend mainly on the size of the dataset and the type of 

information needed to solve the problem, which should be preserved as much as 

possible. 

Analyzing the dataset and checking the values in each column revealed several data 

homogeneity issues, they are described in detail in section 5.1. 

Considering the large scale of the dataset and that any information contained in the 

columns at this stage of construction is essential, samples that had non-compliant 

values were eliminated. Despite the vast size of the dataset, the elimination of samples 

required a brief amount of time; in fact, by coding in Python on Jupyter Notebook it 

was possible to filter the dataset according to specific search keys and remove samples 

that did not satisfy or had the wrong values.  

 

4.1.2 Cutoff value 

Once the samples composing the dataset were defined, the next step was to 

determine a criterion that would allow the model to classify the molecules, therefore 

termed the cutoff value. That criterion was identified in the activity value contained in 

the Standard Value column, allowing molecules to be discriminated based on their 

cytotoxicity. Since there is no consensus regarding the optimal value to be used as a 

cutoff value in drug discovery problems, during the model development step this was 

chosen arbitrarily corresponding to 1 µM. In this way, all molecules with an activity 
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value less than or equal to 1 µM were considered active, while those with an activity 

value higher than 1 µM were considered inactive. To make the classification task easier 

for the algorithm that will create the predictive model, the molecules were assigned a 

Boolean variable, i.e. a variable that can take only two values, in this case, 1 for active 

molecules, and -1 for inactive ones. In the case of two categories, the classification 

problem is called binary classification or two-class classification. This procedure was 

carried out in Excel, where the dataset was sorted according to increasing Standard 

Values, a new column called Toxicity was created, and the appropriate Boolean 

variables were inserted for each molecule.   

A cutoff value of 1 µM was considered advantageous because once the model is built, 

validated, and used for VS, it can allow new active molecules to be identified at 

submicromolar or at most micromolar concentrations. Thus, this approach could allow 

very early detection of potentially highly active drugs.  

 

4.1.3 Standardization  

Chemical structures used for ML problems in drug discovery can be represented in 

multiple ways [76]. Consequently, when a model has to be generated with a dataset 

containing thousands of molecules, they should be standardized. Standardizing 

chemical structures is about making the molecular representations uniform, clean, and 

comparable, improving the quality of the data. 

In addition, the standardization process is crucial for the good calculation of molecular 

descriptors, which is based on the assumption that the molecular structure to which 

the mathematical algorithms are applied is correct [77]. Incomplete chemical 

structures, the presence of secondary molecules such as solvents or salts, the presence 

of charges, etc. can prevent or obstacle the calculation of certain molecular 

descriptors. Therefore, standardization is a mandatory process for constructing a 

dataset in the context of QSAR modeling.  

In my project, the structures of the compounds underwent a double standardization 

process, first using ChemAxon Standardiser version 21.2.0 and then Open Babel, both 

free software dedicated to this purpose [78]. To do so, only the Molecule ID and 
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SMILES columns were selected from the dataset and transferred to a new file to be 

submitted to the software. The double standardization made it possible to transform 

implicit hydrogen atoms into explicit ones, calculate the two-dimensional atom 

coordinate, calculate the three-dimensional atom coordinate, represent all aromatic 

rings in the same way, neutralize charged molecules, remove fragments of the 

molecule by keeping only the largest one if the chemical structure was multi-fragment, 

and remove predefined solvent and salt fragments from multi-fragment molecules. 

At the end of the standardization process, the molecules were converted into structure 

data files (SD files). SD files encode chemical structure data using the molfile 

connection table format, which represents chemical structures using a block of text 

listing atoms, bonds, connectivity, and coordinates for the 3 dimensions of space: x, y, 

and z. Chemical software for the calculation of molecular descriptors can interpret SD 

file format and translate the content into a graphic chemical structure and data table 

[79]. Through this conversion, molecules went from being represented through the 

SMILES format that encodes 2D information to the SD files format that can also encode 

3D information.  

 

4.1.4 Molecular descriptors calculation 

ML algorithms need to be fed with numerical inputs. Thus, once the data has been 

curated and standardized, the structural information included in the chemical files 

needs to be converted into numerical values that can be used as input for model 

building [77]. Since the inputs are the information that the ML algorithm employs to 

train the model, they must be informative numbers, not simply arbitrary or sequential. 

Many different numerical representations have been proposed to represent the 

molecules and are overall defined molecular descriptors. In this perspective, molecular 

descriptors are the meeting point between ML algorithms and QSAR modeling. 

Molecular descriptors can be classified based on the level of molecular representation 

required to represent them in 0D, 1D, 2D, 3D, 4D (Fig. 3).  
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Figure 3. Representation of the type of information that five classes of theoretical descriptors 
can encode about the same molecular structure [80]. 

 

0D descriptors do not require optimization of the molecular structure and are 

independent of conformational problems, they can be always easily calculated and 

interpreted. 0D descriptors do not provide any information about the entire molecular 

structure, they encode information about atom and bond counts, as well as the sum or 

average of the atomic properties, which makes them useful to model only 

physicochemical properties [81].  

1D descriptors can be calculated from the substructure of the molecules and are often 

called fingerprints. Fingerprints are binary vectors where the presence of a 

substructure is indicated with 1 and the absence with 0. Like 0D descriptors, 

fingerprints do not require optimization of the molecular structure and are 

independent of conformational problems, they can be easily calculated and 

interpreted. Different from 0D descriptors, fingerprints can model both 

physicochemical and biological properties. Since these two types of descriptors encode 

very simple information, they are often used in combination with more complex 

descriptors [80].  
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2D descriptors are based on a graph representation (often an H-depleted molecular 

graph) of the molecule and represent graph-theoretical properties. They can be also 

called topological descriptors since they provide information on molecular topology 

based on the graph representation. Topological descriptors are usually divided into 

two categories: topostructural and topochemical indices [82]. Topostructural indices 

encode information on the adjacency and distance of atoms in the molecular 

structure, while topochemical indices describe both topological and chemical 

information [81]. Typical 2D descriptors are the adjacency matrix, the Coulomb matrix, 

or the distance matrix. Since topological descriptors are sensitive to the structural 

characteristics of the molecule, such as size, shape, symmetry, branching, and cyclicity, 

they are commonly employed in QSAR modeling. 

3D descriptors are called geometrical descriptors since derived from the geometrical 

representation of the molecules. For this property, 3D descriptors can define the 

molecule as an object in space, in terms of the atom types and their spatial 

coordinates x-y-z, bearing high information and discrimination content [80,81]. 

However, due to their complexity, the geometrical descriptors can be time-consuming 

to calculate and can increase the complexity of the classification problem [81]. For 

these reasons, topological descriptors, fingerprints, and 0D descriptors are usually 

preferred to describe large databases of molecules [81]. 4D descriptors, also called 

grid-based descriptors, are based on geometrical representation but introduce a fourth 

dimension in order identify and characterize quantitatively the interactions between 

the molecule and their target. These descriptors can also be used to describe the 

multiple conformational states of the molecule. 4D descriptors contain more 

information than any other molecular descriptor, but due to their extreme complexity 

are difficult and time-consuming to calculate [80].  

Several software packages, both commercial and free, are available to compute 

molecular descriptors, such as PaDEL-Descriptor [83], Mordred [84], CDK [85], RDKit [ 

http:// www.rdkit.org], alvaDesc [86], ChemoPy [87], PyDPI [88], and Rcpi [89]. These 

software packages provide thousands of descriptors encoding a broad spectrum of 

pharmacodynamics, pharmacokinetic and toxicological properties, among others.  
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In my project, molecular descriptors were calculated using the software alvaDesc 

version 2.2. AlvaDesc is a commercial software that enables the calculation of more 

than 5666 different molecular descriptors divided into 30 logical blocks [86] covering 

from 0D to 3D descriptors. It takes in input SD files format and from the 

representations of the molecules allows a plethora of algorithms to be applied to 

calculate the descriptors which best fit the problem to be addressed.  

During model development, only molecular descriptors from 0D to 2D were used to 

describe the molecules of the dataset. On the other hand, in the model optimization 

phase, another dataset with 0D-3D was built to test how the type of information 

encoded by the different descriptors affected predictive performance. 

Since alvaDesc allows the calculation of a large number of descriptors, it implemented 

methods to remove non-informative descriptors, which might not accurately describe 

molecular properties or constitute redundant information [86]. Precisely, through 

these methods, it was possible to exclude those descriptors for which there was at 

least one missing value, those with a correlation of 95%, and those with a variance of 

less than 0.001. After this operation, the descriptors were inserted into the dataset. 
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4.2 Model development 

Generalization is the aim of every good ML model and consists in find statistical 

patterns in the training set that allows it to correctly predict new unseen data [48]. To 

be able to generalize, the trained model needs to discriminate signal, i.e. relevant 

information, from noise, i.e. irrelevant information. 

When the model is unable to generalize correctly, two conditions can occur, 

underfitting and overfitting [90,91].  

Underfitting occurs when a model is unable to capture the signal from the data. This 

condition arises when the dataset used to train the model contains few samples, and 

the data are not varied enough to describe the problem [90].  

Model overfitting occurs when the model learns both signal and noise, producing 

predictions that are very accurate on the training set but significantly less accurate on 

new unseen data. This condition arises when the model is trained on an overly noisy 

dataset, i.e. one with many uninformative information. For determining whether the 

model has generalized properly on the training set data, two additional sets are 

needed, termed validation and test set [91].  

The division into training, test, and validation sets (Fig.4) is conducted before training 

the model. Training and test sets are obtained by dividing the dataset set into two 

parts. The largest part, with the most data, represents the training set ad is used to 

train the model. The smallest part represents the test set and is employed to assess 

the generalization performance of the model. The validation set is obtained as a 

smaller subset of the training set, is independent of it but follows the same probability 

distribution, and is employed to tune the parameter of the trained model. 

Once the dataset has been divided, the process leading to the generalization 

assessment proceeds as follows: the model is trained using the training set. During the 

training phase, the model parameters are tuned and different models with different 

parameter combinations are evaluated by the validation set. Training and tuning are 

iterative processes, which continue until the combination of model parameters that 

achieves the best predictive performance is identified. Once the predictive model is 

obtained, its generalization is evaluated through the test set. Since the test set does 
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not participate in the training and tuning process, can be considered an external 

dataset and can be used to assess the generalization performance of the model.  

 

 

Figure 4.  Schematic representation of the dataset division in training, test, and validation sets. 

 

4.2.1 Dataset division 

The dataset division in my project was conducted employing QSAR-Co-X software. 

QSAR-Co-X is an open-source toolkit developed by the research group of professor 

Maria Natalia Dias Soeiro Cordeiro to support the generation of mt-QSAR models 

based on the Box-Jenkins moving average approach [92]. QSAR-Co-X is divided into 

four modules, it allows the use of a wide variety of utilities that follow the QSAR 

modelling rules dictated by the Organization for Economic Cooperation and 

Development (OECD) [93] and was used in almost all phases of my project. 

Module 1 allows the division of the dataset according to three methodologies; the one 

employed in my project is random division. In random division, the dataset is shuffled 

and samples are randomly selected and inserted into the training, validation, or test 

set according to the percentage specified by the user. Therefore, since the 70:30 

proportion is commonly used to divide the training from the test set [94], by setting 

the percentages in QSAR-Co-X, the training set (70% of the data from the initial 
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dataset) and the test set (30% of the data from the initial dataset) were generated. To 

understand how the third set is generated, it is first necessary to discuss the Box-

Jenkins moving average approach. 

 

4.2.2 Box-Jenkins approach 

The Box-Jenkins moving average approach is a mathematical model originally used for 

forecasting data following time series, which measures the robustness of a dependent 

variable in relation to changing variables. This approach is fundamental for developing 

mt-QSAR models. However, in mt-QSAR modeling, the Box-Jenkins approach is not 

applied to time series, but rather to experimental and/or theoretical conditions [95].  

Normally, molecular descriptors encode the physicochemical and biological properties 

of the compound exclusively according to their structure. Consequently, they will not 

be able to discriminate the cytotoxicity of a molecule when tested against different 

hematological cancer cell lines. The Box-Jenkins approach represents a solution 

allowing the calculations of moving averages, here represented by deviation 

descriptors, calculated by input descriptors [96]. Such deviation descriptors can 

encode also information about experimental and theoretical conditions under which 

the biological activity manifested itself [95].   

The QSAR-Co-X module 1 allows the calculation of deviation descriptors according to 

four different equations. Here, it has been used the first equation, which is 

represented as follows:  

 

𝛥(𝐷𝑖)𝑐𝑗 = 𝐷𝑖 − 𝑎𝑣𝑔(𝐷𝑖)𝑐𝑗 

(1)  

Where 𝛥(𝐷𝑖)𝑐𝑗 is the new descriptor coding the experimental conditions. 𝛥(𝐷𝑖)𝑐𝑗  

represents the standard deviation obtained by subtracting the value of the original 

descriptor 𝐷𝑖, namely the input descriptor calculated by alvaDesc, from the average 

value of that descriptor 𝑎𝑣𝑔(𝐷𝑖)𝑐𝑗 concerning an experimental condition [97]. In the 
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model-building phase, only one experimental condition relating to the target cell line 

was included in the dataset. To do this, the Target Name column containing the name 

of the cell line to which the molecules were cytotoxic was reinserted into the dataset. 

After that, 𝑎𝑣𝑔(𝐷𝑖)𝑐𝑗  of the molecules tested against a specific cell line was 

calculated. This process was repeated for all cell lines in the dataset. Finally, once 

𝛥(𝐷𝑖)𝑐𝑗  relative to all cell lines have been obtained, the model can use these deviation 

descriptors to discriminate the cytotoxicity of molecules according to different cell 

lines. 

Indeed, once the new 𝛥(𝐷𝑖)𝑐𝑗descriptors have been calculated, the ML algorithm will 

rely exclusively on them to create the predictive model, and no longer on the input 

descriptors. 

During the optimization phase of the model, following the same procedure, two 

additional experimental conditions were included in the dataset, relating to the time 

point and the type of assay used to assess cytotoxicity. To do this, two new columns 

were created, named Cd2 (time point) and Cd3 (assay type) respectively, and short 

alphanumeric values corresponding to each time point or bioactivity assay were 

assigned to these columns.  

Equal time points or equal bioactivity assays have equal alphanumeric values. 

Within the dataset, the number of new deviation descriptors 𝑛𝑢𝑚. 𝛥(𝐷𝑖)𝑐𝑗 will be 

represented by the number of input descriptors 𝑛𝐷𝑖 multiplied by the number of 

experimental conditions included in the model (k): 

 

𝑛𝐷𝑖 × 𝑘 = 𝑛𝑢𝑚. 𝛥(𝐷𝑖)𝑐𝑗 

(2)  

It is therefore intuitive that the more experimental conditions to be included in the 

model, the greater the number of deviation descriptors will be. 

To accomplish the calculation of deviation descriptors, equation 1 was applied to the 

training set. Subsequently, the training set with its deviation descriptors was randomly 

subdivided in training set and test set according to the percentage specified by the 

user. In this phase, 80% of the data were kept within the training set while 20% were 
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used to form a test set, which in this case represents a calibration set [92]. At this 

point, the 𝑎𝑣𝑔(𝐷𝑖)𝑐𝑗  values obtained in the training set were used to calculate the 

deviation descriptors of the previous test set, the one obtained from the initial splitting 

of the dataset, renamed validation set to avoid misunderstandings (Fig. 5). This 

validation set can be effectively used to evaluate the generalization performance of 

the model since the data composing it participates neither in the development phase 

of the model nor in the calculation of the deviation descriptors [92].   

 

Figure 5. Schematic representation of the dataset division according to QSAR-Co-X. 

Thus, at the end of the data division and after applying the Box-Jenkins approach, the 

dataset is divided into training, test, and validation sets (Fig. 5). For the sake of clarity, 

contrary to what was previously explained, the various sets will be named according to 

the division made by QSAR-CO-X, where the training set represents the set used to 

train the data, the test set represents the test for tuning the model parameters and 

the validation set represents the set to determine the model generalization. 

Once the calculation of the deviation descriptors and the division of the dataset had 

been completed, it was possible to build the predictive model. 
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4.3 Predictive model generation 

The construction of the predictive model involved the application of different ML 

algorithms, to identify the one capable of generating the model with the best 

predictive capabilities. To do this, was used QSAR-Co-X module 2, which allows to 

generate predictive non-linear models by applying different ML algorithms 

implemented in the scikit-learn library [98], and tuning their parameters. Most ML 

algorithms have some parameters (usually more than one) called hyperparameters, 

that need to be optimized to maximize the predictive performance of the model. The 

process of optimization is called hyperparameter tuning and consists in searching for 

the best combination of hyperparameter values. Several methods have been proposed 

for hyperparameter tuning, the one implemented in QSAR-Co-X and employed in my 

project is called grid search, which represents the optimization standard [99]. Grid 

search provides an exhaustive search among a subset of hyperparameters of the 

algorithm being used to generate the model. The subset may be user-defined [99]. The 

algorithms used for the construction of the mt-QSAR model were RF, GB, SVC, K-NN, 

MLP. For the tuning of their hyperparameters, grid search was performed using a file 

containing a subset of parameters and their values included in the QSAR-Co-X package, 

and evaluated with 5-fold cross-validation. In 5-fold cross-validation, the training set is 

randomly divided into 5 subsets of the same size [100]. One of the subsets is used to 

evaluate the performance obtained by training the remaining 4 subsets with a 

combination of hyperparameters. This validation is repeated 5 times, each time using a 

different subset for validation and the remaining 4 subsets to train the model with the 

same combination of hyperparameters. At the end of the training, an average of the 5 

iterations is performed and model evaluation metrics are returned. The entire 5-fold 

cross-validation is repeated several times, each time using different combinations of 

hyperparameter values [100]. Afterward, the performance of all 5-fold cross 

validations is compared using the test set and the model with the combination of 

hyperparameters that resulted in the highest scores in the evaluation metrics is 

selected. Finally, the best predictive model is evaluated using the validation set to 

assess its generalization performance. All these operations are performed via QSAR-

Co-X, where it is necessary to upload the training set, the test set, and the file with the 

hyperparameters for the model of interest. The model is then trained and the best-



40 
 

performing combination of hyperparameters is selected. At the end of this process, the 

results of the trained model are returned, and it is validated by uploading the 

validation set. 

The algorithms used to build the mt-QSAR model are listed below, for each one a brief 

description is provided. 

 

4.3.1 ML algorithms 

4.3.1.1 k-NN  

k-NN is an algorithm that predicts the class to which a data point belongs based on 

proximity. k-NN represents each element of the dataset as a point in a d-dimensional 

space where d represents the number of features [101]. K-NN is based on the 

assumption that similar data can be found adjacent to each other. Thus, given input 

data, its class label is determined by comparing it with its nearest neighbor data points.  

The classification process operated through k-NN consists of the following stages: 1) 

during the training process k-NN store all the training data. When the algorithm is 

asked to predict new data, it compares the new data with the training data. Finally, the 

new data is assigned to the class based on a majority vote [102], i.e. is assigned to the 

class that is most represented in the k- nearest neighbors, where k is a 

hyperparameter  [102]. Particular attention must be taken when choosing the value of 

k. Low values may make the classifier susceptible to overfitting, while high values may 

lead the classifier to incorrectly predict a label because points that are very far have 

been counted in the neighborhood. 

The distance between data points can be evaluated in different ways, often Euclidean 

distance is employed [101]. 
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4.3.1.2 SVC  

Many ML models are linear, meaning they can only linearly represent the classes of the 

data of a problem, which makes them too simple for many applications. SVC, instead, 

is a linear model that can be used to represent non-linear problems [103]. To solve the 

classification problem SVC aims to find a hyperplane in a d-dimensional space (where d 

represents the number of features) that can separate the elements of that space into 

two classes [104].  

Many hyperplanes can separate the two classes of data points. The objective of SVC is 

to find the one with the maximum margin, i.e. the maximum distance between the 

data points of both classes [104]. Maximizing the distance margin allows future data 

points to be classified with higher confidence. 

Hyperplanes are decision boundaries whose shape depends on the number of 

features. When the number of features describing a data point is 2, the hyperplane is 

represented by a line. If the features are 3, the hyperplane is represented as a 2D 

plane. When the number of features is more than 3, the hyperplane becomes very 

complex and can no longer be represented. Consequently, the higher the number of 

features in a dataset, hence its dimensions, the more difficult and time-consuming will 

be the task of finding a hyperplane. 

To determine the best hyperplane, SVC uses the data points closest to the hyperplane, 

which are called support vectors, and influence its position and orientation. By using 

these support vectors, the classifier maximizes the margin [104]. 

However, in many cases, not all data points can be separated by a hyperplane. 

Through the adjustment of a specific hyperparameter, termed parameter C, it is 

possible to allow some data points (as few as possible) to cross the decision boundary, 

making the model more flexible but more prone to classification errors [104]. 

In other cases, however, the separation of data with hyperplanes is not possible at all. 

Therefore, the SVC algorithm provides another hyperparameter that enables the 

separation of non-linear patterns. This is achieved through the use of a transformation 

function that maps in a new linear space, a non-linear model [104]. 
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Thus, a non-linear model is elevated to a higher dimension to make it linearly 

separable. 

 

4.3.1.3 RF 

RF is an algorithm based on the concept of ensemble learning, in which several 

individually weak (with poor accuracy) classifiers are combined to generate a strong 

(with high accuracy) classifier [105]. The combination is successful only when the 

individual classifiers are, at least partially, independent of each other, which means 

they do not make the same errors  [106].  

RF is thus called because it is a combination of multiple decision tree classifiers. A 

decision tree (DT) is a non-parametric algorithm with a hierarchical tree structure. This 

structure begins with a root node from which outgoing branches flow into internal 

nodes, also known as decision nodes [107]. The nodes without a descendant are called 

terminal nodes, or leaves. The root and internal nodes represent a test over a given 

feature of the dataset, while branches represent the decision rules [107]. In the 

classification problem, terminal nodes correspond to the predicted class. 

In a DT, to predict the class of a data point the algorithm starts from the root node and 

descends through the branches according to the results of the feature test. The 

classification task is accomplished when it reaches a terminal node. 

In RF independence between the classifiers can be achieved by training the DT on 

different portions of the training set, for this reason, RF is termed a Bagging algorithm. 

To obtain a single predictive model, the individual DT outputs its own decision (the 

class of the data point), and all the decisions about that specific data point are then 

merged at some level of the classification process. Specifically, each decision is 

combined through a fusion method. The fusion method employed by RF is the majority 

vote rule, in which each DT votes for a class and the data point is assigned to the class 

with the most votes. 

 

 



43 
 

4.3.1.4 GB  

GB is another classification algorithm that belongs to the group of ensemble learning 

algorithms. Unlike the Bagging method where each classifier is independent and the 

final solution is dictated by majority voting, Boosting aims to seek continuous 

improvement [108]. In this way, this method also attempts to transform weak 

classifiers into strong classifiers. Boosting is also known as a sequential ensemble since 

weak classifiers are produced sequentially during the training phase, and not in parallel 

as in RF in which all classifiers are independent. Like RF, GB uses multiple DTs as weak 

learners. Here, the performance of the model is improved by assigning a greater 

weight (a real number that determines the importance of input data for the output) to 

the incorrectly classified samples at each iteration of Boosting  [108]. 

Therefore, the principle behind the operation of the Boosting algorithm is the 

generation of multiple weak classifiers and the combination of their predictions to 

form a strong rule [108]. This is done by generating weak rules on different 

distributions of the data set at each iteration of the training phase of the algorithm. 

Finally, the weak classifiers are combined to form a strong classifier that predicts a 

more accurate result from a stronger set of rules.  

Thus, Boosting method relies on incremental learning, an iterative process in which a 

new classifier is added after each iteration and trained on the data points incorrectly 

classified by the previous classifier [109].  

Therefore, weak classifiers built in subsequent iterations focus more on the examples 

that the previous classifiers were unable to classify correctly.  

 

4.3.1.5 MLP 

The building blocks of neural networks are artificial neurons, so-called because they 

resemble biological neurons. Biological neurons are the basic elements of the nervous 

system. They consist of the soma, which is the cell body of the neuron from which 

originate minor fibers called dendrites, and a main fiber called the axon. Dendrites 

collect input from afferent neurons and propagate it to the soma, which propagates it 

to the axon to transmit the output from one neuron to another, even if they are very 

distant. The axon terminates with minor branching fibers, which make contact and 
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propagate information to a second neuron through an electrochemical process 

involving the release of neurotransmitters. 

The simplest and oldest model of an artificial neuron is the perceptron, derived from 

the model of Frank Rosenblatt in 1958 [110]. The perceptron can be considered a non-

linear function that transforms inputs (x1, x2, ...xn) into an output y, and consists of two 

types of nodes: input nodes, representing the attributes, and output nodes, 

representing the output of the system. Each input node is connected via a weighted 

link to the output node, where the weight of the connection determines the strength 

of the connection  [110]. The configuration of the weights is used to optimize the 

connections to achieve a good correlation between the input and output of the model. 

A perceptron determines the output value by summing all input values multiplied by 

their weights, then removing a bias factor (correction) from the sum, and finally 

analyzing the sign of the result through an activation function. During the training 

phase, the weights are repeatedly adjusted until the output of the system becomes 

consistent with the output of the training data, i.e. with the expected results. This is 

referred to as the learning rate. Perceptrons can take various binary inputs to produce 

a single binary output. 

Optimization and enhancement of the perceptron enabled the creation of artificial 

neural networks (ANNs) which consist of several neurons organized in layers [111].  

The simplest type of neural network is the MLP, which comprises 3 layers: input layer, 

hidden layer, and output layer. 

In MLP, each neuron in one layer is connected to each neuron in the next layer, which 

is why the network is defined as fully connected [111]. 

Traditional ML algorithms require to be performed by users with an in-depth 

knowledge of the topic related to the problem that is being solved. The quality of an 

ML model depends mainly on the quality of the data set, which requires meticulous 

data curation work by an expert in the problem field. On the other hand, ANNs, such as 

MLP, do not require the intervention of experts because they can learn the features 

directly from the data and learn how to represent the data, providing predictive 

models that can be even better than those obtained with ML algorithms.  
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ANNs can be built in a variety of sizes, with complexity increasing proportionally as the 

size increases. Complexity can greatly influence the model performance, for this 

reason, is essential to choose an appropriate number of hidden layers and neurons in 

each layer. ANNs with two or more hidden layers are called deep neural networks 

(DNNs), in which first hidden layers answer very simple and specific questions about 

the input data, and later layers compute a more abstract, high-level representation of 

the data [112]. 
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4.4 Performance evaluation metrics 

Performance evaluation is an essential step during model development that can be 

performed through evaluation metrics. Evaluation metrics allow not only to assess the 

prediction performance of a model but also allows to compare predictive 

performances across models.  

Evaluation metrics used in this project were computed by QSAR-Co-X. All of them are 

derived from the confusion matrix, a well-known evaluation parameter for binary 

classification problems. A confusion matrix for a binary classification problem is a 2 x 2 

matrix in which the rows constitute the actual class and the columns the predicted 

class of data (Fig. 6). It can be represented as a table with four combinations of 

possible results:  

Figure 6.  Representation of the confusion matrix for a binary classification problem. 

True positive (TP): the model predicts a positive result (active compound) and it is 

actually positive 

True negative (TN): the model predicts a negative result (inactive compound) and it is 

actually negative 

False positive (FP): the model predicts a positive result but it is actually negative 

False negative (FN): the model predicts a negative result but it is actually positive 
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In this manner, the orange diagonal of the matrix indicates correct prediction, while 

the blue diagonal indicates the incorrect ones. 

The outputs deriving from the confusion matrix are utilized to calculate several other 

classification metrics such as: 

- Sensitivity (recall or true positive rate):  is the ratio of TP predictions and total P 

predictions. Sensitivity can assume values between 1 (best value) and 0 (worst 

value). 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝑇𝑃

𝑃
 

(3)  

- Specificity (true negative rate): is the ratio between TN predictions and total N 

predictions.  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
=

𝑇𝑁

𝑁
 

(4)  

- Accuracy (ACC): is the result of the all correct predictions divided by all the 

predictions of the model.  

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
=

𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
 

(5)  

 

SN, SP, and ACC can assume values between 1 (best value) and 0 (worst value). 

 

- Matthews Correlation Coefficient (MCC): is a measure that takes into account 

every predictions of the confusion matrix and all their combinations. 

 

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
  

(6)  
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The MCC can return a value between −1 and +1, where +1 represents a perfect 

accordance between observed and predicted values, 0 indicates random 

prediction and −1 represents total disagreement between observed and 

predicted values. 

 

- Area Under the Curve – Receiver Operating Characteristic (AUC – ROC) curve: 

ROC is a probability curve and AUC represents the degree of separability 

between two classes. The ROC curve is built with TP on the y-axis against the FP 

on the x-axis. 

AUC-ROC can assume values between 1 (best value) and 0 (worst value), with 

0.5 corresponding to random prediction in balanced dataset. 

 

Since there is no perfect method to describe the confusion matrix, all these metrics 

were considered when comparing the various models. However, particular attention 

was given to ACC and MCC since they consider both positive and negative categories. 

ACC is one of the most frequently utilized metrics in binary classification problems. 

However, when the dataset is unbalanced it could provide an over-optimistic 

evaluation of the predictive capacity of the model since it does not consider the 

proportion of positive and negative elements [113]. On the other hand, MCC is a more 

trustworthy statistical factor as it returns a higher value the more correct the 

predictions are in all four categories of the confusion matrix. In addition, it considers 

the proportion between positive and negative elements [113]. 
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4.5 Dimensionality reduction 

As previously explained, a dataset for classification is composed of a matrix of rows 

(samples) and columns. Once the molecular descriptors, and lately the deviation 

descriptors are calculated and integrated into the dataset, each descriptor constitutes 

a new column. These columns are also called features or dimensions. Therefore, the 

dataset will contain as many dimensions/features as the descriptors calculated to 

describe the problem. 

Features can be compared as variables in a scientific experiment since they are 

characteristics of the phenomenon under observation that can be quantified or 

measured. When features are fed into a ML algorithm the network tries to discern 

relevant patterns between them to generate the outputs. The outputs of a 

classification problem are the classes belonging to the compounds. Thus, features 

become the inputs that the model utilizes to make predictions. For this reason, their 

quality must be as high as possible to make a good predictive model. 

Due to the large number of descriptors that can potentially be generated using 

different software, datasets can reach a huge dimensionality. It is led to think that a 

higher number of features correspond to more information and better predictive 

performance. However, this is not always the case. Generally, features can be 

categorized according to their influence on the output as 1) relevant, if they influence 

the output, 2) irrelevant, if they have no influence on the output, and 3) redundant if 

two or more features encode the same type of information about the data [114]. Thus, 

a large number of features can lead to various problems, such as difficult data analysis 

and visualization, and difficulties in training the ML model. When the latter condition 

arises, a very common problem known as the “curse of dimensionality” occurs [115].  

High dimensionality represents a problem because as the number of the dimension 

increase, the number of data required to generalize accurately grows exponentially.  

Some techniques, called dimensionality reduction techniques, are used to adequately 

combine the features of a high dimensional input space into a lower-dimensional 

subspace, maintaining their relevant information. The aim is to discard irrelevant or 

redundant data insignificant to the problem [116].  
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Operating in lower dimensionality spaces makes it easier to train ML algorithms and 

can improve model performance. Dimensionality reduction can be performed 

according to two main approaches, feature extraction techniques, and feature 

selection techniques [116]. 

Feature Selection techniques aim to select only those features that contain the 

relevant information for solving the problem. The ideal number of features is the 

smallest one that most contributes to accurately describing the problem.  Feature 

Extraction, instead, operates a transformation of the input space onto a low-

dimensional subspace that preserves most of the relevant information [117]. Feature 

extraction and selection methods can be used isolated or in combination to improve 

predictive performance. 

In my Ph.D. project, during the optimization phase of the model, four different 

dimensionality reduction techniques were used singularly and in different phases. Two 

of them are feature extraction techniques and correspond to Principal Component 

Analysis (PCA), and Linear Discriminant Analysis (LDA). The other two methods are 

feature selection techniques and correspond to information theory-based feature 

selection and Genetic Algorithm-k-NN (GA-k-NN). 

 

4.5.1 Principal Component Analysis 

To execute the dimensionality reduction PCA perform an unsupervised linear mapping 

of the initial features space and employs an orthogonal transformation to convert 

them into a smaller subset of uncorrelated artificial features called principal 

components (PCs) [118]. In this way, PCA extracts information from several redundant 

features in a smaller number of unrelated features. Therefore, the generation of the 

predictive model will not rely on the initial descriptors anymore but on the PCs. The 

purpose of PCA is to preserve the initial maximal variance in a lower-dimensional space 

[119], as the variance reflects the information in the data. The PCs are ranked with the 

first bearing the highest percentage of variance, followed by other PCs with variance 

values in descending order. Thus, most of the information contained in the original 

variables is compressed into the first PCs [118]; it is sufficient to eliminate all PCs that 
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contain little variance to remove the noise and improve model performances. The 

number of PCs selected to create the model is arbitrarily determined. Usually, PCs are 

chosen to express 90% of the initial variance. When two or three PCs are chosen, data 

distribution can be visualized.  

A common method for determining the number of PCs to be used for model building is 

a graphical representation known as a scree plot. A scree plot is a simple line-segment 

graph showing the PCs and their respective variance content. The graph presents an 

ascending or descending curve, which starts on the left, ascends or descends rapidly, 

and then flattens out. The PCs are selected using the elbow rule, i.e. the point on the 

curve just before the line flattens is searched for, known as the 'elbow', and all PCs 

within the point are considered. 

Since PCA is not implemented in QSAR-Co-X, to perform it a code in Python language 

was created, using the PCA algorithm implemented in scikit-learn. 

 

4.5.2 Linear Discriminant Analysis 

LDA is a feature extraction technique that performs a supervised linear mapping of the 

initial data and projects it on a straight line to maximize the proximity of the projection 

points of the interclass samples and maximize the distance between the projection 

points of the infraclass samples. LDA not only reduces the dimensions but also tries to 

maximize the discriminatory information between classes. Thus, when classifying a 

new sample, it is projected on the same straight line, and its classification is 

determined by the position of the projected point. Unlike PCA, which prioritizes 

dimensions that best represent a pattern, LDA prioritizes dimensions that best 

discriminate patterns [119].  

To perform the LDA, was used the model implemented in QSAR-Co-X called forward 

stepwise LDA (FS-LDA), which can be accessed via module 1 of the software. FS-LDA 

combines feature selection techniques with LDA. 

FS is an iterative method of feature selection, that starts with an empty set, where 

variables are added one by one according to the lowest p-value. The p-value indicates 
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the significance of the feature for the target variable, the lower its value, the more 

significant the feature. Then, after the linear transformations of the starting features 

have been performed via LDA, they are stored in a new dataset according to their 

increasing p-values.  

 

4.5.3 Information theory-based feature selection 

Information theory relies on a work conducted in 1948 by Claude Shannon [120], whose 

purpose is to quantify how much information a communication system can transmit 

relying on probabilistic techniques. Information theory is based on the measure of 

information entropy, called Shannon entropy (SE), which is the average level of 

information contained in a random variable, and can be represented with the following 

equation [121]:  

𝑆𝐸 = − ∑ 𝑝𝑖𝑙𝑜𝑔2 𝑝𝑖  

(7)  

 

where 'p' is the probability that a data point falls within a specific data interval 'i', while 

𝑙𝑜𝑔2  can be interpreted as a scaling factor allowing SE to be considered as an 

information content metric  [121]. 

The concept of information defined for information theory embraces various fields that 

can be far from telecommunications systems for which it was born, such as chemistry, 

statistics, biology, neuroscience, behavioral science, and statistical mechanics  [122]. 

For instance, in chemoinformatics, the main applications of information theory 

concepts include:  

• quantifying the chemical information contained in different representations of 

small molecules [122]. 

•  its use in statistical analysis, data mining, and ML, which have become 

fundamental tools for chemoinformatics research [122].  

A feature selection method based on information theory was used here to perform 

dimensionality reduction. For this purpose, was employed a free software with a 

graphical user interface, named IMMAN [123]. 
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IMMAN is the acronym for Information theory-based CheMoMetrics ANalysis, and it 

allows performing 20 feature selection different approaches. The approach used in my 

project is a supervised method that allows obtaining a ranking of the first k features 

according to their differential Shannon entropy (DSE) values, where k is a number 

decided by the user. Feature selection based on DSE has previously proven to be 

successful for the construction of mt-QSAR models [124,125] 

DSE can be calculated as follow: 

𝐷𝑆𝐸 = 𝑆𝐸1,2,3…𝑛 − (𝑆𝐸1 + 𝑆𝐸2 + 𝑆𝐸3+. . . 𝑆𝐸𝑛)/𝑛 

(8)  

Where 𝑆𝐸1,2,3…𝑛  usually is the SE measured for n combination of compound databases 

[121,123], while in feature selection task represent n-class partition based (in this 

project a 2-class partition based). 

Thus, DSE is an extension of SE that allows the comparison of the information content 

of descriptors in different class-based partitions, even if the differences in the 

distribution of their values are difficult to identify [121].  

 

4.5.4 Genetic Algorithm-k-NN approach 

GA is one of the most advanced algorithms for feature selection, it is a stochastic 

method inspired by human genetics and biological evolution, and is therefore called an 

evolutionary algorithm [126]. Indeed, similarly to how in-nature genes evolve in 

successive generations to better adapt to the environment, GA operates on a 

population of starting features to produce better feature subsets. 

GA mimics what occurs during gamete replication, particularly in the first meiotic 

division. During meiosis, in gametes, there are pairs of chromosomes called homologs, 

one inherited from the father and one from the mother. In the initial stage of meiosis, 

called prophase, the two pairs of homologous chromosomes come so close that they 

exchange chromosome portions of the same size, in other words, equal amounts of 

genetic material [127]. In this way, chromosomes different from their parent 
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chromosomes are created. This exchange process is called crossing-over and its 

function is to enhance the genetic diversity of meiotic products [128]. 

The research of the best subset of features by the GA employs strings of values called 

chromosomes. Each chromosome represents a specific combination of features, the 

parameters to be optimized, and consists of a string no longer than the total number 

of features in the dataset. Chromosomes consist of individual genes and each gene 

represents a feature indicated by binary values (0,1), which will determine the absence 

(0) or presence (1) of that feature in the chromosome. A combination of chromosomes 

for a particular dataset is called a population. 

The GA process begins by generating a population of random chromosomes large 

enough to ensure adequate diversity in the space of feature subsets [126]. The 

purpose of the process is to advance only the fittest chromosomes into the next 

generation. Thus, the fitness of each chromosome is estimated by employing a fitness 

function, a measure of performance that determines how much the chromosome 

contributes to the good performance of the model. A fitness score is assigned to each 

chromosome, the higher this score is, the higher the probability that the chromosome 

will be selected for breeding in the next generation. At the end of this process, the 

most promising chromosomes are selected to produce the next generation through 

procedures of reproduction, cross-over, and mutations. 

Reproduction involves preserving the best chromosomes in the next population, while 

the others are modified through crossover and mutation procedures to form new 

chromosomes [126]. 

During cross-over, two chromosomes exchange portions of genes of the same size and 

position. In this way, two new chromosomes are formed to replace the ones in the 

initial population with poor fitness scores [126].  

In contrast, during mutation, the arrangement of genes in the chromosome is altered 

to produce an entirely new chromosome. 

Once a new generation has been created, it is evaluated, and the entire procedure is 

repeated for a predefined number of repetitions until a final solution is obtained [126]. 
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For the dimensionality reduction approach adopted in my project, GA was employed in 

conjunction with k-NN. Hence, each time GA produces a generation, it is evaluated in 

terms of classification accuracy using k-NN. The use of k-NN is chosen because it is a 

very fast classifier, which is a considerable advantage when it is necessary to evaluate 

many generations. To apply this approach, a software called GA-KNN, implemented by 

the research group of professor Cordeiro and not yet distributed, was used. This 

software rely on the GA-k-NN methodology implemented in the Python based scikit-

learn-genetic program (https://github.com/manuel-calzolari/sklearn-genetic), which 

uses a “deep” function to execute the GA. 

Here, an initial population of 100 chromosomes was selected, and from it 100 

generations were created and evaluated by k-NN. The final number of features cannot 

be specified by the user, but the number of features that gave the best performance 

with k-NN was saved and stored in a new dataset. Then, the dataset with a reduced 

number of features was evaluated with RF, and after that was submitted to the GA-

KNN software again. This iterative process continued until it was not possible to reduce 

the number of features. In this way, several datasets with a reduced number of 

features were created and compared. 

 

4.6 Applicability domain 

One of the most relevant problems in QSAR analysis is establishing the applicability 

domain (AD) of a model. AD represents the region in space defined by the nature of 

molecular structures present in the training set, through their molecular descriptors 

[129]. Therefore, it is not possible to use only one QSAR model to correctly predict the 

activity of any compound, no matter how robust, significant, and validated the model 

is [130]. To avoid incorrect predictions, the domain within the QSAR model can make 

predictions should be restricted to AD [131]. Defining the border of the AD may then 

be viewed as detecting outliers. Several approaches have been proposed to estimate 

AD, with none emerging as the best [130]. All these techniques aim to reject outliers 

that would lead the model to make wrong predictions, increasing its reliability [131].  

https://github.com/manuel-calzolari/sklearn-genetic
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In my Ph.D. project an approach called “confidence estimation” was used to define the 

AD of the mt-QSAR model. This method relies on the information of the class labels of 

the training set to estimate the level of confidence of new predictions [131]. The 

approach is implemented in QSAR-Co-X. Here, whenever the model makes a prediction 

two columns are created in the results datasheet, one showing the probability of the 

compound being negative (-1), and the other the probability of the compound being 

positive (1). These probabilities can take values between 0 and 1. The closer to 1, the 

compound will be considered positive, and negative otherwise. Also, the absolute 

difference between the two probabilities is considered, indicating how much 

confidence the model has in that prediction. The higher such a value, the more 

confidence the model has in making that prediction. A threshold of 0.5 was applied to 

the absolute difference value. Therefore, if the absolute difference between the two 

probabilities was greater than 0.5 the compound was considered in, otherwise it was 

considered an outlier.     
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5. Results  

 

5.1 Dataset construction 

The research for hematological cancer cell lines in Cellosaurus and molecules 

tested against them in ChEMBL, resulted in a dataset of 66787 molecules and 71 

hematological cancer cell lines. During the data curation process, by analyzing the 

dataset and checking data quality, several data homogeneity issues were founded.  

To improve the quality of the dataset samples with non-compliant values were 

eliminated. A list of the issues encountered is listed below: 

 Presence of missing values: this condition occurs very frequently in datasets, 

the values corresponding to some columns are not recorded or available. The 

abbreviation "N/A" is chosen to indicate them. 

 Standard Value equals 0: samples with this condition de facto are like having a 

missing value. It is impossible for a molecule to be active at the concentration 

corresponding to the value 0, this value did not provide any information. 

 Target Type value different from cell line: although the search on ChEMBL was 

conducted by filtering only compounds active against hematologic cancer cell 

lines, some samples exhibited, in the corresponding column, a target different 

from the cell line, often a protein. Although the mt-QSAR model can includes 

different targets, it is important that these are all represented by cancer cell 

lines. 

 Standard Type different from IC50: although the ChEMBL search was conducted 

by filtering only those molecules with the activity value expressed in terms of 

IC50, there were some molecules for which the Standard Type was expressed 

with other indices, frequently GI50 (concentration causing 50% cell growth 

inhibition). 

 Standard Units not expressed in molar concentration: In order for molecule 

activities to be comparable and for the model to learn correctly from the data, 

it was important that all molecules had the same concentration unit expressed 

in μM. However, there were some concentrations expressed in μg/mL. One 

solution could have been to convert the data to µM concentration, but 
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considering the time required to perform the conversion and the number of 

samples that would be gained, it was preferred to eliminate the samples. 

 Standard Relation not expressed with "=" symbol: some Standard Relation were 

expressed with the symbol >, <, ≥, ≤. These symbols do not express an exact 

concentration but rather a range. Since it is very important for subsequent 

construction steps that molecules have an unambiguous activity value, samples 

with this issue were eliminated. 

Another very important step of data curation, involved eliminating molecules based on 

the Assay Description column. Although only molecules with activity expressed via IC50 

were retained, analyzing the Assay Description column it became apparent that not all 

the assays reported were related to the cytotoxic activity of the molecules. Indeed, in a 

more comprehensive sense, IC50 can be defined as the concentration capable of 

inhibiting 50% of the activity under investigation. Thus, not all the molecules in the 

dataset were evaluated for their cytotoxic activity against cancer cells, but they had 

different activities, which could only be inferred from the description of the biological 

assay used to evaluate them. The most represented activities after cytotoxicity were 

cytostatic, anti-HIV, and anti-inflammatory activities. Therefore, it was necessary to 

carefully check the assay description of each molecule. 2317 different Assay 

Descriptions were present in the whole dataset, and due to the high variability of their 

text string, it was not possible to filter the dataset as described in section 4.1.1 for the 

previous cases. Therefore, it was necessary to proceed by inspecting the assay for a 

single molecule at a time, consuming some days.  

Samples that presented assays for anti-HIV and anti-inflammatory activities were 

eliminated. Samples that showed cytostatic activity, on the other hand, were used to 

build a second dataset that could be useful for future applications. Instead, only 

samples with cytotoxic activity were retained in the dataset used for my research 

project. 

A further step of data curation involved the elimination of duplicate molecules. It is 

important to emphasize that some molecules appear in the dataset more than once 

because they may have been tested on different hematologic cancer cell lines, these 

molecules are not considered duplicates but rather are defined as a case. In fact, for a 
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molecule to be considered a duplicate it must have the same target and be active at 

the exact same concentration. In order to make the identification of duplicates faster 

and easier, this step was performed using Excel. Here molecules were sorted by 

increasing Standard Value, so molecules with identical activity values were found to be 

consecutive. After that, an operation was performed to identify duplicates based on 

the SMILES, Standard Value, and Target Name columns. Indeed, molecules with 

identical values in all three of these columns are completely identical and their 

presence represented redundant information. Molecules found to be duplicates were 

eliminated all but one. 

After the dataset curation, a cutoff value of 1 µM was defined, according to the 

procedure and motivation explained in section 4.1.2. 

After assigning the cutoff value, it was necessary to eliminate duplicate molecules 

again. The procedure used is identical to the previous one, but in this stage were 

considered identical those molecules having the same SMILES, Target Value, and 

Toxicity value, i.e., having the same molecular structure, that were active against the 

same cell line at identical concentration. These duplicate molecules were eliminated all 

but one.  

A final data curation step became necessary after the introduction of the cutoff value, 

which is the elimination of molecules, called discordant, that were both active and 

inactive against the same target. With an operation conducted in Excel, similar to that 

used to identify duplicates, all those molecules having the same SMILES notation, and 

the same Target Value but possessing both values 1 and -1 in the Toxicity column were 

found and eliminated. Since it was impossible to determine what the real activity of 

these molecules was, all discordant molecules were eliminated.  

Within this specific dataset, the 1 µM cutoff value results in a ratio of active to inactive 

molecules of 30% and 70%, respectively, leading to the formation of an unbalanced 

dataset. During the optimization phase of the model, the impact that a change in the 

cutoff value could make on its performance was evaluated. For this purpose, through 

the same procedure performed to construct the dataset with a cutoff value of 1 µM, 

several datasets with the following cutoff values and respective ratios of active to 

inactive molecules were generated: 
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 0.3 µM: ≃ 15% active and 85% inactive molecules 

• 0.5 µM: ≃ 20% active and 80% inactive molecules 

• 1 µM: ≃ 30% active and 80% inactive molecules 

• 2.5 µM: ≃ 37% active and 73% inactive molecules 

• 5 µM: ≃ 50% active and 50% inactive molecules 

• 7.5 µM: ≃ 57% active and 43% inactive molecules 

• 10 µM: ≃ 62% active and 38% inactive molecules 

 

It is important to evaluate the performance of the model on a more or less balanced 

dataset. In fact, many classifiers exhibit mispredictions in minority classes as they try to 

optimize overall accuracy without considering the distribution of each class. [132]. 

Comparing the performance of models with different cutoff values is used to identify 

the cutoff that allows the classifier to make the most accurate predictions. 

After the data curation process and elimination of duplicate and discordant molecules, 

the dataset was composed of 11704 molecules, and the number of hematological 

cancer cell lines comprised was reduced to 43. 

On the molecules in this dataset using alvaDesc, the descriptors from 0D to 2D were 

calculated, after which the deviation descriptors were calculated using QSAR-Co-X. The 

result is a dataset consisting of 11704 molecules, 43 hematological cancer cell lines 

which represent the one experimental condition included in the dataset, and 1640 

deviation descriptors from 0D to 2D.  

5.2 Model development and optimization 

The above-mentioned dataset was subjected to five different classification algorithms 

to identify the one that yielded the best predictive model. As reported in Table 1, the 

algorithm that produced the best performance was RF, with an ACC value of over 86% 

in the training, test, and validation sets and an MCC of 0.635 in the test set and 0.625 

in the validation set. This means that the model correctly classified 86% of the 

molecules in the dataset, specifically 6426 samples out of 7458 in the training set, 
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1137 samples out of 1317 in the test set, and 2521 out of 2926 in the validation set, for 

a total of 10084 correctly classified molecules out of 11704 in the entire dataset. 

Focusing on the validation set, the model performs significantly better on negative 

samples, correctly classifying 94% of the total (sensitivity), while it performs worse on 

positive samples, correctly classifying only 63% of the total (specificity). This is not 

surprising considering that negative samples are the most represented in the training 

set, so the model is better trained to recognize them. 

Table 1. Comparison of the prediction performance of four classification algorithms. RF, 
random forest; MLP, multilayer perceptron; GB, gradient boosting; K-NN, k-nearest neighbor; 
ACC, accuracy; MCC, Matthews correlation coefficient; ROC AUC, Area Under Receiver 
Operating Characteristic curve; TP, true positive; TN, true negative; FP, false positive; FN, false 
negative. 

Algorithm Set ACC % MCC 
ROC 

AUC 
Sensitivity% Specificity% TP TN FP FN 

RF 

Training 86.128   94.865 62.722 1272 5154 279 756 

Test 86.333 0.635 0.798 66.0 93.692 231 906 61 119 

Validation 86.159 0.625 0.789 63.554 94.246 490 2031 124 281 

MLP 

Training 82.429   88.441 66.322 1345 4805 628 683 

Test 82.764 0.573 0.795 72.571 86.453 254 836 131 96 

Validation 83.527 0.561 0.769 62.776 90.951 484 1960 195 287 

GB 

Training 81.383   95.233 44.280 898 5174 259 1130 

Test 81.473 0.481 0.703 46.571 94.106 163 910 57 187 

Validation 81.066 0.464 0.694 44.747 94.060 345 2027 128 426 

K-NN 

Training 79.413   88.478 55.128 1118 4807 626 910 

Test 80.410 0.491 0.742 60.857 87.487 213 846 121 137 

Validation 78.298 0.424 0.705 54.086 86.961 417 1874 281 354 

 

The model obtained with MLP has an ACC value that does not deviate much from that 

of the RF and reaches 83% in the validation set. However, when comparing the MCC 

values, these are significantly lower in both the test set (0.573) and the validation set 

(0.561), demonstrating a significant deterioration in performance. The same trend was 

recorded with GB. 
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Poor results were obtained with k-NN, while no results were recorded for SVC. In fact, 

even ten days after applying the algorithm, no results could be obtained on the 

dataset. 

Once RF has been identified as the algorithm that returned the best predictive model, 

the optimization phase began. In order to investigate whether the predictive 

performance of the model could be improved, changes were made to the composition 

of the dataset.  

Initially, it was assessed whether the addition of 3D descriptors to the dataset would 

improve the performance of the RF model. Indeed, 3D descriptors can encode 

structural information that is missing in 2D descriptors and could facilitate the 

algorithm to perform a more accurate classification. 

Table 2. Comparison of the prediction performance between RF2D and RF3D. ACC, accuracy; 
MCC, Matthews correlation coefficient; ROC AUC, area under receiver operating characteristic 
curve; TP, true positive; TN, true negative; FP, false positive; FN, false negative. 

Dataset Set ACC % MCC 
ROC 

AUC 
Sensitivity% Specificity% TP TN FP FN 

RF2D 

Training 86.128   94.865 62.722 1272 5154 279 756 

Test 86.333 0.635 0.798 66.0 93.692 231 906 61 119 

Validation 86.159 0.625 0.789 63.554 94.246 490 2031 124 281 

RF3D 

Training 85.213   95.204 60.550 1210 5200 261 788 

Test 86.115 0.625 0.781 60.795 95.341 214 921 45 138 

Validation 85.442 0.610 0.769 58.271 95.585 465 2035 94 333 

 

Comparing the results of the model with 0D to 3D descriptors (RF3D) with the previous 

one with 0D to 2D descriptors (RF2D), it is immediately evident that there is not a big 

difference in their performance (Table 2). However, RF2D proves to be a better 

predictor than RF3D, which has a lower ACC (86%) in both the training and validation 

set, a lower MCC (0.625 in the test set and 0.610 in the validation set), and especially a 

worse classification of positive samples. Indeed, its sensitivity corresponds to 58.271% 

(compared to 63.554% for RF2D). The first observation that can be made is that the 
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addition of the 3D descriptors does not introduce any new structural information that 

improves the discrimination between the two classes. Therefore, it might seem that 

the topological descriptors are sufficient to adequately describe the problem.  

The second observation is that the increase in the number of descriptors, and thus the 

complexity of the model, may have introduced irrelevant or redundant information 

that prevents the algorithm from accurately discerning the signal, worsening the 

generalization task. To examine the impact that a reduced number of descriptors may 

have on model performance, two different dimensionality reduction techniques were 

employed on the RF3D dataset: PCA and LDA. Since PCA is not implemented in any 

module of QSAR-Co-X, it was executed by coding in the Python programming language. 

The first stage of the PCA execution involved the creation of a scree plot. The 

interpretation of the scree plot (Fig.7), through the elbow rule, established that 5 PCs 

were required to preserve as much variance in the data as possible. Since the number 

of PCs was greater than 3, it was not possible to display the distribution of the data. 

 

Figure 7. Visualization of the scree plot executed on RF3D dataset. 

Table 3. ACC values of the RF3D generated with 5 PCs. ACC, accuracy 

Dataset RF3D with 5PCs 

Set Training Test Validation 

ACC % 99.293 71.695 70.179 
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The second step of the PCA execution involved the creation of an RF model using the 5 

PCs as features. The results were reported in terms of ACC only, and are reported in 

Table 3. 

The large reduction in dimensionality and the use of the PCs significantly worsened the 

performance of the model. In fact, the ACC values of the test and validation sets did 

not exceed 71%, although the value of the training set was very high and exceeded 

99%. Such a good performance on the training set and the decreasing of performance 

in the test and the validation set indicate the presence of overfitting. Thus, the 

deterioration in performance is explained by the fact that the 5 PCs are not sufficient 

to allow the model to generalize accurately. 

 

Instead, through the application of LDA, a dataset with 284 descriptors was obtained. 

In order to find the most suitable number of descriptors to increase the performance 

of the model, a code was created using the Python programming language. This code 

made it possible to automatically generate an RF model for each number of 

descriptors, from 2 to 284, reporting the results in terms of MCC value (Table 4). The 

best model was obtained with 239 descriptors, as demonstrated by the MCC values 

0.610, 0.627, and 0.619 for the training, test, and validation sets, respectively. 

However, these values are lower than the results of the RF2D model. Therefore, the 

initial 1640 descriptors were retained in the subsequent steps of model optimization. 

Table 4. MCC values of the RF3D model build with 239 descriptors. MCC, Matthews correlation 
coefficient 

Dataset RF3D with 239 descriptors 

Set Training Test Validation 

MCC 0.610 0.627 0.619 

 

The process of model optimization was continued by modifying the activity cutoff 

value, thus varying the ratio between active and inactive compounds in the dataset.  

Comparing the results of the various validation sets, represented in Table 5, for cutoff 

values smaller than 1 µM, the ACC values increased proportionally as the cutoff value 

decreased. Actually, the values increase from 85.308% in the dataset with cutoff value 
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0.75 µM, to 87.329% in the dataset with cutoff value 0.5 µM, to 89.322% in the dataset 

with cutoff value 0.3 µM.  

Initially, it could be thought that the performance of the model is improving. However, 

when looking at the MCC values, these show a significant decrease, reporting values of 

0.581 (0.75 µM), 0.590 (0.5 µM) and 0.584 (0.3 µM) respectively. This phenomenon 

can be explained by observing the specificity and sensitivity values. In fact, the model 

correctly classifies 93% positive and 59% negative samples in the 0.75 µM cutoff value 

data set, 94% positive and 58% negative samples in the 0.5 µM data set, and 95% 

positive and 56% negative samples for the 0.3 µM data set. Therefore, by decreasing 

the cutoff value, the model specializes in the correct classification of negative samples 

and commits more errors in the classification of positive samples. 

Table 5. Comparison of the prediction performance on the validation set of the RF2D model 
with different cutoff values. ACC, accuracy; MCC, Matthews correlation coefficient; ROC AUC, 
area under receiver operating characteristic curve; TP, true positive; TN, true negative; FP, 
false positive; FN, false negative. 

Cutoff 

value of 

RF2D 

Set ACC % MCC 
ROC 

AUC 
Sensitivity % 

Specificity 

% 
TP TN FP FN 

0.3 µM Validation 89.322 0.584 0.763 56.849 95.799 332 2805 123 252 

0.5 µM Validation 87.329 0.590 0.797 58.640 94.923 431 2636 141 304 

0.75 µM Validation 85.308 0.581 0.787 59.746 93.686 518 2478 167 349 

1 µM Validation 86.159 0.625 0.789 63.554 94.246 490 2031 124 281 

2.5 µM Validation 82.916 0.637 0.805 69.265 91.686 942 1941 176 418 

5 µM Validation 80.125 0.602 0.801 79.976 80.278 1426 1388 341 357 

7.5 µM Validation 79.784 0.584 0.789 84.291 73.695 1701 1101 393 317 

10 µM Validation 78.986 0.558 0.774 85.266 69.602 1794 980 428 310 

 

Since the ACC only considers correct predictions over total predictions, it increased as 

the correct classification of negative samples increased. However, the MCC, which 

evaluates correct performance in all elements of the confusion matrix, does not 
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undergo the same increase, proving to be a more reliable metric when the ratio of 

active to inactive compounds becomes dramatically unbalanced. 

On the other hand, for cutoff values greater than 1 µM, both ACC and MCC values 

decrease proportionally as the cutoff value increases, demonstrating an overall 

deterioration in model performance. Noteworthy are the specificity and sensitivity 

values on the 5 µM data set, where the ratio of positive to negative cases is 50% and 

both classes are equally represented. In this case, the model correctly classified about 

80% of both negative and positive samples. However, the overall metrics are lower 

compared to the 1 µM data set, as demonstrated by ACC (80.125%) and MCC (0.602). 

Collectively, these data show that the 1 µM cutoff value allows the model to perform a 

more accurate classification. From now on, I used 1 µM cutoff value for all generated 

models.  

The model optimization process continued by adding to the RF2D dataset (cutoff value 

1 µM, one experimental condition, and 1640 deviation descriptors) two additional 

experimental conditions. Their relative deviation descriptors were calculated through 

the Box-Jenkins approach. In this manner, two new datasets were generated. The first 

one, having two experimental conditions (2CONDRF), relative to the cell line and the 

time point, and the second one having three experimental conditions (3CONDRF) 

relative to the cell line, time point, and type of assay.    

Because of the Box-Jenkins moving average approach, both datasets contain a higher 

number of molecular descriptors than the previous RF2D, 3280 and 4920 descriptors, 

respectively. 

As reported in Table 6, the introduction of a second set of deviation descriptors related 

to the time point condition does not significantly improve the ability of the classifier. In 

fact, if in the training and test set the accuracy exceeds 89%, in the validation set it 

returns to 86%, exactly as in the dataset with only one condition. The same trend 

concerns the MCC, which was 0.734 in the test set and 0.636 in the validation set, and 

ROC AUC, 0.854 in the test set and 0.791 in the validation set. This difference in 

metrics indicates the presence of overfitting.  
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Table 6. Comparison of the performance between RF2D, 2CONDRF and 3CONDRF. ACC, 
accuracy; MCC, Matthews correlation coefficient; ROC AUC, area under receiver operating 
characteristic curve; TP, true positive; TN, true negative; FP, false positive; FN, false negative. 

Dataset Set ACC % MCC 
ROC 

AUC 
Sensitivity% Specificity% TP TN FP FN 

RF2D 

(one 

condition) 

Training 86.128   94.865 62.722 1272 5154 279 756 

Test 86.333 0.635 0.798 66.0 93.692 231 906 61 119 

Validation 86.159 0.625 0.789 63.554 94.246 490 2031 124 281 

2CONDRF 

Training 89.149   94.872 72.915 1233 4451 246 458 

Test 89.714 0.734 0.854 76.072 94.830 337 1119 61 106 

Validation 86.195 0.636 0.791 63.389 94.843 606 2391 130 350 

3CONDRF 

Training 87.115   94.313 67.208 1158 4494 271 565 

Test 88.293 0.693 0.835 73.441 93.697 318 1115 75 115 

Validation 88.151 0.690 0.832 72.484 93.905 677 2388 155 257 

 

In contrast, the introduction of the second and third set of deviation descriptors 

related to the time point and type of assay significantly improved the predictive 

performance of the RF, which achieves an ACC of 88% (Table 6). Moreover, ACC values 

of the training, test, and validation set (87.115%, 88.293%, and 88.151% respectively), 

and the MCC values of the test and validation set (0.693 and 0.690 respectively) are 

more consistent with each other, indicating that there is no presence of overfitting. 

While specificity remains almost unchanged compared to RF2D, sensitivity gains 10% 

points. Thus, while negative sample classification remains stable, the model increases 

the number of positive samples it can correctly classify to 72% (compared to 63% for 

RF2D). This is reflected in a better ability to separate the two classes of samples, which 

is also shown by the increase in the ROC AUC value to 0.832 (versus 0.789 in RF2D). 

Therefore, 3CONDRF was used for the subsequent optimization steps. 
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The high number of molecular descriptors in the 3CONDRF model required the 

application of dimensionality reduction techniques once again in order to understand 

whether its performance could be improved. The techniques investigated in this phase 

were information theory-based feature selection and GA-k-NN. 

Table 7. Comparison of the performance of the model 3CONDRF with different numbers of 
descriptors selected through information theory-based feature selection. ACC, accuracy; MCC, 
Matthews correlation coefficient; ROC AUC, area under receiver operating characteristic curve; 
TP, true positive; TN, true negative; FP, false positive; FN, false negative. 

Number of 

descriptors 

of 3CONDRF 

Set ACC % MCC 
ROC 

AUC 
Sensitivity% Specificity% TP TN FP FN 

20 

Training 82.522   93.473 52.245 900 4454 311 823 

Test 83.857 0.566 0.763 60.046 92.521 260 1101 89 173 

Validation 82.168 0.517 0.735 54.818 92.214 512 2345 198 422 

15 

Training 84.541   93.956 58.503 1008 4477 288 715 

Test 85.521 0.6121 0.785 63.510 93.529 275 1113 77 158 

Validation 84.757 0.590 0.769 59.850 93.905 559 2388 155 375 

10 

Training 82.922   93.242 54.382 937 4443 322 786 

Test 83.980 0.564 0.754 57.044 93.781 247 1116 74 186 

Validation 82.427 0.521 0.732 53.212 93.158 497 2369 174 437 

5 

Training 79.162   91.752 44.341 764 4372 393 959 

Test 80.653 0.465 0.705 48.729 92.269 211 1098 92 222 

Validation 79.321 0.427 0.686 45.503 91.742 425 2333 210 509 

 
The reduction of descriptors through information theory-based feature selection 
resulted in four datasets consisting of 20, 15, 10, and 5 descriptors. The results of all 
four datasets (Table 7) exhibit lower metrics than the model with 4920 descriptors. 
The best results were obtained on the dataset with 15 descriptors, which showed an 
ACC of 84.541%, 85.521% and 84.757% in the training, testing and validation set, 
respectively. In contrast, the MCC values are 0.612 and 0.590 for the test and 
validation sets. Although this model does not match the performance of 3CONDRF 
with 4920 descriptors, the level of ACC and MCC it achieved is remarkable considering 
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the drastic reduction in the number of descriptors. 
 
Through the GA-k-NN approach, several datasets were generated with 1619, 1350, 
1220, 691, 597, 202 and 86 descriptors. 

 

Table 8. Comparison of the performance of the model 3CONDRF with different numbers of 
descriptors selected through GA-k-NN. ACC, accuracy; MCC, Matthews correlation coefficient; 
ROC AUC, area under receiver operating characteristic curve; TP, true positive; TN, true 
negative; FP, false positive; FN, false negative. 

Number of 

descriptors 

of 

3CONDRF 

Set ACC % MCC 
Incorrect 

predictions 

ROC 

AUC 

Sensitivity 

% 

Specificity 

% 
TP TN FP FN 

4920 Validation 88.151 0.690 412 0.832 72.484 93.905 677 2388 155 257 

1619 Validation 88.151 0.690 412 0.830 72.055 94.062 673 2392 151 261 

1350 Validation 88.093 0.688 414 0.831 72.270 93.905 675 2388 155 259 

1220 Validation 88.093 0.581 414 0.831 72.270 93.686 673 2390 153 261 

691 Validation 87.949 0.684 419 0.830 72.163 94.246 674 2384 159 260 

597 Validation 87.863 0.681 422 0.826 71.306 93.944 666 2389 154 268 

202 Validation 88.007 0.685 417 0.827 71.306 94.140 666 2394 149 268 

86 Validation 87.403 0.666 438 0.813 68.094 94.950 636 2403 140 298 

 

Reducing the number of descriptors from 4920 of 3CONDRF to 1619 does not lead to 

any significant change in performance. Indeed, as can be seen from the results 

obtained on the validation set (Table 8), ACC (88.151%) and MCC (0.690) are 

completely identical to those of 3CONDRF. This result indicates that the 3CONDRF 

dataset contains at least 3301 descriptors that are completely irrelevant for 

classification purposes.  
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Examining the results obtained on the validation sets with 1350 and 1220 descriptors, 

it may be noted that both models lead to identical results for ACC (88.093%) and MCC 

(0.688), which are only slightly lower than those of the previous model. Given the 

similarity of the results of these first three models, to facilitate the identification of the 

best predictive model, the total number of incorrect predictions was considered. The 

model with 1619 descriptors misclassified 412 samples out of 3477, while both models 

with 1350 and 1220 descriptors had 414 misclassified samples. The model generated 

with 1619 descriptors misclassified 412 samples out of 3477, while both models with 

1350 and 1220 descriptors had 414 misclassified samples.  

The models generated with 691, 597, and 86 descriptors decreased slightly in 

performance, although their overall ACC never fell below 86%. This result is very 

successful considering the drastic reduction in features. However, the classification 

errors increase, corresponding to 419, 422 and 438 respectively out of 3477 samples. 

The model generated with 202 descriptors has ACC (88.007%) and MCC (0.685) values 

that are closest to the models with 1619, 1350 and 1220 descriptors. However, it 

commits more classification errors (417). Based on these results, it was decided to use 

the model with 1619 descriptors. Although the performance of the model with 202 

descriptors was similar and the reduced number of descriptors would certainly speed 

up calculation operations, the model with 1619 descriptors preserves performance to 

a maximum and has a number of descriptors that still allows calculation operations to 

be performed in a fairly efficient time.  

 

The validation set used to evaluate the performance of the finalized mt-QSAR model 

was also used to evaluate the applicability domain (AD) of the model. Through the 

confidence estimation approach, 757 outlier compounds were identified, 

approximately 22% of the total (3477). By rejecting those compounds and evaluating 

the model again, the performance has significantly improved. Indeed, as reported in 

Table 9, before the implementation of AD the ACC of the validation set was 88.151%, 

while after AD it increased to 94.301%. Similarly, the MCC increased from 0.689 before 

AD to 0.817 after AD. There was also a significant increase in sensitivity, which varied 

from 72.055% (before AD) to 80.256% (after AD). Although the increase in 
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performance came at the expense of a reduction in molecules, the model can be said 

to be robust and reliable. 

Table 9. Comparison of the performance of the finalized mt-QSAR model before and after the 
application of AD. ACC, accuracy; MCC, Matthews correlation coefficient; ROC AUC, area under 
receiver operating characteristic curve; TP, true positive; TN, true negative; FP, false positive; 
FN, false negative. 

Finalized 

mt-QSAR 
Set ACC % MCC 

Incorrect 

predictions 

ROC 

AUC 

Sensitivity 

% 

Specificity 

% 
TP TN FP FN 

Before AD Validation 88.151 0.690 412 0.830 72.055 94.062 673 2392 151 261 

After AD Validation 94.301 0.817 155 0.890 80.256 97.837 439 2126 47 108 

 

5.3 VS 

The purpose of my research project was not only the construction and optimization of 

a mt-QSAR classification model, but also confirmation of its generalization 

performance on an external validation set for VS purposes. For a final validation, an 

external dataset of 36 cases was assembled. Actually, the number of different 

molecules composing the dataset (reported in Table 10) is 15, but since some of them 

were tested against more than one cell line or at different time points, this results in 

36 different cases. Although the dataset has small dimension, it ensures structural 

variety. All the molecules have been previously evaluated by our research group in 

vitro in term of cytotoxic activity against one or more hematological cancer cells, and 

for some of them the results have already been published [133–137]. The activity 

range of these compounds varies from 0.43 µM to 142.79 µM, and only 2 molecules 

were found to be active at concentrations less than or equal to 1 µM, while 34 were 

active at concentrations higher than 1 µM, and therefore considered inactive. Neither 

of the molecules was present in the training set.  
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Table 10. Molecular representation of the 15 compounds used to build the dataset employed 
for VS. 

Structure Target 
(cell line) 

Time point Reference 

 

 Jurkat  24h [133] 

 

 Jurkat  24h [133] 

 

 Jurkat  24h [133] 

 

 Jurkat  24h [133] 

 

 CCRF-CEM 
 24h 

 48h 
[134] 
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 CCRF-CEM 
 24h 

 48h 
[134] 

 

 CCRF-CEM 
 24h 

 48h 
[134] 

 

 CCRF-CEM 
 24h 

 48h 
[134] 

 

 CCRF-CEM 
 24h 

 48h 
[134] 
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 CCRF-CEM 
 24h 

 48h 
 

[134] 

 

 CCRF-CEM 
 24h 

 48h 
[134] 

 

 MOLM-13 

 MV4-11 

 OCI-AML3 

 U-937 

 24h 

 48h 

 72h 

[135] 

 

 CEM 

 Jurkat 

 24h 

 48h 
[136] 

 

 HL-60  24h 
Not 

published 
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 Jurkat  24h [137] 

To assemble the dataset, molecular structure of the compounds were drawn with 

Marvin Sketch version 21.1.0, ChemAxon (https://www.chemaxon.com), and merged 

in one single SD format file through BIOVIA Discovery Studio Visualizer 

(https://discover.3ds.com/discovery-studio-visualizer-download). The file was 

submitted to alvaDesc version 2.2 where molecular descriptors from 0D to 2D were 

calculated for each case. The column Toxicity was then added at the dataset, and 

Boolean variables corresponding to the actual activity of the molecules were assigned 

at each case. Three further columns were added, concerning the three experimental 

conditions included in the mt-QSAR model dataset, i.e. cell line, time point and type of 

assay used for the in vitro assays. It should be specified that no new conditions values 

were introduced in this validation set, all of them were present in the training set 

conditions.  

Finally, the dataset built was subjected to QSAR-Co-X for the calculation of the 

deviation descriptors. Since this dataset for the VS contains 3 experimental conditions, 

3 series of the input descriptors were obtained, corresponding to 4920 deviation 

descriptors. However, in order to employ the finalized mt-QSAR model to predict the 

activities of the compounds, the VS dataset and the mt-QSAR model must contain the 

same number and type of descriptors. Therefore, of the 4920 deviation descriptors 

calculated, only the 1619 contained in the finalized mt-QSAR model were selected. 

For the VS task, the model correctly classified all active cases (2) and all inactive cases 

(34), returning perfect metrics, as reported in Table 10. The result obtained can be 

considered impressive according to the complexity of the modeled biological response 

and the structural diversity of the molecules of the dataset.  
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Since the molecules had already been tested for their cytotoxic activity against 

hematological cancer cells, our assays confirm that the prediction of the model are 

100% accurate. 

Table 11. Results of the VS performed with the finalized mt-QSAR on a laboratory dataset. 
ACC, accuracy; MCC, Matthews correlation coefficient; ROC AUC, area under receiver 
operating characteristic curve; TP, true positive; TN, true negative; FP, false positive; FN, false 
negative. 

Laboratory 

dataset 

ACC % MCC 
ROC 

AUC 

Sensitivity 

% 

Specificity 

% 
TP TN FP FN 

100 1.0 1.0 100 100 2 34 0 0 
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6. Conclusions and future perspectives 

The aim of my Ph.D. project was to build an mt-QSAR model to identify novel 

compounds with cytotoxic activity against several hematological cancer cells in order 

to speed up the early stages of the drug discovery process.  

A large and diverse dataset including 11704 molecules tested against 43 hematological 

cancer cell lines was constructed and used to train a predictive model. 0D to 2D 

molecular descriptors were calculated to describe the activities of the molecules, and a 

cutoff value was used to allow the model to discriminate between active and inactive 

molecules. Additionally, the Box-Jenkins moving average approach was applied, 

allowing the model to evaluate the cytotoxicity of the molecules not only in relation to 

their physicochemical properties but, also, according to their target, i.e. the 

hematological cancers cell line. Five classification ML algorithms were utilized, 

identifying RF as the one capable of generating the best predictive model. Different 

approaches, including dimensionality reduction methods such as PCA, LDA, GA-k-NN, 

and information theory-based feature selection were employed to reduce the 

dimensionality of the dataset and improve the mt-QSAR model predictive 

performance. Through the GA-k-NN approach, it was possible to reduce the model 

dimensions to 1619, improving its performance. Additionally, during model 

optimization, further approaches were employed to modify certain characteristics of 

the dataset. The first involved a modification of the cutoff value, which nevertheless 

confirmed that the value of 1 µM chosen initially was the best one for performance 

purposes. The second approach involved the calculation of two further sets of 

deviation descriptors, using the Box-Jenkins approach, which also enabled the model 

to discriminate the activity of molecules according to the time point and the type of 

assay used to assess their biological activity. 

All these efforts led to a good final mt-QSAR classification model which can predict the 

biological activity of molecules based on their behavior towards the target, a time 

point and an assay type. The goodness of the model was confirmed by its ACC which 
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reaches 88% in the validation set and increases to 94% if the model is applied within its 

AD.  

This classification model was used for the VS of a small laboratory dataset where it 

correctly classified all molecules, both active and inactive, laying the groundwork for 

the prediction of cytotoxic molecules against hematological cancer cells through the 

use of artificial intelligence methods. Indeed, this model is the first (to our knowledge) 

capable of discriminating molecules active against 43 hematological cancer cell lines 

and two further additional experimental conditions. 

Despite the encouraging result of VS, it would be desirable to evaluate the 

performance of the model in classifying a larger and balanced dataset, namely one 

with a ratio of active to inactive molecules close to 50%. Therefore, as a future work, 

the laboratory dataset will be expanded by adding more positive molecules, either 

tested in our laboratories or appeared in recent scientific publications. Afterwards, the 

expanded dataset will be virtually screened again by the mt-QSAR model. 

In case the model would confirm the accuracy of its predictions, its use will be 

extended for VS of larger databases, both on laboratory and commercial compounds. 

For this purpose, a dataset of molecules tested in our laboratories on cell lines 

different from hematological cancers is being ultimate. The mt-QSAR model will be 

used to predict the activity of the molecules, and only those eventually found to be 

active will be tested on hematological cancer cells through wet laboratory experiments 

to unequivocally assess the real performance of the model.   
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